WorldWideScience

Sample records for alleviates oxidative stress

  1. TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2017-01-01

    Full Text Available Methamphetamine (MA leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS. The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. In this study, the rats were randomly divided into control group, MA-treated group (MA, and MA plus TBHQ-treated group (MA + TBHQ. Chronic exposure to MA resulted in slower growth of weight and pulmonary toxicity of the rats by increasing the pulmonary arterial pressure, promoting the hypertrophy of right ventricle and the remodeling of pulmonary arteries. MA inhibited the Nrf2-mediated antioxidative stress by downregulation of Nrf2, GCS, and HO-1 and upregulation of SOD2. MA increased GRP78 to induce ERS. Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity.

  2. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2018-02-01

    Full Text Available Objective Heat stress (HS triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. Methods A total of 24 pigs were given either a control diet (17 IU/kg VE or a high VE (200 IU/kg VE; HiVE diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity or HS (35°C, 35% to 45% humidity, 8 h daily conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Results Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet×temperature the loss of blood CO2 partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003 plasma biological antioxidant potential (BAP and tended to increase (p = 0.067 advanced oxidized protein products (AOPP in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet× temperature. Conclusion A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  3. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    Science.gov (United States)

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs.

    Science.gov (United States)

    Liu, Fan; Celi, Pietro; Chauhan, Surinder Singh; Cottrell, Jeremy James; Leury, Brian Joseph; Dunshea, Frank Rowland

    2018-02-01

    Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity) or HS (35°C, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all prespiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  5. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress

    International Nuclear Information System (INIS)

    Guo, B.; Liang, Y.C.; Zhu, Y.G.; Zhao, F.J.

    2007-01-01

    Time-dependent changes in enzymatic and non-enzymatic antioxidants, and lipid peroxidation were investigated in roots of rice (Oryza sativa) grown hydroponically with Cd, with or without pretreatment of salicylic acid (SA). Exposure to 50 μM Cd significantly decreased root growth, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), but increased the concentrations of H 2 O 2 , malondialdehyde (MDA), ascorbic acid (AsA), glutathione (GSH) and non-protein thiols (NPT). However, pretreatment with 10 μM SA enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants, but lowered the concentrations of H 2 O 2 and MDA in the Cd-stressed rice compared with the Cd treatment alone. Pretreatment with SA alleviated the Cd-induced inhibition of root growth. The results showed that pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance. The possible mechanism of SA-induced H 2 O 2 signaling in mediating Cd tolerance was discussed. - Pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance

  6. Carbon monoxide alleviates lipopolysaccharide-induced oxidative stress injury through suppressing the expression of Fis1 in NR8383 cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jia [Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100 (China); Yu, Jian-bo, E-mail: yujianbo11@126.com [Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100 (China); Liu, Wei; Wang, Dan; Zhang, Yuan; Gong, Li-rong; Dong, Shu-an [Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100 (China); Liu, Da-quan [Department of Pharmacology, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin 300100 (China)

    2016-11-15

    Acute respiratory distress syndrome (ARDS) is one of the most devastating complications of sepsis lacking of effective therapy. Mitochondrial dynamics undergoing continuous fusion and fission play a crucial role in mitochondrial structure and function. Fis1, as a small protein located on the outer membrane of mitochondria, has been thought to be an important protein mediated mitochondrial fission. During ARDS, alveolar macrophages suffer from increased oxidative stress and apoptosis, and also accompanied by disrupted mitochondrial dynamics. In addition, as one of the products of heme degradation catalyzed by heme oxygenase, carbon monoxide (CO) possesses powerful protective properties in vivo or in vitro models, such as anti-inflammatory, antioxidant and anti-apoptosis function. However, there is little evidence that CO alleviates oxidative stress damage through altering mitochondrial fission in alveolar macrophages. In the present study, our results showed that CO increased cell vitality, improved mitochondrial SOD activity, reduced reactive oxygen species (ROS) production and inhibited cell apoptosis in NR8383 exposed to LPS. Meanwhile, CO decreased the expression of Fis1, increased mitochondrial membrane potential and sustained elongation of mitochondria in LPS-incubated NR8383. Overall, our study underscored a critical role of CO in suppressing the expression of Fis1 and alleviating LPS- induced oxidative stress damage in alveolar macrophages. - Highlights: • LPS exposure triggered cell injury in NR8383. • CO alleviated LPS-induced oxidative stress damage in alveolar macrophages. • CO inhibited Fis1 levels and improved mitochondrial function in LPS-induced NR8383.

  7. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    International Nuclear Information System (INIS)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-01-01

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD

  8. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Xing, Mingyou [Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Liu, Liegang [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Yao, Ping, E-mail: yaoping@mails.tjmu.edu.cn [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China)

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  9. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves.

    Science.gov (United States)

    Qing, Xuejiao; Zhao, Xiaohu; Hu, Chengxiao; Wang, Peng; Zhang, Ying; Zhang, Xuan; Wang, Pengcheng; Shi, Hanzhi; Jia, Fen; Qu, Chanjuan

    2015-04-01

    The beneficial role of selenium (Se) in alleviation of chromium (Cr)-induced oxidative stress is well established. However, little is known about the underlying mechanism. The impacts of exogenous Se (0.1mg/L) on Cr(1mg/L)-induced oxidative stress and antioxidant systems in leaves of cabbage (Brassica campestris L. ssp. Pekinensis) were investigated by using cellular and biochemical approaches. The results showed that supplementation of the medium with Se was effective in reducing Cr-induced increased levels of lipid peroxides and superoxide free radicals (O(-)2(·)), as well as increasing activities of superoxide dismutase (SOD) and peroxidase (POD). Meanwhile, 1mg/L Cr induced loss of plasma membrane integrity, growth inhibition, as well as ultrastructural changes of leaves were significantly reversed due to Se supplementation in the medium. In addition, Se application significantly altered the subcellular distribution of Cr which transported from mitochondria, nucleus and the cell-wall material to the soluble fraction and chloroplasts. However, Se application did no significant alteration of Cr effects on osmotic adjustment accumulating products. The study suggested that Se is able to protect leaves of cabbage against Cr toxicity by alleviation of Cr induced oxidative stress, and re-distribution of Cr in the subcellular of the leaf. Furthermore, free radicals, lipid peroxides, activity of SOD and POD, and subcellular distribution of Cr can be considered the efficient biomarkers to indicate the efficiency of Se to detoxification Cr. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants.

    Science.gov (United States)

    Islam, Faisal; Yasmeen, Tahira; Riaz, Muhammad; Arif, Muhammad Saleem; Ali, Shafaqat; Raza, Syed Hammad

    2014-12-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. However, the role of plant growth promoting bacteria (PGPR), under metal stress, has not been widely investigated. The present study investigated the possible mandatory role of plant growth promoting rhizobacteria in protecting plants from zinc (Zn) toxicity. The exposure of maize plants to 50µM zinc inhibited biomass production, decreased chlorophyll, total soluble protein and strongly increased accumulation of Zn in both root and shoot. Similarly, Zn enhanced hydrogen peroxide, electrolyte leakage and lipid peroxidation as indicated by malondaldehyde accumulation. Pre-soaking with novel Zn tolerant bacterial strain Proteus mirabilis (ZK1) isolated zinc (Zn) contaminated soil, alleviated the negative effect of Zn on growth and led to a decrease in oxidative injuries caused by Zn. Furthermore, strain ZK1 significantly enhanced the activities of catalase, guaiacol peroxidase, superoxide dismutase and ascorbic acid but lowered the Proline accumulation in Zn stressed plants. The results suggested that the inoculation of Zea mays plants with P. mirabilis during an earlier growth period could be related to its plant growth promoting activities and avoidance of cumulative damage upon exposure to Zn, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings.

    Science.gov (United States)

    Saidi, Issam; Chtourou, Yacine; Djebali, Wahbi

    2014-03-01

    The present study investigated the possible mediatory role of selenium (Se) in protecting plants from cadmium (Cd) toxicity. The exposure of sunflower seedlings to 20μM Cd inhibited biomass production, decreased chlorophyll and carotenoid concentrations and strongly increased accumulation of Cd in both roots and shoots. Similarly, Cd enhanced hydrogen peroxides content and lipid peroxidation as indicated by malondialdehyde accumulation. Pre-soaking seeds with Se (5, 10 and 20μM) alleviated the negative effect of Cd on growth and led to a decrease in oxidative injuries caused by Cd. Furthermore, Se enhanced the activities of catalase, ascorbate peroxidase and glutathione reductase, but lowered that of superoxide dismutase and guaiacol peroxidase. As important antioxidants, ascorbate and glutathione contents in sunflower leaves exposed to Cd were significantly decreased by Se treatment. The data suggest that the beneficial effect of Se during an earlier growth period could be related to avoidance of cumulative damage upon exposure to Cd, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Curcumin alleviates lumbar radiculopathy by reducing neuroinflammation, oxidative stress and nociceptive factors

    Directory of Open Access Journals (Sweden)

    L Xiao

    2017-09-01

    Full Text Available Current non-surgical treatments for lumbar radiculopathy [e.g. epidural steroids and Tumour necrosis factor-α (TNF-α antagonists] are neither effective nor safe. As a non-toxic natural product, curcumin possesses an exceptional anti-inflammatory profile. We hypothesised that curcumin alleviates lumbar radiculopathy by attenuating neuroinflammation, oxidative stress and nociceptive factors. In a dorsal root ganglion (DRG culture, curcumin effectively inhibited TNF-α-induced neuroinflammation, in a dose-dependent manner, as shown by mRNA and protein expression of IL-6 and COX-2. Such effects might be mediated via protein kinase B (AKT and extracellular signal regulated kinase (ERK pathways. Also, a similar effect in combating TNF-α-induced neuroinflammation was observed in isolated primary neurons. In addition, curcumin protected neurons from TNF-α-triggered excessive reactive oxygen species (ROS production and cellular apoptosis and, accordingly, promoted mRNA expression of the anti-oxidative enzymes haem oxygenase-1, catalase and superoxide dismutase-2. Intriguingly, electronic von Frey test suggested that intraperitoneal injection of curcumin significantly abolished ipsilateral hyperalgesia secondary to disc herniation in mice, for up to 2 weeks post-surgery. Such in vivo pain alleviation could be attributed to the suppression, observed in DRG explant culture, of TNF-α-elicited neuropeptides, such as substance P and calcitonin gene-related peptide. Surprisingly, micro-computed tomography (μCT data suggested that curcumin treatment could promote disc height recovery following disc herniation. Alcian blue/picrosirius red staining confirmed that systemic curcumin administration promoted regeneration of extracellular matrix proteins, visualised by presence of abundant newly-formed collagen and proteoglycan content in herniated disc. Our study provided pre-clinical evidence for expediting this natural, non-toxic pleiotropic agent to become a

  14. Ganoderma Triterpenoids Exert Antiatherogenic Effects in Mice by Alleviating Disturbed Flow-Induced Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Pei-Ling Hsu

    2018-01-01

    Full Text Available Ganoderma mushrooms, used in traditional Chinese medicine to promote health and longevity, have become widely accepted as herbal supplements. Ganoderma lucidum (GL, a commonly seen ganoderma species, is commercially cultivated under controlled conditions for more consistent chemical composition. The medicinal properties of GL are attributable to its antioxidant and anti-inflammatory activities. We intended to assess the effect of GL in atherosclerosis, an arterial condition associated with chronic oxidative stress and inflammation, using a carotid-artery-ligation mouse model. Flow turbulence created in the ligated artery induces oxidative stress and neointimal hyperplasia, a feature of early atherogenesis. Daily oral GL prevented neointimal thickening 2 weeks after ligation. Moreover, the ganoderma triterpenoid (GT crude extract isolated from GL abolished ligation-induced neointima formation. Mechanistically, endothelial dysfunction was observed 3 days after ligation before any structural changes could be detected. GTs alleviated the oxidative stress and restored the atheroresistent status of endothelium by inhibiting the induction of a series of atherogenic factors, including endothelin-1, von Willebrand factor, and monocyte chemoattractant protein-1 after 3-day ligation. The anti-inflammatory activity of GTs was tested in cultured human umbilical vein endothelial cells (HUVECs exposed to disturbed flow in an in vitro perfusion system. GTs abolished the induction of proinflammatory VCAM-1, TNF-α, and IL-6 by oscillatory shear stress. Moreover, the antioxidant activity of GTs was tested in HUVECs against the insult of H2O2. GTs dissipated the cellular superoxide accumulation imposed by H2O2, thereby mitigating H2O2-induced cell damage and proatherogenic response. Our results revealed the atheroprotective properties of ganoderma mushrooms and identified triterpenoids as the critical constituents for those effects. GTs prevent atherogenesis by

  15. Sodium nitroprusside (SNP) alleviates the oxidative stress induced ...

    African Journals Online (AJOL)

    Oxidative damage is often induced by abiotic stress, nitric oxide (NO) is considered as a functional molecule in modulating antioxidant metabolism of plants. In the present study, effects of sodium nitroprusside (SNP), a NO donor, on the phenotype, antioxidant capacity and chloroplast ultrastructure of cucumber leaves were ...

  16. Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Faid, Iman; Al-Hussaini, Heba; Kilarkaje, Narayana, E-mail: knarayana@hsc.edu.kw

    2015-12-15

    Diabetes adversely affects reproductive functions in humans and animals. The present study investigated the effects of Resveratrol on diabetes-induced alterations in oxidative stress, c-Jun N-terminal kinase (JNK) signaling and apoptosis in the testis. Adult male Wistar rats (13–15 weeks; n = 6/group) were segregated into 1) normal control, 2) Resveratrol-treated (5 mg/kg; ip; given during last 3 weeks), 3) Streptozotocin-induced diabetic and, 4) Resveratrol-treated diabetic groups, and euthanized on day 42 after the confirmation of diabetes. Resveratrol did not normalize blood glucose levels in diabetic rats. Resveratrol supplementation recovered diabetes-induced decreases in reproductive organ weights, sperm count and motility, intra-testicular levels of superoxide dismutase, catalase, and glutathione peroxidase and an increase in 4-hydroxynonenal activities (P < 0.05). Resveratrol also recovered diabetes-induced increases in JNK signaling pathway proteins, namely, ASK1 (apoptosis signal-regulating kinase 1), JNKs (46 and 54 kDa isoforms) and p-JNK to normal control levels (P < 0.05). Interestingly, the expression of a down-stream target of ASK1, MKK4 (mitogen-activated protein kinase kinase 4) and its phosphorylated form (p-MKK4) did not change in experimental groups. Resveratrol inhibited diabetes-induced increases in AP-1 (activator protein-1) components, c-Jun and ATF2 (activating transcription factor 2), but not their phosphorylated forms, to normal control levels (P < 0.05). Further, Resveratrol inhibited diabetes-induced increase in cleaved-caspase-3 to normal control levels. In conclusion, Resveratrol alleviates diabetes-induced apoptosis in testis by modulating oxidative stress, JNK signaling pathway and caspase-3 activities, but not by inhibiting hyperglycemia, in rats. These results suggest that Resveratrol supplementation may be a useful strategy to treat diabetes-induced testicular dysfunction. - Highlights: • Resveratrol up-regulates glutathione

  17. Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats

    International Nuclear Information System (INIS)

    Faid, Iman; Al-Hussaini, Heba; Kilarkaje, Narayana

    2015-01-01

    Diabetes adversely affects reproductive functions in humans and animals. The present study investigated the effects of Resveratrol on diabetes-induced alterations in oxidative stress, c-Jun N-terminal kinase (JNK) signaling and apoptosis in the testis. Adult male Wistar rats (13–15 weeks; n = 6/group) were segregated into 1) normal control, 2) Resveratrol-treated (5 mg/kg; ip; given during last 3 weeks), 3) Streptozotocin-induced diabetic and, 4) Resveratrol-treated diabetic groups, and euthanized on day 42 after the confirmation of diabetes. Resveratrol did not normalize blood glucose levels in diabetic rats. Resveratrol supplementation recovered diabetes-induced decreases in reproductive organ weights, sperm count and motility, intra-testicular levels of superoxide dismutase, catalase, and glutathione peroxidase and an increase in 4-hydroxynonenal activities (P < 0.05). Resveratrol also recovered diabetes-induced increases in JNK signaling pathway proteins, namely, ASK1 (apoptosis signal-regulating kinase 1), JNKs (46 and 54 kDa isoforms) and p-JNK to normal control levels (P < 0.05). Interestingly, the expression of a down-stream target of ASK1, MKK4 (mitogen-activated protein kinase kinase 4) and its phosphorylated form (p-MKK4) did not change in experimental groups. Resveratrol inhibited diabetes-induced increases in AP-1 (activator protein-1) components, c-Jun and ATF2 (activating transcription factor 2), but not their phosphorylated forms, to normal control levels (P < 0.05). Further, Resveratrol inhibited diabetes-induced increase in cleaved-caspase-3 to normal control levels. In conclusion, Resveratrol alleviates diabetes-induced apoptosis in testis by modulating oxidative stress, JNK signaling pathway and caspase-3 activities, but not by inhibiting hyperglycemia, in rats. These results suggest that Resveratrol supplementation may be a useful strategy to treat diabetes-induced testicular dysfunction. - Highlights: • Resveratrol up-regulates glutathione

  18. Comparison the effects of nitric oxide and spermidin pretreatment on alleviation of salt stress in chamomile plant (Matricaria recutita L.

    Directory of Open Access Journals (Sweden)

    Fazelian Nasrin

    2012-08-01

    Full Text Available Salt stress is an important environmental stress that produces reactive oxygen species in plants and causes oxidative injuries. In this investigation, salt stress reduced the shoot and root length, while increased the content of malondealdehyde, Hydrogen peroxide, and the activity of Ascorbate peroxidase andguaiacol peroxidase. Pretreatment of chamomile plants under salt stress with sodium nitroprussideand Spermidin caused enhancement of growth parameters and reduction of malondealdehyde and Hydrogen peroxide content. Pretreatment of plants with sodium nitroprusside remarkably increased Ascorbate peroxidase activity, while Spermidin pre-treatment significantly increased guaiacol peroxidase activity. Application of sodium nitroprusside or Spermidin with Methylene blue which is known to block cyclic guanosine monophosphate signaling pathway, reduced the protective effects of sodium nitroprussideand Spermidin in plants under salinity condition. The result of this study indicated that Methylene blue could partially and entirely abolish the protective effect of Nitric oxide on some physiological parameter. Methylene blue also has could reduce the alleviation effect of Spermidin on some of parameters in chamomile plant under salt stress, so with comparing the results of this study it seems that Spermidin probably acts through Nitric oxide pathway, but the use of 2-4- carboxyphenyl- 4,4,5,5- tetramethyl-imidazoline-1-oxyl-3-oxide is better to prove.

  19. Phosphorus improves arsenic phytoremediation by Anadenanthera peregrina by alleviating induced oxidative stress.

    Science.gov (United States)

    Gomes, M P; Carvalho, M; Carvalho, G S; Marques, T C L L S M; Garcia, Q S; Guilherme, L R G; Soares, A M

    2013-01-01

    Due to similarities in their chemical behaviors, studies examining interactions between arsenic (As)--in special arsenate--and phosphorus (P) are important for better understanding arsenate uptake, toxicity, and accumulation in plants. We evaluated the effects of phosphate addition on plant biomass and on arsenate and phosphate uptake by Anadenanthera peregrina, an important Brazilian savanna legume. Plants were grown for 35 days in substrates that received combinations of 0, 10, 50, and 100 mg kg(-1) arsenate and 0, 200, and 400 mg kg(-1) phosphate. The addition of P increased the arsenic-phytoremediation capacity of A. peregrina by increasing As accumulation, while also alleviating As-induced oxidative stress. Arsenate phytotoxicity in A. peregrina is due to lipid peroxidation, but not hydrogen peroxide accumulation. Added P also increased the activity of important reactive oxygen species-scavenging enzymes (catalase and ascorbate peroxidase) that help prevent lipid peroxidation in leaves. Our findings suggest that applying P represents a feasible strategy for more efficient As phytoremediation using A. peregrina.

  20. Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves.

    Directory of Open Access Journals (Sweden)

    Guoxian Zhang

    Full Text Available The effect of exogenous CaCl2 on photosystem I and II (PSI and PSII activities, cyclic electron flow (CEF, and proton motive force of tomato leaves under low night temperature (LNT was investigated. LNT stress decreased the net photosynthetic rate (Pn, effective quantum yield of PSII [Y(II], and photochemical quenching (qP, whereas CaCl2 pretreatment improved Pn, Y(II, and qP under LNT stress. LNT stress significantly increased the non-regulatory quantum yield of energy dissipation [Y(NO], whereas CaCl2 alleviated this increase. Exogenous Ca2+ enhanced stimulation of CEF by LNT stress. Inhibition of oxidized PQ pools caused by LNT stress was alleviated by CaCl2 pretreatment. LNT stress reduced zeaxanthin formation and ATPase activity, but CaCl2 pretreatment reversed both of these effects. LNT stress caused excess formation of a proton gradient across the thylakoid membrane, whereas CaCl2 pretreatment decreased the said factor under LNT. Thus, our results showed that photoinhibition of LNT-stressed plants could be alleviated by CaCl2 pretreatment. Our findings further revealed that this alleviation was mediated in part by improvements in carbon fixation capacity, PQ pools, linear and cyclic electron transports, xanthophyll cycles, and ATPase activity.

  1. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    Science.gov (United States)

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  2. Antioxidant properties of the mung bean flavonoids on alleviating heat stress.

    Directory of Open Access Journals (Sweden)

    Dongdong Cao

    Full Text Available BACKGROUND: It is a widespread belief in Asian countries that mung bean soup (MBS may afford a protective effect against heat stress. Lack of evidence supports MBS conferring a benefit in addition to water. RESULTS: Here we show that vitexin and isovitexin are the major antioxidant components in mungbean (more than 96% of them existing in the bean seed coat, and both of them could be absorbed via gavage into rat plasma. In the plasma of rats fed with mungbean coat extract before or after exposure to heat stress, the levels of malonaldehyde and activities of lactate dehydrogenase and nitric oxide synthase were remarkably reduced; the levels of total antioxidant capacity and glutathione (a quantitative assessment of oxidative stress were significantly enhanced. CONCLUSIONS: Our results demonstrate that MBS can play additional roles to prevent heat stress injury. Characterization of the mechanisms underlying mungbean beneficial effects should help in the design of diet therapy strategies to alleviate heat stress, as well as provide reference for searching natural medicines against oxidative stress induced diseases.

  3. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress.

    Science.gov (United States)

    Shi, Yu; Zhang, Yi; Yao, Hejin; Wu, Jiawen; Sun, Hao; Gong, Haijun

    2014-05-01

    The beneficial effects of silicon on plant growth and development under drought have been widely reported. However, little information is available on the effects of silicon on seed germination under drought. In this work, the effects of exogenous silicon (0.5 mM) on the seed germination and tolerance performance of tomato (Solanum lycopersicum L.) bud seedlings under water deficit stress simulated by 10% (w/v) polyethylene glycol (PEG-6000) were investigated in four cultivars ('Jinpengchaoguan', 'Zhongza No.9', 'Houpi L402' and 'Oubao318'). The results showed that the seed germination percentage was notably decreased in the four cultivars under water stress, and it was significantly improved by added silicon. Compared with the non-silicon treatment, silicon addition increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the production of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the radicles of bud seedlings under water stress. Addition of silicon decreased the total phenol concentrations in radicles under water stress, which might contribute to the decrease of peroxidase (POD) activity, as observed in the in vivo and in vitro experiments. The decrease of POD activity might contribute to a less accumulation of hydroxyl radical (·OH) under water stress. Silicon addition also decreased the concentrations of malondialdehyde (MDA) in the radicles under stress, indicating decreased lipid peroxidation. These results suggest that exogenous silicon could improve seed germination and alleviate oxidative stress to bud seedling of tomato by enhancing antioxidant defense. The positive effects of silicon observed in a silicon-excluder also suggest the active involvement of silicon in biochemical processes in plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice.

    Science.gov (United States)

    Feng, Bin; Meng, Ran; Huang, Bin; Shen, Shanmei; Bi, Yan; Zhu, Dalong

    2016-01-01

    Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30 mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling.

  5. Functionally undefined gene, yggE, alleviates oxidative stress generated by monoamine oxidase in recombinant Escherichia coli.

    Science.gov (United States)

    Ojima, Yoshihiro; Kawase, Daisuke; Nishioka, Motomu; Taya, Masahito

    2009-01-01

    Real-time PCR analysis showed that yggE gene was about two and three times up-regulated in Escherichia coli cells exposed to UVA irradiation and thermal elevation, respectively, suggesting that this gene is responsive to physiological stress. The yggE gene was introduced into E. coli BL21 cells, together with a monoamine oxidase (MAO) gene as a model source for oxidative stress generation. The distribution of independently isolated transformants (two dozen isolates) was examined in terms of MAO activity and cell vitality. In the case of control strain expressing MAO alone, the largest number of transformants existed in the low range of MAO activity less than 2 units mg(-1) and the number significantly decreased at increased MAO activity. On the other hand, the distribution of MAO/YggE-coexpressing transformants shifted to higher MAO activity with frequent appearance in the activity range of 4-8 units mg(-1). The yggE gene product therefore has a possible function for alleviating the stress generated in the cells.

  6. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: Modulation of oxidative stress and inflammatory mediators

    International Nuclear Information System (INIS)

    Arab, Hany H.; El-Sawalhi, Maha M.

    2013-01-01

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10 mg/kg/day p.o. for 21 days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5 mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α and IL-6), and eicosanoids (PGE 2 and LTB 4 ) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids. - Highlights: ► Carvedilol possesses promising anti-arthritic properties. ► It markedly suppressed inflammation in adjuvant arthritis and air pouch edema. ► It abrogated the leukocyte invasion to air pouch exudates and linings. ► It reduced/normalized oxidative stress markers in sera and exudates of arthritic rats

  7. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: Modulation of oxidative stress and inflammatory mediators

    Energy Technology Data Exchange (ETDEWEB)

    Arab, Hany H., E-mail: hany_h_arab@yahoo.com [Biochemistry Division, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taif University, Taif (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo (Egypt); El-Sawalhi, Maha M. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo (Egypt)

    2013-04-15

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10 mg/kg/day p.o. for 21 days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5 mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α and IL-6), and eicosanoids (PGE{sub 2} and LTB{sub 4}) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids. - Highlights: ► Carvedilol possesses promising anti-arthritic properties. ► It markedly suppressed inflammation in adjuvant arthritis and air pouch edema. ► It abrogated the leukocyte invasion to air pouch exudates and linings. ► It reduced/normalized oxidative stress markers in sera and exudates of

  8. Phosphorylation of Icariin Can Alleviate the Oxidative Stress Caused by the Duck Hepatitis Virus A through Mitogen-Activated Protein Kinases Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Wen Xiong

    2017-09-01

    Full Text Available The duck virus hepatitis (DVH caused by the duck hepatitis virus A (DHAV has produced extensive economic losses to the duck industry. The currently licensed commercial vaccine has shown some defects and does not completely prevent the DVH. Accordingly, a new alternative treatment for this disease is urgently needed. Previous studies have shown that icariin (ICA and its phosphorylated derivative (pICA possessed good anti-DHAV effects through direct and indirect antiviral pathways, such as antioxidative stress. But the antioxidant activity showed some differences between ICA and pICA. The aim of this study is to prove that ICA and pICA attenuate oxidative stress caused by DHAV in vitro and in vivo, and to investigate their mechanism of action to explain their differences in antioxidant activities. In vivo, the dynamic deaths, oxidative evaluation indexes and hepatic pathological change scores were detected. When was added the hinokitiol which showed the pro-oxidative effect as an intervention method, pICA still possessed more treatment effect than ICA. The strong correlation between mortality and oxidative stress proves that ICA and pICA alleviate oxidative stress caused by DHAV. This was also demonstrated by the addition of hydrogen peroxide (H2O2 as an intervention method in vitro. pICA can be more effective than ICA to improve duck embryonic hepatocytes (DEHs viability and reduce the virulence of DHAV. The strong correlation between TCID50 and oxidative stress demonstrates that ICA and pICA can achieve anti-DHAV effects by inhibiting oxidative stress. In addition, the superoxide dismutase (SOD and glutathione peroxidase (GSH-Px of ICA and pICA showed significant difference. pICA could significantly inhibit the phosphorylation of p38, extra cellular signal regulated Kinase (ERK 1/2 and c-Jun N-terminal kinase (JNK, which were related to mitogen-activated protein kinases (MAPKs signaling pathways. Ultimately, compared to ICA, pICA exhibited more

  9. Extremely radioresistant microbe Deinococcus radiodurans does not survive tellurite-mediated oxidative stress: revelation of molecular basis

    International Nuclear Information System (INIS)

    Apte, Shree Kumar; Narasimha, Anaganti; Basu, Bhakti

    2014-01-01

    Deinococcus radiodurans exhibits extraordinary resistance to gamma radiation as well as oxidative stress. Comparison of tellurite stress with gamma irradiation, both of which impart severe oxidative stress, revealed that tellurite induced less ROS and caused less oxidative damage to proteins, but was much more lethal to D. radiodurans than gamma irradiation. The proteomic changes induced by tellurite exposure were mapped by two dimensional protein electrophoresis followed by mass spectrometry. Seventy proteins belonging to major functional categories of oxidative stress alleviation, protein translation/folding and metabolism were identified. Tellurite responsive proteome dynamics displayed (i) up-regulation of proteins involved in tellurite stress resistance and oxidative stress alleviation, dehydrogenases involved in generation of reducing potential, and chaperones (such DnaK), and (ii) down regulation of key glycolysis and TCA cycle enzymes, proteins involved in protein translation/folding and energy production. Tellurite stress also resulted in nearly 50% loss in the cellular reducing potential within 1h of exposure while gamma irradiation had no such effect. The findings provide a better insight into the mechanism of tellurite toxicity, beyond metal mediated oxidative stress, in this extremophile. (author)

  10. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    Science.gov (United States)

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  11. Comparative analyses reveal different consequences of two oxidative stress inducers, gamma irradiation and potassium tellurite, in the extremophile Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Narasimha, Anaganti; Basu, Bhakti; Apte, Shree Kumar

    2014-01-01

    Proteomic and mass spectrometric analyses revealed differential responses of D. radiodurans to two oxidative stressors. While both elicited oxidative stress alleviation response, major divergence was observed at the level of DNA repair, metabolic pathways and protein homeostasis. Response to gamma irradiation was focused on DNA repair and ROS scavenging but supported metabolism as well as protein homeostasis. Tellurite, induced oxidative stress alleviation but decreased reducing affected and adversely affected metabolism and protein homeostasis

  12. Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha.

    Science.gov (United States)

    Wu, Shan; Ren, Jun

    2006-02-13

    Diabetes mellitus leads to thiamine deficiency and multiple organ damage including diabetic neuropathy. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cerebral oxidative stress. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg, i.p.). Fourteen days later, control and diabetic (fasting blood glucose >13.9 mM) mice received benfotiamine (100 mg/kg/day, i.p.) for 14 days. Oxidative stress and protein damage were evaluated by glutathione/glutathione disulfide (GSH/GSSG) assay and protein carbonyl formation, respectively. Pro-oxidative or pro-inflammatory factors including advanced glycation end-product (AGE), tissue factor and tumor necrosis factor-alpha (TNF-alpha) were evaluated by immunoblot analysis. Four weeks STZ treatment led to hyperglycemia, enhanced cerebral oxidative stress (reduced GSH/GSSG ratio), elevated TNF-alpha and AGE levels without changes in protein carbonyl or tissue factor. Benfotiamine alleviated diabetes-induced cerebral oxidative stress without affecting levels of AGE, protein carbonyl, tissue factor and TNF-alpha. Collectively, our results indicated benfotiamine may antagonize diabetes-induced cerebral oxidative stress through a mechanism unrelated to AGE, tissue factor and TNF-alpha.

  13. Ageing-Associated Oxidative Stress and Inflammation Are Alleviated by Products from Grapes

    Directory of Open Access Journals (Sweden)

    K. S. Petersen

    2016-01-01

    Full Text Available Advanced age is associated with increased incidence of a variety of chronic disease states which share oxidative stress and inflammation as causative role players. Furthermore, data point to a role for both cumulative oxidative stress and low grade inflammation in the normal ageing process, independently of disease. Therefore, arguably the best route with which to address premature ageing, as well as age-associated diseases such as diabetes, cardiovascular disease, and dementia, is preventative medicine aimed at modulation of these two responses, which are intricately interlinked. In this review, we provide a detailed account of the literature on the communication of these systems in the context of ageing, but with inclusion of relevant data obtained in other models. In doing so, we attempted to more clearly elucidate or identify the most probable cellular or molecular targets for preventative intervention. In addition, given the absence of a clear pharmaceutical solution in this context, together with the ever-increasing consumer bias for natural medicine, we provide an overview of the literature on grape (Vitis vinifera derived products, for which beneficial effects are consistently reported in the context of both oxidative stress and inflammation.

  14. Phosphorus and humic acid application alleviate salinity stress of ...

    African Journals Online (AJOL)

    Phosphorus and humic acid application alleviate salinity stress of pepper seedling. ... It consequently affects plant growth and yield and ameliorates the deleterious effects of salt stress. The objective of the study ... from 32 Countries: Algeria (5) ...

  15. Environmental stresses can alleviate the average deleterious effect of mutations

    Directory of Open Access Journals (Sweden)

    Leibler Stanislas

    2003-05-01

    Full Text Available Abstract Background Fundamental questions in evolutionary genetics, including the possible advantage of sexual reproduction, depend critically on the effects of deleterious mutations on fitness. Limited existing experimental evidence suggests that, on average, such effects tend to be aggravated under environmental stresses, consistent with the perception that stress diminishes the organism's ability to tolerate deleterious mutations. Here, we ask whether there are also stresses with the opposite influence, under which the organism becomes more tolerant to mutations. Results We developed a technique, based on bioluminescence, which allows accurate automated measurements of bacterial growth rates at very low cell densities. Using this system, we measured growth rates of Escherichia coli mutants under a diverse set of environmental stresses. In contrast to the perception that stress always reduces the organism's ability to tolerate mutations, our measurements identified stresses that do the opposite – that is, despite decreasing wild-type growth, they alleviate, on average, the effect of deleterious mutations. Conclusions Our results show a qualitative difference between various environmental stresses ranging from alleviation to aggravation of the average effect of mutations. We further show how the existence of stresses that are biased towards alleviation of the effects of mutations may imply the existence of average epistatic interactions between mutations. The results thus offer a connection between the two main factors controlling the effects of deleterious mutations: environmental conditions and epistatic interactions.

  16. Elevatated CO2 alleviates heat stress tolerance in wheat

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig; Rosenqvist, Eva S. K.; Ottosen, Carl-Otto

    2014-01-01

    Title: The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars Session: Plant response and adaptation to abiotic stress Sindhuja Shanmugam1, Katrine Heinsvig Kjaer2*, Carl-Otto Ottosen2, Eva Rosenqvist3, Dew Kumari Sharma3 and Bernd...... Wollenweber4 1Department of Bioenergy, Tamilnadu Agricultural University, Coimbatore, India. 2Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Årslev, Denmark 3Institute of Agricultural Sciences and Ecology, University of Copenhagen, Hojbakkegaard Allé 9, 2630 Taastrup, Denmark 4......Institute for Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark *Presenting author This study analysed the alleviating effect of elevated CO2 on stress-induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different...

  17. Rhynchophylla total alkaloid rescues autophagy, decreases oxidative stress and improves endothelial vasodilation in spontaneous hypertensive rats.

    Science.gov (United States)

    Li, Chao; Jiang, Feng; Li, Yun-Lun; Jiang, Yue-Hua; Yang, Wen-Qing; Sheng, Jie; Xu, Wen-Juan; Zhu, Qing-Jun

    2018-03-01

    Autophagy plays an important role in alleviating oxidative stress and stabilizing atherosclerotic plaques. However, the potential role of autophagy in endothelial vasodilation function has rarely been studied. This study aimed to investigate whether rhynchophylla total alkaloid (RTA) has a positive role in enhancing autophagy through decreasing oxidative stress, and improving endothelial vasodilation. In oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs), RTA (200 mg/L) significantly suppressed ox-LDL-induced oxidative stress through rescuing autophagy, and decreased cell apoptosis. In spontaneous hypertensive rats (SHR), administration of RTA (50 mg·kg -1 ·d -1 , ip, for 6 weeks) improved endothelin-dependent vasodilation of thoracic aorta rings. Furthermore, RTA administration significantly increased the antioxidant capacity and alleviated oxidative stress through enhancing autophagy in SHR. In ox-LDL-treated HUVECs, we found that the promotion of autophagy by RTA resulted in activation of the AMP-activated protein kinase (AMPK) signaling pathway. Our results show that RTA treatment rescues the ox-LDL-induced autophagy impairment in HUVECs and improves endothelium-dependent vasodilation function in SHR.

  18. NO accumulation alleviates H2 O2 -dependent oxidative damage induced by Ca(NO3 )2 stress in the leaves of pumpkin-grafted cucumber seedlings.

    Science.gov (United States)

    Li, Lin; Shu, Sheng; Xu, Qing; An, Ya-Hong; Sun, Jin; Guo, Shi-Rong

    2017-05-01

    Nitric oxide (NO) and hydrogen peroxide (H 2 O 2 ), two important signaling molecules, are stimulated in plants by abiotic stresses. In this study, we investigated the role of NO and its interplay with H 2 O 2 in the response of self-grafted (S-G) and salt-tolerant pumpkin-grafted (Cucurbita maxima × C. moschata) cucumber seedlings to 80 mM Ca(NO 3 ) 2 stress. Endogenous NO and H 2 O 2 production in S-G seedlings increased in a time-dependent manner, reaching maximum levels after 24 h of Ca(NO 3 ) 2 stress. In contrast, a transient increase in NO production, accompanied by H 2 O 2 accumulation, was observed at 2 h in rootstock-grafted plants. N w -Nitro-l-Arg methyl ester hydrochloride (l-NAME), an inhibitor of nitric oxide synthase (NOS), tungstate, an inhibitor of nitrate reductase (NR), and 2-(4-carboxyphenyl)-4,4,5,5-tetramethy-limidazoline-1-oxyl-3-oxide (cPTIO), a scavenger of NO, were found to significantly inhibit NO accumulation induced by salt stress in rootstock-grafted seedlings. H 2 O 2 production was unaffected by these stress conditions. Ca(NO 3 ) 2 stress-induced NO accumulation was blocked by pretreatment with an H 2 O 2 scavenger (dimethylthiourea, DMTU) and an inhibitor of NADPH oxidase (diphenyleneiodonium, DPI). In addition, maximum quantum yield of PSII (Fv/Fm), as well as the activities and transcript levels of antioxidant enzymes, were significantly decreased by salt stress in rootstock grafted seedlings after pretreatment with these above inhibitors; antioxidant enzyme transcript levels and activities were higher in rootstock-grafted seedlings compared with S-G seedlings. These results suggest that rootstock grafting could alleviate the oxidative damage induced by Ca(NO 3 ) 2 stress in cucumber seedlings, an effect that may be attributable to the involvement of NO in H 2 O 2 -dependent antioxidative metabolism. © 2016 Scandinavian Plant Physiology Society.

  19. Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster.

    Science.gov (United States)

    Abolaji, Amos Olalekan; Babalola, Oluwatoyin Victoria; Adegoke, Abimbola Kehinde; Farombi, Ebenezer Olatunde

    2017-10-01

    Trichloroethylene (TCE) is a chlorinated organic pollutant of groundwater with diverse toxic effects in animals and humans. Here, we investigated the ameliorative role of hesperidin, a citrus bioflavonoid on TCE-induced toxicity in Drosophila melanogaster. Four groups of D. melanogaster (50 flies/vial, with 5 vials/group) were exposed to ethanol (2.5%, control), HSP (400mg/10g diet), TCE (10μM/10g diet) and TCE (10μM/10g diet)+HSP (400mg/10g diet) respectively in the diet for 5days. Then, selected oxidative stress and antioxidant markers were evaluated. The results showed that TCE significantly increased the level of reactive oxygen species (ROS) and inhibited catalase, glutathione S-transferase and acetylcholinesterase (AChE) activities with concurrent depletion of total thiol level. However, co-administration of TCE and hesperidin mitigated TCE-induced depletion of antioxidants, and restored ROS level and AChE activity in the flies (p<0.05). Overall, hesperidin offered protective potency on TCE-induced oxidative stress in the flies via anti-oxidative mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Edaravone protects osteoblastic cells from dexamethasone through inhibiting oxidative stress and mPTP opening.

    Science.gov (United States)

    Sun, Wen-xiao; Zheng, Hai-ya; Lan, Jun

    2015-11-01

    Existing evidences have emphasized an important role of oxidative stress in dexamethasone (Dex)-induced osteoblastic cell damages. Here, we investigated the possible anti-Dex activity of edaravone in osteoblastic cells, and studied the underlying mechanisms. We showed that edaravone dose-dependently attenuated Dex-induced death and apoptosis of established human or murine osteoblastic cells. Further, Dex-mediated damages to primary murine osteoblasts were also alleviated by edaravone. In osteoblastic cells/osteoblasts, Dex induced significant oxidative stresses, tested by increased levels of reactive oxygen species and lipid peroxidation, which were remarkably inhibited by edaravone. Meanwhile, edaravone repressed Dex-induced mitochondrial permeability transition pore (mPTP) opening, or mitochondrial membrane potential reduction, in osteoblastic cells/osteoblasts. Significantly, edaravone-induced osteoblast-protective activity against Dex was alleviated with mPTP inhibition through cyclosporin A or cyclophilin-D siRNA. Together, we demonstrate that edaravone protects osteoblasts from Dex-induced damages probably through inhibiting oxidative stresses and following mPTP opening.

  1. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China)

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD

  2. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A.; Ke, Zun-ji; Luo, Jia

    2017-01-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD

  3. Overexpression of catalase in mice reduces age-related oxidative stress and maintains sperm production.

    Science.gov (United States)

    Selvaratnam, Johanna; Robaire, Bernard

    2016-11-01

    Advanced paternal age is associated with increased complications in pregnancy and genetic diseases in offspring. Oxidative stress is a major contributor to the damage accumulated in sperm during aging. Complex networks of antioxidants regulate reactive oxygen species (ROS) in the testis. While mounting evident shows that redox dysfunction compromises the quality of developing male germ cells, the mechanisms by which aging causes this remain unclear. Furthermore, therapies to successfully alleviate aging-associated loss in germ cell quality are limited. The antioxidant catalase (CAT) has been used in aging-associated pathologies to alleviate oxidative stress. We used mice overexpressing CAT (MCAT) to determine whether CAT overexpression alleviates the redox dysfunction observed with aging. We found that MCAT mice did not exhibit the age-dependent loss of spermatozoa, nor did they show aging associated loss in testicular germ and Sertoli cells seen in wild type (WT). Low overall ROS and reduced peroxynitrite levels were detected in spermatocytes from aged MCAT mice, following exposure to the pro-oxidant tert-butyl hydroperoxide. Germ cells from young MCATs showed elevated levels of DNA-damage repair markers, γ-H2AX and 53BP1, but this response was lost with aging. Finally, we found oxidative stress induced 8-oxodG lesions to increase in sperm with aging; these lesions were significantly reduced in aged MCAT and these mice showed no decrease in the age-dependent number of pups per litter. Thus we conclude that aged MCAT mice generate sperm at the same rate as young mice; these sperm are protected from oxidative stress associated damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Causes and Alleviation of Occupational Stress in Child Care Work

    Science.gov (United States)

    Dillenburger, Karola

    2004-01-01

    Occupational stress in not a new phenomenon in the working population. However, in the helping professions it has only recently attracted attention. The survey reported here was carried out in order to assess the extent of occupational stress, identify its causes, and suggest ways in which occupational stress can be alleviated. Field social…

  5. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress.

    Science.gov (United States)

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-12-02

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  6. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Leilei Yu

    2016-12-01

    Full Text Available Aluminum (Al is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  7. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    Science.gov (United States)

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  8. Propofol alleviate oxidative stress and mitochondrial damage in endothelial cells after heat stress

    Directory of Open Access Journals (Sweden)

    Li LI

    2017-08-01

    Full Text Available Objective To explore the protective effect of propofol on endothelial cells during heat stress and its protective effect to mitochondra. Methods Heat stress model of human umbilical vein endothelial cell was established when cells were incubated at 43℃ for 2h, then further incubted at 37℃, 5%CO2 for 6h. The experimental group was subdivided into six groups, including 37℃ group, 37℃ plus intralipid group (negative control group, 37℃ plus propofol group, 43℃ plus propofol group, 43℃ plus intralipid group, H2O2 plus propofol group (positive control group; Pretreated with 50μmol/L propofol, 0.2ml intralipid or 25μmol/L H2O2 before heat stress at 43℃, while the cells in the control group were incubated at 37℃. Cell viability was tested by CCK-8. ROS, mitochondrial membrane potential and the changes in mitochondrial permeability transition pore were determined by flow cytometry. The level of ATP was detected by fluorescein-luciferase. The changes of caspase-9 and caspase-3 were analyzed by Caspase Activity Assay Kit. Results HUVESs cell viability and damage of mitochondra were significantly decreased after heat stress. Compared with 43℃ heat stress group, pretreatment with propofol induced the recovery of cell viability and the ROS levels were significantly decreased in HUVEC cells (P<0.05. Meanwhile, the number of cells representing the decrease of mitochondrial membrane potential (the proportion of JC-1 monomer was significantly decreased (P<0.05 by propofol. The average fluorescence intensity of calcein which representing the MPTP changes and intracellular ATP content was significantly increased (P<0.05. In addition, the activation of mitochondrial apoptotic pathway mediated by caspase-9/3 was also inhibited. Conclusions Propofol have anti-oxidative, anti-apoptosis and mitochondria protective effect against endothelial cell injury during heat stress. DOI: 10.11855/j.issn.0577-7402.2017.06.04

  9. Prepubertal Exposure to Genistein Alleviates Di-(2-ethylhexyl Phthalate Induced Testicular Oxidative Stress in Adult Rats

    Directory of Open Access Journals (Sweden)

    Lian-Dong Zhang

    2014-01-01

    Full Text Available Di-(2-ethylhexyl phthalate (DEHP is the most widely used plastizer in the world and can suppress testosterone production via activation of oxidative stress. Genistein (GEN is one of the isoflavones ingredients exhibiting weak estrogenic and potentially antioxidative effects. However, study on reproductive effects following prepubertal multiple endocrine disrupters exposure has been lacking. In this study, DEHP and GEN were administrated to prepubertal male Sprague-Dawley rats by gavage from postnatal day 22 (PND22 to PND35 with vehicle control, GEN at 50 mg/kg body weight (bw/day (G, DEHP at 50, 150, 450 mg/kg bw/day (D50, D150, D450 and their mixture (G + D50, G + D150, G + D450. On PND90, general morphometry (body weight, AGD, organ weight, and organ coefficient, testicular redox state, and testicular histology were studied. Our results indicated that DEHP could significantly decrease sex organs weight, organ coefficient, and testicular antioxidative ability, which largely depended on the dose of DEHP. However, coadministration of GEN could partially alleviate DEHP-induced reproductive injuries via enhancement of testicular antioxidative enzymes activities, which indicates that GEN has protective effects on DEHP-induced male reproductive system damage after prepubertal exposure and GEN may have promising future in its curative antioxidative role for reproductive disorders caused by other environmental endocrine disruptors.

  10. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress

    Directory of Open Access Journals (Sweden)

    He Peiyuan

    2017-01-01

    Full Text Available The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD. Alcohol was administered to healthy female rats starting from 6% (v/v and gradually increased to 20% (v/v by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT] were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity. Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.

  11. Alleviating effects of calcium on cobalt toxicity in two barley genotypes differing in cobalt tolerance.

    Science.gov (United States)

    Lwalaba, Jonas Lwalaba Wa; Zvobgo, Gerald; Fu, Liangbo; Zhang, Xuelei; Mwamba, Theodore Mulembo; Muhammad, Noor; Mundende, Robert Prince Mukobo; Zhang, Guoping

    2017-05-01

    Cobalt (Co) contamination in soils is becoming a severe issue in environment safety and crop production. Calcium (Ca) , as a macro-nutrient element, shows the antagonism with many divalent heavy metals and the capacity of alleviating oxidative stress in plants. In this study, the protective role of Ca in alleviating Co stress was hydroponically investigated using two barley genotypes differing in Co toxicity tolerance. Barley seedlings exposed to 100µM Co showed the significant reduction in growth and photosynthetic rate, and the dramatic increase in the contents of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH) and oxidized glutathione (GSSG), and the activities of anti-oxidative enzymes, with Ea52 (Co-sensitive) being much more affected than Yan66 (Co-tolerant). Addition of Ca in growth medium alleviated Co toxicity by reducing Co uptake and enhancing the antioxidant capacity. The effect of Ca in alleviating Co toxicity was much greater in Yan66 than in Ea52. The results indicate that the alleviation of Co toxicity in barley plants by Ca is attributed to the reduced Co uptake and enhanced antioxidant capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Huperzine A alleviates neuroinflammation, oxidative stress and improves cognitive function after repetitive traumatic brain injury.

    Science.gov (United States)

    Mei, Zhengrong; Zheng, Peiying; Tan, Xiangping; Wang, Ying; Situ, Bing

    2017-12-01

    Traumatic brain injury (TBI) may trigger secondary injury cascades including endoplasmic reticulum stress, oxidative stress, and neuroinflammation. Unfortunately, there are no effective treatments targeting either primary or secondary injuries that result in long-term detrimental consequences. Huperzine A (HupA) is a potent acetylcholinesterase inhibitor (AChEI) that has been used treatment of Alzheimer's disease (AD). This study aimed to explore the neuroprotective effects of HupA in TBI and its possible mechanisms. Repetitive mild closed head injury (CHI) model was used to mimic concussive TBI. Mice were randomly assigned into three groups including sham, vehicle-treated and HupA-treated injured mice. The HupA was given at dose of 1.0 mg/kg/day and was initiated 30 min after the first injury, then administered daily for a total of 30 days. The neuronal functions including motor functions, emotion-like behaviors, learning and memory were tested. Axonal injury, reactive oxygen species (ROS), and neuroinflammation were examined as well. The results showed that injured mice treated with HupA had significant improvement in Morris water maze performance compared with vehicle-treated injured mice. HupA treatment significantly attenuated markers of neuroinflammation and oxidative stress in the injured mice. Taken together, HupA was effective in reducing neuroinflammation, oxidative stress and behavioral recovery after TBI. HupA is a promising candidate for treatment of TBI.

  13. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    Science.gov (United States)

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. 3-Keto-1,5-bisphosphonates Alleviate Serum-Oxidative Stress in the High-fat Diet Induced Obesity in Rats.

    Science.gov (United States)

    Lahbib, Karima; Aouani, Iyadh; Cavalier, Jean-François; Touil, Soufiane

    2015-09-01

    Obesity has become a leading global health problem owing to its strong association with a high incidence of oxidative stress. Many epidemiologic studies showed that an antioxidant supplementation decreases the state of oxidative stress. In the present work, a HFD-induced rat obesity and oxidative stress were used to investigate the link between fat deposition and serum-oxidative stress markers. We also studied the effect of a chronic administration of 3-keto-1,5-bisphosphonates 1 (a & b) (40 μg/kg/8 weeks/i.p.). Exposure of rats to HFD during 16 weeks induced fat deposition, weight gain and metabolic disruption characterized by an increase in cholesterol, triglyceride and glycemia levels, and a decrease in ionizable calcium and free iron concentrations. HFD also induced serum-oxidative stress status vocalized by an increase in ROS (H2 O2 ), MDA and PC levels, with a decrease in antioxidant enzyme activity (CAT, GPx, SOD). Importantly, 3-keto-1,5-bisphosphonates corrected all the deleterious effects of HFD treatment in vivo, but it failed to inhibit lipases in vitro and in vivo. These studies suggest that 3-keto-1,5-bisphosphonates 1 could be considered as safe antioxidant agents that should also find other potential biological applications. © 2014 John Wiley & Sons A/S.

  15. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes.

    Science.gov (United States)

    Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin

    2014-10-02

    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.

  16. Alleviation of Boron Stress through Plant Derived Smoke Extracts in Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Pirzada Khan

    2014-08-01

    Full Text Available Boron is an essential micronutrient necessary for plant growth at optimum concentration. However, at high concentrations boron affects plant growth and is toxic to cells. Aqueous extract of plant-derived smoke has been used as a growth regulator for the last two decades to improve seed germination and seedling vigor. It has been established that plant-derived smoke possesses some compounds that act like plant growth hormones. The present research was the first comprehensive attempt to investigate the alleviation of boron stress with plant-derived smoke aqueous extract on Sorghum (Sorghum bicolor seed. Smoke extracts of five plants, i.e. Cymbopogon jwarancusa, Eucalyptus camaldulensis, Peganum harmala, Datura alba and Melia azedarach each with six dilutions (Concentrated, 1:100, 1:200, 1:300, 1:400 and 1:500 were used. While boron solutions at concentrations of 5, 10, 15, 20 and 25 ppm were used for stress. Among the dilutions of smoke, 1:500 of E. camaldulensis significantly increased germination percentage, root and shoot length, number of secondary roots and fresh weight of root and shoot while, boron stress reduced growth of Sorghum. It was observed that combined effect of boron solution and E. camaldulensis smoke extract overcome inhibition and significantly improved plant growth. Present research work investigated that the smoke solution has the potential to alleviate boron toxicity by reducing the uptake of boron by maintaining integrity of plant cell wall. The present investigation suggested that plant derived smoke has the potential to alleviate boron stress and can be used to overcome yield losses caused by boron stress to plants.

  17. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  18. Melatonin Has the Potential to Alleviate Cinnamic Acid Stress in Cucumber Seedlings

    Directory of Open Access Journals (Sweden)

    Juanqi Li

    2017-07-01

    Full Text Available Cinnamic acid (CA, which is a well-known major autotoxin secreted by the roots in cucumber continuous cropping, has been proven to exhibit inhibitory regulation of plant morphogenesis and development. Melatonin (MT has been recently demonstrated to play important roles in alleviating plant abiotic stresses. To investigate whether MT supplementation could improve cucumber seedling growth under CA stress, we treated cucumber seeds and seedlings with/without MT under CA- or non-stress conditions, and then tested their effects on cucumber seedling growth, morphology, nutrient element content, and plant hormone. Overall, 10 μM MT best rescued cucumber seedling growth under 0.4 mM CA stress. MT was found to alleviate CA-stressed seedling growth by increasing the growth rates of cotyledons and leaves and by stimulating lateral root growth. Additionally, MT increased the allocation of newly gained dry weight in roots and improved the tolerance of cucumber seedlings to CA stress by altering the nutrient elements and hormone contents of the whole plant. These results strongly suggest that the application of MT can effectively improve cucumber seedling tolerance to CA stress through the perception and integration of morphology, nutrient element content and plant hormone signaling crosstalk.

  19. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings.

    Science.gov (United States)

    Tripathi, Durgesh Kumar; Singh, Swati; Singh, Vijay Pratap; Prasad, Sheo Mohan; Dubey, Nawal Kishore; Chauhan, Devendra Kumar

    2017-01-01

    The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H 2 O 2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Effect of Myricetin, Pyrogallol, and Phloroglucinol on Yeast Resistance to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Vanda Mendes

    2015-01-01

    Full Text Available The health beneficial effects of dietary polyphenols have been attributed to their intrinsic antioxidant activity, which depends on the structure of the compound and number of hydroxyl groups. In this study, the protective effects of pyrogallol, phloroglucinol, and myricetin on the yeast Saccharomyces cerevisiae were investigated. Pyrogallol and myricetin, which have a pyrogallol structure in the B ring, increased H2O2 resistance associated with a reduction in intracellular oxidation and protein carbonylation, whereas phloroglucinol did not exert protective effects. The acquisition of oxidative stress resistance in cells pretreated with pyrogallol and myricetin was not associated with an induction of endogenous antioxidant defences as assessed by the analysis of superoxide dismutase and catalase activities. However, myricetin, which provided greater stress resistance, prevented H2O2-induced glutathione oxidation. Moreover, myricetin increased the chronological lifespan of yeast lacking the mitochondrial superoxide dismutase (Sod2p, which exhibited a premature aging phenotype and oxidative stress sensitivity. These findings show that the presence of hydroxyl groups in the ortho position of the B ring in pyrogallol and myricetin contributes to the antioxidant protection afforded by these compounds. In addition, myricetin may alleviate aging-induced oxidative stress, particularly when redox homeostasis is compromised due to downregulation of endogenous defences present in mitochondria.

  1. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    Science.gov (United States)

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Sodium nitroprusside (SNP) alleviates the oxidative stress induced ...

    African Journals Online (AJOL)

    Yomi

    2012-04-03

    Apr 3, 2012 ... salinity stress has previously been extensively studied;. *Corresponding author. ... unfortunately, the adaption mechanism to alkalinity in plants is short of ..... of NO in hydrogen peroxide-dependent induction of abiotic stress ...

  3. Effects of Exogenous Melatonin on Methyl Viologen-Mediated Oxidative Stress in Apple Leaf

    Directory of Open Access Journals (Sweden)

    Zhiwei Wei

    2018-01-01

    Full Text Available Oxidative stress is a major source of damage of plants exposed to adverse environments. We examined the effect of exogenous melatonin (MT in limiting of oxidative stress caused by methyl viologen (MV; paraquatin in apple leaves (Malus domestica Borkh.. When detached leaves were pre-treated with melatonin, their level of stress tolerance increased. Under MV treatment, melatonin effectively alleviated the decrease in chlorophyll concentrations and maximum potential Photosystem II efficiency while also mitigating membrane damage and lipid peroxidation when compared with control leaves that were sprayed only with water prior to the stress experiment. The melatonin-treated leaves also showed higher activities and transcripts of antioxidant enzymes superoxide dismutase, peroxidase, and catalase. In addition, the expression of genes for those enzymes was upregulated. Melatonin-synthesis genes MdTDC1, MdT5H4, MdAANAT2, and MdASMT1 were also upregulated under oxidative stress in leaves but that expression was suppressed in response to 1 mM melatonin pretreatment during the MV treatments. Therefore, we conclude that exogenous melatonin mitigates the detrimental effects of oxidative stress, perhaps by slowing the decline in chlorophyll concentrations, moderating membrane damage and lipid peroxidation, increasing the activities of antioxidant enzymes, and changing the expression of genes for melatonin synthesis.

  4. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Osredkar Joško

    2012-05-01

    Full Text Available The human organism is exposed to the influence of various forms of stress, either physical, psychological or chemical, which all have in common that they may adversely affect our body. A certain amount of stress is always present and somehow directs, promotes or inhibits the functioning of the human body. Unfortunately, we are now too many and too often exposed to excessive stress, which certainly has adverse consequences. This is especially true for a particular type of stress, called oxidative stress. All aerobic organisms are exposed to this type of stress because they produce energy by using oxygen. For this type of stress you could say that it is rather imperceptibly involved in our lives, as it becomes apparent only at the outbreak of certain diseases. Today we are well aware of the adverse impact of radicals, whose surplus is the main cause of oxidative stress. However, the key problem remains the detection of oxidative stress, which would allow us to undertake timely action and prevent outbreak of many diseases of our time. There are many factors that promote oxidative stress, among them are certainly a fast lifestyle and environmental pollution. The increase in oxidative stress can also trigger intense physical activity that is directly associated with an increased oxygen consumption and the resulting formation of free radicals. Considering generally positive attitude to physical activity, this fact may seem at first glance contradictory, but the finding has been confimed by several studies in active athletes. Training of a top athlete daily demands great physical effort, which is also reflected in the oxidative state of the organism. However, it should be noted that the top athletes in comparison with normal individuals have a different defense system, which can counteract the negative effects of oxidative stress. Quite the opposite is true for irregular or excessive physical activity to which the body is not adapted.

  5. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain.

    Science.gov (United States)

    Ullah, Faheem; Ali, Tahir; Ullah, Najeeb; Kim, Myeong Ok

    2015-11-01

    d-galactose has been considered a senescent model for age-related neurodegenerative disease. It induces oxidative stress which triggers memory impairment, neuroinflammation and neurodegeneration. Caffeine act as anti-oxidant and has been used in various model of neurodegenerative disease. Nevertheless, the effect of caffeine against d-galactose aging murine model of age-related neurodegenerative disease elucidated. Here, we investigated the neuroprotective effect of caffeine against d-galactose. We observed that chronic treatment of caffeine (3 mg/kg/day intraperitoneally (i.p) for 60 days) improved memory impairment and synaptic markers (Synaptophysin and PSD95) in the d-galactose treated rats. Chronic caffeine treatment reduced the oxidative stress via the reduction of 8-oxoguanine through immunofluorescence in the d-galactose-treated rats. Consequently caffeine treatment suppressed stress kinases p-JNK. Additionally, caffeine treatment significantly reduced the d-galactose-induced neuroinflammation through alleviation of COX-2, NOS-2, TNFα and IL-1β. Furthermore we also analyzed that caffeine reduced cytochrome C, Bax/Bcl2 ratio, caspase-9, caspase-3 and PARP-1 level. Moreover by evaluating the immunohistochemical results of Nissl and Fluro-Jade B staining showed that caffeine prevented the neurodegeneration in the d-galactose-treated rats. Our results showed that caffeine prevents the d-galactose-induced oxidative stress and consequently alleviated neuroinflammation and neurodegeneration; and synaptic dysfunction and memory impairment. Therefore, we could suggest that caffeine might be a dietary anti-oxidant agent and a good candidate for the age-related neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Alleviating acid soil stress in cowpea with a local population of ...

    African Journals Online (AJOL)

    Alleviating acid soil stress in cowpea with a local population of arbuscular ... Roots of the cowpea lines were all heavily colonized by the fungi and their leaf P was ... Total dry weight of inoculated cowpea was not affected by soil acidity while it ...

  7. Arctigenin alleviates ER stress via activating AMPK

    Science.gov (United States)

    Gu, Yuan; Sun, Xiao-xiao; Ye, Ji-ming; He, Li; Yan, Shou-sheng; Zhang, Hao-hao; Hu, Li-hong; Yuan, Jun-ying; Yu, Qiang

    2012-01-01

    Aim: To investigate the protective effects of arctigenin (ATG), a phenylpropanoid dibenzylbutyrolactone lignan from Arctium lappa L (Compositae), against ER stress in vitro and the underlying mechanisms. Methods: A cell-based screening assay for ER stress regulators was established. Cell viability was measured using MTT assay. PCR and Western blotting were used to analyze gene and protein expression. Silencing of the CaMKKβ, LKB1, and AMPKα1 genes was achieved by RNA interference (RNAi). An ATP bioluminescent assay kit was employed to measure the intracellular ATP levels. Results: ATG (2.5, 5 and 10 μmol/L) inhibited cell death and unfolded protein response (UPR) in a concentration-dependent manner in cells treated with the ER stress inducer brefeldin A (100 nmol/L). ATG (1, 5 and 10 μmol/L) significantly attenuated protein synthesis in cells through inhibiting mTOR-p70S6K signaling and eEF2 activity, which were partially reversed by silencing AMPKα1 with RNAi. ATG (1-50 μmol/L) reduced intracellular ATP level and activated AMPK through inhibiting complex I-mediated respiration. Pretreatment of cells with the AMPK inhibitor compound C (25 μmol/L) rescued the inhibitory effects of ATG on ER stress. Furthermore, ATG (2.5 and 5 μmol/L) efficiently activated AMPK and reduced the ER stress and cell death induced by palmitate (2 mmol/L) in INS-1 β cells. Conclusion: ATG is an effective ER stress alleviator, which protects cells against ER stress through activating AMPK, thus attenuating protein translation and reducing ER load. PMID:22705729

  8. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Jian, Dong

    2011-01-01

    and enhanced cell membrane peroxidation, as exemplified by increased O2-• production rate and reduction in activities of antioxiditave enzymes. However, under post-anthesis heat stress, plants with pre-anthesis hightemperature acclimation (HH)showedmuchhigher photosynthetic rates than those without pre...... all up-regulated under HH, whereas a gene encoding a major chlorophyll a/b-binding protein (Cab) was up-regulated by post-anthesis heat stress at 10 DAA, but was down-regulated at 13 DAA. The changes in the expression levels of the HH plants were more pronounced than those for the CH. Collectively......, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant...

  9. Nrf2 Inhibits Periodontal Ligament Stem Cell Apoptosis under Excessive Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    2017-05-01

    Full Text Available The present study aimed to analyze novel mechanisms underlying Nrf2-mediated anti-apoptosis in periodontal ligament stem cells (PDLSCs in the periodontitis oxidative microenvironment. We created an oxidative stress model with H2O2-treated PDLSCs. We used real-time PCR, Western blotting, TUNEL staining, fluorogenic assay and transfer genetics to confirm the degree of oxidative stress and apoptosis as well as the function of nuclear factor-erythroid 2-related factor 2 (Nrf2. We demonstrated that with upregulated levels of reactive oxygen species (ROS and malondialdehyde (MDA, the effect of oxidative stress was obvious under H2O2 treatment. Oxidative molecules were altered after the H2O2 exposure, whereby the signaling of Nrf2 was activated with an increase in its downstream effectors, heme oxygenase-1 (HO-1, NAD(PH:quinone oxidoreductase 1 (NQO1 and γ-glutamyl cysteine synthetase (γ-GCS. Additionally, the apoptosis levels gradually increased with oxidative stress by the upregulation of caspase-9, caspase-3, Bax and c-Fos levels in addition to the downregulation of Bcl-2. However, there was no alterations in levels of caspase-8. The enhanced antioxidant effect could not mitigate the occurrence of apoptosis. Furthermore, Nrf2 overexpression effectively improved the anti-oxidative levels and increased cell proliferation. At the same time, overexpression effectively restrained TUNEL staining and decreased the molecular levels of caspase-9, caspase-3, Bax and c-Fos, but not that of caspase-8. In contrast, silencing the expression of Nrf2 levels had the opposite effect. Collectively, Nrf2 alleviates PDLSCs via its effects on regulating oxidative stress and anti-intrinsic apoptosis by the activation of oxidative enzymes.

  10. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Weiti; Gao, Cunyi; Fang, Peng [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Lin, Guoqing [Laboratory Center of Life Sciences, Co. Laboratory of Nanjing Agricultural University and Carl Zeiss Far East, Nanjing Agricultural University, Nanjing 210095 (China); Shen, Wenbiao, E-mail: wbshenh@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2013-09-15

    Highlights: • HRW can alleviate Cd-induced alfalfa seedling growth inhibition and DNA laddering. • HRW alleviates Cd-induced oxidative stress by activating antioxidant enzymes. • Cd uptake in alfalfa seedling roots was decreased by HRW. • HRW can re-establish glutathione homeostasis under Cd stress. -- Abstract: Hydrogen gas (H{sub 2}) induces plant tolerance to several abiotic stresses, including salinity and paraquat exposure. However, the role of H{sub 2} in cadmium (Cd)-induced stress amelioration is largely unknown. Here, pretreatment with hydrogen-rich water (HRW) was used to characterize physiological roles and molecular mechanisms of H{sub 2} in the alleviation of Cd toxicity in alfalfa plants. Our results showed that the addition of HRW at 10% saturation significantly decreased contents of thiobarbituric acid reactive substances (TBARS) caused by Cd, and inhibited the appearance of Cd toxicity symptoms, including the improvement of root elongation and seedling growth. These responses were related to a significant increase in the total or isozymatic activities of representative antioxidant enzymes, or their corresponding transcripts. In vivo imaging of reactive oxygen species (ROS), and the detection of lipid peroxidation and the loss of plasma membrane integrity provided further evidence for the ability of HRW to improve Cd tolerance significantly, which was consistent with a significant enhancement of the ratio of reduced/oxidized (homo)glutathione ((h)GSH). Additionally, plants pretreated with HRW accumulated less amounts of Cd. Together, this study suggested that the usage of HRW could be an effective approach for Cd detoxification and could be explored in agricultural production systems.

  11. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water

    International Nuclear Information System (INIS)

    Cui, Weiti; Gao, Cunyi; Fang, Peng; Lin, Guoqing; Shen, Wenbiao

    2013-01-01

    Highlights: • HRW can alleviate Cd-induced alfalfa seedling growth inhibition and DNA laddering. • HRW alleviates Cd-induced oxidative stress by activating antioxidant enzymes. • Cd uptake in alfalfa seedling roots was decreased by HRW. • HRW can re-establish glutathione homeostasis under Cd stress. -- Abstract: Hydrogen gas (H 2 ) induces plant tolerance to several abiotic stresses, including salinity and paraquat exposure. However, the role of H 2 in cadmium (Cd)-induced stress amelioration is largely unknown. Here, pretreatment with hydrogen-rich water (HRW) was used to characterize physiological roles and molecular mechanisms of H 2 in the alleviation of Cd toxicity in alfalfa plants. Our results showed that the addition of HRW at 10% saturation significantly decreased contents of thiobarbituric acid reactive substances (TBARS) caused by Cd, and inhibited the appearance of Cd toxicity symptoms, including the improvement of root elongation and seedling growth. These responses were related to a significant increase in the total or isozymatic activities of representative antioxidant enzymes, or their corresponding transcripts. In vivo imaging of reactive oxygen species (ROS), and the detection of lipid peroxidation and the loss of plasma membrane integrity provided further evidence for the ability of HRW to improve Cd tolerance significantly, which was consistent with a significant enhancement of the ratio of reduced/oxidized (homo)glutathione ((h)GSH). Additionally, plants pretreated with HRW accumulated less amounts of Cd. Together, this study suggested that the usage of HRW could be an effective approach for Cd detoxification and could be explored in agricultural production systems

  12. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  13. DHEA supplementation to dexamethasone-treated rabbits alleviates oxidative stress in kidney-cortex and attenuates albuminuria.

    Science.gov (United States)

    Kiersztan, Anna; Trojan, Nina; Tempes, Aleksandra; Nalepa, Paweł; Sitek, Joanna; Winiarska, Katarzyna; Usarek, Michał

    2017-11-01

    Our recent study has shown that dehydroepiandrosterone (DHEA) administered to rabbits partially ameliorated several dexamethasone (dexP) effects on hepatic and renal gluconeogenesis, insulin resistance and plasma lipid disorders. In the current investigation, we present the data on DHEA protective action against dexP-induced oxidative stress and albuminuria in rabbits. Four groups of adult male rabbits were used in the in vivo experiment: (1) control, (2) dexP-treated, (3) DHEA-treated and (4) both dexP- and DHEA-treated. Administration of dexP resulted in accelerated generation of renal hydroxyl free radicals (HFR) and malondialdehyde (MDA), accompanied by diminished superoxide dismutase (SOD) and catalase activities and a dramatic rise in urinary albumin/creatinine ratio. Treatment with DHEA markedly reduced dexP-induced oxidative stress in kidney-cortex due to a decline in NADPH oxidase activity and enhancement of catalase activity. Moreover, DHEA effectively attenuated dexP-evoked albuminuria. Surprisingly, dexP-treated rabbits exhibited elevation of GSH/GSSG ratio, accompanied by a decrease in glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities as well as an increase in glucose-6-phosphate dehydrogenase (G6PDH) activity. Treatment with DHEA resulted in a decline in GSH/GSSG ratio and glutathione reductase (GR) activity, accompanied by an elevation of GPx activity. Interestingly, rabbits treated with both dexP and DHEA remained the control values of GSH/GSSG ratio. As the co-administration of DHEA with dexP resulted in (i) reduction of oxidative stress in kidney-cortex, (ii) attenuation of albuminuria and (iii) normalization of glutathione redox state, DHEA might limit several undesirable renal side effects during chronic GC treatment of patients suffering from allergies, asthma, rheumatoid arthritis and lupus. Moreover, its supplementation might be particularly beneficial for the therapy of patients with glucocorticoid-induced diabetes

  14. Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast.

    Directory of Open Access Journals (Sweden)

    Alice Zuin

    Full Text Available BACKGROUND: Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS originate mainly from endogenous sources, namely the mitochondria. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the effect of aerobic metabolism on oxidative damage in Schizosaccharomyces pombe by global mapping of those genes that are required for growth on both respiratory-proficient media and hydrogen-peroxide-containing fermentable media. Out of a collection of approximately 2700 haploid yeast deletion mutants, 51 were sensitive to both conditions and 19 of these were related to mitochondrial function. Twelve deletion mutants lacked components of the electron transport chain. The growth defects of these mutants can be alleviated by the addition of antioxidants, which points to intrinsic oxidative stress as the origin of the phenotypes observed. These respiration-deficient mutants display elevated steady-state levels of ROS, probably due to enhanced electron leakage from their defective transport chains, which compromises the viability of chronologically-aged cells. CONCLUSION/SIGNIFICANCE: Individual mitochondrial dysfunctions have often been described as the cause of diseases or aging, and our global characterization emphasizes the primacy of oxidative stress in the etiology of such processes.

  15. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  16. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Puneet, E-mail: puneetbiochem@gmail.com [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Prasad, Y. [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Patra, A.K. [West Bengal University of Animal and Fishery Sciences, Kolkata-700037 (India); Ranjan, R.; Swarup, D.; Patra, R.C. [Division of Medicine, Indian Veterinary Research Institute, Izatnagar-243122 (India); Pal, Satya [Env. Eng. Lab., Deptt. of Civil Engineering, I.I.T., Roorkee-247667 (India)

    2009-09-01

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 {+-} 4 cm and weight of 86 {+-} 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl{sub 2}.H{sub 2}O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl{sub 2}.H{sub 2}O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and

  17. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    International Nuclear Information System (INIS)

    Kumar, Puneet; Prasad, Y.; Patra, A.K.; Ranjan, R.; Swarup, D.; Patra, R.C.; Pal, Satya

    2009-01-01

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 ± 4 cm and weight of 86 ± 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl 2 .H 2 O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl 2 .H 2 O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and taurine have potential to

  18. Coregulation of endoplasmic reticulum stress and oxidative stress in neuropathic pain and disinhibition of the spinal nociceptive circuitry.

    Science.gov (United States)

    Ge, Yanhu; Jiao, Yingfu; Li, Peiying; Xiang, Zhenghua; Li, Zhi; Wang, Long; Li, Wenqian; Gao, Hao; Shao, Jiayun; Wen, Daxiang; Yu, Weifeng

    2018-05-01

    The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen leads to ER stress, which is related to cellular reactive oxygen species production. Neuropathic pain may result from spinal dorsal horn (SDH) ER stress. In this study, we examined the cause-effect relationship between ER stress and neuropathic pain using the spinal nerve ligation (SNL) rat model. We showed that ER stress was mutually promotive with oxidative stress during the process. We also tested the hypothesis that spinal sensitization arose from reduced activities of GABA-ergic interneurons and that spinal sensitization was mediated by SDH ER stress. Other important findings in this study including the following: (1) nociceptive behavior was alleviated in SNL rat as long as tauroursodeoxycholic acid injections were repeated to inhibit ER stress; (2) inducing SDH ER stress in healthy rat resulted in mechanical hyperalgesia; (3) blocking protein disulfide isomerase pharmacologically reduced ER stress and nociceptive behavior in SNL rat; (4) cells in the dorsal horn with elevated ER stress were mainly neurons; and (5) whole-cell recordings made in slide preparations revealed significant inhibition of GABA-ergic interneuron activity in the dorsal horn with ER stress vs in the healthy dorsal horn. Taken together, results of the current study demonstrate that coregulation of ER stress and oxidative stress played an important role in neuropathic pain process. Inhibiting SDH ER stress could be a potential novel strategy to manage neuropathic pain.

  19. Lipopolysaccharide-Induced Behavioral Alterations Are Alleviated by Sodium Phenylbutyrate via Attenuation of Oxidative Stress and Neuroinflammatory Cascade.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Lahkar, Mangala

    2016-08-01

    Oxido-nitrosative stress, neuroinflammation, and reduced level of neurotrophins are implicated in the pathophysiology of anxiety and depressive illness. A few recent studies have revealed the role of endoplasmic reticulum (ER) stress in the pathophysiology of stress and depression. The aim of the present study is to investigate the neuroprotective potential of sodium phenylbutyrate (SPB), an ER stress inhibitor against lipopolysaccharide (LPS)-induced anxiety and depressive-like behavior in Swiss albino mice. Anxiety and depressive-like behavior was induced by LPS (0.83 mg/kg; i.p.) administration. Various behavioral tests were conducted to evaluate the anxiety and depressive-like behavior in mice. Real-time PCR was employed for the detection and expression of ER stress markers (78-kDa glucose-regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Pretreatment with SPB significantly ameliorated the LPS-induced anxiety and depressive-like behavior as revealed by behavioral paradigm results. LPS-induced oxidative stress was ameliorated by SPB pretreatment in hippocampus (HC) and prefrontal cortex (PFC) region. Neuroinflammation was significantly reduced by SPB pretreatment in LPS-treated mice as evident from reduction in proinflammatory cytokines (IL-1β and TNF-α). Importantly, LPS administration significantly up-regulated the GRP78 mRNA expression level in the HC which suggests the involvement of unfolded protein response (UPR) in LPS-evoked behavioral anomalies. These results highlight the neuroprotective potential of SPB in LPS-induced anxiety and depressive illness model which may be partially due to inhibition of oxidative stress-neuroinflammatory cascade.

  20. Ramadan fasting ameliorates arterial pulse pressure and lipid profile, and alleviates oxidative stress in hypertensive patients.

    Science.gov (United States)

    Al-Shafei, Ahmad I M

    2014-06-01

    Effects of Ramadan fasting on health are important. Its effects on arterial pulse pressure (PP), lipid profile and oxidative stress were characterized in hypertensives. PP, indices of lipid profile and oxidative stress were measured pre-, during and post-fasting in equal (40 each), sex- and age-matched groups (age 55 ± 5 years) of hypertensives (HT) and controls (C). Fasting reduced PP significantly by 17.2% and insignificantly by 9.3% in the HT and C groups, respectively. Total cholesterol (TC) was lowered insignificantly by 11.7% and 4.7% in the HT and C patients, respectively. Triglycerides (TG) and malondialdehyde (MDA) were significantly lowered by: TG: 24.5% and 22.8%; MDA: 45.6% and 54.3%; while glutathione (GSH) elevated by 56.8% and 52.6% in the HT and C groups, respectively. High-density lipoproteins (HDL) were raised significantly by 33.3% and insignificantly by 6.7%, whereas low-density lipoproteins (LDL) decreased significantly by 17.7% and insignificantly by 4.0% in the HT and C groups, respectively. At 6 weeks post-fasting, MDA remained significantly lower than the pre-fasting level by 24.3% and 25.7%, and GSH higher by 30.2% and 26.3% in the HT and C groups, respectively, while PP and TC returned to pre-fasting values in both groups. The post-fasting, HDL was significantly higher by 20.3% and LDL lower by 12.0% than the fasting levels in the HT patients. Fasting improves PP and lipids profile and ameliorates oxidative stress in hypertensives.

  1. Does oxidative stress shorten telomeres?

    NARCIS (Netherlands)

    Boonekamp, Jelle J.; Bauch, Christina; Mulder, Ellis; Verhulst, Simon

    Oxidative stress shortens telomeres in cell culture, but whether oxidative stress explains variation in telomere shortening in vivo at physiological oxidative stress levels is not well known. We therefore tested for correlations between six oxidative stress markers and telomere attrition in nestling

  2. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells.

    Science.gov (United States)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Luo, Jia

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Oxidative Stress in BPH

    Directory of Open Access Journals (Sweden)

    Murat Savas

    2009-01-01

    The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis. Keywords: benign prostatic hyperplasia, oxidative stress, prostate

  4. Glutamine prevents gastric oxidative stress in an animal model of portal hypertension gastropathy.

    Science.gov (United States)

    Marques, Camila; Mauriz, José L; Simonetto, Douglas; Marroni, Claudio A; Tuñon, María J; González-Gallego, Javier; Marrón, Norma P

    2011-01-01

    Portal hypertension (PHI) is a clinical syndrome characterized by increases of the blood flow and/or of the vascular resistance in the portal system. A direct consequence of PHI can appearance different lesions on the gastric mucosa and submucosa, cumulatively termed portal hypertensive gastropathy (PHG). To investigate the effects of glutamine on oxidative stress in an experimental model of PHG induced by partial portal vein ligation (PPVL). Portal pressure, transaminase and alkaline phosphatase activity were quantified. Gastric tissue damage was assessed by histological analysis. Oxidative stress was measured by quantification of cytosolic concentration of thiobarbituric acid reactive substances (TBARS), hydroperoxide-initiated chemiluminescence (QL), and nitric oxide (NO) production. Moreover, activities of the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were analyzed. Transaminase and alkaline phosphatase activities were not significantly modified by PPVL, indicating absence of liver injury. Histological analysis of gastric sections showed a lost of normal architecture, with edema and vasodilatation. TBARS, QL, and NO production were significantly increased in PPVL animals. A reduction of SOD activity was found. Glutamine administration markedly alleviated histological abnormalities and oxidative stress, normalized SOD activity, and blocked NO overproduction. Our results confirm that the use of molecules with antioxidant capacity can provide protection of the gastric tissue in portal hypertension. Glutamine treatment can be useful to reduce the oxidative damage induced by PHI on gastric tissue.

  5. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet.

    Science.gov (United States)

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  6. Study of Foeniculum vulgare (Fennel Seed Extract Effects on Serum Level of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sadeghpour Nahid

    2015-04-01

    Full Text Available Objective: The Foeniculum vulgare (FVE, known as fennel, has a long history of herbal uses as both food and medicine. The seed of this plant has been used to promote menstruation, alleviate the symptoms of female climacteric, and increase the number of ovarian follicles. The aim of this study was to evaluate the fennel extract effects on serum level of oxidative stress in female mice. Materials and Methods: Totally, 28 virgin female albino mice were divided into four groups (n = 7. Groups 1 and 2 (experimental groups were administered FVE at 100 and at a concentration of 100 and 200 mg/kg for 5 days, interaperitoneally. Group 3 (negative control received ethanol and Group 4 (positive control received normal saline. Animals were scarified at 6th day, sera were collected and the level of oxidative stress was determination of using total antioxidant status kit. Results: Data analysis revealed that there is a significant difference in the mean level of serum oxidative stress between four different groups. P value in experimental groups compared to the control group was (P < 0.0001. Conclusion: Fennel extract can decrease the serum level of oxidative factors in female mice; it can be introduced as a novel medicine for treatment of infertility

  7. Natural plant polyphenols for alleviating oxidative damage in man ...

    African Journals Online (AJOL)

    cumulative effects of oxidative damage over human life span. Current research reveals ... aging, cardiovascular and neurodegenerative diseases [3,4]. .... natural antioxidants and mortality from age- .... health and longevity in normal cells by calorie restriction [63]. ..... H(2)O(2)-induced oxidative stress and senescence via.

  8. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    Science.gov (United States)

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (pstress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01) Intriguingly, among those with low chronic stress

  9. Inhibition of inflammation and oxidative stress by an imidazopyridine derivative X22 prevents heart injury from obesity

    OpenAIRE

    Qian, Yuanyuan; Zhang, Yali; Zhong, Peng; Peng, Kesong; Xu, Zheng; Chen, Xuemei; Lu, Kongqin; Chen, Gaozhi; Li, Xiaokun; Liang, Guang

    2016-01-01

    Abstract Inflammation and oxidative stress plays an important role in the development of obesity?related complications and cardiovascular disease. Benzimidazole and imidazopyridine compounds are a class of compounds with a variety of activities, including anti?inflammatory, antioxidant and anti?cancer. X22 is an imidazopyridine derivative we synthesized and evaluated previously for anti?inflammatory activity in lipopolysaccharide?stimulated macrophages. However, its ability to alleviate obesi...

  10. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoqing Ma

    2018-01-01

    Full Text Available Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD, high fat diet (HFD, and HFD administered with vildagliptin (50 mg/Kg (V-HFD. After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27% and liver triglycerides (314.75% compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  11. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  12. Alleviating exercise-induced muscular stress using neat and processed bee pollen: oxidative markers, mitochondrial enzymes, and myostatin expression in rats

    Directory of Open Access Journals (Sweden)

    Sameer Ketkar

    2015-09-01

    Conclusion: The study establishes the antioxidant, mitochondrial upregulatory, and myostatin inhibitory effects of both MIMBP and PMIMBP in exercise-induced oxidative stress conditions, suggesting their usefulness in effective management of exercise-induced muscular stress. Further, processing of MIMBP with an edible lipid-surfactant mixture was found to improve the therapeutic efficiency of pollen.

  13. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Weinstein-Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester (United States); Szyf, Moshe [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2014-05-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  14. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Guillemin, Claire; Neeman-azulay, Meytal; Weinstein-Fudim, Liza; Stodgell, Christopher J.; Miller, Richard K.; Szyf, Moshe; Ornoy, Asher

    2014-01-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  15. Augmented Rac1 Expression and Activity are Associated with Oxidative Stress and Decline of β Cell Function in Obesity.

    Science.gov (United States)

    Zhou, Shutong; Yu, Dongni; Ning, Shangyong; Zhang, Heli; Jiang, Lei; He, Lei; Li, Miao; Sun, Mingxiao

    2015-01-01

    The aim of this study was to clarify the relationship among Rac1 expression and activation, oxidative stress and β cell dysfunction in obesity. In vivo, serum levels of glucose, insulin, oxidative stress markers and Rac1 expression were compared between ob/ob mice and C57BL/6J controls. Then, these variables were rechecked after the administration of the specific Rac1 inhibitor-NSC23766 in ob/ob mice. In vitro, NIT-1 β cells were cultured in a hyperglycemic and/or hyperlipidemic state with or without NSC23766, and the differences of Rac1 expression and translocation, NADPH oxidase(Nox) enzyme activity, reactive oxygen species (ROS) and insulin mRNA were observed. ob/ob mice displayed abnormal glycometabolism, oxidative stress and excessive expression of Rac1 in the pancreas. NSC23766 injection inhibited the expression of Rac1 in the pancreas, along with amelioration of oxidative stress and glycometabolism in obese mice. Under hyperglycemic and/or hyperlipidemic conditions, Rac1 translocated to the cellular membrane, induced activation of the NADPH oxidase enzyme and oxidative stress, and simultaneously reduced the insulin mRNA expression in NIT-1 β cells. Inhibiting Rac1 activity could alleviate oxidative stress and meliorate the decline of insulin mRNA in β cells. Rac1 might contribute to oxidative stress systemically and locally in the pancreas in obesity. The excessive activation and expression of Rac1 in obesity were associated with β cell dysfunction through ROS production. © 2015 S. Karger AG, Basel.

  16. BRCA1 and Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Yong Weon; Kang, Hyo Jin [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Bae, Insoo, E-mail: ib42@georgetown.edu [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States)

    2014-04-03

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers.

  17. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Zhu, Xiao Fang; Jiang, Tao; Wang, Zhi Wei; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2012-01-01

    Highlights: ► Cd reduces endogenous GA levels in Arabidopsis. ► GA exogenous applied decreases Cd accumulation in plant. ► GA suppresses the Cd-induced accumulation of NO. ► Decreased NO level downregulates the expression of IRT1. ► Suppressed IRT1 expression reduces Cd transport across plasma membrane. - Abstract: Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd 2+ , GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd 2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd 2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd 2+ uptake related gene-IRT1 in Arabidopsis.

  18. Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress.

    Science.gov (United States)

    Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad

    2011-10-31

    Due to anti-diabetic and antioxidant activity of green tea epigallocatechin gallate (EGCG) and the existence of evidence for its beneficial effect on cognition and memory, this research study was conducted to evaluate, for the first time, the efficacy of chronic EGCG on alleviation of learning and memory deficits in streptozotocin (STZ)-diabetic rats. Male Wistar rats were divided into control, diabetic, EGCG-treated-control and -diabetic groups. EGCG was administered at a dose of 20 and 40 mg/kg/day for 7 weeks. Learning and memory was evaluated using Y maze, passive avoidance, and radial 8-arm maze (RAM) tests. Oxidative stress markers and involvement of nitric oxide system were also evaluated. Alternation score of the diabetic rats in Y maze was lower than that of control and a significant impairment was observed in retention and recall in passive avoidance test (pRAM task and EGCG (40 mg/kg) significantly ameliorated these changes (pmemory respectively. Meanwhile, increased levels of malondialdehyde (MDA) and nitrite in diabetic rats significantly reduced due to EGCG treatment (pmemory deficits in STZ-diabetic rats through attenuation of oxidative stress and modulation of NO. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. [Effect of germacrone in alleviating HUVECs damaged by H2O2-induced oxidative stress].

    Science.gov (United States)

    Chen, Qiong-Fang; Wang, Gang; Tang, Li-Qing; Yu, Xian-Wen; Li, Zhao-Fei; Yang, Xiu-Fen

    2017-09-01

    This study focuses on the protective effect of germacrone on human umbilical vein endothelial cells(HUVECs) damaged by H2O2-induced oxidative stress and its possible mechanisms. The oxidative damage model was established by using 500 μmol•L⁻¹ H2O2 to treat HUVECs for 3 hours, and then protected with different concentrations of germacrone for 24 hours. The effect of germacrone on cell viability of HUVECs damaged by H2O2 was detected by MTT. The contents of PGI2, TXB2, ET-1, t-PA, PAI-1, TNF-α and IL-6 were detected by ELISA. The content of NO was detected by using nitrate reductase method. Colorimetry was used to detect NOS and GSH-Px. The contents of MDA, SOD and LDH were detected by TBA, WST-1 and microplate respectively. Apoptosis was observed by Hoechst 33258 fluorescent staining. The mRNA expressions of Bax, Bcl-2 and Caspase-3 in cells were detected by RT-PCR. The results showed that the cell damage rate was 52% after treated with 500 μmol•L⁻¹ H2O2 for 3 hours. The cell activity was increasing with the rise of germacrone concentration within the range of 20-200 mol•L⁻¹. Compared with normal group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were lower after damaged with H2O2. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were increased. Compared with model group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were increased after treated with germacrone. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were lower after treated with germacrone. According to Hoechst 33258 fluorescence staining, compared with normal group, the cell membrane and the nucleus showed strong dense blue fluorescence, and the number of cells significantly decreased in model group. Compared with model group, blue fluorescence intensity decreased in drug group. The above findings demonstrate that

  20. Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits.

    Science.gov (United States)

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-04-21

    Alzheimer's disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis.

  1. Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro.

    Directory of Open Access Journals (Sweden)

    Xunsi Qin

    Full Text Available Oxidative stress (OS, as a signal of aberrant intracellular mechanisms, plays key roles in maintaining homeostasis for organisms. The occurrence of OS due to the disorder of normal cellular redox balance indicates the overproduction of reactive oxygen species (ROS and/or deficiency of antioxidants. Once the balance is broken down, repression of oxidative stress is one of the most effective ways to alleviate it. Ongoing studies provide remarkable evidence that oxidative stress is involved in reproductive toxicity induced by various stimuli, such as environmental toxicants and food toxicity. Zearalenone (ZEA, as a toxic compound existing in contaminated food products, is found to induce mycotoxicosis that has a significant impact on the reproduction of domestic animals, especially pigs. However, there is no information about how ROS and oxidative stress is involved in the influence of ZEA on porcine granulosa cells, or whether the stress can be rescued by curcumin. In this study, ZEA-induced effect on porcine granulosa cells was investigated at low concentrations (15 μM, 30 μM and 60 μM. In vitro ROS levels, the mRNA level and activity of superoxide dismutase, glutathione peroxidase and catalase were obtained. The results showed that in comparison with negative control, ZEA increased oxidative stress with higher ROS levels, reduced the expression and activity of antioxidative enzymes, increased the intensity of fluorogenic probes 2', 7'-Dichlorodihydrofluorescin diacetate and dihydroethidium in flow cytometry assay and fluorescence microscopy. Meanwhile, the activity of glutathione (GSH did not change obviously following 60 μM ZEA treatment. Furthermore, the underlying protective mechanisms of curcumin on the ZEA-treated porcine granulosa cells were investigated. The data revealed that curcumin pre-treatment significantly suppressed ZEA-induced oxidative stress. Collectively, porcine granulosa cells were sensitive to ZEA, which may induce

  2. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    Science.gov (United States)

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  3. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Science.gov (United States)

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  4. Effect of Lycopene Supplementation on Oxidative Stress: An Exploratory Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Science.gov (United States)

    Chen, Jinyao; Song, Yang

    2013-01-01

    Abstract Lycopene is a potentially useful compound for preventing and treating cardiovascular diseases and cancers. Studies on the effects of lycopene on oxidative stress offer insights into its mechanism of action and provide evidence-based rationale for its supplementation. In this analysis, randomized controlled trials of the effects of oral lycopene supplementation on any valid outcomes of oxidative stress were identified and pooled through a search of international journal databases and reference lists of relevant publications. Two reviewers extracted data from each of the identified studies. Only studies of sufficient quality were included. Twelve parallel trials and one crossover trial were included in the systematic review, and six trials provided data for quantitative meta-analysis. Our results indicate that lycopene supplementation significantly decreases the DNA tail length, as determined using comet assays, with a mean difference (MD) of −6.27 [95% confidence interval (CI) −10.74, −1.90] (P=.006) between the lycopene intervention groups and the control groups. Lycopene supplementation does not significantly prolong the lag time of low-density lipoprotein (MD 3.76 [95% CI −2.48, 10.01]; P=.24). Lycopene possibly alleviates oxidative stress; however, biomarker research for oxidative stress needs be more consistent with the outcomes in lycopene intervention trials for disease prevention. PMID:23631493

  5. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.

    Science.gov (United States)

    Surdel, Matthew C; Dutter, Brendan F; Sulikowski, Gary A; Skaar, Eric P

    2016-08-12

    Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.

  6. Oxidative stress adaptation with acute, chronic, and repeated stress.

    Science.gov (United States)

    Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J

    2013-02-01

    Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Association of Oxidative Stress with Psychiatric Disorders.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Castro-Gomes, Vitor; Mohammadzai, Imdadullah; da Rocha, Joao Batista Teixeira; Landeira-Fernandez, J

    2016-01-01

    When concentrations of both reactive oxygen species and reactive nitrogen species exceed the antioxidative capability of an organism, the cells undergo oxidative impairment. Impairments in membrane integrity and lipid and protein oxidation, protein mutilation, DNA damage, and neuronal dysfunction are some of the fundamental consequences of oxidative stress. The purpose of this work was to review the associations between oxidative stress and psychological disorders. The search terms were the following: "oxidative stress and affective disorders," "free radicals and neurodegenerative disorders," "oxidative stress and psychological disorders," "oxidative stress, free radicals, and psychiatric disorders," and "association of oxidative stress." These search terms were used in conjunction with each of the diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders and World Health Organization's International Statistical Classification of Diseases and Related Health Problems. Genetic, pharmacological, biochemical, and preclinical therapeutic studies, case reports, and clinical trials were selected to explore the molecular aspects of psychological disorders that are associated with oxidative stress. We identified a broad spectrum of 83 degenerative syndromes and psychiatric disorders that were associated with oxidative stress. The multi-dimensional information identified herein supports the role of oxidative stress in various psychiatric disorders. We discuss the results from the perspective of developing novel therapeutic interventions.

  8. Crocin attenuates hemorrhagic shock-induced oxidative stress and organ injuries in rats.

    Science.gov (United States)

    Yang, Long; Dong, Xiujuan

    2017-06-01

    We aimed to evaluate the effect of natural antioxidant crocin in alleviating hemorrhagic shock (HS)-induced organ damages. HS rats were treated with crocin during resuscitation. Mortality at 12h and 24h post resuscitation was documented. HS and resuscitation induced organ injuries, as characterized by elevated wet/dry ratio, quantitative assessment ratio, blood urea nitrogen, creatinine, aspartate aminotransferase and alanine aminotransferase, whereas rats received crocin treatment demonstrated improvements in all the above characteristics. This protective effect coincided with reduced malondialdehyde and increased glutathione in both serum and lung tissues, indicating attenuated oxidative stress in crocin-treated rats. Myeloperoxide levels in lung, kidney and liver were also reduced. Crocin can potentially be used to protect organs from HS-induced damages during resuscitation due to its anti-oxidative role. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Jiang, Tao [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Lei, Gui Jie [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Cd reduces endogenous GA levels in Arabidopsis. Black-Right-Pointing-Pointer GA exogenous applied decreases Cd accumulation in plant. Black-Right-Pointing-Pointer GA suppresses the Cd-induced accumulation of NO. Black-Right-Pointing-Pointer Decreased NO level downregulates the expression of IRT1. Black-Right-Pointing-Pointer Suppressed IRT1 expression reduces Cd transport across plasma membrane. - Abstract: Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 {mu}M for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd{sup 2+}, GA at 5 {mu}M improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd{sup 2+} increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd{sup 2+} absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd{sup 2+} uptake related gene-IRT1 in Arabidopsis.

  10. Commonly used air filters fail to eliminate secondhand smoke induced oxidative stress and inflammatory responses.

    Science.gov (United States)

    Muthumalage, Thivanka; Pritsos, Karen; Hunter, Kenneth; Pritsos, Chris

    2017-07-01

    Secondhand smoke (SHS) causes approximately 50,000 deaths per year. Despite all the health warnings, smoking is still allowed indoors in many states exposing both workers and patrons to SHS on a daily basis. The opponents of smoking bans suggest that present day air filtration systems remove the health hazards of exposure to SHS. In this study, using an acute SHS exposure model, we looked at the impact of commonly used air filters (MERV-8 pleated and MERV-8 pleated activated charcoal) on SHS by assessing the inflammatory response and the oxidative stress response in C57BL/6 mice. In order to assess the inflammatory response, we looked at the tumor necrosis factor alpha (TNF-α) cytokine production by alveolar macrophages (AMs), and for the oxidative response, we quantified the products of lipid peroxidation and the total glutathione (tGSH) production in lung homogenates. Our results showed that SHS caused significant immune and oxidative stress responses. The tested filters resulted in only a modest alleviation of inflammatory and oxidative responses due to SHS exposure. Our data show that these air filters cannot eliminate the risk of SHS exposure and that a short-term exposure to SHS is sufficient to alter the inflammatory cytokine response and to initiate a complex oxidative stress response. Our results are consistent with the statement made by the Surgeon General's reports that there is no risk free level of exposure to SHS.

  11. Alleviation of isoproturon toxicity to wheat by exogenous application of glutathione.

    Science.gov (United States)

    Nemat Alla, Mamdouh M; Hassan, Nemat M

    2014-06-01

    Treatment with the recommended field dose of isoproturon to 7-d-old wheat seedlings significantly decreased shoot height, fresh and dry weights during the subsequent 15days. Meanwhile contents of carotenoids, chlorophylls and anthocyanin as well as activities of δ-aminolevulinate dehydratase (ALA-D), phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) were significantly inhibited. On the other hand, the herbicide significantly increased malondialdehyde (MDA), a naturally occurring product of lipid peroxidation and H2O2, while it significantly decreased the contents of glutathione (GSH) and ascorbic acid (AsA) and reduced the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). These findings indicate an induction of a stress status in wheat seedlings following isoproturon treatment. However, exogenous GSH appeared to limit the toxic effects of isoproturon and seemed to overcome this stress status. Most likely, contents of pigment and activities of enzymes were raised to approximate control levels. Moreover, antioxidants were elevated and the oxidative stress indices seemed to be alleviated by GSH application. These results indicate that exogenous GSH enhances enzymatic and nonenzymatic antioxidants to alleviate the effects of isoproturon. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Rice bran protein hydrolysates reduce arterial stiffening, vascular remodeling and oxidative stress in rats fed a high-carbohydrate and high-fat diet.

    Science.gov (United States)

    Senaphan, Ketmanee; Sangartit, Weerapon; Pakdeechote, Poungrat; Kukongviriyapan, Veerapol; Pannangpetch, Patchareewan; Thawornchinsombut, Supawan; Greenwald, Stephen E; Kukongviriyapan, Upa

    2018-02-01

    Rice bran protein hydrolysates (RBPH) contain highly nutritional proteins and antioxidant compounds which show benefits against metabolic syndrome (MetS). Increased arterial stiffness and the components of MetS have been shown to be associated with an increased risk of cardiovascular disease. This study aimed to investigate whether RBPH could alleviate the metabolic disorders, arterial stiffening, vascular remodeling, and oxidative stress in rats fed a high-carbohydrate and high-fat (HCHF) diet. Male Sprague-Dawley rats were fed either a standard chow and tap water or a HCHF diet and 15 % fructose solution for 16 weeks. HCHF rats were treated orally with RBPH (250 or 500 mg/kg/day) for the final 6 weeks of the experimental period. Rats fed with HCHF diet had hyperglycemia, insulin resistance, dyslipidemia, hypertension, increased aortic pulse wave velocity, aortic wall hypertrophy and vascular remodeling with increased MMP-2 and MMP-9 expression. RBPH supplementation significantly alleviated these alterations (P stress was also alleviated after RBPH treatment by decreasing plasma malondialdehyde, reducing superoxide production and suppressing p47 phox NADPH oxidase expression in the vascular tissues of HCHF rats. RBPH increased plasma nitrate/nitrite level and up-regulated eNOS expression in the aortas of HCHF-diet-fed rats, indicating that RBPH increased NO production. RBPH mitigate the deleterious effects of HCHF through potential mechanisms involving enhanced NO bioavailability, anti-ACE, anti-inflammatory and antioxidant properties. RBPH could be used as dietary supplements to minimize oxidative stress and vascular alterations triggered by MetS.

  13. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  14. Ebselen alleviates testicular pathology in mice with Zika virus infection and prevents its sexual transmission.

    Directory of Open Access Journals (Sweden)

    Yogy Simanjuntak

    2018-02-01

    Full Text Available Despite the low case fatality, Zika virus (ZIKV infection has been associated with microcephaly in infants and Guillain-Barré syndrome. Antiviral and vaccine developments against ZIKV are still ongoing; therefore, in the meantime, preventing the disease transmission is critical. Primarily transmitted by Aedes species mosquitoes, ZIKV also can be sexually transmitted. We used AG129 mice lacking interferon-α/β and -γ receptors to study the testicular pathogenesis and sexual transmission of ZIKV. Infection of ZIKV progressively damaged mouse testes, increased testicular oxidative stress as indicated by the levels of reactive oxygen species, nitric oxide, glutathione peroxidase 4, spermatogenesis-associated-18 homolog in sperm and pro-inflammatory cytokines including IL-1β, IL-6, and G-CSF. We then evaluated the potential role of the antioxidant ebselen (EBS in alleviating the testicular pathology with ZIKV infection. EBS treatment significantly reduced ZIKV-induced testicular oxidative stress, leucocyte infiltration and production of pro-inflammatory response. Furthermore, it improved testicular pathology and prevented the sexual transmission of ZIKV in a male-to-female mouse sperm transfer model. EBS is currently in clinical trials for various diseases. ZIKV infection could be on the list for potential use of EBS, for alleviating the testicular pathogenesis with ZIKV infection and preventing its sexual transmission.

  15. Ebselen alleviates testicular pathology in mice with Zika virus infection and prevents its sexual transmission.

    Science.gov (United States)

    Simanjuntak, Yogy; Liang, Jian-Jong; Chen, Si-Yu; Li, Jin-Kun; Lee, Yi-Ling; Wu, Han-Chung; Lin, Yi-Ling

    2018-02-01

    Despite the low case fatality, Zika virus (ZIKV) infection has been associated with microcephaly in infants and Guillain-Barré syndrome. Antiviral and vaccine developments against ZIKV are still ongoing; therefore, in the meantime, preventing the disease transmission is critical. Primarily transmitted by Aedes species mosquitoes, ZIKV also can be sexually transmitted. We used AG129 mice lacking interferon-α/β and -γ receptors to study the testicular pathogenesis and sexual transmission of ZIKV. Infection of ZIKV progressively damaged mouse testes, increased testicular oxidative stress as indicated by the levels of reactive oxygen species, nitric oxide, glutathione peroxidase 4, spermatogenesis-associated-18 homolog in sperm and pro-inflammatory cytokines including IL-1β, IL-6, and G-CSF. We then evaluated the potential role of the antioxidant ebselen (EBS) in alleviating the testicular pathology with ZIKV infection. EBS treatment significantly reduced ZIKV-induced testicular oxidative stress, leucocyte infiltration and production of pro-inflammatory response. Furthermore, it improved testicular pathology and prevented the sexual transmission of ZIKV in a male-to-female mouse sperm transfer model. EBS is currently in clinical trials for various diseases. ZIKV infection could be on the list for potential use of EBS, for alleviating the testicular pathogenesis with ZIKV infection and preventing its sexual transmission.

  16. Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits

    Science.gov (United States)

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-01-01

    Alzheimer’s disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis. PMID:25847999

  17. Strong, sudden cooling alleviates the inflammatory responses in heat-stressed dairy cows based on iTRAQ proteomic analysis

    Science.gov (United States)

    Cheng, Jianbo; Min, Li; Zheng, Nan; Fan, Caiyun; Zhao, Shengguo; Zhang, Yangdong; Wang, Jiaqi

    2018-02-01

    This study was designed to investigate the effects of sudden cooling on the physiological responses of 12 heat-stressed Holstein dairy cows using an isobaric tags for relative and absolute quantification (iTRAQ) labeling approach. Plasma samples were collected from these cows during heat stress (HS), and after strong, sudden cooling in the summer (16 days later). We compared plasma proteomic data before and after sudden cooling to identify the differentially abundant proteins. The results showed that sudden cooling in summer effectively alleviated the negative consequences of HS on body temperature and production variables. Expressions of plasma hemoglobin alpha and hemoglobin beta were upregulated, whereas lipopolysaccharide-binding protein (LBP) and haptoglobin were downregulated in this process. The increase of hemoglobin after cooling may improve oxygen transport and alleviate the rise in respiration rates in heat-stressed dairy cows. The decrease of LBP and haptoglobin suggests that the inflammatory responses caused by HS are relieved after cooling. Our findings provide new insight into the physiological changes that occur when heat-stressed dairy cows experience strong, sudden cooling.

  18. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kaijun [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Jiang, Yiqian [The First People Hospital of Xiaoshan, Hangzhou (China); Wang, Wei; Ma, Jian [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Chen, Min, E-mail: eyedrchenminzj@163.com [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China)

    2015-12-25

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H{sub 2}O{sub 2}) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H{sub 2}O{sub 2}-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H{sub 2}O{sub 2} were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolished escin-mediated anti-oxidant activity and RPE cytoprotection against H{sub 2}O{sub 2}. Reversely, escin was more potent against H{sub 2}O{sub 2} damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H{sub 2}O{sub 2} was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling.

  19. GLP-1 Treatment Improves Diabetic Retinopathy by Alleviating Autophagy through GLP-1R-ERK1/2-HDAC6 Signaling Pathway.

    Science.gov (United States)

    Cai, Xiangsheng; Li, Jingjing; Wang, Mingzhu; She, Miaoqin; Tang, Yongming; Li, Jinlong; Li, Hongwei; Hui, Hongxiang

    2017-01-01

    Objective: Apoptosis and autophagy of retinal cells, which may be induced by oxidative stress, are tightly associated with the pathogenesis of diabetic retinopathy (DR). The autophagy induced by oxidative stress is considered as excessively stimulated autophagy, which accelerates the progression of DR. This study aims to investigate the protective effect of GLP-1 treatment on alleviating apoptosis and autophagy of retinal cells in type 2 diabetic rats and reveals its possible mechanism. Methods: Type 2 diabetic rats were induced by fed with high sugar, high fat diet and followed with streptozotocin injection. GLP-1 was applied to treat the diabetic rats for one week after the onset of diabetes. The expressions of oxidative stress-related enzymes, retinal GLP-1R, mitochondria-dependent apoptosis- related genes, autophagy markers, and autophagy-associated pathway genes were studied by Western blotting or immunohistochemistry analysis. Results: GLP-1treatment reduced the levels of NOX3 and SOD2 in DR. The expression of BCL2 was increased, while the levels of caspase3 and LC3B were reduced through GLP-1 treatment in DR . GLP-1 treatment restored the GLP-1R expression and decreased the levels of phosphorylated AKT and phosphorylated ERK1/2, which was accompanied with the reduction of the HDAC6 levels in DR. Conclusions: GLP-1 treatment can alleviate autophagy which may be induced by oxidative stress; this protective effect is likely through GLP-1R-ERK1/2-HDAC6 signaling pathway.

  20. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    The effects of NO on alleviating arsenic-induced oxidative damage in tall fescue leaves were investigated. Arsenic (25 M) treatment induced significantly accumulation of reactive oxygen species (ROS) and led to serious lipid peroxidation in tall fescue leaves and the application of 100 M SNP before arsenic stress resulted ...

  1. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves

    Directory of Open Access Journals (Sweden)

    Cheng Jian-Shan

    2010-02-01

    Full Text Available Abstract Background Although the effect of salicylic acid (SA on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side. In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25°C, during heat stress (43°C for 5 h, and through the following recovery period (25°C. Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs in the chloroplast were also investigated. Results SA did not significantly (P Pn of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activition state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P Conclusion SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activition state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.

  2. Clinical Relevance of Biomarkers of Oxidative Stress

    DEFF Research Database (Denmark)

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven

    2015-01-01

    SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino ac....... The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.......SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino...... acids. RECENT ADVANCES: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES: The literature is very heterogeneous...

  3. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging.

    Science.gov (United States)

    Simioni, Carolina; Zauli, Giorgio; Martelli, Alberto M; Vitale, Marco; Sacchetti, Gianni; Gonelli, Arianna; Neri, Luca M

    2018-03-30

    Physical exercise is considered to be one of the beneficial factors of a proper lifestyle and is nowadays seen as an indispensable element for good health, able to lower the risk of disorders of the cardiovascular, endocrine and osteomuscular apparatus, immune system diseases and the onset of potential neoplasms. A moderate and programmed physical exercise has often been reported to be therapeutic both in the adulthood and in aging, since capable to promote fitness. Regular exercise alleviates the negative effects caused by free radicals and offers many health benefits, including reduced risk of all-cause mortality, sarcopenia in the skeletal muscle, chronic disease, and premature death in elderly people. However, physical performance is also known to induce oxidative stress, inflammation, and muscle fatigue. Many efforts have been carried out to identify micronutrients and natural compounds, also known as nutraceuticals, able to prevent or attenuate the exercise-induced oxidative stress and inflammation. The aim of this review is to discuss the benefits deriving from a constant physical activity and by the intake of antioxidant compounds to protect the body from oxidative stress. The attention will be focused mainly on three natural antioxidants, which are quercetin, resveratrol and curcumin. Their properties and activity will be described, as well as their benefits on physical activity and on aging, which is expected to increase through the years and can get favorable benefits from a constant exercise activity.

  4. Microbiological Diversity Demonstrates the Potential which Collaboratively Metabolize Nitrogen Oxides ( NOx) under Smog Environmental Stress

    Science.gov (United States)

    Chen, X. Z.; Zhao, X. H.; Chen, X. P.

    2018-03-01

    Recently, smoggy weather has become a daily in large part of China because of rapidly economic growth and accelerative urbanization. Stressed on the smoggy situation and economic growth, the green and environment-friendly technology is necessary to reduce or eliminate the smog and promote the sustainable development of economy. Previous studies had confirmed that nitrogen oxides ( NOx ) is one of crucial factors which forms smog. Microorganisms have the advantages of quickly growth and reproduction and metabolic diversity which can collaboratively Metabolize various NOx. This study will design a kind of bacteria & algae cultivation system which can metabolize collaboratively nitrogen oxides in air and intervene in the local nitrogen cycle. Furthermore, the nitrogen oxides can be transformed into nitrogen gas or assembled in protein in microorganism cell by regulating the microorganism types and quantities and metabolic pathways in the system. Finally, the smog will be alleviated or eliminated because of reduction of nitrogen oxides emission. This study will produce the green developmental methodology.

  5. Oxidative stress associated with exercise, psychological stress and life-style factors

    DEFF Research Database (Denmark)

    Møller, P; Wallin, H; Knudsen, Lisbeth E.

    1996-01-01

    generation. Here, we review the effect of alcohol, air pollution, cigarette smoke, diet, exercise, non-ionizing radiation (UV and microwaves) and psychological stress on the development of oxidative stress. Regular exercise and carbohydrate-rich diets seem to increase the resistance against oxidative stress....... Air pollution, alcohol, cigarette smoke, non-ionizing radiation and psychological stress seem to increase oxidative stress. Alcohol in lower doses may act as an antioxidant on low density lipoproteins and thereby have an anti-atherosclerotic property....

  6. Nutrients and Oxidative Stress: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Bee Ling Tan

    2018-01-01

    Full Text Available There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB- mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD, and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs. Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  7. Nutrients and Oxidative Stress: Friend or Foe?

    Science.gov (United States)

    Tan, Bee Ling; Norhaizan, Mohd Esa; Liew, Winnie-Pui-Pui

    2018-01-01

    There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF- κ B-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  8. Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Wang, Xin; Tan, Dun-Xian; Reiter, Russel J; Chan, Zhulong

    2015-08-01

    The fact of melatonin as an important antioxidant in animals led plant researchers to speculate that melatonin also acts in the similar manner in plants. Although melatonin has significant effects on alleviating stress-triggered reactive oxygen species (ROS), the involvement of melatonin in direct oxidative stress and the underlying physiological and molecular mechanisms remain unclear in plants. In this study, we found that exogenous melatonin significantly alleviated hydrogen peroxide (H2O2)-modulated plant growth, cell damage, and ROS accumulation in Bermuda grass. Additionally, 76 proteins significantly influenced by melatonin during mock or H2O2 treatment were identified by gel-free proteomics using iTRAQ (isobaric tags for relative and absolute quantitation). Metabolic pathway analysis showed that several pathways were markedly enhanced by melatonin and H2O2 treatments, including polyamine metabolism, ribosome pathway, major carbohydrate metabolism, photosynthesis, redox, and amino acid metabolism. Taken together, this study provides more comprehensive insights into the physiological and molecular mechanisms of melatonin in Bermuda grass responses to direct oxidative stress. This may relate to the activation of antioxidants, modulation of metabolic pathways, and extensive proteome reprograming. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Oxidative stress-dependent contribution of HMGB1 to the interplay between apoptosis and autophagy in diabetic rat liver.

    Science.gov (United States)

    Petrović, Anja; Bogojević, Desanka; Korać, Aleksandra; Golić, Igor; Jovanović-Stojanov, Sofija; Martinović, Vesna; Ivanović-Matić, Svetlana; Stevanović, Jelena; Poznanović, Goran; Grigorov, Ilijana

    2017-11-01

    The progression of oxidative stress, resulting cell damage, and cell death underlies the etiology of liver damage/dysfunction as a complication of diabetes. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and signaling pathways regulating cell death and cell survival. We previously found that in streptozotocin (STZ)-induced diabetic rats, reduction of oxidative stress after melatonin administration lowered necrotic cell death and increased expression of HMGB1 and hepatocellular damage. In the present study, we examined whether alleviation of diabetes-attendant oxidative stress and ensuing change in HMGB1 expression influence the dynamic equilibrium between apoptosis/autophagy and liver damage. We observed that elevated HMGB1 protein levels in diabetic rat liver accompanied increased interactions of HMGB1 with TLR4 and RAGE, and activation of the intrinsic apoptotic pathway and Beclin 1-dependent autophagy. The absence of p62 degradation in diabetic rat liver pointed to defective autophagy which was responsible for lower autophagosome/autophagolysosome formation and an increased apoptosis/autophagy ratio. Compared to diabetic rats, in melatonin-treated diabetic rats, the structure of liver cells was preserved, HMGB1/TLR4 interaction and downstream apoptotic signaling were significantly reduced, HMGB1/Beclin 1 colocalization and interactions were augmented and Beclin 1-mediated autophagy, mithophagy in particular, were increased. We concluded that in mild oxidative stress, HMGB1 is cytoprotective, whereas in intense oxidative stress, HMGB1 actions promote cell death and liver damage. Since reduced HMGB1 binds to RAGE but not to TLR4, redox modification of HMGB1 as a mechanism regulating the cross-talk between apoptosis and autophagy in diabetes is discussed.

  10. Nutrigenetics and modulation of oxidative stress.

    Science.gov (United States)

    Da Costa, Laura A; Badawi, Alaa; El-Sohemy, Ahmed

    2012-01-01

    Oxidative stress develops as a result of an imbalance between the production and accumulation of reactive species and the body's ability to manage them using exogenous and endogenous antioxidants. Exogenous antioxidants obtained from the diet, including vitamin C, vitamin E, and carotenoids, have important roles in preventing and reducing oxidative stress. Individual genetic variation affecting proteins involved in the uptake, utilization and metabolism of these antioxidants may alter their serum levels, exposure to target cells and subsequent contribution to the extent of oxidative stress. Endogenous antioxidants include the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, paraoxanase, and glutathione S-transferase. These enzymes metabolize reactive species and their by-products, reducing oxidative stress. Variation in the genes coding these enzymes may impact their enzymatic antioxidant activity and, thus, the levels of reactive species, oxidative stress, and risk of disease development. Oxidative stress may contribute to the development of chronic disease, including osteoporosis, type 2 diabetes, neurodegenerative diseases, cardiovascular disease, and cancer. Indeed, polymorphisms in most of the genes that code for antioxidant enzymes have been associated with several types of cancer, although inconsistent findings between studies have been reported. These inconsistencies may, in part, be explained by interactions with the environment, such as modification by diet. In this review, we highlight some of the recent studies in the field of nutrigenetics, which have examined interactions between diet, genetic variation in antioxidant enzymes, and oxidative stress. Copyright © 2012 S. Karger AG, Basel.

  11. Sonic hedgehog promotes neurite outgrowth of cortical neurons under oxidative stress: Involving of mitochondria and energy metabolism.

    Science.gov (United States)

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao; Chen, Yanxia

    2017-01-01

    Oxidative stress has been demonstrated to be involved in the etiology of several neurobiological disorders. Sonic hedgehog (Shh), a secreted glycoprotein factor, has been implicated in promoting several aspects of brain remodeling process. Mitochondria may play an important role in controlling fundamental processes in neuroplasticity. However, little evidence is available about the effect and the potential mechanism of Shh on neurite outgrowth in primary cortical neurons under oxidative stress. Here, we revealed that Shh treatment significantly increased the viability of cortical neurons in a dose-dependent manner, which was damaged by hydrogen peroxide (H 2 O 2 ). Shh alleviated the apoptosis rate of H 2 O 2 -induced neurons. Shh also increased neuritogenesis injuried by H 2 O 2 in primary cortical neurons. Moreover, Shh reduced the generation of reactive oxygen species (ROS), increased the activities of SOD and and decreased the productions of MDA. In addition, Shh protected mitochondrial functions, elevated the cellular ATP levels and amelioratesd the impairment of mitochondrial complex II activities of cortical neurons induced by H 2 O 2 . In conclusion, all these results suggest that Shh acts as a prosurvival factor playing an essential role to neurite outgrowth of cortical neuron under H 2 O 2 -induced oxidative stress, possibly through counteracting ROS release and preventing mitochondrial dysfunction and ATP as well as mitochondrial complex II activities against oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Attenuation of oxidative and nitrosative stress in cortical area associates with antidepressant-like effects of tropisetron in male mice following social isolation stress.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Amiri, Shayan; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Kordjazy, Nastaran; Olson, Carl O; Rastegar, Mojgan; Naserzadeh, Parvaneh; Marzban, Hassan; Dehpour, Ahmad Reza; Hosseini, Mir-Jamal; Samiei, Elika; Mehr, Shahram Ejtemaei

    2016-06-01

    Tropisetron, a 5-HT3 receptor antagonist widely used as an antiemetic, has been reported to have positive effects on mood disorders. Adolescence is a critical period during the development of brain, where exposure to chronic stress during this time is highly associated with the development of depression. In this study, we showed that 4 weeks of juvenile social isolation stress (SIS) provoked depressive-like behaviors in male mice, which was associated with disruption of mitochondrial function and nitric oxide overproduction in the cortical areas. In this study, tropisetron (5mg/kg) reversed the negative behavioral effects of SIS in male mice. We found that the effects of tropisetron were mediated through mitigating the negative activity of inducible nitric oxide synthase (iNOS) on mitochondrial activity. Administration of aminoguanidine (specific iNOS inhibitor, 20mg/kg) augmented the protective effects of tropisetron (1mg/kg) on SIS. Furthermore, l-arginine (nitric oxide precursor, 100mg/kg) abolished the positive effects of tropisetron. These results have increased our knowledge on the pivotal role of mitochondrial function in the pathophysiology of depression, and highlighted the role of 5-HT3 receptors in psychosocial stress response during adolescence. Finally, we observed that tropisetron alleviated the mitochondrial dysfunction through decreased nitrergic system activity in the cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Aliskiren targets multiple systems to alleviate cancer cachexia.

    Science.gov (United States)

    Wang, Chaoyi; Guo, Dunwei; Wang, Qiang; You, Song; Qiao, Zhongpeng; Liu, Yong; Dai, Hang; Tang, Hua

    2016-11-01

    To examine the effects of aliskiren, a small-molecule renin inhibitor, on cancer cachexia and to explore the underlying mechanisms. A cancer cachexia model was established by subcutaneously injecting C26 mouse colon carcinoma cells into isogenic BALB/c mice. Aliskiren was administered intragastrically [10 mg/kg body weight (BW)] on day 5 (as a preventive strategy, AP group) or on day 12 (as a therapeutic strategy, AT group) after C26 injection. Mice that received no C26 injection (healthy controls, HC group) or only C26 injection but not aliskiren (cancer, CA group) were used as controls. BW, tumor growth, whole body functions, and survival were monitored daily in half of the mice in each group, whereas serum, tumors, and gastrocnemius muscles were harvested from the other mice after sacrifice on day 20 for further analysis. Aliskiren significantly alleviated multiple cachexia‑associated symptoms, including BW loss, tumor burden, muscle wasting, muscular dysfunction, and shortened survival. On the molecular level, aliskiren antagonized cachexia‑induced activation of the renin‑angiotensin system (RAS), systematic and muscular inflammation, oxidative stress, and autophagy‑lysosome as well as ubiquitin‑proteasome stimulation. In addition, early administration of aliskiren before cachexia development (AP group) resulted in more robust effects in alleviating cachexia or targeting underlying mechanisms than administration after cachexia development (AT group). Aliskiren exhibited potent anti‑cachexia activities. These activities were achieved through the targeting of at least four mechanisms underlying cachexia development: RAS activation, increase in systematic inflammation, upregulation of oxidative stress, and stimulation of autophagy-lysosome pathway (ALP) and ubiquitin-proteasome pathway (UPP).

  14. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Xiaochun Duan

    2016-01-01

    Full Text Available Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH. Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches.

  15. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Science.gov (United States)

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  16. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    Science.gov (United States)

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  17. A STUDY OF OXIDATIVE STRESS IN DIABETES

    Directory of Open Access Journals (Sweden)

    Babu Rao

    2015-06-01

    Full Text Available Non - enzymatic free radical mediated oxidation of biological molecules, membranes and tissues is associated with a variety of pathological events such as cancer, aging and diabetes mellitus . [1] Increased oxidative stress is seen in both types of diabetes me llitus namely type 1 and type 2, irrespective of duration, complications and treatment. In diabetes mellitus, oxidative stress seems primarily due to both an increased plasma free radical concentration and a sharp decline in antioxidant defences . [1] Among the causes of enhanced free radical production, hyperglycemia and hyper insulinemia seem to play a major role , [2,3] Hyperglycemia is the more easily modifiable factor among the two and good glycemic control can reduce the oxidative stress. Controversy pers ists regarding the other possible mechanisms of increased oxidative stress in diabetes and whether oxidative stress normalizes with adequate metabolic control alone. The role of oxidative stress and diabetic complications has been extensively investigated. Oxidative stress has been suggested to be involved in the genesis of both macro and micro angiopathy [4,5] Prospective trials are now underway addressing the controversial issues of possible role of pharmacological antioxidants in preventing or at least de laying the onset of diabetic complications.

  18. [Effects of exogenous nitric oxide on physiological characteristics of longan (Dimocarpus longana) seedlings under acid rain stress].

    Science.gov (United States)

    Liu, Jian-fu; Wang, Ming-yuan; Yang, Chen; Zhu, Ai-jun

    2013-08-01

    This paper studied the effects of exogenous nitric oxide donor sodium nitroprusside (SNP) on the chlorophyll content, antioxidant enzyme activities, and osmotic regulation substances of longan (Dimocarpus longana 'Fuyan') seedlings under acid rain (pH 3.0) stress. Under the acid rain stress, the seedling leaf superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and chlorophyll, soluble protein and soluble sugar contents decreased obviously, while the leaf malondialdedyde content had a remarkable increase, suggesting the toxic effect of the acid rain on the seedlings. Exogenous nitric oxide had dual nature on the physiological characteristics of longan seedlings under acid rain stress. Applying 0.1-0.5 mmol x L(-1) of SNP improved the SOD, POD and CAT activities and the chlorophyll, soluble protein and soluble sugar contents significantly, and decreased the malondialdedyde content. Low concentrations SNP reduced the oxidative damage caused by the acid rain stress, and 0.5 mmol x L(-1) of SNP had the best effect. Under the application of 0.5 mmol x L(-1) of SNP, the total chlorophyll, soluble protein, and soluble sugar contents and the SOD, POD and CAT activities increased by 76.0%, 107.0%, 216.1%, 150. 0%, 350.9% and 97.1%, respectively, and the malondialdedyde content decreased by 46.4%. It was suggested that low concentration (0.1-0.5 mmol x L(-1)) SNP could alleviate the toxic effect of acid rain stress on longan seedlings via activating the leaf antioxidant enzyme activities and reducing oxidative stress, while high concentration SNP (1.0 mmol x L(-1)) lowered the mitigation effect.

  19. Protective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12) Cells.

    Science.gov (United States)

    Bao, Dengke; Wang, Jingkai; Pang, Xiaobin; Liu, Hongliang

    2017-07-06

    Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson's disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated the antioxidative effect and underlying molecular mechanisms of quercetin on PC-12 cells. We found that PC-12 cells pretreated with quercetin exhibited an increased cell viability and reduced lactate dehydrogenase (LDH) release when exposed to hydrogen peroxide (H₂O₂). The significantly-alleviated intracellular reactive oxygen species (ROS), malondialdehyde (MDA), and lipoperoxidation of the cell membrane of PC-12 cells induced by H₂O₂ were observed in the quercetin pretreated group. Furthermore, quercetin pretreatment markedly reduced the apoptosis of PC-12 cells and hippocampal neurons. The inductions of antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in PC-12 cells exposed to H₂O₂ were significantly reduced by preatment with quercetin. In addition, quercetin pretreatment significantly increased Bcl-2 expression, and reduced Bax, cleaved caspase-3 and p53 expressions. In conclusion, this study demonstrated that quercetin exhibited a protective effect against oxidative stress-induced apoptosis in PC-12 cells. Our findings suggested that quercetin may be developed as a novel therapeutic agent for neurodegenerative diseases induced by oxidative stress.

  20. Periodontitis and increase in circulating oxidative stress

    Directory of Open Access Journals (Sweden)

    Takaaki Tomofuji

    2009-05-01

    Full Text Available Reactive oxygen species (ROS are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress. Such oxidation may be detrimental to systemic health. For instance, previous animal studies suggested that experimental periodontitis induces oxidative damage of the liver and descending aorta by increasing circulating oxidative stress. In addition, it has been revealed that clinical parameters in chronic periodontitis patients showed a significant improvement 2 months after periodontal treatment, which was accompanied by a significant reduction of reactive oxygen metabolites in plasma. Improvement of periodontitis by periodontal treatment could reduce the occurrence of circulating oxidative stress. Furthermore, recent studies indicate that the increase in circulating oxidative stress following diabetes mellitus and inappropriate nutrition damages periodontal tissues. In such cases, therapeutic approaches to systemic oxidative stress might be necessary to improve periodontal health.

  1. Effects of CaCl2 solutions to alleviate drought stress effects in potted ornamentals Salvia splendens and Ageratum houstonianum

    Directory of Open Access Journals (Sweden)

    Agata Jędrzejuk

    2016-09-01

    Full Text Available Bedding plants are often subjected to soil water deficit – either after planting and/or during the market chain. Methods to alleviate the negative water stress effects are sought for to preserve ornamental values of plants. The aim of this study was to evaluate the response of two bedding plants, Ageratum houstonianum Mill. and Salvia splendens Sellow ex Scult., to water stress and treatments with calcium chloride aimed to alleviate drought effects. Plants were subjected either to 45 days of periodical stress (five cycles when watering was off for 5 consecutive days, followed by four cycles on for 5 consecutive days or 10 days of radical drought (complete water withdrawal. On the first day, before the onset of drought, plants were watered with 0.5% Ca or 1% Ca w/v as a solution of calcium chloride (5 g or 10 g Ca per 1 dm3 of the growing substrate. The similarly Ca-treated but routinely watered plants provided controls to evaluate the water shortage effects. Plant height, inflorescence length/number, leaf number, leaf area (in Salvia splendens only, aboveground plant part weight, and root weight (in Salvia splendens only as well as leaf relative water content (RWC were measured at the beginning and at the end of the experiments. Water withdrawal during 10 days of growth (radical drought reduced by half RWC in leaves of withering Salvia splendens and Ageratum houstonianum plants. Its effects on the growth parameters were less pronounced and mitigated by Ca applications. Also in the periodically stressed plants of both species, RWC and most growth parameters were reduced by water shortage but Ca applications alleviated the negative stress effects.

  2. Iron accumulation with age, oxidative stress and functional decline.

    Directory of Open Access Journals (Sweden)

    Jinze Xu

    2008-08-01

    Full Text Available Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength in male Fischer 344 X Brown Norway rats fed ad libitum (AL or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.

  3. Oxidative stress and the ageing endocrine system.

    Science.gov (United States)

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  4. Zinc supplementation alleviates the progression of diabetic nephropathy by inhibiting the overexpression of oxidative-stress-mediated molecular markers in streptozotocin-induced experimental rats.

    Science.gov (United States)

    Barman, Susmita; Pradeep, Seetur R; Srinivasan, Krishnapura

    2018-04-01

    Zinc deficiency during diabetes projects a role for zinc nutrition in the management of diabetic nephropathy. The current study explored whether zinc supplementation protects against diabetic nephropathy through modulation of kidney oxidative stress and stress-induced expression related to the inflammatory process in streptozotocin-induced diabetic rats. Groups of hyperglycemic rats were exposed to dietary interventions for 6 weeks with zinc supplementation (5 times and 10 times the normal level). Supplemental-zinc-fed diabetic groups showed a significant reversal of increased kidney weight and creatinine clearance. There was a significant reduction in hyperlipidemic condition along with improved PUFA:SFA ratio in the renal tissue. Expression of the lipid oxidative marker and expression of inflammatory markers, cytokines, fibrosis factors and apoptotic regulatory proteins observed in diabetic kidney were beneficially modulated by zinc supplementation, the ameliorative effect being concomitant with elevated antiapoptosis. There was a significant reduction in advanced glycation, expression of the receptor of the glycated products and oxidative stress markers. Zinc supplementation countered the higher activity and expression of polyol pathway enzymes in the kidney. Overexpression of the glucose transporters, as an adaptation to the increased need for glucose transport in diabetic condition, was minimized by zinc treatment. The pathological abnormalities in the renal architecture of diabetic animals were corrected by zinc intervention. Thus, dietary zinc supplementation has a significant beneficial effect in the control of diabetic nephropathy. This was exerted through a protective influence on oxidative-stress-induced cytokines, inflammatory proliferation and consequent renal injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Is the Oxidative Stress Really a Disease?

    Directory of Open Access Journals (Sweden)

    Fogarasi Erzsébet

    2016-03-01

    Full Text Available Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce several illnesses such as cardiovascular disease, neurodegenerative disorders, diabetes, cancer, Alzheimer and Parkinson. The biomarkers of oxidative stress are used to test oxidative injury of biomolecules. The indicators of lipid peroxidation (malondialdehyde, 4-hydroxy- 2-nonenal, 2-propenal, isoprostanes, of protein oxidation (carbonylated proteins, tyrosine derivatives, of oxidative damage of DNA, and other biomarkers (glutathione level, metallothioneins, myeloperoxidase activity are the most used oxidative stress markers. Diseases caused by oxidative stress can be prevented with antioxidants. In human body are several enzymes with antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and spin traps. Antioxidants are synthetized in the organism (glutathione or arrive in the body by nutrition (ascorbic acid, vitamin E, carotenoids, flavonoids, resveratrol, xanthones. Different therapeutic strategies to reduce oxidative stress with the use of synthetic molecules such as nitrone-based antioxidants (phenyl-α-tert-butyl-nitrone (PBN, 2,4-disulphophenyl- N-tert-butylnitrone (NXY-059, stilbazulenyl nitrone (STAZN, which scavenge a wide variety of free radical species, increase endogenous antioxidant levels and inhibits free radical generation are also tested in animal models.

  6. The Alleviating Effect of Elevated CO2 on Heat Stress Susceptibility of Two Wheat (Triticum aestivum L.) Cultivars

    DEFF Research Database (Denmark)

    Shanmugam, Sindhuja; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto

    2013-01-01

    This study analysed the alleviating effect of elevated CO2 on stress-induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different origin. The plants were grown in ambient (400 μl l−1) and elevated (800 μl l−1) CO2 with a day...... in leaves were analysed before and during the stress treatments as well as after 1 day of recovery. Heat stress reduced PN and Fv/Fm in both wheat cultivars, but plants grown in elevated CO2 maintained higher PN and Fv/Fm in comparison with plants grown in ambient CO2. Heat stress reduced leaf chlorophyll...... to cultivar origin, the phenological stage of the plants and can be alleviated by elevated CO2. This confirms the complex interrelation between environmental factors and genotypic traits that influence crop performance under various climatic stresses....

  7. Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress

    Directory of Open Access Journals (Sweden)

    Laxit Bhatt

    2017-09-01

    Conclusion: The present findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by doxorubicin. [J Complement Med Res 2017; 6(3.000: 284-289

  8. Edaravone protected PC12 cells against MPP(+)-cytoxicity via inhibiting oxidative stress and up-regulating heme oxygenase-1 expression.

    Science.gov (United States)

    Cheng, Baohua; Guo, Yunliang; Li, Chuangang; Ji, Bingyuan; Pan, Yanyou; Chen, Jing; Bai, Bo

    2014-08-15

    Oxidative stress is involved in the pathogenesis of Parkinson's disease (PD). Edaravone has been shown to have a neuroprotective effect. In the present work, we investigated the effect of edaravone on 1-methyl-4-phenylpyridinium (MPP(+))-treated PC12 cells. Edaravone inhibited the decrease of cell viability and apoptosis induced by MPP(+) in PC12 cells. In addition, edaravone alleviated intracellular reactive oxygen species (ROS) production. MPP(+) induced heme oxygenase-1 (HO-1) expression, which was further enhanced by edaravone. The inhibitor of HO-1 zinc protoporphyrin-IX attenuated the neuroprotection of edaravone. So edaravone protected PC12 cells against MPP(+)-cytoxicity via inhibiting oxidative stress and up-regulating HO-1 expression. The data showed that edaravone was neuroprotective and could be potentially therapeutics for PD in future. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Thymol reduces oxidative stress, aortic intimal thickening, and inflammation-related gene expression in hyperlipidemic rabbits

    Directory of Open Access Journals (Sweden)

    Ya-Mei Yu

    2016-07-01

    Full Text Available Atherosclerosis plays a key role in the development of cardiovascular diseases, and is often associated with oxidative stress and local inflammation. Thymol, a major polyphenolic compound in thyme, exhibits antioxidant and anti-inflammatory properties. In this study, we measured the in vitro antioxidant activity of thymol, and investigated the effect of thymol on high-fat-diet-induced hyperlipidemia and atherosclerosis. New Zealand white rabbits were fed with regular chow, high-fat and high-cholesterol diet (HC, T3, or T6 (HC with thymol supplementation at 3 mg/kg/d or 6 mg/kg/d, respectively for 8 weeks. Aortic intimal thickening, serum lipid parameters, multiple inflammatory markers, proinflammatory cytokines, and atherosclerosis-associated indicators were significantly increased in the HC group but decreased upon thymol supplementation. In summary, thymol exhibits antioxidant activity, and may suppress the progression of high-fat-diet-induced hyperlipidemia and atherosclerosis by reducing aortic intimal lipid lesion, lowering serum lipids and oxidative stress, and alleviating inflammation-related responses.

  10. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review.

    Science.gov (United States)

    Ali, Shafaqat; Rizwan, Muhammad; Qayyum, Muhammad Farooq; Ok, Yong Sik; Ibrahim, Muhammad; Riaz, Muhammad; Arif, Muhammad Saleem; Hafeez, Farhan; Al-Wabel, Mohammad I; Shahzad, Ahmad Naeem

    2017-05-01

    Drought and salt stress negatively affect soil fertility and plant growth. Application of biochar, carbon-rich material developed from combustion of biomass under no or limited oxygen supply, ameliorates the negative effects of drought and salt stress on plants. The biochar application increased the plant growth, biomass, and yield under either drought and/or salt stress and also increased photosynthesis, nutrient uptake, and modified gas exchange characteristics in drought and salt-stressed plants. Under drought stress, biochar increased the water holding capacity of soil and improved the physical and biological properties of soils. Under salt stress, biochar decreased Na + uptake, while increased K + uptake by plants. Biochar-mediated increase in salt tolerance of plants is primarily associated with improvement in soil properties, thus increasing plant water status, reduction of Na + uptake, increasing uptake of minerals, and regulation of stomatal conductance and phytohormones. This review highlights both the potential of biochar in alleviating drought and salt stress in plants and future prospect of the role of biochar under drought and salt stress in plants.

  11. Metabolic responses of Beauveria bassiana to hydrogen peroxide-induced oxidative stress using an LC-MS-based metabolomics approach.

    Science.gov (United States)

    Zhang, Chen; Wang, Wei; Lu, Ruili; Jin, Song; Chen, Yihui; Fan, Meizhen; Huang, Bo; Li, Zengzhi; Hu, Fenglin

    2016-06-01

    The entomopathogenic fungus, Beauveria bassiana, is commonly used as a biological agent for pest control. Environmental and biological factors expose the fungus to oxidative stress; as a result, B. bassiana has adopted a number of anti-oxidant mechanisms. In this study, we investigated metabolites of B. bassiana that are formed in response to oxidative stress from hydrogen peroxide (H2O2) by using a liquid chromatography mass spectrometry (LC-MS) approach. Partial least-squares discriminant analysis (PLS-DA) revealed differences between the control and the H2O2-treated groups. Hierarchical cluster analysis (HCA) showed 18 up-regulated metabolites and 25 down-regulated metabolites in the H2O2-treated fungus. Pathway analysis indicated that B. bassiana may be able to alleviate oxidative stress by enhancing lipid catabolism and glycometabolism, thus decreasing membrane polarity and preventing polar H2O2 or ROS from permeating into fungal cells and protecting cells against oxidative injury. Meanwhile, most of the unsaturated fatty acids that are derived from glycerophospholipids hydrolysis can convert into oxylipins through autoxidation, which can prevent the reactive oxygen of H2O2 from attacking important macromolecules of the fungus. Results showed also that H2O2 treatment can enhance mycotoxins production which implies that oxidative stress may be able to increase the virulence of the fungus. In comparison to the control group, citric acid and UDP-N-acetylglucosamine were down-regulated, which suggested that metabolic flux was occurring to the TCA cycle and enhancing carbohydrate metabolism. The findings from this study will contribute to the understanding of how the molecular mechanisms of fungus respond to environmental and biological stress factors as well as how the manipulation of such metabolisms may lead to selection of more effective fungal strains for pest control. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Oxidative Stress and Antioxidant System in Periodontitis

    Science.gov (United States)

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  13. Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells.

    Science.gov (United States)

    Liu, Xiaoxi; Jiang, Linshu; Liu, Fenghua; Chen, Yuping; Xu, Lei; Li, Deyin; Ma, Yunfei; Li, Huanrong; Xu, Jianqin

    2016-08-01

    Purpose Patchouli alcohol (PA) is used to treat gastrointestinal dysfunction. The purpose of this study was to ascertain the function of PA in the regulated process of oxidative stress in rat intestinal epithelial cells (IEC-6). Materials and methods Oxidative stress was stimulated by exposing IEC-6 cells to heat shock (42 °C for 3 h). IEC-6 cells in treatment groups were pretreated with various concentrations of PA (10, 40, and 80 ng/mL) for 3 h before heat shock. Results Heat shock caused damage to the morphology of IEC-6 cells, and increased reactive oxygen species (ROS) level and malondialdehyde (MDA) content. Moreover, mRNA and protein expression by target genes related to oxidative stress in heat shock were also altered. Specifically, the mRNA expression by HSP70, HSP90, GSH-px, NRF2 nd HO-1were all increased, and Nrf2 and Keap1 protein expression were increased after heat shock. However, pretreatment with PA weakened the level of damage to the cellular morphology, and decreased the MDA content caused by heat shock, indicating PA had cytoprotective activities. Pretreatment with PA at high dose significantly increased generation of intracellular ROS. Compared with the heat shock group alone, PA pretreatment significantly decreased the mRNA expression by HSP70, HSP90, SOD, CAT, GSH-px, KEAP1 and HO-1. Furthermore, the high dose of PA significantly increased Nrf2 protein expression, while both the intermediate and high dose of PA significantly increased HO-1 protein expression. Conclusion Heat-shock-induced oxidative stress in IEC-6 cells, and PA could alleviate the Nrf2-Keap1 cellular oxidative stress responses.

  14. Oxidative Stress in BPH.

    Science.gov (United States)

    Savas, M; Verit, A; Ciftci, H; Yeni, E; Aktan, E; Topal, U; Erel, O

    2009-01-01

    In the present study, we investigated the relationship between potency of oxidative stress and BPH and this may assist to contribute to the realistic explanation of the ethiopathogenesis of BPH. Seventy four newly diagnosed men with BPH (mean age: 54+/-11.2), who had not undergone any previous treatment for BPH, and 62 healthy volunteers (mean age: 55+/-14) were enrolled in the present study. To determine the antioxidative status of plasma, total antioxidant capacity (TAC) was calculated, and to determine the oxidative status of plasma (TOS) total peroxide levels were measured. The ratio of TAC to total peroxide was accepted as an indicator of oxidative stress (OSI). Data are presented as mean SD +/- unless specified. Student t-test and correlation analyses were used to evaluate the statistical significance differences in the median values recorded for all parameters between BPH and control group. Plasma TAC TOS were found in patients and controls (1.70 +/- 0.32, 1.68 +/- 0.19 micromol Trolox Equiv./L), (12.48 +/- 1.98, 12.40 +/- 1.14 micromol / L) respectively. OSI was calculated as 7.57 +/- 1.91, 7.48 +/- 1.33, respectively. Plasma TAC, TOS and OSI levels were not found to be significantly difference between patients and control subjects (p>0.05, p>0.05, p>0.05). The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis.

  15. Exogenous Spermidine Alleviates Low Temperature Injury in Mung Bean (Vigna radiata L. Seedlings by Modulating Ascorbate-Glutathione and Glyoxalase Pathway

    Directory of Open Access Journals (Sweden)

    Kamrun Nahar

    2015-12-01

    Full Text Available The role of exogenous spermidine (Spd in alleviating low temperature (LT stress in mung bean (Vigna radiata L. cv. BARI Mung-3 seedlings has been investigated. Low temperature stress modulated the non-enzymatic and enzymatic components of ascorbate-glutathione (AsA-GSH cycle, increased H2O2 content and lipid peroxidation, which indicate oxidative damage of seedlings. Low temperature reduced the leaf relative water content (RWC and destroyed leaf chlorophyll, which inhibited seedlings growth. Exogenous pretreatment of Spd in LT-affected seedlings significantly increased the contents of non-enzymatic antioxidants of AsA-GSH cycle, which include AsA and GSH. Exogenous Spd decreased dehydroascorbate (DHA, increased AsA/DHA ratio, decreased glutathione disulfide (GSSG and increased GSH/GSSG ratio under LT stress. Activities of AsA-GSH cycle enzymes such as ascorbate peroxidase (APX, monodehydroascorbate reductase (MDHAR, dehydroascorbate reductase (DHAR and glutathione reductase (GR increased after Spd pretreatment in LT affected seedlings. Thus, the oxidative stress was reduced. Protective effects of Spd are also reflected from reduction of methylglyoxal (MG toxicity by improving glyoxalase cycle components, and by maintaining osmoregulation, water status and improved seedlings growth. The present study reveals the vital roles of AsA-GSH and glyoxalase cycle in alleviating LT injury.

  16. Clinical Perspective of Oxidative Stress in Sporadic ALS

    Science.gov (United States)

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  17. Low-Intensity Pulsed Ultrasound Prevents the Oxidative Stress Induced Endothelial-Mesenchymal Transition in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jiamin Li

    2018-02-01

    Full Text Available Background/Aims: Endothelial-mesenchymal transition (EndMT has been shown to take part in the generation and progression of diverse diseases, involving a series of changes leading to a loss of their endothelial characteristics and an acquirement of properties typical of mesenchymal cells. Low-intensity pulsed ultrasound (LIPUS is a new therapeutic option that has been successfully used in fracture healing. However, whether LIPUS can inhibit oxidative stress-induced endothelial cell damages through inhibiting EndMT remained unknown. This study aimed to investigate the protective effects of LIPUS against oxidative stress-induced endothelial cell damages and the underlying mechanisms. Methods: EndMT was induced by H2O2 (100 µm for seven days. Human aortic endothelial cells (HAECs were exposed to H2O2 with or without LIPUS treatment for seven days. The expression of EndMT markers (CD31, VE-cadherin, FSP1 and α-SMA were analyzed. The levels of total and phosphorylated PI3K and AKT proteins were detected by Western Blot analysis. Cell chemotaxis was determined by wound healing and transwell assay. Results: LIPUS relieved EndMT by decreasing ROS accumulation and increasing activation of the PI3K signaling cascade. LIPUS alleviated the migration of EndMT-derived mesenchymal-like cells through reducing extracellular matrix (ECM deposition that is associated with matrix metallopeptidase (MMP proteolytic activity and collagen production. Conclusion: LIPUS produces cytoprotective effects against oxidative injuries to endothelial cells through suppressing the oxidative stress-induced EndMT, activating the PI3K/AKT pathway under oxidative stress, and limiting cell migration and excessive ECM deposition.

  18. Less Stress : Oxidative stress and glutathione kinetics in preterm infants

    NARCIS (Netherlands)

    D. Rook (Denise)

    2013-01-01

    textabstractDue to immature antioxidant defenses, preterm infants are at susceptible to oxidative stress, which is associated with bronchopulmonary dysplasia, retinopathy of prematurity and periventricular leukomalacia. The general aim of this thesis was to study oxidative stress in preterm infants

  19. The Effect of Rebadioside A on Attenuation of Oxidative Stress in Kidney of Mice under Acetaminophen Toxicity

    Directory of Open Access Journals (Sweden)

    Seyed Ali Hashemi

    2014-11-01

    Full Text Available Background: Acetaminophen (APAP overdose causes renal and hepatic injury. It is also believed that oxidative stress has a pivotal role in APAP-induced renal injury. Therefore, protective effects of different antioxidants have been examined in APAP-induced renal and hepatic toxicity models. Stevia rebadiana is a plant with a high degree of natural antioxidant activity in its leaf extract. The aim of this study was to investigate the possible protective effects of rebadioside A; one of the main components of stevia extract, on APAP-induced oxidative stress in kidney of mice. Methods: Oxidative stress was induced in kidney of BALB/c mice by the intraperitoneal (i.p. administration of a single dose of 300 mg/kg APAP. Some of these mice also received rebadioside A (700 mg/kg (i.p. 30 minutes after APAP injection. Two and six hours after APAP injection, all mice were sacrificed and malondialdehyde (MDA, glutathione (GSH, free APAP, and glutathione conjugated of APAP (APAP-GSH were determined in the kidney tissue. Results: GSH depletion and MDA levels significantly (P<0.05 increased in mice treated with either APAP or APAP plus Rebadioside A, respectively in 2 and 6 hours intervals after APAP administration. Significantly (P<0.05 higher levels of free APAP and APAP-GSH levels detected in kidney of mice administrated with APAP plus rebadioside A compared to APAP treated ones. Conclusion: Rebadioside A may be a potential compound in alleviation of APAP-induced oxidative stress in kidney of mice after APAP overdoses.

  20. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  1. Antifibrotic Mechanism of Pinocembrin: Impact on Oxidative Stress, Inflammation and TGF-β /Smad Inhibition in Rats.

    Science.gov (United States)

    Said, Marwa M; Azab, Samar S; Saeed, Noha M; El-Demerdash, Ebtehal

    2018-03-01

    The present study aimed to elucidate the potential antifibrotic effects of pinocembrin (PIN), a flavanone found abundantly in honey and propolis, by studying its effect on different oxidative stress, inflammatory and fibrosis markers in an experimental model of CCl4-induced liver fibrosis. PIN (20 mg/kg) was given orally 3 times/week for 6 consecutive weeks alternating with CCl4 (0.5 mL/kg, 1:1 mixture with corn oil, i. p.) twice weekly. Different hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. PIN significantly restored liver transaminases and total cholesterol to normal levels. Also, PIN ameliorated oxidative stress injury evoked by CCl4 as evidenced by inhibition of reduced glutathione depletion and lipid peroxidation as well as elevation of antioxidant enzyme superoxide dismutase (SOD). Further, PIN upregulated the nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), thereby inducing the expression and activity of the cytoprotective enzyme hemeoxygenase-1 (HO-1). Moreover, PIN alleviated pro-inflammatory cytokines such as TNF-α via inhibiting nuclear factor-κB (NF-κB) activation. As markers of fibrosis, collagen and α-SMA expression increased markedly in the CCl4 group and PIN prevented these alterations. In addition, PIN down-regulated TGFβ1 and p-Smad2/3, thereby inhibiting TGFβ1/Smad signaling pathway. These results suggest that PIN possess potent antifibrotic effects that can be explained on its antioxidant properties. It ameliorates oxidative stress and inflammation during induction of fibrogenesis via its ability to augment celular antioxidant defenses, activating Nrf2-mediated HO-1 expression and modulating NF-κB and TGF-β1/Smad signaling pathway.

  2. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings.

    Science.gov (United States)

    Wang, Shihua; Wang, Fayuan; Gao, Shuangcheng

    2015-02-01

    Nanofertilizers may be more effective than regular fertilizers in improving plant nutrition, enhancing nutrition use efficiency, and protecting plants from environmental stress. A hydroponic pot experiment was conducted to study the role of foliar application with 2.5 mM nano-silicon in alleviating Cd stress in rice seedlings (Oryza sativa L. cv Youyou 128) grown in solution added with or without 20 μM CdCl2. The results showed that Cd treatment decreased the growth and the contents of Mg, Fe, Zn, chlorophyll a, and glutathione (GSH), accompanied by a significant increase in Cd accumulation. However, foliar application with nano-Si improved the growth, Mg, Fe, and Zn nutrition, and the contents of chlorophyll a of the rice seedlings under Cd stress and decreased Cd accumulation and translocation of Cd from root to shoot. Cd treatment produced oxidative stress to rice seedlings indicated by a higher lipid peroxidation level (as malondialdehyde (MDA)) and higher activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a lower GSH content. However, those nano-Si-treated plants had lower MDA but higher GSH content and different antioxidant enzyme activities, indicating a higher Cd tolerance in them. The results suggested that nano-Si application alleviated Cd toxicity in rice by decreasing Cd accumulation, Cd partitioning in shoot and MDA level and by increasing content of some mineral elements (Mg, Fe, and Zn) and antioxidant capacity.

  3. Pomegranate peel extract attenuates oxidative stress by decreasing coronary angiotensin-converting enzyme (ACE) activity in hypertensive female rats.

    Science.gov (United States)

    Dos Santos, Roger L; Dellacqua, Lais O; Delgado, Nathalie T B; Rouver, Wender N; Podratz, Priscila L; Lima, Leandro C F; Piccin, Mariela P C; Meyrelles, Silvana S; Mauad, Helder; Graceli, Jones B; Moyses, Margareth R

    2016-01-01

    Based on the antioxidant properties of pomegranate, this study was designed to investigate the effects of pomegranate peel extract on damage associated with hypertension and aging in a spontaneously hypertensive rat (SHR) model. The influence of pomegranate consumption was examined on systolic blood pressure (SBP), angiotensin-converting enzyme (ACE) coronary activity, oxidative stress, and vascular morphology. Four- or 28-wk-old SHR model rats were treated for 30 d, with terminal experimental animal age being 8 and 32 wk, respectively, with either pomegranate extract (SHR-PG) or filtered water (SHR). Data showed significant reduction in SBP and coronary ACE activity in both age groups. The levels of superoxide anion, a measure of oxidative stress, were significantly lower in animals in the SHR-PG group compared to SHR alone. Coronary morphology demonstrated total increases in vascular wall areas were in the SHR group, and pomegranate peel extract diminished this effect. Pomegranate peel extract consumption conferred protection against hypertension in the SHR model. This finding was demonstrated by marked reduction in coronary ACE activity, oxidative stress, and vascular remodelling. In addition, treatment was able to reduce SBP in both groups. Evidence indicates that the use of pomegranate peel extract may prove beneficial in alleviating coronary heart disease.

  4. Protective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Dengke Bao

    2017-07-01

    Full Text Available Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson’s disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated the antioxidative effect and underlying molecular mechanisms of quercetin on PC-12 cells. We found that PC-12 cells pretreated with quercetin exhibited an increased cell viability and reduced lactate dehydrogenase (LDH release when exposed to hydrogen peroxide (H2O2. The significantly-alleviated intracellular reactive oxygen species (ROS, malondialdehyde (MDA, and lipoperoxidation of the cell membrane of PC-12 cells induced by H2O2 were observed in the quercetin pretreated group. Furthermore, quercetin pretreatment markedly reduced the apoptosis of PC-12 cells and hippocampal neurons. The inductions of antioxidant enzyme catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GSH-Px in PC-12 cells exposed to H2O2 were significantly reduced by preatment with quercetin. In addition, quercetin pretreatment significantly increased Bcl-2 expression, and reduced Bax, cleaved caspase-3 and p53 expressions. In conclusion, this study demonstrated that quercetin exhibited a protective effect against oxidative stress-induced apoptosis in PC-12 cells. Our findings suggested that quercetin may be developed as a novel therapeutic agent for neurodegenerative diseases induced by oxidative stress.

  5. Pomegranate Alleviates Oxidative Damage and Neurotransmitter Alterations in Rats Brain Exposed to Aluminum Chloride and/or Gamma Radiation

    International Nuclear Information System (INIS)

    Said, U.Z.; EL-Tahawey, N.A.; Elassal, A.A.; Elsayed, E.M.; Shousha, W.Gh.

    2013-01-01

    Aluminum and gamma radiation, both are potent neurotoxins and have been implicated in many human neuro degenerative diseases. The present study was designed to investigate the role of pomegranate in alleviating oxidative damage and alteration of neurotransmitters in the brain of rats exposed to aluminum chloride (AlCl 3 ), and/or gamma radiation (IR). The results revealed that rats whole body exposed to γ- rays, (1 Gy/week up to 4 Gy), and/or administered aluminum chloride (35 mg/kg body weight), via gavages for 4 weeks, resulted in brain tissue damage, featuring by significant increase of the level of thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP), associated with significant decrease of superoxide dismutase (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content indicating occurrence of oxidative stress. A significant decrease of serotonin (5-HT) level associated with a significant increase of 5-hydroxyindole acetic acid (5-HIAA), in addition to a significant decrease in dopamine (DA), norepinephrine (NE) and epinephrine (EPI) contents recorded at the 1st, 7th and 14th day post-irradiation, indicating alterations in the metabolism of brain monoamines. On the other hand, the results exhibited that, supplementation of rats with pomegranate, via gavages, at a dose of 3 ml /kg body weight/ day, for 4 weeks along with AlCl 3 with or without radiation has significantly ameliorated the changes occurred in the mentioned parameters and the values returned close to the normal ones. It could be concluded that pomegranate, by its antioxidant constituents might antagonize brain oxidative damage and minimize the severity of aluminum (Al), and/or radiation-induced neurotransmitters disorders

  6. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  7. Impact of Oxidative Stress in Fetal Programming

    OpenAIRE

    Thompson, Loren P.; Al-Hasan, Yazan

    2012-01-01

    Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that pr...

  8. Oxidative stress in primary glomerular diseases

    DEFF Research Database (Denmark)

    Markan, Suchita; Kohli, Harbir Singh; Sud, Kamal

    2008-01-01

    To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure.......To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure....

  9. Oxidative stress and psychological functioning among medical students

    Directory of Open Access Journals (Sweden)

    Rani Srivastava

    2014-01-01

    Full Text Available Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA levels and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression among medical/paramedical students of 1 st and 3 rd year. Materials and Methods: A total of 150 students; 75 from 1 st year (2010-2011 and75 from 3 rd year (2009-2010; of medical and paramedical background were assessed on level of MDA (oxidative stress and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3 rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given.

  10. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yan

    2014-01-01

    Full Text Available Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH, respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.

  11. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    OpenAIRE

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission el...

  12. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  13. Free radicals, reactive oxygen species, oxidative stress and its classification.

    Science.gov (United States)

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents.

    Science.gov (United States)

    Huang, Hui-Jie; Zhu, Xiao-Cang; Han, Qiu-Qin; Wang, Ya-Lin; Yue, Na; Wang, Jing; Yu, Rui; Li, Bing; Wu, Gen-Cheng; Liu, Qiong; Yu, Jin

    2017-05-30

    As a regulator of food intake, ghrelin also plays a key role in mood disorders. Previous studies reported that acute ghrelin administration defends against depressive symptoms of chronic stress. However, the effects of long-term ghrelin on rodents under chronic stress hasn't been revealed. In this study, we found chronic peripheral administration of ghrelin (5nmol/kg/day for 2 weeks, i.p.) could alleviate anxiety- and depression-like behaviors induced by chronic unpredictable mild stress (CUMS). The depression-like behaviors were assessed by the forced swimming test (FST), and anxiety-like behaviors were assessed by the open field test (OFT) and the elevated plus maze test (EPM). Meanwhile, we observed that peripheral acylated ghrelin, together with gastral and hippocampal ghrelin prepropeptide mRNA level, were significantly up-regulated in CUMS mice. Besides, the increased protein level of growth hormone secretagogue receptor (GHSR) in hippocampus were also detected. These results suggested that the endogenous ghrelin/GHSR pathway activated by CUMS plays a role in homeostasis. Further results showed that central treatment of ghrelin (10μg/rat/day for 2 weeks, i.c.v.) or GHRP-6 (the agonist of GHSR, 10μg/rat/day for 2 weeks, i.c.v.) significantly alleviated the depression-like behaviors induced by CUMS in FST and sucrose preference test (SPT). Based on these results, we concluded that central GHSR is involved in the antidepressant-like effect of exogenous ghrelin treatment, and ghrelin/GHSR may have the inherent neuromodulatory properties against depressive symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Physiological Mechanism of Salicylic Acid for Alleviation of Salt Stress in Rice

    Directory of Open Access Journals (Sweden)

    D. Jini

    2017-03-01

    Full Text Available Soil salinity is one of the most important problems of crop production in estuarine and coastal zones. Improvement in salt tolerance of major food crops is an important way for the economic utilization of coastal zones. This study proved that the application of salicylic acid (SA improved the growth and yield under salt stress conditions and investigated its physiological mechanisms for salt tolerance. The investigation on the effect of SA for salt tolerance during germination showed that the decreased rates of germination and growth (in terms of shoot and root lengths by the salt stress were significantly increased by the SA application (SA + NaCl. The treatment of SA to the high and low saline soils enhanced the growth, yield and nutrient values of rice. The effects of SA on Na+, K+ and Cl– ionic accumulation were traced under salt stress condition by inductively coupled plasma optical emission spectrometry and ion chromatography. It was revealed that the increased accumulation of Na+ and Clˉ ions by the salt stress were reduced by SA application. An increased concentration of endogenous SA level was detected from the SA-treated rice varieties (ASD16 and BR26 by liquid chromatography electrospray Ionization-tandem mass spectrometry. The activities of antioxidant enzymes such as superoxide dismutase, catalase and peroxidase were increased by salt stress whereas decreased by the SA application. The study proved that the application of SA could alleviate the adverse effects of salt stress by the regulation of physiological mechanism in rice plants. In spite of salt stress, it can be applied to the coastal and estuarine regions to increase the rice production.

  16. Impact of Oxidative Stress in Fetal Programming

    Directory of Open Access Journals (Sweden)

    Loren P. Thompson

    2012-01-01

    Full Text Available Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  17. Fisetin alleviates oxidative stress after traumatic brain injury via the Nrf2-ARE pathway.

    Science.gov (United States)

    Zhang, Li; Wang, Handong; Zhou, Yali; Zhu, Yihao; Fei, Maoxin

    2018-05-22

    Fisetin, a natural flavonoid, has neuroprotection properties in many brain injury models. However, its role in traumatic brain injury (TBI) has not been fully explained. In the present study, we aimed to explore the neuroprotective effects of fisetin in a mouse model of TBI. We found that fisetin improved neurological function, reduced cerebral edema, attenuated brain lesion and ameliorated blood-brain barrier (BBB) disruption after TBI. Moreover, the up-regulation of malondialdehyde (MDA) and the activity of glutathione peroxidase (GPx) were reversed by fisetin treatment. Furthermore, administration of fisetin suppressed neuron cell death and apoptosis, increased the expression of B-cell lymphoma 2 (Bcl-2), while decreased the expression of Bcl-2-associated X protein (Bax) and caspase-3 after TBI. In addition, fisetin activated the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway following TBI. However, fisetin only failed to suppress oxidative stress in Nrf2 -/- mice. In conclusion, our data provided the first evidence that fisetin played a critical role in neuroprotection after TBI partly through the activation of the Nrf2-ARE pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2017-09-01

    Full Text Available Yong Zhu,1,* Guoying Deng,2,* Anqi Ji,2 Jiayi Yao,1 Xiaoxiao Meng,1 Jinfeng Wang,1 Qian Wang,2 Qiugen Wang,2 Ruilan Wang1 1Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 2Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China *These authors contributed equally to this work Abstract: Acute paraquat (PQ poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI. Selenium (Se can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6, PQ (n=18, and PQ + Se@SiO2 (n=18. The PQ and PQ + Se@SiO2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h after PQ treatment. Porous Se@SiO2 nanospheres 1 mg/kg (in the PQ + Se@SiO2 group were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS, nuclear factor-κB (NF-κB, phosphorylated NF-κB (p-NF-κB, tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung

  19. Apigenin-7-diglucuronide protects retinas against bright light-induced photoreceptor degeneration through the inhibition of retinal oxidative stress and inflammation.

    Science.gov (United States)

    Bian, Minjuan; Zhang, Yong; Du, Xiaoye; Xu, Jing; Cui, Jingang; Gu, Jiangping; Zhu, Weiliang; Zhang, Teng; Chen, Yu

    2017-05-15

    Vision impairment in retinal degenerative diseases such as age-related macular degeneration is primarily associated with photoreceptor degeneration, in which oxidative stress and inflammatory responses are mechanistically involved as central players. Therapies with photoreceptor protective properties remain to be developed. Apigenin-7-diglucuronide (A7DG), a flavonoid glycoside, is present in an assortment of medicinal plants with anti-inflammatory or ant-oxidant activities. However, the pharmacological significance of A7DG remains unknown in vivo. The current study isolated A7DG from Glechoma longituba (Nakai) Kuprian and investigated the retinal protective effect A7DG in mice characterized by bright light-induced photoreceptor degeneration. The results showed that A7DG treatment led to remarkable photoreceptor protection in bright light-exposed BALB/c mice. Moreover, A7DG treatment alleviated photoreceptor apoptosis, mitigated oxidative stress, suppressed reactive gliosis and microglial activation and attenuated the expression of proinflammatory genes in bright light-exposed retinas. The results demonstrated for the first time remarkable photoreceptor protective activities of A7DG in vivo. Inhibition of bright light-induced retinal oxidative stress and retinal inflammatory responses was associated with the retinal protection conferred by A7DG. The work here warrants further evaluation of A7DG as a pharmacological candidate for the treatment of vision-threatening retinal degenerative disorders. Moreover, given the general implication of oxidative stress and inflammation in the pathogenesis of neurodegeneration, A7DG could be further tested for the treatment of other neurodegenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Sex-related differences in photoinhibition, photo-oxidative stress and photoprotection in stinging nettle (Urtica dioica L.) exposed to drought and nutrient deficiency.

    Science.gov (United States)

    Simancas, Bárbara; Juvany, Marta; Cotado, Alba; Munné-Bosch, Sergi

    2016-03-01

    Dimorphic plant species can show distinct nutrient needs due to sex-related differences in nutrient allocation to reproductive structures, which can potentially affect their sensitivity to photoinhibition and photo-oxidative stress. Here, we investigated sex-related differences in the extent of photo-oxidative stress in male and female individuals of U. dioica exposed to a combination of severe drought and nutrient starvation. Male and female individuals of U. dioica subject to severe drought stress were exposed to various levels of nutrient availability. First, a set of plants grown under field conditions and exposed to summer drought was used to test the effects of nutrient supply (given as NPK fertilizer). Secondly, the effects of various phosphate concentrations in the nutrient solution were tested in drought-stressed potted plants. The Fv/Fm ratio (maximum efficiency of PSII photochemistry), photoprotection capacity (levels of carotenoids, including the xanthophyll cycle, and vitamins C and E), and the extent of lipid peroxidation (hydroperoxide levels) were measured. Results showed that an application of the NPK fertilizer to the soil had a positive effect on drought-stressed plants, reducing the extent of lipid peroxidation in both males and females. P deficiency led to residual photoinhibition, as indicated by significant reductions in the Fv/Fm ratio, and enhanced lipid peroxidation in females, but not in males. We conclude that (i) increased nutrient availability in the soil can alleviate photo-oxidative stress in drought-stressed U. dioica plants, and (ii) U. dioica plants show sexual secondary dimorphism in terms of photoinhibition and photo-oxidative stress, but this is only apparent when stress infringed on plants is very severe. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Studies on possibility for alleviation of lifestyle diseases by low-dose irradiation or radon inhalation

    International Nuclear Information System (INIS)

    Kataoka, T.; Sakoda, A.; Yoshimoto, M.; Nakagawa, S.; Toyota, T.; Nishiyama, Y.; Yamato, K.; Ishimori, Y.; Kawabe, A.; Hanamoto, K.; Taguchi, T.; Yamaoka, K.

    2011-01-01

    Our previous studies showed the possibility that activation of the anti-oxidative function alleviates various oxidative damages, which are related to lifestyle diseases. Results showed that, low-dose X-ray irradiation activated superoxide dismutase and inhibits oedema following ischaemia-reperfusion. To alleviate ischaemia-reperfusion injury with transplantation, the changes of the anti-oxidative function in liver graft using low-dose X-ray irradiation immediately after exenteration were examined. Results showed that liver grafts activate the anti-oxidative function as a result of irradiation. In addition, radon inhalation enhances the anti-oxidative function in some organs, and alleviates alcohol-induced oxidative damage of mouse liver. Moreover, in order to determine the most effective condition of radon inhalation, mice inhaled radon before or after carbon tetrachloride (CCl 4 ) administration. Results showed that radon inhalation alleviates CCl 4 -induced hepatopathy, especially prior inhalation. It is highly possible that adequate activation of anti-oxidative functions induced by low-dose irradiation can contribute to preventing or reducing oxidative damages, which are related to lifestyle diseases. (authors)

  2. Hypoxia, Oxidative Stress and Fat

    Directory of Open Access Journals (Sweden)

    Nikolaus Netzer

    2015-06-01

    Full Text Available Metabolic disturbances in white adipose tissue in obese individuals contribute to the pathogenesis of insulin resistance and the development of type 2 diabetes mellitus. Impaired insulin action in adipocytes is associated with elevated lipolysis and increased free fatty acids leading to ectopic fat deposition in liver and skeletal muscle. Chronic adipose tissue hypoxia has been suggested to be part of pathomechanisms causing dysfunction of adipocytes. Hypoxia can provoke oxidative stress in human and animal adipocytes and reduce the production of beneficial adipokines, such as adiponectin. However, time-dose responses to hypoxia relativize the effects of hypoxic stress. Long-term exposure of fat cells to hypoxia can lead to the production of beneficial substances such as leptin. Knowledge of time-dose responses of hypoxia on white adipose tissue and the time course of generation of oxidative stress in adipocytes is still scarce. This paper reviews the potential links between adipose tissue hypoxia, oxidative stress, mitochondrial dysfunction, and low-grade inflammation caused by adipocyte hypertrophy, macrophage infiltration and production of inflammatory mediators.

  3. Effects of peripherally and centrally applied ghrelin on the oxidative stress induced by renin angiotensin system in a rat model of renovascular hypertension.

    Science.gov (United States)

    Boshra, Vivian; Abbas, Amr M

    2017-07-26

    Renovascular hypertension (RVH) is a result of renal artery stenosis, which is commonly due to astherosclerosis. In this study, we aimed to clarify the central and peripheral effects of ghrelin on the renin-angiotensin system (RAS) in a rat model of RVH. RVH was induced in rats by partial subdiaphragmatic aortic constriction. Experiment A was designed to assess the central effect of ghrelin via the intracerebroventricular (ICV) injection of ghrelin (5 μg/kg) or losartan (0.01 mg/kg) in RVH rats. Experiment B was designed to assess the peripheral effect of ghrelin via the subcutaneous (SC) injection of ghrelin (150 μg/kg) or losartan (10 mg/kg) for 7 consecutive days. Mean arterial blood pressure (MAP), heart rate, plasma renin activity (PRA), and oxidative stress markers were measured in all rats. In addition, angiotensin II receptor type 1 (AT1R) concentration was measured in the hypothalamus of rats in Experiment B. RVH significantly increased brain AT1R, PRA, as well as the brain and plasma oxidative stress. Either SC or ICV ghrelin or losartan caused a significant decrease in MAP with no change in the heart rate. Central ghrelin or losartan caused a significant decrease in brain AT1R with significant alleviation of the brain oxidative stress. Central ghrelin caused a significant decrease in PRA, whereas central losartan caused a significant increase in PRA. SC ghrelin significantly decreased PRA and plasma oxidative stress, whereas SC losartan significantly increased PRA and decreased plasma oxidative stress. The hypotensive effect of ghrelin is mediated through the amelioration of oxidative stress, which is induced by RAS centrally and peripherally.

  4. Effect of L-Carnitine on Skeletal Muscle Lipids and Oxidative Stress in Rats Fed High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Panchamoorthy Rajasekar

    2007-01-01

    Full Text Available There is evidence that high-fructose diet induces insulin resistance, alterations in lipid metabolism, and oxidative stress in rat tissues. The purpose of this study was to evaluate the effect of L-carnitine (CAR on lipid accumulation and peroxidative damage in skeletal muscle of rats fed high-fructose diet. Fructose-fed animals (60 g/100 g diet displayed decreased glucose/insulin (G/I ratio and insulin sensitivity index (ISI0,120 indicating the development of insulin resistance. Rats showed alterations in the levels of triglycerides, free fatty acids, cholesterol, and phospholipids in skeletal muscle. The condition was associated with oxidative stress as evidenced by the accumulation of lipid peroxidation products, protein carbonyls, and aldehydes along with depletion of both enzymic and nonenzymic antioxidants. Simultaneous intraperitoneal administration of CAR (300 mg/kg/day to fructose-fed rats alleviated the effects of fructose. These rats showed near-normal levels of the parameters studied. The effects of CAR in this model suggest that CAR supplementation may have some benefits in patients suffering from insulin resistance.

  5. Measurement of exercise-induced oxidative stress in lymphocytes.

    Science.gov (United States)

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  6. Obesity, reproduction and oxidative stress

    Directory of Open Access Journals (Sweden)

    Tamara V. Zhuk

    2017-12-01

    Full Text Available The prevalence of obesity and overweight is one of the most pressing problems nowadays. Obesity as a comorbid condition affects all body systems. Obesity has been reported to be a risk factor not only for cardiovascular diseases and oncopathology, but also for fertility problems, many obstetric and perinatal complications worsening the maternal and infant health. The balance between the oxidative and antioxidant system is one of the indicators of the state of human homeostasis. Today it is proved that obesity is associated with an increase in oxidative stress and a decrease in antioxidant protection. This review reveals a close relationship between obesity, oxidative stress and reproductive problems.

  7. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  8. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  9. Simvastatin and oxidative stress in humans

    DEFF Research Database (Denmark)

    Rasmussen, Sanne Tofte; Andersen, Jon Thor Trærup; Nielsen, Torben Kjær

    2016-01-01

    in mitochondrial respiratory complexes I and II and might thereby reduce the formation of reactive oxygen species, which have been implicated in the pathogenesis of arteriosclerosis. Therefore, we hypothesized that simvastatin may reduce oxidative stress in humans in vivo. We conducted a randomized, double......-blinded, placebo-controlled study in which subjects were treated with either 40 mg of simvastatin or placebo for 14 days. The endpoints were six biomarkers for oxidative stress, which represent intracellular oxidative stress to nucleic acids, lipid peroxidation and plasma antioxidants, that were measured in urine.......1% in the placebo group for DNA oxidation and 7.3% in the simvastatin group compared to 3.4% in the placebo group. The differences in biomarkers related to plasma were not statistically significant between the treatments groups, with the exception of total vitamin E levels, which, as expected, were reduced...

  10. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

    Directory of Open Access Journals (Sweden)

    Anu Rahal

    2014-01-01

    Full Text Available Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.

  11. Genetics of Oxidative Stress in Obesity

    Directory of Open Access Journals (Sweden)

    Azahara I. Rupérez

    2014-02-01

    Full Text Available Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  12. Genetics of oxidative stress in obesity.

    Science.gov (United States)

    Rupérez, Azahara I; Gil, Angel; Aguilera, Concepción M

    2014-02-20

    Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  13. Oxidative stress resistance in Porphyromonas gingivalis

    Science.gov (United States)

    Henry, Leroy G; McKenzie, Rachelle ME; Robles, Antonette; Fletcher, Hansel M

    2012-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets. PMID:22439726

  14. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  15. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind

    Directory of Open Access Journals (Sweden)

    Maria Pantelidou

    2017-02-01

    Full Text Available Stress can be defined as the homeostatic, nonspecific defensive response of the organism to challenges. It is expressed by morphological, biochemical, and functional changes. In this review, we present biological and oxidative stress, as well as their interrelation. In addition to the mediation in biologic stress (central nervous, immune, and hormonal systems and oxidative stress, the effect of these phenomena on xenobiotic metabolism and drug response is also examined. It is concluded that stress decreases drug response, a result which seems to be mainly attributed to the induction of hepatic drug metabolizing enzymes. A number of mechanisms are presented. Structure-activity studies are also discussed. Vitamin E, as well as two synthetic novel compounds, seem to reduce both oxidative and biological stress and, consequently, influence drug response and metabolism.

  16. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Xue-ying Chang

    2017-01-01

    Full Text Available Background. This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d, 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS/p38 mitogen activated protein kinase (p38MAPK pathway was determined to explore the potential mechanism. Results. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA and creatinine levels, malonaldehyde (MDA content, and superoxide dismutase (SOD activity in serum and the increases of calcium and alkaline phosphatase (ALP activity in the aorta (P<0.05 and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  17. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    Science.gov (United States)

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  18. Bifenthrin-induced oxidative stress in human erythrocytes in vitro and protective effect of selected flavonols.

    Science.gov (United States)

    Sadowska-Woda, Izabela; Popowicz, Diana; Karowicz-Bilińska, Agata

    2010-03-01

    Bifenthrin is a synthetic pyrethroid with a broad spectrum of insecticidal and acaricidal activity used to control wide range of insect pests in a variety of applications. This investigation was designed to examine (1) bifenthrin as an inducer of oxidative stress in human erythrocytes in vitro through effects on catalase (CAT) and superoxide dismutase (SOD) activities, and (2) the role of the flavonoids quercetin (Q, 40 and 80microM) and rutin (R, 80microM) in alleviating the effects of bifenthrin. Erythrocytes were divided into portions. The first portion was incubated for 4h at 37 degrees C with different concentrations (0, 42.2, 211, 1055ppm) of bifenthrin. The other portions were preincubated with Q or R for 30min, followed incubation with bifenthrin for 4h. The influence of solvent (ethanol) was also checked on the parameters studied. Malondialdehyde (MDA) concentrations, CAT and SOD activities were measured in all treatment portions of erythrocytes. Our results demonstrated that bifenthrin-induced oxidative stress causes enhanced lipid peroxidation and decreased antioxidative enzyme activities in human peripheral blood. R pretreated erythrocytes were protected against the increase of MDA induced by bifenthrin. Q (80microM) and R pretreated erythrocytes were protected against the inhibition of CAT activity induced by bifenthrin. The protective action against the inhibition of SOD activity of Q was greater than that of R at the same concentration. These results suggest that Q and R may play a role in reducing bifenthrin-induced oxidative stress in vitro. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    Science.gov (United States)

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  20. Association between prenatal psychological stress and oxidative stress during pregnancy.

    Science.gov (United States)

    Eick, Stephanie M; Barrett, Emily S; van 't Erve, Thomas J; Nguyen, Ruby H N; Bush, Nicole R; Milne, Ginger; Swan, Shanna H; Ferguson, Kelly K

    2018-03-30

    Prenatal psychological stress during pregnancy has been associated with adverse reproductive outcomes. A growing animal literature supports an association between psychological stress and oxidative stress. We assessed this relationship in pregnant women, hypothesising that psychological stress is associated with higher concentrations of oxidative stress biomarkers during pregnancy. Psychosocial status and stressful life events (SLE) were self-reported. 8-iso-prostaglandin F 2α (8-iso-PGF 2α ) was measured as a biomarker of oxidative stress in urine samples at median 32 weeks' gestation. We examined SLEs individually (ever vs never) and in summary (any vs none) and psychosocial status as measured by individual subscales and in summary (poor vs good). Linear models estimated associations between these parameters and urinary 8-iso-PGF 2α concentrations after adjusting for covariates. The geometric mean of 8-iso-PGF 2α was significantly higher among pregnant women who were non-White, smokers, had less than a college education, higher pre-pregnancy BMI and were unmarried. Having ever had a death in the family (n = 39) during pregnancy was associated with a 22.9% increase in 8-iso-PGF 2α in unadjusted models (95% confidence interval [CI] 1.50, 48.8). Poor psychosocial status was associated with a 13.1% (95% CI 2.43, 25.0) greater mean 8-iso-PGF 2α in unadjusted analyses. Associations were attenuated, but remained suggestive, after covariate adjustment. These data suggest that 8-iso-PGF 2α is elevated in pregnant women with who are at a sociodemographic disadvantage and who have higher psychological stress in pregnancy. Previous studies have observed that 8-iso-PGF 2α levels are associated with adverse birth outcomes, oxidative stress could be a mediator in these relationships. © 2018 John Wiley & Sons Ltd.

  1. Alleviation of Drought Stress by Nitrogen Application in Brassica campestris ssp. Chinensis L.

    Directory of Open Access Journals (Sweden)

    Xin Xiong

    2018-05-01

    Full Text Available To assess the influence of drought stress on the growth and nitrogen nutrition status of pakchoi (Brassica campestris ssp. Chinensis L. at different nitrogen (N levels, the changes in N accumulation and enzyme activities involved in N assimilation were investigated. The drought was induced by adding polyethylene glycol (PEG under hydroponic culture conditions. Pakchoi seedlings were exposed to a modified nutrient solution with different nitrogen concentration (N1, N2, and N3 represent 2, 9 and 18 mM NaNO3, respectively and osmotic potential (W1, W2 and W3 represent 0, 60 and 120 g·L−1 PEG 6000 in a full factorial, replicated randomized block design. A short time (seven days of drought stress caused a significant decline in plant water content, transpiration rate, shoot biomass and shoot nitrogen concentration. Increasing N availability considerably alleviate drought stress by increasing the content of total free amino acids in the roots, promoting the acceleration of root biomass accumulation, and improving the activities of nitrate reductase (NR; EC 1.7.1.1 and glutamine synthetase (GS; EC 6.3.1.2 which would reduce moisture limitations. The results suggested that pakchoi supplied with relative higher N had better growth performance under drought stress.

  2. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    Science.gov (United States)

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  3. Baicalin Ameliorates Experimental Liver Cholestasis in Mice by Modulation of Oxidative Stress, Inflammation, and NRF2 Transcription Factor

    Directory of Open Access Journals (Sweden)

    Kezhen Shen

    2017-01-01

    Full Text Available Experimental cholestatic liver fibrosis was performed by bile duct ligation (BDL in mice, and significant liver injury was observed in 15 days. Administration of baicalin in mice significantly ameliorates liver fibrosis. Experimental cholestatic liver fibrosis was associated with induced gene expression of fibrotic markers such as collagen I, fibronectin, alpha smooth muscle actin (SMA, and connective tissue growth factor (CTGF; increased inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2; increased oxidative stress and reactive oxygen species- (ROS- inducing enzymes (NOX2 and iNOS; dysfunctional mitochondrial electron chain complexes; and apoptotic/necrotic cell death markers (DNA fragmentation, caspase 3 activity, and PARP activity. Baicalin administration on alternate day reduced fibrosis along with profibrotic gene expression, proinflammatory cytokines, oxidative stress, and cell death whereas improving the function of mitochondrial electron transport chain. We observed baicalin enhanced NRF2 activation by nuclear translocation and induced its target genes HO-1 and GCLM, thus enhancing antioxidant defense. Interplay of oxidative stress/inflammation and NRF2 were key players for baicalin-mediated protection. Stellate cell activation is crucial for initiation of fibrosis. Baicalin alleviated stellate cell activation and modulated TIMP1, SMA, collagen 1, and fibronectin in vitro. This study indicates that baicalin might be beneficial for reducing inflammation and fibrosis in liver injury models.

  4. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    Directory of Open Access Journals (Sweden)

    Khadija Rebbani

    2016-01-01

    Full Text Available About 150 million people worldwide are chronically infected with hepatitis C virus (HCV. The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24 is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis.

  5. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  6. Biochemical basis of the high resistance to oxidative stress

    Indian Academy of Sciences (India)

    Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments.

  7. Seed priming with hormones does not alleviate induced oxidative stress in maize seedlings subjected to salt stress

    Directory of Open Access Journals (Sweden)

    Rogério Falleiros Carvalho

    2011-10-01

    Full Text Available Seed priming with hormones has been an efficient method for increasing seed vigor as well as seedling growth under stressful conditions. These responses have in the past been attributed to the activation of antioxidant systems in a range of crops. The results described in this work show that hormonal priming with methyl jasmonate, salicylic acid or CEPA (chloroethylphosphonic acid, an ethylene (ET releaser, does not induce the antioxidant activity of superoxide dismutase, catalase, ascorbate peroxidase or glutathione reductase in maize seedlings subjected to salt stress. The enhanced biomass of maize seedlings under salt stress that was observed only from ET priming indicates that the stress tolerance in maize from ethylene priming is a fundamental process for stress tolerance acquisition, which is explained, however, by other biochemical mechanisms but not by changes in the antioxidant system.

  8. Dietary supplementation with apple juice concentrate alleviates the compensatory increase in glutathione synthase transcription and activity that accompanies dietary- and genetically-induced oxidative stress.

    Science.gov (United States)

    Tchantchou, F; Graves, M; Ortiz, D; Rogers, E; Shea, T B

    2004-01-01

    Increased oxidative stress, which can arise from dietary, environmental and/or genetic sources, contributes to the decline in cognitive performance during normal aging and in neurodegenerative conditions such as Alzheimer's disease. Supplementation with fruits and vegetables that are high in antioxidant potential can compensate for dietary and/or genetic deficiencies that promote increased oxidative stress. We have recently demonstrated that apple juice concentrate (AJC) prevents the increase in oxidative damage to brain tissue and decline in cognitive performance observed when transgenic mice lacking apolipoprotein E (ApoE-/-) are maintained on a vitamin-deficient diet and challenged with excess iron (included in the diet as a pro-oxidant). However, the mechanism by which AJC provided neuroprotection was not conclusively determined. Herein, we demonstrate that supplementation with AJC also prevents the compensatory increases in glutathione synthase transcription and activity that otherwise accompany maintenance of ApoE-/- mice on this vitamin-free diet in the presence of iron. Inclusion of the equivalent composition and concentration of sugars of AJC did not prevent these increases. These findings provide further evidence that the antioxidant potential of AJC can compensate for dietary and genetic deficiencies that otherwise promote neurodegeneration.

  9. Alleviation of Oxidative Stress by Using Olive Pomace in Crossbred (Brown Swiss X Baladi) Calves Under Hot Environmental Conditions

    International Nuclear Information System (INIS)

    Abdalla, E.B.; Khalil, F.K.; El - Masry, K.A.; Teama, F.E.; Emara, S.S.

    2015-01-01

    Ten female crossbred (Brown Swiss X Baladi) calves , 8 – 10 months old with average live body weight of 112 kg at the be ginning of experimental period were used to investigate the effect of olive pomace (OP) supplementation which contains phenolic compounds on oxidant and antioxidant agents and some blood constituents, and its relation with growth performance in heat stressed calves. The animals were maintained under hot summer environmental conditions, where, ambient temperature and relative humidity average d 37.48°C ± 0.32 and 64.58 % ± 0.77 , (equivalent to THI 91) during day, and 28.38 °C ± 0.22 and 78.23 % ± 0.69 , (equivalent to THI 80) during night, respectively. The animals were divided into two equal groups (5 calves each). The first group control (received 0 % OP of the concentrate mixture, while the second group) treated received 15 % OP of the concentrate mixture, for two months. Body weight o f calves was recorded twice at the beginning and at the end of experimental period, and daily gain was calculated for each animal. Blood samples were taken from each animal at the end of experimental period to determine antioxidant and oxidant indices, some blood constituents and T 3 concentration. Our results showed that supplementation of OP significantly increased antioxidant status including catalase enzyme activity, total antioxidant capacity, uric acid as a non-enzymatic antioxidant and copper as a specific antioxidant protecting macromolecules. More over, OP significantly reduced serum malondialdehyde as a lipid peroxidation marker, iron concentration which act as a pro-oxidant, lipids profile including total cholesterol, low density lipoprotein (LDL – cholesterol), very low density lipoprotein (VLDL – cholesterol), triglycerides and phospholipids. Also, OP caused a significant decrease in serum creatinine and urea- N concentrations as well as AST activity. However, OP significantly elevated T3 level, and improved feed efficiency and daily

  10. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Yuan Ma

    2016-01-01

    Full Text Available Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA- sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs were challenged by tumor necrosis factor alpha (TNF-α. The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS/mitogen-activated protein kinase (MAPK evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL- 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2′,7′-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were

  11. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  12. Relationship between hyposalivation and oxidative stress in aging mice.

    Science.gov (United States)

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  13. Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying

    DEFF Research Database (Denmark)

    Liu, Caixia; Ravnskov, Sabine; Lui, Fulai

    2018-01-01

    Deficit irrigation (DI) improves water use efficiency (WUE), but the reduced water input often limits plant growth and nutrient uptake. The current study examined whether arbuscular mycorrhizal fungi (AMF) could alleviate abiotic stress caused by low phosphorus (P) fertilization and DI...... or improved plant growth and P/nitrogen (N) uptake when subjected to DI/PRD and P0. However, the positive responses to AMF varied with P level and irrigation regime. Functional differences were found in ability of AMF species alleviating plant stress. The largest positive plant biomass response to M1+ and M2......+ was found under FI, both at P1 and P0 (25% increase), while plant biomass response to M1+ and M2+ under DI/PRD (14% increase) was significantly smaller. The large growth response to AMF inoculation, particularly under FI, may relate to greater photosynthetic capacity and leaf area, probably caused...

  14. Active form of vitamin D ameliorates non-alcoholic fatty liver disease by alleviating oxidative stress in a high-fat diet rat model.

    Science.gov (United States)

    Zhu, Chong-Gui; Liu, Ya-Xin; Wang, Hao; Wang, Bao-Ping; Qu, Hui-Qi; Wang, Bao-Li; Zhu, Mei

    2017-07-28

    The purpose of this study was to determine whether treatment using the active form of vitamin D (1,25(OH) 2 D 3 ) could protect against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats and ameliorate oxidative stress. Male Sprague-Dawley rats were divided into three groups and treated with standard chow, HFD, or HFD plus intraperitoneal injection of 1,25(OH) 2 D 3 (5 μg/kg body weight, twice per week), respectively, for 16 weeks. Serum lipid profiles, hepatic function, intrahepatic lipid, and calcium levels were determined. Hepatic histology was examined using hematoxylin/eosin, Masson's trichrome, and Oil Red O staining. Oxidative stress was assessed by measuring hepatic malondialdehyde (MDA) and F2α-isoprostane content. Expression of nuclear factor-erythroid-2-related factor 2 (Nrf2) and downstream target genes was analyzed using quantitative RT-PCR. 1,25(OH) 2 D 3 treatment improved the serum lipid profile, reduced intrahepatic lipid levels, and attenuated hepatic steatosis and inflammation in HFD rats. Furthermore, MDA and F2α-isoprostane levels in liver tissue were reduced by 1,25(OH) 2 D 3 administration. Although 1,25(OH) 2 D 3 did not regulate the expression of Nrf2 mRNA, it did induce Nrf2 nuclear translocation. The expression of Nrf2 target genes, including Gclc, Nqo1, Sod2, and Cat, was up-regulated by 1,25(OH) 2 D 3 . We conclude that 1,25(OH) 2 D 3 protects against HFD-induced NAFLD by attenuating oxidative stress, inducing NRF2 nuclear translocation, and up-regulating the expression of genes encoding antioxidant enzymes.

  15. Vanillin abrogates ethanol induced gastric injury in rats via modulation of gastric secretion, oxidative stress and inflammation

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al Asmari

    Full Text Available Vanillin is commonly used as an additive in food, medicine and cosmetics, but its effect has not yet been studied in gastric injury. Therefore the effect of vanillin was studied in experimental gastric ulcer. Gastric secretion and acidity were studied in pylorus ligated rats. Ulcer index, levels of gastric mucus, malondialdehyde (MDA, myeloperoxidase activity (MPO, expression of nuclear factor kappa B (NF-κB p65, and histopathological changes were determined in ethanol induced gastric ulcer. Pre treatment with vanillin significantly reduced gastric secretion (P < 0.001 and acidity (P < 0.0001 and gastric ulcer index scores (P < 0.001. and augmented the gastric mucosal defense. Vanillin significantly restored the depleted gastric wall mucus levels (P < 0.0001 induced by ethanol and also significantly attenuated ethanol induced inflammation and oxidative stress by the suppression of gastric MPO activity (P < 0.001, reducing the expression of NF-κB p65 and the increased MDA levels (P < 0.001. Vanillin was also effective in alleviating the damage to the histological architecture and the activation of mast cells induced by ethanol.Together the results of this study highlight the gastroprotective activity of vanillin in gastric ulcers of rats through multiple actions that include inhibition of gastric secretion and acidity, reduction of inflammation and oxidative stress, suppression of expression of NF-κB, and restoration of the histological architecture. Keywords: Gastric ulcers, Pylorus ligation, Ethanol, Vanillin, Inflammation, Oxidative stress

  16. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Tae Woon Kim

    2015-03-01

    Full Text Available Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT, acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH, immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.

  17. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats.

    Science.gov (United States)

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-03-01

    Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.

  18. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  19. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, Maarten; Abee, Tjakko

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  20. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, J.M.; Abee, T.

    2011-01-01

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  1. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  2. Oxidative Stress in Patients With Nongenital Warts

    Directory of Open Access Journals (Sweden)

    Sezai Sasmaz

    2005-01-01

    Full Text Available Comparison of oxidative stress status between subjects with or without warts is absent in the literature. In this study, we evaluated 31 consecutive patients with warts (15 female, 16 male and 36 control cases with no evidence of disease to determine the effects of oxidative stress in patients with warts. The patients were classified according to the wart type, duration, number, and location of lesions. We measured the indicators of oxidative stress such as catalase (CAT, glucose-6-phosphate dehydrogenase (G6PD, superoxide dismutase (SOD, and malondialdehyde (MDA in the venous blood by spectrophotometry. There was a statistically significant increase in levels of CAT, G6PD, SOD activities and MDA in the patients with warts compared to the control group (P<.05. However, we could not define a statistically significant correlation between these increased enzyme activities and MDA levels and the type, the duration, the number, and the location of lesions. We determined possible suppression of T cells during oxidative stress that might have a negative effect on the prognosis of the disease. Therefore, we propose an argument for the appropriateness to give priority to immunomodulatory treatment alternatives instead of destructive methods in patients with demonstrated oxidative stress.

  3. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Asieh Hosseini

    2013-01-01

    Full Text Available Diabetic neuropathy (DN is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin, aldose reductase inhibitors (fidarestat, epalrestat, ranirestat, advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine, the hexosamine pathway inhibitor (benfotiamine, inhibitor of poly ADP-ribose polymerase (nicotinamide, and angiotensin-converting enzyme inhibitor (trandolapril. The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials.

  4. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Science.gov (United States)

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  5. Alleviating Parenting Stress in Parents with Intellectual Disabilities : A Randomized Controlled Trial of a Video-feedback Intervention to Promote Positive Parenting

    NARCIS (Netherlands)

    Hodes, Marja W.; Meppelder, Marieke; de Moor, Marleen; Kef, Sabina; Schuengel, Carlo

    2017-01-01

    Background: Adapted parenting support may alleviate the high levels of parenting stress experienced by many parents with intellectual disabilities. Methods: Parents with mild intellectual disabilities or borderline intellectual functioning were randomized to experimental (n = 43) and control

  6. Hypertension and physical exercise: The role of oxidative stress.

    Science.gov (United States)

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Cadmium induced oxidative stress in Dunaliella salina | Moradshahi ...

    African Journals Online (AJOL)

    The unicellular green algae Dunaliella salina contains various antioxidants which protect the cell from oxidative damage due to environmental stresses such as heavy metal stress. In the present study, the response of D. salina at the stationary growth phase to oxidative stress generated by cadmium chloride was ...

  8. Curcumin analog L3 alleviates diabetic atherosclerosis by multiple effects.

    Science.gov (United States)

    Zheng, Bin; Yang, Liu; Wen, Caixia; Huang, Xiuwang; Xu, Chenxia; Lee, Kuan-Han; Xu, Jianhua

    2016-03-15

    L3, an analog of curcumin, is a compound isolated from a traditional Chinese medicine Turmeric. In this paper, we aims to explore the efficacy of L3 on diabetic atherosclerosis and the related mechanism. The effect of L3 was studied on glucose and lipid metabolism, antioxidant status, atherosclerosis-related indexes and pathological changes of main organs in the mice model of diabetes induced by streptozotocin and high-fat diet. The results showed that L3 treatment could meliorate dyslipidemia and hyperglycemia, reduce oxidative stress, enhance the activity of antioxidases, increase the nitric oxide level in plasma and aortic arch, decrease the production of reactive oxygen species in pancreas and lectin-like oxidized low-density lipoprotein receptor-1 expression in aortic arch, and meliorate the fatty and atherosclerotic degeneration in aortic arch, thereby preventing the development of diabetes and its complications. These results suggested that L3 can alleviate the diabetic atherosclerosis by multiple effects. This study provided scientific basis for the further research and clinical application of L3. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Oxidative stress, aging, and diseases

    Directory of Open Access Journals (Sweden)

    Liguori I

    2018-04-01

    Full Text Available Ilaria Liguori,1 Gennaro Russo,1 Francesco Curcio,1 Giulia Bulli,1 Luisa Aran,1 David Della-Morte,2,3 Gaetano Gargiulo,4 Gianluca Testa,1,5 Francesco Cacciatore,1,6 Domenico Bonaduce,1 Pasquale Abete1 1Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy; 2Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; 3San Raffaele Roma Open University, Rome, Italy; 4Division of Internal Medicine, AOU San Giovanni di Dio e Ruggi di Aragona, Salerno, Italy; 5Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy; 6Azienda Ospedaliera dei Colli, Monaldi Hospital, Heart Transplantation Unit, Naples, Italy Abstract: Reactive oxygen and nitrogen species (RONS are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer, including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of

  10. Oral exposure to dibutyl phthalate exacerbates chronic lymphocytic thyroiditis through oxidative stress in female Wistar rats.

    Science.gov (United States)

    Wu, Yang; Li, Jinquan; Yan, Biao; Zhu, Yuqing; Liu, Xudong; Chen, Mingqing; Li, Dai; Lee, Ching-Chang; Yang, Xu; Ma, Ping

    2017-11-13

    Chronic lymphocytic thyroiditis (CLT) is a common autoimmune disorder. The possible pathogenic role and mechanism of dibutyl phthalate (DBP) in CLT is still controversial. Experiments were conducted after 35-days of oral exposure to the three concentrations of DBP or saline, and three immunizations with thyroglobulin (TG). Healthy female Wistar rats were randomly divided into ten exposure groups (n = 8 each): (A) saline control, (B) 0.5 mg/kg/d DBP, (C) 5 mg/kg/d DBP, (D) 50 mg/kg/d DBP, (E) TG-immunized group, (F) TG- combined with 0.5 mg/kg/d DBP, (G) TG- combined with 5 mg/kg/d DBP, (H) TG- combined with 50 mg/kg/d DBP, (I) TG- combined with 50 mg/kg/d DBP plus 100 mg/kg/d vitamin C; (J) 100 mg/kg/d vitamin C. We showed that oral exposure DBP can aggravate CLT in rats. This deterioration was concomitant with increased thyroid auto antibodies, Th1/Th2 imbalance and Th17 immune response, activated pro-inflammatory and apoptosis pathways, and increased thyroid dysfunction in rats. Our results also suggested that DBP could promote oxidative damage. The study also found that vitamin C reduced the levels of oxidative stress and alleviated CLT. In short, the study showed that DBP exacerbated CLT through oxidative stress.

  11. Implantation of Neural Probes in the Brain Elicits Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej

    2018-02-01

    Full Text Available Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp, and Stearoyl-Coenzyme A desaturase 1 (Scd1 were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1 relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage

  12. Licochalcone A Upregulates Nrf2 Antioxidant Pathway and Thereby Alleviates Acetaminophen-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2018-03-01

    Full Text Available Acetaminophen (APAP overdose-induced fatal hepatotoxicity is majorly characterized by overwhelmingly increased oxidative stress while enhanced nuclear factor-erythroid 2-related factor 2 (Nrf2 is involved in prevention of hepatotoxicity. Although Licochalcone A (Lico A upregulates Nrf2 signaling pathway against oxidative stress-triggered cell injury, whether it could protect from APAP-induced hepatotoxicity by directly inducing Nrf2 activation is still poorly elucidated. This study aims to explore the protective effect of Lico A against APAP-induced hepatotoxicity and its underlying molecular mechanisms. Our findings indicated that Lico A effectively decreased tert-butyl hydroperoxide (t-BHP- and APAP-stimulated cell apoptosis, mitochondrial dysfunction and reactive oxygen species generation and increased various anti-oxidative enzymes expression, which is largely dependent on upregulating Nrf2 nuclear translocation, reducing the Keap1 protein expression, and strengthening the antioxidant response element promoter activity. Meanwhile, Lico A dramatically protected against APAP-induced acute liver failure by lessening the lethality; alleviating histopathological liver changes; decreasing the alanine transaminase and aspartate aminotransferase levels, malondialdehyde formation, myeloperoxidase level and superoxide dismutase depletion, and increasing the GSH-to-GSSG ratio. Furthermore, Lico A not only significantly modulated apoptosis-related protein by increasing Bcl-2 expression, and decreasing Bax and caspase-3 cleavage expression, but also efficiently alleviated mitochondrial dysfunction by reducing c-jun N-terminal kinase phosphorylation and translocation, inhibiting Bax mitochondrial translocation, apoptosis-inducing factor and cytochrome c release. However, Lico A-inhibited APAP-induced the lethality, histopathological changes, hepatic apoptosis, and mitochondrial dysfunction in WT mice were evidently abrogated in Nrf2-/- mice. These

  13. Fatty acids and oxidative stress in psychiatric disorders

    OpenAIRE

    Tonello Lucio; Cocchi Massimo; Tsaluchidu Sofia; Puri Basant K

    2008-01-01

    Abstract Background The aim of this study was to determine whether there is published evidence for increased oxidative stress in neuropsychiatric disorders. Methods A PubMed search was carried out using the MeSH search term 'oxidative stress' in conjunction with each of the DSM-IV-TR diagnostic categories of the American Psychiatric Association in order to identify potential studies. Results There was published evidence of increased oxidative stress in the following DSM-IV-TR diagnostic categ...

  14. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles.

    Science.gov (United States)

    Borišev, Milan; Borišev, Ivana; Župunski, Milan; Arsenov, Danijela; Pajević, Slobodanka; Ćurčić, Živko; Vasin, Jovica; Djordjevic, Aleksandar

    2016-01-01

    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity.

  15. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  16. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  17. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Benoist d’Azy, Cédric; Pereira, Bruno; Chiambaretta, Frédéric

    2016-01-01

    Chronic glaucoma is a multifactorial disease among which oxidative stress may play a major pathophysiological role. We conducted a systematic review and meta-analysis to evaluate the levels of oxidative and antioxidative stress markers in chronic glaucoma compared with a control group. The PubMed, Cochrane Library, Embase and Science Direct databases were searched for studies reporting oxidative and antioxidative stress markers in chronic glaucoma and in healthy controls using the following keywords: “oxidative stress” or “oxidant stress” or “nitrative stress” or “oxidative damage” or “nitrative damage” or “antioxidative stress” or “antioxidant stress” or “antinitrative stress” and “glaucoma”. We stratified our meta-analysis on the type of biomarkers, the type of glaucoma, and the origin of the sample (serum or aqueous humor). We included 22 case-control studies with a total of 2913 patients: 1614 with glaucoma and 1319 healthy controls. We included 12 studies in the meta-analysis on oxidative stress markers and 19 on antioxidative stress markers. We demonstrated an overall increase in oxidative stress markers in glaucoma (effect size = 1.64; 95%CI 1.20–2.09), ranging from an effect size of 1.29 in serum (95%CI 0.84–1.74) to 2.62 in aqueous humor (95%CI 1.60–3.65). Despite a decrease in antioxidative stress marker in serum (effect size = –0.41; 95%CI –0.72 to –0.11), some increased in aqueous humor (superoxide dismutase, effect size = 3.53; 95%CI 1.20–5.85 and glutathione peroxidase, effect size = 6.60; 95%CI 3.88–9.31). The differences in the serum levels of oxidative stress markers between glaucoma patients and controls were significantly higher in primary open angle glaucoma vs primary angle closed glaucoma (effect size = 12.7; 95%CI 8.78–16.6, P stress increased in glaucoma, both in serum and aqueous humor. Malonyldialdehyde seemed the best biomarkers of oxidative stress in serum. The increase of some

  18. Oxidative stress parameters in localized scleroderma patients.

    Science.gov (United States)

    Kilinc, F; Sener, S; Akbaş, A; Metin, A; Kirbaş, S; Neselioglu, S; Erel, O

    2016-11-01

    Localized scleroderma (LS) (morphea) is a chronic, inflammatory skin disease with unknown cause that progresses with sclerosis in the skin and/or subcutaneous tissues. Its pathogenesis is not completely understood. Oxidative stress is suggested to have a role in the pathogenesis of localized scleroderma. We have aimed to determine the relationship of morphea lesions with oxidative stress. The total oxidant capacity (TOC), total antioxidant capacity (TAC), paroxonase (PON) and arylesterase (ARES) activity parameters of PON 1 enzyme levels in the serum were investigated in 13 LS patients (generalized and plaque type) and 13 healthy controls. TOC values of the patient group were found higher than the TOC values of the control group (p < 0.01). ARES values of the patient group was found to be higher than the control group (p < 0.0001). OSI was significantly higher in the patient group when compared to the control (p < 0.005). Oxidative stress seems to be effective in the pathogenesis. ARES levels have increased in morphea patients regarding to the oxidative stress and its reduction. Further controlled studies are required in wider series.

  19. Resveratrol attenuates radiation damage in Caenorhabditis elegans by preventing oxidative stress

    International Nuclear Information System (INIS)

    Ye Kan; Gu Guixiong; Ji Chenbo; Ni Yuhui; Chen Xiaohui; Guo Xirong; Lu Xiaowei; Gao Chunlin; Zhao Yaping

    2010-01-01

    Resveratrol, a member of a class of polyphenolic compounds known as flavonols, has been extensively studied for its anticancer, antiviral, anti-inflammatory, and neuroprotective roles. Caenorhabidits elegans is a well-established animal for investigating responses to radiation. We found that resveratrol may provide protection against hazardous radiation. Pre-treatment with resveratrol extended both the maximum and mean life span of irradiated C. elegans. Resveratrol acted as a strong radical scavenger and regulated superoxide dismutase (SOD) expression. In addition, resveratrol was shown to be capable of alleviating γ-ray radiation exposure-induced reduction in mitochondrial SOD expression. Ultimately, a correlation may exist between dietary intake of trace amounts of resveratrol and anti-aging effects. A specific response mechanism may be activated after the administration of resveratrol in irradiated animals. Our results suggest the protective effect of resveratrol is due to its strong ability to protect from oxidative stress and protective effects in mitochondria. Therefore, resveratrol is potentially an effective protecting agent against irradiative damage. (author)

  20. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy.

    Science.gov (United States)

    Vanova, Nela; Pejchal, Jaroslav; Herman, David; Dlabkova, Alzbeta; Jun, Daniel

    2018-08-01

    Despite the main mechanism of organophosphate (OP) toxicity through inhibition of acetylcholinesterase (AChE) being well known over the years, some chronic adverse health effects indicate the involvement of additional pathways. Oxidative stress is among the most intensively studied. Overstimulation of cholinergic and glutamatergic nervous system is followed by intensified generation of reactive species and oxidative damage in many tissues. In this review, the role of oxidative stress in pathophysiology of OP poisoning and the influence of commonly used medical interventions on its levels are discussed. Current standardized therapy of OP intoxications comprises live-saving administration of the anticholinergic drug atropine accompanied by oxime AChE reactivator and diazepam. The capability of these antidotes to ameliorate OP-induced oxidative stress varies between both therapeutic groups and individual medications within the drug class. Regarding oxidative stress, atropine does not seem to have a significant effect on oxidative stress parameters in OP poisoning. In a case of AChE reactivators, pro-oxidative and antioxidative properties could be found. It is assumed that the ability of oximes to trigger oxidative stress is rather associated with their chemical structure than reactivation efficacy. The data indicating the potency of diazepam in preventing OP-induced oxidative stress are not available. Based on current knowledge on the mechanism of OP-mediated oxidative stress, alternative approaches (including antioxidants or multifunctional drugs) in therapy of OP poisoning are under consideration. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  2. Pomegranate from Oman Alleviates the Brain Oxidative Damage in Transgenic Mouse Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Selvaraju Subash

    2014-10-01

    Full Text Available Oxidative stress may play a key role in Alzheimer’s disease (AD neuropathology. Pomegranates (石榴 Shí Liú contain very high levels of antioxidant polyphenolic substances, as compared to other fruits and vegetables. Polyphenols have been shown to be neuroprotective in different model systems. Here, the effects of the antioxidant-rich pomegranate fruit grown in Oman on brain oxidative stress status were tested in the AD transgenic mouse. The 4-month-old mice with double Swedish APP mutation (APPsw/Tg2576 were purchased from Taconic Farm, NY, USA. Four-month-old Tg2576 mice were fed with 4% pomegranate or control diet for 15 months and then assessed for the influence of diet on oxidative stress. Significant increase in oxidative stress was found in terms of enhanced levels of lipid peroxidation (LPO and protein carbonyls. Concomitantly, decrease in the activities of antioxidant enzymes was observed in Tg2576 mice treated with control diet. Supplementation with 4% pomegranate attenuated oxidative damage, as evidenced by decreased LPO and protein carbonyl levels and restoration in the activities of the antioxidant enzymes [superoxide dismutase (SOD, catalase, glutathione peroxidase (GPx, glutathione (GSH, and Glutathione S transferase (GST]. The activities of membrane-bound enzymes [Na+ K+-ATPase and acetylcholinesterase (AChE] were altered in the brain regions of Tg2576 mouse treated with control diet, and 4% pomegranate supplementation was able to restore the activities of enzymes to comparable values observed in controls. The results suggest that the therapeutic potential of 4% pomegranate in the treatment of AD might be associated with counteracting the oxidative stress by the presence of active phytochemicals in it.

  3. Interferon-¿ regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.

    2002-01-01

    Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress......Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress...

  4. Oxidative Stress in Myopia

    Directory of Open Access Journals (Sweden)

    Bosch-Morell Francisco

    2015-01-01

    Full Text Available Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  5. Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses.

    Science.gov (United States)

    Penella, Consuelo; Nebauer, Sergio G; Bautista, Alberto San; López-Galarza, Salvador; Calatayud, Ángeles

    2014-06-15

    nitrate reductase activity in the roots was observed, mainly in plants grafted onto the sensitive rootstocks, as well as the ungrafted plants, and this was associated with the lessened flux to the leaves. This study suggests that PEG-induced water stress can be partially alleviated by using tolerant accessions as rootstocks. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants

    Science.gov (United States)

    Khan, Abdur Rahim; Park, Gun-Seok; Asaf, Sajjad; Hong, Sung-Jun; Jung, Byung Kwon

    2017-01-01

    Serratia marcescens RSC-14 is a Gram-negative bacterium that was previously isolated from the surface-sterilized roots of the Cd-hyperaccumulator Solanum nigrum. The strain stimulates plant growth and alleviates Cd stress in host plants. To investigate the genetic basis for these traits, the complete genome of RSC-14 was obtained by single-molecule real-time sequencing. The genome of S. marcescens RSC-14 comprised a 5.12-Mbp-long circular chromosome containing 4,593 predicted protein-coding genes, 22 rRNA genes, 88 tRNA genes, and 41 pseudogenes. It contained genes with potential functions in plant growth promotion, including genes involved in indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis, and phosphate solubilization. Moreover, annotation using NCBI and Rapid Annotation using Subsystem Technology identified several genes that encode antioxidant enzymes as well as genes involved in antioxidant production, supporting the observed resistance towards heavy metals, such as Cd. The presence of IAA pathway-related genes and oxidative stress-responsive enzyme genes may explain the plant growth-promoting potential and Cd tolerance, respectively. This is the first report of a complete genome sequence of Cd-tolerant S. marcescens and its plant growth promotion pathway. The whole-genome analysis of this strain clarified the genetic basis underlying its phenotypic and biochemical characteristics, underpinning the beneficial interactions between RSC-14 and plants. PMID:28187139

  7. Grape Seed Proanthocyanidin Extract Prevents Ovarian Aging by Inhibiting Oxidative Stress in the Hens

    Directory of Open Access Journals (Sweden)

    Xingting Liu

    2018-01-01

    Full Text Available Oxidative stress is an important inducement in ovarian aging which results in fecundity decline in human and diverse animals. As a potent antioxidant, grape seed proanthocyanidin extract (GSPE was investigated to ameliorate chicken ovarian aging in this study. Firstly, ovarian antioxidant capacity of hens at different ages (90, 150, 280, and 580 days old was compared to elucidate its age-related changes. Subsequently, a D-gal-induced (2.5 mg/mL aging ovarian model was established and the cultured ovarian tissues were treated with GSPE at 5 μg/mL for 72 h to evaluate the putative attenuating effects of GSPE on ovarian aging. Meanwhile, ovaries of D280 (young and D580 (old were treated with GSPE for 72 h in culture to verify the protective effects of GSPE on natural aging ovary. The results showed that GSPE could rescue the antioxidant capacity decline by increasing the antioxidase activities and their gene expression in either D-gal-induced or natural aging ovaries. Moreover, GSPE could maintain the homeostasis between cell proliferation and apoptosis in the D-gal-induced and natural aging ovaries, as well as alleviate D-gal-induced nucleus chromatin condensation in the ovarian granulosa cells. In conclusion, GSPE treatment can effectively prevent the ovarian aging process in hens by reducing oxidative stress.

  8. 13 reasons why the brain is susceptible to oxidative stress

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2018-05-01

    Full Text Available The human brain consumes 20% of the total basal oxygen (O2 budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity through redox signalling (i.e. positive functionality. Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality. To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.

  9. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  10. Fluoride-induced iron overload contributes to hepatic oxidative damage in mouse and the protective role of Grape seed proanthocyanidin extract.

    Science.gov (United States)

    Niu, Qiang; He, Ping; Xu, Shangzhi; Ma, Ruling; Ding, Yusong; Mu, Lati; Li, Shugang

    2018-01-01

    Emerging evidence has demonstrated that iron overload plays an important role in oxidative stress in the liver. This study aimed to explore whether fluoride-induced hepatic oxidative stress is associated with iron overload and whether grape seed proanthocyanidin extract (GSPE) alleviates oxidative stress by reducing iron overload. Forty Kunming male mice were randomly divided into 4 groups and treated for 5 weeks with distilled water (control), sodium fluoride (NaF) (100 mg/L), GSPE (400 mg/kg bw), or NaF (100 mg/L) + GSPE (400 mg/kg bw). Mice exposed to NaF showed typical poisoning changes of morphology, increased aspartate aminotransferase and alanine aminotransferase activities in the liver. NaF treatment also increased MDA accumulation, decreased GSH-Px, SOD and T-AOC levels in liver, indicative of oxidative stress. Intriguingly, all these detrimental effects were alleviated by GSPE. Further study revealed that NaF induced disorders of iron metabolism, as manifested by elevated iron level with increased hepcidin but decreased ferroportin expression, which contributed to hepatic oxidative stress. Importantly, the iron dysregulation induced by NaF could be normalized by GSPE. Collectively, these data provide a novel insight into mechanisms underlying fluorosis and highlight the potential of GSPE as a naturally occurring prophylactic treatment for fluoride-induced hepatotoxicity associated with iron overload.

  11. [Effect of occupational stress on oxidation/antioxidant capacity in nurses].

    Science.gov (United States)

    Cao, Lili; Tian, Honger; Zhang, Qingdong; Zhu, Xinyun; Zhan, Yongguo; Su, Jingguo; Xu, Tian; Zhu, Huabin; Liu, Ling

    2014-02-01

    To investigate the effect of occupational stress on the oxidation/antioxidant capacity in nurses. A total of 131 nurses were included as study subjects. The occupational health information collection system (based on the Internet of things) was used for measurement of occupational stress. Levels of hydroxyl free radicals and antioxidant enzymes were determined. The serum level of superoxide dismutase (SOD) was the highest in nurses under the age of 30 and the lowest in those over 45 (P occupational stress factors for SOD. Job hazards were negative occupational stress factors for POD. Psychological satisfaction was negative occupational stress reaction for hydroxyl free radicals. Calmness was positive occupational stress reaction for SOD, and daily stress was a negative one. The positive occupational stress reactions for GSH-Px were psychological satisfaction and job satisfaction, and daily stress was negative reaction. Nurses with higher occupational stress have stronger oxidation and weaker antioxidant capacity, which intensifies oxidant-antioxidant imbalance and leads to oxidative stress damage.

  12. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea).

    Science.gov (United States)

    Iqbal, Noushina; Umar, Shahid; Khan, Nafees A

    2015-04-15

    Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20 mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10 mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20 mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Chrysin alleviates testicular dysfunction in adjuvant arthritic rats via suppression of inflammation and apoptosis: Comparison with celecoxib

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Hebatallah A. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Arab, Hany H., E-mail: hany.arab@pharma.cu.edu.eg [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Abdelsalam, Rania M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt)

    2014-09-01

    Long standing rheumatoid arthritis (RA) is associated with testicular dysfunction and subfertility. Few studies have addressed the pathogenesis of testicular injury in RA and its modulation by effective agents. Thus, the current study aimed at evaluating the effects of two testosterone boosting agents; chrysin, a natural flavone and celecoxib, a selective COX-2 inhibitor, in testicular impairment in rats with adjuvant arthritis, an experimental model of RA. Chrysin (25 and 50 mg/kg) and celecoxib (5 mg/kg) were orally administered to Wistar rats once daily for 21 days starting 1 h before arthritis induction. Chrysin suppressed paw edema with comparable efficacy to celecoxib. More important, chrysin, dose-dependently and celecoxib attenuated the testicular injury via reversing lowered gonadosomatic index and histopathologic alterations with preservation of spermatogenesis. Both agents upregulated steroidogenic acute regulatory (StAR) mRNA expression and serum testosterone with concomitant restoration of LH and FSH. Furthermore, they suppressed inflammation via abrogation of myeloperoxidase, TNF-α and protein expression of COX-2 and iNOS besides elevation of IL-10. Alleviation of the testicular impairment was accompanied with suppression of oxidative stress via lowering testicular lipid peroxides and nitric oxide. With respect to apoptosis, both agents downregulated FasL mRNA expression and caspase-3 activity in favor of cell survival. For the first time, these findings highlight the protective effects of chrysin and celecoxib against testicular dysfunction in experimental RA which were mediated via boosting testosterone in addition to attenuation of testicular inflammation, oxidative stress and apoptosis. Generally, the 50 mg/kg dose of chrysin exerted comparable protective actions to celecoxib. - Highlights: • Chrysin and celecoxib alleviated testicular suppression in adjuvant arthritis. • They attenuated histopathological damage and preserved spermatogenesis

  14. Oxidative stress markers imbalance in late-life depression.

    Science.gov (United States)

    Diniz, Breno S; Mendes-Silva, Ana Paula; Silva, Lucelia Barroso; Bertola, Laiss; Vieira, Monica Costa; Ferreira, Jessica Diniz; Nicolau, Mariana; Bristot, Giovana; da Rosa, Eduarda Dias; Teixeira, Antonio L; Kapczinski, Flavio

    2018-03-20

    Oxidative stress has been implicated in the pathophysiology of mood disorders in young adults. However, there is few data to support its role in the elderly. The primary aim of this study was to evaluate whether subjects with late-life depression (LLD) presented with changes in oxidative stress response in comparison with the non-depressed control group. We then explored how oxidative stress markers associated with specific features of LLD, in particular cognitive performance and age of onset of major depressive disorder in these individuals. We included a convenience sample of 124 individuals, 77 with LLD and 47 non-depressed subjects (Controls). We measure the plasma levels of 6 oxidative stress markers: thiobarbituric acid reactive substances (TBARS), protein carbonil content (PCC), free 8-isoprostane, glutathione peroxidase (GPx) activity, glutathione reductase (GR) activity, and glutathione S-transferase (GST) activity. We found that participants with LLD had significantly higher free 8-isoprostane levels (p = 0.003) and lower glutathione peroxidase activity (p = 0.006) compared to controls. Free 8-isoprostane levels were also significantly correlated with worse scores in the initiation/perseverance (r = -0.24, p = 0.01), conceptualization (r = -0.22, p = 0.02) sub-scores, and the total scores (r = -0.21, p = 0.04) on the DRS. Our study provides robust evidence of the imbalance between oxidative stress damage, in particular lipid peroxidation, and anti-oxidative defenses as a mechanism related to LLD, and cognitive impairment in this population. Interventions aiming to reduce oxidative stress damage can have a potential neuroprotective effect for LLD subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  16. Alleviating polarity-conflict at the heterointerfaces of KTaO3/GdScO3 polar complex-oxides

    International Nuclear Information System (INIS)

    Thompson, J.; Nichols, J.; Connell, J. G.; Seo, S. S. A.; Hwang, J.; Stemmer, S.

    2014-01-01

    We have synthesized and investigated the heterointerfaces of KTaO 3 (KTO) and GdScO 3 (GSO), which are both polar complex-oxides along the pseudo-cubic [001] direction. Since their layers have the same, conflicting net charges at interfaces, i.e., KO(−1)/ScO 2 (−1) or TaO 2 (+1)/GdO(+1), forming the heterointerface of KTO/GSO should be forbidden due to strong Coulomb repulsion, the so-called polarity conflict. However, we have discovered that atomic reconstruction occurs at the heterointerfaces between KTO thin-films and GSO substrates, which effectively alleviates the polarity conflict without destroying the hetero-epitaxy. Our result demonstrates one of the important ways to create artificial heterostructures from polar complex-oxides.

  17. The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig; Ottosen, Carl-Otto; Rosenqvist, Eva S. K.

    2013-01-01

    efficiency of photosystem II (PSII) photochemistry (Fv/Fm) and contents of pigments and carbohydrates in leaves were analysed before and during the stress treatments as well as after one day of recovery. Heat stress reduced PN and Fv/Fm in both wheat cultivars, but plants grown in elevated CO2 maintained...... higher PN and Fv/Fm in comparison to plants grown in ambient CO2. Heat stress reduced leaf chlorophyll contents and increased leaf sucrose contents in both cultivars grown at ambient and elevated CO2. The content of hexoses in the leaves increased mainly in the tolerant cultivar in response...... to the combination of elevated CO2 and heat stress. The results show that heat stress tolerance in wheat is related to cultivar origin, the phenological stage of the plants and can be alleviated by elevated CO2. This confirms the complex interrelation between environmental factors and genotypic traits that influence...

  18. [Effects of Ca2+ on nitric oxide-induced adventitious rooting in cucumber under drought stress].

    Science.gov (United States)

    Li, Chun Lan; Niu, Li Juan; Hu, Lin Li; Liao, Wei Biao; Chen, Yue

    2017-11-01

    Cucumber (Cucumis sativus L. 'Xinchun 4') was used to explore the relationship between nitric oxide (NO) and calcium (Ca 2+ ) during adventitious rooting under drought stress. Rooting parameters, endogenous Ca 2+ fluorescent intensity and the antioxidant enzymes activity (SOD, CAT and APX) in cucumber explants under drought stress were investigated. The results showed that treatment with 200 μmol·L -1 CaCl 2 and 0.05% PEG significantly improved the number and length of adventitious root in cucumber explants under drought stress, while the application of Ca 2+ chelating agent (EGTA) and channel inhibitor (BAPTA/AM) significantly decreased NO-induced number and length of adventitious root under drought stress. Under drought stress, the fluorescence intensity of Ca 2+ in hypocotyls treated with NO and CaCl 2 was improved, however, the Ca 2+ fluorescence intensity in the hypocotyls treated with NO scavenger (cPTIO) was significantly lower than that in the hypocotyls treated with NO. Under drought stress, the activities of antioxidant enzymes in the cucumber explants were significantly promoted by the treatments with NO and CaCl 2 , however, Ca 2+ chelating agent and channel inhibitor significantly decreased the activity of antioxidant enzymes induced by NO. In conclusion, Ca 2+ might be involved in the process of NO-adjusted antioxidant enzymes activity during adventitious rooting under drought stress, which alleviated the negative effects of drought on the adventitious rooting and promoted the formation of adventitious roots.

  19. IGF-1, oxidative stress, and atheroprotection

    Science.gov (United States)

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  20. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  1. Plant Polyphenol Antioxidants and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    INES URQUIAGA

    2000-01-01

    Full Text Available In recent years there has been a remarkable increment in scientific articles dealing with oxidative stress. Several reasons justify this trend: knowledge about reactive oxygen and nitrogen species metabolism; definition of markers for oxidative damage; evidence linking chronic diseases and oxidative stress; identification of flavonoids and other dietary polyphenol antioxidants present in plant foods as bioactive molecules; and data supporting the idea that health benefits associated with fruits, vegetables and red wine in the diet are probably linked to the polyphenol antioxidants they contain.In this review we examine some of the evidence linking chronic diseases and oxidative stress, the distribution and basic structure of plant polyphenol antioxidants, some biological effects of polyphenols, and data related to their bioavailability and the metabolic changes they undergo in the intestinal lumen and after absorption into the organism.Finally, we consider some of the challenges that research in this area currently faces, with particular emphasis on the contributions made at the International Symposium "Biology and Pathology of Free Radicals: Plant and Wine Polyphenol Antioxidants" held July 29-30, 1999, at the Catholic University, Santiago, Chile and collected in this special issue of Biological Research

  2. Erectile dysfunction drugs and oxidative stress in the liver of male rats

    Directory of Open Access Journals (Sweden)

    Salah Sheweita

    2015-01-01

    Full Text Available Erectile dysfunction (ED affected the lives of more than 300 million men worldwide. Erectile dysfunction drugs (EDD, known as phosphodiesterase inhibitors (PDEIs, have been used for treatment of ED. It has been shown that oxidative stress plays an important role in the progression of erectile dysfunction. Oxidative stress can be alleviated or decreased by antioxidant enzymes. Therefore, the present study aims at investigating the changes in the activity of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione reductase as well as protein expression of glutathione peroxidase and glutathione S-transferase after treatment of male rats with a daily dose of sildenafil (1.48 mg/kg, tadalafil (0.285 mg/kg and vardenafil (0.285 mg/kg for three weeks. In addition, levels of reduced glutathione and malondialdyhyde (MDA were assayed. The present study showed that sildenafil, vardenafil, and tadalafil treatments significantly decreased the levels of glutathione, MDA and the activity of glutathione reductase. In addition, vardenafil and sildenafil increased the activity of superoxide dismutase and catalase. Interestingly, western immunoblotting data showed that vardenafil induced the activity of glutathione peroxidase (GPX and its protein expression, whereas tadalafil and sildenafil inhibited such enzyme activity and its protein expression. In addition, the protein expression of GST π isozyme was markedly reduced after treatment of rats with sildenafil. It is concluded that ED drugs induced the activities of both SOD and catalase which consequently decreased MDA level. Therefore, decrement in MDA levels could increase nitric oxide–cGMP level which in turn promotes the erection mechanism.

  3. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Alleviating Parenting Stress in Parents with Intellectual Disabilities: A Randomized Controlled Trial of a Video-Feedback Intervention to Promote Positive Parenting

    Science.gov (United States)

    Hodes, Marja W.; Meppelder, Marieke; Moor, Marleen; Kef, Sabina; Schuengel, Carlo

    2017-01-01

    Background: Adapted parenting support may alleviate the high levels of parenting stress experienced by many parents with intellectual disabilities. Methods: Parents with mild intellectual disabilities or borderline intellectual functioning were randomized to experimental (n = 43) and control (n = 42) conditions. Parents in both groups received…

  5. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  6. Targeting the oxidative stress response system of fungi with safe, redox-potent chemosensitizing agents

    Directory of Open Access Journals (Sweden)

    Jong H. eKim

    2012-03-01

    Full Text Available The cellular antioxidation system is a target in the antifungal action of amphotericin B (AMB and itraconazole (ITZ, in filamentous fungi. The sakAΔ mutant of Aspergillus fumigatus, a mitogen-activated protein kinase (MAPK gene deletion mutant in the antioxidation system, was found to be more sensitive to AMB or ITZ than other A. fumigatus strains, a wild type and a mpkCΔ mutant (MAPK gene deletion mutant in polyalcohol sugar utilization system. The sakAΔ mutant showed no growth at 0.5 μg mL-1 of ITZ or reduced growth at 1.0 to 2.0 μg mL-1 of AMB, while the other strains exhibited robust growth. Complete fungal kill (≥ 99.9% by ITZ or AMB was achieved by much lower dosages for the sakAΔ mutant than for the other strains. SakA and MpkC appear to have overlapping roles in marshalling the oxidative stress response under treatment by an organic peroxide, tert-butyl hydroperoxide (t-BuOOH, or hydrogen peroxide (H2O2. The SakA signalling pathway was found to be responsible for fungal tolerance to AMB or ITZ toxicity. It appears msnA, an Aspergillus ortholog to Saccharomyces cerevisiae MSN2 (encoding a stress-responsive C2H2-type zinc-finger regulator and sakA and/or mpkC (upstream MAPKs are in the same stress response network under t-BuOOH-, H2O2- or AMB-triggered toxicity. Of note is that ITZ-sensitive yeast pathogens (Candida krusei and Cryptococcus neoformans were also sensitive to t-BuOOH, showing a connection between ITZ toxicity and oxidative stress response. This was shown by enhanced antifungal activity of AMB or ITZ when co-applied with redox-potent natural compounds, 2,3-dihydroxybenzaldehyde, thymol or salicylaldehyde, as chemosensitizing agents. Hence, redox compounds, which target the antioxidation system in fungi, possess a potent chemosensitizing capacity to enhance efficacy of conventional drugs inducing oxidative stress. Such chemosensitization can reduce costs and alleviate negative side effects associated with current

  7. A review: oxidative stress in fish induced by pesticides.

    Science.gov (United States)

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  8. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    Directory of Open Access Journals (Sweden)

    Gulay Hacioglu

    2016-04-01

    Full Text Available Objective(s: Exposing to stress may be associated with increased production of reactive oxygen species (ROS. Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT and superoxide dismutase (SOD enzymes, and the amount of malondialdehyde (MDA were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.

  9. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah; Fischle, Wolfgang

    2016-01-01

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences

  10. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  11. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

  12. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Oxygen and oxidative stress in the perinatal period

    Directory of Open Access Journals (Sweden)

    Isabel Torres-Cuevas

    2017-08-01

    Full Text Available Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes.In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality.Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100% has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30–60%. A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties

  14. Protective Effect against Oxidative Stress in Medicinal Plant Extracts

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Lee, Eun Ju; Shin, Dong O; Hong, Sung Eun; Kim, Jin Kyu

    2000-01-01

    Protective effect of medicinal plant extracts against oxidative stress were screened in this study. Methanol extracts from 48 medicinal plants, which were reported to have antioxidative or anti-inflammatory effect were prepared and screened for their protective activity against chemically-induced and radiation-induced oxidative stress by using MTT assay. Thirty three samples showed protective activity against chemically-induced oxidative stress in various extent. Among those samples, extract of Glycyrrhiza uralensis revealed the strongest activity (25.9% at 100 μg/ml) with relatively lower cytotoxicity. Seven other samples showed higher than 20% protection at 100 μg/ml. These samples were tested for protection activity against radiation-induced oxidative stress. Methanol extract of Alpina officinarum showed the highest activity (17.8% at 20 μg/ml). Five fractions were prepared from the each 10 methanol extracts which showed high protective activity against oxidative stress. Among those fraction samples butanol fractions of Areca catechu var. dulcissima and Spirodela polyrrhiza showed the highest protective activities (78.8% and 77.2%, respectively, at 20 μg/ml)

  15. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Allison L Weber

    Full Text Available Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis.We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.

  16. Ameliorative effect of vitamin E on hepatic oxidative stress and hypoimmunity induced by high-fat diet in turbot (Scophthalmus maximus).

    Science.gov (United States)

    Jia, Yudong; Jing, Qiqi; Niu, Huaxin; Huang, Bin

    2017-08-01

    This study was conducted to examine the effects of vitamin E on growth performance, oxidative stress and non-specific immunity of turbot (Scophthalmus maximus) fed with high-fat diet. Results showed that high-fat diet significantly increased hepatosomatic index, viscerosomatic index, hepatic malondialdehyde level and decreased catalase and superoxide dismutase activities, whereas final weight, specific growth rate and survival rate remained unchanged. Meanwhile, nitro blue tetrazolium positive leucocytes of head kidney, respiratory burst activity in head-kidney macrophage, phagocytic index and serum lysozyme activity were significantly reduced after feeding with high-fat diet. Furthermore, fish fed with high-fat diet promoted higher expression of heat shock protein (hsp70, hsp90), and inhibited expression of complement component 3 (c3) in the liver and tumor necrosis factor-α (tnf-α), interleukine 1β (il-1β), toll like receptor 22 (tlr-22) in the spleen and head-kidney, respectively. However, simultaneous supplementation with 480 mg kg -1 vitamin E protected turbot against high-fat diet-induced hepatic oxidative stress, hypoimmunity through attenuating lipid peroxidation, renewing antioxidant enzymes activities and nonspecific immune responses, and modulating the expression of stress protein (hsp70, hsp90) and immune-related genes (c3, tnf-α, il-1β, tlr-22). In conclusion, the obtained results indicate the vitamin E as a wildly used functional feed additive contributes potentially to alleviate high-fat diet-induced hepatic oxidative stress and hypoimmunity, maintain the health, and improve the broodstock management for turbot. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Oxidative stress in hepatitis C infected end-stage renal disease subjects.

    Science.gov (United States)

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Filiz F; Aslan, Mehmet; Koylu, Ahmet O; Selek, Sahbettin; Erel, Ozcan

    2006-07-14

    Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p total peroxide level and oxidative stress index were significantly lower (all p total antioxidant capacity compared to hepatitis C (+) hemodialysis subjects (all p Total peroxide level and oxidative stress index was comparable between hemodialysis subjects with or without hepatitis C infection (p > 0.05/3). Oxidative stress is increased in both hepatitis C (+) and hepatitis C (-) hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection.

  18. Oxidative stress in diabetic patients with retinopathy | Kundu ...

    African Journals Online (AJOL)

    Background: Diabetes mellitus (DM) is known to induce oxidative stress along with deranging various metabolisms; one of the late complications of diabetes mellitus is diabetic retinopathy, which is a leading cause of acquired blindness. Poor glycemic control and oxidative stress have been attributed to the development of ...

  19. Time series analysis of blood oxidative stress value in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Indirect effect of ionizing-radiation causes free radicals and reactive oxgen species (ROS). These ROS interact with DNA or other organella, and cause oxidative damage to nucleic acids, membrane lipoprotein, mitchondria and others. The purpose of this study is to evaluate oxidative damage by irradiation using d-ROMs test. Electron beam was irradiated to the thigh of Wistar strain female rats, and reactive oxygen metabolites in the blood from these rats were measured and analysed. From the results, 2 Gy group shows significantly higher oxidative stress level than those of 0 Gy group especially in day 3 after irradiation. This oxidative stress definitely seemed to be caused by exposure to ionizing-radiation. In contrast, the group of 30 Gy-irradiation showed no significant increase of oxidative stress level. It was thought that oxidative stress caused by radiation was neutralized by expression of stress-induced antioxidant enzymes. These data resulted that d-ROMs test is useful for measuring oxidative stress levels of irradiated mammalian animals. (author)

  20. Oxidative DNA damage and oxidative stress in lead-exposed workers.

    Science.gov (United States)

    Dobrakowski, M; Pawlas, N; Kasperczyk, A; Kozłowska, A; Olewińska, E; Machoń-Grecka, A; Kasperczyk, S

    2017-07-01

    There are many discrepancies among the results of studies on the genotoxicity of lead. The aim of the study was to explore lead-induced DNA damage, including oxidative damage, in relation to oxidative stress intensity parameters and the antioxidant defense system in human leukocytes. The study population consisted of 100 male workers exposed to lead. According to the blood lead (PbB) levels, they were divided into the following three subgroups: a group with PbB of 20-35 μg/dL (low exposure to lead (LE) group), a group with a PbB of 35-50 µg/dL (medium exposure to lead (ME) group), and a group with a PbB of >50 μg/dL (high exposure to lead (HE) group). The control group consisted of 42 healthy males environmentally exposed to lead (PbB lead exposure induces DNA damage, including oxidative damage, in human leukocytes. The increase in DNA damage was accompanied by an elevated intensity of oxidative stress.

  1. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  2. Oxidative Stress and Anesthesia in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Peivandi Yazdi A

    2014-04-01

    Full Text Available Free radical and peroxide production lead to intracellular damage. On the other hand, free radicals are used by the human immune system to defend against pathogens. The aging process could be limited by oxidative stress in the short term. Chronic diseases like diabetes mellitus (DM are full-stress conditions in which remarkable metabolic functional destructions might happen. There is strong evidence regarding antioxidant impairment in diabetes. Performing a particular method for anesthesia in diabetic patients might prevent or modify excessive free radical formation and oxidative stress. It seems that prescribing antioxidant drugs could promote wound healing in diabetics.  

  3. Evaluation of oxidative stress in hunting dogs during exercise.

    Science.gov (United States)

    Pasquini, A; Luchetti, E; Cardini, G

    2010-08-01

    Exercise has been shown to increase the production of reactive oxygen species (ROS) to a point that can exceed antioxidant defenses, to cause oxidative stress. The aim of our trials was to evaluate oxidative stress and recovery times in trained dogs during two different hunting exercises, with reactive oxygen metabolites-derivatives (d-ROMs) and biological antioxidant potential (BAP) tests. A group of nine privately owned Italian hounds were included. A 20-min aerobic exercise and a 4-h aerobic exercise, after 30 days of rest, were performed by the dogs. Our results show an oxidative stress after exercise due to both the high concentration of oxidants (d-ROMs) and the low level of antioxidant power (BAP). Besides, the recovery time is faster after the 4-h aerobic exercise than the 20-min aerobic exercise. Oxidative stress monitoring during dogs exercise could become an interesting aid to establish ideal adaptation to training. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Piracetam improves mitochondrial dysfunction following oxidative stress

    Science.gov (United States)

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  5. Electroacupuncture alleviates stress-induced visceral hypersensitivity through an opioid system in rats

    Science.gov (United States)

    Zhou, Yuan-Yuan; Wanner, Natalie J; Xiao, Ying; Shi, Xuan-Zheng; Jiang, Xing-Hong; Gu, Jian-Guo; Xu, Guang-Yin

    2012-01-01

    AIM: To investigate whether stress-induced visceral hypersensitivity could be alleviated by electroacupuncture (EA) and whether EA effect was mediated by endogenous opiates. METHODS: Six to nine week-old male Sprague-Dawley rats were used in this study. Visceral hypersensitivity was induced by a 9-d heterotypic intermittent stress (HIS) protocol composed of 3 randomly stressors, which included cold restraint stress at 4 °C for 45 min, water avoidance stress for 60 min, and forced swimming stress for 20 min, in adult male rats. The extent of visceral hypersensitivity was quantified by electromyography or by abdominal withdrawal reflex (AWR) scores of colorectal distension at different distention pressures (20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg). AWR scores either 0, 1, 2, 3 or 4 were obtained by a blinded observer. EA or sham EA was performed at classical acupoint ST-36 (Zu-San-Li) or BL-43 (Gao-Huang) in both hindlimbs of rats for 30 min. Naloxone (NLX) or NLX methiodide (m-NLX) was administered intraperitoneally to HIS rats in some experiments. RESULTS: HIS rats displayed an increased sensitivity to colorectal distention, which started from 6 h (the first measurement), maintained for 24 h, and AWR scores returned to basal levels at 48 h and 7 d after HIS compared to pre-HIS baseline at different distention pressures. The AWR scores before HIS were 0.6 ± 0.2, 1.3 ± 0.2, 1.9 ± 0.2 and 2.3 ± 0.2 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg distention pressures, respectively. Six hours after termination of the last stressor, the AWR scores were 2.0 ± 0.1, 2.5 ± 0.1, 2.8 ± 0.2 and 3.5 ± 0.2 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg distention pressures, respectively. EA given at classical acupoint ST-36 in both hindlimbs for 30 min significantly attenuated the hypersensitive responses to colorectal distention in HIS rats compared with sham EA treatment [AWRs at 20 mmHg: 2.0 ± 0.2 vs 0.7 ± 0.1, P = 4.23 711 E-4; AWRs at 40 mmHg: 2.6 ± 0.2 vs 1.5 ± 0.2, P

  6. Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways

    Science.gov (United States)

    FENG, CHUNSHENG; LUO, TIANFEI; ZHANG, SHUYAN; LIU, KAI; ZHANG, YANHONG; LUO, YINAN; GE, PENGFEI

    2016-01-01

    Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)-induced neuronal damage remains unclear. In the present study, pretreatment with lycopene was observed to protect SH-SY5Y neuroblastoma cells against H2O2-induced death via inhibition of apoptosis resulting from activation of caspase-3 and translocation of apoptosis inducing factor (AIF) to the nucleus. Furthermore, the over-produced ROS, as well as the reduced activities of anti-oxidative enzymes, superoxide dismutase and catalase, were demonstrated to be alleviated by lycopene. Additionally, lycopene counteracted H2O2-induced mitochondrial dysfunction, which was evidenced by suppression of mitochondrial permeability transition pore opening, attenuation of the decline of the mitochondrial membrane potential, and inhibition of the increase of Bax and decrease of Bcl-2 levels within the mitochondria. The release of cytochrome c and AIF from the mitochondria was also reduced. These results indicate that lycopene is a potent neuroprotectant against apoptosis, oxidative stress and mitochondrial dysfunction, and could be administered to prevent neuronal injury or death. PMID:27035331

  7. Chrononutrition against Oxidative Stress in Aging

    Directory of Open Access Journals (Sweden)

    M. Garrido

    2013-01-01

    Full Text Available Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases.

  8. Oxidative stress in ageing of hair.

    Science.gov (United States)

    Trüeb, Ralph M

    2009-01-01

    Experimental evidence supports the hypothesis that oxidative stress plays a major role in the ageing process. Reactive oxygen species are generated by a multitude of endogenous and environmental challenges. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage cellular structural membranes, lipids, proteins, and DNA. The body possesses endogenous defence mechanisms, such as antioxidative enzymes and non-enzymatic antioxidative molecules, protecting it from free radicals by reducing and neutralizing them. With age, the production of free radicals increases, while the endogenous defence mechanisms decrease. This imbalance leads to the progressive damage of cellular structures, presumably resulting in the ageing phenotype. Ageing of hair manifests as decrease of melanocyte function or graying, and decrease in hair production or alopecia. There is circumstantial evidence that oxidative stress may be a pivotal mechanism contributing to hair graying and hair loss. New insights into the role and prevention of oxidative stress could open new strategies for intervention and reversal of the hair graying process and age-dependent alopecia.

  9. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are important gaseous molecules, serving as important secondary messengers in plant response to various biotic and abiotic stresses. However, the interaction between NO and H2S in plant stress response was largely unclear. In this study, endogenous NO and H2S were evidently induced by cadmium stress treatment in bermudagrass, and exogenous applications of NO donor (sodium nitroprusside, SNP) or H2S donor (sodium hydrosulfide, NaHS) conferred improved cadmium stress tolerance. Additionally, SNP and NaHS treatments alleviated cadmium stress-triggered plant growth inhibition, cell damage and reactive oxygen species (ROS) burst, partly via modulating enzymatic and non-enzymatic antioxidants. Moreover, SNP and NaHS treatments also induced the productions of both NO and H2S in the presence of Cd. Interestingly, combined treatments with inhibitors and scavengers of NO and H2S under cadmium stress condition showed that NO signal could be blocked by both NO and H2S inhibitors and scavengers, while H2S signal was specifically blocked by H2S inhibitors and scavengers, indicating that NO-activated H2S was essential for cadmium stress response. Taken together, we assigned the protective roles of endogenous and exogenous NO and H2S in bermudagrass response to cadmium stress, and speculated that NO-activated H2S might be essential for cadmium stress response in bermudagrass. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures.

    Science.gov (United States)

    Liu, Tao; Hu, Xiaohui; Zhang, Jiao; Zhang, Junheng; Du, Qingjie; Li, Jianming

    2018-02-15

    Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H 2 O 2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H 2 O 2 and cellular redox states, were characterized. Low concentrations (10-25 mg·L - 1 ) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L - 1 , which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H 2 O 2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H 2 O 2 , GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H 2 O 2 -induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H 2 O 2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L - 1 . The results showed that H 2 O 2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H 2 O 2 signaling, resulting in enhanced antioxidant capacity

  11. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  12. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  13. From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs

    Directory of Open Access Journals (Sweden)

    Nikolai Engedal

    2018-01-01

    Full Text Available Oxidative stress can alter the expression level of many microRNAs (miRNAs, but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy.

  14. Oxidative stress and lung function profiles of male smokers free from ...

    African Journals Online (AJOL)

    Oxidative stress and lung function profiles of male smokers free from COPD compared to those with COPD: A case-control study. ... However, conclusions about the role of blood or lung oxidative stress markers were disparate. Aims: To ... Keywords: inflammation; lung disease; spirometry; tobacco; sedentarily; stress oxidant ...

  15. Oxidative stress status in congenital hypogonadism: an appraisal.

    Science.gov (United States)

    Haymana, C; Aydoğdu, A; Soykut, B; Erdem, O; Ibrahimov, T; Dinc, M; Meric, C; Basaran, Y; Sonmez, A; Azal, O

    2017-07-01

    Patients with hypogonadism are at increased risk of cardiac and metabolic diseases. However, the pathogenesis of increased cardiometabolic risk in patients with hypogonadism is not clear. Oxidative stress plays an important role in the pathogenesis of cardiometabolic diseases. This study aimed to investigate possible differences in oxidative stress conditions between patients with hypogonadism and healthy controls. In this study, 38 male patients with congenital hypogonadotropic hypogonadism (CHH) (mean age: 21.7 ± 1.6 years) and 44 healthy male controls (mean age: 22.3 ± 1.4 years) with almost equal body mass index were enrolled. The demographic parameters, follicle-stimulating hormone (FSH), luteinizing hormone (LH), total and free testosterone, homeostatic model assessment of insulin resistance (HOMA-IR) and oxidative stress parameters, such as superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA), were compared between both groups. Compared to the healthy controls, triglycerides (p = .02), insulin levels, HOMA-IR values, CAT activities and MDA levels (p treatment-naïve patients with congenital hypogonadism had an increased status of oxidative stress.

  16. Oxidative Stress-Mediated Aging during the Fetal and Perinatal Periods

    Directory of Open Access Journals (Sweden)

    Lucia Marseglia

    2014-01-01

    Full Text Available Oxidative stress is worldwide recognized as a fundamental component of the aging, a process that begins before birth. There is a critical balance between free radical generation and antioxidant defenses. Oxidative stress is caused by an imbalance between the production of free radicals and the ability of antioxidant system to detoxify them. Oxidative stress can occur early in pregnancy and continue in the postnatal period; this damage is implicated in the pathophysiology of pregnancy-related disorders, including recurrent pregnancy loss, preeclampsia and preterm premature rupture of membranes. Moreover, diseases of the neonatal period such as bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, and periventricular leukomalacia are related to free radical damage. The specific contribution of oxidative stress to the pathogenesis and progression of these neonatal diseases is only partially understood. This review summarizes what is known about the role of oxidative stress in pregnancy and in the pathogenesis of common disorders of the newborn, as a component of the early aging process.

  17. Effect of oxidative stress on homer scaffolding proteins.

    Directory of Open Access Journals (Sweden)

    Igor Nepliouev

    Full Text Available Homer proteins are a family of multifaceted scaffolding proteins that participate in the organization of signaling complexes at the post-synaptic density and in a variety of tissues including striated muscle. Homer isoforms form multimers via their C-terminal coiled coil domains, which allows for the formation of a polymeric network in combination with other scaffolding proteins. We hypothesized that the ability of Homer isoforms to serve as scaffolds would be influenced by oxidative stress. We have found by standard SDS-PAGE of lysates from adult mouse skeletal muscle exposed to air oxidation that Homer migrates as both a dimer and monomer in the absence of reducing agents and solely as a monomer in the presence of a reducing agent, suggesting that Homer dimers exposed to oxidation could be modified by the presence of an inter-molecular disulfide bond. Analysis of the peptide sequence of Homer 1b revealed the presence of only two cysteine residues located adjacent to the C-terminal coiled-coil domain. HEK 293 cells were transfected with wild-type and cysteine mutant forms of Homer 1b and exposed to oxidative stress by addition of menadione, which resulted in the formation of disulfide bonds except in the double mutant (C246G, C365G. Exposure of myofibers from adult mice to oxidative stress resulted in decreased solubility of endogenous Homer isoforms. This change in solubility was dependent on disulfide bond formation. In vitro binding assays revealed that cross-linking of Homer dimers enhanced the ability of Homer 1b to bind Drebrin, a known interacting partner. Our results show that oxidative stress results in disulfide cross-linking of Homer isoforms and loss of solubility of Homer scaffolds. This suggests that disulfide cross-linking of a Homer polymeric network may contribute to the pathophysiology seen in neurodegenerative diseases and myopathies characterized by oxidative stress.

  18. Chronic Stress Facilitates the Development of Deep Venous Thrombosis

    Directory of Open Access Journals (Sweden)

    Tao Dong

    2015-01-01

    Full Text Available The increasing pressure of modern social life intensifies the impact of stress on the development of cardiovascular diseases, which include deep venous thrombosis (DVT. Renal sympathetic denervation has been applied as one of the clinical approaches for the treatment of drug-resistant hypertension. In addition, the close relationship between oxidative stress and cardiovascular diseases has been well documented. The present study is designed to explore the mechanism by which the renal sympathetic nerve system and the oxidative stress affect the blood coagulation system in the development of DVT. Chronic foot shock model in rats was applied to mimic a state of physiological stress similar to humans. Our results showed that chronic foot shock procedure could promote DVT which may be through the activation of platelets aggregation. The aggravation of DVT and activation of platelets were alleviated by renal sympathetic denervation or antioxidant (Tempol treatment. Concurrently, the denervation treatment could also reduce the levels of circulating oxidation factors in rats. These results demonstrate that both the renal sympathetic nerve system and the oxidative stress contribute to the development of DVT in response to chronic stress, which may provide novel strategy for treatment of clinic DVT patients.

  19. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    Science.gov (United States)

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine.

  20. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    Science.gov (United States)

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  1. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Galloway, Chad A; Lee, Hakjoo; Brookes, Paul S; Yoon, Yisang

    2014-09-15

    Mitochondria produce the majority of cellular ATP through oxidative phosphorylation, and their capacity to do so is influenced by many factors. Mitochondrial morphology is recently suggested as an important contributor in controlling mitochondrial bioenergetics. Mitochondria divide and fuse continuously, which is affected by environmental factors, including metabolic alterations. Underscoring its bioenergetic influence, altered mitochondrial morphology is reported in tissues of patients and in animal models of metabolic dysfunction. In this study, we found that mitochondrial fission plays a vital role in the progression of nonalcoholic fatty liver disease (NAFLD). The development of hepatic steatosis, oxidative/nitrative stress, and hepatic tissue damage, induced by a high-fat diet, were alleviated in genetically manipulated mice suppressing mitochondrial fission. The alleviation of steatosis was recapitulated in primary hepatocytes with the inhibition of mitochondrial fission. Mechanistically, our study indicates that fission inhibition enhances proton leak under conditions of free fatty acid incubation, implicating bioenergetic change through manipulating mitochondrial fission. Taken together, our results suggest a mechanistic role for mitochondrial fission in the etiology of NAFLD. The efficacy of decreasing mitochondrial fission in the suppression of NAFLD suggests that mitochondrial fission represents a novel target for therapeutic treatment of NAFLD. Copyright © 2014 the American Physiological Society.

  2. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis.

    Science.gov (United States)

    Findeisen, Hannes M; Pearson, Kevin J; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; de Cabo, Rafael; Bruemmer, Dennis

    2011-04-14

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G(1)→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction.

  3. Apple Polyphenol Suppresses Indomethacin-Induced Gastric Damage in Experimental Animals by Lowering Oxidative Stress Status and Modulating the MAPK Signaling Pathway.

    Science.gov (United States)

    Lee, Yi-Chen; Cheng, Chun-Wen; Lee, Huei-Jane; Chu, Huei-Chuien

    2017-11-01

    Indomethacin is a nonsteroid anti-inflammatory drug (NSAID) that is used to alleviate pain and inflammation in clinical medicine. Previous studies indicated that NSAIDs can cause gastrointestinal mucosal complications, and it is associated with mucosal lipid peroxidation and oxidative damage. Based on the evidences, decreasing oxidative stress may be an ideal therapeutic strategy for preventing gastrointestinal ulcer. Apple (Rosaceae Malus sp.) is one of the most commonly consumed fruits worldwide. The abundant polyphenolic constituents have received increasing attention for decades. In both in vivo and in vitro studies, the reports showed that apple polyphenol (AP) seems to provide an indirect antioxidant protection by activating cellular antioxidant enzymes to defend against oxidative stress. To address this issue and develop AP into a healthy improvement supplement, we studied the effect and potential mechanisms of AP in indomethacin-treated animal. The results showed AP can decelerate the gastric lesion, significantly suppress lipid peroxidation, increase the level of glutathione and the activity of catalase, and regulate the MAPK signaling proteins. These findings imply that AP protects the gastric mucosa from indomethacin-caused lesions and the protection is at least partially attributable to its antioxidative properties. This alternative medical function of AP may be a safe and effective intervention for preventing indomethacin-induced gastric complications.

  4. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    Science.gov (United States)

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  5. Anti-oxidative effects of Rooibos tea (Aspalathus linearis on immobilization-induced oxidative stress in rat brain.

    Directory of Open Access Journals (Sweden)

    In-Sun Hong

    Full Text Available Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea's ability to (i reverse the increase in stress-related metabolites (5-HIAA and FFA, (ii prevent lipid peroxidation (LPO, (iii restore stress-induced protein degradation (PD, (iv regulate glutathione metabolism (GSH and GSH/GSSG ratio, and (v modulate changes in the activities of antioxidant enzymes (SOD and CAT.

  6. Symbiosis-induced adaptation to oxidative stress.

    Science.gov (United States)

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  7. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    Science.gov (United States)

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  8. Role of sulfiredoxin in systemic diseases influenced by oxidative stress

    Directory of Open Access Journals (Sweden)

    Asha Ramesh

    2014-01-01

    Full Text Available Sulfiredoxin is a recently discovered member of the oxidoreductases family which plays a crucial role in thiol homoeostasis when under oxidative stress. A myriad of systemic disorders have oxidative stress and reactive oxygen species as the key components in their etiopathogenesis. Recent studies have evaluated the role of this enzyme in oxidative stress mediated diseases such as atherosclerosis, chronic obstructive pulmonary disease and a wide array of carcinomas. Its action is responsible for the normal functioning of cells under oxidative stress and the promotion of cell survival in cancerous cells. This review will highlight the cumulative effects of sulfiredoxin in various systemic disorders with a strong emphasis on its target activity and the factors influencing its expression in such conditions.

  9. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs.

    Science.gov (United States)

    Smith, Samson W; Latta, Leigh C; Denver, Dee R; Estes, Suzanne

    2014-07-24

    The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.

  10. Pre-anthesis high temperature acclimation alleviates the negative effects of postanthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Liu, Fulai

    2012-01-01

    The potential role of pre-anthesis high temperature acclimation in alleviating the negative effects of post-anthesis heat stress on stem stored carbohydrate remobilization and grain starch accumulation in wheat was investigated. The treatments included no heat-stress (CC), heat stress at pre...... had much higher starch content, and caused less modified B-type starch granule size indicators than the CH plants. Our results indicated that, compared with the non-acclimated plants, the pre-anthesis high temperature acclimation effectively enhanced carbohydrate remobilization from stems to grains...

  11. Salicylic Acid Alleviates Aluminum Toxicity in Soybean Roots through Modulation of Reactive Oxygen Species Metabolism

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2017-11-01

    Full Text Available As an important signal molecule, salicylic acid (SA improves plant tolerance to aluminum (Al stress. The objective of this study was to investigate the effects of exogenous SA application on the dynamics of endogenous SA and reactive oxygen species in soybean (Glycine max L. exposed to Al stress. The roots of soybean seedlings were exposed to a combination of AlCl3 (30 μM and SA (10 μM/PAC (100 μM, paclobutrazol, SA biosynthesis inhibitor for 3, 6, 9, and 12 h. Al stress induced an increase in endogenous SA concentration in a time-dependent manner, also verified by the up-regulated expression of GmNPR1, an SA-responsive gene. Al stress increased the activities of phenylalanine ammonia-lyase (PAL and benzoic acid 2-hydroxylase (BA2H, and the contents of SA, O2- and malondialdehyde (MDA in the root apex. The application of exogenous SA increased PAL and BA2H, and reduced O2- and MDA contents in soybean roots under Al stress. PAC inhibited the SA induced increase in BA2H activity. In addition, the SA application resulted in a rapid increase in hydrogen peroxide (H2O2 concentration under Al stress, followed by a sharp decrease. Compared with the plants exposed to Al alone, Al+SA plants possessed higher activities of superoxide dismutase, peroxidase, and ascorbate peroxidase, and lower catalase activity, indicating that SA alleviated Al-induced oxidative damage. These results suggested that PAL and BA2H were involved in Al-induced SA production and showed that SA alleviated the adverse effects of Al toxicity by modulating the cellular H2O2 level and the antioxidant enzyme activities in the soybean root apex.

  12. Salicylic acid alleviates aluminum toxicity in soybean roots through modulation of reactive oxygen species metabolism

    Science.gov (United States)

    Liu, Ning; Song, Fengbin; Zhu, Xiancan; You, Jiangfeng; Yang, Zhenming; Li, Xiangnan

    2017-11-01

    As an important signal molecule, salicylic acid (SA) improves plant tolerance to aluminum (Al) stress. The objective of this study was to investigate the effects of exogenous SA application on the dynamics of endogenous SA and reactive oxygen species in soybean (Glycine max L.) exposed to Al stress. The roots of soybean seedlings were exposed to a combination of AlCl3 (30 μM) and SA (10 μM)/PAC (100 μM, paclobutrazol, SA biosynthesis inhibitor) for 3, 6, 9 and 12 h. Al stress induced an increase in endogenous SA concentration in a time-dependent manner, also verified by the up-regulated expression of GmNPR1, an SA-responsive gene. Al stress increased the activities of phenylalanine ammonia-lyase (PAL) and benzoic acid 2-hydroxylase (BA2H), and the contents of SA, O2- and malondialdehyde (MDA) in the root apex. The application of exogenous SA increased PAL and BA2H, and reduced O2- and MDA contents in soybean roots under Al stress. PAC inhibited the SA induced increase in BA2H activity. In addition, the SA application resulted in a rapid increase in hydrogen peroxide (H2O2) concentration under Al stress, followed by a sharp decrease. Compared with the plants exposed to Al alone, Al+SA plants possessed higher activities of superoxide dismutase, peroxidase and ascorbate peroxidase, and lower catalase activity, indicating that SA alleviated Al-induced oxidative damage. These results suggested that PAL and BA2H were involved in Al-induced SA production and showed that SA alleviated the adverse effects of Al toxicity by modulating the cellular H2O2 level and the antioxidant enzyme activities in the soybean root apex.

  13. Rosmarinic Acid Alleviates the Endothelial Dysfunction Induced by Hydrogen Peroxide in Rat Aortic Rings via Activation of AMPK

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2017-01-01

    Full Text Available Endothelial dysfunction is the key player in the development and progression of vascular events. Oxidative stress is involved in endothelial injury. Rosmarinic acid (RA is a natural polyphenol with antioxidative, antiapoptotic, and anti-inflammatory properties. The present study investigates the protective effect of RA on endothelial dysfunction induced by hydrogen peroxide (H2O2. Compared with endothelium-denuded aortic rings, the endothelium significantly alleviated the decrease of vasoconstrictive reactivity to PE and KCl induced by H2O2. H2O2 pretreatment significantly injured the vasodilative reactivity to ACh in endothelium-intact aortic rings in a concentration-dependent manner. RA individual pretreatment had no obvious effect on the vasoconstrictive reaction to PE and KCl, while its cotreatment obviously mitigated the endothelium-dependent relaxation impairments and the oxidative stress induced by H2O2. The RA cotreatment reversed the downregulation of AMPK and eNOS phosphorylation induced by H2O2 in HAEC cells. The pretreatment with the inhibitors of AMPK (compound C and eNOS (L-NAME wiped off RA’s beneficial effects. All these results demonstrated that RA attenuated the endothelial dysfunction induced by oxidative stress by activating the AMPK/eNOS pathway.

  14. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress.

    Science.gov (United States)

    Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M

    2017-01-01

    Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca 2+ ) on the process of adventitious rooting in cucumber ( Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca 2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca 2+ . The application of Ca 2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca 2+ /CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca 2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na 2 WO 4 ) and sodium azide (NaN 3 ) . This gives an indication that Ca 2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca 2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca 2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca 2+ /CaM may act as a downstream signaling molecule in NO-induced development of adventitious root

  15. Periodontitis and increase in circulating oxidative stress

    OpenAIRE

    Takaaki Tomofuji; Koichiro Irie; Toshihiro Sanbe; Tetsuji Azuma; Daisuke Ekuni; Naofumi Tamaki; Tatsuo Yamamoto; Manabu Morita

    2009-01-01

    Reactive oxygen species (ROS) are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress). Such oxidation may be detrimental to systemic health. Fo...

  16. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    Science.gov (United States)

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Okazawa, H.; Tsujikawa, T.; Kiyono, Y.; Ikawa, M.; Yoneda, M.

    2014-01-01

    Oxidative stress, one of the most probable molecular mechanisms for neuronal impairment, is reported to occur in the affected brain regions of various neurodegenerative diseases. Recently, many studies showed evidence of a link between oxidative stress or mitochondrial damage and neuronal degeneration. Basic in vitro experiments and postmortem studies demonstrated that biomarkers for oxidative damage can be observed in the pathogenic regions of the brain and the affected neurons. Model animal studies also showed oxidative damage associated with neuronal degeneration. The molecular imaging method with positron emission tomography (PET) is expected to delineate oxidatively stressed microenvironments to elucidate pathophysiological changes of the in vivo brain; however, only a few studies have successfully demonstrated enhanced stress in patients. Radioisotope copper labeled diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) may be the most promising candidate for this oxidative stress imaging. The tracer is usually known as a hypoxic tissue imaging PET probe, but the accumulation mechanism is based on the electron rich environment induced by mitochondrial impairment and/or microsomal over-reduction, and thus it is considered to represent the oxidative stress state correlated with the degree of disease severity. In this review, Cu-ATSM PET is introduced in detail from the basics to practical methods in clinical studies, as well as recent clinical studies on cerebrovascular diseases and neurodegenerative diseases. Several other PET probes are also introduced from the point of view of neuronal oxidative stress imaging. These molecular imaging methods should be promising tools to reveal oxidative injuries in various brain diseases

  18. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-01-01

    Full Text Available Diabetic retinopathy (DR is one of the most common microvascular complications of diabetes and is the leading cause of blindness in young adults. Oxidative stress has been implicated as a critical cause of DR. Metabolic abnormalities induced by high-glucose levels are involved in the development of DR and appear to be influenced by oxidative stress. The imbalance between reactive oxygen species (ROS production and the antioxidant defense system activates several oxidative stress-related mechanisms that promote the pathogenesis of DR. The damage caused by oxidative stress persists for a considerable time, even after the blood glucose concentration has returned to a normal level. Animal experiments have proved that the use of antioxidants is a beneficial therapeutic strategy for the treatment of DR, but more data are required from clinical trials. The aims of this review are to highlight the improvements to our understanding of the oxidative stress-related mechanisms underlying the development of DR and provide a summary of the main antioxidant therapy strategies used to treat the disease.

  19. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients.

    Science.gov (United States)

    L Gupta, Krishan; Sahni, Nancy

    2012-10-01

    Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients.

  20. Oxidative stress in hepatitis C infected end-stage renal disease subjects

    Directory of Open Access Journals (Sweden)

    Koylu Ahmet O

    2006-07-01

    Full Text Available Abstract Background Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Methods Sixteen hepatitis C (+ hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Results Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p 0.05/3. Conclusion Oxidative stress is increased in both hepatitis C (+ and hepatitis C (- hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection.

  1. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    Science.gov (United States)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  2. [Role of green tea in oxidative stress prevention].

    Science.gov (United States)

    Metro, D; Muraca, U; Manasseri, L

    2006-01-01

    Oxidative stress is a condition caused by an increase of Reactive Oxygen Species (ROS) or by a shortage of the mechanisms of cellular protection and antioxidant defence. ROS have a potential oxidative effect towards various cellular macromolecules: proteins, nucleic acids, proteoglycans, lipids, with consequent damages in several cellular districts and promotion of the ageing process of the organism. However, some substances are able to prevent and/or reduce the damages caused by ROS; therefore, they are defined antioxidant. The present research studied, in a group of subjects, the antioxidant effects of the green tea, that was administered with fruit and vegetables in a strictly controlled diet. 50 subjects were selected and requested to daily consume 2-3 fruit portions (especially pineapple), 3-5 portions of vegetables (especially tomato) and 2-3 glasses of green tea for about 2 months to integrate the controlled basic diet. Some indicators of the oxidative stress were measured in the plasma before and after the integration period. The integration of a basic diet with supplements of fruit, vegetables and green tea turned out to be able in increasing both plasmatic total antioxidant capacity and endogenous antioxidant levels and to reduce the lipid peroxidation of the membranes, suggesting a reduction of the oxidative stress. These data suggest that an adequate supplement of antioxidants can prevent oxidative stress and correlated pathologies.

  3. Oxidative stress tolerance of early stage diabetic endothelial progenitor cell

    Directory of Open Access Journals (Sweden)

    Dewi Sukmawati

    2015-06-01

    Conclusions: Primitive BM-EPCs showed vasculogenic dysfunction in early diabetes. However the oxidative stress is not denoted as the major initiating factor of its cause. Our results suggest that primitive BM-KSL cell has the ability to compensate oxidative stress levels in early diabetes by increasing the expression of anti-oxidative enzymes.

  4. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States); State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yu, Haiyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yan, Shirley ShiDu, E-mail: shidu@ku.edu [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States)

    2015-12-25

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.

  5. Effect of Free Radicals & Antioxidants on Oxidative Stress: A Review

    Directory of Open Access Journals (Sweden)

    Ashok Shinde

    2012-01-01

    Full Text Available Recently free radicals have attracted tremendous importance in the field of medicine including dentistry and molecular biology. Free radicals can be either harmful or helpful to the body. When there is an imbalance between formation and removal of free radicals then a condition called as oxidative stress is developed in body. To counteract these free radicals body has protective antioxidant mechanisms which have abilities to lower incidence of various human morbidities and mortalities. Many research groups in the past have tried to study and confirm oxidative stress. Many authors also have studied role of antioxidants in reducing oxidative stress. They have come across with controversial results and furthermore it is not yet fully confirmed whether oxidative stress increases the need for dietary antioxidants. Recently, an association between periodontitis and cardiovascular disease has received considerable attention. Various forms of antioxidants have been introduced as an approach to fight dental diseases and improve general gingival health. The implication of oxidative stress in the etiology of many chronic and degenerative diseases suggests that antioxidant therapy represents a promising avenue for treatment. This study was conducted with the objective of reviewing articles relating to this subject. A Pub Med search of all articles containing key words free radicals, oxidative stress, and antioxidants was done. A review of these articles was undertaken.

  6. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    Science.gov (United States)

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  7. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment.

    Science.gov (United States)

    Zhang, Wenjin; Xie, Zhicai; Wang, Lianhong; Li, Ming; Lang, Duoyong; Zhang, Xinhui

    2017-05-01

    This study was conducted to determine effect and mechanism of exogenous silicon (Si) on salt and drought tolerance of Glycyrrhiza uralensis seedling by focusing on the pathways of antioxidant defense and osmotic adjustment. Seedling growth, lipid peroxidation, antioxidant metabolism, osmolytes concentration and Si content of G. uralensis seedlings were analyzed under control, salt and drought stress [100 mM NaCl with 0, 10 and 20% of PEG-6000 (Polyethylene glycol-6000)] with or without 1 mM Si. Si addition markedly affected the G. uralensis growth in a combined dose of NaCl and PEG dependent manner. In brief, Si addition improved germination rate, germination index, seedling vitality index and biomass under control and NaCl; Si also increased radicle length under control, NaCl and NaCl-10% PEG, decreased radicle length, seedling vitality index and germination parameters under NaCl-20% PEG. The salt and drought stress-induced-oxidative stress was modulated by Si application. Generally, Si application increased catalase (CAT) activity under control and NaCl-10% PEG, ascorbate peroxidase (APX) activity under all treatments and glutathione (GSH) content under salt combined drought stress as compared with non-Si treatments, which resisted to the increase of superoxide radicals and hydrogen peroxide caused by salt and drought stress and further decreased membrane permeability and malondialdehyde (MDA) concentration. Si application also increased proline concentration under NaCl and NaCl-20% PEG, but decreased it under NaCl-10% PEG, indicating proline play an important role in G. uralensis seedling response to osmotic stress. In conclusion, Si could ameliorate adverse effects of salt and drought stress on G. uralensis likely by reducing oxidative stress and osmotic stress, and the oxidative stress was regulated through enhancing of antioxidants (mainly CAT, APX and GSH) and osmotic stress was regulated by proline.

  8. Oxygen and oxidative stress in the perinatal period.

    Science.gov (United States)

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a

  9. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  10. A Different Approach to Assess Oxidative Stress in Dengue Hemorrhagic Fever Patients Through The Calculation of Oxidative Stress Index

    Directory of Open Access Journals (Sweden)

    Edi Hartoyo

    2017-09-01

    Full Text Available The objectives of this study were to determine the involvement of Oxidative Stress (OS in the pathogenesis of dengue hemorrhagic fever (DHF through the analysis of oxidative stress Index (OSI. The levels of malondialdehyde (MDA, superoxide dismutase (SOD and catalase (CAT activity, and OSI were measured in 61 child dengue patients and (aged 6 months–18 years with three different stages of DHF, i.e stage I, II, and III. The results show that the levels of MDA, SOD and CAT activity, and OSI significantly different between the group. The all parameters that investigated in this present study seems higher MDA level and OSI in the higher grade of DHF, except for SOD and CAT activity. From this result, it can be concluded that oxidative stress pathways might be involved in the pathomechanism of DHF and OSI might be used as a biomarker for OS and the severity in DHF patients.

  11. Adiponectin, leptin and oxidative stress in preeclampsia in Egyptian ...

    African Journals Online (AJOL)

    Adiponectin and Leptin are closely related adipokines that are associated with the oxidative stresses and endothelial dysfunction and proposed to participate in preeclampsia (PE) pathogenesis. This study is to determine changes in serum levels of adiponectin, leptin and oxidative stress in PE women in order to speculate a ...

  12. Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy.

    Science.gov (United States)

    Liu, Dexiang; Ke, Zunji; Luo, Jia

    2017-09-01

    Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.

  13. Metformin-induced protection against oxidative stress is associated with AKT/mTOR restoration in PC12 cells.

    Science.gov (United States)

    Khallaghi, Behzad; Safarian, Fatemeh; Nasoohi, Sanaz; Ahmadiani, Abolhassan; Dargahi, Leila

    2016-03-01

    Reactive oxygen species have been recognized to impair cell function through suppressing Akt the well-known pro-survival molecule. Pile of concrete evidence imply metformin as an Insulin sensitizer may enhance Akt/mTOR activity however the significance of Akt/mTOR recruitment has not yet been revealed in metformin induced neuroprotection against oxidative stress. In the current study using H2O2 induced injury in PC12 cells; we first examined metformin impact on cell death by MTT assay and visual assessment. Metformin pretreated cells were then subjected to immunoblotting as well as real time PCR to find PI3K, Akt, mTOR and S6K concurrent transcriptional and post-transcriptional changes. The proportions of phosphorylated to non-phosphorylated constituents of PI3K/Akt/mTOR/S6K were determined to address their activation upon metformin treatment. According to cells morphology and MTT data metformin led to significant protection against H2O2 induced injury in 0.1 and 0.5mM concentrations. Metformin induced protection concurred with elevated PI3K/Akt/mTOR/S6K activity as well as enhanced GSH levels. These changes paralleled with a profound decline in the corresponding transcripts as determined by real time PCR. Taken together our experimentation supports the hypothesis that Akt/mTOR/S6K cascade may contribute to metformin alleviating effect. The present work while highlighting metformin anti-oxidant characteristics, concludes that Akt/mTOR signaling might be central to the drug's alleviating effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Dmytro I Lytvyn

    2016-04-01

    Full Text Available The involvement of NO-signaling in ultraviolet B (UV-B induced oxidative stress in plants is an open question. Inositol biosynthesis contributes to numerous cellular functions, including the regulation of plants tolerance to stress. This work reveals the involvement of inositol-3-phosphate synthase 1 (IPS1, a key enzyme for biosynthesis of myo-inositol and its derivatives, in the response to NO-dependent oxidative stress in Arabidopsis. Homozygous mutants deficient for IPS1 (atips1 and wild-type plants were transformed with a reduction-oxidation-sensitive green fluorescent protein 2 (grx1-rogfp2 and used for the dynamic measurement of UV-B-induced and SNP (sodium nitroprusside-mediated oxidative stresses by confocal microscopy. atips1 mutants displayed greater tissue-specific resistance to the action of UV-B than the wild type. SNP can act both as an oxidant or repairer depending on the applied concentration, but mutant plants were more tolerant than the wild type to nitrosative effects of high concentration of SNP. Additionally, pretreatment with low concentrations of SNP (10, 100 μM before UV-B irradiation resulted in a tissue-specific protective effect that was enhanced in atips1. We conclude that the interplay between nitric oxide and inositol signaling can be involved in the mediation of UV-B-initiated oxidative stress in the plant cell.

  15. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants.

    Science.gov (United States)

    Carini, Francesco; Mazzola, Margherita; Rappa, Francesca; Jurjus, Abdo; Geagea, Alice Gerges; Al Kattar, Sahar; Bou-Assi, Tarek; Jurjus, Rosalyn; Damiani, Provvidenza; Leone, Angelo; Tomasello, Giovanni

    2017-09-01

    One of the contributory causes of colon cancer is the negative effect of reactive oxygen species on DNA repair mechanisms. Currently, there is a growing support for the concept that oxidative stress may be an important etiological factor for carcinogenesis. The purpose of this review is to elucidate the role of oxidative stress in promoting colorectal carcinogenesis and to highlight the potential protective role of antioxidants. Several studies have documented the importance of antioxidants in countering oxidative stress and preventing colorectal carcinogenesis. However, there are conflicting data in the literature concerning its proper use in humans, since these studies did not yield definitive results and were performed mostly in vitro on cell populations, or in vivo in experimental animal models. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  17. Oxidative stress and regulation of Pink1 in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Madhusmita Priyadarshini

    Full Text Available Oxidative stress-mediated neuronal dysfunction is characteristic of several neurodegenerative disorders, including Parkinson's disease (PD. The enzyme tyrosine hydroxylase (TH catalyzes the formation of L-DOPA, the rate-limiting step in the biosynthesis of dopamine. A lack of dopamine in the striatum is the most characteristic feature of PD, and the cause of the most dominant symptoms. Loss of function mutations in the PTEN-induced putative kinase (PINK1 gene cause autosomal recessive PD. This study explored the basic mechanisms underlying the involvement of pink1 in oxidative stress-mediated PD pathology using zebrafish as a tool. We generated a transgenic line, Tg(pink1:EGFP, and used it to study the effect of oxidative stress (exposure to H2O2 on pink1 expression. GFP expression was enhanced throughout the brain of zebrafish larvae subjected to oxidative stress. In addition to a widespread increase in pink1 mRNA expression, mild oxidative stress induced a clear decline in tyrosine hydroxylase 2 (th2, but not tyrosine hydroxylase 1 (th1 expression, in the brain of wild-type larvae. The drug L-Glutathione Reduced (LGR has been associated with anti-oxidative and possible neuroprotective properties. Administration of LGR normalized the increased fluorescence intensity indicating pink1 transgene expression and endogenous pink1 mRNA expression in larvae subjected to oxidative stress by H2O2. In the pink1 morpholino oliogonucleotide-injected larvae, the reduction in the expression of th1 and th2 was partially rescued by LGR. The pink1 gene is a sensitive marker of oxidative stress in zebrafish, and LGR effectively normalizes the consequences of mild oxidative stress, suggesting that the neuroprotective effects of pink1 and LGR may be significant and useful in drug development.

  18. Biochemical basis of the high resistance to oxidative stress in ...

    Indian Academy of Sciences (India)

    Unknown

    581. Keywords. Apoptosis; D. discoideum; oxidative stress; antioxidant enzymes; lipid peroxidation ..... multiple toxic effects of oxidative stress that is related to several pathological conditions ... culture. This work was supported by a grant to RB.

  19. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  20. Oxidative stress and male reproductive health

    Directory of Open Access Journals (Sweden)

    Robert J Aitken

    2014-02-01

    Full Text Available One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, which have a tendency to generate high levels of superoxide anion as a prelude to entering the intrinsic apoptotic cascade. Unfortunately, these cells have very little capacity to respond to such an attack because they only possess the first enzyme in the base excision repair (BER pathway, 8-oxoguanine glycosylase 1 (OGG1. The latter successfully creates an abasic site, but the spermatozoa cannot process the oxidative lesion further because they lack the downstream proteins (APE1, XRCC1 needed to complete the repair process. It is the responsibility of the oocyte to continue the BER pathway prior to initiation of S-phase of the first mitotic division. If a mistake is made by the oocyte at this stage of development, a mutation will be created that will be represented in every cell in the body. Such mechanisms may explain the increase in childhood cancers and other diseases observed in the offspring of males who have suffered oxidative stress in their germ line as a consequence of age, environmental or lifestyle factors. The high prevalence of oxidative DNA damage in the spermatozoa of male infertility patients may have implications for the health of children conceivedin vitro and serves as a driver for current research into the origins of free radical generation in the germ line.

  1. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Directory of Open Access Journals (Sweden)

    Simon Melov

    2007-06-01

    Full Text Available Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD: tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2 die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576 with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  2. Oxidative Stress and Periodontal Disease in Obesity.

    Science.gov (United States)

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  3. Study on the serum oxidative stress status in silicosis patients

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... oxidative stress parameters were investigated in silicosis patients and controls group. 128 silicosis ... to help clinicians to further delineate the role of oxidative- stress .... in age, working duration smoking, total cholesterol, ALT,.

  4. Decreased total antioxidant levels and increased oxidative stress in ...

    African Journals Online (AJOL)

    Background: Chronic hyperglycaemia in diabetes mellitus leads to increased lipid peroxidation in the body, followed by the development of chronic complications due to oxidative stress. Objective: The aim of this study was to compare total antioxidant (TAO) levels and oxidative stress in type 2 diabetes mellitus (T2DM) ...

  5. Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress.

    Science.gov (United States)

    André, Lucas; Gouzi, Fares; Thireau, Jérôme; Meyer, Gregory; Boissiere, Julien; Delage, Martine; Abdellaoui, Aldja; Feillet-Coudray, Christine; Fouret, Gilles; Cristol, Jean-Paul; Lacampagne, Alain; Obert, Philippe; Reboul, Cyril; Fauconnier, Jérémy; Hayot, Maurice; Richard, Sylvain; Cazorla, Olivier

    2011-11-01

    Arrhythmias following cardiac stress are a key predictor of death in healthy population. Carbon monoxide (CO) is a ubiquitous pollutant promoting oxidative stress and associated with hospitalization for cardiovascular disease and cardiac mortality. We investigated the effect of chronic CO exposure on the occurrence of arrhythmic events after a cardiac stress test and the possible involvement of related oxidative stress. Wistar rats exposed chronically (4 weeks) to sustained urban CO pollution presented more arrhythmic events than controls during recovery after cardiac challenge with isoprenaline in vivo. Sudden death occurred in 22% of CO-exposed rats versus 0% for controls. Malondialdehyde (MDA), an end-product of lipid peroxidation, was increased in left ventricular tissue of CO-exposed rats. Cardiomyocytes isolated from CO-exposed rats showed higher reactive oxygen species (ROS) production (measured with MitoSox Red dye), higher diastolic Ca(2+) resulting from SR calcium leak and an higher occurrence of irregular Ca(2+) transients (measured with Indo-1) in comparison to control cells after a high pacing sequence. Acute treatment with a ROS scavenger (N-acetylcysteine, 20 mmol/L, 1 h) prevented this sequence of alterations and decreased the number of arrhythmic cells following high pacing. Chronic CO exposure promotes oxidative stress that alters Ca(2+) homeostasis (through RYR2 and SERCA defects) and thereby mediates the triggering of ventricular arrhythmia after cardiac stress that can lead to sudden death.

  6. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    International Nuclear Information System (INIS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-01

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al 2 O 3 films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively

  7. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Tomoko Kurita-Ochiai

    2015-09-01

    Full Text Available Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.

  8. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    Science.gov (United States)

    Tóthová, L'ubomíra; Celec, Peter

    2017-01-01

    Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status. PMID:29311982

  9. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    Directory of Open Access Journals (Sweden)

    L'ubomíra Tóthová

    2017-12-01

    Full Text Available Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status.

  10. Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (glycine max L.)

    International Nuclear Information System (INIS)

    Hamzyun, M.; Sohn, Eun-Young; Khan, A.L.; Lee, In-Jung

    2010-01-01

    Agricultural industry is subjected to enormous environmental constraints, particularly due to salinity and drought. We evaluated the role of silicon (Si) in alleviating salinity and drought induced physio-hormonal changes in soybean grown in perlite. The plant growth attributes i.e., shoot length, plant fresh weight and dry weight parameters of soybean improved with elevated Si nutrition, while they decreased with NaCl and polyethylene glycol (PEG) application. The adverse effects of NaCl and PEG on plant growth were alleviated by adding 100 mg L/sup -1/ and 200 mg L/sup -1/ Si to salt and drought stressed treatments. It was observed that Si effectively mitigated the adverse effects of NaCl on soybean than that of PEG. The chlorophyll contents were found to be least affected as an insignificant increase was observed with Si application. Bioactive GA1 and GA4 contents of soybean leaves increased, when Si was added to control or stressed plants. Jasmonic acid (JA) contents sharply increased under salinity and drought stress but declined when the plants were supplemented with Si. Similarly, free salicylic acid (SA) level also increased with NaCl and PEG application. However, free SA level further increased with the addition of Si to salt treated plants, but decreased when Si was given to PEG treated plants. It was concluded that Si improves physio-hormonal attributes of soybean and mitigate adverse effects of salt and drought stress. (author)

  11. Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress

    Science.gov (United States)

    Bhatt, Laxit; Joshi, Viraj

    2017-01-01

    Aim: The study was undertaken to evaluate the cardioprotective effect of the alcoholic leaf extract of Mangifera indica L. against cardiac stress caused by doxorubicin (DOX). Materials and Methods: Rats were treated with 100 mg/kg of M. indica leaf extract (MILE) in alone and interactive groups for 21 days. Apart from the normal and MILE control groups, all the groups were subjected to DOX (15 mg/kg, i.p.) toxicity for 21 days and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile, and histopathological evaluation. Results: The MILE treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidants levels. Compared to DOX control group, MILE treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score, and mortality. Conclusion: These findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by DOX. PMID:28894627

  12. Cognitive-behavioral therapy for sleep disturbance decreases inflammatory cytokines and oxidative stress in hemodialysis patients.

    Science.gov (United States)

    Chen, Hung-Yuan; Cheng, I-Chih; Pan, Yi-Ju; Chiu, Yen-Ling; Hsu, Shih-Ping; Pai, Mei-Fen; Yang, Ju-Yeh; Peng, Yu-Sen; Tsai, Tun-Jun; Wu, Kwan-Dun

    2011-08-01

    Sleep disturbance is common in dialysis patients and is associated with the development of enhanced inflammatory responses. Cognitive-behavioral therapy is effective for sleep disturbance and reduces inflammation experienced by peritoneal dialysis patients; however, this has not been studied in hemodialysis patients. To determine whether alleviation of sleep disturbance in hemodialysis patients also leads to less inflammation, we conducted a randomized controlled interventional study of 72 sleep-disturbed hemodialysis patients. Within this patient cohort, 37 received tri-weekly cognitive-behavioral therapy lasting 6 weeks and the remaining 35, who received sleep hygiene education, served as controls. The adjusted post-trial primary outcome scores of the Pittsburgh Sleep Quality Index, the Fatigue Severity Scale, the Beck Depression Inventory, and the Beck Anxiety Inventory were all significantly improved from baseline by therapy compared with the control group. The post-trial secondary outcomes of high-sensitive C-reactive protein, IL-18, and oxidized low-density lipoprotein levels significantly declined with cognitive-behavioral therapy in comparison with the control group. Thus, our results suggest that cognitive-behavioral therapy is effective for correcting disorganized sleep patterns, and for reducing inflammation and oxidative stress in hemodialysis patients.

  13. Oxidative Metabolism Genes Are Not Responsive to Oxidative Stress in Rodent Beta Cell Lines

    Directory of Open Access Journals (Sweden)

    Faer Morrison

    2012-01-01

    Full Text Available Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes. Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study, we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell line. We exposed INS-1 rodent beta cells to low (5.6 mmol/L, ambient (11 mmol/L, and high (28 mmol/L glucose conditions for 48 hours. Increases in oxidative stress were measured using the fluorescent probe dihydrorhodamine 123. We then measured the expression levels of a panel of 90 oxidative metabolism genes by real-time PCR. Elevated reactive oxygen species (ROS production was evident in INS-1 cells after 48 hours (P<0.05. TLDA analysis revealed a significant (P<0.05 upregulation of 16 of the 90 genes under hyperglycemic conditions, although these expression differences did not reflect differences in ROS. We conclude that although altered glycemia may influence the expression of some oxidative metabolism genes, this effect is probably not mediated by increased ROS production. The alterations to the expression of oxidative metabolism genes previously observed in human diabetic skeletal muscle do not appear to be mirrored in rodent pancreatic beta cells.

  14. Melatonin inhibits snake venom and antivenom induced oxidative stress and augments treatment efficacy.

    Science.gov (United States)

    Sharma, Rachana D; Katkar, Gajanan D; Sundaram, Mahalingam S; Swethakumar, Basavarajaiah; Girish, Kesturu S; Kemparaju, Kempaiah

    2017-05-01

    Snakebite is a neglected health hazard. Its patho-physiology has largely been focused on systemic and local toxicities; whereas, venom and antivenom induced oxidative stress has long been ignored. Antivenom therapy although neutralizes venom lethality and saves many lives, remains ineffective against oxidative stress. This prompted us to complement antivenom with an antioxidant molecule melatonin that would protect against oxidative stress and increase the efficacy of the existing snakebite therapy. Here we show that D. russelli and E. carinatus venoms induce strong oxidative stress that persists even after antivenom administration in mice model. Additionally, antivenoms also induce oxidative stress. Polyvalent antivenom induce more oxidative stress than monovalent antivenom. Strikingly, antivenom and melatonin together not only inhibit venom and antivenom induced oxidative stress but also significantly reduce the neutralizing antivenom dose. This study provides a therapeutic potential for enhancing the existing snakebite therapy. The combined treatment of antivenom+melatonin would prevent the upsurge of oxidative stress as well as minimize the antivenom load. Thus the investigation offers immense scope for physicians and toxinologists to reinvestigate, design new strategies and think beyond the conventional mode of antivenom therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    Science.gov (United States)

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Protective effects of flavonoids from corn silk on oxidative stress ...

    African Journals Online (AJOL)

    Protective effects of flavonoids from corn silk on oxidative stress induced by ... The present study aims at exploring the effects of flavonoids from corn silk (FCS) on oxidative stress induced by exhaustive exercise in mice. ... from 32 Countries:.

  17. Role of Magnesium in Oxidative Stress in Individuals with Obesity.

    Science.gov (United States)

    Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; Santos, Loanne Rocha Dos; de Sousa Melo, Stéfany Rodrigues; de Oliveira Santos, Raisa; de Oliveira, Ana Raquel Soares; Cruz, Kyria Jayanne Clímaco; do Nascimento Marreiro, Dilina

    2017-03-01

    Adipose tissue is considered an endocrine organ that promotes excessive production of reactive oxygen species when in excess, thus contributing to lipid peroxidation. Magnesium deficiency contributes to the development of oxidative stress in obese individuals, as this mineral plays a role as an antioxidant, participates as a cofactor of several enzymes, maintains cell membrane stability and mitigates the effects of oxidative stress. The objective of this review is to bring together updated information on the participation of magnesium in the oxidative stress present in obesity. We conducted a search of articles published in the PubMed, SciELO and LILACS databases, using the keywords 'magnesium', 'oxidative stress', 'malondialdehyde', 'superoxide dismutase', 'glutathione peroxidase', 'reactive oxygen species', 'inflammation' and 'obesity'. The studies show that obese subjects have low serum concentrations of magnesium, as well as high concentrations of oxidative stress marker in these individuals. Furthermore, it is evident that the adequate intake of magnesium contributes to its appropriate homeostasis in the body. Thus, this review of current research can help define the need for intervention with supplementation of this mineral for the prevention and treatment of disorders associated with this chronic disease.

  18. A study of oxidative stress in paucibacillary and multibacillary leprosy

    Directory of Open Access Journals (Sweden)

    Jyothi P

    2008-01-01

    Full Text Available Background: The study and assessment of oxidative stress plays a significant role in the arena of leprosy treatment. Once the presence of oxidative stress is proved, antioxidant supplements can be provided to reduce tissue injury and deformity. Aim: To study oxidative stress in paucibacillary (PB and multibacillary (MB leprosy and to compare it with that in a control group. Methods: Fifty-eight untreated leprosy patients (23 PB and 35 MB cases were studied and compared with 58 healthy controls. Superoxide dismutase (SOD level as a measure of antioxidant status; malondialdehyde (MDA level, an indicator of lipid peroxidation; and MDA/SOD ratio, an index of oxidative stress were estimated in the serum. Results: The SOD level was decreased in leprosy patients, especially in MB leprosy. The MDA level was increased in PB and MB leprosy. The MDA/SOD ratio was significantly elevated in MB patients. There was a steady increase in this ratio along the spectrum from tuberculoid to lepromatous leprosy (LL. Conclusion: There is increased oxidative stress in MB leprosy, especially in LL. This warrants antioxidant supplements to prevent tissue injury.

  19. Inhibition of inflammation and oxidative stress by an imidazopyridine derivative X22 prevents heart injury from obesity.

    Science.gov (United States)

    Qian, Yuanyuan; Zhang, Yali; Zhong, Peng; Peng, Kesong; Xu, Zheng; Chen, Xuemei; Lu, Kongqin; Chen, Gaozhi; Li, Xiaokun; Liang, Guang

    2016-08-01

    Inflammation and oxidative stress plays an important role in the development of obesity-related complications and cardiovascular disease. Benzimidazole and imidazopyridine compounds are a class of compounds with a variety of activities, including anti-inflammatory, antioxidant and anti-cancer. X22 is an imidazopyridine derivative we synthesized and evaluated previously for anti-inflammatory activity in lipopolysaccharide-stimulated macrophages. However, its ability to alleviate obesity-induced heart injury via its anti-inflammatory actions was unclear. This study was designed to evaluate the cardioprotective effects of X22 using cell culture studies and a high-fat diet rat model. We observed that palmitic acid treatment in cardiac-derived H9c2 cells induced a significant increase in reactive oxygen species, inflammation, apoptosis, fibrosis and hypertrophy. All of these changes were inhibited by treatment with X22. Furthermore, oral administration of X22 suppressed high-fat diet-induced oxidative stress, inflammation, apoptosis, hypertrophy and fibrosis in rat heart tissues and decreased serum lipid concentration. We also found that the anti-inflammatory and anti-oxidative actions of X22 were associated with Nrf2 activation and nuclear factor-kappaB (NF-κB) inhibition, respectively, both in vitro and in vivo. The results of this study indicate that X22 may be a promising cardioprotective agent and that Nrf2 and NF-κB may be important therapeutic targets for obesity-related complications. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. The Role of Oxidative Stress in Aging and Dementia

    Directory of Open Access Journals (Sweden)

    Joana Teixeira

    2014-12-01

    Full Text Available Introduction: Biologic aging is a process, and oxidative stress theory, which is one of the most accepted biological theories for aging, states that oxidative stress causes cumulative damage to mitochondrial DNA resulting in cellular senescence. Dementia is a neurodegenerative disorder whose major risk factor is aging. Although the exact neuronal lesion mechanisms underlying neurodegenerative disorders, including dementia, are not yet known, most recent studies suggest oxidative stress and mitochondrial dynamics’ role in the process.Objective: Literature review on the role of oxidative stress’ role in aging and dementia.Methods: Literature review of selected arti-cles and books deemed relevant by the authors, supplemented by Medline/Pubmed database search using combinations of the following key-words: “oxidative stress”, “de-mentia”, “aging” and “pathogenesis”, published between 1950 and 2013. References of the selected articles and books were also considered.Results: In the last five years new research has been undertaken that enlightens the relation between oxidative stress and aging. One of the considered hypotheses states that during aging, the homeostatic regulation of biogenesis, dynamics and autophagic turnover of mitochondria disturbs their functioning, resulting in cellular senescence. Consequently, the oxidative burden may reach a critical threshold above which apoptosis is triggered, leading to irreversible mitochondrial derangement and cellular death. Although the exact neuronal lesion mechanisms underlying dementias are not known, multiple studies have consistently found increased oxidative damage in brain of patients with Alzheimer disease and recent data suggests involvement of mitochondrial dynamics in dementia processes, such as in aging.Conclusions: Most recent studies suggest the role of oxidative stress and mitochondrial dynamics’ in aging and dementia, either directly or

  1. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Oxidative stress in Alzheimer disease: a possibility for prevention.

    Science.gov (United States)

    Bonda, David J; Wang, Xinglong; Perry, George; Nunomura, Akihiko; Tabaton, Massimo; Zhu, Xiongwei; Smith, Mark A

    2010-01-01

    Oxidative stress is at the forefront of Alzheimer disease (AD) research. While its implications in the characteristic neurodegeneration of AD are vast, the most important aspect is that it seems increasingly apparent that oxidative stress is in fact a primary progenitor of the disease, and not merely an epiphenomenon. Moreover, evidence indicates that a long "dormant period" of gradual oxidative damage accumulation precedes and actually leads to the seemingly sudden appearance of clinical and pathological AD symptoms, including amyloid-beta deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. These findings provide important insights into the development of potential treatment regimens and even allude to the possibility of a preventative cure. In this review, we elaborate on the dynamic role of oxidative stress in AD and present corresponding treatment strategies that are currently under investigation. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Oxidative stress and maternal obesity: feto-placental unit interaction.

    Science.gov (United States)

    Malti, N; Merzouk, H; Merzouk, S A; Loukidi, B; Karaouzene, N; Malti, A; Narce, M

    2014-06-01

    To determine oxidative stress markers in maternal obesity during pregnancy and to evaluate feto-placental unit interaction, especially predictors of fetal metabolic alterations. 40 obese pregnant women (prepregnancy BMI > 30 kg/m²) were compared to 50 control pregnant women. Maternal, cord blood and placenta samples were collected at delivery. Biochemical parameters (total cholesterol and triglycerides) and oxidative stress markers (malondialdehyde, carbonyl proteins, superoxide anion expressed as reduced Nitroblue Tetrazolium, nitric oxide expressed as nitrite, reduced glutathione, catalase, superoxide dismutase) were assayed by biochemical methods. Maternal, fetal and placental triglyceride levels were increased in obese group compared to control. Maternal malondialdehyde, carbonyl proteins, nitric oxide and superoxide anion levels were high while reduced glutathione concentrations and superoxide dismutase activity were low in obesity. In the placenta and in newborns of these obese mothers, variations of redox balance were also observed indicating high oxidative stress. Maternal and placental interaction constituted a strong predictor of fetal redox variations in obese pregnancies. Maternal obesity compromised placental metabolism and antioxidant status which strongly impacted fetal redox balance. Oxidative stress may be one of the key downstream mediators that initiate programming of the offspring. Maternal obesity is associated with metabolic alterations and dysregulation of redox balance in the mother-placenta - fetus unit. These perturbations could lead to maternal and fetal complications and should be carefully considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Oxidative stress in hepatitis C infected end-stage renal disease subjects

    OpenAIRE

    Koylu Ahmet O; Aslan Mehmet; Bolukbas Filiz F; Bolukbas Cengiz; Horoz Mehmet; Selek Sahbettin; Erel Ozcan

    2006-01-01

    Abstract Background Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Methods Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Results T...

  5. The role of oxidative stress in nervous system aging.

    Directory of Open Access Journals (Sweden)

    Catrina Sims-Robinson

    Full Text Available While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/- mice, a mouse model of increased oxidative stress. Sod1(-/- mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+ mice at 30 months and the Sod1(-/- mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  6. The role of oxidative stress in nervous system aging.

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  7. Accelerated aging in schizophrenia patients: the potential role of oxidative stress.

    Science.gov (United States)

    Okusaga, Olaoluwa O

    2014-08-01

    Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.

  8. Silymarin and Nigella sativa extract ameliorate paracetamol induced oxidative stress and renal dysfunction in male mice

    Directory of Open Access Journals (Sweden)

    Reham Zakaria Hamza

    2015-06-01

    Full Text Available Objective: To evaluate the ameliorative role of silymarin or/and Nigella sativa (N. sativa water extract against N-acetyl-p-aminophenol (APAP-induced renal function deterioration in male mice at the biochemical levels. Methods: The mice were divided into seven groups (10/group. The first group was served as control. The second group was treated with dose of APAP. The third and fourth groups were treated with silymarin alone and N. sativa water extract alone, respectively. The fifth and sixth groups were treated with combination of APAP with silymarin and APAP with N. sativa water extract, respectively. The seventh group was treated with a combination of both ameliorative compounds (silymarin and N. sativa water extract with APAP and all animals were treated for a period of 30 days. Results: Exposure to APAP at the treated dose for mice led to an alteration of kidney function parameters, increase in the level of serum urea and creatinine. Also, paracetamol administration induced oxidative stress in kidney homogenates by increasing malondialdhyde level and decreasing superoxide dismutase and catalase activities and this stress was ameliorated by administration of either silymarin or N. sativa water extract. Conclusions: Administration of silymarin or/and N. sativa water extract to APAP-treated mice alleviate the toxicity of APAP, and this appeared clearly by biochemical improvement of kidney function parameters and antioxidant parameters. But, the alleviation is more pronounced with the both antioxidants. Thus, the pronounce effect of silymarin and N. sativa water extract is most effective in reducing the toxicity induced by APAP and improving the kidney function parameters and antioxidant status of kidney of male mice.

  9. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    Science.gov (United States)

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  10. Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis

    NARCIS (Netherlands)

    Conde de la Rosa, Laura; Vrenken, Titia E; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    The majority of chronic liver diseases are accompanied by oxidative stress, which induces apoptosis in hepatocytes and liver injury. Recent studies suggest that oxidative stress and insulin resistance are important in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the

  11. Long-term stability of oxidative stress biomarkers in human serum.

    NARCIS (Netherlands)

    Jansen, Eugène H J M; Beekhof, Piet K; Viezeliene, Dale; Muzakova, Vladimira; Skalicky, Jiri

    2017-01-01

    The storage time and storage temperature might affect stability of oxidative stress biomarkers, therefore, they have to be analyzed after long-term storage of serum samples. The stability of three biomarkers reflecting oxidative stress: reactive oxygen metabolites (ROM) for hydroperoxides, total

  12. The Protective Effect of Antarctic Krill Oil on Cognitive Function by Inhibiting Oxidative Stress in the Brain of Senescence-Accelerated Prone Mouse Strain 8 (SAMP8) Mice.

    Science.gov (United States)

    Li, Qian; Wu, Fengjuan; Wen, Min; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming

    2018-02-01

    Alzheimer's disease (AD) is a common neurodegenerative disorder, and oxidative stress plays a vital role in its progression. Antarctic krill oil (AKO) is rich in polyunsaturated fatty acids, which has various biological activities, such as improving insulin sensitivity, alleviating inflammation and ameliorating oxidative stress. In this study, the protective effect of AKO against AD were investigated in senescence-accelerated prone mouse strain 8 (SAMP8) mice. Results showed that treatment with AKO could effectively ameliorate learning and memory deficits and ease the anxiety in SAMP8 mice by Morris water maze, Barnes maze test and open-field test. Further analysis indicated that AKO might reduce β-amyloid (Aβ) accumulation in hippocampus through decreasing the contents of malondialdehyde (MDA) and 7,8-dihydro-8-oxoguanine (8-oxo-G), increasing the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the brain of SAMP8 mice. The results of Morris water maze, Barnes maze test and open-field test indicated that Antarctic krill oil (AKO) improved the cognitive function and anxiety of SAMP8 mice. AKO reduced the Aβ 42 level in hippocampus of SAMP8 mice. AKO ameliorated oxidative stress in brain rather than in serum and liver of SAMP8 mice. © 2018 Institute of Food Technologists®.

  13. Oxidative Stress in Human Atherothrombosis: Sources, Markers and Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Jose Luis Martin-Ventura

    2017-11-01

    Full Text Available Atherothrombosis remains one of the main causes of morbidity and mortality worldwide. The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving several pathways, including oxidative stress. Cellular and animal studies have provided compelling evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase is one of the main sources of reactive oxygen species (ROS in human atherothrombosis. Moreover, leukocyte-derived myeloperoxidase (MPO and red blood cell-derived iron could be involved in the oxidative modification of lipids/lipoproteins (LDL/HDL in the arterial wall. Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss the impact of these oxidative systems on LDL and HDL, as well as the value of these modified lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological vascular remodeling.

  14. [Biological consequences of oxidative stress induced by pesticides].

    Science.gov (United States)

    Grosicka-Maciąg, Emilia

    2011-06-17

    Pesticides are used to protect plants and numerous plant products. They are also utilized in several industrial branches. These compounds are highly toxic to living organisms. In spite of close supervision in the use of pesticides there is a serious risk that these agents are able to spread into the environment and contaminate water, soil, food, and feedstuffs. Recently, more and more studies have been focused on understanding the toxic mechanisms of pesticide actions. The data indicate that the toxic action of pesticides may include the induction of oxidative stress and accumulation of free radicals in the cell. Long-lasting or acute oxidative stress disturbs cell metabolism and is able to produce permanent changes in the structure of proteins, lipids, and DNA. The proteins that are oxidized may lose or enhance their activity. Moreover, the proteins oxidized are able to form aggregates that inhibit the systems responsible for protein degradation and lead to alterations of proteins in the cell. Once oxidized, lipids have the capacity to damage and depolarize cytoplasmic membranes. Free oxygen radicals are harmful to DNA including damage to single nitric bases, DNA strand breaks and adduct production. Many studies indicate that oxidative stress may accelerate development of numerous diseases including cancer and neurodegenerative ones such as Alzheimer’s and Parkinson’s disease and may also be responsible for infertility.

  15. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    Science.gov (United States)

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Oxidative stress and the effect of parasites on a carotenoid-based ornament.

    Science.gov (United States)

    Mougeot, F; Martínez-Padilla, J; Blount, J D; Pérez-Rodríguez, L; Webster, L M I; Piertney, S B

    2010-02-01

    Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individual's ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.

  18. Muscle Aging and Oxidative Stress in Wild-Caught Shrews

    Science.gov (United States)

    Hindle, Allyson G.; Lawler, John M.; Campbell, Kevin L.; Horning, Markus

    2010-01-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free radical theory of aging in wild mammals, given their short (<18 month) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2× higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews. PMID:20109576

  19. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

    Science.gov (United States)

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

  20. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  1. Asymmetrical cross-talk between the endoplasmic reticulum stress and oxidative stress caused by dextrose.

    Science.gov (United States)

    Mooradian, Arshag D; Onstead-Haas, Luisa; Haas, Michael J

    2016-01-01

    Oxidative and endoplasmic reticulum (ER) stresses are implicated in premature cardiovascular disease in people with diabetes. The aim of the present study was to characterize the nature of the interplay between the oxidative and ER stresses to facilitate the development of therapeutic agents that can ameliorate these stresses. Human coronary artery endothelial cells were treated with varying concentrations of dextrose in the presence or absence of three antioxidants (alpha tocopherol, ascorbate and ebselen) and two ER stress modifiers (ERSMs) (4-phenylbutyrate and taurodeoxycholic acid). ER stress was measured using the placental alkaline phosphatase assay and superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence. The SO generation was increased with increasing concentrations of dextrose. The ER stress was increased with both low (0 and 2.75 mM) and high (13.75 and 27.5 mM) concentrations of dextrose. The antioxidants inhibited the dextrose induced SO production while in high concentrations they aggravated ER stress. The ERSM reduced ER stress and potentiated the efficacy of the three antioxidants. Tunicamycin-induced ER stress was not associated with increased SO generation. Time course experiments with a high concentration of dextrose or by overexpressing glucose transporter one in endothelial cells revealed that dextrose induced SO generation undergoes adaptive down regulation within 2 h while the ER stress is sustained throughout 72 h of observation. The nature of the cross talk between oxidative stress and ER stress induced by dextrose may explain the failure of antioxidant therapy in reducing diabetes complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Chemometrics models for assessment of oxidative stress risk in chrome-electroplating workers.

    Science.gov (United States)

    Zendehdel, Rezvan; Shetab-Boushehri, Seyed Vahid; Azari, Mansoor R; Hosseini, Vajihe; Mohammadi, Hamidreza

    2015-04-01

    Oxidative stress is the main cause of hexavalant chromium-induced damage in chrome electroplating workers. The main goal of this study is toxicity analysis and the possibility of toxicity risk categorizing in the chrome electroplating workers based on oxidative stress parameters as prognostic variables. We assessed blood chromium levels and biomarkers of oxidative stress such as lipid peroxidation, thiol (SH) groups and antioxidant capacity of plasma. Data were subjected to principle component analysis (PCA) and artificial neuronal network (ANN) to obtain oxidative stress pattern for chrome electroplating workers. Blood chromium levels increased from 4.42 ppb to 10.6 ppb. Induction of oxidative stress was observed by increased in lipid peroxidation (22.38 ± 10.47 μM versus 14.74 ± 4.82 μM, p chrome electroplaters. The result showed multivariate modeling can be interpreted as the induced biochemical toxicity in the workers exposed to hexavalent chromium. Different occupation groups were assessed on the basis of risk level of oxidative stress which could further justify proceeding engineering control measures.

  3. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

    Science.gov (United States)

    Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei

    2017-06-18

    Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

  4. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.

    Science.gov (United States)

    Botella, Jose A; Ulschmid, Julia K; Gruenewald, Christoph; Moehle, Christoph; Kretzschmar, Doris; Becker, Katja; Schneuwly, Stephan

    2004-05-04

    A growing body of evidence suggests that oxidative stress is a common underlying mechanism in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Huntington's, Creutzfeld-Jakob and Parkinson's diseases. Despite the increasing number of reports finding a causal relation between oxidative stress and neurodegeneration, little is known about the genetic elements that confer protection against the deleterious effects of oxidation in neurons. We have isolated and characterized the Drosophila melanogaster gene sniffer, whose function is essential for preventing age-related neurodegeneration. In addition, we demonstrate that oxidative stress is a direct cause of neurodegeneration in the Drosophila central nervous system and that reduction of sniffer activity leads to neuronal cell death. The overexpression of the gene confers neuronal protection against oxygen-induced apoptosis, increases resistance of flies to experimental normobaric hyperoxia, and improves general locomotor fitness. Sniffer belongs to the family of short-chain dehydrogenase/reductase (SDR) enzymes and exhibits carbonyl reductase activity. This is the first in vivo evidence of the direct and important implication of this enzyme as a neuroprotective agent in the cellular defense mechanisms against oxidative stress.

  5. Effect of extracts from Ixeris dentata on radiation-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Youn, Y. D. [Hanyang Univ., Seoul (Korea, Republic of); Woo, H. J.; Kim, J. G. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Extracts from different parts (root or leaf) of Ixeris dentata and with different extraction method (using water or ethanol) were examined for their potential depense against oxidative stress. It is famous as a remedial material for alleviation of fever, hematopoiesis, pneumonia and inflammation of the liver in folk medicine. The present study was designed to explore in vivo the antioxidant effects of water - and ethanol- extracts of I. dentata. The extracts of the plant were tested for their free radical scavenging activity with the DPPH assay. For the in vivo studies, male F344 rats (3 week - old) received po administration of both extracts 0.5 mg/ml during 5 days before whole- body irradiation. Six hours after irradiation, we measured the body and organ weight and collected blood. The levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT ) and lactate dehydrogenase (LDH), alkaline phosphatase (ALP) showed a similar pattern six hours after irradiation. In case of water extracts - dietary group after irradiation, the levels of all enzymes has a tendency to decrease toward to base levels. Therefore, the results reflects the antioxidant activity of I. dentata extracts and its potential to protect against radiation damage.

  6. Haptoglobin is required to prevent oxidative stress and muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Enrico Bertaggia

    Full Text Available BACKGROUND: Oxidative stress (OS plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. RESULTS: We used Hp knockout mice (Hp-/- to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD, OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. CONCLUSIONS: Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges.

  7. Oxidative stress and life histories: unresolved issues and current needs.

    Science.gov (United States)

    Speakman, John R; Blount, Jonathan D; Bronikowski, Anne M; Buffenstein, Rochelle; Isaksson, Caroline; Kirkwood, Tom B L; Monaghan, Pat; Ozanne, Susan E; Beaulieu, Michaël; Briga, Michael; Carr, Sarah K; Christensen, Louise L; Cochemé, Helena M; Cram, Dominic L; Dantzer, Ben; Harper, Jim M; Jurk, Diana; King, Annette; Noguera, Jose C; Salin, Karine; Sild, Elin; Simons, Mirre J P; Smith, Shona; Stier, Antoine; Tobler, Michael; Vitikainen, Emma; Peaker, Malcolm; Selman, Colin

    2015-12-01

    Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting

  8. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice. © 2013 The Authors Journal compilation © 2013 FEBS.

  9. The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Wang, Xiao-Li; Li, Ting; Li, Ji-Hong; Miao, Shu-Ying; Xiao, Xian-Zhong

    2017-09-12

    Oxidative stress and inflammation are hypothesized to contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD). Resveratrol (trans-3,5,4'-trihydroxystilbene) is known for its antioxidant and anti-inflammatory properties. The study aimed to investigate the effects of resveratrol in a rat model with COPD on the regulation of oxidative stress and inflammation via the activation of Sirtuin1 (SIRTl) and proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thirty Wistar rats were randomly divided into three groups: control group, COPD group and resveratrol intervention group. The COPD model was established by instilling with lipopolysaccharide (LPS) and challenging with cigarette smoke (CS). The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) in serum were measured. The levels of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured. The expression levels of SIRT1 and PGC-1α in the lung tissues were examined by immunohistochemistry as well as real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) and western blotting analysis. After the treatment with resveratrol (50 mg/kg), compared with the COPD group, alleviation of inflammation and reconstruction in the small airways of the lungs were seen. Resveratrol might be correlated not only with the lower level of MDA and the higher activity of SOD, but also with the upregulation of SIRT1 and PGC-1α expression. Resveratrol treatment decreased serum levels of IL-6 and IL-8. Our findings indicate that resveratrol had a therapeutic effect in our rat COPD model, which is related to the inhibition of oxidative stress and inflammatory response. The mechanism may be related to the activation and upgrading of the SIRT1/PGC-1α signaling pathways. Thus resveratrol might be a therapeutic modality in COPD.

  10. Finite element modelling of the oxidation kinetics of Zircaloy-4 with a controlled metal-oxide interface and the influence of growth stress

    International Nuclear Information System (INIS)

    Zumpicchiat, Guillaume; Pascal, Serge; Tupin, Marc; Berdin-Méric, Clotilde

    2015-01-01

    Highlights: We developed two finite element models of zirconium-based alloy oxidation using the CEA Cast3M code to simulate the oxidation kinetics of Zircaloy-4: the diffuse interface model and the sharp interface model. We also studied the effect of stresses on the oxidation kinetics. The main results are: • Both models lead to parabolic oxidation kinetics in agreement with the Wagner’s theory. • The modellings enable to calculate the stress distribution in the oxide as well as in the metal. • A strong effect of the hydrostatic stress on the oxidation kinetics has been evidenced. • The stress gradient effect changes the parabolic kinetics into a sub-parabolic law closer to the experimental kinetics because of the stress gradient itself, but also because of the growth stress increase with the oxide thickness. - Abstract: Experimentally, zirconium-based alloys oxidation kinetics is sub-parabolic, by contrast with the Wagner theory which predicts a parabolic kinetics. Two finite element models have been developed to simulate this phenomenon: the diffuse interface model and the sharp interface model. Both simulate parabolic oxidation kinetics. The growth stress effects on oxygen diffusion are studied to try to explain the gap between theory and experience. Taking into account the influence of the hydrostatic stress and its gradient into the oxygen flux expression, sub-parabolic oxidation kinetics have been simulated. The sub-parabolic behaviour of the oxidation kinetics can be explained by a non-uniform compressive stress level into the oxide layer.

  11. Alleviation of adverse impact of salt in Phaseolus vulgaris L. by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Allah, E.F.; Alqarawi, A.A.

    2015-01-01

    The present study was undertaken to evaluate the possible role of arbuscular mycorrhizal fungi (AMF) in enhancing the salt (0, 0.15; 0.25 M NaCl) tolerance in Phaselous vulgaris. The impact of AMF in presence and absence of salt stress was studied on growth, nodulation, and attributes of systemic acquired resistance in P. vulgaris. The results suggested that salinity caused significant decrease in growth performance, nodulation, pigment system, tissue water content, and membrane stability index. Also, salt stress caused significant decrease in phytohormones , polyamines, membrane stability index and tissue water content of P. vulgaris. On the other hand, lipid peroxidation (malondialdehyde), total phenol content and antioxidant enzymes (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione reductase) increases as salt concentration increases. The accumulations of sodium, chlorine were significantly increased by salt stress, however the concentration of potassium, phosphorous and calcium decreased. Overall, the results indicate that AMF alleviate the adverse impact of salinity on the plant growth, anabolic physiological attributes and nutrient uptake by reducing the oxidative damage of salt through strengthening and modulation the systemic acquired resistance. (author)

  12. Oxidative Stress in Oral Diseases: Understanding Its Relation with Other Systemic Diseases

    Directory of Open Access Journals (Sweden)

    Jaya Kumar

    2017-09-01

    Full Text Available Oxidative stress occurs in diabetes, various cancers, liver diseases, stroke, rheumatoid arthritis, chronic inflammation, and other degenerative diseases related to the nervous system. The free radicals have deleterious effect on various organs of the body. This is due to lipid peroxidation and irreversible protein modification that leads to cellular apoptosis or programmed cell death. During recent years, there is a rise in the oral diseases related to oxidative stress. Oxidative stress in oral disease is related to other systemic diseases in the body such as periodontitis, cardiovascular, pancreatic, gastric, and liver diseases. In the present review, we discuss the various pathways that mediate oxidative cellular damage. Numerous pathways mediate oxidative cellular damage and these include caspase pathway, PERK/NRF2 pathway, NADPH oxidase 4 pathways and JNK/mitogen-activated protein (MAP kinase pathway. We also discuss the role of inflammatory markers, lipid peroxidation, and role of oxygen species linked to oxidative stress. Knowledge of different pathways, role of inflammatory markers, and importance of low-density lipoprotein, fibrinogen, creatinine, nitric oxide, nitrates, and highly sensitive C-reactive proteins may be helpful in understanding the pathogenesis and plan better treatment for oral diseases which involve oxidative stress.

  13. Zearalenone altered the cytoskeletal structure via ER stress- autophagy- oxidative stress pathway in mouse TM4 Sertoli cells.

    Science.gov (United States)

    Zheng, Wanglong; Wang, Bingjie; Si, Mengxue; Zou, Hui; Song, Ruilong; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Zhu, Guoqiang; Bai, Jianfa; Bian, Jianchun; Liu, ZongPing

    2018-02-20

    The aim of this study was to investigate the molecular mechanisms of the destruction of cytoskeletal structure by Zearalenone (ZEA) in mouse-derived TM4 cells. In order to investigate the role of autophagy, oxidative stress and endoplasmic reticulum(ER) stress in the process of destruction of cytoskeletal structure, the effects of ZEA on the cell viability, cytoskeletal structure, autophagy, oxidative stress, ER stress, MAPK and PI3K- AKT- mTOR signaling pathways were studied. The data demonstrated that ZEA damaged the cytoskeletal structure through the induction of autophagy that leads to the alteration of cytoskeletal structure via elevated oxidative stress. Our results further showed that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in TM4 cells. In addition, ZEA also induced the ER stress which was involved in the induction of the autophagy through inhibiting the ERK signal pathway to suppress the phosphorylation of mTOR. ER stress was involved in the damage of cytoskeletal structure through induction of autophagy by producing ROS. Taken together, this study revealed that ZEA altered the cytoskeletal structure via oxidative stress - autophagy- ER stress pathway in mouse TM4 Sertoli cells.

  14. Selenium Pretreatment Alleviated LPS-Induced Immunological Stress Via Upregulation of Several Selenoprotein Encoding Genes in Murine RAW264.7 Cells.

    Science.gov (United States)

    Wang, Longqiong; Jing, Jinzhong; Yan, Hui; Tang, Jiayong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Tian, Gang; Cai, Jingyi; Shang, Haiying; Zhao, Hua

    2018-04-18

    This study was conducted to profile selenoprotein encoding genes in mouse RAW264.7 cells upon lipopolysaccharide (LPS) challenge and integrate their roles into immunological regulation in response to selenium (Se) pretreatment. LPS was used to develop immunological stress in macrophages. Cells were pretreated with different levels of Se (0, 0.5, 1.0, 1.5, 2.0 μmol Se/L) for 2 h, followed by LPS (100 ng/mL) stimulation for another 3 h. The mRNA expression of 24 selenoprotein encoding genes and 9 inflammation-related genes were investigated. The results showed that LPS (100 ng/mL) effectively induced immunological stress in RAW264.7 cells with induced inflammation cytokines, IL-6 and TNF-α, mRNA expression, and cellular secretion. LPS increased (P immunological stress in RAW264.7 cells accompanied with the global downregulation of selenoprotein encoding genes and Se pretreatment alleviated immunological stress via upregulation of a subset of selenoprotein encoding genes.

  15. Oxidative stress status in elite athletes engaged in different sport disciplines.

    Science.gov (United States)

    Hadžović-Džuvo, Almira; Valjevac, Amina; Lepara, Orhan; Pjanić, Samra; Hadžimuratović, Adnan; Mekić, Amel

    2014-05-01

    Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players): 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP) and malondialdehyde (MDA), as markers of oxidative stress and the total antioxidative capacity (ImAnOX) using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0 ± 23.0 vs. 68.5 ± 30.8 and 80.72 ± 29.1 μmol/L respectively). Mean ImAnOX concentration was not different between soccer players (344.8 ± 35.6 μmol/L), wrestlers (342.5 ± 36.2 μmol/L) and basketball players (347.95 ± 31.3 μmol/L). Mean MDA concentration was significantly higher in basketball players (1912.1 ± 667.7 ng/mL) compared to soccer players (1060.1 ± 391.0 ng/mL, p=0.003). In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball) have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime.

  16. Oxidative stress status in elite athletes engaged in different sport disciplines

    Directory of Open Access Journals (Sweden)

    Almira Hadžović - Džuvo

    2014-05-01

    Full Text Available Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players: 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP and malondialdehyde (MDA, as markers of oxidative stress and the total antioxidative capacity (ImAnOX using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0 ± 23.0 vs. 68.5 ± 30.8 and 80.72 ± 29.1 μmol/L respectively. Mean ImAnOX concentration was not different between soccer players (344.8 ± 35.6 μmol/L, wrestlers (342.5 ± 36.2 μmol/L and basketball players (347.95 ± 31.3 μmol/L. Mean MDA concentration was significantly higher in basketball players (1912.1 ± 667.7 ng/mL compared to soccer players (1060.1 ± 391.0 ng/mL, p=0.003. In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime.

  17. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    Science.gov (United States)

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  18. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina

    2012-01-01

    of these proteins by MALDI tandem mass spectrometry (MALDI MS/MS). As a result we obtained 24 different proteins which can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified......, ubiquitinated proteins confirm the thesis that ubiquitination upon oxidative stress is no random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins....

  19. Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) grown under ambient and elevated CO2

    DEFF Research Database (Denmark)

    Zhu, X.; Song, F.; Liu, S.

    2016-01-01

    fungi enhanced NUE by altering plant C assimilation and N uptake. AM plants had higher soluble sugar concentration and [K+]: [Na+] ratio compared with non-AM plants. It is concluded that AM symbiosis improves wheat plant growth at vegetative stages through increasing stomatal conductance, enhancing NUE...... role of AM fungus in alleviating salinity stress in wheat (Triticum aestivum L.) plants grown under ambient and elevated CO2 concentrations. Wheat plants inoculated or not inoculated with AM fungus were grown in two glasshouses with different CO2 concentrations (400 and 700 μmol l−1) and salinity......, accumulating soluble sugar, and improving ion homeostasis in wheat plants grown at elevated CO2 and salinity stress....

  20. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  1. Heme oxygenase-1 delays gibberellin-induced programmed cell death of rice aleurone layers subjected to drought stress by interacting with nitric oxide

    Directory of Open Access Journals (Sweden)

    Huangming eWu

    2016-01-01

    Full Text Available Cereal aleurone layers undergo a gibberellin (GA-regulated process of programmed cell death (PCD following germination. Heme oxygenase-1 (HO-1 is known as a rate-liming enzyme in the degradation of heme to biliverdin IXα (BV, carbon monoxide (CO, and free iron ions (Fe2+. It is a critical component in plant development and adaptation to environment stresses. Our previous studies confirmed that HO-1 inducer hematin (Ht promotes the germination of rice seeds in drought (20% polyethylene glycol-6000, PEG conditions, but the corresponding effects of HO-1 on the alleviation of germination-triggered PCD in GA-treated rice aleurone layers remain unknown. The present study has determined that GA co-treated with PEG results in lower HO-1 transcript levels and HO activity, which in turn results in the development of vacuoles in aleurone cells, followed by PCD. The pharmacology approach illustrated that up- or down-regulated HO-1 gene expression and HO activity delayed or accelerated GA-induced PCD. Furthermore, the application of the HO-1 inducer hematin and nitric oxide (NO donor sodium nitroprusside (SNP not only activated HO-1 gene expression, HO activity, and endogenous NO content, but also blocked GA-induced rapid vacuolation and accelerated aleurone layers PCD under drought stress. However, both HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX and NO scavenger 2-(4-carboxyphenyl0-4, 4, 5, 5-tetramethylimidazoline-l-oxyl-3-oxide potassium salt (cPTIO reserved the effects of hematin and SNP on rice aleurone layer PCD under drought stress by down-regulating endogenous HO-1 and NO, respectively. The inducible effects of hematin and SNP on HO-1 gene expression, HO activity, and NO content were blocked by cPTIO. Together, these results clearly suggest that HO-1 is involved in the alleviation of GA-induced PCD of drought-triggered rice aleurone layers by associating with NO.

  2. The Role of Oxidative Stress in Nervous System Aging

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  3. Role of oxidative stress in female reproduction

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh K

    2005-07-01

    Full Text Available Abstract In a healthy body, ROS (reactive oxygen species and antioxidants remain in balance. When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS occurs. OS influences the entire reproductive lifespan of a woman and even thereafter (i.e. menopause. OS results from an imbalance between prooxidants (free radical species and the body's scavenging ability (antioxidants. ROS are a double-edged sword – they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract. ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy. It has been suggested that OS modulates the age-related decline in fertility. It plays a role during pregnancy and normal parturition and in initiation of preterm labor. Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor. Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants. There is growing literature on the effects of OS in female reproduction with involvement in the pathophsiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions. Numerous studies have shown that OS plays a role in the pathoysiology of infertility and assisted fertility. There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility. This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes. It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques. The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal

  4. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit.

    Science.gov (United States)

    Silveira, Neidiquele M; Frungillo, Lucas; Marcos, Fernanda C C; Pelegrino, Milena T; Miranda, Marcela T; Seabra, Amedea B; Salgado, Ione; Machado, Eduardo C; Ribeiro, Rafael V

    2016-07-01

    Nitric oxide (NO)-mediated redox signaling plays a role in alleviating the negative impact of water stress in sugarcane plants by improving root growth and photosynthesis. Drought is an environmental limitation affecting sugarcane growth and yield. The redox-active molecule nitric oxide (NO) is known to modulate plant responses to stressful conditions. NO may react with glutathione (GSH) to form S-nitrosoglutathione (GSNO), which is considered the main reservoir of NO in cells. Here, we investigate the role of NO in alleviating the effects of water deficit on growth and photosynthesis of sugarcane plants. Well-hydrated plants were compared to plants under drought and sprayed with mock (water) or GSNO at concentrations ranging from 10 to 1000 μM. Leaf GSNO sprayed plants showed significant improvement of relative water content and leaf and root dry matter under drought compared to mock-sprayed plants. Additionally, plants sprayed with GSNO (≥ 100 μM) showed higher leaf gas exchange and photochemical activity as compared to mock-sprayed plants under water deficit and after rehydration. Surprisingly, a raise in the total S-nitrosothiols content was observed in leaves sprayed with GSH or GSNO, suggesting a long-term role of NO-mediated responses to water deficit. Experiments with leaf discs fumigated with NO gas also suggested a role of NO in drought tolerance of sugarcane plants. Overall, our data indicate that the NO-mediated redox signaling plays a role in alleviating the negative effects of water stress in sugarcane plants by protecting the photosynthetic apparatus and improving shoot and root growth.

  5. Oxidative stress and CCN1 protein in human skin connective tissue aging

    Directory of Open Access Journals (Sweden)

    Zhaoping Qin

    2016-06-01

    Full Text Available Reactive oxygen species (ROS is an important pathogenic factor involved in human aging. Human skin is a primary target of oxidative stress from ROS generated from both extrinsic and intrinsic sources, like ultraviolet irradiation (UV and endogenous oxidative metabolism. Oxidative stress causes the alterations of collagen-rich extracellular matrix (ECM, the hallmark of skin connective tissue aging. Age-related alteration of dermal collagenous ECM impairs skin structural integrity and creates a tissue microenvironment that promotes age-related skin diseases, such as poor wound healing and skin cancer. Here, we review recent advances in our understanding of oxidative stress and CCN1 protein (first member of CCN family proteins, a critical mediator of oxidative stress-induced skin connective tissue aging.

  6. Oxidative stress in resuscitation and in ventilation of newborns.

    Science.gov (United States)

    Gitto, E; Pellegrino, S; D'Arrigo, S; Barberi, I; Reiter, R J

    2009-12-01

    The lungs of newborns are especially prone to oxidative damage induced by both reactive oxygen and reactive nitrogen species. Yet, these infants are often 1) exposed to high oxygen concentrations, 2) have infections or inflammation, 3) have reduced antioxidant defense, and 4) have high free iron levels which enhance toxic radical generation. Oxidative stress has been postulated to be implicated in several newborn conditions with the phrase "oxygen radical diseases of neonatology" having been coined. There is, however, reason to believe that oxidative stress is increased more when resuscitation is performed with pure oxygen compared with ambient air and that the most effective ventilatory strategy is the avoidance of mechanical ventilation with the use of nasopharyngeal continuous positive airway pressure whenever possible. Multiple ventilation strategies have been attempted to reduce injury and improve outcomes in newborn infants. In this review, the authors summarise the scientific evidence concerning oxidative stress as it relates to resuscitation in the delivery room and to the various modalities of ventilation.

  7. Oxidative stress participates in age-related changes in rat lumbar intervertebral discs.

    Science.gov (United States)

    Hou, Gang; Lu, Huading; Chen, Mingjuan; Yao, Hui; Zhao, Huiqing

    2014-01-01

    Aging is a major factor associated with lumber intervertebral disc degeneration, and oxidative stress is known to play an essential role in the pathogenesis of many age-related diseases. In this study, we investigated oxidative stress in intervertebral discs of Wistar rats in three different age groups: youth, adult, and geriatric. Age-related intervertebral disc changes were examined by histological analysis. In addition, oxidative stress was evaluated by assessing nitric oxide (NO), superoxide dismutase (SOD), malondialdehyde (MDA), and advanced oxidation protein products (AOPPs). Intervertebral disc, but not serum, NO concentrations significantly differed between the three groups. Serum and intervertebral disc SOD activity gradually decreased with age. Furthermore, both serum and intervertebral disc MDA and AOPP levels gradually increased with age. Our studies suggest that oxidative stress is associated with age-related intervertebral disc changes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Depression and oxidative stress: results from a meta-analysis of observational studies.

    Science.gov (United States)

    Palta, Priya; Samuel, Laura J; Miller, Edgar R; Szanton, Sarah L

    2014-01-01

    To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels. We performed a meta-analysis of studies that reported an association between depression and oxidative stress and/or antioxidant status markers. PubMed and EMBASE databases were searched for articles published from January 1980 through December 2012. A random-effects model, weighted by inverse variance, was performed to pool standard deviation (Cohen's d) effect size estimates across studies for oxidative stress and antioxidant status measures, separately. Twenty-three studies with 4980 participants were included in the meta-analysis. Depression was most commonly measured using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. A Cohen's d effect size of 0.55 (95% confidence interval = 0.47-0.63) was found for the association between depression and oxidative stress, indicating a roughly 0.55 of 1-standard-deviation increase in oxidative stress among individuals with depression compared with those without depression. The results of the studies displayed significant heterogeneity (I(2) = 80.0%, p < .001). A statistically significant effect was also observed for the association between depression and antioxidant status markers (Cohen's d = -0.24, 95% confidence interval = -0.33 to -0.15). This meta-analysis observed an association between depression and oxidative stress and antioxidant status across many different studies. Differences in measures of depression and markers of oxidative stress and antioxidant status markers could account for the observed heterogeneity. These findings suggest that well-established associations between depression and poor heath outcomes may be mediated by high oxidative stress.

  9. Oxidative stress in normal hematopoietic stem cells and leukemia.

    Science.gov (United States)

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  10. RAGE polymorphisms and oxidative stress levels in Hashimoto's thyroiditis.

    Science.gov (United States)

    Giannakou, Maria; Saltiki, Katerina; Mantzou, Emily; Loukari, Eleni; Philippou, Georgios; Terzidis, Konstantinos; Lili, Kiriaki; Stavrianos, Charalampos; Kyprianou, Miltiades; Alevizaki, Maria

    2017-05-01

    Polymorphisms of the receptor for advanced glycation end products (RAGE) gene have been studied in various autoimmune disorders, but not in Hashimoto's thyroiditis. Also, increased oxidative stress has been described in patients with Hashimoto's thyroiditis. The aim of this study was to investigate the possible role of two common RAGE polymorphisms (-429T>C, -374T>A) in Hashimoto's thyroiditis; in parallel, we studied oxidative stress levels. A total of 300 consecutive euthyroid women were examined and classified into three groups: Hashimoto's thyroiditis with treatment (n = 96), Hashimoto's thyroiditis without treatment (n = 109) and controls (n = 95). For a rough evaluation of oxidative stress, total lipid peroxide levels in serum were measured. The -429T>C AluI and -374T>A MfeI polymorphisms of RAGE were studied in genomic DNA. Significant association of the RAGE system with Hashimoto's thyroiditis was found only with regard to the prevalence of the -429T>C, but not with -374T>A polymorphism. The levels of oxidative stress were significantly elevated in Hashimoto's thyroiditis patients under treatment. Further analysis demonstrated that an oxidative stress cut-off value of 590 μmol/L is associated with an increased risk of progression of Hashimoto's thyroiditis from euthyroidism to hypothyroidism; this risk is further increased in carriers of the RAGE -429T>C polymorphism. Our findings indicate that both examined risk factors may be implicated in the occurrence of Hashimoto's thyroiditis, but this covers only a fraction of the pathophysiology of the disease. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  11. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  12. Oxidative stress, thyroid dysfunction & Down syndrome

    Directory of Open Access Journals (Sweden)

    Carlos Campos

    2015-01-01

    Full Text Available Down syndrome (DS is one of the most common chromosomal disorders, occurring in one out of 700-1000 live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in patients with DS than in the general population. Increasing evidence has shown that DS individuals are under unusual increased oxidative stress, which may be involved in the higher prevalence and severity of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in these individuals. The gene for Cu/Zn superoxide dismutase (SOD1 is coded on chromosome 21 and it is overexpressed (~50% resulting in an increase of reactive oxygen species (ROS due to overproduction of hydrogen peroxide (H 2 O 2 . ROS leads to oxidative damage of DNA, proteins and lipids, therefore, oxidative stress may play an important role in the pathogenesis of DS.

  13. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Aparna Areti

    2014-01-01

    Full Text Available Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy.

  14. An update on oxidative stress-mediated organ pathophysiology.

    Science.gov (United States)

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Oral treatment with herbal formula B307 alleviates cardiac failure in aging R6/2 mice with Huntington’s disease via suppressing oxidative stress, inflammation, and apoptosis

    Directory of Open Access Journals (Sweden)

    Lin CL

    2015-07-01

    reduced under oral B307 treatment (P<0.05. Oral B307 treatment may briefly alleviate cardiac failure in aging HD R6/2 mice via suppressing cardiac oxidative stress, inflammation, and apoptosis. We suggested that the herbal formula B307 may be further developed as a potential health supplement for ameliorating cardiac failure associated with aging. Keywords: Chinese herbal medicines, cardiomyocytes, echocardiography, aging, transgenic mouse model

  16. Hand immersion in cold water alleviating physiological strain and increasing tolerance to uncompensable heat stress.

    Science.gov (United States)

    Khomenok, Gennadi A; Hadid, Amir; Preiss-Bloom, Orahn; Yanovich, Ran; Erlich, Tomer; Ron-Tal, Osnat; Peled, Amir; Epstein, Yoram; Moran, Daniel S

    2008-09-01

    The current study examines the use of hand immersion in cold water to alleviate physiological strain caused by exercising in a hot climate while wearing NBC protective garments. Seventeen heat acclimated subjects wearing a semi-permeable NBC protective garment and a light bulletproof vest were exposed to a 125 min exercise-heat stress (35 degrees C, 50% RH; 5 km/h, 5% incline). The heat stress exposure routine included 5 min rest in the chamber followed by two 50:10 min work-rest cycles. During the control trial (CO), there was no intervention, whilst in the intervention condition the subjects immersed their hands and forearms in a 10 degrees C water bath (HI). The results demonstrated that hand immersion in cold water significantly reduced physiological strain. In the CO exposure during the first and second resting periods, the average rectal temperature (T (re)) practically did not decrease. With hand immersion, the mean (SD) T (re) decreased by 0.45 (0.05 degrees C) and 0.48 degrees C (0.06 degrees C) during the first and second rest periods respectively (P immersion in cold water for 10 min is an effective method for decreasing the physiological strain caused by exercising under heat stress while wearing NBC protective garments. The method is convenient, simple, and allows longer working periods in hot or contaminated areas with shorter resting periods.

  17. Oxidative Stress as an Important Factor in the Pathophysiology of alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Tanise Gemelli,

    2013-06-01

    Full Text Available Oxidative stress has been associated to play a crucial role in the pathogenesis of many diseases, including neurodegenerative diseases. Alzheimer's disease is an age-related neurodegenerative disorder, which is recognized as the most common form of dementia. In this article, the aim was to review the involvement of oxidative stress on Alzheimer's disease. Alzheimer's disease is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid-? peptide and loss of synapses. Moreover, the brain and the nervous system are more prone to oxidative stress and oxidative damage influences the neurodegenerative diseases. However, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in proteins constitute complex intertwined pathologies that lead to neuronal cell death. Mitochondrial mutations on deoxyribonucleic acid and oxidative stress contribute to aging, affecting different cell signaling systems, as well as the connectivity and neuronal cell death may lead to the largest risk factor for neurodegenerative diseases such as Alzheimer's Disease.

  18. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    Science.gov (United States)

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  19. ESR imaging for estimation oxidative stress in the brain of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Hidekatsu; Itoh, Osam; Aoyama, Masaaki; Obara, Heitaro; Ohya, Hiroaki; Kamada, Hitoshi [Inst. for Life Support Technology, Matsuei, Yamagata (Japan)

    2002-04-01

    ESR imaging for estimating intracerebral oxidative stress of rats was performed. An acyl-protected hydroxylamine, 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP), is a very stable non-radical compound outside cells, however, within cells, it is easily deprotected with esterase to yield 1-hydroxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine, which is oxidized by oxidative stress to yield an ESR-detectable stable nitroxide radical, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl. Thus signal intensity in the ESR image reflects the strength of intracellular oxidative stress. From in vivo ESR image data of the brain of rats that received ACP, the average values of ESR signal intensity from the hippocampus, striatum, and cerebral cortex were computed. This imaging technique was applied to an epileptic seizure model. As a result, it was found that following a kainic acid-induced seizure, the oxidative stress in the hippocampus and striatum is enhanced, but not so in the cerebral cortex. (author)

  20. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats.

    Science.gov (United States)

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation.

  1. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes

    International Nuclear Information System (INIS)

    Zana, Marianna; Szecsenyi, Anita; Czibula, Agnes; Bjelik, Annamaria; Juhasz, Anna; Rimanoczy, Agnes; Szabo, Krisztina; Vetro, Agnes; Szucs, Peter; Varkonyi, Agnes; Pakaski, Magdolna; Boda, Krisztina; Rasko, Istvan; Janka, Zoltan; Kalman, Janos

    2006-01-01

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n = 7) and adults (n = 18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults

  2. Evaluation of the Antioxidant and Anti-glication Effects of the Hexane Extract from Piper auritum Leaves in Vitro and Beneficial Activity on Oxidative Stress and Advanced Glycation End-Product-Mediated Renal Injury in Streptozotocin-Treated Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Adriana Maria Neira Gonzalez

    2012-10-01

    Full Text Available The aim of this study was to investigate the antioxidant activity of hexane extracts from leaves of Piper auritum (HS. Eight complementary in vitro test methods were used, including inhibition of DPPH· radicals, nitric oxide, superoxide anion, ion-chelating, ABTS, oxygen radical absorbance capacity, β-carotene bleaching and peroxy radical scavenging. The results indicated that HS possesses high antioxidant activity. To add to these finding we tested the effect against oxidative stress in liver, pancreas and kidney in diabetic rats. Low levels of SOD, CAT, GPx and GSH in diabetic rats were reverted to near normal values after treatment with HS. These results suggest that P. auritum prevents oxidative stress, acting as a suppressor of liver cell damage. Given the link between glycation and oxidation, we proposed that HS might possess significant in vitro antiglycation activity. Our data confirmed the inhibitory effect of HS on bovine serum albumin, serum glycosylated protein, glycation of LDL, and glycation hemoglobin. The effect of HS on diabetic renal damage was investigated using streptozotocin-induced diabetic rats. The oral administration of HS at a dose of 200 and 400 mg/kg body weight/day for 28 days significantly reduced advanced glycation endproduct (AGE formation, elevated renal glucose and thiobarbituric acid-reactive substance levels in the kidneys of diabetic rats. This implies that HS would alleviate the oxidative stress under diabetes through the inhibition of lipid peroxidation. These findings indicate that oxidative stress is increased in the diabetic rat kidney and that HS can prevent renal damage associated with diabetes by attenuating the oxidative stress.

  3. Glutathione-mimetic D609 alleviates memory deficits and reduces amyloid-β deposition in an AβPP/PS1 transgenic mouse model.

    Science.gov (United States)

    Yang, Hui; Xie, ZhaoHong; Wei, LiFei; Ding, Mao; Wang, Ping; Bi, JianZhong

    2018-04-18

    Excessive extracellular deposition of amyloid-β-peptide (Aβ) in the brain is a pathological hallmark of Alzheimer's disease (AD). Oxidative stress is associated with the onset and progression of AD and contributes to Aβ generation. Tricyclodecan-9-yl-xanthogenate (D609) is a glutathione (GSH)-mimetic compound. Although the antioxidant properties of D609 have been well-studied, its potential therapeutic significance on AD remains unclear. In the present study, we used a mouse model of AD to investigate the effects and the mechanism of action of D609 on AD. We found that D609 treatment significantly improved the spatial learning and alleviated the memory decline in the mice harboring amyloid precursor protein (APP) and presenilin-1 (PS1) double mutations (AβPP/PS1 mice). D609 treatment also increased GSH level, GSH and oxidative glutathione ratio, and superoxide dismutase activity, whereas decreased malondialdehyde and protein carbonyl levels, suggesting that D609 alleviated oxidative stress in AβPP/PS1 mice. In addition, D609 reduced β-secretase 1 level and decreased amyloidogenic processing of AβPP, consequently reducing Aβ deposition in the mice. Thus, our findings suggest that D609 might produce beneficial effects on the prevention and treatment of AD.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.

  4. Oxidative stress and plasma lipoproteins in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Maia, Fernanda Maria Machado; Santos, Emanuelly Barbosa; Reis, Germana Elias [Universidade Estadual do Ceará, Fortaleza, CE (Brazil)

    2014-07-01

    To evaluate the relation between oxidative stress and lipid profile in patients with different types of cancer. This was an observational cross-sectional. A total of 58 subjects were evaluated, 33 males, divided into two groups of 29 patients each: Group 1, patients with cancer of the digestive tract and accessory organs; Group 2 patients with other types of cancers, all admitted to a public hospital. The plasma levels (lipoproteins and total cholesterol, HDL, and triglycerides, for example) were analyzed by enzymatic kits, and oxidative stress based on thiobarbituric acid-reactive substances, by assessing the formation of malondialdehyde. In general the levels of malondialdehyde of patients were high (5.00μM) as compared to 3.31μM for healthy individuals. The median values of lipids exhibited normal triacylglycerol (138.78±89.88mg/dL), desirable total cholesterol values (163.04±172.38mg/dL), borderline high LDL (151.30±178.25mg/dL) and low HDL (31.70±22.74mg/dL). Median HDL levels in Group 1 were lower (31.32mg/dL) than the cancer patients in Group 2 (43.67mg/dL) (p=0.038). Group 1 also showed higher levels of oxidative stress (p=0.027). The lipid profile of patients with cancer was not favorable, which seems to have contributed to higher lipid peroxidation rate, generating a significant oxidative stress.

  5. Dexmedetomidine alleviates anxiety-like behaviors and cognitive impairments in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Ji, Mu-Huo; Jia, Min; Zhang, Ming-Qiang; Liu, Wen-Xue; Xie, Zhong-Cong; Wang, Zhong-Yun; Yang, Jian-Jun

    2014-10-03

    Post-traumatic stress disorder (PTSD) is a psychiatric disease that has substantial health implications, including high rates of health morbidity and mortality, as well as increased health-related costs. Although many pharmacological agents have proven the effects on the development of PTSD, current pharmacotherapies typically only produce partial improvement of PTSD symptoms. Dexmedetomidine is a selective, short-acting α2-adrenoceptor agonist, which has anxiolytic, sedative, and analgesic effects. We therefore hypothesized that dexmedetomidine possesses the ability to prevent the development of PTSD and alleviate its symptoms. By using the rat model of PTSD induced by five electric foot shocks followed by three weekly exposures to situational reminders, we showed that the stressed rats displayed pronounced anxiety-like behaviors and cognitive impairments compared to the controls. Notably, repeated administration of 20μg/kg dexmedetomidine showed impaired fear conditioning memory, decreased anxiety-like behaviors, and improved spatial cognitive impairments compared to the vehicle-treated stressed rats. These data suggest that dexmedetomidine may exert preventive and protective effects against anxiety-like behaviors and cognitive impairments in the rats with PTSD after repeated administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Elżbieta Miller

    2014-01-01

    Full Text Available Accumulating data shows that oxidative stress plays a crucial role in neurodegenerative disorders. The literature data indicate that in vivo or postmortem cerebrospinal fluid and brain tissue levels of F2-isoprostanes (F2-IsoPs especially F4-neuroprotanes (F4-NPs are significantly increased in some neurodegenerative diseases: multiple sclerosis, Alzheimer's disease, Huntington's disease, and Creutzfeldt-Jakob disease. Central nervous system is the most metabolically active organ of the body characterized by high requirement for oxygen and relatively low antioxidative activity, what makes neurons and glia highly susceptible to destruction by reactive oxygen/nitrogen species and neurodegeneration. The discovery of F2-IsoPs and F4-NPs as markers of lipid peroxidation caused by the free radicals has opened up new areas of investigation regarding the role of oxidative stress in the pathogenesis of human neurodegenerative diseases. This review focuses on the relationship between F2-IsoPs and F4-NPs as biomarkers of oxidative stress and neurodegenerative diseases. We summarize the knowledge of these novel biomarkers of oxidative stress and the advantages of monitoring their formation to better define the involvement of oxidative stress in neurological diseases.

  7. Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis.

    Science.gov (United States)

    Richier, Sophie; Sabourault, Cécile; Courtiade, Juliette; Zucchini, Nathalie; Allemand, Denis; Furla, Paola

    2006-09-01

    Symbiosis between cnidarian and photosynthetic protists is widely distributed over temperate and tropical seas. These symbioses can periodically breakdown, a phenomenon known as cnidarian bleaching. This event can be irreversible for some associations subjected to acute and/or prolonged environmental disturbances, and leads to the death of the animal host. During bleaching, oxidative stress has been described previously as acting at molecular level and apoptosis is suggested to be one of the mechanisms involved. We focused our study on the role of apoptosis in bleaching via oxidative stress in the association between the sea anemone Anemonia viridis and the dinoflagellates Symbiodinium species. Characterization of caspase-like enzymes were conducted at the biochemical and molecular level to confirm the presence of a caspase-dependent apoptotic phenomenon in the cnidarian host. We provide evidence of oxidative stress followed by induction of caspase-like activity in animal host cells after an elevated temperature stress, suggesting the concomitant action of these components in bleaching.

  8. The Role of Oxidative Stress in Diabetes Mellitus: A 24-year Review ...

    African Journals Online (AJOL)

    Background: Diabetes mellitus is a widespread and devastating disease. Diabetes is associated with several mechanisms of tissue damage, one of which is oxidative stress. Oxidative stress and oxidative damage to tissues are common end points to chronic diseases such as atherosclerosis, diabetes and cardiovascular ...

  9. Nitric oxide in the stress axis.

    Science.gov (United States)

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  10. Oxidative Stress Associated with Neuronal Apoptosis in Experimental Models of Epilepsy

    Directory of Open Access Journals (Sweden)

    Marisela Méndez-Armenta

    2014-01-01

    Full Text Available Epilepsy is considered one of the most common neurological disorders worldwide. Oxidative stress produced by free radicals may play a role in the initiation and progression of epilepsy; the changes in the mitochondrial and the oxidative stress state can lead mechanism associated with neuronal death pathway. Bioenergetics state failure and impaired mitochondrial function include excessive free radical production with impaired synthesis of antioxidants. This review summarizes evidence that suggest what is the role of oxidative stress on induction of apoptosis in experimental models of epilepsy.

  11. Coenzyme Q10 supplementation and exercise-induced oxidative stress in humans

    DEFF Research Database (Denmark)

    Östman, Bengt; Sjödin, Anders Mikael; Michaëlsson, Karl

    2012-01-01

    Objective: The theoretically beneficial effects of coenzyme Q10 (Q10) on exercise-related oxidative stress and physical capacity have not been confirmed to our knowledge by interventional supplementation studies. Our aim was to investigate further whether Q10 supplementation at a dose recommended...... the groups were detected for hypoxanthine or uric acid (serum markers of oxidative stress) or creatine kinase (a marker of skeletal muscle damage). Conclusion: Although in theory Q10 could be beneficial for exercise capacity and in decreasing oxidative stress, the present study could not demonstrate...

  12. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum group II CF-1

    Directory of Open Access Journals (Sweden)

    Gloria Paz Levicán

    2016-05-01

    Full Text Available Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species. Cobalamin (vitamin B12 is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular reactive oxygen species and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  13. Pretreatment with Sodium Phenylbutyrate Alleviates Cerebral Ischemia/Reperfusion Injury by Upregulating DJ-1 Protein

    Directory of Open Access Journals (Sweden)

    Rui-Xin Yang

    2017-06-01

    Full Text Available Oxidative stress and mitochondrial dysfunction play critical roles in ischemia/reperfusion (I/R injury. DJ-1 is an endogenous antioxidant that attenuates oxidative stress and maintains mitochondrial function, likely acting as a protector of I/R injury. In the present study, we explored the protective effect of a possible DJ-1 agonist, sodium phenylbutyrate (SPB, against I/R injury by protecting mitochondrial dysfunction via the upregulation of DJ-1 protein. Pretreatment with SPB upregulated the DJ-1 protein level and rescued the I/R injury-induced DJ-1 decrease about 50% both in vivo and in vitro. SPB also improved cellular viability and mitochondrial function and alleviated neuronal apoptosis both in cell and animal models; these effects of SPB were abolished by DJ-1 knockdown with siRNA. Furthermore, SPB improved the survival rate about 20% and neurological functions, as well as reduced about 50% of the infarct volume and brain edema, of middle cerebral artery occlusion mice 23 h after reperfusion. Therefore, our findings demonstrate that preconditioning of SPB possesses a neuroprotective effect against cerebral I/R injury by protecting mitochondrial function dependent on the DJ-1 upregulation, suggesting that DJ-1 is a potential therapeutic target for clinical ischemic stroke.

  14. Pretreatment with Sodium Phenylbutyrate Alleviates Cerebral Ischemia/Reperfusion Injury by Upregulating DJ-1 Protein.

    Science.gov (United States)

    Yang, Rui-Xin; Lei, Jie; Wang, Bo-Dong; Feng, Da-Yun; Huang, Lu; Li, Yu-Qian; Li, Tao; Zhu, Gang; Li, Chen; Lu, Fang-Fang; Nie, Tie-Jian; Gao, Guo-Dong; Gao, Li

    2017-01-01

    Oxidative stress and mitochondrial dysfunction play critical roles in ischemia/reperfusion (I/R) injury. DJ-1 is an endogenous antioxidant that attenuates oxidative stress and maintains mitochondrial function, likely acting as a protector of I/R injury. In the present study, we explored the protective effect of a possible DJ-1 agonist, sodium phenylbutyrate (SPB), against I/R injury by protecting mitochondrial dysfunction via the upregulation of DJ-1 protein. Pretreatment with SPB upregulated the DJ-1 protein level and rescued the I/R injury-induced DJ-1 decrease about 50% both in vivo and in vitro . SPB also improved cellular viability and mitochondrial function and alleviated neuronal apoptosis both in cell and animal models; these effects of SPB were abolished by DJ-1 knockdown with siRNA. Furthermore, SPB improved the survival rate about 20% and neurological functions, as well as reduced about 50% of the infarct volume and brain edema, of middle cerebral artery occlusion mice 23 h after reperfusion. Therefore, our findings demonstrate that preconditioning of SPB possesses a neuroprotective effect against cerebral I/R injury by protecting mitochondrial function dependent on the DJ-1 upregulation, suggesting that DJ-1 is a potential therapeutic target for clinical ischemic stroke.

  15. Oxidative stress biomarkers in amniotic fluid of pregnant women with hypothyroidism.

    Science.gov (United States)

    Novakovic, Tanja R; Dolicanin, Zana C; Djordjevic, Natasa Z

    2017-11-15

    Hypothyroidism in pregnancy is the serious state that may lead to fetal morbidity and mortality. Oxidative stress biomarkers in the amniotic fluid can provide important information on the health, development and maturation of the fetus during pregnancy. In this study, we examined whether maternal hypothyroidism contributes to increased oxidative stress biomarkers in the amniotic fluid during the first trimester of pregnancy. The study was conducted on healthy pregnant women and pregnant women with hypothyroidism (gestational age: 16-18 weeks). Oxidative stress biomarkers, such as superoxide anion (O 2 •- ), hydrogen peroxide (H 2 O 2 ), nitric oxide (NO), peroxynitrite (ONOO - ), lipid peroxide (LPO), reduced glutathione (GSH) and oxidized glutathione (GSSG) were assayed in the amniotic fluid. The results of this study indicated that concentrations of O 2 •- and NO are significantly higher, while the concentration of H 2 O 2 is significantly lower in the amniotic fluid of pregnant women with hypothyroidism in comparison to healthy pregnant women. There were no differences in concentrations of LPO, GSH and GSSG among tested groups. Also, we found that amniotic fluid concentration of O 2 •- is negatively correlated with the body weight and Apgar score values of the newborns. These results suggest that pregnancy hypothyroidism is characterized by the amniotic fluid oxidative stress. Incorporation of the oxidative stress biomarkers measurement in the amniotic fluid may be of clinical importance in the management of pregnancy hypothyroidism.

  16. Astragaloside IV Prevents Cardiac Remodeling in the Apolipoprotein E-Deficient Mice by Regulating Cardiac Homeostasis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Xiong-Zhi Li

    2017-12-01

    Full Text Available Background: Hypercholesterolemia is a risk factor for the development of cardiac hypertrophy. Astragaloside IV (AST-IV possesses cardiovascular protective properties. We hypothesize that AST-IV prevents cardiac remodeling with hypercholesterolemia via modulating tissue homeostasis and alleviating oxidative stress. Methods: The ApoE-/- mice were treated with AST-IV at 1 or 10 mg/kg for 8 weeks. The blood lipids tests, echocardiography, and TUNEL were performed. The mRNA expression profile was detected by real-time PCR. The myocytes size and number, and the expressions of proliferation (ki67, senescence (p16INK4a, oxidant (NADPH oxidase 4, NOX4 and antioxidant (superoxide dismutase, SOD were observed by immunofluorescence staining. Results: Neither 1 mg/kg nor 10 mg/kg AST-IV treatment could decrease blood lipids in ApoE-/- mice. However, the decreased left ventricular ejection fraction (LVEF and fractional shortening (FS in ApoE–/– mice were significantly improved after AST-IV treatment. The cardiac collagen volume fraction declined nearly in half after AST-IV treatment. The enlarged myocyte size was suppressed, and myocyte number was recovered, and the alterations of genes expressions linked to cell cycle, proliferation, senescence, p53-apoptosis pathway and oxidant-antioxidants in the hearts of ApoE-/- mice were reversed after AST-IV treatment. The decreased ki67 and increased p16INK4a in the hearts of ApoE-/- mice were recovered after AST-IV treatment. The percentages of apoptotic myocytes and NOX4-positive cells in AST-IV treated mice were decreased, which were consistent with the gene expressions. Conclusion: AST-IV treatment could prevent cardiac remodeling and recover the impaired ventricular function induced by hypercholesterolemia. The beneficial effect of AST-IV might partly be through regulating cardiac homeostasis and anti-oxidative stress.

  17. Oxidative and nitrosative stress markers in bus drivers.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Santella, Regina M; Sram, Radim J

    2007-04-01

    Exposure to ambient air pollution is associated with many diseases. Oxidative and nitrosative stress are believed to be two of the major sources of particulate matter (PM)-mediated adverse health effects. PM in ambient air arises from industry, local heating, and vehicle emissions and poses a serious problem mainly in large cities. In the present study we analyzed the level of oxidative and nitrosative stress among 50 bus drivers from Prague, Czech Republic, and 50 matching controls. We assessed simultaneously the levels of 15-F(2t)-isoprostane (15-F(2t)-IsoP) and 8-oxodeoxyguanosine (8-oxodG) in urine and protein carbonyl groups and 3-nitrotyrosine (NT) in blood plasma. For the analysis of all four markers we used ELISA techniques. We observed significantly increased levels of oxidative and nitrosative stress markers in bus drivers. The median levels (min, max) of individual markers in bus drivers versus controls were as follows: 8-oxodG: 7.79 (2.64-12.34)nmol/mmol versus 6.12 (0.70-11.38)nmol/mmol creatinine (p<0.01); 15-F(2t)-IsoP: 0.81 (0.38-1.55)nmol/mmol versus 0.68 (0.39-1.79)nmol/mmol creatinine (p<0.01); carbonyl levels: 14.1 (11.8-19.0)nmol/ml versus 12.9 (9.8-16.6)nmol/ml plasma (p<0.001); NT: 694 (471-3228)nmol/l versus 537 (268-13833)nmol/l plasma (p<0.001). 15-F(2t)-IsoP levels correlated with vitamin E (R=0.23, p<0.05), vitamin C (R=-0.33, p<0.01) and cotinine (R=0.47, p<0.001) levels. Vitamin E levels also positively correlated with 8-oxodG (R=0.27, p=0.01) and protein carbonyl levels (R=0.32, p<0.001). Both oxidative and nitrosative stress markers positively correlated with PM2.5 and PM10 exposure. In conclusion, our study indicates that exposure to PM2.5 and PM10 results in increased oxidative and nitrosative stress.

  18. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Simone ePelliciari

    2015-08-01

    Full Text Available The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress.Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur towards apo-operators, while the binding towards holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur towards the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to

  19. Oxidative Stress: A Pathogenic Mechanism for Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Niemann-Pick type C (NPC disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.

  20. [The role of oxidative stress in placental-related diseases of pregnancy].

    Science.gov (United States)

    Jauniaux, E; Burton, G J

    2016-10-01

    In normal pregnancies, the earliest stages of development take place in a low oxygen (O 2 ) environment. This physiological hypoxia of the early gestational sac protects the developing fetus against the deleterious and teratogenic effects of O 2 free radicals. Oxidative stress is manifested at the maternal-fetal interface from early pregnancy onwards. In early pregnancy, a well-controlled oxidative stress plays a role in modulating placental development, functions and remodelling. Focal trophoblastic oxidative damage and progressive villous degeneration trigger the formation of the fetal membranes, which is an essential developmental step enabling vaginal delivery. Our data have demonstrated that the first trimester placenta in humans is histiotrophic and not haemochorial. The development and maintenance of a physiological O 2 gradient between the uterine and fetal circulations is also essential for placental functions, such as transport and hormonal synthesis. Pathological oxidative stress arises when the production of reactive O 2 species overwhelms the intrinsic anti-oxidant defences causing indiscriminate damage to biological molecules, leading to loss of function and cell death. We here review the role of oxidative stress in the pathophysiology of miscarriage, pre-eclampsia and fetal growth restriction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia.

    Science.gov (United States)

    de Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Kober, Helena; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-12-01

    Preeclampsia is an important pregnancy-specific multisystem disorder characterized by the onset of hypertension and proteinuria. It is of unknown etiology and involves serious risks for the pregnant women and fetus. One of the main factors involved in the pathophysiology of preeclampsia is oxidative stress, where excess free radicals produce harmful effects, including damage to macromolecules such as lipids, proteins and DNA. In addition, the sulfhydryl delta-aminolevulinate dehydratase enzyme (δ-ALA-D) that is part of the heme biosynthetic pathway in pro-oxidant conditions can be inhibited, which may result in the accumulation of 5-aminolevulinic acid (ALA), associated with the overproduction of free radicals, suggesting it to be an indirect marker of oxidative stress. As hypertensive pregnancy complications are a major cause of morbidity and mortality maternal and fetal where oxidative stress appears to be an important factor involved in preeclampsia, the aim of this study was to evaluate the activity of δ-ALA-D and classic oxidative stress markers in the blood of pregnant women with mild and severe preeclampsia. The analysis and quantification of the following oxidative stress markers were performed: thiobarbituric acid-reactive species (TBARS); presence of protein and non-protein thiol group; quantification of vitamin C; Catalase and δ-ALA--D activities in samples of blood of pregnant women with mild preeclampsia (n=25), with severe preeclampsia (n=30) and in a control group of healthy pregnant women (n=30). TBARS was significantly higher in women with preeclampsia, while the presence of thiol groups, levels of vitamin C, catalase and δ-ALA-D activity were significantly lower in groups of pregnant women with preeclampsia compared with healthy women. In addition, the results showed no significant difference between groups of pregnant women with mild and severe preeclampsia. The data suggest a state of increased oxidative stress in pregnant women with

  2. Ascophyllum nodosum Seaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performance and Related Gene Expression

    Directory of Open Access Journals (Sweden)

    Antonietta Santaniello

    2017-08-01

    Full Text Available Drought represents one of the most relevant abiotic stress affecting growth and yield of crop plants. In order to improve the agricultural productivity within the limited water and land resources, it is mandatory to increase crop yields in presence of unfavorable environmental stresses. The use of biostimulants, often containing seaweed extracts, represents one of the options for farmers willing to alleviate abiotic stress consequences on crops. In this work, we investigated the responses of Arabidopsis plants treated with an extract from the brown alga Ascophyllum nodosum (ANE, under drought stress conditions, demonstrating that ANE positively influences Arabidopsis survival. Pre-treatment with ANE induced a partial stomatal closure, associated with changes in the expression levels of genes involved in ABA-responsive and antioxidant system pathways. The pre-activation of these pathways results in a stronger ability of ANE-treated plants to maintain a better photosynthetic performance compared to untreated plants throughout the dehydration period, combined with a higher capacity to dissipate the excess of energy as heat in the reaction centers of photosystem II. Our results suggest that drought stressed plants treated with ANE are able to maintain a strong stomatal control and relatively higher values of both water use efficiency (WUE and mesophyll conductance during the last phase of dehydration. Simultaneously, the activation of a pre-induced antioxidant defense system, in combination with a more efficient energy dissipation mechanism, prevents irreversible damages to the photosynthetic apparatus. In conclusion, pre-treatment with ANE is effective to acclimate plants to the incoming stress, promoting an increased WUE and dehydration tolerance.

  3. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    Science.gov (United States)

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.

  4. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection.

    Science.gov (United States)

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway.

  5. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  6. Oxidative Stress in the Pathogenesis of Colorectal Cancer: Cause or Consequence?

    Directory of Open Access Journals (Sweden)

    Martina Perše

    2013-01-01

    Full Text Available There is a growing support for the concept that reactive oxygen species, which are known to be implicated in a range of diseases, may be important progenitors in carcinogenesis, including colorectal cancer (CRC. CRC is one of the most common cancers worldwide, with the highest incidence rates in western countries. Sporadic human CRC may be attributable to various environmental and lifestyle factors, such as dietary habits, obesity, and physical inactivity. In the last decades, association between oxidative stress and CRC has been intensively studied. Recently, numerous genetic and lifestyle factors that can affect an individual's ability to respond to oxidative stress have been identified. The aim of this paper is to review evidence linking oxidative stress to CRC and to provide essential background information for accurate interpretation of future research on oxidative stress and CRC risk. Brief introduction of different endogenous and exogenous factors that may influence oxidative status and modulate the ability of gut epithelial cells to cope with damaging metabolic challenges is also provided.

  7. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine

    International Nuclear Information System (INIS)

    Velsor, Leonard W.; Kovacevic, Miro; Goldstein, Mark; Leitner, Heather M.; Lewis, William; Day, Brian J.

    2004-01-01

    The toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is linked to altered mitochondrial DNA (mtDNA) replication and subsequent disruption of cellular energetics. This manifests clinically as elevated concentrations of lactate in plasma. The mechanism(s) underlying how the changes in mtDNA replication lead to lactic acidosis remains unclear. It is hypothesized that mitochondrial oxidative stress links the changes in mtDNA replication to mitochondrial dysfunction and ensuing NRTIs toxicity. To test this hypothesis, changes in mitochondrial function, mtDNA amplification efficiency, and oxidative stress were assessed in HepG2-cultured human hepatoblasts treated with the NRTI stavudine (2',3'-didehydro-2',3'-deoxythymidine or d4T) for 48 h. d4T produced significant mitochondrial dysfunction with a 1.5-fold increase in cellular lactate to pyruvate ratios. In addition, d4T caused a dose-dependent decrease in mtDNA amplification and a correlative increase in abundance of markers of mitochondrial oxidative stress. Manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, MnTBAP, a catalytic antioxidant, ameliorated or reversed d4T-induced changes in cell injury, energetics, mtDNA amplification, and mitochondrial oxidative stress. In conclusion, d4T treatment elevates mitochondrial reactive oxygen species (ROS), enhances mitochondrial oxidative stress, and contributes mechanistically to NRTI-induced toxicity. These deleterious events may be potentiated in acquired immunodeficiency syndrome (AIDS) by human immunodeficiency virus (HIV) infection itself, coinfection (e.g., viral hepatitis), aging, substance, and alcohol use

  8. Neuro-oxidative-nitrosative stress in sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Møller, Kirsten; Bailey, Damian M

    2011-01-01

    Neuro-oxidative-nitrosative stress may prove the molecular basis underlying brain dysfunction in sepsis. In the current review, we describe how sepsis-induced reactive oxygen and nitrogen species (ROS/RNS) trigger lipid peroxidation chain reactions throughout the cerebrovasculature and surrounding...

  9. Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature.

    NARCIS (Netherlands)

    Remans, T.; Opdenakker, G.; Guisez, Y.; Carleer, R.; Schat, H.; Vangronsveld, J.; Cuypers, A.

    2012-01-01

    Zinc (Zn) is an essential micronutrient for plants, but accumulation of excess Zn causes oxidative stress, even though the element is not redox-active. An oxidative stress signature, consisting of multiple oxidative stress related parameters, is indicative of disturbance of redox homeostasis and

  10. Oxidative Stress and Huntington's Disease: The Good, The Bad, and The Ugly.

    Science.gov (United States)

    Kumar, Amit; Ratan, Rajiv R

    2016-10-01

    Redox homeostasis is crucial for proper cellular functions, including receptor tyrosine kinase signaling, protein folding, and xenobiotic detoxification. Under basal conditions, there is a balance between oxidants and antioxidants. This balance facilitates the ability of oxidants, such as reactive oxygen species, to play critical regulatory functions through a direct modification of a small number of amino acids (e.g. cysteine) on signaling proteins. These signaling functions leverage tight spatial, amplitude, and temporal control of oxidant concentrations. However, when oxidants overwhelm the antioxidant capacity, they lead to a harmful condition of oxidative stress. Oxidative stress has long been held to be one of the key players in disease progression for Huntington's disease (HD). In this review, we will critically review this evidence, drawing some intermediate conclusions, and ultimately provide a framework for thinking about the role of oxidative stress in the pathophysiology of HD.

  11. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  12. Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival

    Science.gov (United States)

    Navarro-Yepes, Juliana; Burns, Michaela; Anandhan, Annadurai; Khalimonchuk, Oleh; del Razo, Luz Maria; Quintanilla-Vega, Betzabet; Pappa, Aglaia; Panayiotidis, Mihalis I.

    2014-01-01

    Abstract Significance: The molecular machinery regulating autophagy has started becoming elucidated, and a number of studies have undertaken the task to determine the role of autophagy in cell fate determination within the context of human disease progression. Oxidative stress and redox signaling are also largely involved in the etiology of human diseases, where both survival and cell death signaling cascades have been reported to be modulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Recent Advances: To date, there is a good understanding of the signaling events regulating autophagy, as well as the signaling processes by which alterations in redox homeostasis are transduced to the activation/regulation of signaling cascades. However, very little is known about the molecular events linking them to the regulation of autophagy. This lack of information has hampered the understanding of the role of oxidative stress and autophagy in human disease progression. Critical Issues: In this review, we will focus on (i) the molecular mechanism by which ROS/RNS generation, redox signaling, and/or oxidative stress/damage alter autophagic flux rates; (ii) the role of autophagy as a cell death process or survival mechanism in response to oxidative stress; and (iii) alternative mechanisms by which autophagy-related signaling regulate mitochondrial function and antioxidant response. Future Directions: Our research efforts should now focus on understanding the molecular basis of events by which autophagy is fine tuned by oxidation/reduction events. This knowledge will enable us to understand the mechanisms by which oxidative stress and autophagy regulate human diseases such as cancer and neurodegenerative disorders. Antioxid. Redox Signal. 21, 66–85. PMID:24483238

  13. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans

    Directory of Open Access Journals (Sweden)

    Ilaria Marrocco

    2017-01-01

    Full Text Available Oxidative stress is the result of the imbalance between reactive oxygen species (ROS formation and enzymatic and nonenzymatic antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease status and of the health-enhancing effects of antioxidants. We aim to discuss the major methodological bias of methods used for the evaluation of oxidative stress in humans. There is a lack of consensus concerning the validation, standardization, and reproducibility of methods for the measurement of the following: (1 ROS in leukocytes and platelets by flow cytometry, (2 markers based on ROS-induced modifications of lipids, DNA, and proteins, (3 enzymatic players of redox status, and (4 total antioxidant capacity of human body fluids. It has been suggested that the bias of each method could be overcome by using indexes of oxidative stress that include more than one marker. However, the choice of the markers considered in the global index should be dictated by the aim of the study and its design, as well as by the clinical relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of oxidative stress in humans must come from a critical analysis of the markers that should give an overall index of redox status in particular conditions.

  14. Effects of l-carnitine on oxidative stress parameters in ...

    African Journals Online (AJOL)

    Emel Peri Canbolat

    2016-08-10

    Aug 10, 2016 ... Nitric oxide (NO), malondialdehyde (MDA), total antioxidant status (TAS), total oxidative stress .... Erel's method was used for measuring TOS.19 TOS was ..... antioxidant capacity using a new generation, more stable ABTS.

  15. Molecular basis for arsenic-Induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction

    International Nuclear Information System (INIS)

    Kumagai, Yoshito; Pi Jingbo

    2004-01-01

    Accumulated epidemiological studies have suggested that prolonged exposure of humans to arsenic in drinking water is associated with vascular diseases. The exact mechanism of how this occurs currently unknown. Nitric oxide (NO), formed by endothelial NO synthase (eNOS), plays a crucial role in the vascular system. Decreased availability of biologically active NO in the endothelium is implicated in the pathophysiology of several vascular diseases and inhibition of eNOS by arsenic is one of the proposed mechanism s for arsenic-induced vascular diseases. In addition, during exposure to arsenic, overproduction of reactive oxygen species (ROS) can occur, resulting in oxidative stress, which is another major risk factor for vascular dysfunction. The molecular basis for decreased NO levels and increased oxidative stress during arsenic exposure is poorly understood. In this article, evidence for arsenic-mediated alteration in NO production and oxidative stress is reviewed. The results of a cross-sectional study in an endemic area of chronic arsenic poisoning and experimental animal studies to elucidate a potential mechanism for the impairment of NO formation and oxidative stress caused by prolonged exposure to arsenate in the drinking water are also reviewed

  16. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  17. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress.

    Science.gov (United States)

    Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing

    2018-05-15

    The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p stress groups. Malondialdehyde (MDA) content was significantly increased (p stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.

  18. Biological markers of oxidative stress: Applications to cardiovascular research and practice

    Directory of Open Access Journals (Sweden)

    Edwin Ho

    2013-01-01

    Full Text Available Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an “integrator” of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally silent”. Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment.

  19. Prebiotics, Prosynbiotics and Synbiotics: Can They Reduce Plasma Oxidative Stress Parameters? A Systematic Review.

    Science.gov (United States)

    Salehi-Abargouei, Amin; Ghiasvand, Reza; Hariri, Mitra

    2017-03-01

    This study assessed the effectiveness of presybiotics, prosybiotics and synbiotics on reducing serum oxidative stress parameters. PubMed/Medline, Ovid, Google Scholar, ISI Web of Science and SCOPUS were searched up to September 2016. English language randomized clinical trials reporting the effect of presybiotics, prosybiotics or synbiotic interventions on serum oxidative stress parameters in human adults were included. Twenty-one randomized clinical trials met the inclusion criteria for systematic review. Two studies investigated prebiotics, four studies synbiotics and fifteen studies probiotics. According to our systematic review, prebiotic could decrease malondialdehyde and increase superoxidative dismutase, but evidence is not enough. In comparison with fructo-oligosaccharide, inulin is much more useful for oxidative stress reduction. Using probiotics with dairy products could reduce oxidative stress significantly, but probiotic in form of supplementation did not have any effect on oxidative stress. There is limited but supportive evidence that presybiotics, prosybiotics and synbiotics are effective for reducing oxidative stress parameters. Further randomized clinical trials with longer duration of intervention especially on population with increased oxidative stress are needed to provide more definitive results before any recommendation for clinical use of these interventions.

  20. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.

    Science.gov (United States)

    Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J

    2014-09-01

    Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.

  1. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    Science.gov (United States)

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The effects of anesthetic agents on oxidative stress

    Science.gov (United States)

    Yakan, Selvinaz; Düzgüner, Vesile

    2016-04-01

    Oxidative stress can be defined as the instability between antioxidant defense of the body and the production of free radical that causes peroxydation on the lipid layer. Free radicals are reactive oxygen species that are produced in the course of normal metabolisms of aerobe organisms and they may cause disorders in cell structure and organelles by interacting macromolecules, like lipid, protein, nucleic acids. Therefore, they may cause cardiovascular, immune system, liver, kidney illnesses and many other illnesses like cancer, aging, cataract, diabetes. It is known that many drugs used for the purpose of anesthetizing may cause lipid peroxidation in organism. For these reasons, determining the Oxidative stress index of anaesthetic stress chosen in the ones that are exposed to long term anaesthetic agents and anaesthesia appliccations, is so substantial.

  3. EFFECTS OF SILICON ON ALLEVIATING ARSENIC TOXICITY IN MAIZE PLANTS

    Directory of Open Access Journals (Sweden)

    Airon José da Silva

    2015-02-01

    Full Text Available Arsenic is a metalloid highly toxic to plants and animals, causing reduced plant growth and various health problems for humans and animals. Silicon, however, has excelled in alleviating stress caused by toxic elements in plants. The aim of this study was to investigate the effects of Si in alleviating As stress in maize plants grown in a nutrient solution and evaluate the potential of the spectral emission parameters and the red fluorescence (Fr and far-red fluorescence (FFr ratio obtained in analysis of chlorophyll fluorescence in determination of this interaction. An experiment was carried out in a nutrient solution containing a toxic rate of As (68 μmol L-1 and six increasing rates of Si (0, 0.25, 0.5, 1.0, 1.5, and 2.0 mmol L-1. Dry matter production and concentrations of As, Si, and photosynthetic pigments were then evaluated. Chlorophyll fluorescence was also measured throughout plant growth. Si has positive effects in alleviating As stress in maize plants, evidenced by the increase in photosynthetic pigments. Silicon application resulted in higher As levels in plant tissue; therefore, using Si for soil phytoremediation may be a promising choice. Chlorophyll fluorescence analysis proved to be a sensitive tool, and it can be successfully used in the study of the ameliorating effects of Si in plant protection, with the Fr/FFr ratio as the variable recommended for identification of temporal changes in plants.

  4. Physical exercise and oxidative stress in muscular dystrophies: is there a good balance?

    Science.gov (United States)

    Chico, L; Ricci, G; Cosci O Di Coscio, M; Simoncini, C; Siciliano, G

    2017-07-01

    The effect of oxidative stress on muscle damage inducted by physical exercise is widely debated. It is generally agreed that endurance and intense exercise can increase oxidative stress and generate changes in antioxidant power inducing muscle damage; however, regular and moderate exercise can be beneficial for the health improving the antioxidant defense mechanisms in the majority of cases. Growing evidences suggest that an increased oxidative/nitrosative stress is involved in the pathogenesis of several muscular dystrophies (MDs). Notably, physical training has been considered useful for patients with these disorders. This review will focus on the involvement of oxidative stress in MDs and on the possible effects of physical activities to decrease oxidative damage and improve motor functions in MDs patients.

  5. Hepatic Antioxidant, Oxidative Stress And Histopathological ...

    African Journals Online (AJOL)

    Hepatic Antioxidant, Oxidative Stress And Histopathological Changes Induced By Nicotine In A Gender Based Study In Adult Rats. ... Antioxidant status was assessed in liver by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and ...

  6. Study on the serum oxidative stress status in silicosis patients | He ...

    African Journals Online (AJOL)

    To determine whether oxidative-stress damage play an important role in the mechanism of silicosis, the oxidative stress parameters were investigated in silicosis patients and controls group. 128 silicosis patients and 130 healthy controls were included. The serum superoxide dismutase (SOD) activity and the levels of ...

  7. MicroRNA-122 is involved in oxidative stress in isoniazid-induced liver injury in mice.

    Science.gov (United States)

    Song, L; Zhang, Z R; Zhang, J L; Zhu, X B; He, L; Shi, Z; Gao, L; Li, Y; Hu, B; Feng, F M

    2015-10-27

    Many studies have shown that the pathogenesis of liver injury includes oxidative stress. MicroRNA-122 may be a marker for the early diagnosis of drug-induced liver injury. However, the relationship between microRNA-122 and oxidative stress in anti-tuberculosis drug-induced liver injury remains unknown. We measured changes in tissue microRNA-122 levels and indices of oxidative stress during liver injury in mice after administration of isoniazid, a first-line anti-tuberculosis drug. We quantified microRNA-122 expression and indices of oxidative stress at 7 time points, including 1, 3, and 5 days and 1, 2, 3, and 4 weeks. The tissue microRNA-122 levels and oxidative stress significantly changed at 3 and 5 days, suggesting that isoniazid-induced liver injury reduces oxidative stress and microRNA-122 expression compared to in the control group (P microRNA-122, began to change at 5 days (P microRNA-122 profile may affect oxidative stress by regulating mitochondrial ribosome protein S11 gene during isoniazid-induced liver injury, which may contribute to the response mechanisms of microRNA-122 and oxidative stress.

  8. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ayşin Akıncı; Mukaddes Eşrefoğlu; Elif Taşlıdere; Burhan Ateş

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino...

  9. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ak?nc?, Ay?in; E?refo?lu, Mukaddes; Ta?l?dere, Elif; Ate?, Burhan

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation Methods: Forty male Wistar albino rats were...

  10. [Oxidative stress in station service workers].

    Science.gov (United States)

    Basso, A; Elia, G; Petrozzi, M T; Zefferino, R

    2004-01-01

    The aim of this study is to identify an oxidative stress in service station workers. Previous studies verified an increased incidence of leukemia and myeloma, however other authors haven't verified it. There are reports of nasal, pharyngeal, laryngeal, and lung cancer in service station workers. Our study wants to evaluate the oxidative balance in the fuel workers. We studied 44 subjects with gasoline exposure and 29 control subjects. We determined the blood concentrations of Glutathione reduced and oxidized, Protein sulfhydrylic (PSH) Vitamine E, Vitamine C, Malondialdehyde, Protein oxidized (OX-PROT) and beta carotene. The t test was performed to analyze the differences between the means, the Chi square was used to evaluate the statistical significance of associations between variable categorical (redox index). The Anova test excluded the confusing effect of age, smoke and alcohol habit. The mean age of the workers was 36.6 years, instead the control group was 38. In the workers Glutathione reduced, Vit. E and Beta carotene were lower than in the control subjects, this difference was statistically significant (p < 0.01). The Malondialdehyde concentration was higher in the workers higher than in the control group, but this difference wasn't statistically significant. Our data demonstrated Glutathione, Vit. E, and Beta carotene are useful to verify a reduction of the antioxidant activity. The only marker of the presence of oxidative injury that correlated to work exposure was the malondialdehyde. The redox index was surest marker. The limit of our study is the number of control group, it was little and lower than workers. Conclusively we believe it's useful to continue our studies and, if our results are going to be confirmed, we retain that stress oxidative determination would be verified in occupational medicine using these markers, especially to study exposure of the fuel workers who were investigated less and, in our opinion, would receive more attention.

  11. Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

    Science.gov (United States)

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-01-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways. PMID:24598995

  12. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants.

    Science.gov (United States)

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-02-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

  13. Resveratrol Increases Nephrin and Podocin Expression and Alleviates Renal Damage in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Qing-Rong Pan

    2014-07-01

    Full Text Available Resveratrol is well known for its anti-inflammation and anti-oxidant properties, and has been shown to be effective in alleviating the development of obesity. The purpose of this investigation was to analyze the effect of resveratrol on renal damage in obese rats induced by a high-fat diet (HFD and its possible mechanisms. Male Sprague-Dawley rats were divided into three groups: control, HFD, and HFD plus resveratrol (treated with 100 mg/kg/day resveratrol. Body weight, serum and urine metabolic parameters, and kidney histology were measured. Meanwhile, the activities of nuclear factor-κB (NF-κB and superoxide dismutase (SOD, the content of malondialdehyde (MDA, and the protein levels of tumor necrosis factor (TNF-α, monocyte chemotactic protein-1 (MCP-1, nephrin and podocin in kidney were detected. Our work showed that resveratrol alleviated dyslipidemia and renal damage induced by HFD, decreased MDA level and increased SOD activity. Furthermore, the elevated NF-κB activity, increased TNF-α and MCP-1 levels, and reduced expressions of nephrin and podocin induced by HFD were significantly reversed by resveratrol. These results suggest resveratrol could ameliorate renal injury in rats fed a HFD, and the mechanisms are associated with suppressing oxidative stress and NF-κB signaling pathway that in turn up-regulate nephrin and podocin protein expression.

  14. Correlation between oxidation and stress corrosion cracking of U-4.5 wt.% Nb

    International Nuclear Information System (INIS)

    Magnani, N.J.; Holloway, P.H.

    1976-01-01

    To investigate the mechanisms causing stress corrosion cracking on uranium alloys, the kinetics of crack propagation and oxide film growth for U-4.5 percent Nb were investigated at temperatures between 0 0 C and 200 0 C in oxygen, water vapor and oxygen-water vapor mixtures. Three regions of crack velocity rate versus stress intensity were observed in laboratory air. At low stress intensities (but above an effective K/sub ISCC/ of 22 MN/m/sup 3 / 2 /) crack velocity varied approximately as K 70 . In an intermediate stress intensity region (region II) the crack velocity was dependent upon K 4 . In the high stress intensity region, mechanical overloading was observed and crack velocities varied approximately as K 12 . Both cracking (region II) and oxidation rates were characterized by an activation energy of 7 kcal/mole. For stress corrosion cracking it was shown that oxygen was the primary stress corrodent, but a synergistic effect upon crack propagation rates was observed for oxygen-water vapor mixtures. Crack velocities were dependent upon the pressure of oxygen (P/sub O 2 //sup 1 / 3 /) and water vapor, while the oxidation rate was essentially independent of the pressure of these species. Stress sorption and oxide film formation stress corrosion cracking mechanisms were considered and reconciled with the stress corrosion and oxidation data

  15. Oxidative stress and partial migration in brown trout (Salmo trutta)

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Peiman, K. S.; Larsen, Martin Hage

    2017-01-01

    of oxidative status in migration biology, particularly in fish. Semi-anadromous brown trout (Salmo trutta, Linnaeus 1758) exhibit partial migration, where some individuals smoltify and migrate to sea, and others become stream residents, providing us with an excellent model to investigate the link between...... oxidative stress and migration. Using the brown trout, we obtained blood samples from juveniles from a coastal stream in Denmark in the fall prior to peak seaward migration which occurs in the spring, and assayed for antioxidant capacity (oxygen radical absorbance capacity) and oxidative stress levels...

  16. Molecular doping for control of gate bias stress in organic thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Moritz P., E-mail: hein@iapp.de; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Zakhidov, Alexander A. [Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany); Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany)

    2014-01-06

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface.

  17. Molecular doping for control of gate bias stress in organic thin film transistors

    International Nuclear Information System (INIS)

    Hein, Moritz P.; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K.; Zakhidov, Alexander A.; Leo, Karl

    2014-01-01

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface

  18. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system.

    Science.gov (United States)

    Biju, Sajitha; Fuentes, Sigfredo; Gupta, Dorin

    2017-10-01

    Silicon (Si) has been widely reported to have beneficial effect on mitigating drought stress in plants. However, the effect of Si on seed germination under drought conditions is still poorly understood. This research was carried out to ascertain the role of Si to abate polyethylene glycol-6000 mediated drought stress on seed germination and seedling growth of lentil. Results showed that drought stress significantly decreased the seed germination traits and increased the concentration of osmolytes (proline, glycine betaine and soluble sugars), reactive oxygen species (hydrogen peroxide and superoxide anion) and lipid peroxides in lentil seedlings. The activities of hydrolytic enzymes and antioxidant enzymes increased significantly under osmotic stress. The application of Si significantly enhanced the plants ability to withstand drought stress conditions through increased Si content, improved antioxidants, hydrolytic enzymes activity, decreased concentration of osmolytes and reactive oxygen species. Multivariate data analysis showed statistically significant correlations among the drought-tolerance traits, whereas cluster analysis categorised the genotypes into distinct groups based on their drought-tolerance levels and improvements in expression of traits due to Si application. Thus, these results showed that Si supplementation of lentil was effective in alleviating the detrimental effects of drought stress on seed germination and increased seedling vigour. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. A systematic review of observational studies on oxidative/nitrosative stress involvement in dengue pathogenesis

    OpenAIRE

    Castro, Raimundo; Pinzón, Hernando Samuel; Alvis-Guzman, Nelson

    2015-01-01

    Objective: Our objective was to systematically review the published observational research related to the role of oxidative-nitrosative stress in pathogenesis of dengue. Methods: We searched electronic databases (PubMed, EMBASE, The COCHRANE library, ScienceDirect, Scopus, SciELO, LILACS via Virtual Health Library, Google Scholar) using the term: dengue, dengue virus, severe dengue, oxidative stress, nitrosative stress, antioxidants, oxidants, free radicals, oxidized lipid products, lipid per...

  20. Degradation of Ultra-Thin Gate Oxide NMOSFETs under CVDT and SHE Stresses

    International Nuclear Information System (INIS)

    Shi-Gang, Hu; Yan-Rong, Cao; Yue, Hao; Xiao-Hua, Ma; Chi, Chen; Xiao-Feng, Wu; Qing-Jun, Zhou

    2008-01-01

    Degradation of device under substrate hot-electron (SHE) and constant voltage direct-tunnelling (CVDT) stresses are studied using NMOSFET with 1.4-nm gate oxides. The degradation of device parameters and the degradation of the stress induced leakage current (SILC) under these two stresses are reported. The emphasis of this paper is on SILC and breakdown of ultra-thin-gate-oxide under these two stresses. SILC increases with stress time and several soft breakdown events occur during direct-tunnelling (DT) stress. During SHE stress, SILC firstly decreases with stress time and suddenly jumps to a high level, and no soft breakdown event is observed. For DT injection, the positive hole trapped in the oxide and hole direct-tunnelling play important roles in the breakdown. For SHE injection, it is because injected hot electrons accelerate the formation of defects and these defects formed by hot electrons induce breakdown. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Oxidative Stress and Endometriosis: A Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Gennaro Scutiero

    2017-01-01

    Full Text Available Endometriosis is one of the most common gynaecologic diseases in women of reproductive age. It is characterized by the presence of endometrial tissue outside the uterine cavity. The women affected suffer from pelvic pain and infertility. The complex etiology is still unclear and it is based on three main theories: retrograde menstruation, coelomic metaplasia, and induction theory. Genetics and epigenetics also play a role in the development of endometriosis. Recent studies have put the attention on the role of oxidative stress, defined as an imbalance between reactive oxygen species (ROS and antioxidants, which may be implicated in the pathophysiology of endometriosis causing a general inflammatory response in the peritoneal cavity. Reactive oxygen species are intermediaries produced by normal oxygen metabolism and are inflammatory mediators known to modulate cell proliferation and to have deleterious effects. A systematic review was performed in order to clarify the different roles of oxidative stress and its role in the development of endometriosis. Several issues have been investigated: iron metabolism, oxidative stress markers (in the serum, peritoneal fluid, follicular fluid, peritoneal environment, ovarian cortex, and eutopic and ectopic endometrial tissue, genes involved in oxidative stress, endometriosis-associated infertility, and cancer development.

  2. Soft-food diet induces oxidative stress in the rat brain.

    Science.gov (United States)

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Food-derived bioactive peptides on inflammation and oxidative stress.

    Science.gov (United States)

    Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  4. Association of oxidative stress with the pathophysiology of depresion and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Lačković Maja

    2013-01-01

    Full Text Available The production of free radicals in an organism is under the control of various antioxidant mechanisms. If their production overcomes the capacity of antioxidant protection, oxidative stress occurs which is capable of damaging different cellular structures and biomolecules, leading to various diseases. The importance of oxidative stress was proven in many psychiatric diseases among which are depression and bipolar disorder. Different studies show the significant improvement of clinical presentation when antioxidant substances are administered, suggesting that redox imbalance can influence their symptoms appearance and severity. In addition, oxidative stress is intercrossed with the different comorbidities that appear among depressive and bipolar patients. Beside the clinical presentation, oxidative stress influences the chronicity of depression, which was demonstrated in patients with recurrent depressive disorder. Better understanding of oxidant/antioxidant imbalance and its role in the pathophysiology of depression and bipolar disorder could be useful for the development of a novel therapeutic approach to the management of these diseases.

  5. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze, E-mail: mfkhan@utmb.edu

    2013-11-15

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  6. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    International Nuclear Information System (INIS)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2013-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  7. Oxidative stress in the pathophysiology of metabolic syndrome: which mechanisms are involved?

    Directory of Open Access Journals (Sweden)

    Thalia M. T. Avelar

    2015-08-01

    Full Text Available ABSTRACTMetabolic syndrome (MS is a combination of cardiometabolic risk factors, including obesity, hyperglycemia, hypertriglyceridemia, dyslipidemia and hypertension. Several studies report that oxidative condition caused by overproduction of reactive oxygen species (ROS plays an important role in the development of MS. Our body has natural antioxidant system to reduce oxidative stress, which consists of numerous endogenous and exogenous components and antioxidants enzymes that are able to inactivate ROS. The main antioxidant defense enzymes that contribute to reduce oxidative stress are superoxide dismutase (SOD, catalase (CAT and gluthatione peroxidase (GPx. The high-density lipoprotein cholesterol (HDL-c is also associated with oxidative stress because it presents antioxidant and anti-inflammatory properties. HDL-c antioxidant activity may be attributed at least in part, to serum paraoxonase 1 (PON1 activity. Furthermore, derivatives of reactive oxygen metabolites (d-ROMs also stand out as acting in cardiovascular disease and diabetes, by the imbalance in ROS production, and close relationship with inflammation. Recent reports have indicated the gamma-glutamyl transferase (GGT as a promising biomarker for diagnosis of MS, because it is related to oxidative stress, since it plays an important role in the metabolism of extracellular glutathione. Based on this, several studies have searched for better markers for oxidative stress involved in development of MS.

  8. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  9. Regulation and physiological role of silicon in alleviating drought stress of mango.

    Science.gov (United States)

    Helaly, Mohamed Naser; El-Hoseiny, Hanan; El-Sheery, Nabil Ibrahim; Rastogi, Anshu; Kalaji, Hazem M

    2017-09-01

    Improvement of drought stress of mango plants requires intensive research that focuses on physiological processes. In three successive seasons (2014, 2015and 2016) field experiments with four different strains of mango were subjected to two water regimes. The growth and physiological parameters of possible relevance for drought stress tolerances in mango were investigated. Yield and its components were also evaluated. The data showed that all growth and physiological parameters were increased under K 2 SiO 3 (Si) supplement and were followed by the interaction treatment (Si treatment and its combination with drought stress) compared to that of the controlled condition. Drought stress decreased the concentration of auxins (IAA), gibberellins (GA) and cytokinins (CK) in the three mango cultivars leaves, whereas, it increased the concentration of abscisic acid (ABA). On the contrary, IAA, GA, and CK (promoters) endogenous levels were improved by supplementing Si, in contrary ABA was decreased. Drought stress increased the activity of peroxidase (POX), catalase (CAT), and superoxide dismutase (SOD) in the leaves of all mango cultivars grown during three experimental seasons. However, Si supplementation reduced the levels of all these antioxidative enzymes, especially the concentration of SOD when compared to that of control leaves. Fruit quality was improved in three successive seasons when Si was applied. Our results clearly show that the increment in drought tolerance was associated with an increase in antioxidative enzyme activity, allowing mango plants to cope better with drought stress. Si possesses an efficient system for scavenging reactive oxygen species, which protects the plant against destructive oxidative reactions, thereby improving the ability of the mango trees to withstand environmental stress in arid regions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury.

    Science.gov (United States)

    Jia, Zhi-Qiang; Li, San-Qiang; Qiao, Wei-Qiang; Xu, Wen-Zhong; Xing, Jian-Wu; Liu, Jian-Tao; Song, Hui; Gao, Zhong-Yang; Xing, Bing-Wen; He, Xi-Jing

    2018-05-04

    Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na + -K + -ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Higher oxidative stress in skeletal muscle of McArdle disease patients

    Directory of Open Access Journals (Sweden)

    Jan J. Kaczor

    2017-09-01

    Full Text Available McArdle disease (MCD is an autosomal recessive condition resulting from skeletal muscle glycogen phosphorylase deficiency. The resultant block in glycogenolysis leads to an increased flux through the xanthine oxidase pathway (myogenic hyperuricemia and could lead to an increase in oxidative stress. We examined markers of oxidative stress (8-isoprostane and protein carbonyls, NAD(PH-oxidase, xanthine oxidase and antioxidant enzyme (superoxide dismutase, catalase and glutathione peroxidase activity in skeletal muscle of MCD patients (N = 12 and controls (N = 12. Eight-isoprostanes and protein carbonyls were higher in MCD patients as compared to controls (p < 0.05. There was a compensatory up-regulation of catalase protein content and activity (p < 0.05, mitochondrial superoxide dismutase (MnSOD protein content (p < 0.01 and activity (p < 0.05 in MCD patients, yet this increase was not sufficient to protect the muscle against elevated oxidative damage. These results suggest that oxidative stress in McArdle patients occurs and future studies should evaluate a potential role for oxidative stress contributing to acute pathology (rhabdomyolysis and possibly later onset fixed myopathy.

  12. Oxidative Stress: A New Target for Pancreatic Cancer Prognosis and Treatment

    Directory of Open Access Journals (Sweden)

    Javier Martinez-Useros

    2017-03-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal types of tumors, and its incidence is rising worldwide. Survival can be improved when tumors are detected at an early stage; however, this cancer is usually asymptomatic, and the disease only becomes apparent after metastasis. Several risk factors are associated to this disease. Chronic pancreatitis, diabetes, and some infectious disease are the most relevant risk factors. Incidence of PDAC has increased in the last decades. It is hypothesized it could be due to other acquired risk habits, like smoking, high alcohol intake, and obesity. Indeed, adipose tissue is a dynamic endocrine organ that secretes different pro-inflammatory cytokines, enzymes, and other factors that activate oxidative stress. Reactive oxygen species caused by oxidative stress, damage DNA, proteins, and lipids, and produce several toxic and high mutagenic metabolites that could modify tumor behavior, turning it into a malignant phenotype. Anti-oxidant compounds, like vitamins, are considered protective factors against cancer. Here, we review the literature on oxidative stress, the molecular pathways that activate or counteract oxidative stress, and potential treatment strategies that target reactive oxygen species suitable for this kind of cancer.

  13. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants.

    Science.gov (United States)

    Lee, Seung-Yup; Lee, Soo-Jung; Han, Changsu; Patkar, Ashwin A; Masand, Prakash S; Pae, Chi-Un

    2013-10-01

    The brain is an organ predisposed to oxidative/nitrosative stress. This is especially true in the case of aging as well as several neurodegenerative diseases. Under such circumstances, a decline in the normal antioxidant defense mechanisms leads to an increase in the vulnerability of the brain to the deleterious effects of oxidative damage. Highly reactive oxygen/nitrogen species damage lipids, proteins, and mitochondrial and neuronal genes. Unless antioxidant defenses react appropriately to damage inflicted by radicals, neurons may experience microalteration, microdysfunction, and degeneration. We reviewed how oxidative and nitrosative stresses contribute to the pathogenesis of depressive disorders and reviewed the clinical implications of various antioxidants as future targets for antidepressant treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Influence of Acute Coffee Consumption on Postprandial Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Richard J. Bloomer

    2013-01-01

    Full Text Available Background Coffee has been reported to be rich in antioxidants, with both acute and chronic consumption leading to enhanced blood antioxidant capacity. High-fat feeding is known to result in excess production of reactive oxygen and nitrogen species, promoting a condition of postprandial oxidative stress. Methods We tested the hypothesis that coffee intake following a high-fat meal would attenuate the typical increase in blood oxidative stress during the acute postprandial period. On 3 different occasions, 16 men and women consumed a high-fat milk shake followed by either 16 ounces of caffeinated or decaffeinated coffee or bottled water. Blood samples were collected before and at 2 and 4 hours following intake of the milk shake and analyzed for triglycerides (TAG, malondialdehyde (MDA, hydrogen peroxide (H 2 O 2 , and Trolox equivalent antioxidant capacity (TEAC. Results Values for TAG and MDA ( P 0.05. Conclusions Acute coffee consumption following a high-fat milk shake has no impact on postprandial oxidative stress.

  15. Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange.

    Science.gov (United States)

    Huang, Yong-Ming; Zou, Ying-Ning; Wu, Qiang-Sheng

    2017-02-08

    The Non-invasive Micro-test Technique (NMT) is used to measure dynamic changes of specific ions/molecules non-invasively, but information about hydrogen peroxide (H 2 O 2 ) fluxes in different classes of roots by mycorrhiza is scarce in terms of NMT. Effects of Funneliformis mosseae on plant growth, H 2 O 2 , superoxide radical (O 2 ·- ), malondialdehyde (MDA) concentrations, and H 2 O 2 fluxes in the taproot (TR) and lateral roots (LRs) of trifoliate orange seedlings under well-watered (WW) and drought stress (DS) conditions were studied. DS strongly inhibited mycorrhizal colonization in the TR and LRs, whereas mycorrhizal inoculation significantly promoted plant growth and biomass production. H 2 O 2 , O 2 ·- , and MDA concentrations in leaves and roots were dramatically lower in mycorrhizal seedlings than in non-mycorrhizal seedlings under DS. Compared with non-mycorrhizal seedlings, mycorrhizal seedlings had relatively higher net root H 2 O 2 effluxes in the TR and LRs especially under WW, as well as significantly higher total root H 2 O 2 effluxes in the TR and LRs under WW and DS. Total root H 2 O 2 effluxes were significantly positively correlated with root colonization but negatively with root H 2 O 2 and MDA concentrations. It suggested that mycorrhizas induces more H 2 O 2 effluxes of the TR and LRs, thus, alleviating oxidative damage of DS in the host plant.

  16. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-pro...

  17. Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses.

    Science.gov (United States)

    Schriner, Samuel E; Avanesian, Agnesa; Liu, Yanxia; Luesch, Hendrik; Jafari, Mahtab

    2009-09-01

    Rhodiola rosea root has been long used in traditional medical systems in Europe and Asia as an adaptogen to increase an organism's resistance to physical stress. Recent research has demonstrated its ability to improve mental and physical stamina, to improve mood, and to help alleviate high-altitude sickness. We have also recently found that R. rosea is able to extend the life span of Drosophila melanogaster. The mode of action of R. rosea is currently unknown; it has been suggested by some to act as an antioxidant, whereas others have argued that it may actually be a pro-oxidant and act through a hormetic mechanism. We found that R. rosea supplementation could protect cultured cells against ultraviolet light, paraquat, and H(2)O(2). However, it did not alter the levels of the major antioxidant defenses nor did it markedly activate the antioxidant response element or modulate heme-oxygenase-1 expression levels at relevant concentrations. In addition, R. rosea extract was not able to significantly degrade H(2)O(2) in vitro. These results suggest that in human cultured cells R. rosea does not act as an antioxidant and that its mode of action cannot be sufficiently explained through a pro-oxidant hormetic mechanism.

  18. Oxidative stress in tumor microenvironment——Its role in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Armando ROJAS; Raúl SILVA; Héctor FIGUEROA; Miguel A MORALES

    2008-01-01

    The tumor angiogenesis process is believed to be dependent on an "angiogenic switch" formed by a cascade of biologic events as a consequence of the "cross-talk" between tumor cells and several components of local microenvironment including endothelial cells, macrophages, mast cells and stromal components. Oxidative stress represents an important stimulus that widely contributes to this angiogenic switch, which is particularly relevant in lungs,where oxidative stress is originated from different sources including the incomplete reduction of oxygen during respiration,exposure to hypoxia/reoxygenation, stimulated resident or chemoattracted immune ceils to lung tissues, as well as by a variety of chemicals compounds. In the present review we highlight the role of oxidative stress in tumor angiogenesis as a key signal linked to other relevant actors in this complex process.

  19. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4

  20. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes*

    Science.gov (United States)

    Collins, John A.; Wood, Scott T.; Nelson, Kimberly J.; Rowe, Meredith A.; Carlson, Cathy S.; Chubinskaya, Susan; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.

    2016-01-01

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1–3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observed in situ in human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130