WorldWideScience

Sample records for alleviates intestinal inflammation

  1. Mechanisms involved in alleviation of intestinal inflammation by bifidobacterium breve soluble factors.

    Directory of Open Access Journals (Sweden)

    Elise Heuvelin

    Full Text Available OBJECTIVES: Soluble factors released by Bifidobacterium breve C50 (Bb alleviate the secretion of pro-inflammatory cytokines by immune cells, but their effect on intestinal epithelium remains elusive. To decipher the mechanisms accounting for the cross-talk between bacteria/soluble factors and intestinal epithelium, we measured the capacity of the bacteria, its conditioned medium (Bb-CM and other Gram(+ commensal bacteria to dampen inflammatory chemokine secretion. METHODS: TNFalpha-induced chemokine (CXCL8 secretion and alteration of NF-kappaB and AP-1 signalling pathways by Bb were studied by EMSA, confocal microscopy and western blotting. Anti-inflammatory capacity was also tested in vivo in a model of TNBS-induced colitis in mice. RESULTS: Bb and Bb-CM, but not other commensal bacteria, induced a time and dose-dependent inhibition of CXCL8 secretion by epithelial cells driven by both AP-1 and NF-kappaB transcription pathways and implying decreased phosphorylation of p38-MAPK and IkappaB-alpha molecules. In TNBS-induced colitis in mice, Bb-CM decreased the colitis score and inflammatory cytokine expression, an effect reproduced by dendritic cell conditioning with Bb-CM. CONCLUSIONS: Bb and secreted soluble factors contribute positively to intestinal homeostasis by attenuating chemokine production. The results indicate that Bb down regulate inflammation at the epithelial level by inhibiting phosphorylations involved in inflammatory processes and by protective conditioning of dendritic cells.

  2. Microbes, intestinal inflammation and probiotics.

    Science.gov (United States)

    Khan, Mohammad W; Kale, Amod A; Bere, Praveen; Vajjala, Sriharsha; Gounaris, Elias; Pakanati, Krishna Chaitanya

    2012-02-01

    Inflammatory bowel disease (IBD) is known for causing disturbed homeostatic balance among the intestinal immune compartment, epithelium and microbiota. Owing to the emergence of IBD as a major cause of morbidity and mortality, great efforts have been put into understanding the sequence of intestinal inflammatory events. Intestinal macrophages and dendritic cells act in a synergistic fashion with intestinal epithelial cells and microbiota to initiate the triad that governs the intestinal immune responses (whether inflammatory or regulatory). In this review, we will discuss the interplay of intestinal epithelial cells, bacteria and the innate immune component. Moreover, whether or not genetic intervention of probiotic bacteria is a valid approach for attenuating/mitigating exaggerated inflammation and IBD will also be discussed.

  3. Reishi Protein LZ-8 Induces FOXP3+ Treg Expansion via a CD45-Dependent Signaling Pathway and Alleviates Acute Intestinal Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Hsien-Yeh Hsu

    2013-01-01

    Full Text Available LZ-8, an immunomodulatory protein isolated from Ganoderma lucidum (also known as Ling-Zhi or Reishi, has been shown to promote cell proliferation and IL-2 production in T cells. In this study, we show that LZ-8 induces the expansion of both murine and human CD4+ T cells into FOXP3+ regulatory T (Treg cells. LZ-8 treatment was found to stimulate a 4-fold and a 10-fold expansion in the Treg populations of murine and human primary CD4+ T cells, respectively. In addition, the expression of CTLA-4 and IL-10 was induced in LZ-8-treated CD4+ T cells. Using neutralizing antibodies and gene-deficient T-cell lines, we also found that LZ-8 promotes Treg expansion through a CD45-mediated signaling pathway and that the CD18-dependent induction of IL-2 was involved in Treg formation and IL-10 production. The suppressive activity of LZ-8 was confirmed using a murine model of DSS-induced colitis; the disease was alleviated by the adoptive transfer of LZ-8-treated CD4+ T cells. In conclusion, a new regulatory function for LZ-8 was identified, and the molecular mechanisms underlying this function were elucidated.

  4. Co-administration of a probiotic strain Lactobacillus plantarum LS/07 CCM7766 with prebiotic inulin alleviates the intestinal inflammation in rats exposed to N,N-dimethylhydrazine.

    Science.gov (United States)

    Štofilová, Jana; Szabadosová, Viktória; Hrčková, Gabriela; Salaj, Rastislav; Bertková, Izabela; Hijová, Emília; Strojný, Ladislav; Bomba, Alojz

    2015-02-01

    The aim of this study was to determine the anti-inflammatory effects of preventive administration of a probiotic strain Lactobacillus plantarum LS/07 CCM7766 alone or in combination with prebiotic inulin or with flax-seed oil in the gut of rats, which developed chronic inflammation following administration of the pro-carcinogen N,N-dimethylhydrazine (DMH). After 28weeks administration of probiotic/prebiotic-containing diet, rats were killed and their colons were examined by immunohistological criteria, whereas cytokines were determined in the jejunal mucosa. Application of DMH triggered the production of pro-inflammatory cytokines IL-2, IL-6, IL-17, and TNF-α, expression of pro-inflammatory mediators NF-κB, COX-2 and iNOS and caused depletion of goblet cells. Supplementing the diet with L. plantarum and its combination with the prebiotic abolished DMH-induced inflammatory process in the jejunal mucosa by inhibiting the production of pro-inflammatory cytokines and by stimulation of anti-inflammatory IL-10 cytokine synthesis, whereas concentration of TGF-β1 was not influenced significantly. Diet prevented a decrease in goblet cell numbers but numbers of mast cells were lowered only moderately. However, combined treatment of rats with L. plantarum and flax-seed oil had no significant effect on the parameters examined, except for decreased expression of NF-κB, in comparison with the negative control. Results indicate that the preventive administration of probiotic L. plantarum LS/07 CCM7766 alone or in combination with prebiotic inulin to rats with DMH-induced chronic inflammation can reduce inflammatory process in the jejunal and colon mucosa, probably indirectly, and involves down-regulation of synthesis of pro-inflammatory cytokines and suppression of NF-κB activity in mucosal cells.

  5. Mouse models of intestinal inflammation and cancer.

    Science.gov (United States)

    Westbrook, Aya M; Szakmary, Akos; Schiestl, Robert H

    2016-09-01

    Chronic inflammation is strongly associated with approximately one-fifth of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here, we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With

  6. The role of hypoxia in intestinal inflammation.

    Science.gov (United States)

    Shah, Yatrik M

    2016-12-01

    Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the intestine. IBD is a multifactorial disorder, and IBD-associated genes are critical in innate immune response, inflammatory response, autophagy, and epithelial barrier integrity. Moreover, epithelial oxygen tension plays a critical role in intestinal inflammation and resolution in IBD. The intestines have a dynamic and rapid fluctuation in cellular oxygen tension, which is dysregulated in IBD. Intestinal epithelial cells have a steep oxygen gradient where the tips of the villi are hypoxic and the oxygenation increases at the base of the villi. IBD results in heightened hypoxia throughout the mucosa. Hypoxia signals through a well-conserved family of transcription factors, where hypoxia-inducible factor (HIF)-1α and HIF-2α are essential in maintaining intestinal homeostasis. In inflamed mucosa, HIF-1α increases barrier protective genes, elicits protective innate immune responses, and activates an antimicrobial response through the increase in β-defensins. HIF-2α is essential in maintaining an epithelial-elicited inflammatory response and the regenerative and proliferative capacity of the intestine following an acute injury. HIF-1α activation in colitis leads to a protective response, whereas chronic activation of HIF-2α increases the pro-inflammatory response, intestinal injury, and cancer. In this mini-review, we detail the role of HIF-1α and HIF-2α in intestinal inflammation and injury and therapeutic implications of targeting HIF signaling in IBD. PMID:26812949

  7. Role of Smooth Muscle in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Stephen M Collins

    1996-01-01

    Full Text Available The notion that smooth muscle function is altered in inflammation is prompted by clinical observations of altered motility in patients with inflammatory bowel disease (IBD. While altered motility may reflect inflammation-induced changes in intrinsic or extrinsic nerves to the gut, changes in gut hormone release and changes in muscle function, recent studies have provided in vitro evidence of altered muscle contractility in muscle resected from patients with ulcerative colitis or Crohn’s disease. In addition, the observation that smooth muscle cells are more numerous and prominent in the strictured bowel of IBD patients compared with controls suggests that inflammation may alter the growth of intestinal smooth muscle. Thus, inflammation is associated with changes in smooth muscle growth and contractility that, in turn, contribute to important symptoms of IBD including diarrhea (from altered motility and pain (via either altered motility or stricture formation. The involvement of smooth muscle in this context may be as an innocent bystander, where cells and products of the inflammatory process induce alterations in muscle contractility and growth. However, it is likely that intestinal muscle cells play a more active role in the inflammatory process via the elaboration of mediators and trophic factors, including cytokines, and via the production of collagen. The concept of muscle cells as active participants in the intestinal inflammatory process is a new concept that is under intense study. This report summarizes current knowledge as it relates to these two aspects of altered muscle function (growth and contractility in the inflamed intestine, and will focus on mechanisms underlying these changes, based on data obtained from animal models of intestinal inflammation.

  8. Radiation-induced intestinal inflammation

    Institute of Scientific and Technical Information of China (English)

    Meritxell Mollà; Julián Panés

    2007-01-01

    Radiation induces an important inflammatory response in the irradiated organs, characterized by leukocyte infiltration and vascular changes that are the main limiting factor in the application of this therapeutic modality for the treatment of cancer. Recently, a considerable investigative effort has been directed at determining the molecular mechanisms by which radiation induces leukocyte recruitment, in order to create strategies to prevent intestinal inflammatory damage. In these review, we consider current available evidence on the factors governing the process of leukocyte recruitment in irradiated organs, mainly derived from experimental studies, with special attention to adhesion molecules, and their value as therapeutic targets.

  9. Chronic pancreatitis: Maldigestion, intestinal ecology and intestinal inflammation

    Institute of Scientific and Technical Information of China (English)

    Raffaele Pezzilli

    2009-01-01

    Exocrine pancreatic insufficiency caused by chronic pancreatitis results from various factors whichregulate digestion and absorption of nutrients. Pancreatic function has been extensively studied over the last 40 years, even if some aspects of secretion and gastrointestinal adaptation are not completely understood. The main clinical manifestations of exocrine pancreatic insufficiency are fat malabsorption, known as steatorrhea, which consists of fecal excretion of more than 6 g of fat per day, weightloss, abdominal discomfort and abdominal swelling sensation. Fat malabsorption also results in a deficit of fat-soluble vitamins (A, D, E and K) with consequent clinical manifestations. The relationships between pancreatic maldigestion, intestinal ecology and intestinal inflammation have not received particular attention, even if in clinical practice these mechanisms may be responsible for the low efficacy of pancreatic extracts in abolishing steatorrhea in some patients. The best treatments for pancreatic maldigestion should be re-evaluated, taking into account not only the correction of pancreatic insufficiency using pancreatic extracts and the best duodenal pH to permit optimal efficacy of these extracts, but we also need to consider other therapeutic approaches including the decontamination of intestinal lumen, supplementation of bile acids and, probably, the use of probiotics which may attenuate intestinal inflammation

  10. Icam-1 targeted nanogels loaded with dexamethasone alleviate pulmonary inflammation.

    Directory of Open Access Journals (Sweden)

    M Carme Coll Ferrer

    Full Text Available Lysozyme dextran nanogels (NG have great potential in vitro as a drug delivery platform, combining simple chemistry with rapid uptake and cargo release in target cells with "stealth" properties and low toxicity. In this work, we study for the first time the potential of targeted NG as a drug delivery platform in vivo to alleviate acute pulmonary inflammation in animal model of LPS-induced lung injury. NG are targeted to the endothelium via conjugation with an antibody (Ab directed to Intercellular Adhesion Molecule-1(ICAM-NG, whereas IgG conjugated NG (IgG-NG are used for control formulations. The amount of Ab conjugated to the NG and distribution in the body after intravenous (IV injection have been quantitatively analyzed using a tracer isotope-labeled [125I]IgG. As a proof of concept, Ab-NG are loaded with dexamethasone, an anti-inflammatory therapeutic, and the drug uptake and release kinetics are measured by HPLC. In vivo studies in mice showed that: i ICAM-NG accumulates in mouse lungs (∼120% ID/g vs ∼15% ID/g of IgG-NG; and, ii DEX encapsulated in ICAM-NG, but not in IgG-NG practically blocks LPS-induced overexpression of pro-inflammatory cell adhesion molecules including ICAM-1 in the pulmonary inflammation.

  11. The Enteric Nervous System in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Keith A Sharkey

    1996-01-01

    Full Text Available Since about the 1950s nerves in the wall of the intestine have been postulated to play a role in the pathogenesis of inflammatory bowel disease (IBD. Human and animal studies examining the role of nerves in intestinal inflammation are the focus of this review. Consideration is given to two possible ways that nerves are involved in IBD. First, nerves may play a role in the development or maintenance of inflammation through local release of transmitters. Second, once initiated (by whatever means, the processes of inflammation may disrupt the normal pattern of innervation and the interactions of nerves and their target tissues. Many of the functional disturbances observed in IBD are likely due to an alteration in the enteric nervous system either structurally through disruptions of nerve-target relationships or by modifications of neurotransmitters or their receptors. Finally, it appears that the enteric nervous system may be a potential therapeutic target in IBD and that neuroactive drugs acting locally can represent useful agents in the management of this disease.

  12. 卡巴胆碱对大鼠烫伤休克期肠内补液时肠道的影响%Carbachol alleviates intestinal inflammation during enteral fluid resuscitation of rats with burn shock

    Institute of Scientific and Technical Information of China (English)

    车晋伟; 胡森; 耿世佳; 吴静; 王磊; 杜颖; 田易军; 盛志勇

    2008-01-01

    Objective To investigate the effect of carbachol on local gut inflammation during entetal resuscitation of rats with bum shock. Method Thirty-eight Wistar rats were subjected to 35%TBSA full thickness scald injury, and enteral fluid was infused into animal intestines via duodenal stomas 30 minutes post bum. The animals were randomly divided into four groups: no resuscitation (Control, n = 8), enteral resuscitation using either a glucose electrolyte solution (GES, n = 10) or GES plus carbachol (60 μg·kg-1,GES/CAR, n = 10), or carbachol alone (CAR, n = 10) .The volumeof GES infusion was based on the Parkland formula (4 ml· 1% TB-SA-1·Kg-1) - All animals were sacrificed 4 hours post bum, and specimens of jejunal tissue were collected to determine the levels of tumor necrosis factor (TNF)-α, nitric oxide (NO), nitric oxide synthase (NOS) and myeloperoxidase (MPO). Serum assays for plasma diamine oxidase (DAO) activities were also performed. Results There were no statistical differences in the intestinal levels of NOS, NO, TNF-α and MPO, and plasma OAO activities, between the GES group and the control group. Compared to the GES group, the GES/CAR group showed significantly lowered levels of intestinal NOS (1.276 ±0.391 vs. 1.818 ±0.436, P<0.05), NO (0.925 ±0.402 vs. 1.561 ±0.190, P < 0.05, TNF-α (0.87±0.13 vs. 1.94±0.47, P <0.01) and MPO (0.465 ±0.092 vs. 0.832±0.214, P<0.05),and reduction in plasma DAO activites (0.732±0.192 vs. 1.381 ±0.564, P <0.05). The CAR group also showed significantly lowered levels of intestinal NOS, NO, TNF-α and MPO and reduced plasma DAO activites, compared to the GES group. Conclusions Theses results suggest that carbachol significantly inhibits the release of proinflammatory mediator and attenuates local inflammation in gut during enteral fluid resuscitation of rats in rats with bum shock. We postulate that carbachol may exert its and-inflammatory effects via the cholinergic anti-inflammatory pathway.%目的

  13. Beneficial roles of dietary oleum cinnamomi in alleviating intestinal injury.

    Science.gov (United States)

    Wang, Lei; Hou, Yongqing; Yi, Dan; Ding, Binying; Zhao, Di; Wang, Zhongxing; Zhu, Huiling; Liu, Yulan; Gong, Joshua; Assaad, Houssein; Wu, Guoyao

    2015-01-01

    Cinnamon is a traditional herb used for treatment of many human diseases. The most important chemical compounds of the essential oil are cinnamaldehyde and eugenol. Oleum cinnamomi (OCM, cinnamon oil) is increasingly used as a feed additive to animal diets. Beneficial effects of OCM in protecting tissues from inflammation and injury by endogenous and exogenous agents (such as hydrogen peroxide and lipopolysaccharide (LPS)) may result, in part, from its action on regulating amino acid metabolism in cells to favor the synthesis of glutathione (a major low-molecular-weight antioxidant) from cysteine, glycine and glutamate. In support of this notion, results of recent studies indicate that supplementing OCM (50 mg/kg diet) to a corn- and soybean meal-based diet for piglets weaned at 21 days of age enhances intestinal anti-oxidative capacity and reduces the incidence of diarrhea. Additionally, dietary supplementation with OCM ameliorates LPS-induced mucosal barrier dysfunction and mucosal damage in the small intestine. OCM holds great promise for protecting the gut from injury under conditions of inflammation, infections, and oxidative stress.

  14. Specific immunotherapy in combination with Clostridium butyricum inhibits allergic inflammation in the mouse intestine.

    Science.gov (United States)

    Shi, Yanhong; Xu, Ling-Zhi; Peng, Kangsheng; Wu, Wei; Wu, Ruijin; Liu, Zhi-Qiang; Yang, Gui; Geng, Xiao-Rui; Liu, Jun; Liu, Zhi-Gang; Liu, Zhanju; Yang, Ping-Chang

    2015-12-02

    The current therapy on allergic inflammation is unsatisfactory. Probiotics improve the immunity in the body. This study aims to test a hypothesis that administration with Clostridium butyricum (C. butyricum) enforces the effect of specific immunotherapy (SIT) on intestinal allergic inflammation. In this study, an ovalbumin (OVA) specific allergic inflammation mouse model was created. The mice were treated with SIT or/and C. butyricum. The results showed that the intestinal allergic inflammation was only moderately alleviated by SIT, which was significantly enforced by a combination with C. butyricum; treating with C. butyricum alone did not show much inhibitory efficacy. The increase in the frequency of the interleukin (IL)-10-producing OVA-specific B cell (OVAsBC) was observed in mice in parallel to the inhibitory effect on the intestinal allergic inflammation. The in vitro treatment of the OVAsBCs with OVA increased the histone deacetylase-1 (HDAC1) phosphorylation, modulated the transcription of the Bcl6 gene, and triggered the OVAsBCs to differentiate to the IgE-producing plasma cells. Exposure to both OVA and butyrate sodium in the culture increased the expression of IL-10 in OVAsBCs. In conclusion, administration with C. butyricum enforces the inhibitory effect of SIT on allergic inflammation in the mouse intestine.

  15. TLR2-independent induction and regulation of chronic intestinal inflammation.

    Science.gov (United States)

    Boulard, Olivier; Asquith, Mark J; Powrie, Fiona; Maloy, Kevin J

    2010-02-01

    Interactions between the intestinal microflora and host innate immune receptors play a critical role in intestinal homeostasis. Several studies have shown that TLR2 can modulate inflammatory responses in the gut. TLR2 signals enhance tight junction formation and fortify the epithelial barrier, and may play a crucial role in driving acute inflammatory responses towards intestinal bacterial pathogens. In addition, TLR2 agonists can have direct effects on both Th1 cells and Treg. To define the role of TLR2 in the induction and regulation of chronic intestinal inflammation we examined the effects of TLR2 deletion on several complementary models of inflammatory bowel disease. Our results show that TLR2 signals are not required for the induction of chronic intestinal inflammation by either innate or adaptive immune responses. We further show that TLR2(-/-) mice harbor normal numbers of Foxp3(+) Treg that are able to suppress intestinal inflammation as effectively as their WT counterparts. We also did not find any intrinsic role for TLR2 for pathogenic effector T-cell responses in the gut. Thus, in contrast to their role in acute intestinal inflammation and repair, TLR2 signals may have a limited impact on the induction and regulation of chronic intestinal inflammation. PMID:19950179

  16. Inflammasome in Intestinal Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Tiago Nunes

    2013-01-01

    Full Text Available The activation of specific cytosolic pathogen recognition receptors, the nucleotide-binding-oligomerization-domain- (NOD- like receptors (NLRs, leads to the assembly of the inflammasome, a multimeric complex platform that activates caspase-1. The caspase-1 pathway leads to the upregulation of important cytokines from the interleukin (IL-1 family, IL-1β, and IL-18, with subsequent activation of the innate immune response. In this review, we discuss the molecular structure, the mechanisms behind the inflammasome activation, and its possible role in the pathogenesis of inflammatory bowel diseases and intestinal cancer. Here, we show that the available data points towards the importance of the inflammasome in the innate intestinal immune response, being the complex involved in the maintenance of intestinal homeostasis, correct intestinal barrier function and efficient elimination of invading pathogens.

  17. Even low-grade inflammation impacts on small intestinal function

    OpenAIRE

    Peuhkuri, Katri; Vapaatalo, Heikki; Korpela, Riitta

    2010-01-01

    Independent of the cause and location, inflammation - even when minimal - has clear effects on gastrointestinal morphology and function. These result in altered digestion, absorption and barrier function. There is evidence of reduced villus height and crypt depth, increased permeability, as well as altered sugar and peptide absorption in the small intestine after induction of inflammation in experimental models, which is supported by some clinical data. Identification of inflammatory factors ...

  18. Intestinal Hedgehog signaling in tumors and inflammation

    NARCIS (Netherlands)

    N.V.J.A. Büller

    2015-01-01

    In this thesis we investigated the role of Hedgehog signaling in tumors and inflammation. By using an inducible Indian Hedgehog (Ihh) knockout mouse we show that Ihh signals via the mesenchyme to the proliferating cells in the crypt to attenuate proliferation. Despite its anti-proliferative role in

  19. Prophylactic treatment with growth hormone improves intestinal barrier function and alleviates bacterial translocation in stressed rats

    Institute of Scientific and Technical Information of China (English)

    丁连安; 黎介寿; 李幼生; 刘放南; 谭力

    2004-01-01

    Background Damage to the gut barrier often occurs during critical illnesses. In such cases, it is very important to alleviate impairment of the intestinal barrier and protect intestinal barrier function. This study investigated the protective effect of growth hormone on intestinal barrier function in rats under stress.Methods This study consisted of prospective, randomized, and controlled animal experiments. Twenty-five Sprague-Dawley rats served as total parenteral nutrition (TPN) models and were divided into three groups: TPN group, sepsis (Sep) group, and growth hormone (GH) group. Another 8 rats served as normal controls. Each group received different stress stimuli. Rats were fed for 7 days, and samples were taken for examination 24 hours after garaging with dual saccharides. Results The architecture of the small intestinal mucosa in the Sep group showed the most severe damage among all groups. Nitric oxide levels in blood plasma and immunoglobulin A levels in the intestinal mucosa of the GH group were significantly lower than in the Sep group (P<0.02). There were no significant changes in CD3 counts and in the CD4/CD8 ratio between the four groups. Dual sugar tests and bacteriological examinations revealed that intestinal permeability and rate of bacterial translocation in the GH group were lower than in the Sep group (P<0.01, respectively).Conclusion Prophylactic treatment with growth hormone can alleviate damage to intestinal barrier function caused by trauma and endotoxemia in rats under stress.

  20. Candida utilis and Chlorella vulgaris counteract intestinal inflammation in Atlantic salmon (Salmo salar L..

    Directory of Open Access Journals (Sweden)

    Fabian Grammes

    Full Text Available Intestinal inflammation, caused by impaired intestinal homeostasis, is a serious condition in both animals and humans. The use of conventional extracted soybean meal (SBM in diets for Atlantic salmon and several other fish species is known to induce enteropathy in the distal intestine, a condition often referred to as SBM induced enteropathy (SBMIE. In the present study, we investigated the potential of different microbial ingredients to alleviate SBMIE in Atlantic salmon, as a model of feed-induced inflammation. The dietary treatments consisted of a negative control based on fish meal (FM, a positive control based on 20% SBM, and four experimental diets combining 20% SBM with either one of the three yeasts Candida utilis (CU, Kluyveromyces marxianus (KM, Saccharomyces cerevisiae (SC or the microalgae Chlorella vulgaris (CV. Histopathological examination of the distal intestine showed that all fish fed the SC or SBM diets developed characteristic signs of SBMIE, while those fed the FM, CV or CU diets showed a healthy intestine. Fish fed the KM diet showed intermediate signs of SBMIE. Corroborating results were obtained when measuring the relative length of PCNA positive cells in the crypts of the distal intestine. Gene set enrichment analysis revealed decreased expression of amino acid, fat and drug metabolism pathways as well as increased expression of the pathways for NOD-like receptor signalling and chemokine signalling in both the SC and SBM groups while CV and CU were similar to FM and KM was intermediate. Gene expression of antimicrobial peptides was reduced in the groups showing SBMIE. The characterisation of microbial communities using PCR-DGGE showed a relative increased abundance of Firmicutes bacteria in fish fed the SC or SBM diets. Overall, our results show that both CU and CV were highly effective to counteract SBMIE, while KM had less effect and SC had no functional effects.

  1. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity

    NARCIS (Netherlands)

    Verdam, F.J.; Fuentes Enriquez de Salamanca, S.; Jonge, de C.; Zoetendal, E.G.; Erbil, R.; Greve, J.W.; Buurman, W.A.; Vos, de W.M.; Rensen, S.S.

    2013-01-01

    OBJECTIVE: Intestinal microbiota have been suggested to contribute to the development of obesity, but the mechanism remains elusive. The relationship between microbiota composition, intestinal permeability, and inflammation in nonobese and obese subjects was investigated. DESIGN AND METHODS: Fecal m

  2. The zebrafish as a model to study intestinal inflammation.

    Science.gov (United States)

    Brugman, Sylvia

    2016-11-01

    Starting out as a model for developmental biology, during the last decade, zebrafish have also gained the attention of the immunologists and oncologists. Due to its small size, high fecundity and full annotation of its genome, the zebrafish is an attractive model system. The fact that fish are transparent early in life combined with the growing list of immune cell reporter fish, enables in vivo tracking of immune responses in a complete organism. Since zebrafish develop ex utero from a fertilized egg, immune development can be monitored from the start of life. Given that several gut functions and immune genes are conserved between zebrafish and mammals, the zebrafish is an interesting model organism to investigate fundamental processes underlying intestinal inflammation and injury. This review will first provide some background on zebrafish intestinal development, bacterial colonization and immunity, showing the similarities and differences compared to mammals. This will be followed by an overview of the existing models for intestinal disease, and concluded by future perspectives in light of the newest technologies and insights. PMID:26902932

  3. IGF-1 alleviates ox-LDL-induced inflammation via reducing HMGB1 release in HAECs

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Yu; Chunyan Xing; Yinghua Pan; Housheng Ma; Jie Zhang; Wenjun Li

    2012-01-01

    Atherosclerosis,a multifactorial chronic inflammatory response,is closely associated with oxidatively modified lowdensity lipoprotein (ox-LDL).High-mobility group box 1 (HMGB1) is a DNA-binding protein,which upon release from cells exhibits potent inflammatory action.Insulin-like growth factor 1 (IGF-1) can elicit a repertoire of cellular responses including proliferation and anti-apoptosis.However,the role of IGF-1 in inflammation is still unclear.In the present study,we aimed to investigate the role of IGF-1 in inflammation and the underlying mechanism.Human aortic endothelial cells were stimulated by ox-LDL (50 μg/ml) to induce inflammation.The expression of intercellular adhesion molecule 1 (ICAM-1) was assessed by western blot analysis and immunofluorescence.The release of HMGB1 was determined by enzyme-linked immunosorbent assay.IGF-1 receptor (IGF-1R) expression was assessed by reverse transcription-polymerase chain reaction and western blot analysis.IGF-1R phosphorylation was determined by western blot analysis.Ox-LDL stimulation reduced IGF-1R mRNA and protein expression but increased HMGB1 release.IGF-1 treatment decreased oxLDL-induced ICAM-1 expression potentially through reducing HMGB1 release,while picropodophyllin,an IGF-1R specific inhibitor,increased the inflammatory response.In conclusion,IGF-1 can alleviate ox-LDL-induced inflammation by reducing HMGB1 release,suggesting an unexpected beneficial role of IGF-1 in inflammatory disease.

  4. Intestinal parasitic infections amongst Orang Asli (indigenous) in Malaysia: has socioeconomic development alleviated the problem?

    Science.gov (United States)

    Lim, Y A L; Romano, N; Colin, N; Chow, S C; Smith, H V

    2009-08-01

    ensure the whole mechanism of delivery and empowerment by the government agencies become more efficient and productive in alleviating intestinal parasitic infections in these communities. PMID:19901897

  5. Hesperidin alleviates acetaminophen induced toxicity in Wistar rats by abrogation of oxidative stress, apoptosis and inflammation.

    Science.gov (United States)

    Ahmad, Shiekh Tanveer; Arjumand, Wani; Nafees, Sana; Seth, Amlesh; Ali, Nemat; Rashid, Summya; Sultana, Sarwat

    2012-01-25

    Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, but at high dose it leads to undesirable side effects, such as hepatotoxicity and nephrotoxicity. The present study demonstrates the comparative hepatoprotective and nephroprotective activity of hesperidin (HD), a naturally occurring bioflavonoid against APAP induced toxicity. APAP induces hepatotoxicity and nephrotoxicity as was evident by abnormal deviation in the levels of antioxidant enzymes. Moreover, APAP induced renal damage by inducing apoptotic death and inflammation in renal tubular cells, manifested by an increase in the expression of caspase-3, caspase-9, NFkB, iNOS, Kim-1 and decrease in Bcl-2 expression. These results were further supported by the histopathological examination of kidney. All these features of APAP toxicity were reversed by the co-administration of HD. Therefore, our study favors the view that HD may be a useful modulator in alleviating APAP induced oxidative stress and toxicity.

  6. The ANXA1 released from intestinal epithelial cells alleviate DSS-induced colitis by improving NKG2A expression of Natural Killer cells.

    Science.gov (United States)

    Zou, Z; Zuo, D; Yang, J; Fan, H

    2016-09-01

    Inflammatory bowel disease (IBD) arises when intestinal immune homeostasis is broken, the maintenance of such homeostasis is principally controlled by cross talk between commensal bacteria, mucosal immune cells and intestinal epithelial cells (IECs). IECs can prevent the contact between luminal bacteria with immune cells through the formation of a physical barrier and the expression of antimicrobial peptides to maintain intestinal immune homeostasis. During Colitis the IECs can express increased ANXA1, which is important for regeneration of intestinal mucosa and function as a potent anti-inflammatory protein. Natural Killer (NK) cells can also suppress the progression of colitis. It is uncertain about the effect of the cross-talk between injured IECs and recruited NK cells during colitis. In this study, the expression of ANXA1 in IECS from DSS treated mice was increased, and more NK cells were recruited to intestinal mucosa. In addition, the expression of NKG2A was upregulated when co-cultured with NK cells. The results further proved that overexpression of NKG2A in NK cells was important for inhibiting the recruitment and activity of neutrophils to alleviate DSS-induced colitis. Here, we provide a new anti-inflammation mechanism about ANXA1 secreted from injured IECs, where ANXA1 can stimulate the expression of NKG2A in NK cells that affect the recruitment and activity of neutrophils necessary for pathology of colitis.

  7. Thymoquinone Alleviates the Experimental Diabetic Peripheral Neuropathy by Modulation of Inflammation.

    Science.gov (United States)

    Chen, Long; Li, Bing; Chen, Biqin; Shao, Yiye; Luo, Qiong; Shi, Xiaohong; Chen, Yinghui

    2016-01-01

    Thymoquinone has been reported to exhibit antioxidant and anti-inflammatory effects. Inflammation plays an important role in pathogenesis of diabetic peripheral neuropathy. This study investigated the effects of TQ on proliferation and apoptosis of Schwann cells exposed to high glucose conditions and electrophysiological and morphological changes of the sciatic nerve in a DPN rat model as well as relevant inflammatory mechanism. Cell proliferation and apoptosis of Schwann cells were measured using the Cell Counting Kit-8 and flow cytometry. DPN model was established in streptozotocin-induced diabetic rats. Nerve conduction velocity was measured before and after treatment. Morphologic changes were observed by H&E staining and transmission electron microscopy. COX-2, IL-1β, IL-6, and Caspase-3 expression was investigated by western blotting and Bio-Plex Pro(TM) Assays. Finally, TQ alleviated the inhibition of Schwann cell proliferation and protected against Schwann cell apoptosis. It improved nerve conduction velocity, and alleviated the DPN-induced morphological changes and demyelination of the sciatic nerve. COX-2, IL-1β, IL-6 and Caspase-3 expression in sciatic nerve or isolated cultured Schwann cells, were also decreased by TQ. These results indicate TQ has a protective effect on peripheral nerves in a DPN rat model. The mechanism may be mediated partly by the modulation of the inflammatory reaction. PMID:27545310

  8. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation.

    Science.gov (United States)

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Χu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-09-01

    RSV infection validated these results. Treatment with HDACis alleviated airway inflammation and reduced in vivo RSV replication. Our data demonstrated that RSV reduced histone acetylation by enhancing HDAC2 expression. Treatment with HDACis (TSA/SAHA) significantly inhibited RSV replication and decreased RSV-induced airway inflammation and oxidative stress. Therefore, the inhibition of HDACs represents a novel therapeutic approach in modulating RSV-induced lung disease. PMID:27460781

  9. Intra-amniotic Candida albicans infection induces mucosal injury and inflammation in the ovine fetal intestine.

    Science.gov (United States)

    Nikiforou, Maria; Jacobs, Esmee M R; Kemp, Matthew W; Hornef, Mathias W; Payne, Matthew S; Saito, Masatoshi; Newnham, John P; Janssen, Leon E W; Jobe, Alan H; Kallapur, Suhas G; Kramer, Boris W; Wolfs, Tim G A M

    2016-01-01

    Chorioamnionitis is caused by intrauterine infection with microorganisms including Candida albicans (C.albicans). Chorioamnionitis is associated with postnatal intestinal pathologies including necrotizing enterocolitis. The underlying mechanisms by which intra-amniotic C.albicans infection adversely affects the fetal gut remain unknown. Therefore, we assessed whether intra-amniotic C.albicans infection would cause intestinal inflammation and mucosal injury in an ovine model. Additionally, we tested whether treatment with the fungistatic fluconazole ameliorated the adverse intestinal outcome of intra-amniotic C.albicans infection. Pregnant sheep received intra-amniotic injections with 10(7) colony-forming units C.albicans or saline at 3 or 5 days before preterm delivery at 122 days of gestation. Fetuses were given intra-amniotic and intra-peritoneal fluconazole treatments 2 days after intra-amniotic administration of C.albicans. Intra-amniotic C.albicans caused intestinal colonization and invasive growth within the fetal gut with mucosal injury and intestinal inflammation, characterized by increased CD3(+) lymphocytes, MPO(+) cells and elevated TNF-α and IL-17 mRNA levels. Fluconazole treatment in utero decreased intestinal C.albicans colonization, mucosal injury but failed to attenuate intestinal inflammation. Intra-amniotic C.albicans caused intestinal infection, injury and inflammation. Fluconazole treatment decreased mucosal injury but failed to ameliorate C.albicans-mediated mucosal inflammation emphasizing the need to optimize the applied antifungal therapeutic strategy. PMID:27411776

  10. Lactobacillus acidophilus alleviates platelet-activating factor-induced inflammatory responses in human intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Alip Borthakur

    Full Text Available Probiotics have been used as alternative prevention and therapy modalities in intestinal inflammatory disorders including inflammatory bowel diseases (IBD and necrotizing enterocolitis (NEC. Pathophysiology of IBD and NEC includes the production of diverse lipid mediators, including platelet-activating factor (PAF that mediate inflammatory responses in the disease. PAF is known to activate NF-κB, however, the mechanisms of PAF-induced inflammation are not fully defined. We have recently described a novel PAF-triggered pathway of NF-κB activation and IL-8 production in intestinal epithelial cells (IECs, requiring the pivotal role of the adaptor protein Bcl10 and its interactions with CARMA3 and MALT1. The current studies examined the potential role of the probiotic Lactobacillus acidophilus in reversing the PAF-induced, Bcl10-dependent NF-κB activation and IL-8 production in IECs. PAF treatment (5 µM×24 h of NCM460 and Caco-2 cells significantly increased nuclear p65 NF-κB levels and IL-8 secretion (2-3-fold, P<0.05, compared to control, which were blocked by pretreatment of the cells for 6 h with L. acidophilus (LA or its culture supernatant (CS, followed by continued treatments with PAF for 24 h. LA-CS also attenuated PAF-induced increase in Bcl10 mRNA and protein levels and Bcl10 promoter activity. LA-CS did not alter PAF-induced interaction of Bcl10 with CARMA3, but attenuated Bcl10 interaction with MALT1 and also PAF-induced ubiquitination of IKKγ. Efficacy of bacteria-free CS of LA in counteracting PAF-induced inflammatory cascade suggests that soluble factor(s in the CS of LA mediate these effects. These results define a novel mechanism by which probiotics counteract PAF-induced inflammation in IECs.

  11. Ste20-related proline/alanine-rich kinase: A novel regulator of intestinal inflammation

    Institute of Scientific and Technical Information of China (English)

    Yutao Yan; Didier Merlin

    2008-01-01

    Recently, inflammatory bowel disease (IBD) has been the subject of considerable research, with increasing attention being paid to the loss of intestinal epithelial cell barrier function as a mechanism of pathogenesis. Ste20-related proline/alanine-rich kinase (SPAK) is involved in regulating barrier function. SPAK is known to interact with inflammation-related kinases (such as p38, JNK, NKCC1, PKCθ, WNK and MLCK), and with transcription factor AP-1, resulting in diverse biological phenomena, including cell differentiation, cell transformation and proliferation, cytoskeleton rearrangement, and regulation of chloride transport. This review examines the involvement of Ste20-like kinases and downstream mitogen-activated protein kinases (MAPKs) pathways in the pathogenesis and control of intestinal inflammation. The primary focus will be on the molecular features of intestinal inflammation, with an emphasis on the interaction between SPAK and other molecules, and the effect of these interactions on homeostatic maintenance, cell volume regulation and increased cell permeability in intestinal inflammation.

  12. Crosstalk between Inflammation and ROCK/MLCK Signaling Pathways in Gastrointestinal Disorders with Intestinal Hyperpermeability

    Science.gov (United States)

    Du, Lijun; Kim, John J.; Shen, Jinhua

    2016-01-01

    The barrier function of the intestine is essential for maintaining the normal homeostasis of the gut and mucosal immune system. Abnormalities in intestinal barrier function expressed by increased intestinal permeability have long been observed in various gastrointestinal disorders such as Crohn's disease (CD), ulcerative colitis (UC), celiac disease, and irritable bowel syndrome (IBS). Imbalance of metabolizing junction proteins and mucosal inflammation contributes to intestinal hyperpermeability. Emerging studies exploring in vitro and in vivo model system demonstrate that Rho-associated coiled-coil containing protein kinase- (ROCK-) and myosin light chain kinase- (MLCK-) mediated pathways are involved in the regulation of intestinal permeability. With this perspective, we aim to summarize the current state of knowledge regarding the role of inflammation and ROCK-/MLCK-mediated pathways leading to intestinal hyperpermeability in gastrointestinal disorders. In the near future, it may be possible to specifically target these specific pathways to develop novel therapies for gastrointestinal disorders associated with increased gut permeability.

  13. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation

    NARCIS (Netherlands)

    Hashimoto, T.; Perlot, T.; Rehman, A.; Trichereau, J.; Ishiguro, H.; Paolino, M.; Sigl, V.; Hanada, T.; Hanada, R.; Lipinski, S.; Wild, B.; Camargo, S.M.; Singer, D.; Richter, A.P.; Kuba, K.; Fukamizu, A.; Schreiber, S.; Clevers, H.; Verrey, F.; Rosenstiel, P.; Penninger, J.M.

    2012-01-01

    Malnutrition affects up to one billion people in the world and is a major cause of mortality. In many cases, malnutrition is associated with diarrhoea and intestinal inflammation, further contributing to morbidity and death. The mechanisms by which unbalanced dietary nutrients affect intestinal home

  14. CD38 is expressed on inflammatory cells of the intestine and promotes intestinal inflammation.

    Science.gov (United States)

    Schneider, Michael; Schumacher, Valéa; Lischke, Timo; Lücke, Karsten; Meyer-Schwesinger, Catherine; Velden, Joachim; Koch-Nolte, Friedrich; Mittrücker, Hans-Willi

    2015-01-01

    The enzyme CD38 is expressed on a variety of hematopoietic and non-hematopoietic cells and is involved in diverse processes such as generation of calcium-mobilizing metabolites, cell activation, and chemotaxis. Here, we show that under homeostatic conditions CD38 is highly expressed on immune cells of the colon mucosa of C57BL/6 mice. Myeloid cells recruited to this tissue upon inflammation also express enhanced levels of CD38. To determine the role of CD38 in intestinal inflammation, we applied the dextran sulfate sodium (DSS) colitis model. Whereas wild-type mice developed severe colitis, CD38-/- mice had only mild disease following DSS-treatment. Histologic examination of the colon mucosa revealed pronounced inflammatory damage with dense infiltrates containing numerous granulocytes and macrophages in wild-type animals, while these findings were significantly attenuated in CD38-/- mice. Despite attenuated histological findings, the mRNA expression of inflammatory cytokines and chemokines was only marginally lower in the colons of CD38-/- mice as compared to wild-type mice. In conclusion, our results identify a function for CD38 in the control of inflammatory processes in the colon.

  15. Intestinal Transplant Inflammation: the Third Inflammatory Bowel Disease.

    Science.gov (United States)

    Kroemer, Alexander; Cosentino, Christopher; Kaiser, Jason; Matsumoto, Cal S; Fishbein, Thomas M

    2016-11-01

    Intestinal transplantation is the most immunologically complex of all abdominal organ transplants. Understanding the role both humoral and innate and adaptive cellular immunity play in intestinal transplantation is critical to improving outcomes and increasing indications for patients suffering from intestinal failure. Recent findings highlighting the impact of donor-specific antibodies on intestinal allografts, the role of NOD2 as a key regulator of intestinal immunity, the protective effects of innate lymphoid cells, and the role of Th17 in acute cellular rejection are reviewed here.

  16. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models

    Directory of Open Access Journals (Sweden)

    Minmin Li

    2015-01-01

    Full Text Available The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2 and cyclooxygenase- (COX- 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models.

  17. Inflammation enhances mu-opioid receptor transcription and expression in mice intestine.

    Science.gov (United States)

    Pol, O; Alameda, F; Puig, M M

    2001-11-01

    Opioid receptors (ORs) and their mRNA are present in the central and peripheral nervous systems of mammals and in different peripheral tissues, including the gut. Using a model of croton oil-induced (CO) intestinal inflammation in mice, we have shown a 6-fold increase in the potency of the antitransit and antisecretory effects of mu-OR agonists, mediated by peripheral ORs. We postulate that the enhanced effects are mediated by an increase in the expression of intestinal OR. We used jejunum (stripped of the mucosal layer) from mice with CO-induced intestinal inflammation and, as control subjects, saline-treated animals (SS). We evaluated the quantity of mu-OR mRNA determined by a competitive reverse-transcriptase polymerase chain reaction; the levels of mu-OR protein by Western blot immunoassay, and the localization and number of cells expressing mu-OR using immunohistochemistry. The results show a significant increase of mu-OR mRNA (7.7-fold) and receptor protein (3-fold) during intestinal inflammation. Inflammation also induced a 64.3% increase in the number of neurons expressing mu-OR immunoreactivity in the myenteric plexus but not in the submucosal plexus. Our results show that intestinal inflammation enhances the transcription and translation of mu-OR mRNA, thus explaining the increased potency of mu-opioids during inflammation.

  18. TLR2-independent induction and regulation of chronic intestinal inflammation

    OpenAIRE

    Boulard, Olivier; Asquith, Mark J.; Powrie, Fiona; Maloy, Kevin J.

    2009-01-01

    Interactions between the intestinal microflora and host innate immune receptors play a critical role in intestinal homeostasis. Several studies have shown that TLR2 can modulate inflammatory responses in the gut. TLR2 signals enhance tight junction formation and fortify the epithelial barrier, and may play a crucial role in driving acute inflammatory responses towards intestinal bacterial pathogens. In addition, TLR2 agonists can have direct effects on both Th1 cells and Treg. To define the r...

  19. Tissue-expressed B7-H1 Critically Controls Intestinal Inflammation

    Science.gov (United States)

    Scandiuzzi, Lisa; Ghosh, Kaya; Hofmeyer, Kimberly A.; Abadi, Yael M.; Lázár-Molnár, Eszter; Lin, Elaine Y.; Liu, Qiang; Jeon, Hyungjun; Almo, Steven C.; Chen, Lieping; Nathenson, Stanley G.; Zang, Xingxing

    2014-01-01

    SUMMARY B7-H1 (PD-L1) on immune cells plays an important role in T cell coinhibition by binding its receptor PD-1. Here we show that both human and mouse intestinal epithelium expressed B7-H1 and that B7-H1-deficient mice were highly susceptible to dextran sodium sulfate- or trinitrobenzenesulfonic acid-induced gut injury. B7-H1 deficiency during intestinal inflammation led to high mortality and morbidity, which were associated with severe pathological manifestations in the colon, including loss of epithelial integrity and overgrowth of commensal bacteria. Results from bone marrow chimeric and knock-out mice showed B7-H1 expressed on intestinal parenchyma, but not on hematopoietic cells, controlled intestinal inflammation in an adaptive immunity-independent fashion. Finally, we demonstrated that B7-H1 dampened intestinal inflammation by inhibiting TNF-α production and by stimulating IL-22 from CD11c+CD11b+ lamina propria cells. Thus, our data uncover a new mechanism by which intestinal tissue-expressed B7-H1 functions as an essential ligand for innate immune cells to prevent gut inflammation. PMID:24529703

  20. Tissue-Expressed B7-H1 Critically Controls Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Lisa Scandiuzzi

    2014-02-01

    Full Text Available B7-H1 (PD-L1 on immune cells plays an important role in T cell coinhibition by binding its receptor PD-1. Here, we show that both human and mouse intestinal epithelium express B7-H1 and that B7-H1-deficient mice are highly susceptible to dextran sodium sulfate (DSS- or trinitrobenzenesulfonic acid (TNBS-induced gut injury. B7-H1 deficiency during intestinal inflammation leads to high mortality and morbidity, which are associated with severe pathological manifestations in the colon, including loss of epithelial integrity and overgrowth of commensal bacteria. Results from bone marrow chimeric and knockout mice show that B7-H1 expressed on intestinal parenchyma, but not on hematopoietic cells, controls intestinal inflammation in an adaptive immunity-independent fashion. Finally, we demonstrate that B7-H1 dampened intestinal inflammation by inhibiting tumor necrosis factor α (TNF-α production and by stimulating interleukin 22 secretion from CD11c+CD11b+ lamina propria cells. Thus, our data uncover a mechanism through which intestinal tissue-expressed B7-H1 functions as an essential ligand for innate immune cells to prevent gut inflammation.

  1. Intradialytic aerobic cycling exercise alleviates inflammation and improves endothelial progenitor cell count and bone density in hemodialysis patients.

    Science.gov (United States)

    Liao, Min-Tser; Liu, Wen-Chih; Lin, Fu-Huang; Huang, Ching-Feng; Chen, Shao-Yuan; Liu, Chuan-Chieh; Lin, Shih-Hua; Lu, Kuo-Cheng; Wu, Chia-Chao

    2016-07-01

    Inflammation, endothelial dysfunction, and mineral bone disease are critical factors contributing to morbidity and mortality in hemodialysis (HD) patients. Physical exercise alleviates inflammation and increases bone density. Here, we investigated the effects of intradialytic aerobic cycling exercise on HD patients. Forty end-stage renal disease patients undergoing HD were randomly assigned to either an exercise or control group. The patients in the exercise group performed a cycling program consisting of a 5-minute warm-up, 20 minutes of cycling at the desired workload, and a 5-minute cool down during 3 HD sessions per week for 3 months. Biochemical markers, inflammatory cytokines, nutritional status, the serum endothelial progenitor cell (EPC) count, bone mineral density, and functional capacity were analyzed. After 3 months of exercise, the patients in the exercise group showed significant improvements in serum albumin levels, the body mass index, inflammatory cytokine levels, and the number of cells positive for CD133, CD34, and kinase insert domain-conjugating receptor. Compared with the exercise group, the patients in the control group showed a loss of bone density at the femoral neck and no increases in EPCs. The patients in the exercise group also had a significantly greater 6-minute walk distance after completing the exercise program. Furthermore, the number of EPCs significantly correlated with the 6-minute walk distance both before and after the 3-month program. Intradialytic aerobic cycling exercise programs can effectively alleviate inflammation and improve nutrition, bone mineral density, and exercise tolerance in HD patients. PMID:27399127

  2. Acidic Chitinase Limits Allergic Inflammation and Promotes Intestinal Nematode Expulsion

    Science.gov (United States)

    Acidic mammalian chitinase (AMCase) is stereotypically induced during mammalian immune responses to helminths and allergens—yet, its precise role in immunity and inflammation is unclear. Here we show that in the lung, genetic ablation of AMCase failed to diminish type 2 inflammation against helmint...

  3. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs.

    Science.gov (United States)

    Liu, Fan; Cottrell, Jeremy J; Furness, John B; Rivera, Leni R; Kelly, Fletcher W; Wijesiriwardana, Udani; Pustovit, Ruslan V; Fothergill, Linda J; Bravo, David M; Celi, Pietro; Leury, Brian J; Gabler, Nicholas K; Dunshea, Frank R

    2016-07-01

    What is the central question of this study? Oxidative stress may play a role in compromising intestinal epithelial barrier integrity in pigs subjected to heat stress, but it is unknown whether an increase of dietary antioxidants (selenium and vitamin E) could alleviate gut leakiness in heat-stressed pigs. What is the main finding and its importance? Levels of dietary selenium (1.0 p.p.m.) and vitamin E (200 IU kg(-1) ) greater than those usually recommended for pigs reduced intestinal leakiness caused by heat stress. This finding suggests that oxidative stress plays a role in compromising intestinal epithelial barrier integrity in heat-stressed pigs and also provides a nutritional strategy for mitigating these effects. Heat stress compromises the intestinal epithelial barrier integrity of mammals through mechanisms that may include oxidative stress. Our objective was to test whether dietary supplementation with antioxidants, selenium (Se) and vitamin E (VE), protects intestinal epithelial barrier integrity in heat-stressed pigs. Female growing pigs (n = 48) were randomly assigned to four diets containing from 0.2 p.p.m. Se and 17 IU kg(-1) VE (control, National Research Council recommended) to 1.0 p.p.m. Se and 200 IU kg(-1) VE for 14 days. Six pigs from each dietary treatment were then exposed to either thermoneutral (20°C) or heat-stress conditions (35°C 09.00-17.00 h and 28°C overnight) for 2 days. Transepithelial electrical resistance and fluorescein isothiocyanate-dextran (4 kDa; FD4) permeability were measured in isolated jejunum and ileum using Ussing chambers. Rectal temperature, respiratory rate and intestinal HSP70 mRNA abundance increased (all P intestinal barrier function were reduced (P intestinal barrier integrity, associated with a reduction in oxidative stress. PMID:27064134

  4. Probiotic Use Decreases Intestinal Inflammation and Increases Bone Density in Healthy Male but not Female Mice

    OpenAIRE

    McCabe, Laura R.; Irwin, Regina; Schaefer, Laura; Britton, Robert A.

    2013-01-01

    Osteoporosis can result from intestinal inflammation, as is seen with inflammatory bowel disease. Probiotics, microorganisms that provide a health benefit to the host when ingested in adequate amounts, can have anti-inflammatory properties and are currently being examined to treat inflammatory bowel disease. Here, we examined if treating healthy male mice with Lactobacillus reuteri ATCC PTA 6475 (a candidate probiotic with anti-TNFα activity) could affect intestinal TNFα levels and enhance bo...

  5. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation

    OpenAIRE

    Penninger, Josef M.; Camargo, Simone M R; Sigl, Verena; Rosenstiel, Philip; Paolino, Magdalena; Hanada, Toshikatsu; Fukamizu, Akiyoshi; Hashimoto, Tatsuo; Lipinski, Simone; Richter, Andreas; Verrey, Francois; Hanada, Reiko; Singer, Dustin; Kuba, Keiji; Rehman, Ateequr

    2012-01-01

    Malnutrition affects up to one billion people in the world and is a major cause of mortality. In many cases, malnutrition is associated with diarrhoea and intestinal inflammation, further contributing to morbidity and death. The mechanisms by which unbalanced dietary nutrients affect intestinal homeostasis are largely unknown. Here we report that deficiency in murine angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (Ace2), which encodes a key regulatory enzyme of the renin-angiotens...

  6. Lactoferrin Decreases the Intestinal Inflammation Triggered by a Soybean Meal-Based Diet in Zebrafish

    Directory of Open Access Journals (Sweden)

    Pilar E. Ulloa

    2016-01-01

    Full Text Available Intestinal inflammation is a harmful condition in fish that can be triggered by the ingestion of soybean meal. Due to the positive costs-benefits ratio of including soybean meal in farmed fish diets, identifying additives with intestinal anti-inflammatory effects could contribute to solving the issues caused by this plant protein. This study evaluated the effect of incorporating lactoferrin (LF into a soybean meal-based diet on intestinal inflammation in zebrafish. Larvae were fed with diets containing 50% soybean meal (50SBM or 50SBM supplemented with LF to 0.5, 1, 1.5 g/kg (50SBM+LF0.5; 50SBM+LF1.0; 50SBM+LF1.5. The 50SBM+LF1.5 diet was the most efficient and larvae had a reduced number of neutrophils in the intestine compared with 50SBM larvae and an indistinguishable number compared with control larvae. Likewise, the transcription of genes involved in neutrophil migration and intestinal mucosal barrier functions (mmp9, muc2.2, and β-def-1 were increased in 50SBM larvae but were normally expressed in 50SBM+LF1.5 larvae. To determine the influence of intestinal inflammation on the general immune response, larvae were challenged with Edwardsiella tarda. Larvae with intestinal inflammation had increased mortality rate compared to control larvae. Importantly, 50SBM+LF1.5 larvae had a mortality rate lower than control larvae. These results demonstrate that LF displays a dual effect in zebrafish, acting as an intestinal anti-inflammatory agent and improving performance against bacterial infection.

  7. Lactoferrin Decreases the Intestinal Inflammation Triggered by a Soybean Meal-Based Diet in Zebrafish.

    Science.gov (United States)

    Ulloa, Pilar E; Solís, Camila J; De la Paz, Javiera F; Alaurent, Trevor G S; Caruffo, Mario; Hernández, Adrián J; Dantagnan, Patricio; Feijóo, Carmen G

    2016-01-01

    Intestinal inflammation is a harmful condition in fish that can be triggered by the ingestion of soybean meal. Due to the positive costs-benefits ratio of including soybean meal in farmed fish diets, identifying additives with intestinal anti-inflammatory effects could contribute to solving the issues caused by this plant protein. This study evaluated the effect of incorporating lactoferrin (LF) into a soybean meal-based diet on intestinal inflammation in zebrafish. Larvae were fed with diets containing 50% soybean meal (50SBM) or 50SBM supplemented with LF to 0.5, 1, 1.5 g/kg (50SBM+LF0.5; 50SBM+LF1.0; 50SBM+LF1.5). The 50SBM+LF1.5 diet was the most efficient and larvae had a reduced number of neutrophils in the intestine compared with 50SBM larvae and an indistinguishable number compared with control larvae. Likewise, the transcription of genes involved in neutrophil migration and intestinal mucosal barrier functions (mmp9, muc2.2, and β-def-1) were increased in 50SBM larvae but were normally expressed in 50SBM+LF1.5 larvae. To determine the influence of intestinal inflammation on the general immune response, larvae were challenged with Edwardsiella tarda. Larvae with intestinal inflammation had increased mortality rate compared to control larvae. Importantly, 50SBM+LF1.5 larvae had a mortality rate lower than control larvae. These results demonstrate that LF displays a dual effect in zebrafish, acting as an intestinal anti-inflammatory agent and improving performance against bacterial infection. PMID:27247950

  8. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xusong; Zhou Guangdong; Liu Wei; Zhang Wenjie; Cui Lei; Cao Yilin [Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Cen Lian, E-mail: guangdongzhou@126.co, E-mail: yilincao@yahoo.co [National Tissue Engineering Center of China, Shanghai 200011 (China)

    2009-04-15

    Tissue-engineered tubular cartilage is a promising graft for tracheal reconstruction. But polylactic acid/polyglycolic acid (PLA/PGA) fibers, the frequently used scaffolds for cartilage engineering, often elicit an obvious inflammation response following implantation into immunocompetent animals. We propose that the inflammation could be alleviated by in vitro precultivation. In this study, after in vitro culture for either 2 days (direct implantation group (DI)) or for 2 weeks (precultivation implantation group (PI)), autologous tubular chondrocyte-PLA/PGA constructs were subcutaneously implanted into rabbits. In the PI group, after 2 weeks of precultivation, most of the fibers were found to be completely embedded in an extracellular matrix (ECM) produced by the chondrocytes. Importantly, no obvious inflammatory reaction was observed after in vivo implantation and homogeneous cartilage-like tissue was formed with biomechanical properties close to native tracheal cartilage at 4 weeks post-implantation. In the DI group, however, an obvious inflammatory reaction was observed within and around the cell-scaffold constructs at 1 week implantation and only sporadic cartilage islands separated by fibrous tissue were observed at 4 weeks. These results demonstrated that the post-implantation inflammatory reaction could be alleviated by in vitro precultivation, which contributes to the formation of satisfactory tubular cartilage for tracheal reconstruction.

  9. Extraintestinal pathogenic Escherichia coli are associated with intestinal inflammation in patients with ulcerative colitis

    DEFF Research Database (Denmark)

    Mirsepasi-Lauridsen, Hengameh C; Halkjaer, Sofie Ingdam; Mortensen, Esben Munk;

    2016-01-01

    E. coli of the phylogenetic group B2 harbouring Extra intestinal Pathogenic Escherichia coli (ExPEC) genes are frequently seen as colonizers of the intestine in patients with active ulcerative colitis (UC). In this study, we describe the influence of E. coli Nissle (EcN) B2 as add-on treatment to...... scores in comparison to patients colonized with E. coli A and D (p treatment of UC patients with E. coli Nissle (B2) does not promote clinical remission and active UC patients colonized with E. coli B2 have an increased intestinal inflammation.......E. coli of the phylogenetic group B2 harbouring Extra intestinal Pathogenic Escherichia coli (ExPEC) genes are frequently seen as colonizers of the intestine in patients with active ulcerative colitis (UC). In this study, we describe the influence of E. coli Nissle (EcN) B2 as add-on treatment...

  10. Sex influence on chronic intestinal inflammation in Helicobacter hepaticus-infected A/JCr mice.

    Science.gov (United States)

    Livingston, Robert S; Myles, Mathew H; Livingston, Beth A; Criley, Jennifer M; Franklin, Craig L

    2004-06-01

    Helicobacter hepaticus is a bacterial pathogen of mice that has been reported to cause chronic intestinal inflammation in A/JCr, germfree Swiss Webster, and immunodeficient mice. To the authors' knowledge, the influence of sex on development of chronic intestinal inflammation in H. hepaticus-infected mice has not been investigated. The purposes of the study reported here were to determine whether severity of intestinal inflammation differs between male and female A/JCr mice chronically infected with H. hepaticus and to characterize the mucosal immune response in these mice. The cecum of male and female A/JCr mice infected with H. hepaticus for 1 month and 3 months was objectively evaluated histologically for intestinal disease. Also, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was done to measure interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), interleukin 4 (IL-4), IL-10, macrophage inflammatory protein-1alpha (MIP-1alpha), interferon-inducible protein of 10 kDa (IP-10), and monokine induced by gamma interferon (MIG) mRNA values in the cecal tissue of these mice. Significant differences in cecal lesion scores were not present at 1 month after infection. However, infected female mice had significantly up-regulated expression of cecal IL-10, MIP-1alpha, IP-10, and MIG mRNA compared with that in uninfected females, and expression of IL-10 and MIP-1alpha was significantly greater than that detected in infected male mice (P JCr mice, females develop more severe intestinal inflammation than do males, and the chronic mucosal inflammation is polarized toward a Th1 response that is not down-regulated by increased activity of IL-10. We propose that H. hepaticus-infected A/JCr mice will serve as a good animal model with which to study the influence of sex on bacterial-induced mucosal inflammation.

  11. Intestinal inflammation in a murine model of autism spectrum disorders

    NARCIS (Netherlands)

    De Theije, Caroline G.M.; Koelink, Pim J.; Korte-Bouws, Gerdien A.H.; Lopes da Silva, Sofia; Korte, S. Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D.

    2014-01-01

    Autism spectrum disorder (ASD) is a cluster of neurodevelopmental disorders characterized by impairments in communication, social interest and stereotypical behaviour. Dysfunction of the intestinal tract is reported in patients with ASD and implicated in the development and severity of ASD symptoms.

  12. The role of CDX2 in intestinal homeostasis and inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2011-01-01

    a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors...

  13. Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation

    Directory of Open Access Journals (Sweden)

    Boehm Franziska

    2012-07-01

    Full Text Available Abstract Background Mice lacking Foxp3+ regulatory T (Treg cells develop severe tissue inflammation in lung, skin, and liver with premature death, whereas the intestine remains uninflamed. This study aims to demonstrate the importance of Foxp3+ Treg for the activation of T cells and the development of intestinal inflammation. Methods Foxp3-GFP-DTR (human diphtheria toxin receptor C57BL/6 mice allow elimination of Foxp3+ Treg by treatment with Dx (diphtheria toxin. The influence of Foxp3+ Treg on intestinal inflammation was tested using the CD4+ T-cell transfer colitis model in Rag−/− C57BL/6 mice and the acute DSS-colitis model. Results Continuous depletion of Foxp3+ Treg in Foxp3-GFP-DTR mice led to dramatic weight loss and death of mice by day 28. After 10 days of depletion of Foxp3+ Treg, isolated CD4+ T-cells were activated and produced extensive amounts of IFN-γ, IL-13, and IL-17A. Transfer of total CD4+ T-cells isolated from Foxp3-GFP-DTR mice did not result in any changes of intestinal homeostasis in Rag−/− C57BL/6 mice. However, administration of DTx between days 14 and 18 after T-cell reconstitution, lead to elimination of Foxp3+ Treg and to immediate weight loss due to intestinal inflammation. This pro-inflammatory effect of Foxp3+ Treg depletion consecutively increased inflammatory cytokine production. Further, the depletion of Foxp3+ Treg from Foxp3-GFP-DTR mice increased the severity of acute dSS-colitis accompanied by 80% lethality of Treg-depleted mice. CD4+ effector T-cells from Foxp3+ Treg-depleted mice produced significantly more pro-inflammatory cytokines. Conclusion Intermittent depletion of Foxp3+ Treg aggravates intestinal inflammatory responses demonstrating the importance of Foxp3+ Treg for the balance at the mucosal surface of the intestine.

  14. The Anti-Inflammatory Effect of Spray-Dried Plasma Is Mediated by a Reduction in Mucosal Lymphocyte Activation and Infiltration in a Mouse Model of Intestinal Inflammation

    Science.gov (United States)

    Pérez-Bosque, Anna; Miró, Lluïsa; Amat, Concepció; Polo, Javier; Moretó, Miquel

    2016-01-01

    Spray-dried preparations from porcine and bovine plasma can alleviate mucosal inflammation in experimental models and improve symptoms in patients with enteropathy. In rodents, dietary supplementation with porcine spray-dried plasma (SDP) attenuates intestinal inflammation and improves the epithelial barrier function during intestinal inflammation induced by Staphylococcus aureus enterotoxin B (SEB). The aim of this study was to discern the molecular mechanisms involved in the anti-inflammatory effects of SDP. Male C57BL/6 mice were fed with 8% SDP or control diet (based on milk proteins) for two weeks, from weaning until day 33. On day 32, the mice were given a SEB dose (i.p., 25 µg/mouse) or vehicle. SEB administration increased cell recruitment to mesenteric lymph nodes and the percentage of activated Th lymphocytes and SDP prevented these effects). SDP supplementation increased the expression of interleukin 10 (IL-10) or transforming growth factor- β (TGF-β) compared to the SEB group. The SEB challenge increased six-fold the expression of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) and intercellular adhesion molecule 1 (ICAM-1); and these effects were attenuated by SDP supplementation. SEB also augmented NF-κB phosphorylation, an effect that was prevented by dietary SDP. Our results indicate that the anti-inflammatory effects of SDP involve the regulation of transcription factors and adhesion molecules that reduce intestinal cell infiltration and the degree of the inflammatory response. PMID:27782068

  15. Orally delivered β-glucans aggravate dextran sulfate sodium (DSS)-induced intestinal inflammation.

    Science.gov (United States)

    Heinsbroek, Sigrid E M; Williams, David L; Welting, Olaf; Meijer, Sybren L; Gordon, Siamon; de Jonge, Wouter J

    2015-12-01

    β-Glucans have beneficial health effects due to their immune modulatory properties. Oral administration of β-glucans affects tumour growth, microbial infection, sepsis, and wound healing. We hypothesized that pre-treatment with orally delivered soluble and particulate β-glucans could ameliorate the development of aggravate dextran sulfate sodium (DSS) induced intestinal inflammation. To study this, mice were orally pre-treated with β-glucans for 14 days. We tested curdlan (a particulate β-(1,3)-glucan), glucan phosphate (a soluble β-(1,3)-glucan), and zymosan (a particle made from Saccharomyces cerevisiae, which contains around 55% β-glucans). Weight loss, colon weight, and feces score did not differ between β-glucan and vehicle treated groups. However, histology scores indicated that β-glucan-treated mice had increased inflammation at a microscopic level suggesting that β-glucan treatment worsened intestinal inflammation. Furthermore, curdlan and zymosan treatment led to increased colonic levels of inflammatory cytokines and chemokines, compared to vehicle. Glucan phosphate treatment did not significantly affect cytokine and chemokine levels. These data suggest that particulate and soluble β-glucans differentially affect the intestinal immune responses. However, no significant differences in other clinical colitis scores between soluble and particulate β-glucans were found in this study. In summary, β-glucans aggravate the course of dextran sulfate sodium (DSS)-induced intestinal inflammation at the level of the mucosa.

  16. Bovine colostrum improves intestinal function following formula-induced gut inflammation in preterm pigs

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal; Heegaard, Peter M. H.; Thymann, Thomas;

    2014-01-01

    , abundance and location of bacteria, and inflammation markers were investigated. Results NEC severity and interleukins (IL)-1β and -8 protein concentrations were lower, while villus height, galactose absorption, and brush-border enzyme activities were increased in the distal small intestine in COLOS...

  17. E Durans Strain M4-5 Isolated From Human Colonic Flora Attenuates Intestinal Inflammation

    DEFF Research Database (Denmark)

    Avram-Hananel, L.; Stock, J.; Parlesak, Alexandr;

    2010-01-01

    PURPOSE: The aim of this study was to evaluate in vitro and in vivo effects of a unique high-butyrate-producing bacterial strain from human colonic flora, Enterococcus durans, in prevention and treatment of intestinal inflammation. METHODS: A compartmentalized Caco-2/leukocyte coculture model was...

  18. Lymphatic dysregulation in intestinal inflammation: new insights into inflammatory bowel disease pathomechanisms.

    Science.gov (United States)

    Becker, F; Yi, P; Al-Kofahi, M; Ganta, V C; Morris, J; Alexander, J S

    2014-03-01

    Alterations in the intestinal lymphatic network are well-established features of human and experimental inflammatory bowel disease (IBD). Such lymphangiogenic expansion might enhance classic intestinal lymphatic transport, eliminating excess accumulations of fluid, inflammatory cells and mediators, and could therefore be interpreted as an 'adaptive' response to acute and chronic inflammatory processes. However, whether these new lymphatic vessels are functional, unregulated or immature (and what factors may promote 'maturation' of these vessels) is currently an area under intense investigation. It is still controversial whether impaired lymphatic function in IBD is a direct consequence of the intestinal inflammation, or a preceding lymphangitis-like event. Current research has uncovered novel regulatory factors as well as new roles for familiar signaling pathways, which appear to be linked to inflammation-induced lymphatic alterations. The current review summarizes mechanisms amplifying lymphatic dysregulation and remodeling in intestinal inflammation at the organ, cell and molecular levels and discusses the influence of lymphangiogenesis and intestinal lymphatic transport function as they relate to IBD pathophysiology.

  19. High-Fat Diet: Bacteria Interactions Promote Intestinal Inflammation Which Precedes and Correlates with Obesity and Insulin Resistance in Mouse

    OpenAIRE

    Shengli Ding; Chi, Michael M.; Scull, Brooks P.; Rachael Rigby; Schwerbrock, Nicole M.J.; Scott Magness; Christian Jobin; Lund, Pauline K.

    2010-01-01

    BACKGROUND: Obesity induced by high fat (HF) diet is associated with inflammation which contributes to development of insulin resistance. Most prior studies have focused on adipose tissue as the source of obesity-associated inflammation. Increasing evidence links intestinal bacteria to development of diet-induced obesity (DIO). This study tested the hypothesis that HF western diet and gut bacteria interact to promote intestinal inflammation, which contributes to the progression of obesity and...

  20. Small intestine inflammation in Roquin-mutant and Roquin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Jeremy S Schaefer

    Full Text Available Roquin, an E3 ubiquitin ligase that localizes to cytosolic RNA granules, is involved in regulating mRNA stability and translation. Mice that have a M199R mutation in the Roquin protein (referred to as sanroque or Roquin(san/san mice develop autoimmune pathologies, although the extent to which these occur in the intestinal mucosa has not been determined. Here, we demonstrate that Roquin(san/san mice reproducibly develop intestinal inflammation in the small intestine but not the colon. Similarly, mice generated in our laboratory in which the Roquin gene was disrupted by insertion of a gene trap cassette (Roquin(gt/gt mice had small intestinal inflammation that mimicked that of Roquin(san/san mice. MLN cells in Roquin(san/san mice consisted of activated proliferating T cells, and had increased numbers of CD44(hi CD62L(lo KLRG1(+ short-lived effector cells. Proportionally more small intestinal intraepithelial lymphocytes in Roquin(san/san mice expressed the ICOS T cell activation marker. Of particular interest, small intestinal lamina propria lymphocytes in Roquin(san/san mice consisted of a high proportion of Gr-1(+ T cells that included IL-17A(+ cells and CD8(+ IFN-γ(+ cells. Extensive cytokine dysregulation resulting in both over-expression and under-expression of chemotactic cytokines occurred in the ileum of Roquin(san/san mice, the region most prone to the development of inflammation. These findings demonstrate that chronic inflammation ensues in the intestine following Roquin alteration either as a consequence of protein mutation or gene disruption, and they have implications for understanding how small intestinal inflammation is perpetuated in Crohn's disease (CD. Due to the paucity of animal models of CD-like pathophysiology in the small intestine, and because the primary gene/protein defects of the Roquin animal systems used here are well-defined, it will be possible to further elucidate the underlying genetic and molecular mechanisms

  1. Hesperidin alleviates rat postoperative ileus through anti-inflammation and stimulation of Ca2+-dependent myosin phosphorylation

    Science.gov (United States)

    Xiong, Yong-jian; Chu, Hong-wei; Lin, Yuan; Han, Fang; Li, Ya-chan; Wang, Ai-guo; Wang, Fu-jin; Chen, Da-peng; Wang, Jing-yu

    2016-01-01

    Aim: Postoperative ileus (POI) is a postoperative dysmotility disorder of gastrointestinal tract, which remains one of the most perplexing problems in medicine. In the present study we investigated the effects of hesperidin, a major flavonoid in sweet oranges and lemons, on POI in rats. Methods: SD rats were administered hesperidin (5, 20, and 80 mg·kg−1·d−1, ig) for 3 consecutive days. POI operation (gently manipulating the cecum for 1 min) was performed on d 2. The gastrointestinal motility and isolated intestinal contraction were examined 1 d after the operation. Then the myosin phosphorylation and inflammatory responses in cecum tissue were assessed. Smooth muscle cells were isolated from rat small intestine for in vitro experiments. Results: The gastric emptying and intestinal transit were significantly decreased in POI rats, which were reversed by administration of hesperidin. In ileum and cecum preparations of POI rats in vitro, hesperidin (2.5–160 μmol/L) dose-dependently increased the spontaneous contraction amplitudes without affecting the contractile frequency, which was blocked by the myosin light chain kinase (MLCK) inhibitor ML-7 or verapamil, but not by TTX. Furthermore, administration of hesperidin increased the phosphorylation of MLC20 in the cecum tissue of POI rats. Moreover, administration of hesperidin reversed the increased levels of inflammatory cytokines, iNOS and COX-2 in cecum tissue of POI rats. In freshly isolated intestinal smooth muscle cells, hesperidin (5–80 μmol/L) dose-dependently increased the intracellular Ca2+ concentration as well as the phosphorylation of MLC20, which was abrogated by ML-7 or siRNA that knocked down MLCK. Conclusion: Oral administration of hesperidin effectively alleviates rat POI through inhibition of inflammatory responses and stimulation of Ca2+-dependent MLC phosphorylation. PMID:27345626

  2. Intestinal inflammation and colorectal cancer: A doubleedged sword?

    Institute of Scientific and Technical Information of China (English)

    Angelamaria Rizzo; Francesco Pallone; Giovanni Monteleone; Massimo Claudio Fantini

    2011-01-01

    Chronic inflammation is thought to be the leading cause of many human cancers including colorectal cancer (CRC). Accordingly, epidemiologic and clinical studies indicate that patients affected by ulcerative colitis and Crohn's disease, the two major forms of inflammatory bowel disease, have an increased risk of developing CRC. In recent years, the role of immune cells and their products have been shown to be pivotal in initiation and progression of colitis-associated CRC. On the other hand, activation of the immune system has been shown to cause dysplastic cell elimination and cancer suppression in other settings. Clinical and experimental data herein reviewed, while confirming chronic inflammation as a risk factor for colon carcinogenesis, do not completely rule out the possibility that under certain conditions the chronic activation of the mucosal immune system might protect from colonic dysplasia.

  3. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial.

    Directory of Open Access Journals (Sweden)

    Eugenia Bruzzese

    Full Text Available BACKGROUND & AIMS: Intestinal inflammation is a hallmark of cystic fibrosis (CF. Administration of probiotics can reduce intestinal inflammation and the incidence of pulmonary exacerbations. We investigated the composition of intestinal microbiota in children with CF and analyzed its relationship with intestinal inflammation. We also investigated the microflora structure before and after Lactobacillus GG (LGG administration in children with CF with and without antibiotic treatment. METHODS: The intestinal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE, real-time polymerase chain reaction (RT-PCR, and fluorescence in situ hybridization (FISH. Intestinal inflammation was assessed by measuring fecal calprotectin (CLP and rectal nitric oxide (rNO production in children with CF as compared with healthy controls. We then carried out a small double-blind randomized clinical trial with LGG. RESULTS: Twenty-two children with CF children were enrolled in the study (median age, 7 years; range, 2-9 years. Fecal CLP and rNO levels were higher in children with CF than in healthy controls (184±146 µg/g vs. 52±46 µg/g; 18±15 vs. 2.6±1.2 µmol/L NO2 (-, respectively; P<0.01. Compared with healthy controls, children with CF had significantly different intestinal microbial core structures. The levels of Eubacterium rectale, Bacteroides uniformis, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Faecalibacterium prausnitzii were reduced in children with CF. A similar but more extreme pattern was observed in children with CF who were taking antibiotics. LGG administration reduced fecal CLP and partially restored intestinal microbiota. There was a significant correlation between reduced microbial richness and intestinal inflammation. CONCLUSIONS: CF causes qualitative and quantitative changes in intestinal microbiota, which may represent a novel therapeutic target in the treatment of CF

  4. Clinical trial: multispecies probiotic supplementation alleviates the symptoms of IBS and stabilises intestinal microbiota

    NARCIS (Netherlands)

    Kajander, K.; Myllyluoma, E.; Rajlic-Stojanovic, M.; Kyronpalo, S.S.; Rasmussen, M.; Jarvenpaa, S.S.; Zoetendal, E.G.; Vos, de W.M.; Vapaatalo, H.; Korpela, R.

    2008-01-01

    Aim To investigate the effects of multispecies probiotic supplementation (Lactobacillus rhamnosus GG, L. rhamnosus Lc705, Propionibacterium freudenreichii ssp. shermanii JS and Bifidobacterium animalis ssp. lactis Bb12) on abdominal symptoms, quality of life, intestinal microbiota and inflammatory m

  5. Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation

    OpenAIRE

    Tran, Hoa T.; Barnich, Nicolas; Mizoguchi, Emiko

    2011-01-01

    The small and large intestines contain an abundance of luminal antigens derived from food products and enteric microorganisms. The function of intestinal epithelial cells is tightly regulated by several factors produced by enteric bacteria and the epithelial cells themselves. Epithelial cells actively participate in regulating the homeostasis of intestine, and failure of this function leads to abnormal and host-microbial interactions resulting in the development of intestinal inflammation. Ma...

  6. Lipides et inflammation postprandiale : impact du microbiote intestinal

    Directory of Open Access Journals (Sweden)

    Cani Patrice D.

    2011-01-01

    Full Text Available Obesity and type 2 diabetes are associated with low grade inflammatory tone. Evidence suggest that the gut microbiota could be involved not only in the host metabolism but also in the pathogenesis of the low grade inflammation associated with obesity and type 2 diabetes. Among the mechanisms, dietary habits and more specifically the nutritional composition of the diet (lipids, non digestibles carbohydrates have been shown to participate to the modulation of the composition and/or the activity of the gut microbiota. These questions and mechanisms will be discussed following experimental data.

  7. Potential role of mesenchymal stem cells in alleviating intestinal ischemia/reperfusion impairment.

    Directory of Open Access Journals (Sweden)

    Haitao Jiang

    Full Text Available BACKGROUND: Transplantation of bone marrow mesenchymal stem cells (MSCs provides a promising therapeutic efficiency for a variety of disorders caused by ischemia or reperfusion impairment. We have previously demonstrated the efficacy of MSCs in mitigating intestinal ischemia/reperfusion (I/R injuries in rats, but the mechanism by which MSCs engraft ameliorates I/R injuries has largely been unknown. The present study aimed at investigating probable mechanisms by which MSCs exert their function. METHODS: Male donor derived rat MSCs were implanted into intestine of female recipient rat by direct submucosal injection after superior mesenteric artery clamping and unclamping. The homed MSCs were detected by Y chromosome in situ hybridization probe, and the tumor necrosis factor-α (TNF-α content in intestinal mucosa was determined by ELISA. Expression of proliferative cell nuclear antigen (PCNA in bowel mucosa was assayed by real-time PCR and intestinal mucosa expression of phosphorylation extracellular signal-regulated kinase (pERK1/2 and nuclear factor-κB (NF-κB were evaluated by western blot. RESULTS: Four and seven days after MSCs transplantation, the TNF-α content of bowel mucosa in MSCs group was significantly lower than that in saline group. The PCNA in bowel mucosa showed higher expression in MSCs treated group than the saline group, both at 4 and 7 days after cell transplantation. The expression of intestinal mucosal pERK1/2 in MSCs treated group was markedly higher than that in saline group, and the expression of NF-κB in MSCs treated group was noticeably decreased than that in saline group at 4 and 7 days post MSCs transplantation. CONCLUSION: The present investigation provides novel evidence that MSCs have the potential to reduce intestinal I/R injuries probably due to their ability to accelerate cell proliferation and decrease the inflammatory response within intestinal mucosa after ischemia and reperfusion.

  8. Control of Paneth Cell Fate, Intestinal Inflammation, and Tumorigenesis by PKCλ/ι.

    Science.gov (United States)

    Nakanishi, Yuki; Reina-Campos, Miguel; Nakanishi, Naoko; Llado, Victoria; Elmen, Lisa; Peterson, Scott; Campos, Alex; De, Surya K; Leitges, Michael; Ikeuchi, Hiroki; Pellecchia, Maurizio; Blumberg, Richard S; Diaz-Meco, Maria T; Moscat, Jorge

    2016-09-20

    Paneth cells are a highly specialized population of intestinal epithelial cells located in the crypt adjacent to Lgr5(+) stem cells, from which they differentiate through a process that requires downregulation of the Notch pathway. Their ability to store and release antimicrobial peptides protects the host from intestinal pathogens and controls intestinal inflammation. Here, we show that PKCλ/ι is required for Paneth cell differentiation at the level of Atoh1 and Gfi1, through the control of EZH2 stability by direct phosphorylation. The selective inactivation of PKCλ/ι in epithelial cells results in the loss of mature Paneth cells, increased apoptosis and inflammation, and enhanced tumorigenesis. Importantly, PKCλ/ι expression in human Paneth cells decreases with progression of Crohn's disease. Kaplan-Meier survival analysis of colorectal cancer (CRC) patients revealed that low PRKCI levels correlated with significantly worse patient survival rates. Therefore, PKCλ/ι is a negative regulator of intestinal inflammation and cancer through its role in Paneth cell homeostasis. PMID:27653691

  9. Lactobacillus rhamnosus GG Intake Modifies Preschool Children's Intestinal Microbiota, Alleviates Penicillin-Associated Changes, and Reduces Antibiotic Use.

    Directory of Open Access Journals (Sweden)

    Katri Korpela

    Full Text Available Antibiotic use is considered among the most severe causes of disturbance to children's developing intestinal microbiota, and frequently causes adverse gastrointestinal effects ranging from mild and transient diarrhoea to life-threatening infections. Probiotics are commonly advocated to help in preventing antibiotic-associated gastrointestinal symptoms. However, it is currently unknown whether probiotics alleviate the antibiotic-associated changes in children's microbiota. Furthermore, it is not known how long-term probiotic consumption influences the developing microbiota of children. We analysed the influence of long-term Lactobacillus rhamnosus GG intake on preschool children's antibiotic use, and antibiotic-associated gastrointestinal complaints in a double blind, randomized placebo-controlled trial with 231 children aged 2-7. In addition, we analysed the effect of L. rhanmosus GG on the intestinal microbiota in a subset of 88 children. The results show that long-term L. rhamnosus GG supplementation has an influence on the composition of the intestinal microbiota in children, causing an increase in the abundance of Prevotella, Lactococcus, and Ruminococcus, and a decrease in Escherichia. The treatment appeared to prevent some of the changes in the microbiota associated with penicillin use, but not those associated with macrolide use. The treatment, however, did reduce the frequency of gastrointestinal complaints after a macrolide course. Finally, the treatment appeared to prevent certain bacterial infections for up to 3 years after the trial, as indicated by reduced antibiotic use.ClinicalTrials.gov NCT01014676.

  10. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice.

    Science.gov (United States)

    Das, Nilanjan; Sikder, Kunal; Bhattacharjee, Surajit; Majumdar, Suchandra Bhattacharya; Ghosh, Santinath; Majumdar, Subrata; Dey, Sanjit

    2013-06-01

    Consumption of a high-fat diet (HFD) promotes reactive oxygen species (ROS) which ultimately trigger inflammation. The aim of this study was to investigate the role of Moringa oleifera leaf extract (MoLE) and its active component quercetin in preventing NF-κB-mediated inflammation raised by short-term HFD. Quercetin was found to be one of the major flavonoid components from HPLC of MoLE. Swiss mice were fed for 15 days on HFD, both with or without MoLE/quercetin. The antioxidant profile was estimated from liver homogenate. NF-κB and some relevant inflammatory markers were evaluated by immunoblotting, RT-PCR and ELISA. Significantly (P < 0.05) lower antioxidant profile and higher lipid peroxidation was found in HFD group compared to control (P < 0.05). Increased nuclear import of NF-κB and elevated expressions of pro-inflammatory markers were further manifestations in the HFD group. All these changes were reversed in the MoLE/quercetin-treated groups with significant improvement of antioxidant activity compared to the HFD group. MoLE was found to be rich in polyphenols and both MoLE and quercetin showed potent free radical and hydroxyl radical quenching activity. Thus, the present study concluded that short-term treatment with MoLE and its constituent quercetin prevent HFD-mediated inflammation in mice. PMID:23644882

  11. Chrysin alleviates testicular dysfunction in adjuvant arthritic rats via suppression of inflammation and apoptosis: Comparison with celecoxib

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Hebatallah A. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Arab, Hany H., E-mail: hany.arab@pharma.cu.edu.eg [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Abdelsalam, Rania M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt)

    2014-09-01

    Long standing rheumatoid arthritis (RA) is associated with testicular dysfunction and subfertility. Few studies have addressed the pathogenesis of testicular injury in RA and its modulation by effective agents. Thus, the current study aimed at evaluating the effects of two testosterone boosting agents; chrysin, a natural flavone and celecoxib, a selective COX-2 inhibitor, in testicular impairment in rats with adjuvant arthritis, an experimental model of RA. Chrysin (25 and 50 mg/kg) and celecoxib (5 mg/kg) were orally administered to Wistar rats once daily for 21 days starting 1 h before arthritis induction. Chrysin suppressed paw edema with comparable efficacy to celecoxib. More important, chrysin, dose-dependently and celecoxib attenuated the testicular injury via reversing lowered gonadosomatic index and histopathologic alterations with preservation of spermatogenesis. Both agents upregulated steroidogenic acute regulatory (StAR) mRNA expression and serum testosterone with concomitant restoration of LH and FSH. Furthermore, they suppressed inflammation via abrogation of myeloperoxidase, TNF-α and protein expression of COX-2 and iNOS besides elevation of IL-10. Alleviation of the testicular impairment was accompanied with suppression of oxidative stress via lowering testicular lipid peroxides and nitric oxide. With respect to apoptosis, both agents downregulated FasL mRNA expression and caspase-3 activity in favor of cell survival. For the first time, these findings highlight the protective effects of chrysin and celecoxib against testicular dysfunction in experimental RA which were mediated via boosting testosterone in addition to attenuation of testicular inflammation, oxidative stress and apoptosis. Generally, the 50 mg/kg dose of chrysin exerted comparable protective actions to celecoxib. - Highlights: • Chrysin and celecoxib alleviated testicular suppression in adjuvant arthritis. • They attenuated histopathological damage and preserved spermatogenesis

  12. VESGEN Mapping of Bioactive Protection against Intestinal Inflammation: Application to Human Spaceflight and ISS Experiments

    Science.gov (United States)

    Parsons-Wingerter, P. A.; Chen, X.; Kelly, C. P.; Reinecker, H. C.

    2011-01-01

    Challenges to successful space exploration and colonization include adverse physiological reactions to micro gravity and space radiation factors. Constant remodeling of the microvasculature is critical for tissue preservation, wound healing, and recovery after ischemia. Regulation of the vascular system in the intestine is particularly important to enable nutrient absorption while maintaining barrier function and mucosal defense against micro biota. Although tremendous progress has been made in understanding the molecular circuits regulating neovascularization, our knowledge of the adaptations of the vascular system to environmental challenges in the intestine remains incomplete. This is in part because of the lack of methods to observe and quantify the complex processes associated with vascular responses in vivo. Developed by GRC as a mature beta version, pre-release research software, VESsel GENeration Analysis (VESGEN) maps and quantifies the fractal-based complexity of vascular branching for novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and microvascular remodeling. Here we demonstrate that VESGEN can be used to characterize the dynamic vascular responses to acute intestinal inflammation and mucosal recovery from in vivo confocal microscopic 3D image series. We induced transient intestinal inflammation in mice by DSS treatment and investigated whether the ability of the pro biotic yeast Saccharomyces boulardii (Sb) to protect against intestinal inflammation was due to regulation of vascular remodeling. A primary characteristic of inflammation is excessive neovascularization (angiogenesis) resulting in fragile vessels prone to bleeding. Morphological parameters for triplicate specimens revealed that Sb treatment greatly reduced the inflammatory response of vascular networks by an average of 78%. This resulted from Sb inhibition of vascular endothelial growth factor receptor signaling, a major

  13. Intestinal lamina propria retaining CD4+CD25+ regulatory T cells is a suppressive site of intestinal inflammation.

    Science.gov (United States)

    Makita, Shin; Kanai, Takanori; Nemoto, Yasuhiro; Totsuka, Teruji; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Yamamoto, Masafumi; Kiyono, Hiroshi; Watanabe, Mamoru

    2007-04-15

    It is well known that immune responses in the intestine remain in a state of controlled inflammation, suggesting that not only does active suppression by regulatory T (T(REG)) cells play an important role in the normal intestinal homeostasis, but also that its dysregulation of immune response leads to the development of inflammatory bowel disease. In this study, we demonstrate that murine CD4(+)CD25(+) T cells residing in the intestinal lamina propria (LP) constitutively express CTLA-4, glucocorticoid-induced TNFR, and Foxp3 and suppress proliferation of responder CD4(+) T cells in vitro. Furthermore, cotransfer of intestinal LP CD4(+)CD25(+) T cells prevents the development of chronic colitis induced by adoptive transfer of CD4(+)CD45RB(high) T cells into SCID mice. When lymphotoxin (LT)alpha-deficient intercrossed Rag2 double knockout mice (LTalpha(-/-) x Rag2(-/-)), which lack mesenteric lymph nodes and Peyer's patches, are transferred with CD4(+)CD45RB(high) T cells, they develop severe wasting disease and chronic colitis despite the delayed kinetics as compared with the control LTalpha(+/+) x Rag2(-/-) mice transferred with CD4(+)CD45RB(high) T cells. Of note, when a mixture of splenic CD4(+)CD25(+) T(REG) cells and CD4(+)CD45RB(high) T cells are transferred into LTalpha(-/-) x Rag2(-/-) recipients, CD4(+)CD25(+) T(REG) cells migrate into the colon and prevent the development of colitis in LTalpha(-/-) x Rag2(-/-) recipients as well as in the control LTalpha(+/+) x Rag2(-/-) recipients. These results suggest that the intestinal LP harboring CD4(+)CD25(+) T(REG) cells contributes to the intestinal immune suppression. PMID:17404275

  14. Food Additive P-80 Impacts Mouse Gut Microbiota Promoting Intestinal Inflammation, Obesity and Liver Dysfunction

    Science.gov (United States)

    Singh, Ratnesh Kumar; Wheildon, Nolan; Ishikawa, Seiichi

    2016-01-01

    The increasing prevalence of obesity has emerged as one of the most important global public health issue. The change to the human microbiome as a result of changes in the quality and quantity of food intake over the past several decades has been implicated in the development of obesity and metabolic syndrome. We administered polysorbate-80 to mice via gavage. The researchers monitor liver noninvasively using a bioluminescence imaging. For the liver dysfunction we measure the liver enzymes and PAS stain on liver, electron microscopy liver mitochondria. For the assessment of intestinal inflammation we measured fecal LCN2, LPS, MPO and flagellin by ELISA and qPCR. We use confocal microscopy to detect closet bacteria near the epithelium. 16S sequence was used for the composition of microbiota. Compared with control mice, those receiving emulsifier, showed impaired glycemic tolerance, hyperinsulinemia, altered liver enzymes, larger mitochondria and increased gall bladder size. Additionally, mice in the experimental group showed higher levels of DCA, reduced Muc2 RNA expression, reduced mucus thickness in the intestinal epithelium and increased gut permeability. Intestinal bacteria of mice receiving P-80 were found deeper in the mucus and closer to the intestinal epithelium and had increased level of bioactive LPS, flagellin and LCN2 expression. The result of the study are supportive of evidence that emulsifier agents such as polysorbate-80, may be contributing to obesity related intestinal inflammation and progression of liver dysfunction and alternation of gut microbiota.

  15. CD69 Is the Crucial Regulator of Intestinal Inflammation: A New Target Molecule for IBD Treatment?

    Directory of Open Access Journals (Sweden)

    Katarina Radulovic

    2015-01-01

    Full Text Available CD69 has been identified as an early activation marker of lymphocytes. However, recent work has indicated that CD69 plays an essential role for the regulation of inflammatory processes. Particularly, CD69 is highly expressed by lymphocytes at mucosal sites being constantly exposed to the intestinal microflora (one of the nature’s most complex and most densely populated microbial habitats and food antigens, while only a small number of circulating leukocytes express this molecule. In this review we will discuss the role of CD69 in mucosal tissue and consider CD69 as a potential target for the development of novel treatments of intestinal inflammation.

  16. Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation.

    Directory of Open Access Journals (Sweden)

    Ailan Zhang

    Full Text Available BACKGROUND: Acute lung injury (ALI is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation. METHODS: Adult male Sprague-Dawley rats received orthotopic autologous liver transplantation (OALT and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α, interleukin (IL-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB p65 translocation was assessed by Western blot. RESULTS: The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI. CONCLUSIONS: Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.

  17. Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation.

    Science.gov (United States)

    Zhang, Weixin; Yin, Lianhong; Tao, Xufeng; Xu, Lina; Zheng, Lingli; Han, Xu; Xu, Youwei; Wang, Changyuan; Peng, Jinyong

    2016-07-01

    In our previous study, the effects of dioscin against alcohol-, carbon tetrachloride- and acetaminophen-induced liver damage have been found. However, the activity of it against dimethylnitrosamine (DMN)-induced acute liver injury remained unknown. In the present study, dioscin markedly decreased serum ALT and AST levels, significantly increased the levels of SOD, GSH-Px, GSH, and decreased the levels of MDA, iNOS and NO. Mechanism study showed that dioscin significantly decreased the expression levels of IL-1β, IL-6, TNF-α, IκBα, p50 and p65 through regulating TLR4/MyD88 pathway to rehabilitate inflammation. In addition, dioscin markedly up-regulated the expression levels of SIRT1, HO-1, NQO1, GST and GCLM through increasing nuclear translocation of Nrf2 against oxidative stress. Furthermore, dioscin significantly decreased the expression levels of FasL, Fas, p53, Bak, Caspase-3/9, and upregulated Bcl-2 level through decreasing IRF9 level against apoptosis. In conclusion, dioscin showed protective effect against DMN-induced acute liver injury via ameliorating apoptosis, oxidative stress and inflammation, which should be developed as a new candidate for the treatment of acute liver injury in the future. PMID:27317992

  18. Lunasin alleviates allergic airway inflammation while increases antigen-specific Tregs.

    Directory of Open Access Journals (Sweden)

    Xiaowei Yang

    Full Text Available Lunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy.

  19. Diagnostic algorithm to differentiate lymphoma from inflammation in feline small intestinal biopsy samples.

    Science.gov (United States)

    Kiupel, M; Smedley, R C; Pfent, C; Xie, Y; Xue, Y; Wise, A G; DeVaul, J M; Maes, R K

    2011-01-01

    Differentiating between inflammatory bowel disease (IBD) and small intestinal lymphoma in cats is often difficult, especially when only endoscopic biopsy specimens are available for evaluation. However, a correct diagnosis is imperative for proper treatment and prognosis. A retrospective study was performed using surgical and endoscopic intestinal biopsy specimens from 63 cats with a history of chronic diarrhea or vomiting or weight loss. A diagnosis of lymphoma or inflammation was based on microscopic examination of hematoxylin and eosin (HE)-stained sections alone, HE-stained sections plus results of immunohistochemical labeling (IHC) for CD3e and CD79a, and HE staining, immunophenotyping, and polymerase chain reaction (PCR) results for B and/or T cell clonality. In addition, various histomorphologic parameters were evaluated for significant differences between lymphoma and IBD using Fisher's exact test. The sensitivity and specificity of each parameter in the diagnosis of lymphoma were also determined. Results of Bayesian statistical analysis demonstrated that combining histologic evaluation of small intestinal biopsy specimens with immunophenotyping and analysis of clonality of lymphoid infiltrates results in more accurate differentiation of neoplastic versus inflammatory lymphocytes. Important histologic features that differentiated intestinal lymphoma from IBD included lymphoid infiltration of the intestinal wall beyond the mucosa, epitheliotropism (especially intraepithelial nests and plaques), heterogeneity, and nuclear size of lymphocytes. Based on the results of this study, a stepwise diagnostic algorithm that first uses histologic assessment, followed by immunophenotyping and then PCR to determine clonality of the lymphocytes, was developed to more accurately differentiate between intestinal lymphoma and IBD.

  20. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation.

    Science.gov (United States)

    Liu, Yuying; Fatheree, Nicole Y; Mangalat, Nisha; Rhoads, Jon Marc

    2010-11-01

    Lactobacillus reuteri (L. reuteri) is a probiotic that inhibits the severity of enteric infections and modulates the immune system. Human-derived L. reuteri strains DSM17938, ATCC PTA4659, ATCC PTA 5289, and ATCC PTA 6475 have demonstrated strain-specific immunomodulation in cultured monocytoid cells, but information about how these strains affect inflammation in intestinal epithelium is limited. We determined the effects of the four different L. reuteri strains on lipopolysaccharide (LPS)-induced inflammation in small intestinal epithelial cells and in the ileum of newborn rats. IPEC-J2 cells (derived from the jejunal epithelium of a neonatal piglet) and IEC-6 cells (derived from the rat crypt) were treated with L. reuteri. Newborn rat pups were gavaged cow milk formula supplemented with L. reuteri strains in the presence or absence of LPS. Protein and mRNA levels of cytokines and histological changes were measured. We demonstrate that even though one L. reuteri strain (DSM 17938) did not inhibit LPS-induced IL-8 production in cultured intestinal cells, all strains significantly reduced intestinal mucosal levels of KC/GRO (∼IL-8) and IFN-γ when newborn rat pups were fed formula containing LPS ± L. reuteri. Intestinal histological damage produced by LPS plus cow milk formula was also significantly reduced by all four strains. Cow milk formula feeding (without LPS) produced mild gut inflammation, evidenced by elevated mucosal IFN-γ and IL-13 levels, a process that could be suppressed by strain 17938. Other cytokines and chemokines were variably affected by the different strains, and there was no toxic effect of L. reuteri on intestinal cells or mucosa. In conclusion, L. reuteri strains differentially modulate LPS-induced inflammation. Probiotic interactions with both epithelial and nonepithelial cells in vivo must be instrumental in modulating intrinsic anti-inflammatory effects in the intestine. We suggest that the terms anti- and proinflammatory be used only

  1. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation

    OpenAIRE

    Liu, Yuying; Fatheree, Nicole Y.; Mangalat, Nisha; Rhoads, Jon Marc

    2010-01-01

    Lactobacillus reuteri (L. reuteri) is a probiotic that inhibits the severity of enteric infections and modulates the immune system. Human-derived L. reuteri strains DSM17938, ATCC PTA4659, ATCC PTA 5289, and ATCC PTA 6475 have demonstrated strain-specific immunomodulation in cultured monocytoid cells, but information about how these strains affect inflammation in intestinal epithelium is limited. We determined the effects of the four different L. reuteri strains on lipopolysaccharide (LPS)-in...

  2. Innate Lymphoid Cells: Balancing Immunity, Inflammation, and Tissue Repair in the Intestine

    OpenAIRE

    Wojno, Elia D. Tait; Artis, David

    2012-01-01

    Innate lymphoid cells (ILCs) are a recently described group of innate immune cells that can regulate immunity, inflammation, and tissue repair in multiple anatomical compartments, particularly the barrier surfaces of the skin, airways, and intestine. Broad categories of ILCs have been defined based on transcription factor expression and the ability to produce distinct patterns of effector molecules. Recent studies have revealed that ILC populations can regulate commensal bacterial communities...

  3. The role of intestinal epithelium in inflammatory bowel disease and inflammation related intestinal cancer

    NARCIS (Netherlands)

    J.J. Deuring (Jasper)

    2013-01-01

    textabstractThe intestinal epithelial cells(IEC) are indispensable factors in the host protection against the harmful luminal content. In this thesis we aimed to gain further insight in the role of IEC in the Inflammatory Bowel Disease(IBD) aetiology, since it is an important mediator between the al

  4. Intestinal Disaccharidase Activity in Patients with Autism: Effect of Age, Gender, and Intestinal Inflammation

    Science.gov (United States)

    Kushak, Rafail I.; Lauwers, Gregory Y.; Winter, Harland S.; Buie, Timothy M.

    2011-01-01

    Intestinal disaccharidase activities were measured in 199 individuals with autism to determine the frequency of enzyme deficiency. All patients had duodenal biopsies that were evaluated morphologically and assayed for lactase, sucrase, and maltase activity. Frequency of lactase deficiency was 58% in autistic children less than or equal to 5 years…

  5. Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation.

    Directory of Open Access Journals (Sweden)

    Yohei Mikami

    Full Text Available The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2(-/- mice adoptively transferred with CD4(+CD45RB(high T cells; and IL-10(-/- mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11b(-CD11c(lowPDCA-1(+ plasmacytoid dendritic cells (DCs abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4(+CD45RB(high T cell-transferred RAG-2(-/- mice and IL-10(-/- mice in parallel with the emergence of macrophages (Mφs and conventional DCs (cDCs. Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4(+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.

  6. Effect of iron supplementation on oxidative stress and intestinal inflammation in rats with acute colitis.

    Science.gov (United States)

    Aghdassi, E; Carrier, J; Cullen, J; Tischler, M; Allard, J P

    2001-05-01

    In this study, we investigated the effect of intraperitoneal iron dextran (100 mg/100 g body weight) on oxidative stress and intestinal inflammation in rats with acute colitis induced by 5% dextran sulfate sodium. In both colitis and healthy animals, disease activity index, crypt and inflammatory scores, colon length, plasma and colonic lipid peroxides, and plasma vitamins E, C, and retinol were assessed. The results showed that iron-supplemented groups had moderate iron deposition in the colonic submucosa and lamina propria. In the colitis group supplemented with iron, colon length was significantly shorter; disease activity index, crypt, and inflammatory scores and colonic lipid peroxides were significantly higher; and plasma alpha-tocopherol was significantly lower compared to the colitis group without iron supplementation. There was no intestinal inflammation and no significant increase in colonic lipid peroxides in healthy rats supplemented with iron. In conclusion, iron injection resulted in an increased oxidative stress and intestinal inflammation in rats with colitis but not in healthy rats. PMID:11341654

  7. Heme in intestinal epithelial cell turnover, differentiation,detoxification, inflammation, carcinogenesis, absorption and motility

    Institute of Scientific and Technical Information of China (English)

    Phillip S Oates; Adrian R West

    2006-01-01

    The gastrointestinal tract is lined by a simple epithelium that undergoes constant renewal involving cell division,differentiation and cell death. In addition, the epithelial lining separates the hostile processes of digestion and absorption that occur in the intestinal lumen from the aseptic environment of the internal milieu by defensive mechanisms that protect the epithelium from being breached. Central to these defensive processes is the synthesis of heme and its catabolism by heme oxygenase (HO). Dietary heme is also an important source of iron for the body which is taken up intact by the enterocyte.This review describes the recent literature on the diverse properties of heme/HO in the intestine tract.The roles of heme/HO in the regulation of the cell cycle/apoptosis, detoxification of xenobiotics, oxidative stress,inflammation, development of colon cancer, hemeiron absorption and intestinal motility are specifically examined.

  8. Introducing enteral feeding induces intestinal subclinical inflammation and respective chromatin changes in preterm pigs

    DEFF Research Database (Denmark)

    Willems, Rhea; Krych, Lukasz; Rybicki, Verena;

    2015-01-01

    AIM: To analyze how enteral food introduction affects intestinal gene regulation and chromatin structure in preterm pigs. MATERIALS & METHODS: Preterm pigs were fed parenteral nutrition plus/minus slowly increasing volumes of enteral nutrition. Intestinal gene-expression and chromatin structure...... were analyzed 5 days after birth. RESULTS: Enteral feeding led to differential upregulation of inflammatory and pattern recognition receptor genes, including IL8 (median: 5.8, 95% CI: 3.9-7.8 for formula; median: 2.2, 95% CI: 1.3-3.3 for colostrum) and TLR4 (median: 3.7, 95% CI: 2.6-4.8 for formula...... stimulation with lipopolysaccharide (median: 7.0; interquartile range: 5.63-8.85) compared with naive cells (median 4.2; interquartile range: 2.45-6.33; p = 0.03). CONCLUSION: Enteral feeding, particular with formula, induces subclinical inflammation in the premature intestine and more open chromatin...

  9. Extraintestinal pathogenic Escherichia coli are associated with intestinal inflammation in patients with ulcerative colitis

    Science.gov (United States)

    Mirsepasi-Lauridsen, Hengameh C.; Halkjaer, Sofie Ingdam; Mortensen, Esben Munk; Lydolph, Magnus C.; Nordgaard-Lassen, Inge; Krogfelt, Karen Angeliki; Petersen, Andreas Munk

    2016-01-01

    E. coli of the phylogenetic group B2 harbouring Extra intestinal Pathogenic Escherichia coli (ExPEC) genes are frequently seen as colonizers of the intestine in patients with active ulcerative colitis (UC). In this study, we describe the influence of E. coli Nissle (EcN) B2 as add-on treatment to conventional therapies in patients with active UC. For this study one hundred active UC patients were randomized to ciprofloxacin or placebo for 1 week followed by EcN or placebo for 7 weeks. Stool samples were collected at weeks 0, 1, 8, 12, where E. coli were characterized and fecal calprotectin was measured. We showed that in the active UC patient group receiving Placebo/EcN, fewer patients reached remission, in comparison to the patient group receiving Placebo/placebo (p intestinal inflammation. PMID:27686530

  10. Salmonella enterica serovar Typhimurium exploits inflammation to modify swine intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Rosanna eDrumo

    2016-01-01

    Full Text Available Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

  11. Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation.

    Science.gov (United States)

    Spalinger, Marianne R; McCole, Declan F; Rogler, Gerhard; Scharl, Michael

    2015-03-01

    Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed intestinal tissue. PTPN2 seems to be critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses and finally for maintaining intestinal homeostasis. These observations have been confirmed in PTPN2 knockout mice in vivo. Those animals are clearly more susceptible to intestinal and systemic inflammation and feature alterations in innate and adaptive immune responses. PTPN22 controls inflammatory signaling in lymphocytes and mononuclear cells resulting in aberrant cytokine secretion pattern and autophagosome formation. PTPN22 deficiency in vivo results in more severe colitis demonstrating the relevance of PTPN22 for intestinal homeostasis in vivo. Of note, loss of PTPN22 promotes mitogen-activated protein kinase-induced cytokine secretion but limits secretion of nuclear factor κB-associated cytokines and autophagy in mononuclear cells. Loss of PTPN11 is also associated with increased colitis severity in vivo. In summary, dysfunction of those PTPs results in aberrant and uncontrolled immune responses that result in chronic inflammatory conditions. This way, it becomes more and more evident that dysfunction of PTPs displays an important factor in the pathogenesis of chronic intestinal inflammation, in particular inflammatory bowel disease.

  12. Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation.

    Science.gov (United States)

    Spalinger, Marianne R; McCole, Declan F; Rogler, Gerhard; Scharl, Michael

    2015-03-01

    Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed intestinal tissue. PTPN2 seems to be critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses and finally for maintaining intestinal homeostasis. These observations have been confirmed in PTPN2 knockout mice in vivo. Those animals are clearly more susceptible to intestinal and systemic inflammation and feature alterations in innate and adaptive immune responses. PTPN22 controls inflammatory signaling in lymphocytes and mononuclear cells resulting in aberrant cytokine secretion pattern and autophagosome formation. PTPN22 deficiency in vivo results in more severe colitis demonstrating the relevance of PTPN22 for intestinal homeostasis in vivo. Of note, loss of PTPN22 promotes mitogen-activated protein kinase-induced cytokine secretion but limits secretion of nuclear factor κB-associated cytokines and autophagy in mononuclear cells. Loss of PTPN11 is also associated with increased colitis severity in vivo. In summary, dysfunction of those PTPs results in aberrant and uncontrolled immune responses that result in chronic inflammatory conditions. This way, it becomes more and more evident that dysfunction of PTPs displays an important factor in the pathogenesis of chronic intestinal inflammation, in particular inflammatory bowel disease. PMID:25581833

  13. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells

    OpenAIRE

    Coccia, Margherita; Harrison, Oliver J.; Schiering, Chris; Asquith, Mark J.; Becher, Burkhard; Powrie, Fiona; Maloy, Kevin J.

    2012-01-01

    Although very high levels of interleukin (IL)-1β are present in the intestines of patients suffering from inflammatory bowel diseases (IBD), little is known about the contribution of IL-1β to intestinal pathology. Here, we used two complementary models of chronic intestinal inflammation to address the role of IL-1β in driving innate and adaptive pathology in the intestine. We show that IL-1β promotes innate immune pathology in Helicobacter hepaticus-triggered intestinal inflammation by augmen...

  14. Lipocalin 2 alleviates iron toxicity by facilitating hypoferremia of inflammation and limiting catalytic iron generation.

    Science.gov (United States)

    Xiao, Xia; Yeoh, Beng San; Saha, Piu; Olvera, Rodrigo Aguilera; Singh, Vishal; Vijay-Kumar, Matam

    2016-06-01

    Iron is an essential transition metal ion for virtually all aerobic organisms, yet its dysregulation (iron overload or anemia) is a harbinger of many pathologic conditions. Hence, iron homeostasis is tightly regulated to prevent the generation of catalytic iron (CI) which can damage cellular biomolecules. In this study, we investigated the role of iron-binding/trafficking innate immune protein, lipocalin 2 (Lcn2, aka siderocalin) on iron and CI homeostasis using Lcn2 knockout (KO) mice and their WT littermates. Administration of iron either systemically or via dietary intake strikingly upregulated Lcn2 in the serum, urine, feces, and liver of WT mice. However, similarly-treated Lcn2KO mice displayed elevated CI, augmented lipid peroxidation and other indices of organ damage markers, implicating that Lcn2 responses may be protective against iron-induced toxicity. Herein, we also show a negative association between serum Lcn2 and CI in the murine model of dextran sodium sulfate (DSS)-induced colitis. The inability of DSS-treated Lcn2KO mice to elicit hypoferremic response to acute colitis, implicates the involvement of Lcn2 in iron homeostasis during inflammation. Using bone marrow chimeras, we further show that Lcn2 derived from both immune and non-immune cells participates in CI regulation. Remarkably, exogenous rec-Lcn2 supplementation suppressed CI levels in Lcn2KO serum and urine. Collectively, our results suggest that Lcn2 may facilitate hypoferremia, suppress CI generation and prevent iron-mediated adverse effects. PMID:27007712

  15. Polyopes affinis alleviates airway inflammation in a murine model of allergic asthma

    Indian Academy of Sciences (India)

    Dae-Sung Lee; Won Sun Park; Soo-Jin Heo; Seon-Heui Cha; Daekyung Kim; You-Jin Jeon; Sae-Gwang Park; Su-Kil Seo; Jung Sik Choi; Sung-Jae Park; Eun Bo Shim; Il-Whan Choi; Won-Kyo Jung

    2011-12-01

    Marine algae have been utilized in food as well as medicine products for a variety of purposes. The purpose of this study was to determine whether an ethanol extract of Polyopes affinis (P.affinis) can inhibit the pathogenesis of T helper 2 (Th2)-mediated allergen-induced airway inflammation in a murine model of asthma. Mice that were sensitized and challenged with ovalbumin (OVA) evidenced typical asthmatic reactions such as the following: an increase in the number of eosinophils in the bronchoalveolar lavage (BAL) fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways as well as the narrowing of the airway luminal; the development of airway hyperresponsiveness (AHR); the presence of pulmonary Th2 cytokines; and the presence of allergen-specific immunoglobulin E (IgE) in the serum. The successive intraperitoneal administration of P. affinis ethanolic extracts before the last airway OVA-challenge resulted in a significant inhibition of all asthmatic reactions. These data suggest that P. affinis ethanolic extracts possess therapeutic potential for the treatment of pulmonary allergic disorders such as allergic asthma.

  16. Titanium dioxide induced inflammation in the small intestine

    Institute of Scientific and Technical Information of China (English)

    Carolina Maciel Nogueira; Walter Mendes de Azevedo; Maria Lucia Zaidan Dagli; Sérgio Hiroshi Toma; André Zonetti de Arruda Leite; Maria Laura Lordello; I(e)da Nishitokukado

    2012-01-01

    AIM:To investigate the effects of titanium dioxide (TiO2)nanoparticles (NPTiO2) and microparticles (MPTiO2)on the inflammatory response in the small intestine of mice.METHODS:BI 57/6 male mice received distilled water suspensions containing TiO2 (100 mg/kg body weight)as NPTiO2 (66 nm),or MPTiO2 (260 nm) by gavage for 10 d,once a day; the control group received only distilled water.At the end of the treatment the duodenum,jejunum and ileum were extracted for assessment of cytokines,inflammatory cells and titanium content.The cytokines interleukin (IL)-1b,IL-4,IL-6,IL-8,IL-IO,IL-12,IL-13,IL-17,IL-23,tumor necrosis factor-α (TNF-α),intracellular interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were evaluated by enzyme-linked immunosorbent assay in segments of jejunum and ileum (mucosa and underlying muscular tissue).CD4+ and CD8+ T cells,natural killer cells,and dendritic cells were evaluated in duodenum,jejunum and ileum samples fixed in 10% formalin by immunohistochemistry.The titanium content was determined by inductively coupled plasma atomic emission spectrometry.RESULTS:We found increased levels of T CD4+ cells (cells/mm2) in duodenum:NP 1240 ± 139.4,MP 1070 ± 154.7 vs 458 ±-50.39 (P < 0.01); jejunum:NP 908.4 ± 130.3,MP 813.8 ± 103.8 vs 526.6 ±-61.43 (P < 0.05);and ileum:NP 818.60 ± 123.0,MP 640.1 ± 32.75 vs 466.9 ± 22.4 (P < 0.05).In comparison to the control group,the groups receiving TiO2 showed a statistically significant increase in the levels of the inflammatory cytokines IL-12,IL-4,IL-23,TNF-α,IFN-γ,and TGF-β.The cytokine production was more pronounced in the ileum (mean ± SE):IL-12:NP 33.98 ±-11.76,MP 74.11 ± 25.65 vs 19.06 ± 3.92 (P < 0.05); IL-4:NP 17.36 ± 9.96,MP 22.94 ±-7.47 vs 2.19 ± 0.65 (P < 0.05); IL-23:NP 157.20 ± 75.80,MP 134.50 ±-38.31 vs 22.34 ±-5.81 (P < 0.05); TNFα:NP 3.71 ± 1.33,MP 5.44 ± 1.67 vs 0.99± 019 (P < 0.05); IFNy:NP 15.85± 9.99,MP 34.08 ± 11.44 vs 2.81 ± 0.69 (P

  17. Mucosal mast cells are pivotal elements in inflammatory bowel disease that connect the dots: Stress, intestinal hyperpermeability and inflammation

    OpenAIRE

    Farhadi, Ashkan; Fields, Jeremy Z; Keshavarzian, Ali

    2007-01-01

    Mast cells (MC) are pivotal elements in several physiological and immunological functions of the gastro-intestinal (GI) tract. MC translate the stress signals that has been transmitted through brain gut axis into release of proinflammatory mediators that can cause stimulation of nerve endings that could affect afferent nerve terminals and change their perception, affect intestinal motility, increase intestinal hyperpermeability and, in susceptible individuals, modulate the inflammation. Thus,...

  18. Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Jun-Xing Zhao; Nan Hu; Jun Ren; Min Du; Mei-Jun Zhu

    2012-01-01

    AIM:To investigate the effect of side-stream smoking on gut microflora composition,intestinal inflammation and expression of tight junction proteins.METHODS:C57BL/6 mice were exposed to side-stream cigarette smoking for one hour daily over eight weeks.Cecal contents were collected for microbial composition analysis.Large intestine was collected for immunoblotting and quantitative reverse transcriptase polymerase chain reaction analyses of the inflammatory pathway and tight junction proteins.RESULTS:Side-stream smoking induced significant changes in the gut microbiota with increased mouse intestinal bacteria,Clostridium but decreased Fermicutes (Lactoccoci and Ruminococcus),Enterobacteriaceae family and Segmented filamentous baceteria compared to the control mice.Meanwhile,side-stream smoking inhibited the nuclear factor-κB pathway with reduced phosphorylation of p65 and IκBα,accompanied with unchanged mRNA expression of tumor necrosis factor-α or interleukin-6.The contents of tight junction proteins,claudin3 and ZO2 were up-regulated in the large intestine of mice exposed side-stream smoking.In addition,side-stream smoking increased c-Jun N-terminal kinase and p38 MAPK kinase signaling,while inhibiting AMP-activated protein kinase in the large intestine.CONCLUSION:Side-stream smoking altered gut microflora composition and reduced the inflammatory response,which was associated with increased expression of tight junction proteins.

  19. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation

    International Nuclear Information System (INIS)

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  20. PAK1 modulates a PPARγ/NF-κB cascade in intestinal inflammation.

    Science.gov (United States)

    Dammann, Kyle; Khare, Vineeta; Lang, Michaela; Claudel, Thierry; Harpain, Felix; Granofszky, Nicolas; Evstatiev, Rayko; Williams, Jonathan M; Pritchard, D Mark; Watson, Alastair; Gasche, Christoph

    2015-10-01

    P21-activated kinases (PAKs) are multifunctional effectors of Rho GTPases with both kinase and scaffolding activity. Here, we investigated the effects of inflammation on PAK1 signaling and its role in colitis-driven carcinogenesis. PAK1 and p-PAK1 (Thr423) were assessed by immunohistochemistry, immunofluorescence, and Western blot. C57BL6/J wildtype mice were treated with a single intraperitoneal TNFα injection. Small intestinal organoids from these mice and from PAK1-KO mice were cultured with TNFα. NF-κB and PPARγ were analyzed upon PAK1 overexpression and silencing for transcriptional/translational regulation. PAK1 expression and activation was increased on the luminal intestinal epithelial surface in inflammatory bowel disease and colitis-associated cancer. PAK1 was phosphorylated upon treatment with IFNγ, IL-1β, and TNFα. In vivo, mice administered with TNFα showed increased p-PAK1 in intestinal villi, which was associated with nuclear p65 and NF-κB activation. p65 nuclear translocation downstream of TNFα was strongly inhibited in PAK1-KO small intestinal organoids. PAK1 overexpression induced a PAK1-p65 interaction as visualized by co-immunoprecipitation, nuclear translocation, and increased NF-κB transactivation, all of which were impeded by kinase-dead PAK1. Moreover, PAK1 overexpression downregulated PPARγ and mesalamine recovered PPARγ through PAK1 inhibition. On the other hand PAK1 silencing inhibited NF-κB, which was recovered using BADGE, a PPARγ antagonist. Altogether these data demonstrate that PAK1 overexpression and activation in inflammation and colitis-associated cancer promote NF-κB activity via suppression of PPARγ in intestinal epithelial cells.

  1. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation.

    Science.gov (United States)

    Izcue, Ana; Coombes, Janine L; Powrie, Fiona

    2006-08-01

    The gastrointestinal (GI) tract is the main interface where the body encounters exogenous antigens. It is crucial that the local response here is tightly regulated to avoid an immune reaction against dietary antigens and commensal flora while still mounting an efficient defense against pathogens. Faults in establishing intestinal tolerance can lead to disease, inducing local and often also systemic inflammation. Studies in human as well as in animal models suggest a role for regulatory T cells (Tregs) in maintaining intestinal homeostasis. Transfer of Tregs can not only prevent the development of colitis in animal models but also cure established disease, acting both systemically and at the site of inflammation. In this review, we discuss the major regulatory pathways, including transforming growth factor-beta (TGF-beta), interleukin-10 (IL-10), and cytotoxic T-lymphocyte antigen-4 (CTLA-4), and their role in Treg-mediated control of systemic and mucosal responses. In addition, we give an overview of the known mechanisms of lymphocyte migration to the intestine and discuss how CD103 expression can influence the balance between regulatory and effector T cells. Further understanding of the factors that control the activity of Tregs in different immune compartments may facilitate the design of strategies to target regulation in a tissue-specific way. PMID:16903919

  2. Suppressing Syndecan-1 Shedding Ameliorates Intestinal Epithelial Inflammation through Inhibiting NF-κB Pathway and TNF-α.

    Science.gov (United States)

    Zhang, Yan; Wang, Zhongqiu; Liu, Jun; Zhang, Zhenyu; Chen, Ye

    2016-01-01

    Syndecan-1 (SDC1), with a long variable ectodomain carrying heparan sulfate chains, participates in many steps of inflammatory responses. But reports about the efforts of SDC1's unshedding ectodomain on intestinal epithelial inflammation and the precise underlying mechanism are limited. In our study, unshedding SDC1 from intestinal epithelial cell models was established by transfecting with unshedding SDC1 plasmid into the cell, respectively. And the role of unshedding SDC1 in intestinal inflammation was further investigated. We found that components of NF-κB pathway, including P65 and IκBα, and secretion of TNF-α were upregulated upon LPS stimulation in intestinal epithelial cells. SDC1, especially through its unshed ectodomain, significantly lessened the upregulation extent. It also functioned in inhibiting migration of neutrophils by downregulating secretion of CXCL-1. Taken together, we conclude that suppressing SDC1 shedding from intestinal epithelial cells relieves severity of intestinal inflammation by inactivating NF-κB pathway and downregulating TNF-α expression. These results indicate that the ectodomain of SDC1 might be the optional therapy for intestinal inflammation. PMID:27579035

  3. Suppressing Syndecan-1 Shedding Ameliorates Intestinal Epithelial Inflammation through Inhibiting NF-κB Pathway and TNF-α

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-01-01

    Full Text Available Syndecan-1 (SDC1, with a long variable ectodomain carrying heparan sulfate chains, participates in many steps of inflammatory responses. But reports about the efforts of SDC1’s unshedding ectodomain on intestinal epithelial inflammation and the precise underlying mechanism are limited. In our study, unshedding SDC1 from intestinal epithelial cell models was established by transfecting with unshedding SDC1 plasmid into the cell, respectively. And the role of unshedding SDC1 in intestinal inflammation was further investigated. We found that components of NF-κB pathway, including P65 and IκBα, and secretion of TNF-α were upregulated upon LPS stimulation in intestinal epithelial cells. SDC1, especially through its unshed ectodomain, significantly lessened the upregulation extent. It also functioned in inhibiting migration of neutrophils by downregulating secretion of CXCL-1. Taken together, we conclude that suppressing SDC1 shedding from intestinal epithelial cells relieves severity of intestinal inflammation by inactivating NF-κB pathway and downregulating TNF-α expression. These results indicate that the ectodomain of SDC1 might be the optional therapy for intestinal inflammation.

  4. High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine

    Science.gov (United States)

    Yi, Hongbo; Zhang, Lin; Gan, Zhenshun; Xiong, Haitao; Yu, Caihua; Du, Huahua; Wang, Yizhen

    2016-01-01

    Diarrhea is a leading cause of death among young mammals, especially during weaning. Here, we investigated the effects of Cathelicidin-WA (CWA) on diarrhea, intestinal morphology, inflammatory responses, epithelial barrier and microbiota in the intestine of young mammals during weaning. Piglets with clinical diarrhea were selected and treated with saline (control), CWA or enrofloxacin (Enro) for 4 days. Both CWA and Enro effectively attenuated diarrhea. Compared with the control, CWA decreased IL-6, IL-8 and IL-22 levels and reduced neutrophil infiltration into the jejunum. CWA inhibited inflammation by down-regulating the TLR4-, MyD88- and NF-κB-dependent pathways. Additionally, CWA improved intestinal morphology by increasing villus and microvillus heights and enhancing intestinal barrier function by increasing tight junction (TJ) protein expression and augmenting wound-healing ability in intestinal epithelial cells. CWA also improved microbiota composition and increased short-chain fatty acid (SCFA) levels in feces. By contrast, Enro not only disrupted the intestinal barrier but also negatively affected microbiota composition and SCFA levels in the intestine. In conclusion, CWA effectively attenuated inflammation, enhanced intestinal barrier function, and improved microbiota composition in the intestines of weaned piglets. These results suggest that CWA could be an effective and safe therapy for diarrhea or other intestinal diseases in young mammals. PMID:27181680

  5. Inflammatory Bowel Diseases: When Natural Friends Turn into Enemies—The Importance of CpG Motifs of Bacterial DNA in Intestinal Homeostasis and Chronic Intestinal Inflammation

    OpenAIRE

    Florian Obermeier; Claudia Hofmann; Werner Falk

    2010-01-01

    From numerous studies during the last years it became evident that bacteria and bacterial constituents play a decisive role both in the maintenance of intestinal immune homeostasis as well as in the development and perpetuation of chronic intestinal inflammation. In this review we focus on the role of bacterial DNA which is a potent immunomodulatory component of the bacterial flora. Bacterial DNA has been shown to be protective against experimental colitis. In contrast bacterial DNA essential...

  6. E durans strain M4-5 isolated from human colonic flora attenuates intestinal inflammation

    DEFF Research Database (Denmark)

    Avram-Hananel, Liraz; Stock, Julia; Parlesak, Alexandr;

    2010-01-01

    effects, mediated by regulation of pro- and anti-inflammatory immune factors as well as preservation of intestine epithelial integrity, suggesting that this novel anti-inflammatory bacterium may be preferentially a useful prophylactic treatment to avoid inflammatory bowel disease.......PURPOSE: The aim of this study was to evaluate in vitro and in vivo effects of a unique high-butyrate-producing bacterial strain from human colonic flora, Enterococcus durans, in prevention and treatment of intestinal inflammation. METHODS: A compartmentalized Caco-2/leukocyte coculture model...... was used to examine the in vitro effects of E durans and its metabolite butyrate on basal and Escherichia coli-stimulated secretion of proinflammatory immune factors (IL-8, IL-6, and TNF-α) and the anti-inflammatory cytokine IL-10. A murine model of dextran sodium sulfate-induced colitis was used...

  7. Diagnosis of edema and inflammation in human intestines using ultrawideband radar

    Science.gov (United States)

    Smith, Sonny; Narayanan, Ram M.; Messaris, Evangelos

    2015-05-01

    Human intestines are vital organs, which are often subjected to chronic issues. In particular, Crohn's disease is a bowel aliment resulting in inflammation along the lining of one's digestive tract. Moreover, such an inflammatory condition causes changes in the thickness of the intestines; and we posit induce changes in the dielectric properties detectable by radar. This detection hinges on the increase in fluid content in the afflicted area, which is described by effective medium approximations (EMA). In this paper, we consider one of the constitutive parameters (i.e. relative permittivity) of different human tissues and introduce a simple numerical, electromagnetic multilayer model. We observe how the increase in water content in one layer can be approximated to predict the effective permittivity of that layer. Moreover, we note trends in how such an accumulation can influence the total effective reflection coefficient of the multiple layers.

  8. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Stefan Bereswill

    Full Text Available BACKGROUND: The health beneficial effects of Resveratrol, Curcumin and Simvastatin have been demonstrated in various experimental models of inflammation. We investigated the potential anti-inflammatory and immunomodulatory mechanisms of the above mentioned compounds in a murine model of hyper-acute Th1-type ileitis following peroral infection with Toxoplasma gondii. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that after peroral administration of Resveratrol, Curcumin or Simvastatin, mice were protected from ileitis development and survived the acute phase of inflammation whereas all Placebo treated controls died. In particular, Resveratrol treatment resulted in longer-term survival. Resveratrol, Curcumin or Simvastatin treated animals displayed significantly increased numbers of regulatory T cells and augmented intestinal epithelial cell proliferation/regeneration in the ileum mucosa compared to placebo control animals. In contrast, mucosal T lymphocyte and neutrophilic granulocyte numbers in treated mice were reduced. In addition, levels of the anti-inflammatory cytokine IL-10 in ileum, mesenteric lymph nodes and spleen were increased whereas pro-inflammatory cytokine expression (IL-23p19, IFN-γ, TNF-α, IL-6, MCP-1 was found to be significantly lower in the ileum of treated animals as compared to Placebo controls. Furthermore, treated animals displayed not only fewer pro-inflammatory enterobacteria and enterococci but also higher anti-inflammatory lactobacilli and bifidobacteria loads. Most importantly, treatment with all three compounds preserved intestinal barrier functions as indicated by reduced bacterial translocation rates into spleen, liver, kidney and blood. CONCLUSION/SIGNIFICANCE: Oral treatment with Resveratrol, Curcumin or Simvastatin ameliorates acute small intestinal inflammation by down-regulating Th1-type immune responses and prevents bacterial translocation by maintaining gut barrier function. These findings provide novel

  9. Chronic Intestinal Inflammation: Inflammatory Bowel Disease and Colitis-Associated Colon Cancer

    Directory of Open Access Journals (Sweden)

    Deborah C. Rubin

    2012-05-01

    Full Text Available The inflammatory bowel diseases (IBD, including Crohn’s disease and ulcerative colitis, are chronic inflammatory disorders of the intestine. The prevalence in the United States is greater than 200 cases per 100,000, with the total number of IBD patients between 1 and 1.5 million. Crohn’s disease may affect all parts of the gastrointestinal tract, from mouth to anus, but most commonly involves the distal part of the small intestine or ileum, and colon. Ulcerative colitis results in colonic inflammation that can affect the rectum only, or can progress proximally to involve part of or the entire colon. Clinical symptoms include diarrhea, abdominal pain, gastrointestinal bleeding and weight loss. A serious long-term complication of chronic inflammation is the development of colorectal cancer. A genetic basis for IBD had long been recognized based on the increased familial risk. However, significant discordance for Crohn’s disease in twins, and a much less robust phenotypic concordance for ulcerative colitis, suggested additional factors play a role in disease pathogenesis, including environmental factors. In the past several years, progress in understanding the molecular basis of IBD has accelerated, beginning with the generation of animal models of colitis and progressing to the identification of specific genetic markers from candidate gene, gene linkage and genome wide association analyses . Genetic studies have also resulted in the recognition of the importance of environmental factors, particularly the crucial role of the gut microbiota in Crohn’s disease and ulcerative colitis. Altered immune responses to the normal intestinal flora are key factors in IBD pathogenesis. In this Research Topic, the genetic basis of IBD, the genetic and cellular alterations associated with colitis-associated colon cancer, and the emerging role of the intestinal microbiota and other environmental factors will be reviewed.

  10. Resistin-like molecule α decreases glucose tolerance during intestinal inflammation1

    OpenAIRE

    Munitz, Ariel; Seidu, Luqman; Cole, Eric T.; Ahrens, Richard; S, Simon P Hogan; Rothenberg, Marc E.

    2009-01-01

    Resistin-like molecule α (Relm-α), is a secreted cysteine-rich protein belonging to a newly defined family of proteins including resistin, Relm-β and Relm-γ. Resistin was initially defined based on its insulin resistance activity, but the family members are highly upregulated in various inflammatory states, especially those involving intestinal inflammation. Herein, we report the role of Relm-α at baseline and following an experimental model of colitis. Relm-α was readily detected in the seru...

  11. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation

    DEFF Research Database (Denmark)

    Pedersen, Jannie; LaCasse, Eric C; Seidelin, Jakob B;

    2014-01-01

    (NOD)1/NOD2 and other intracellular NOD-like receptors in response to bacterial pathogens. These pathways are important to the pathogenesis and treatment of inflammatory bowel disease (IBD). Inactivating mutations in the X-chromosome-linked IAP (XIAP) gene causes an immunodeficiency syndrome, X......-linked lymphoproliferative disease type 2 (XLP2), in which 20% of patients develop severe intestinal inflammation. In addition, 4% of males with early-onset IBD also have inactivating mutations in XIAP. Therefore, the IAPs play a greater role in gut homeostasis, immunity and IBD development than previously suspected...

  12. Fækal calprotectin er en klinisk anvendelig markør for intestinal inflammation

    DEFF Research Database (Denmark)

    Theede, Klaus; Kiszka-Kanowitz, Marianne; Nordgaard-Lassen, Inge;

    2014-01-01

    Faecal calprotectin is a biomarker for inflammation in the intestinal mucosa. Faecal calprotectin has the ability to detect inflammatory causes of gastrointestinal symptoms and to distinguish these from irritable bowel syndrome. The test is very sensitive but not specific to any particular...... gastrointestinal disease. In inflammatory bowel disease, faecal calprotectin correlates with symptoms, biochemical markers and the endoscopic findings. It can be used to monitor disease activity, treatment response and mucosal healing as well as predict relapse. We propose an algorithm for the use of faecal...

  13. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines

    Science.gov (United States)

    Wilson, D. Scott; Dalmasso, Guillaume; Wang, Lixin; Sitaraman, Shanthi V.; Merlin, Didier; Murthy, Niren

    2010-11-01

    Small interfering RNAs (siRNAs) directed against proinflammatory cytokines have the potential to treat numerous diseases associated with intestinal inflammation; however, the side-effects caused by the systemic depletion of cytokines demands that the delivery of cytokine-targeted siRNAs be localized to diseased intestinal tissues. Although various delivery vehicles have been developed to orally deliver therapeutics to intestinal tissue, none of these strategies has demonstrated the ability to protect siRNA from the harsh environment of the gastrointestinal tract and target its delivery to inflamed intestinal tissue. Here, we present a delivery vehicle for siRNA, termed thioketal nanoparticles (TKNs), that can localize orally delivered siRNA to sites of intestinal inflammation, and thus inhibit gene expression in inflamed intestinal tissue. TKNs are formulated from a polymer, poly-(1,4-phenyleneacetone dimethylene thioketal), that degrades selectively in response to reactive oxygen species (ROS). Therefore, when delivered orally, TKNs release siRNA in response to the abnormally high levels of ROS specific to sites of intestinal inflammation. Using a murine model of ulcerative colitis, we demonstrate that orally administered TKNs loaded with siRNA against the proinflammatory cytokine tumour necrosis factor-alpha (TNF-α) diminish TNF-α messenger RNA levels in the colon and protect mice from ulcerative colitis.

  14. Epithelial IL-23R Signaling Licenses Protective IL-22 Responses in Intestinal Inflammation.

    Science.gov (United States)

    Aden, Konrad; Rehman, Ateequr; Falk-Paulsen, Maren; Secher, Thomas; Kuiper, Jan; Tran, Florian; Pfeuffer, Steffen; Sheibani-Tezerji, Raheleh; Breuer, Alexandra; Luzius, Anne; Jentzsch, Marlene; Häsler, Robert; Billmann-Born, Susanne; Will, Olga; Lipinski, Simone; Bharti, Richa; Adolph, Timon; Iovanna, Juan L; Kempster, Sarah L; Blumberg, Richard S; Schreiber, Stefan; Becher, Burkhard; Chamaillard, Mathias; Kaser, Arthur; Rosenstiel, Philip

    2016-08-23

    A plethora of functional and genetic studies have suggested a key role for the IL-23 pathway in chronic intestinal inflammation. Currently, pathogenic actions of IL-23 have been ascribed to specific effects on immune cells. Herein, we unveil a protective role of IL-23R signaling. Mice deficient in IL-23R expression in intestinal epithelial cells (Il23R(ΔIEC)) have reduced Reg3b expression, show a disturbed colonic microflora with an expansion of flagellated bacteria, and succumb to DSS colitis. Surprisingly, Il23R(ΔIEC) mice show impaired mucosal IL-22 induction in response to IL-23. αThy-1 treatment significantly deteriorates colitis in Il23R(ΔIEC) animals, which can be rescued by IL-22 application. Importantly, exogenous Reg3b administration rescues DSS-treated Il23R(ΔIEC) mice by recruiting neutrophils as IL-22-producing cells, thereby restoring mucosal IL-22 levels. The study identifies a critical barrier-protective immune pathway that originates from, and is orchestrated by, IL-23R signaling in intestinal epithelial cells. PMID:27524624

  15. Mesenteric lymph nodes contribute to proinflammatory Th17-cell generation during inflammation of the small intestine in mice.

    Science.gov (United States)

    Kawabe, Takeshi; Suzuki, Nobu; Yamaki, Satoshi; Sun, Shu-Lan; Asao, Atsuko; Okuyama, Yuko; So, Takanori; Iwakura, Yoichiro; Ishii, Naoto

    2016-05-01

    T cells of the small intestine, including Th17 cells, are critically involved in host protection from microbial infection, and also contribute to the pathogenesis of small bowel inflammatory disorders. Accumulating evidence suggests that mesenteric lymph nodes (MLNs) play important roles in gut-tropic T-cell generation, although it is still unclear if MLNs are involved in the pathogenesis of small intestine inflammation. To address this issue, we analyzed the roles of both MLNs and Peyer's patches (PPs) by evaluating MLN- or PP-deficient mice in an experimental model of small intestine inflammation, induced by CD3-specific mAb injection. Interestingly, MLNs, but not PPs, were essential for the pathogenesis of intestinal inflammation, in particular the accumulation and infiltration of CD4(+) T-cell populations, including Th17 cells, from the blood. In addition, CD4(+) T-cell accumulation was dependent on the function of the α4 β7 integrin. Furthermore, MLN removal led to a significantly reduced number of peripheral α4 β7 (+) CD4(+) effector memory T cells under normal conditions, suggesting that MLNs may play a role in maintaining the number of gut-tropic CD4(+) effector memory T cells circulating in the blood. Taken together, the present study highlights the important role of MLNs in contributing to the pathogenesis of small intestine inflammation.

  16. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea.

    Directory of Open Access Journals (Sweden)

    Jennifer M Ritchie

    Full Text Available Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis in many parts of the world, but there is limited knowledge of the pathogenesis of V. parahaemolyticus-induced diarrhea. The absence of an oral infection-based small animal model to study V. parahaemolyticus intestinal colonization and disease has constrained analyses of the course of infection and the factors that mediate it. Here, we demonstrate that infant rabbits oro-gastrically inoculated with V. parahaemolyticus develop severe diarrhea and enteritis, the main clinical and pathologic manifestations of disease in infected individuals. The pathogen principally colonizes the distal small intestine, and this colonization is dependent upon type III secretion system 2. The distal small intestine is also the major site of V. parahaemolyticus-induced tissue damage, reduced epithelial barrier function, and inflammation, suggesting that disease in this region of the gastrointestinal tract accounts for most of the diarrhea that accompanies V. parahaemolyticus infection. Infection appears to proceed through a characteristic sequence of steps that includes remarkable elongation of microvilli and the formation of V. parahaemolyticus-filled cavities within the epithelial surface, and culminates in villus disruption. Both depletion of epithelial cell cytoplasm and epithelial cell extrusion contribute to formation of the cavities in the epithelial surface. V. parahaemolyticus also induces proliferation of epithelial cells and recruitment of inflammatory cells, both of which occur before wide-spread damage to the epithelium is evident. Collectively, our findings suggest that V. parahaemolyticus damages the host intestine and elicits disease via previously undescribed processes and mechanisms.

  17. High level of fecal calprotectin at age 2 months as a marker of intestinal inflammation predicts atopic dermatitis and asthma by age 6

    NARCIS (Netherlands)

    Orivuori, L.; Mustonen, K.; de Goffau, M. C.; Hakala, S.; Paasela, M.; Roduit, C.; Dalphin, J. -C.; Genuneit, J.; Lauener, R.; Riedler, J.; Weber, J.; von Mutius, E.; Pekkanen, J.; Harmsen, H. J. M.; Vaarala, O.

    2015-01-01

    BackgroundGut microbiota and intestinal inflammation regulate the development of immune-mediated diseases, such as allergies. Fecal calprotectin is a biomarker of intestinal inflammation. ObjectiveWe evaluated the association of early-age fecal calprotectin levels to the later development of allergi

  18. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation.

    Science.gov (United States)

    Kabat, Agnieszka M; Harrison, Oliver J; Riffelmacher, Thomas; Moghaddam, Amin E; Pearson, Claire F; Laing, Adam; Abeler-Dörner, Lucie; Forman, Simon P; Grencis, Richard K; Sattentau, Quentin; Simon, Anna Katharina; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4(+) T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3(+) Treg cells. Specific ablation of Atg16l1 in Foxp3(+) Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders. PMID:26910010

  19. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation.

    Science.gov (United States)

    Pedersen, Jannie; LaCasse, Eric C; Seidelin, Jakob B; Coskun, Mehmet; Nielsen, Ole H

    2014-11-01

    The inhibitor of apoptosis (IAP) family members, notably cIAP1, cIAP2, and XIAP, are critical and universal regulators of tumor necrosis factor (TNF) mediated survival, inflammatory, and death signaling pathways. Furthermore, IAPs mediate the signaling of nucleotide-binding oligomerization domain (NOD)1/NOD2 and other intracellular NOD-like receptors in response to bacterial pathogens. These pathways are important to the pathogenesis and treatment of inflammatory bowel disease (IBD). Inactivating mutations in the X-chromosome-linked IAP (XIAP) gene causes an immunodeficiency syndrome, X-linked lymphoproliferative disease type 2 (XLP2), in which 20% of patients develop severe intestinal inflammation. In addition, 4% of males with early-onset IBD also have inactivating mutations in XIAP. Therefore, the IAPs play a greater role in gut homeostasis, immunity and IBD development than previously suspected, and may have therapeutic potential.

  20. Hapten may play an important role in food allergen-related intestinal immune inflammation

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Liu

    2011-01-01

    Full Text Available There has been a significant increase in the prevalence of allergic diseases especially over the past 2 to 3 decades. However, the etiology and pathogenesis of food allergy are not fully understood. In recent years, with the huge increase in atopic disease, there has also been an increase in dietary hapten exposure. Allergic reactions to chemical haptens occur, in the overwhelming majority of cases, as an inflammatory reaction in the skin to direct contact with haptens. While reactions to haptens on other epithelial surfaces have only rarely been investigated; it is still not clear whether haptens can combine the food antigens and play a role in the induction of food allergen-related inflammation in the intestine. Further research is needed to reveal the underlying mechanism.

  1. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice.

    Science.gov (United States)

    McCabe, Laura R; Irwin, Regina; Schaefer, Laura; Britton, Robert A

    2013-08-01

    Osteoporosis can result from intestinal inflammation, as is seen with inflammatory bowel disease. Probiotics, microorganisms that provide a health benefit to the host when ingested in adequate amounts, can have anti-inflammatory properties and are currently being examined to treat inflammatory bowel disease. Here, we examined if treating healthy male mice with Lactobacillus reuteri ATCC PTA 6475 (a candidate probiotic with anti-TNFα activity) could affect intestinal TNFα levels and enhance bone density. Adult male mice were given L. reuteri 6475 orally by gavage for 3×/week for 4 weeks. Examination of jejunal and ileal RNA profiles indicates that L. reuteri suppressed basal TNFα mRNA levels in the jejunum and ileum in male mice, but surprisingly not in female mice. Next, we examined bone responses. Micro-computed tomography demonstrated that L. reuteri 6475 treatment increased male trabecular bone parameters (mineral density, bone volume fraction, trabecular number, and trabecular thickness) in the distal femur metaphyseal region as well as in the lumbar vertebrae. Cortical bone parameters were unaffected. Dynamic and static histomorphometry and serum remodeling parameters indicate that L. reuteri ingestion increases osteoblast serum markers and dynamic measures of bone formation in male mice. In contrast to male mice, L. reuteri had no effect on bone parameters in female mice. Taken together our studies indicate that femoral and vertebral bone formation increases in response to oral probiotic use, leading to increased trabecular bone volume in male mice. PMID:23389860

  2. S100B protein in the gut: The evidence for enteroglialsustained intestinal inflammation

    Institute of Scientific and Technical Information of China (English)

    Carla Cirillo; Giovanni Sarnelli; Giuseppe Esposito; Fabio Turco; Luca Steardo; Rosario Cuomo

    2011-01-01

    Glial cells in the gut represent the morphological and functional equivalent of astrocytes and microglia in the central nervous system (CNS). In recent years, the role of enteric glial cells (EGCs) has extended from that of simple nutritive support for enteric neurons to that of being pivotal participants in the regulation of inflammatory events in the gut. Similar to the CNS astrocytes, the EGCs physiologically express the S100B protein that exerts either trophic or toxic effects depending on its concentration in the extracellular milieu. In the CNS, S100B overexpression is responsible for the initiation of a gliotic reaction by the release of pro-inflammatory mediators, which may have a deleterious effect on neighboring cells. S100B-mediated pro-inflammatory effects are not limited to the brain: S100B overexpression is associated with the onset and maintenance of inflammation in the human gut too. In this review we describe the major features of EGCs and S100B protein occurring in intestinal inflammation deriving from such.

  3. Electroacupuncture Inhibits Inflammation Reaction by Upregulating Vasoactive Intestinal Peptide in Rats with Adjuvant-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Tian-Feng He

    2011-01-01

    Full Text Available Acupuncture is emerging as an alternative therapy for rheumatoid arthritis (RA. However, the molecular mechanism underlying this beneficial effect of acupuncture has not been fully understood. Here, we demonstrated that electroacupuncture at acupoints Zusanli (ST36, Xuanzhong (GB39; and Shenshu (BL23 markedly decreased the paw swelling and the histologic scores of inflammation in the synovial tissue, and reduced the body weight loss in an adjuvant-induced arthritis rat model. However, the electrical stimulation at nonacupoint did not produce any beneficial effects against the experimental arthritis. Most interestingly, the electroacupuncture treatment resulted in an enhanced immunostaining for vasoactive intestinal peptide (VIP, a potent anti-inflammatory neuropeptide, in the synovial tissue. Moreover, the VIP-immunostaining intensity was significantly negatively correlated with the scores of inflammation in the synovial tissue (r=−0.483, P=.0026. In conclusion, these findings suggest that electroacupuncture may offer therapeutic benefits for the treatment of RA, at least partially through the induction of VIP expression.

  4. The effect of bovine colostrum products on intestinal dysfunction and inflammation in a preterm pig model of necrotizing enterocolitis

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal

    inflammation induced by total parenteral nutrition (TPN) combined with an abrupt transition to milk formula, which has shown to initiate detrimental intestinal responses. A group of preterm pigs fed milk formula followed by BC was compared with groups of preterm pigs fed either milk formula or BC alone after...... the TPN period. This study showed that BC feeding restores intestinal dysfunction and reduces a proinflammatory response induced by short term (6 hours) formula feeding to preterm TPN-fed pigs. A prerequisite for the use of BC in clinical settings is that a standardized product is readily available...... BC could be produced by immunization of pregnant cows with a clostridial specific vaccine. In conclusion, BC products have a beneficial effect on the intestinal environment in preterm pigs based on improvements in intestinal structure, digestive and absorptive functions, the microbiota...

  5. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Shao, Yujing; Guo, Yuming; Wang, Zhong

    2013-07-01

    This study investigated the protective effect of β-1,3/1,6-glucan on gut morphology, intestinal epithelial tight junctions, and bacterial translocation of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Ninety Salmonella-free Arbor Acre male broiler chickens were randomly divided into 3 groups: negative control group (NC), Salmonella Typhimurium-infected positive group (PC), and the Salmonella Typhimurium-infected group with dietary 100 mg/kg of β-1,3/1,6-glucan supplementation (T) to determine the effect of β-1,3/1,6-glucan on intestinal barrier function. Salmonella Typhimurium challenge alone significantly decreased villus height (P cells (P cells at 14 dpi (P cells (P cells (P Salmonella Typhimurium in comparison with Salmonella Typhimurium challenge alone. β-1,3/1,6-Glucan addition had significant inhibitory effects (P Salmonella colonization levels and liver Salmonella invasion of the Salmonella Typhimurium-infected birds compared with the PC group. Intestinal tight junction proteins claudin-1, claudin-4, and occludin mRNA expression in the jejunum at 14 dpi was significantly decreased by Salmonella Typhimurium challenge alone (P Salmonella Typhimurium-infected birds in comparison with the PC group. Our results indicate that dietary β-1,3/1,6-glucan can alleviate intestinal mucosal barrier impairment in broiler chickens challenged with Salmonella Typhimurium.

  6. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation; Caracterisation et modulation pharmacologique de l'inflammation intestinale induite par les rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Gremy, O

    2006-12-15

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  7. Mucosal mast cells are pivotal elements in inflammatory bowel disease that connect the dots: Stress, intestinal hyperpermeability and inflammation

    Institute of Scientific and Technical Information of China (English)

    Ashkan Farhadi; Jeremy Z Fields; Ali Keshavarzian

    2007-01-01

    Mast cells (MC) are pivotal elements in several physiological and immunological functions of the gastrointestinal (GI) tract. MC translate the stress signals that has been transmitted through brain gut axis into release of proinflammatory mediators that can cause stimulation of nerve endings that could affect afferent nerve terminals and change their perception, affect intestinal motility, increase intestinal hyperpermeability and, in susceptible individuals, modulate the inflammation. Thus, it is not surprising that MC are an important element in the pathogenesis of inflammatory bowel disease and non inflammatory GI disorders such as IBS and mast cell enterocolitis.

  8. Genetic and Diet-Induced Obesity Increased Intestinal Tumorigenesis in the Double Mutant Mouse Model Multiple Intestinal Neoplasia X Obese via Disturbed Glucose Regulation and Inflammation

    Directory of Open Access Journals (Sweden)

    Ha Thi Ngo

    2015-01-01

    Full Text Available We have studied how spontaneous or carcinogen-induced intestinal tumorigenesis was affected by genetic or diet-induced obesity in C57BL/6J-ApcMin/+ X C57BL/6J-Lepob/+ mice. Obesity was induced by the obese (ob mutation in the lep gene coding for the hormone leptin, or by a 45% fat diet. The effects of obesity were examined on spontaneous intestinal tumors caused by the multiple intestinal neoplasia (Min mutation in the adenomatous polyposis coli (Apc gene and on tumors induced by the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP. F1 ob/ob (homozygous mutated mice had increased body weight (bw and number of spontaneous and PhIP-induced small intestinal tumors (in ApcMin/+ mice, versus ob/wt (heterozygous mutated and wt/wt mice (homozygous wild-type. A 45% fat diet exacerbated bw and spontaneous tumor numbers versus 10% fat, but not PhIP-induced tumors. Except for bw, ob/wt and wt/wt were not significantly different. The obesity caused hyperglucosemia and insulinemia in ob/ob mice. A 45% fat diet further increased glucose, but not insulin. Inflammation was seen as increased TNFα levels in ob/ob mice. Thus the results implicate disturbed glucose regulation and inflammation as mechanisms involved in the association between obesity and intestinal tumorigenesis. Ob/ob mice had shorter lifespan than ob/wt and wt/wt mice.

  9. Development of fatal intestinal inflammation in MyD88 deficient mice co-infected with helminth and bacterial enteropathogens.

    Directory of Open Access Journals (Sweden)

    Libo Su

    2014-07-01

    Full Text Available Infections with intestinal helminth and bacterial pathogens, such as enteropathogenic Escherichia coli, continue to be a major global health threat for children. To determine whether and how an intestinal helminth parasite, Heligomosomoides polygyrus, might impact the TLR signaling pathway during the response to a bacterial enteropathogen, MyD88 knockout and wild-type C57BL/6 mice were infected with H. polygyrus, the bacterial enteropathogen Citrobacter rodentium, or both. We found that MyD88 knockout mice co-infected with H. polygyrus and C. rodentium developed more severe intestinal inflammation and elevated mortality compared to the wild-type mice. The enhanced susceptibility to C. rodentium, intestinal injury and mortality of the co-infected MyD88 knockout mice were found to be associated with markedly reduced intestinal phagocyte recruitment, decreased expression of the chemoattractant KC, and a significant increase in bacterial translocation. Moreover, the increase in bacterial infection and disease severity were found to be correlated with a significant downregulation of antimicrobial peptide expression in the intestinal tissue in co-infected MyD88 knockout mice. Our results suggest that the MyD88 signaling pathway plays a critical role for host defense and survival during helminth and enteric bacterial co-infection.

  10. A novel acylaminoimidazole derivative, WN1316, alleviates disease progression via suppression of glial inflammation in ALS mouse model.

    Directory of Open Access Journals (Sweden)

    Kazunori Tanaka

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset motor neuron degenerative disease. Given that oxidative stress and resulting chronic neuronal inflammation are thought to be central pathogenic, anti-oxidative agents and modulators of neuronal inflammation could be potential therapies for ALS. We report here that the novel small molecular compound, 2-[mesityl(methylamino]-N-[4-(pyridin-2-yl-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316 selectively suppresses oxidative stress-induced cell death and neuronal inflammation in the late-stage ALS mice. WN1316 has high blood-brain-barrier permeability and water solubility, and boosts both neuronal apoptosis inhibitory protein (NAIP and NF-E2-related factor 2 (Nrf2 which governed glutathione (GSH-related anti-oxidation pathway protecting motor neurons against oxidative injuries. Post-onset oral administration of low dose (1-100 µg/kg/day WN1316 in ALS(SOD1(H46R and ALS(SOD1(G93A mice resulted in sustained improved motor function and post onset survival rate. Immunohistochemical analysis revealed less DNA oxidative damage and motor neuronal inflammation as well as repression of both microgliosis and astrocytosis, concomitant down regulation of interleukin-1β and inducible nitric oxide synthase, and preservation of the motoneurons in anterior horn of lumbar spinal cord and skeletal muscle (quadriceps femoris. Thus, WN1316 would be a novel therapeutic agent for ALS.

  11. Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo.

    Science.gov (United States)

    Frede, Annika; Neuhaus, Bernhard; Klopfleisch, Robert; Walker, Catherine; Buer, Jan; Müller, Werner; Epple, Matthias; Westendorf, Astrid M

    2016-01-28

    Cytokines and chemokines are predominant players in the progression of inflammatory bowel diseases. While systemic neutralization of these players with antibodies works well in some patients, serious contraindications and side effects have been reported. Therefore, the local interference of cytokine signaling mediated by siRNA-loaded nanoparticles might be a promising new therapeutic approach. In this study, we produced multi-shell nanoparticles consisting of a calcium phosphate (CaP) core coated with siRNA directed against pro-inflammatory mediators, encapsulated into poly(d,l-lactide-co-glycolide acid) (PLGA), and coated with a final outer layer of polyethyleneimine (PEI), for the local therapeutic treatment of colonic inflammation. In cell culture, siRNA-loaded CaP/PLGA nanoparticles exhibited a rapid cellular uptake, almost no toxicity, and an excellent in vitro gene silencing efficiency. Importantly, intrarectal application of these nanoparticles loaded with siRNA directed against TNF-α, KC or IP-10 to mice suffering from dextran sulfate sodium (DSS)-induced colonic inflammation led to a significant decrease of the target genes in colonic biopsies and mesenteric lymph nodes which was accompanied with a distinct amelioration of intestinal inflammation. Thus, this study provides evidence that the specific and local modulation of the inflammatory response by CaP/PLGA nanoparticle-mediated siRNA delivery could be a promising approach for the treatment of intestinal inflammation.

  12. General inflammation and stress in patients with intestinal protozoan infections in two hospitals in Tehran

    Directory of Open Access Journals (Sweden)

    Vahdat Haji Hoseinlou

    2015-08-01

    Conclusion: Based on the results of this study, parasitic infection (intestinal protozoa as a stressor factor can increase serum cortisol concentration. In addition, intestinal protozoa was reduced immune system sensitivity and function. It seems that the neutrophil to lymphocyte ratio can be a potential useful parameters for evaluating the stress system activity and function in patients infected with the intestinal protozoa.

  13. Lactobacillus rhamnosus GG Intake Modifies Preschool Children's Intestinal Microbiota, Alleviates Penicillin-Associated Changes, and Reduces Antibiotic Use

    NARCIS (Netherlands)

    Korpela, Katri; Salonen, Anne; Virta, Lauri J.; Kumpu, Minna; Kekkonen, Riina A.; Vos, De Willem M.

    2016-01-01

    Antibiotic use is considered among the most severe causes of disturbance to children's developing intestinal microbiota, and frequently causes adverse gastrointestinal effects ranging from mild and transient diarrhoea to life- Threatening infections. Probiotics are commonly advocated to help in p

  14. Wild blueberries (Vaccinium myrtillus alleviate inflammation and hypertension associated with developing obesity in mice fed with a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Otto T Mykkänen

    Full Text Available BACKGROUND: Low-grade metabolic inflammation and hypertension are primary mechanisms involved in obesity-associated adverse health effects. Berries, especially Nordic wild blueberries (hereafter referred to as bilberries, represent an important source of dietary anthocyanins, a group of polyphenols with potential beneficial effects to combat obesity-associated metabolic disturbances. METHODS: The effects of 5% or 10% (w/w of whole bilberries (BB were studied on the development of obesity and its metabolic disturbances in C57BL mice fed with a high-fat diet (HFD for three months. Cytokines, inflammatory cells, systolic blood pressure, glucose tolerance, insulin sensitivity, weight gain, body fat, food consumption and energy metabolism were assessed. RESULTS: Bilberries ameliorated type 1 pro-inflammatory responsiveness induced by HFD. This was indicated by the altered cytokine profile and the reduced prevalence of interferon gamma -producing T-cells, in particular T helper type 1 cells. Bilberries also prevented the progression of obesity associated long term increase in systolic blood pressure in mice. CONCLUSIONS: Bilberries reduce the development of systemic inflammation and prevent the progression of chronic hypertension, thus supporting their potential role in alleviating the adverse health effects associated with developing obesity.

  15. Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats.

    Science.gov (United States)

    Chang, Wen-Chang; Wu, James Swi-Bea; Chen, Chen-Wen; Kuo, Po-Ling; Chien, Hsu-Min; Wang, Yuh-Tai; Shen, Szu-Chuan

    2015-12-02

    Excess free fatty acid accumulation from abnormal lipid metabolism results in the insulin resistance in peripheral cells, subsequently causing hyperinsulinemia, hyperglycemia and/or hyperlipidemia in diabetes mellitus (DM) patients. Herein, we investigated the effect of phenolic acids on glucose uptake in an insulin-resistant cell-culture model and on hepatic insulin resistance and inflammation in rats fed a high-fat diet (HFD). The results show that vanillic acid (VA) demonstrated the highest glucose uptake ability among all tested phenolic acids in insulin-resistant FL83B mouse hepatocytes. Furthermore, rats fed HFD for 16 weeks were orally administered with VA daily (30 mg/kg body weight) at weeks 13-16. The results show that levels of serum insulin, glucose, triglyceride, and free fatty acid were significantly decreased in VA-treated HFD rats (p hyperlipidemia in HFD rats. Moreover, VA significantly reduced values of area under the curve for glucose (AUCglucose) in oral glucose tolerance test and homeostasis model assessment-insulin resistance (HOMA-IR) index, suggesting the improving effect on glucose tolerance and insulin resistance in HFD rats. The Western blot analysis revealed that VA significantly up-regulated expression of hepatic insulin-signaling and lipid metabolism-related protein, including insulin receptor, phosphatidylinositol-3 kinase, glucose transporter 2, and phosphorylated acetyl CoA carboxylase in HFD rats. VA also significantly down-regulated hepatic inflammation-related proteins, including cyclooxygenase-2 and monocyte chemoattractant protein-1 expressions in HFD rats. These results indicate that VA might ameliorate insulin resistance via improving hepatic insulin signaling and alleviating inflammation pathways in HFD rats. These findings also suggest the potential of VA in preventing the progression of DM.

  16. Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats.

    Science.gov (United States)

    Chang, Wen-Chang; Wu, James Swi-Bea; Chen, Chen-Wen; Kuo, Po-Ling; Chien, Hsu-Min; Wang, Yuh-Tai; Shen, Szu-Chuan

    2015-12-01

    Excess free fatty acid accumulation from abnormal lipid metabolism results in the insulin resistance in peripheral cells, subsequently causing hyperinsulinemia, hyperglycemia and/or hyperlipidemia in diabetes mellitus (DM) patients. Herein, we investigated the effect of phenolic acids on glucose uptake in an insulin-resistant cell-culture model and on hepatic insulin resistance and inflammation in rats fed a high-fat diet (HFD). The results show that vanillic acid (VA) demonstrated the highest glucose uptake ability among all tested phenolic acids in insulin-resistant FL83B mouse hepatocytes. Furthermore, rats fed HFD for 16 weeks were orally administered with VA daily (30 mg/kg body weight) at weeks 13-16. The results show that levels of serum insulin, glucose, triglyceride, and free fatty acid were significantly decreased in VA-treated HFD rats (p effects of VA against hyperinsulinemia, hyperglycemia and hyperlipidemia in HFD rats. Moreover, VA significantly reduced values of area under the curve for glucose (AUCglucose) in oral glucose tolerance test and homeostasis model assessment-insulin resistance (HOMA-IR) index, suggesting the improving effect on glucose tolerance and insulin resistance in HFD rats. The Western blot analysis revealed that VA significantly up-regulated expression of hepatic insulin-signaling and lipid metabolism-related protein, including insulin receptor, phosphatidylinositol-3 kinase, glucose transporter 2, and phosphorylated acetyl CoA carboxylase in HFD rats. VA also significantly down-regulated hepatic inflammation-related proteins, including cyclooxygenase-2 and monocyte chemoattractant protein-1 expressions in HFD rats. These results indicate that VA might ameliorate insulin resistance via improving hepatic insulin signaling and alleviating inflammation pathways in HFD rats. These findings also suggest the potential of VA in preventing the progression of DM. PMID:26633482

  17. Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD-Fed Rats

    Directory of Open Access Journals (Sweden)

    Wen-Chang Chang

    2015-12-01

    Full Text Available Excess free fatty acid accumulation from abnormal lipid metabolism results in the insulin resistance in peripheral cells, subsequently causing hyperinsulinemia, hyperglycemia and/or hyperlipidemia in diabetes mellitus (DM patients. Herein, we investigated the effect of phenolic acids on glucose uptake in an insulin-resistant cell-culture model and on hepatic insulin resistance and inflammation in rats fed a high-fat diet (HFD. The results show that vanillic acid (VA demonstrated the highest glucose uptake ability among all tested phenolic acids in insulin-resistant FL83B mouse hepatocytes. Furthermore, rats fed HFD for 16 weeks were orally administered with VA daily (30 mg/kg body weight at weeks 13–16. The results show that levels of serum insulin, glucose, triglyceride, and free fatty acid were significantly decreased in VA-treated HFD rats (p < 0.05, indicating the protective effects of VA against hyperinsulinemia, hyperglycemia and hyperlipidemia in HFD rats. Moreover, VA significantly reduced values of area under the curve for glucose (AUCglucose in oral glucose tolerance test and homeostasis model assessment-insulin resistance (HOMA-IR index, suggesting the improving effect on glucose tolerance and insulin resistance in HFD rats. The Western blot analysis revealed that VA significantly up-regulated expression of hepatic insulin-signaling and lipid metabolism-related protein, including insulin receptor, phosphatidylinositol-3 kinase, glucose transporter 2, and phosphorylated acetyl CoA carboxylase in HFD rats. VA also significantly down-regulated hepatic inflammation-related proteins, including cyclooxygenase-2 and monocyte chemoattractant protein-1 expressions in HFD rats. These results indicate that VA might ameliorate insulin resistance via improving hepatic insulin signaling and alleviating inflammation pathways in HFD rats. These findings also suggest the potential of VA in preventing the progression of DM.

  18. The POZ-ZF transcription factor Kaiso (ZBTB33 induces inflammation and progenitor cell differentiation in the murine intestine.

    Directory of Open Access Journals (Sweden)

    Roopali Chaudhary

    Full Text Available Since its discovery, several studies have implicated the POZ-ZF protein Kaiso in both developmental and tumorigenic processes. However, most of the information regarding Kaiso's function to date has been gleaned from studies in Xenopus laevis embryos and mammalian cultured cells. To examine Kaiso's role in a relevant, mammalian organ-specific context, we generated and characterized a Kaiso transgenic mouse expressing a murine Kaiso transgene under the control of the intestine-specific villin promoter. Kaiso transgenic mice were viable and fertile but pathological examination of the small intestine revealed distinct morphological changes. Kaiso transgenics (Kaiso(Tg/+ exhibited a crypt expansion phenotype that was accompanied by increased differentiation of epithelial progenitor cells into secretory cell lineages; this was evidenced by increased cell populations expressing Goblet, Paneth and enteroendocrine markers. Paradoxically however, enhanced differentiation in Kaiso(Tg/+ was accompanied by reduced proliferation, a phenotype reminiscent of Notch inhibition. Indeed, expression of the Notch signalling target HES-1 was decreased in Kaiso(Tg/+ animals. Finally, our Kaiso transgenics exhibited several hallmarks of inflammation, including increased neutrophil infiltration and activation, villi fusion and crypt hyperplasia. Interestingly, the Kaiso binding partner and emerging anti-inflammatory mediator p120(ctn is recruited to the nucleus in Kaiso(Tg/+ mice intestinal cells suggesting that Kaiso may elicit inflammation by antagonizing p120(ctn function.

  19. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics.

    Science.gov (United States)

    Pastorelli, Luca; De Salvo, Carlo; Mercado, Joseph R; Vecchi, Maurizio; Pizarro, Theresa T

    2013-01-01

    The gut mucosa is constantly challenged by a bombardment of foreign antigens and environmental microorganisms. As such, the precise regulation of the intestinal barrier allows the maintenance of mucosal immune homeostasis and prevents the onset of uncontrolled inflammation. In support of this concept, emerging evidence points to defects in components of the epithelial barrier as etiologic factors in the pathogenesis of inflammatory bowel diseases (IBDs). In fact, the integrity of the intestinal barrier relies on different elements, including robust innate immune responses, epithelial paracellular permeability, epithelial cell integrity, as well as the production of mucus. The purpose of this review is to systematically evaluate how alterations in the aforementioned epithelial components can lead to the disruption of intestinal immune homeostasis, and subsequent inflammation. In this regard, the wealth of data from mouse models of intestinal inflammation and human genetics are pivotal in understanding pathogenic pathways, for example, that are initiated from the specific loss of function of a single protein leading to the onset of intestinal disease. On the other hand, several recently proposed therapeutic approaches to treat human IBD are targeted at enhancing different elements of gut barrier function, further supporting a primary role of the epithelium in the pathogenesis of chronic intestinal inflammation and emphasizing the importance of maintaining a healthy and effective intestinal barrier. PMID:24062746

  20. Central role of the gut epithelial barrier in pathogenesis of chronic intestinal inflammation: Lessons learned from animal models and human genetics

    Directory of Open Access Journals (Sweden)

    Luca ePastorelli

    2013-09-01

    Full Text Available The gut mucosa is constantly challenged by a bombardment of foreign antigens and environmental microorganisms. As such, the precise regulation of the intestinal barrier allows the maintenance of mucosal immune homeostasis and prevents the onset of uncontrolled inflammation. In support of this concept, emerging evidence points to defects in components of the epithelial barrier as etiologic factors in the pathogenesis of inflammatory bowel diseases (IBDs. In fact, the integrity of the intestinal barrier relies on different elements, including robust innate immune responses, epithelial paracellular permeability, epithelial cell integrity, as well as the production of mucus. The purpose of this review is to systematically evaluate how alterations in the aforementioned epithelial components can lead to the disruption of intestinal immune homeostasis, and subsequent inflammation. In this regard, the wealth of data from mouse models of intestinal inflammation and human genetics are pivotal in understanding pathogenic pathways, for example, that are initiated from the specific loss of function of a single protein leading to the onset of intestinal disease. On the other hand, several recently proposed therapeutic approaches to treat human IBD are targeted at enhancing different elements of gut barrier function, further supporting a primary role of the epithelium in the pathogenesis of chronic intestinal inflammation and emphasizing the importance of maintaining a healthy and effective intestinal barrier.

  1. Inhibition of long myosin light-chain kinase activation alleviates intestinal damage after binge ethanol exposure and burn injury

    OpenAIRE

    Zahs, Anita; Bird, Melanie D.; Ramirez, Luis; Turner, Jerrold R; Choudhry, Mashkoor A.; Kovacs, Elizabeth J

    2012-01-01

    Laboratory evidence suggests that intestinal permeability is elevated following either binge ethanol exposure or burn injury alone, and this barrier dysfunction is further perturbed when these insults are combined. We and others have previously reported a rise in both systemic and local proinflammatory cytokine production in mice after the combined insult. Knowing that long myosin light-chain kinase (MLCK) is important for epithelial barrier maintenance and can be activated by proinflammatory...

  2. Intestine.

    Science.gov (United States)

    Smith, J M; Skeans, M A; Horslen, S P; Edwards, E B; Harper, A M; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    Intestine and intestine-liver transplant plays an important role in the treatment of intestinal failure, despite decreased morbidity associated with parenteral nutrition. In 2014, 210 new patients were added to the intestine transplant waiting list. Among prevalent patients on the list at the end of 2014, 65% were waiting for an intestine transplant and 35% were waiting for an intestine-liver transplant. The pretransplant mortality rate decreased dramatically over time for all age groups. Pretransplant mortality was highest for adult candidates, at 22.1 per 100 waitlist years compared with less than 3 per 100 waitlist years for pediatric candidates, and notably higher for candidates for intestine-liver transplant than for candidates for intestine transplant without a liver. Numbers of intestine transplants without a liver increased from a low of 51 in 2013 to 67 in 2014. Intestine-liver transplants increased from a low of 44 in 2012 to 72 in 2014. Short-gut syndrome (congenital and other) was the main cause of disease leading to both intestine and intestine-liver transplant. Graft survival improved over the past decade. Patient survival was lowest for adult intestine-liver recipients and highest for pediatric intestine recipients.

  3. The macrophage system in the intestinal muscularis externa during inflammation: an immunohistochemical and quantitative study of osteopetrotic mice

    DEFF Research Database (Denmark)

    Mikkelsen, Hanne Birte; Larsen, Jytte Overgaard; Hadberg, Hanne

    2008-01-01

    Intestinal inflammation results in disturbed intestinal motility in humans as well as in animal models. This altered function of smooth muscle cells and/or the enteric nervous system may be caused by activation of macrophages in muscularis externa and a thereby following release of cytokines...... and chemokines that causes influx of mononuclear cells and neutrophilic granulocytes. We subjected osteopetrotic (op/op) mice that lack certain macrophage subtypes, e.g. macrophages in the muscularis externa and +/+ mice to LPS to induce inflammatory cell influx. The densities of F4/80(+), MHCII...... and that two or more macrophage subtypes with comparable morphologies exist. Osteopetrotic mice lacked MHCII(+), CD169(+), and F4/80(+) cells after either treatment, which indicate that these cells are CSF-1-dependent. LPS induced VCAM-1 activation of the vessels, modest influx of granulocytes, as well as an i...

  4. Glugacon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration.

    Science.gov (United States)

    El-Jamal, Noura; Erdual, Edmone; Neunlist, Michel; Koriche, Dine; Dubuquoy, Caroline; Maggiotto, Francois; Chevalier, Julien; Berrebi, Dominique; Dubuquoy, Laurent; Boulanger, Eric; Cortot, Antoine; Desreumaux, Pierre

    2014-08-01

    The glucagon-like peptide 2 (GLP-2) is an intestinotrophic hormone with growth promoting and anti-inflammatory actions. However, the full biological functions of GLP-2 and the localization of its receptor (GLP-2R) remain controversial. Among cell lines tested, the expression of GLP-2R transcript was detected in human colonic myofibroblasts (CCD-18Co) and in primary culture of rat enteric nervous system but not in intestinal epithelial cell lines, lymphocytes, monocytes, or endothelial cells. Surprisingly, GLP-2R was expressed in murine (GLUTag), but not human (NCI-H716) enteroendocrine cells. The screening of GLP-2R mRNA in mice organs revealed an increasing gradient of GLP-2R toward the distal gut. An unexpected expression was detected in the mesenteric fat, mesenteric lymph nodes, bladder, spleen, and liver, particularly in hepatocytes. In two mice models of trinitrobenzene sulfonic acid (TNBS)- and dextran sulfate sodium (DSS)-induced colitis, the colonic expression of GLP-2R mRNA was decreased by 60% compared with control mice. Also, GLP-2R mRNA was significantly downregulated in intestinal tissues of inflammatory bowel disease patients. Therapeutically, GLP-2 showed a weak restorative effect on intestinal inflammation during TNBS-induced colitis as assessed by macroscopic score and inflammatory markers. Finally, GLP-2 treatment accelerated mouse liver regeneration following partial hepatectomy as assessed by histological and molecular analyses. In conclusion, the limited therapeutic effect of GLP-2 on colonic inflammation dampens its utility in the management of severe inflammatory intestinal disorders. However, the role of GLP-2 in liver regeneration is a novelty that might introduce GLP-2 into the management of liver diseases and emphasizes on the importance of elucidating other extraintestinal functions of GLP-2. PMID:24875097

  5. Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction

    OpenAIRE

    Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-yuan; Hu, Sen

    2015-01-01

    AIM: To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome.

  6. Alpha-Lipoic Acid Alleviates Acute Inflammation and Promotes Lipid Mobilization During the Inflammatory Response in White Adipose Tissue of Mice.

    Science.gov (United States)

    Guo, Jun; Gao, Shixing; Liu, Zhiqing; Zhao, Ruqian; Yang, Xiaojing

    2016-10-01

    Recently, white adipose tissue has been shown to exhibit immunological activity, and may play an important role in host defense and protection against bacterial infection. Αlpha-lipoic acid (α-LA) has been demonstrated to function as an anti-inflammatory and anti-oxidant agent. However, its influence on the inflammatory response and metabolic changes in white adipose tissue remains unknown. We used male C57BL/6 mice as models to study the effect of α-LA on the inflammatory response and metabolic changes in white adipose tissue after stimulation with lipopolysaccharide (LPS). The non-esterified fatty acid content was measured by an automatic biochemical analyzer. The expression of inflammation-, lipid- and energy metabolism-related genes and proteins was determined by quantitative real-time polymerase chain reaction and western blotting. The results indicated that α-LA significantly decreased the epididymis fat weight index and the non-esterified fatty acid content in plasma compared with the control group. LPS significantly increased the expression of inflammation genes and α-LA reduced their expression. The LPS-induced expression of nuclear factor-κB protein was decreased by α-LA. Regarding lipid metabolism, α-LA significantly counteracted the inhibitory effects of LPS on the expression of hormone-sensitive lipase gene and protein. α-LA evidently increased the gene expression of fatty acid transport protein 1 and cluster of differentiation 36. Regarding energy metabolism, α-LA significantly increased the expression of most of mitochondrial DNA-encoded genes compared with the control and LPS group. Accordingly, α-LA can alleviate acute inflammatory response and this action may be related with the promotion of lipid mobilization in white adipose tissue.

  7. Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish.

    Directory of Open Access Journals (Sweden)

    Jin-Xiu Zhang

    Full Text Available β-Conglycinin has been identified as one of the major feed allergens. However, studies of β-conglycinin on fish are scarce. This study investigated the effects of β-conglycinin on the growth, digestive and absorptive ability, inflammatory response, oxidative status and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian in vivo and their enterocytes in vitro. The results indicated that the specific growth rate (SGR, feed intake, and feed efficiency were reduced by β-conglycinin. In addition, activities of trypsin, chymotrypsin, lipase, creatine kinase, Na(+,K(+-ATPase and alkaline phosphatase in the intestine showed similar tendencies. The protein content of the hepatopancreas and intestines, and the weight and length of the intestines were all reduced by β-conglycinin. β-Conglycinin increased lipid and protein oxidation in the detected tissues and cells. However, β-conglycinin decreased superoxide dismutase (SOD, catalase (CAT, glutathione-S-transferase (GST, glutathione peroxidase (GPx and glutathione reductase (GR activities and glutathione (GSH content in the intestine and enterocytes. Similar antioxidant activity in the hepatopancreas was observed, except for GST. The expression of target of rapamycin (TOR gene was reduced by β-conglycinin. Furthermore, mRNA levels of interleukin-8 (IL-8, tumor necrosis factor-α (TNF-α, and transforming growth factor-β (TGF-β genes were increased by β-conglycinin. However, β-conglycinin increased CuZnSOD, MnSOD, CAT, and GPx1b gene expression. In conclusion, this study indicates that β-conglycinin induces inflammation and oxidation, and causes dysfunction of intestinal digestion and absorption in fish, and finally reduces fish growth. The results of this study provide some information to the mechanism of β-conglycinin-induced negative effects.

  8. Artesunate alleviates hepatic fibrosis induced by multiple pathogenic factors and inflammation through the inhibition of LPS/TLR4/NF-κB signaling pathway in rats.

    Science.gov (United States)

    Lai, Lina; Chen, Yunxia; Tian, Xiaoxia; Li, Xujiong; Zhang, Xiaojing; Lei, Jingwen; Bi, Yanghui; Fang, Buwu; Song, Xiaoliang

    2015-10-15

    The current study was performed in order to explore the effect of artesunate (Art) on experimental hepatic fibrosis and the potential mechanism involved. Art, a water-soluble hemisuccinate derivative of artemisinin extracted from the Chinese herb Artemisia Annua, is a safe and effective antimalarial drug. Hepatic fibrosis was induced in SD rats by multiple pathogenic factors. Rats were treated concurrently with Art (28.8 mg/kg) given daily by oral gavage for 6 or 8 weeks to evaluate its protective effects. Our data demonstrated that Art treatment obviously attenuated hepatic fibrosis, characterized by less inflammatory infiltration and accumulation of extracellular matrix (ECM). Art remarkably decreased endotoxin, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels as well. Art significantly downregulated protein and mRNA expression of α-smooth muscle actin (α-SMA), toll-like receptors 4 (TLR4), myeloid differentiation factor 88 (MyD88) and transforming growth factor beta 1 (TGF-β1). Art also significantly inhibited the nuclear transcription factor kappa B p65 (NF-κB p65) translocation into the nucleus. In addition, there were no remarkable differences between the N group and the NA group. In conclusion, we found that Art could alleviate hepatic fibrosis induced by multiple pathogenic factors and inflammation through the inhibition of LPS/TLR4/NF-κB signaling pathway in rats, suggesting that Art may be a potential candidate for the therapy of hepatic fibrosis. PMID:26318197

  9. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation.

    Science.gov (United States)

    Kim, Min-Soo; Hwang, Seong-Soo; Park, Eun-Jin; Bae, Jin-Woo

    2013-10-01

    Low-grade inflammation of the intestine results in metabolic dysfunction, in which dysbiosis of the gut microbiota is intimately involved. Dietary fibre induces prebiotic effects that may restore imbalances in the gut microbiota; however, no clinical trials have been reported in patients with metabolic diseases. Here, six obese subjects with type 2 diabetes and/or hypertension were assigned to a strict vegetarian diet (SVD) for 1 month, and blood biomarkers of glucose and lipid metabolisms, faecal microbiota using 454-pyrosequencing of 16S ribosomal RNA genes, faecal lipocalin-2 and short-chain fatty acids were monitored. An SVD reduced body weight and the concentrations of triglycerides, total cholesterol, low-density lipoprotein cholesterol and haemoglobin A1c, and improved fasting glucose and postprandial glucose levels. An SVD reduced the Firmicutes-to-Bacteroidetes ratio in the gut microbiota, but did not alter enterotypes. An SVD led to a decrease in the pathobionts such as the Enterobacteriaceae and an increase in commensal microbes such as Bacteroides fragilis and Clostridium species belonging to clusters XIVa and IV, resulting in reduced intestinal lipocalin-2 and short-chain fatty acids levels. This study underscores the benefits of dietary fibre for improving the risk factors of metabolic diseases and shows that increased fibre intake reduces gut inflammation by changing the gut microbiota. PMID:24115628

  10. Farnesoid X Receptor activation protects against intestinal inflammation: potential mechanisms and therapeutic implications

    OpenAIRE

    Gadaleta, R.M.G.

    2011-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disorder, characterized by dysregulation of the mucosal immune system and compromised intestinal epithelial barrier. In IBD the immunological balance between pro-inflammatory and anti-inflammatory mediators is severely impaired and shifted towards the pro-inflammatory side. The nuclear transcription factor kappa B is a key regulator in this shift. The bile salt nuclear Farnesoid X Receptor (FXR) is a member of the nuclear r...

  11. Oral treatment with the herbal formula B307 alleviates cardiac toxicity in doxorubicin-treated mice via suppressing oxidative stress, inflammation, and apoptosis

    Directory of Open Access Journals (Sweden)

    Lien CY

    2015-05-01

    Full Text Available Chia-Ying Lien,1 Tai-Yuan Chuang,1 Chih-Hsiang Hsu,2 Ching-Lung Lin,2 Sheue-Er Wang,2 Shuenn-Jyi Sheu,3 Chiang-Ting Chien,2 Chung-Hsin Wu2 1Department of Athletics, National Taiwan University, Taipei, Taiwan; 2Department of Life Science, National Taiwan Normal University, Taipei, Taiwan; 3Brion Research Institute of Taiwan, New Taipei City, Taiwan Objective: This study aimed to investigate whether the herbal formula B307 could alleviate doxorubicin (DOX-induced acute cardiotoxicity. If so, we further unraveled possible molecular mechanisms of cardiac protection under treatment with the herbal formula B307. Methods: Before the animal experiment, we examined relative viabilities of Huh7 cancer cells under treatment with the herbal formula B307. To test whether oral treatment with the herbal formula B307 could alleviate cardiotoxicity, equal volumes of B307 (50 mg/kg or saline (sham treatment were administered to 20-week-old male mice once daily for 14 consecutive days. Then, DOX (10 mg/kg; ip was administered to male mice under B307 and sham treatments at 22–23 weeks of age. Cardiac functions in these mice were assessed via echocardiography at 23–24 weeks of age. Then, expressions of oxidative stress, inflammation, and apoptosis-related proteins were examined in the heart tissue by immunohistochemistry and Western blotting at 24–25 weeks of age. Apart from this, mortality rate and body weight were measured during the experiment.Results: In vitro, the relative viabilities of Huh7 cancer cells under treatment with the herbal formula B307 had shown no obvious change at doses of 10–160 ng/mL. Furthermore, the relative viabilities of Huh7 cancer cells were significantly reduced under DOX treatment but showed no significant change under DOX only and DOX plus B307 treatment. In vivo, the mortality rate, body weight, and cardiac function of DOX-treated mice were obviously improved under oral treatment with the herbal formula B307. Furthermore

  12. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress.

    Science.gov (United States)

    Tong, Ling-Chang; Wang, Yue; Wang, Zhi-Bin; Liu, Wei-Ye; Sun, Sheng; Li, Ling; Su, Ding-Feng; Zhang, Li-Chao

    2016-01-01

    Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7-14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway. PMID:27574508

  13. Properdin provides protection from Citrobacter rodentium-induced intestinal inflammation in a C5a/IL-6-dependent manner.

    Science.gov (United States)

    Jain, Umang; Cao, Qi; Thomas, Nikhil A; Woodruff, Trent M; Schwaeble, Wilhelm J; Stover, Cordula M; Stadnyk, Andrew W

    2015-04-01

    Citrobacter rodentium is an attaching and effacing mouse pathogen that models enteropathogenic and enterohemorrhagic Escherichia coli in humans. The complement system is an important innate defense mechanism; however, only scant information is available about the role of complement proteins during enteric infections. In this study, we examined the impact of the lack of properdin, a positive regulator of complement, in C. rodentium-induced colitis. Following infection, properdin knockout (P(KO)) mice had increased diarrhea and exacerbated inflammation combined with defective epithelial cell-derived IL-6 and greater numbers of colonizing bacteria. The defect in the mucosal response was reversed by administering exogenous properdin to P(KO) mice. Then, using in vitro and in vivo approaches, we show that the mechanism behind the exacerbated inflammation of P(KO) mice is due to a failure to increase local C5a levels. We show that C5a directly stimulates IL-6 production from colonic epithelial cells and that inhibiting C5a in infected wild-type mice resulted in defective epithelial IL-6 production and exacerbated inflammation. These outcomes position properdin early in the response to an infectious challenge in the colon, leading to complement activation and C5a, which in turn provides protection through IL-6 expression by the epithelium. Our results unveil a previously unappreciated mechanism of intestinal homeostasis involving complement, C5a, and IL-6 during bacteria-triggered epithelial injury.

  14. Studies with inulin-type fructans on intestinal infections, permeability, and inflammation.

    Science.gov (United States)

    Guarner, Francisco

    2007-11-01

    Symbiosis between host and gut bacteria can be optimized by prebiotics. Inulin-type fructans have been shown to improve the microbial balance of the intestinal ecosystem by stimulating the growth of bifidobacteria and lactobacilli. These changes have been associated with several health benefits, including the prevention of gastrointestinal and systemic infections in animal models and human studies. Inulin-type fructans induce changes of the intestinal mucosa characterized by higher villi, deeper crypts, increased number of goblet cells, and a thicker mucus layer on the colonic epithelium. Bacterial antagonism and competition of bifidobacteria and lactobacilli with pathogens, as well as the trophic effects on the intestinal epithelium, may explain the protective role of inulin against enteric infections. In contrast, studies with rats fed a low-calcium diet suggested a negative effect of prebiotics on intestinal barrier function. However, the adverse effect was clearly ascribed to the strong reduction of dietary calcium, as it could be reversed by oral administration of calcium. The adverse effect of a low-calcium diet on intestinal permeability has not been observed in humans. Inulin and oligofructose are now being tested in human studies aimed at prevention of bacterial translocation in critical health conditions. Mixtures of probiotics and prebiotics including inulin or oligofructose significantly reduced the rate of postoperative infections in liver transplant patients. Finally, inulin and oligofructose have proven useful to prevent mucosal inflammatory disorders in animal models and in patients with inflammatory bowel disease.

  15. Characteristic of endocrine cells of rat small intestine after administration of cryopreserved placenta on the background of acute aseptic peritoneal inflammation

    Directory of Open Access Journals (Sweden)

    Shepitko K.V.

    2015-06-01

    Full Text Available Background. Modern conceptions about mechanisms of inflammation of the small intestine could not be formed without an understanding of intercellular relationships that are realized by biologically active signaling molecules produced by endocrine cells. Methods. The experimental study has been carried out on the small intestine extracted from 140 adult male rats. Electron and light microscopy methods were used. Acute aseptic inflammation was modeled by intraperitoneal carrageenan injection; influence of subcutaneously cryopreserved placenta injection was analyzed. Results. After modeling of the acute aseptic peritoneal inflammation the maximal increase of ECL-cells was noted on the 21st day. The slowest restoration of endocrine cells number occurred on all measured parameters and was observed on day 30th of the observation. In case of administration of cryopreserved placenta at the early stages (days 3rd – 7th the increase of average number of EC- and ECL-cells promoted the enhanced permeability of vessels in the lamina propria. The decrease in number of P-cells prevented the development of hyperacid gastritis. Reduction in the average number of D1- cells prevented the excessive vasodilatation and facilitated the excretion of excess fluid from the foci of inflammation. In simultaneous subcutaneous administration of cryopreserved placenta and modeling of acute aseptic peritoneal inflammation the number of ЕС- and ЕСL-cells increased, accelerating the vascular response to inflammation. Conclusion. Active appearance of low-differentiated cells including those with “shapes of mitosis” on the day 14th indicates restoration of structural components of the small intestine mucosa and processes of absorption and parietal digestion after placenta administration during acute aseptic inflammation. Citation: Shepitko KV. [Characteristic of endocrine cells of rat small intestine after administration of cryopreserved placenta on the background of

  16. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation.

    Science.gov (United States)

    Zaiss, Mario M; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D; Macpherson, Andrew J; Croese, John; Giacomin, Paul R; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J; Harris, Nicola L

    2015-11-17

    Intestinal helminths are potent regulators of their host's immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. PMID:26522986

  17. Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Song YanXia

    2011-09-01

    Full Text Available Abstract Helminth infection may modulate the expression of Toll like receptors (TLR in dendritic cells (DCs and modify the responsiveness of DCs to TLR ligands. This may regulate aberrant intestinal inflammation in humans with helminthes and may thus help alleviate inflammation associated with human inflammatory bowel disease (IBD. Epidemiological and experimental data provide further evidence that reducing helminth infections increases the incidence rate of such autoimmune diseases. Fine control of inflammation in the TLR pathway is highly desirable for effective host defense. Thus, the use of antagonists of TLR-signaling and agonists of their negative regulators from helminths or helminth products should be considered for the treatment of IBD.

  18. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism.

    Science.gov (United States)

    Yan, Fang; Cao, Hanwei; Cover, Timothy L; Washington, M Kay; Shi, Yan; Liu, LinShu; Chaturvedi, Rupesh; Peek, Richard M; Wilson, Keith T; Polk, D Brent

    2011-06-01

    Probiotic bacteria can potentially have beneficial effects on the clinical course of several intestinal disorders, but our understanding of probiotic action is limited. We have identified a probiotic bacteria-derived soluble protein, p40, from Lactobacillus rhamnosus GG (LGG), which prevents cytokine-induced apoptosis in intestinal epithelial cells. In the current study, we analyzed the mechanisms by which p40 regulates cellular responses in intestinal epithelial cells and p40's effects on experimental colitis using mouse models. We show that the recombinant p40 protein activated EGFR, leading to Akt activation. Activation of EGFR by p40 was required for inhibition of cytokine-induced apoptosis in intestinal epithelial cells in vitro and ex vivo. Furthermore, we developed a pectin/zein hydrogel bead system to specifically deliver p40 to the mouse colon, which activated EGFR in colon epithelial cells. Administration of p40-containing beads reduced intestinal epithelial apoptosis and disruption of barrier function in the colon epithelium in an EGFR-dependent manner, thereby preventing and treating DSS-induced intestinal injury and acute colitis. Furthermore, p40 activation of EGFR was required for ameliorating colon epithelial cell apoptosis and chronic inflammation in oxazolone-induced colitis. These data define what we believe to be a previously unrecognized mechanism of probiotic-derived soluble proteins in protecting the intestine from injury and inflammation.

  19. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway.

    Science.gov (United States)

    Yang, Wencheng; Yang, Yan; Yang, Jian-Yi; Liang, Ming; Song, Jiangtao

    2016-04-01

    The aim of the present study was to investigate the protective effect exerted by bone marrow mesenchymal stem cells (BMSCs) in combination with plumbagin on spinal cord injury (SCI) and explore the mechanism behind this protective effect. Firstly, BMSCs were extracted from male Sprague-Dawley rats, cultured in vitro, and identified by hematoxylin. Sprague-Dawley rats were then randomly divided into a control group, SCI model group, BMSC-treated group, a plumbagin-treated group, and a BMSC and plumbagin-treated group. After treatment with BMSCs combined with plumbagin, a Basso, Beattie and Bresnahan (BBB) test was carried out and the spinal cord water content was examined in order to analyze the effect of BMSCs combined with plumbagin on SCI. The myeloperoxidase (MPO), superoxide dismutase (SOD), malondialdehyde (MDA), nuclear factor-κB (NF-κB) p65 unit, tumor necrosis factor-α (TNF-α) levels were also detected. Moreover, nuclear factor erythroid 2‑related factor 2 (Nrf2), phosphoinositide 3-kinase (PI3K), phosphorylated (p-)Akt, p-p38 mitogen-activated protein kinase (MAPK), and p-extracellular-signal-regulated kinase (ERK) protein expression levels were measured using western blot analysis. Treatment with BMSCs combined with plumbagin significantly improved locomotor recovery and reduced the spinal cord water content after SCI. The increased MPO, MDA, NF-κB p65 and TNF-α levels were significantly suppressed and the decreased SOD was significantly increased in SCI rats. The suppression of Nrf2, p-Akt and p-ERK, as well as the promotion of p-p38 MAPK, were reversed by treatment with BMSCs combined with plumbagin. These effects suggest that treatment with BMSCs combined with plumbagin alleviates SCI through its effects on oxidative stress, inflammation, apoptotis and activation of the Nrf2 pathway. PMID:26936518

  20. H2S Protecting against Lung Injury following Limb Ischemia-reperfusion by Alleviating Inflammation and Water Transport Abnormality in Rats

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao Hua

    2014-01-01

    Objective To investigate the effect of H2S on lower limb ischemia-reperfusion (LIR) induced lung injury and explore the underlying mechanism. Methods Wistar rats were randomly divided into control group, IR group, IR+Sodium Hydrosulphide (NaHS) group and IR+DL-propargylglycine (PPG) group. IR group as lung injury model induced by LIR were given 4 h reperfusion following 4 h ischemia of bilateral hindlimbs with rubber bands. NaHS (0.78 mg/kg) as exogenous H2S donor and PPG (60 mg/kg) which can suppress endogenous H2S production were administrated before LIR, respectively. The lungs were removed for histologic analysis, the determination of wet-to-dry weight ratios and the measurement of mRNA and protein levels of aquaporin-1 (AQP1), aquaporin-5 (AQP5) as indexes of water transport abnormality, and mRNA and protein levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary-response gene 88 (MyD88) and p-NF-κB as indexes of inflammation. Results LIR induced lung injury was accompanied with upregulation of TLR4-Myd88-NF-κB pathway and downregulation of AQP1/AQP5. NaHS pre-treatment reduced lung injury with increasing AQP1/AQP5 expression and inhibition of TLR4-Myd88-NF-κB pathway, but PPG adjusted AQP1/AQP5 and TLR4 pathway to the opposite side and exacerbated lung injury. Conclusion Endogenous H2S, TLR4-Myd88-NF-κB pathway and AQP1/AQP5 were involved in LIR induced lung injury. Increased H2S would alleviate lung injury and the effect is at least partially depend on the adjustment of TLR4-Myd88-NF-κB pathway and AQP1/AQP5 expression to reduce inflammatory reaction and lessen pulmonary edema.

  1. A role for interleukin-33 in T(H)2-polarized intestinal inflammation?

    DEFF Research Database (Denmark)

    Seidelin, J B; Rogler, G; Nielsen, O H

    2011-01-01

    to the ST2/IL-1 receptor accessory protein complex. Recent studies have shown IL-33 to be upregulated in intestinal parasite infection and in epithelial cells and myofibroblasts in ulcerative colitis (UC). The findings point to a role for IL-33 in directing the T(H)2-type immune responses in these types...

  2. Bovine colostrum improves intestinal function following formula-induced gut inflammation in preterm pigs

    Science.gov (United States)

    Only few hours of formula feeding may induce proinflammatory responses and predispose to necrotizing enterocolitis (NEC) in preterm pigs. We hypothesized that bovine colostrum, rich in bioactive factors, would improve intestinal function in preterm pigs following an initial exposure to formula feedi...

  3. Inhibitory effect of oatmeal extract oligomer on vasoactive intestinal peptide-induced inflammation in surviving human skin.

    Science.gov (United States)

    Boisnic, S; Branchet-Gumila, M C; Coutanceau, C

    2003-01-01

    The aim of this study was to evaluate the antiinflammatory effect of oatmeal extract oligomer on skin fragments stimulated by a neuromediator, vasoactive intestinal peptide (VIP). Skin fragments (from plastic surgery) were maintained in survival conditions for 6 h. To induce inflammation, VIP was placed in contact with dermis by culture medium. Histological analysis was then performed on hematoxylin- and eosin-stained slides. Edema was evaluated with semiquantitative scores. Vasodilation was studied by quantifying the percentage of dilated vessels according to scores and by measuring their surface by morphometrical image analysis. TNF-alpha dosage was made on culture supernatants. Vasodilation was significantly increased after application of VIP. After treatment with oatmeal extract oligomer, the mean surface of dilated vessels and edema were significantly decreased compared with VIP-treated skin. Moreover, treatment with this extract decreased TNF-alpha.

  4. Impact of antithrombin Ⅲ on hepatic and intestinal microcirculation in experimental liver cirrhosis and bowel inflammation: An in vivo analysis

    Institute of Scientific and Technical Information of China (English)

    Sasa-Marcel Maksan; Zilfi (U)lger; Martha Maria Gebhard; Jan Schmidt

    2005-01-01

    AIM: To analyze the hepatic and intestinal microcirculation in an animal model of liver cirrhosis and inflammatory bowel disease (IBD) and to characterize the anti-inflammatory action of antithrombin Ⅲ (ATⅢ) on leukocyte kinetics and liver damage.METHODS: Hepatic and intestinal microcirculation was investigated by intravital videomicroscopy. Standardized models of experimental chronic liver cirrhosis and bowel inflammation were employed. Animals were divided into four groups (n = 6/group): controls, animals with cirrhosis,animals with cirrhosis and IBD, animals with cirrhosis and IBD treated with ATⅢ.RESULTS: Cirrhosis facilitated leukocyte rolling and sticking in hepatic sinusoids (1.91±0.28 sticker/μm vs0.5±0.5 sticker/μm in controls, P<0.05). The effect enhanced in animals with cirrhosis and IBD (5.4±1.65sticker/μm), but reversed agter ATⅢ application (3.97±1.04sticker/μm, P<0.05). Mucosal blood flow showed no differences in cirrhotic animals and controls (5.3±0.31nL/min vs5.4±0.25 nL/min) and was attenuated in animals with cirrhosis and IBD significantly (3.49±0.6 nL/min). This effect was normalized in the treatment group (5.13±0.4nL/min, P<0.05). Enzyme values rose during development of cirrhosis and bowel inflammation, and reduced after ATⅢ application (P<0.05).CONCLUSION: Liver cirrhosis in the presence of IBD leads to a significant reduction in mucosal blood flow and an increase in hepatic leukocyte adherence with consecutive liver injury, which can be prevented by administration of ATⅢ.

  5. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota

    OpenAIRE

    Thiennimitr, Parameth; Winter, Sebastian E.; Winter, Maria G.; Xavier, Mariana N.; Tolstikov, Vladimir; Huseby, Douglas L.; Sterzenbach, Torsten; Tsolis, Renée M.; Roth, John R.; Bäumler, Andreas J.

    2011-01-01

    Conventional wisdom holds that microbes support their growth in vertebrate hosts by exploiting a large variety of nutrients. We show here that use of a specific nutrient (ethanolamine) confers a marked growth advantage on Salmonella enterica serovar Typhimurium (S. Typhimurium) in the lumen of the inflamed intestine. In the anaerobic environment of the gut, ethanolamine supports little or no growth by fermentation. However, S. Typhimurium is able to use this carbon source by inducing the gut ...

  6. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor.

    Science.gov (United States)

    Brandstätter, Olga; Schanz, Oliver; Vorac, Julia; König, Jessica; Mori, Tetsushi; Maruyama, Toru; Korkowski, Markus; Haarmann-Stemmann, Thomas; von Smolinski, Dorthe; Schultze, Joachim L; Abel, Josef; Esser, Charlotte; Takeyama, Haruko; Weighardt, Heike; Förster, Irmgard

    2016-01-01

    As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the anti-inflammatory function of the AhR in the context of systemic endotoxin shock, AhR and AhRR act in concert to dampen intestinal inflammation. Specifically, AhRR contributes to the maintenance of colonic intraepithelial lymphocytes and prevents excessive IL-1β production and Th17/Tc17 differentiation. In contrast, the AhRR enhances IFN-γ-production by effector T cells in the inflamed gut. Our findings highlight the physiologic importance of cell-type specific balancing of AhR/AhRR expression in response to microbial, nutritional and other environmental stimuli. PMID:27184933

  7. Validation and Optimization of an Ex Vivo Assay of Intestinal Mucosal Biopsies in Crohn's Disease: Reflects Inflammation and Drug Effects.

    Directory of Open Access Journals (Sweden)

    Kasper Vadstrup

    Full Text Available Crohn's disease (CD is a chronic illness demanding better therapeutics. The marketed biologics only benefit some patients or elicit diminishing effect over time. To complement the known methods in drug development and to obtain patient specific drug responses, we optimized and validated a known human explant method to test drug candidates and pathophysiological conditions in CD intestinal biopsies. Mucosal biopsies from 27 CD patients and 6 healthy individuals were collected to validate an explant assay test where the polarized tissue was cultured on a novel metal mesh disk, slightly immersed in medium imitating an air-liquid interphase. After culture in high oxygen for 24 hours with or without biological treatment in the medium, biopsy integrity and penetration of antibodies was measured by immunohistochemistry (IHC. Nine cytokines were quantified in the conditioned medium as a read-out for degree of inflammation in individual biopsies and used to evaluate treatment efficacy. The biopsies were well-preserved, showing few structural changes. IHC revealed tissue penetration of antibodies demonstrating ability to test therapeutic antibodies. The cytokine release to the medium showed that the assay can distinguish between inflammation states and then validate the known effect of two treatment biologics confirmed by a detection panel of five specific cytokines. Our data also suggest that the assay would be able to indicate which patients are responders to anti-TNF-α therapeutics, and which are non-responders. This study demonstrates this version of an ex vivo culture as a valid and robust assay to assess inflammation in mucosal biopsies and test of the efficacy of novel drug candidates and current treatments on individual patients-potentially for a personalized medicine approach.

  8. Probiotics modulate intestinal expression of nuclear receptor and provide counter-regulatory signals to inflammation-driven adipose tissue activation.

    Directory of Open Access Journals (Sweden)

    Andrea Mencarelli

    Full Text Available BACKGROUND: Adipocytes from mesenteric white adipose tissue amplify the inflammatory response and participate in inflammation-driven immune dysfunction in Crohn's disease by releasing proinflammatory mediators. Peroxisome proliferator-activated receptors (PPAR-α and -γ, pregnane x receptor (PXR, farnesoid x receptor (FXR and liver x-receptor (LXR are ligand-activated nuclear receptor that provide counter-regulatory signals to dysregulated immunity and modulates adipose tissue. AIMS: To investigate the expression and function of nuclear receptors in intestinal and adipose tissues in a rodent model of colitis and mesenteric fat from Crohn's patients and to investigate their modulation by probiotics. METHODS: Colitis was induced by TNBS administration. Mice were administered vehicle or VSL#3, daily for 10 days. Abdominal fat explants obtained at surgery from five Crohn's disease patients and five patients with colon cancer were cultured with VSL#3 medium. RESULTS: Probiotic administration attenuated development of signs and symptoms of colitis, reduced colonic expression of TNFα, IL-6 and IFNγ and reserved colonic downregulation of PPARγ, PXR and FXR caused by TNBS. Mesenteric fat depots isolated from TNBS-treated animals had increased expression of inflammatory mediators along with PPARγ, FXR, leptin and adiponectin. These changes were prevented by VSL#3. Creeping fat and mesenteric adipose tissue from Crohn's patients showed a differential expression of PPARγ and FXR with both tissue expressing high levels of leptin. Exposure of these tissues to VSL#3 medium abrogates leptin release. CONCLUSIONS: Mesenteric adipose tissue from rodent colitis and Crohn's disease is metabolically active and shows inflammation-driven regulation of PPARγ, FXR and leptin. Probiotics correct the inflammation-driven metabolic dysfunction.

  9. Pathophysiological Role of Extracellular Purinergic Mediators in the Control of Intestinal Inflammation

    OpenAIRE

    Yosuke Kurashima; Hiroshi Kiyono; Jun Kunisawa

    2015-01-01

    Purinergic mediators such as adenosine 5′-triphosphate (ATP) are released into the extracellular compartment from damaged tissues and activated immune cells. They are then recognized by multiple purinergic P2X and P2Y receptors. Release and recognition of extracellular ATP are associated with both the development and the resolution of inflammation and infection. Accumulating evidence has recently suggested the potential of purinergic receptors as novel targets for drugs for treating intestina...

  10. Intestinal Microbiota Promotes Psoriasis-Like Skin Inflammation by Enhancing Th17 Response

    Science.gov (United States)

    Zákostelská, Zuzana; Málková, Jana; Klimešová, Klára; Rossmann, Pavel; Hornová, Michaela; Novosádová, Iva; Stehlíková, Zuzana; Kostovčík, Martin; Hudcovic, Tomáš; Štepánková, Renata; Jůzlová, Kateřina; Hercogová, Jana; Tlaskalová-Hogenová, Helena

    2016-01-01

    Psoriasis is a chronic inflammatory skin disease in which Th17 cells play a crucial role. Since indigenous gut microbiota influences the development and reactivity of immune cells, we analyzed the link among microbiota, T cells and the formation of psoriatic lesions in the imiquimod-induced murine model of psoriasis. To explore the role of microbiota, we induced skin inflammation in germ-free (GF), broad-spectrum antibiotic (ATB)-treated or conventional (CV) BALB/c and C57BL/6 mice. We found that both mice reared in GF conditions for several generations and CV mice treated with ATB were more resistant to imiquimod-induced skin inflammation than CV mice. The ATB treatment dramatically changed the diversity of gut bacteria, which remained stable after subsequent imiquimod application; ATB treatment resulted in a substantial increase in the order Lactobacillales and a significant decrease in Coriobacteriales and Clostridiales. Moreover, as compared to CV mice, imiquimod induced a lower degree of local and systemic Th17 activation in both GF and ATB-treated mice. These findings suggest that gut microbiota control imiquimod-induced skin inflammation by altering the T cell response. PMID:27434104

  11. The role of rose hip (Rosa canina L powder in alleviating arthritis pain and inflammation – part II animal and human studies

    Directory of Open Access Journals (Sweden)

    Marstr

    2016-05-01

    Full Text Available Kristian Marstrand,1 Joan Campbell-Tofte2 1Department of Orthopaedic Surgery, Elverum Hospital, Elverum, Norway; 2Coordinating Research Unit, Frederiksberg University Hospital, Frederiksberg, Copenhagen, Denmark Abstract: Rosa canina fruits (often known as rose hip have been used in herbal remedies since ancient times. On the basis of anecdotal reports about the effects of rose hip preparations on human health and citations to the same in ancient texts, in vitro and in vivo studies have been conducted that have made it possible to learn about some active ingredients in rose hip, as well as how the component compounds might exert their effects. From such studies, it has been documented that there is a great variation in active ingredients when comparing different rose hip products. Factors which affect the quality and quantity of active ingredients in the rose hip products include the subspecies of the particular R. canina from which the fruits are harvested, the environment during plant growth, time of harvesting, and the amount of seeds and shells/husks incorporated into the preparation. Studies in animals and in humans are of great importance for determining the true bio-effects of rose hip. Such in vivo studies that have only been performed during the last 2 decades indicate that the treatment of patients with different types of joint disease with rose hip powder based on a subspecies of R. canina (Lito containing a certain galactolipid (GOPO can alleviate pain, improve daily activity, and even reduce the consumption of regular pain relievers. As several rose hip components have been shown to be anti-inflammatory, it is suggested that anti-inflammatory mechanisms might explain some reductions in symptoms associated with administering rose hip to arthritic conditions. Although the number of publications of randomized and placebo-controlled clinic studies with rose hip is small, the overriding evidence is that the anti-inflammatory effects from

  12. Vaccenic acid suppresses intestinal inflammation by increasing anandamide and related N-acylethanolamines in the JCR:LA-cp rat.

    Science.gov (United States)

    Jacome-Sosa, Miriam; Vacca, Claudia; Mangat, Rabban; Diane, Abdoulaye; Nelson, Randy C; Reaney, Martin J; Shen, Jianheng; Curtis, Jonathan M; Vine, Donna F; Field, Catherine J; Igarashi, Miki; Piomelli, Daniele; Banni, Sebastiano; Proctor, Spencer D

    2016-04-01

    Vaccenic acid (VA), the predominant ruminant-derivedtransfat in the food chain, ameliorates hyperlipidemia, yet mechanisms remain elusive. We investigated whether VA could influence tissue endocannabinoids (ECs) by altering the availability of their biosynthetic precursor, arachidonic acid (AA), in membrane phospholipids (PLs). JCR:LA-cprats were assigned to a control diet with or without VA (1% w/w),cis-9,trans-11 conjugated linoleic acid (CLA) (1% w/w) or VA+CLA (1% + 0.5% w/w) for 8 weeks. VA reduced the EC, 2-arachidonoylglycerol (2-AG), in the liver and visceral adipose tissue (VAT) relative to control diet (P 0.05). Interestingly, VA increased jejunal concentrations of anandamide and those of the noncannabinoid signaling molecules, oleoylethanolamide and palmitoylethanolamide, relative to control diet (P< 0.05). This was consistent with a lower jejunal protein abundance (but not activity) of their degrading enzyme, fatty acid amide hydrolase, as well as the mRNA expression of TNFα and interleukin 1β (P< 0.05). The ability of VA to reduce 2-AG in the liver and VAT provides a potential mechanistic explanation to alleviate ectopic lipid accumulation. The opposing regulation of ECs and other noncannabinoid lipid signaling molecules by VA suggests an activation of benefit via the EC system in the intestine.

  13. Vaccenic acid suppresses intestinal inflammation by increasing anandamide and related N-acylethanolamines in the JCR:LA-cp rat.

    Science.gov (United States)

    Jacome-Sosa, Miriam; Vacca, Claudia; Mangat, Rabban; Diane, Abdoulaye; Nelson, Randy C; Reaney, Martin J; Shen, Jianheng; Curtis, Jonathan M; Vine, Donna F; Field, Catherine J; Igarashi, Miki; Piomelli, Daniele; Banni, Sebastiano; Proctor, Spencer D

    2016-04-01

    Vaccenic acid (VA), the predominant ruminant-derivedtransfat in the food chain, ameliorates hyperlipidemia, yet mechanisms remain elusive. We investigated whether VA could influence tissue endocannabinoids (ECs) by altering the availability of their biosynthetic precursor, arachidonic acid (AA), in membrane phospholipids (PLs). JCR:LA-cprats were assigned to a control diet with or without VA (1% w/w),cis-9,trans-11 conjugated linoleic acid (CLA) (1% w/w) or VA+CLA (1% + 0.5% w/w) for 8 weeks. VA reduced the EC, 2-arachidonoylglycerol (2-AG), in the liver and visceral adipose tissue (VAT) relative to control diet (PCLA on 2-AG relative to VA alone (P> 0.05). Interestingly, VA increased jejunal concentrations of anandamide and those of the noncannabinoid signaling molecules, oleoylethanolamide and palmitoylethanolamide, relative to control diet (P< 0.05). This was consistent with a lower jejunal protein abundance (but not activity) of their degrading enzyme, fatty acid amide hydrolase, as well as the mRNA expression of TNFα and interleukin 1β (P< 0.05). The ability of VA to reduce 2-AG in the liver and VAT provides a potential mechanistic explanation to alleviate ectopic lipid accumulation. The opposing regulation of ECs and other noncannabinoid lipid signaling molecules by VA suggests an activation of benefit via the EC system in the intestine. PMID:26891736

  14. Colonic insufflation with carbon monoxide gas inhibits the development of intestinal inflammation in rats

    Directory of Open Access Journals (Sweden)

    Takagi Tomohisa

    2012-09-01

    Full Text Available Abstract Background The pathogenesis of inflammatory bowel disease (IBD is complex, and an effective therapeutic strategy has yet to be established. Recently, carbon monoxide (CO has been reported to be capable of reducing inflammation by multiple mechanisms. In this study, we evaluated the role of colonic CO insufflation in acute colitis induced by trinitrobenzene sulfonic acid (TNBS in rats. Methods Acute colitis was induced with TNBS in male Wistar rats. Following TNBS administration, the animals were treated daily with 200 ppm of intrarectal CO gas. The distal colon was removed to evaluate various parameters of inflammation, including thiobarbituric acid (TBA-reactive substances, tissue-associated myeloperoxidase (MPO activity, and the expression of cytokine-induced neutrophil chemoattractant (CINC-1 in colonic mucosa 7 days after TNBS administration. Results The administration of TNBS induced ulceration with surrounding edematous swelling in the colon. In rats treated with CO gas, the colonic ulcer area was smaller than that of air-treated rats 7 days after TNBS administration. The wet colon weight was significantly increased in the TNBS-induced colitis group, which was markedly abrogated by colonic insufflation with CO gas. The increase of MPO activity, TBA-reactive substances, and CINC-1 expression in colonic mucosa were also significantly inhibited by colonic insufflation with CO gas. Conclusions Colonic insufflation with CO gas significantly ameliorated TNBS-induced colitis in rats. Clinical application of CO gas to improve colonic inflammatory conditions such as IBD might be useful.

  15. Toxoplasma gondii oral infection induces intestinal inflammation and retinochoroiditis in mice genetically selected for immune oral tolerance resistance.

    Directory of Open Access Journals (Sweden)

    Raul Ramos Furtado Dias

    Full Text Available Toxoplasmosis is a worldwide disease with most of the infections originating through the oral route and generates various pathological manifestations, ranging from meningoencephalitis to retinochoroiditis and inflammatory bowel disease. Animal models for these pathologies are scarce and have limitations. We evaluated the outcome of Toxoplasma gondii oral infection with 50 or 100 cysts of the ME-49 strain in two lines of mice with extreme phenotypes of susceptibility (TS or resistance (TR to immune oral tolerance. Therefore, the aim of this study was to evaluate the behaviour of TS and TR mice, orally infected by T. gondii, and determine its value as a model for inflammatory diseases study. Mortality during the acute stage of the infection for TR was 50% for both dosages, while 10 and 40% of the TS died after infection with these respective dosages. In the chronic stage, the remaining TS succumbed while TR survived for 90 days. The TS displayed higher parasite load with lower intestinal inflammation and cellular proliferation, notwithstanding myocarditis, pneumonitis and meningoencephalitis. TR presented massive necrosis of villi and crypt, comparable to inflammatory bowel disease, with infiltration of lymphoid cells in the lamina propria of the intestines. Also, TR mice infected with 100 cysts presented intense cellular infiltrate within the photoreceptor layer of the eyes, changes in disposition and morphology of the retina cell layers and retinochoroiditis. During the infection, high levels of IL-6 were detected in the serum of TS mice and TR mice presented high amounts of IFN-γ and TNF-α. Both mice lineages developed different disease outcomes, but it is emphasized that TR and TS mice presented acute and chronic stages of the infection, demonstrating that the two lineages offer an attractive model for studying toxoplasmosis.

  16. Iron-ascorbate-mediated lipid peroxidation causes epigenetic changes in the antioxidant defense in intestinal epithelial cells: impact on inflammation.

    Directory of Open Access Journals (Sweden)

    Sabrina Yara

    Full Text Available INTRODUCTION: The gastrointestinal tract is frequently exposed to noxious stimuli that may cause oxidative stress, inflammation and injury. Intraluminal pro-oxidants from ingested nutrients especially iron salts and ascorbic acid frequently consumed together, can lead to catalytic formation of oxygen-derived free radicals that ultimately overwhelm the cellular antioxidant defense and lead to cell damage. HYPOTHESIS: Since the mechanisms remain sketchy, efforts have been exerted to evaluate the role of epigenetics in modulating components of endogenous enzymatic antioxidants in the intestine. To this end, Caco-2/15 cells were exposed to the iron-ascorbate oxygen radical-generating system. RESULTS: Fe/Asc induced a significant increase in lipid peroxidation as reflected by the elevated formation of malondialdehyde along with the alteration of antioxidant defense as evidenced by raised superoxide dismutase 2 (SOD2 and diminished glutathione peroxidase (GPx activities and genes. Consequently, there was an up-regulation of inflammatory processes illustrated by the activation of NF-κB transcription factor, the higher production of interleukin-6 and cycloxygenase-2 as well as the decrease of IκB. Assessment of promoter's methylation revealed decreased levels for SOD2 and increased degree for GPx2. On the other hand, pre-incubation of Caco-2/15 cells with 5-Aza-2'-deoxycytidine, a demethylating agent, or Trolox antioxidant normalized the activities of SOD2 and GPx, reduced lipid peroxidation and prevented inflammation. CONCLUSION: Redox and inflammatory modifications in response to Fe/Asc -mediated lipid peroxidation may implicate epigenetic methylation.

  17. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation

    OpenAIRE

    Mills, Kingston; Raverdeau, Mathilde

    2013-01-01

    PUBLISHED Retinoic acid (RA), a vitamin A metabolite, modulates mucosal T helper cell responses. Here we examined the role of RA in regulating IL-22 production by γδ T cells and innate lymphoid cells in intestinal inflammation. RA significantly enhanced IL-22 production by γδ T cells stimulated in vitro with IL-1β or IL-18 and IL-23. In vivo RA attenuated colon inflammation induced by dextran sodium sulfate treatment or Citrobacter rodentium infection. This was associated with a significan...

  18. Hydrogen sulfide improves colonic barrier integrity in DSS-induced inflammation in Caco-2 cells and mice.

    Science.gov (United States)

    Zhao, Hongyu; Yan, Rui; Zhou, Xiaogang; Ji, Fang; Zhang, Bing

    2016-10-01

    Intestinal barrier involves in the pathogeny of inflammatory bowel disease (IBD) and hydrogen sulfide (H2S) has been reported to improve intestinal barrier integrity. Thus, this study investigated the effects of GYY4137, a slow-release H2S donor, on DSS-induced inflammation and intestinal dysfunction. In vitro model, cellular permeability was significantly increased and expression of tight junctions (ZO-1, Cauldin4, and Occludin) was downregulated in Caco-2 cells. GYY4137 treatment markedly attenuated DSS-induced inflammation and barrier dysfunction. Cystathionine β-synthase (CBS)-siRNA transfection further demonstrated that endogenous H2S system involves in DSS-induced inflammation and mediates barrier function. In vivo model, DSS exposure caused colonic inflammation and injury in mice and GYY4137 injection alleviated inflammatory response and improved intestinal barrier via reducing intestinal permeability and upregulating of tight junctions. In conclusion, endogenous H2S system involves in DSS-induced inflammation and H2S addition alleviated inflammation and intestinal dysfunction in vitro and in vivo.

  19. Blockade of PLD2 Ameliorates Intestinal Mucosal Inflammation of Inflammatory Bowel Disease

    Science.gov (United States)

    Zhou, Guangxi; Yu, Lin; Yang, Wenjing; Wu, Wei; Fang, Leilei

    2016-01-01

    Background. Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronically remittent and progressive inflammatory disorders. Phospholipase D2 (PLD2) is reported to be involved in the pathogenesis of several inflammatory diseases. However, the exact role of PLD2 in IBD is obscure. Methods. PLD2 expression was determined in peripheral blood cells and inflamed mucosa from patients with IBD by qRT-PCR. Colonic biopsies were also obtained from CD patients before and after infliximab (IFX) treatment to examine PLD2 expression. PLD2 selective inhibitor (CAY10594) was administrated daily by oral gavage in DSS-induced colitis mice. Bone marrow neutrophils from colitis mice were harvested to examine the migration using Transwell plate. Results. PLD2 was found to be significantly increased in peripheral blood cells and inflamed mucosa in patients with active IBD. Treatment with IFX could significantly decrease PLD2 expression in intestinal mucosa in patients with CD. Moreover, blockade of PLD2 with CAY10594 could markedly ameliorate DSS-induced colitis in mice and promote neutrophil migration. Conclusions. PLD2 plays a critical role in the pathogenesis of IBD. Blockade of PLD2 may serve as a new therapeutic approach for treatment of IBD. PMID:27721573

  20. Interleukin-17 induces an atypical M2-like macrophage subpopulation that regulates intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Kenichiro Nishikawa

    Full Text Available Interleukin 17 (IL-17 is a pleiotropic cytokine that acts on both immune and non-immune cells and is generally implicated in inflammatory and autoimmune diseases. Although IL-17 as well as their source, mainly but not limited to Th17 cells, is also abundant in the inflamed intestine, the role of IL-17 in inflammatory bowel disease remains controversial. In the present study, by using IL-17 knockout (KO mice, we investigated the role of IL-17 in colitis, with special focus on the macrophage subpopulations. Here we show that IL-17KO mice had increased susceptibility to DSS-induced colitis which was associated with decrease in expression of mRNAs implicated in M2 and/or wound healing macrophages, such as IL-10, IL-1 receptor antagonist, arginase 1, cyclooxygenase 2, and indoleamine 2,3-dioxygenase. Lamina propria leukocytes from inflamed colon of IL-17KO mice contained fewer CD11b+Ly6C+MHC Class II+ macrophages, which were derived, at least partly, from blood monocytes, as compared to those of WT mice. FACS-purified CD11b+ cells from WT mice, which were more abundant in Ly6C+MHC Class II+ cells, expressed increased levels of genes associated M2/wound healing macrophages and also M1/proinflammatory macrophages. Depletion of this population by topical administration of clodronate-liposome in the colon of WT mice resulted in the exacerbation of colitis. These results demonstrate that IL-17 confers protection against the development of severe colitis through the induction of an atypical M2-like macrophage subpopulation. Our findings reveal a previously unappreciated mechanism by which IL-17 exerts a protective function in colitis.

  1. Lymphotoxin-beta receptor activation on macrophages ameliorates acute DSS-induced intestinal inflammation in a TRIM30α-dependent manner.

    Science.gov (United States)

    Wimmer, Nadin; Huber, Barbara; Wege, Anja K; Barabas, Nicola; Röhrl, Johann; Pfeffer, Klaus; Hehlgans, Thomas

    2012-06-01

    Our previous studies indicated that LTβR activation mainly by T cell derived LTα₁β₂ is crucial for the control and down-regulation of intestinal inflammation. In order to dissect the cellular and molecular role of LTβR activation in the experimental model of DSS-induced intestinal inflammation, we have generated cell type-specific LTβR-deficient mice with specific ablation of LTβR expression on macrophages/neutrophils (LTβR((flox/flox))×LysM-Cre). These mice develop an exacerbated intestinal inflammation in our experimental model indicating that LTβR expression on macrophages/neutrophils is responsible for the control and down-regulation of the inflammatory reaction. These results were verified by adoptive transfer experiments of BMDM from wild-type and LTβR-deficient mice. Furthermore, transfer of activated CD4+ T cells derived from wild-type mice, but not from LTβR ligand-deficient mice attenuated the signs of intestinal inflammation. Finally, we demonstrate that LTβR activation on BMDM results in induction of TRIM30α, a negative regulator of NFκB activation. Concordantly, ablation of LTβR signaling results in the inability to induce TRIM30α expression concomitant with an increased expression of pro-inflammatory cytokines in our experimental model. Taken together, our data demonstrate that LTβR activation on macrophages by CD4+ T cell derived LTαβ controls the pro-inflammatory response by activation of a TRIM30α-dependent signaling pathway, crucial for the down-regulation of the inflammatory response in this experimental model. PMID:22437076

  2. An Orally Active Cannabis Extract with High Content in Cannabidiol attenuates Chemically-induced Intestinal Inflammation and Hypermotility in the Mouse

    Science.gov (United States)

    Pagano, Ester; Capasso, Raffaele; Piscitelli, Fabiana; Romano, Barbara; Parisi, Olga A.; Finizio, Stefania; Lauritano, Anna; Marzo, Vincenzo Di; Izzo, Angelo A.; Borrelli, Francesca

    2016-01-01

    Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for “CBD botanical drug substance,” on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage – after the inflammatory insult (curative protocol). The amounts of CBD in the colon, brain, and liver after the oral treatments were measured by high-performance liquid chromatography coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity) in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice) in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion) or orally (only at one dose). In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment. PMID:27757083

  3. Dehydroepiandrosterone (DHEA) restrains intestinal inflammation by rendering leukocytes hyporesponsive and balancing colitogenic inflammatory responses.

    Science.gov (United States)

    Alves, Vanessa Beatriz Freitas; Basso, Paulo José; Nardini, Viviani; Silva, Angélica; Chica, Javier Emílio Lazo; Cardoso, Cristina Ribeiro de Barros

    2016-09-01

    Dehydroepiandrosterone (DHEA) is a hormone that plays an important role in the modulation of inflammatory responses. However, the precise mechanisms that link the actions of this androgen with protection or susceptibility to inflammatory bowel diseases (IBD) remain uknown. Here we showed that low dose DHEA inhibited proliferation of spleen cells and IFN-у production. The hormone was not toxic to myeloid lineage cells, although it caused necrosis of spleen cells at the intermediate and highest doses in vitro (50 and 100μM). The treatment of C57BL/6 mice with DHEA during colitis induction by dextran sodium sulfate (DSS) led to a reduction in weight loss and clinical signs of disease. There were decreased peripheral blood monocytes on day 6 of DSS exposure and treatment, besides increase in circulating neutrophils in the tissue repair phase. DHEA also led to reduced lamina propria cellularity and restoration of normal colon length. These results were accompanied by decreased expression of IL-6 and TGF-β mRNA, while IL-13 was augmented in the colon on day 6, which was probably related to attenuation of inflammation. There was retention of CD4(+) cells in the spleen after use of DHEA, along with augmented frequency of CD4(+)IL-4(+) cells, decreased CD4(+)IFN-ɣ(+) in spleen and constrained CD4(+)IL-17(+) population in the mesenteric lymph nodes. Moreover, splenocytes of mice treated with DHEA became hyporesponsive, as observed by reduced proliferation after re-stimulation ex-vivo. In conclusion, DHEA modifyies leukocyte activity and balances the exacerbated immune responses which drive local and systemic damages in IBD. PMID:27263829

  4. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes.

    Science.gov (United States)

    Bleau, Christian; Karelis, Antony D; St-Pierre, David H; Lamontagne, Lucie

    2015-09-01

    Obesity is associated with a systemic chronic low-grade inflammation that contributes to the development of metabolic disorders such as cardiovascular diseases and type 2 diabetes. However, the etiology of this obesity-related pro-inflammatory process remains unclear. Most studies have focused on adipose tissue dysfunctions and/or insulin resistance in skeletal muscle cells as well as changes in adipokine profile and macrophage recruitment as potential sources of inflammation. However, low-grade systemic inflammation probably involves a complex network of signals interconnecting several organs. Recent evidences have suggested that disturbances in the composition of the gut microbial flora and alterations in levels of gut peptides following the ingestion of a high-fat diet may be a cause of low-grade systemic inflammation that may even precede and predispose to obesity, metabolic disorders or type 2 diabetes. This hypothesis is appealing because the gastrointestinal system is first exposed to nutrients and may thereby represent the first link in the chain of events leading to the development of obesity-associated systemic inflammation. Therefore, the present review will summarize the latest advances interconnecting intestinal mucosal bacteria-mediated inflammation, adipose tissue and skeletal muscle in a coordinated circuitry favouring the onset of a high-fat diet-related systemic low-grade inflammation preceding obesity and predisposing to metabolic disorders and/or type 2 diabetes. A particular emphasis will be given to high-fat diet-induced alterations of gut homeostasis as an early initiator event of mucosal inflammation and adverse consequences contributing to the promotion of extended systemic inflammation, especially in adipose and muscular tissues.

  5. Manganese deficiency or excess caused the depression of intestinal immunity, induction of inflammation and dysfunction of the intestinal physical barrier, as regulated by NF-κB, TOR and Nrf2 signalling, in grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Jiang, Wei-Dan; Tang, Ren-Jun; Liu, Yang; Kuang, Sheng-Yao; Jiang, Jun; Wu, Pei; Zhao, Juan; Zhang, Yong-An; Tang, Ling; Tang, Wu-Neng; Zhou, Xiao-Qiu; Feng, Lin

    2015-10-01

    Intestinal mucosal immune components and mRNA levels of inflammatory cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules in young grass carp (Ctenopharyngodon idellus) under dietary manganese (Mn) deficiency or excess were investigated. Fish were fed the diets containing graded levels of Mn [3.65-27.86 mg Mn kg(-1) diet] for 8 weeks. The results demonstrated that Mn deficiency significantly decreased the lysozyme and acid phosphatase (ACP) activities, up-regulated tumour necrosis factor α (TNF-α), interleukin 8 and the signalling factor nuclear factor-κB p65, and down-regulated interleukin 10 (IL-10), transforming growth factor β1, inhibitor of signalling factors κB-α and target of rapamycin mRNA levels in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI). However, Mn deficiency did not change the C3 content in the PI, whereas it decreased the C3 contents in the MI and DI. Additionally, Mn depletion also resulted in significantly low mRNA levels for tight junction proteins (claudin-b, claudin-c, claudin-15, occludin and zonula occludens-1), antioxidant enzymes (MnSOD, GPx and CAT) and NF-E2-related factor-2 in the intestines of fish. Excessive Mn exhibited toxic effects similar to Mn deficiency, where optimal Mn contents reversed those indicators. In conclusion, Mn deficiency or excess causes the depression of intestinal immunity, induction of inflammation and dysfunction of the intestinal physical barrier relating to NF-κB, TOR and Nrf2 signalling in grass carp. Furthermore, quadratic regression analysis at 95% maximum response of lysozyme and acid phosphatase activities in the distal intestine of young grass carp revealed the optimum dietary Mn levels to be 8.90 and 8.99 mg kg(-1) diet, respectively.

  6. cis-Urocanic acid attenuates acute dextran sodium sulphate-induced intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Eric Albert

    Full Text Available On exposure to sunlight, urocanic acid (UCA in the skin is converted from trans to the cis form and distributed systemically where it confers systemic immunosuppression. The aim of this study was to determine if administration of cis-UCA would be effective in attenuating colitis and the possible role of IL-10. Colitis was induced in 129/SvEv mice by administering 5% dextran sodium sulfate (DSS for 7 days in drinking water. During this period mice received daily subcutaneously injections of cis-UCA or vehicle. To examine a role for IL-10, 129/SvEv IL-10(-/- mice were injected for 24 days with cis-UCA or vehicle. Clinical disease was assessed by measurement of body weight, stool consistency, and presence of blood. At sacrifice, colonic tissue was collected for histology and measurement of myeloperoxidase and cytokines. Splenocytes were analyzed for CD4+CD25+FoxP3+ T-regulatory cells via flow cytometry. Murine bone-marrow derived antigen-presenting cells were treated with lipopolysaccharide (LPS ± UCA and cytokine secretion measured. Our results demonstrated that cis-UCA at a dose of 50 µg was effective in ameliorating DSS-induced colitis as evidenced by reduced weight loss and attenuated changes in colon weight/length. This protection was associated with reduced colonic expression of CXCL1, an increased expression of IL-17A and a significant preservation of splenic CD4+CD25+FoxP3+ T-regulatory cells. cis-UCA decreased LPS induced CXCL1, but not TNFα secretion, from antigen-presenting cells in vitro. UCA reduced colonic levels of IFNγ in IL-10(-/- mice but did not attenuate colitis. In conclusion, this study demonstrates that cis-urocanic acid is effective in reducing the severity of colitis in a chemically-induced mouse model, indicating that pathways induced by ultraviolet radiation to the skin can influence distal sites of inflammation. This provides further evidence for a possible role for sunlight exposure in modulating inflammatory

  7. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Zhiyu Zhang

    Full Text Available Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD.We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms.The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g. administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight, respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA content in fecal samples using real-time PCR.Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly.Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes

  8. Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine

    Directory of Open Access Journals (Sweden)

    Y. Guney

    2007-10-01

    Full Text Available We investigated the day-night differences in intestinal oxidative-injury and the inflammatory response following total body (TB or abdominopelvic (AP irradiation, and the influence of melatonin administration on tissue injury induced by radiation. Rats (male Wistar, weighing 220-280 g in the irradiated groups were exposed to a dose of 8 Gy to the TB or AP region in the morning (resting period - 1 h after light onset or evening (activity span - 13 h after light onset. Vehicle or melatonin was administered immediately before, immediately after and 24 h after irradiation (10, 2.0 and 10 mg/kg, ip, respectively to the irradiated rats. AP (P < 0.05 and TB (P < 0.05 irradiation applied in the morning caused a significant increase in thiobarbituric acid reactive substance (TBARS levels. Melatonin treatment in the morning (P < 0.05 or evening (P < 0.05 decreased TBARS levels after TB irradiation. After AP irradiation, melatonin treatment only in the morning caused a significant decrease in TBARS levels (P < 0.05. Although we have confirmed the development of inflammation after radiotherapy by histological findings, neither AP nor TB irradiation caused any marked changes in myeloperoxidase activity in the morning or evening. Our results indicate that oxidative damage is more prominent in rats receiving TB and AP irradiation in the morning and melatonin appears to have beneficial effects on oxidative damage irrespective of the time of administration. Increased neutrophil accumulation indicates that melatonin administration exerts a protective effect on AP irradiation-induced tissue oxidative injury, especially in the morning.

  9. MicroRNA-193a-3p Reduces Intestinal Inflammation in Response to Microbiota via Down-regulation of Colonic PepT1.

    Science.gov (United States)

    Dai, Xin; Chen, Xi; Chen, Qun; Shi, Lei; Liang, Hongwei; Zhou, Zhen; Liu, Qian; Pang, Wenjing; Hou, Dongxia; Wang, Cheng; Zen, Ke; Yuan, Yaozong; Zhang, Chen-Yu; Xia, Lu

    2015-06-26

    Intestinal inflammation is characterized by epithelial disruption, leading to the loss of barrier function, recruitment of immune cells, and host immune responses to gut microbiota. PepT1, a di/tripeptide transporter that uptakes bacterial products, is up-regulated in inflamed colon tissue, which implies its role in bacterium-associated intestinal inflammation. Although microRNA (miRNA)-mediated gene regulation has been found to be involved in various processes of inflammatory bowel disease (IBD), the biological function of miRNAs in the pathogenesis of IBD remains to be explored. In this study we detected miRNA expression patterns in colon tissues during colitis and investigated the mechanism underlying the regulation of colonic PepT1 by miRNAs. We observed an inverse correlation between PepT1 and miR-193a-3p in inflamed colon tissues with active ulcerative colitis, and we further demonstrated that miR-193a-3p reduced PepT1 expression and activity as a target gene and subsequently suppressed the NF-κB pathway. Intracolonic delivery of miR-193a-3p significantly ameliorated dextran sodium sulfate-induced colitis, whereas the overexpression of colonic PepT1 via PepT1 3'-untranslated region mutant lentivirus vector abolished the anti-inflammatory effect of miR-193a-3p. Furthermore, antibiotic treatment eliminated the difference in the dextran sodium sulfate-induced inflammation between the presence and absence of miR-193a-3p. These findings suggest that miR-193a-3p regulation of PepT1 mediates the uptake of bacterial products and is a potent mechanism during the colonic inflammation process. Overall, we believe miR-193a-3p may be a potent regulator of colonic PepT1 for maintaining intestinal homeostasis. PMID:25931122

  10. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell–dependent inflammation

    OpenAIRE

    Wang, Jian; Li, Fengqi; Wei, Haiming; Lian, Zhe-Xiong; Sun, Rui; Tian, Zhigang

    2014-01-01

    Influenza in humans is often accompanied by gastroenteritis-like symptoms such as diarrhea, but the underlying mechanism is not yet understood. We explored the occurrence of gastroenteritis-like symptoms using a mouse model of respiratory influenza infection. We found that respiratory influenza infection caused intestinal injury when lung injury occurred, which was not due to direct intestinal viral infection. Influenza infection altered the intestinal microbiota composition, which was mediat...

  11. Dietary intervention with green dwarf banana flour (Musa sp AAA) prevents intestinal inflammation in a trinitrobenzenesulfonic acid model of rat colitis.

    Science.gov (United States)

    Scarminio, Viviane; Fruet, Andrea C; Witaicenis, Aline; Rall, Vera L M; Di Stasi, Luiz C

    2012-03-01

    Dietary products are among the therapeutic approaches used to modify intestinal microflora and to promote protective effects during the intestinal inflammatory process. Because the banana plant is rich in resistant starch, which is used by colonic microbiota for the anaerobic production of the short-chain fatty acids that serve as a major fuel source for colonocytes: first, green dwarf banana flour produces protective effects on the intestinal inflammation acting as a prebiotic and, second, combination of this dietary supplementation with prednisolone presents synergistic effects. For this, we used the trinitrobenzenesulphonic acid (TNBS) model of rat colitis. Our results revealed that the protective effect produced by a combination of 10% green dwarf banana flour with prednisolone was more pronounced than those promoted by a single administration of prednisolone or a diet containing 10% or 20% banana flour. This beneficial effect was associated with an improvement in the colonic oxidative status because the banana flour diet prevented the glutathione depletion and inhibited myeloperoxidase activity and lipid peroxidation. In addition, the intestinal anti-inflammatory activity was associated with an inhibition of alkaline phosphatase activity, a reduction in macroscopic and microscopic scores, and an extension of the lesions. In conclusion, the dietary use of the green dwarf banana flour constitutes an important dietary supplement and complementary medicine product to prevention and treatment of human inflammatory bowel disease.

  12. Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats

    OpenAIRE

    Wen-Chang Chang; James Swi-Bea Wu; Chen-Wen Chen; Po-Ling Kuo; Hsu-Min Chien; Yuh-Tai Wang; Szu-Chuan Shen

    2015-01-01

    Excess free fatty acid accumulation from abnormal lipid metabolism results in the insulin resistance in peripheral cells, subsequently causing hyperinsulinemia, hyperglycemia and/or hyperlipidemia in diabetes mellitus (DM) patients. Herein, we investigated the effect of phenolic acids on glucose uptake in an insulin-resistant cell-culture model and on hepatic insulin resistance and inflammation in rats fed a high-fat diet (HFD). The results show that vanillic acid (VA) demonstrated the highes...

  13. PU.1-Silenced Dendritic Cells Induce Mixed Chimerism and Alleviate Intestinal Transplant Rejection in Rats via a Th1 to Th2 Shift

    Directory of Open Access Journals (Sweden)

    Xingwei Xu

    2016-01-01

    Full Text Available Background/Aims: Intestinal transplantation is an effective treatment for end-stage bowel failure; however, graft rejection and the toxicity associated with non-specific immunosuppression are major limitations of this procedure. Studies have shown that mixed chimerism can produce post-transplantation immune tolerance. Here, we demonstrate that in rat intestinal transplantation, PU.1-silenced dendritic cells (DCs plus bone marrow (BM cell transfusion results in mixed chimerism, and we investigate the mechanisms responsible for the effects of mixed chimerism rejection. Methods: In a model of intestinal transplantation, male Brown Norway rats were the donors, and female Lewis rats were the recipients that were randomly divided into 4 groups: control, BM, BM-imDCs and BM-PU.1. The dynamic changes in graft morphology, rejection scoring and serum concentrations of Th1/Th2-related cytokines were investigated on postoperative days 0, 7, 14, 21, and 30. Results: The BM-PU.1 group had better graft health, milder pathologic injuries, and lower rejection grades compared with the other groups. The rates of mixed chimerism were significantly highest in the BM-PU.1 group and correlated with decreases in serum IL-2 and increases in serum IL-10. Conclusion: Transfusion of PU.1-silenced DCs and BM cells induces stable mixed chimerism and has the potential to reduce pathologic injuries via a pro-Th2 shift in the Th1/Th2 balance.

  14. IL-21/IL-21R signaling suppresses intestinal inflammation induced by DSS through regulation of Th responses in lamina propria in mice.

    Science.gov (United States)

    Wang, Yuanyuan; Jiang, Xuefeng; Zhu, Junfeng; Dan Yue; Zhang, Xiaoqing; Wang, Xiao; You, Yong; Wang, Biao; Xu, Ying; Lu, Changlong; Sun, Xun; Yoshikai, Yasunobu

    2016-08-22

    Serum level of IL-21 is increased in patients with inflammatory bowel diseases (IBD), suggesting that IL-21/IL-21 receptor (IL-21R) signaling may be involved in the pathogenesis of IBD. However, the role of IL-21/IL-21 receptor signaling plays in the pathogenesis of IBD is not very clear. In this study, using IL-21R.KO mice, we tested the role of IL-21/IL-21R signaling in the regulation of T helper cell responses during intestinal inflammation. Here we found that IL-21R.KO mice were more susceptible to DSS-induced colitis as compared with C57BL/6 mice. The spontaneous inflammatory cytokines released by macrophages in LP of colon were significantly increased, and Th2, Th17 and Treg responses were down-regulated markedly. However, Th1 responses were significantly up-regulated in IL-21R.KO mice. Meanwhile, the population of CD8(+)CD44(+)IFN-γ(+) T cells was markedly elevated in LP of inflammatory intestine of IL-21RKO mice. In vivo, after disease onset, DSS-induced intestinal inflammation was ameliorated in C57BL/6 mice treated with rIL-21. Our results demonstrate that IL-21/IL-21R signaling contributes to protection against DSS-induced acute colitis through suppression of Th1 and activation of Th2, Th17 and Treg responses in mice. Therefore, therapeutic manipulation of IL-21/IL-21R activity may allow improved immunotherapy for IBD and other inflammatory diseases associated with Th cell responses.

  15. Influence of live combined bifidobacterium, lactobacillus and enterococcus capsules inflammation factors and intestinal mucosal barrier function of severe acute pancreatitis patients

    Institute of Scientific and Technical Information of China (English)

    Ping-Ping Shi; Ling-Yun Wu; Jian-Jun Wang

    2015-01-01

    Objective:To explore the influence of inflammation factors and intestinal mucosal barrier function on severe acute pancreatitis patients treated with bifidobacterium triple viable capsules.Methods:88 cases severe acute pancreatitis patients were divided into observation group and control group according to admission order, 44 cases in each group, all patients were given conventional treatment, on this base, patients in observation group were treated by oral bifidobacterium triple viable capsules, they were treated for one week, detected the serum inflammatory factors: the tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and C-reactive protein (CRP) and intestinal mucosal barrier function index: endotoxin, diamine oxidase (DAO), D-lactic acid, urinary lactulose/mannitol (L/M) in the two groups before and after treatment.Results:The levels of TNF-α, IL-6 and CRP in two groups after treatment were significantly reduced than before treatment, and after treatment the levels of TNF-α, IL-6 and CRP in observation group was significantly lower than that of the control group, all the difference was statistically significant; The levels of endotoxin, DA, D-lactic acid, L/M in two groups after treatment were significantly reduced than before treatment, and the levels of endotoxin, DA, D-lactic acid,L/M after treatment in observation group was significantly lower than that of the control group, the difference was statistically significant.Conclusion: Based on conventional treatment combined bifidobacterium triple viable capsules can significantly reduce inflammation in patients with severe acute pancreatitis, it can protect the intestinal mucosal barrier function, and has important clinical significance.

  16. IL-21/IL-21R signaling suppresses intestinal inflammation induced by DSS through regulation of Th responses in lamina propria in mice.

    Science.gov (United States)

    Wang, Yuanyuan; Jiang, Xuefeng; Zhu, Junfeng; Dan Yue; Zhang, Xiaoqing; Wang, Xiao; You, Yong; Wang, Biao; Xu, Ying; Lu, Changlong; Sun, Xun; Yoshikai, Yasunobu

    2016-01-01

    Serum level of IL-21 is increased in patients with inflammatory bowel diseases (IBD), suggesting that IL-21/IL-21 receptor (IL-21R) signaling may be involved in the pathogenesis of IBD. However, the role of IL-21/IL-21 receptor signaling plays in the pathogenesis of IBD is not very clear. In this study, using IL-21R.KO mice, we tested the role of IL-21/IL-21R signaling in the regulation of T helper cell responses during intestinal inflammation. Here we found that IL-21R.KO mice were more susceptible to DSS-induced colitis as compared with C57BL/6 mice. The spontaneous inflammatory cytokines released by macrophages in LP of colon were significantly increased, and Th2, Th17 and Treg responses were down-regulated markedly. However, Th1 responses were significantly up-regulated in IL-21R.KO mice. Meanwhile, the population of CD8(+)CD44(+)IFN-γ(+) T cells was markedly elevated in LP of inflammatory intestine of IL-21RKO mice. In vivo, after disease onset, DSS-induced intestinal inflammation was ameliorated in C57BL/6 mice treated with rIL-21. Our results demonstrate that IL-21/IL-21R signaling contributes to protection against DSS-induced acute colitis through suppression of Th1 and activation of Th2, Th17 and Treg responses in mice. Therefore, therapeutic manipulation of IL-21/IL-21R activity may allow improved immunotherapy for IBD and other inflammatory diseases associated with Th cell responses. PMID:27545302

  17. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.

    Directory of Open Access Journals (Sweden)

    James A Cotton

    Full Text Available Giardia duodenalis (syn. G. intestinalis, G. lamblia is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time

  18. Apios americana Medik Extract Alleviates Lung Inflammation in Influenza Virus H1N1- and Endotoxin-Induced Acute Lung Injury.

    Science.gov (United States)

    Sohn, Sung-Hwa; Lee, Sang-Yeon; Cui, Jun; Jang, Ho Hee; Kang, Tae-Hoon; Kim, Jong-Keun; Kim, In-Kyoung; Lee, Deuk-Ki; Choi, Seulgi; Yoon, Il-Sub; Chung, Ji-Woo; Nam, Jae-Hwan

    2015-12-28

    Apios americana Medik (hereinafter Apios) has been reported to treat diseases, including cancer, hypertension, obesity, and diabetes. The therapeutic effect of Apios is likely to be associated with its anti-inflammatory activity. This study was conducted to evaluate the protective effects of Apios in animal models of acute lung injury induced by lipopolysaccharide (LPS) or pandemic H1N1 2009 influenza A virus (H1N1). Mice were exposed to LPS or H1N1 for 2-4 days to induce acute lung injury. The treatment groups were administered Apios extracts via oral injection for 8 weeks before LPS treatment or H1N1 infection. To investigate the effects of Apios, we assessed the mice for in vivo effects of Apios on immune cell infiltration and the level of pro-inflammatory cytokines in the bronchoalveolar lavage (BAL) fluid, and histopathological changes in the lung. After induction of acute lung injury, the numbers of neutrophils and total cells were lower in the Apios-treated groups than in the non-Apios-treated LPS and H1N1 groups. The Apios groups tended to have lower levels of tumor necrosis factor-a and interleukin-6 in BAL fluid. In addition, the histopathological changes in the lungs were markedly reduced in the Apios-treated groups. These data suggest that Apios treatment reduces LPS- and H1N1-induced lung inflammation. These protective effects of Apios suggest that it may have therapeutic potential in acute lung injury.

  19. In vitro activated CD4+ T cells from interferon-gamma (IFN-gamma)-deficient mice induce intestinal inflammation in immunodeficient hosts

    DEFF Research Database (Denmark)

    Bregenholt, S; Brimnes, J; Nissen, Mogens Holst;

    1999-01-01

    To investigate the role of IFN-gamma in the immunopathogenesis of inflammatory bowel disease (IBD), severe combined immunodeficient (SCID) mice were transplanted with in vitro activated CD4+ T cells from either wild-type (WT) or IFN-gamma-deficient (IFN-gammaKO) BALB/c mice. In vitro, the two types...... intestinal inflammation with moderate weight loss. Intracellular cytokine staining of lamina propria lymphocytes (LPL) revealed comparable fractions of CD4+ T cells positive for TNF-alpha, IL-2 and IL-10 in the two groups of transplanted SCID mice, whereas a two-to-three-fold increase in the fraction of IL-4...... and subsequently enhanced by the ability of IFN-gamma to induce de novo MHC class II expression in the colonic epithelium, a change which could lead to increased antigen processing and production of local proinflammatory cytokines, CD4+ T cell turnover and thereby to exaggeration of disease....

  20. 18F-F.D.G. PET imaging of infection and inflammation: intestinal, prosthesis replacements, fibrosis, sarcoidosis, tuberculosis.

    International Nuclear Information System (INIS)

    Nuclear medicine plays an important role in the evaluation of infection and inflammation. A variety of diagnostic methods are available for imaging this inflammation and infection, most notably computed tomography, 68Ga scintigraphy or radionuclide labeled leucocytes. Fluorine 18 fluorodeoxyglucose (18F-F.D.G.) is a readily available radiotracer that offers rapid, exquisitely sensitive high-resolution images by positron emission tomography (PET). Inflammation can be acute or chronic, the former showing predominantly neutrophilic granulocyte infiltrates, whereas in the latter, macrophages predominate. F.D.G. uptake in infection is based on the fact that mononuclear cells and granulocytes use large quantities of glucose by way of the hexose monophosphate shunts. 18F-F.D.G. PET accurately helps diagnose spinal osteomyelitis, diabetic foot and in inflammatory conditions such as sarcoidosis and tuberculosis.(it appears to be useful for defining the extent of disease and monitoring response to treatment). 18F-F.D.G. PET can also help localize the source of fever of undetermined origin, thereby guiding additional testing. 18F-F.D.G. PET may be of limited usefulness in postoperative patients and in patients with a failed joint prosthesis or bowel inflammatory disease. In this review, we will focus on the role of 18F-F.D.G. PET in the management of patients with inflammation or suspected or confirmed infection

  1. Toxoplasma gondii Rhoptry 16 Kinase Promotes Host Resistance to Oral Infection and Intestinal Inflammation Only in the Context of the Dense Granule Protein GRA15

    Science.gov (United States)

    Jensen, Kirk D. C.; Hu, Kenneth; Whitmarsh, Ryan J.; Hassan, Musa A.; Julien, Lindsay; Lu, Diana; Chen, Lieping; Hunter, Christopher A.

    2013-01-01

    Toxoplasma gondii transmission between intermediate hosts is dependent on the ingestion of walled cysts formed during the chronic phase of infection. Immediately following consumption, the parasite must ensure survival of the host by preventing adverse inflammatory responses and/or by limiting its own replication. Since the Toxoplasma secreted effectors rhoptry 16 kinase (ROP16) and dense granule 15 (GRA15) activate the JAK-STAT3/6 and NF-κB signaling pathways, respectively, we explored whether a particular combination of these effectors impacted intestinal inflammation and parasite survival in vivo. Here we report that expression of the STAT-activating version of ROP16 in the type II strain (strain II+ROP16I) promotes host resistance to oral infection only in the context of endogenous GRA15 expression. Protection was characterized by a lower intestinal parasite burden and dampened inflammation. Host resistance to the II+ROP16I strain occurred independently of STAT6 and the T cell coinhibitory receptors B7-DC and B7-H1, two receptors that are upregulated by ROP16. In addition, coexpression of ROP16 and GRA15 enhanced parasite susceptibility within tumor necrosis factor alpha/gamma interferon-stimulated macrophages in a STAT3/6-independent manner. Transcriptional profiling of infected STAT3- and STAT6-deficient macrophages and parasitized Peyer's patches from mice orally challenged with strain II+ROP16I suggested that ROP16 activated STAT5 to modulate host gene expression. Consistent with this supposition, the ROP16 kinase induced the sustained phosphorylation and nuclear localization of STAT5 in Toxoplasma-infected cells. In summary, only the combined expression of both GRA15 and ROP16 promoted host resistance to acute oral infection, and Toxoplasma may possibly target the STAT5 signaling pathway to generate protective immunity in the gut. PMID:23545295

  2. Hydrolysed inulin alleviates the azoxymethane-induced preneoplastic aberrant crypt foci by altering selected intestinal microbiota in Sprague-Dawley rats.

    Science.gov (United States)

    Pattananandecha, Thanawat; Sirilun, Sasithorn; Duangjitcharoen, Yodsawee; Sivamaruthi, Bhagavathi Sundaram; Suwannalert, Prasit; Peerajan, Sartjin; Chaiyasut, Chaiyavat

    2016-09-01

    Context Inulin, a non-digestible carbohydrate isolated from Helianthus tuberosus L. (Asteraceae), has been shown to alter the gut beneficial bacteria including Lactobacillus spp. and Bifidobacteria. Inulin also influences the activities of intestinal microbiota that could prevent the colon cancer development. Objective This study determines the effect of hydrolysed inulin with different degrees of polymerisation on alteration of intestinal microbiota and their activities on azoxymethane (AOM)-induced preneoplastic aberrant crypt foci (ACF) in rats. Materials and methods Seventy-two male Sprague-Dawley rats were randomly divided into six groups (three control and three AOM-treated groups) and the animal were fed with either a normal diet or diet containing 10% of long-chain inulin (InuL) or short-chain inulin (InuS), respectively, for 17 weeks. Colon cancer was induced in rats by injecting AOM subcutaneously at the 8th and 9th week of the study period. At the end of the experiment, cecal contents of rats were examined for selected microbiota, organic acids, putrefactive compounds and microbial enzymes. ACF formation was microscopically examined. Results The inulin diets significantly increased the weight and decreased the pH of the caecal content. The rats fed with InuL-supplemented diet showed approximately 2.9- and 6.8-fold increases in the biomass of Lactobacillus spp. and Bifidobacteria, respectively. Naive and AOM-treated rats fed with inulin-supplemented diet showed ∼1.3- and ∼2.2-fold decreases in the biomass of Escherichia coli and Salmonella enterica serovar Typhi, respectively. Inulins significantly decreased the colonic concentration of phenol, p-cresol and indole. Reduction in the activity of microbial enzymes such as β-glucuronidase, azoreductase and nitroreductase were observed in inulin-treated animals. Reduction in the ACF formation has been observed in inulin-treated groups. Discussion and conclusion The present study demonstrates that dietary

  3. Disruptions of Host Immunity and Inflammation by Giardia Duodenalis: Potential Consequences for Co-Infections in the Gastro-Intestinal Tract

    Directory of Open Access Journals (Sweden)

    James A. Cotton

    2015-11-01

    Full Text Available Giardia duodenalis (syn. G. intestinalis, or G. lamblia is a leading cause of waterborne diarrheal disease that infects hundreds of millions of people annually. Research on Giardia has greatly expanded within the last few years, and our understanding of the pathophysiology and immunology on this parasite is ever increasing. At peak infection, Giardia trophozoites induce pathophysiological responses that culminate in the development of diarrheal disease. However, human data has suggested that the intestinal mucosa of Giardia-infected individuals is devoid of signs of overt intestinal inflammation, an observation that is reproduced in animal models. Thus, our understanding of host inflammatory responses to the parasite remain incompletely understood and human studies and experimental data have produced conflicting results. It is now also apparent that certain Giardia infections contain mechanisms capable of modulating their host’s immune responses. As the oral route of Giardia infection is shared with many other gastrointestinal (GI pathogens, co-infections may often occur, especially in places with poor sanitation and/or improper treatment of drinking water. Moreover, Giardia infections may modulate host immune responses and have been found to protect against the development of diarrheal disease in developing countries. The following review summarizes our current understanding of the immunomodulatory mechanisms of Giardia infections and their consequences for the host, and highlights areas for future research. Potential implications of these immunomodulatory effects during GI co-infection are also discussed.

  4. Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti-inflammatory drug-dependent gastrointestinal damage.

    Science.gov (United States)

    Sasso, Oscar; Migliore, Marco; Habrant, Damien; Armirotti, Andrea; Albani, Clara; Summa, Maria; Moreno-Sanz, Guillermo; Scarpelli, Rita; Piomelli, Daniele

    2015-06-01

    The ability of nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit cyclooxygenase (Cox)-1 and Cox-2 underlies the therapeutic efficacy of these drugs, as well as their propensity to damage the gastrointestinal (GI) epithelium. This toxic action greatly limits the use of NSAIDs in inflammatory bowel disease (IBD) and other chronic pathologies. Fatty acid amide hydrolase (FAAH) degrades the endocannabinoid anandamide, which attenuates inflammation and promotes GI healing. Here, we describe the first class of systemically active agents that simultaneously inhibit FAAH, Cox-1, and Cox-2 with high potency and selectivity. The class prototype 4: (ARN2508) is potent at inhibiting FAAH, Cox-1, and Cox-2 (median inhibitory concentration: FAAH, 0.031 ± 0.002 µM; Cox-1, 0.012 ± 0.002 µM; and Cox-2, 0.43 ± 0.025 µM) but does not significantly interact with a panel of >100 off targets. After oral administration in mice, ARN2508 engages its intended targets and exerts profound therapeutic effects in models of intestinal inflammation. Unlike NSAIDs, ARN2508 causes no gastric damage and indeed protects the GI from NSAID-induced damage through a mechanism that requires FAAH inhibition. Multitarget FAAH/Cox blockade may provide a transformative approach to IBD and other pathologies in which FAAH and Cox are overactive.

  5. Oral treatment with herbal formula B307 alleviates cardiac failure in aging R6/2 mice with Huntington’s disease via suppressing oxidative stress, inflammation, and apoptosis

    Directory of Open Access Journals (Sweden)

    Lin CL

    2015-07-01

    reduced under oral B307 treatment (P<0.05. Oral B307 treatment may briefly alleviate cardiac failure in aging HD R6/2 mice via suppressing cardiac oxidative stress, inflammation, and apoptosis. We suggested that the herbal formula B307 may be further developed as a potential health supplement for ameliorating cardiac failure associated with aging. Keywords: Chinese herbal medicines, cardiomyocytes, echocardiography, aging, transgenic mouse model

  6. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor

    OpenAIRE

    Olga Brandstätter; Oliver Schanz; Julia Vorac; Jessica König; Tetsushi Mori; Toru Maruyama; Markus Korkowski; Thomas Haarmann-Stemmann; Dorthe von Smolinski; Schultze, Joachim L.; Josef Abel; Charlotte Esser; Haruko Takeyama; Heike Weighardt; Irmgard Förster

    2016-01-01

    As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the a...

  7. Nutraceutical Improvement Increases the Protective Activity of Broccoli Sprout Juice in a Human Intestinal Cell Model of Gut Inflammation

    Science.gov (United States)

    Ferruzza, Simonetta; Natella, Fausta; Ranaldi, Giulia; Murgia, Chiara; Rossi, Carlotta; Trošt, Kajetan; Mattivi, Fulvio; Nardini, Mirella; Maldini, Mariateresa; Giusti, Anna Maria; Moneta, Elisabetta; Scaccini, Cristina; Sambuy, Yula; Morelli, Giorgio; Baima, Simona

    2016-01-01

    Benefits to health from a high consumption of fruits and vegetables are well established and have been attributed to bioactive secondary metabolites present in edible plants. However, the effects of specific health-related phytochemicals within a complex food matrix are difficult to assess. In an attempt to address this problem, we have used elicitation to improve the nutraceutical content of seedlings of Brassica oleracea grown under controlled conditions. Analysis, by LC-MS, of the glucosinolate, isothiocyanate and phenolic compound content of juices obtained from sprouts indicated that elicitation induces an enrichment of several phenolics, particularly of the anthocyanin fraction. To test the biological activity of basal and enriched juices we took advantage of a recently developed in vitro model of inflamed human intestinal epithelium. Both sprouts’ juices protected intestinal barrier integrity in Caco-2 cells exposed to tumor necrosis factor α under marginal zinc deprivation, with the enriched juice showing higher protection. Multivariate regression analysis indicated that the extent of rescue from stress-induced epithelial dysfunction correlated with the composition in bioactive molecules of the juices and, in particular, with a group of phenolic compounds, including several anthocyanins, quercetin-3-Glc, cryptochlorogenic, neochlorogenic and cinnamic acids. PMID:27529258

  8. Nutraceutical Improvement Increases the Protective Activity of Broccoli Sprout Juice in a Human Intestinal Cell Model of Gut Inflammation.

    Science.gov (United States)

    Ferruzza, Simonetta; Natella, Fausta; Ranaldi, Giulia; Murgia, Chiara; Rossi, Carlotta; Trošt, Kajetan; Mattivi, Fulvio; Nardini, Mirella; Maldini, Mariateresa; Giusti, Anna Maria; Moneta, Elisabetta; Scaccini, Cristina; Sambuy, Yula; Morelli, Giorgio; Baima, Simona

    2016-01-01

    Benefits to health from a high consumption of fruits and vegetables are well established and have been attributed to bioactive secondary metabolites present in edible plants. However, the effects of specific health-related phytochemicals within a complex food matrix are difficult to assess. In an attempt to address this problem, we have used elicitation to improve the nutraceutical content of seedlings of Brassica oleracea grown under controlled conditions. Analysis, by LC-MS, of the glucosinolate, isothiocyanate and phenolic compound content of juices obtained from sprouts indicated that elicitation induces an enrichment of several phenolics, particularly of the anthocyanin fraction. To test the biological activity of basal and enriched juices we took advantage of a recently developed in vitro model of inflamed human intestinal epithelium. Both sprouts' juices protected intestinal barrier integrity in Caco-2 cells exposed to tumor necrosis factor α under marginal zinc deprivation, with the enriched juice showing higher protection. Multivariate regression analysis indicated that the extent of rescue from stress-induced epithelial dysfunction correlated with the composition in bioactive molecules of the juices and, in particular, with a group of phenolic compounds, including several anthocyanins, quercetin-3-Glc, cryptochlorogenic, neochlorogenic and cinnamic acids. PMID:27529258

  9. Crotoxin from Crotalus durissus terrificus is able to down-modulate the acute intestinal inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Caroline de Souza Almeida

    Full Text Available Inflammatory bowel diseases (IBD is the result of dysregulation of mucosal innate and adaptive immune responses. Factors such as genetic, microbial and environmental are involved in the development of these disorders. Accordingly, animal models that mimic human diseases are tools for the understanding the immunological processes of the IBD as well as to evaluate new therapeutic strategies. Crotoxin (CTX is the main component of Crotalus durissus terrificus snake venom and has an immunomodulatory effect. Thus, we aimed to evaluate the modulatory effect of CTX in a murine model of colitis induced by 2,4,6- trinitrobenzene sulfonic acid (TNBS. The CTX was administered intraperitoneally 18 hours after the TNBS intrarectal instillation in BALB/c mice. The CTX administration resulted in decreased weight loss, disease activity index (DAI, macroscopic tissue damage, histopathological score and myeloperoxidase (MPO activity analyzed after 4 days of acute TNBS colitis. Furthermore, the levels of TNF-α, IL-1β and IL-6 were lower in colon tissue homogenates of TNBS-mice that received the CTX when compared with untreated TNBS mice. The analysis of distinct cell populations obtained from the intestinal lamina propria showed that CTX reduced the number of group 3 innate lymphoid cells (ILC3 and Th17 population; CTX decreased IL-17 secretion but did not alter the frequency of CD4+Tbet+ T cells induced by TNBS instillation in mice. In contrast, increased CD4+FoxP3+ cell population as well as secretion of TGF-β, prostaglandin E2 (PGE2 and lipoxin A4 (LXA4 was observed in TNBS-colitis mice treated with CTX compared with untreated TNBS-colitis mice. In conclusion, the CTX is able to modulate the intestinal acute inflammatory response induced by TNBS, resulting in the improvement of clinical status of the mice. This effect of CTX is complex and involves the suppression of the pro-inflammatory environment elicited by intrarectal instillation of TNBS due to the

  10. BTNL2, a butyrophilin/B7-like molecule, is a negative costimulatory molecule modulated in intestinal inflammation.

    Science.gov (United States)

    Arnett, Heather A; Escobar, Sabine S; Gonzalez-Suarez, Eva; Budelsky, Alison L; Steffen, Lori A; Boiani, Norman; Zhang, Ming; Siu, Gerald; Brewer, Avery W; Viney, Joanne L

    2007-02-01

    Butyrophilin-like 2 (BTNL2) is a butyrophilin family member with homology to the B7 costimulatory molecules, polymorphisms of which have been recently associated through genetic analyses to sporadic inclusion body myositis and sarcoidosis. We have characterized the full structure, expression, and function of BTNL2. Structural analysis of BTNL2 shows a molecule with an extracellular region containing two sets of two Ig domains, a transmembrane region, and a previously unreported cytoplasmic tail. Unlike most other butyrophilin members, BTNL2 lacks the prototypical B30.2 ring domain. TaqMan and Northern blot analysis indicate BTNL2 is predominantly expressed in digestive tract tissues, in particular small intestine and Peyer's patches. Immunohistochemistry with BTNL2-specific Abs further localizes BTNL2 to epithelial and dendritic cells within these tissues. Despite its homology to the B7 family, BTNL2 does not bind any of the known B7 family receptors such as CD28, CTLA-4, PD-1, ICOS, or B and T lymphocyte attenuator. Because of its localization in the gut and potential role in the immune system, BTNL2 expression was analyzed in a mouse model of inflammatory bowel disease. BTNL2 is overexpressed during both the asymptomatic and symptomatic phase of the Mdr1a knockout model of spontaneous colitis. In functional assays, soluble BTNL2-Fc protein inhibits the proliferation of murine CD4(+) T cells from the spleen, mesenteric lymph node, and Peyer's patch. In addition, BTNL2-Fc reduces proliferation and cytokine production from T cells activated by anti-CD3 and B7-related protein 1. These data suggest a role for BTNL2 as a negative costimulatory molecule with implications for inflammatory disease. PMID:17237401

  11. Helicobacter hepaticus urease is not required for intestinal colonization but promotes hepatic inflammation in male A/JCr mice.

    Science.gov (United States)

    Ge, Zhongming; Lee, Amy; Whary, Mark T; Rogers, Arlin B; Maurer, Kirk J; Taylor, Nancy S; Schauer, David B; Fox, James G

    2008-07-01

    Urease activity contributes to bacterial survival in the acidic environment of the stomach and is essential for persistent infection by known gastric helicobacters such as the human pathogen Helicobacter pylori. Several enterohepatic Helicobacter species (EHS) that primarily infect the less acidic intestine also have very active urease enzymes. The importance of urease and its contribution to pathogenesis for these EHS are poorly understood. In this study, we generated a urease-deficient, isogenic mutant (HhureNT9) of Helicobacter hepaticus 3B1 (Hh 3B1), an EHS that possesses a urease gene cluster similar to that of H. pylori. Lack of urease activity did not affect the level of cecal colonization by HhureNT9 compared to Hh 3B1 in male A/JCr mice (P=0.48) at 4 months post-inoculation (MPI). In contrast, there was no HhureNT9 detected in the livers of any infected mice, whereas all livers from the Hh 3B1-infected mice were PCR-positive for Hh 3B1. The mice infected with HhureNT9 developed significantly less severe hepatitis (P=0.017) and also produced significantly lower hepatic mRNA levels of proinflammatory cytokines IFN-gamma (P=0.0007) and TNF-alpha (P<0.0001) compared to the Hh 3B1-infected mice. The Hh 3B1-infected mice developed significantly higher total IgG, Th1-associated IgG2a and Th2-associated IgG1 responses to infection. These results indicate that H. hepaticus urease activity plays a crucial role in hepatic disease but is not required for cecal colonization by H. hepaticus.

  12. Unraveling the ties between irritable bowel syndrome and intestinal microbiota.

    Science.gov (United States)

    Hong, Sung Noh; Rhee, Poong-Lyul

    2014-03-14

    Irritable bowel syndrome (IBS) is the most prevalent functional gastrointestinal disorder. It is a multifactorial disorder. Intestinal microbiota may cause the pathogenesis of IBS by contributing to abnormal gastrointestinal motility, low-grade inflammation, visceral hypersensitivity, communication in the gut-brain axis, and so on. Previous attempts to identify the intestinal microbiota composition in IBS patients have yielded inconsistent and occasionally contradictory results. This inconsistency may be due to the differences in the molecular techniques employed, the sample collection and handling methods, use of single samples that are not linked to fluctuating symptoms, or other factors such as patients' diets and phenotypic characterizations. Despite these difficulties, previous studies found that the intestinal microbiota in some IBS patients was completely different from that in healthy controls, and there does appear to be a consistent theme of Firmicutes enrichment and reduced abundance of Bacteroides. Based on the differences in intestinal microbiota composition, many studies have addressed the roles of microbiota-targeted treatments, such as antibiotics and probiotics, in alleviating certain symptoms of IBS. This review summarizes the current knowledge of the associations between intestinal microbiota and IBS as well as the possible modes of action of intestinal microbiota in the pathogenesis of IBS. Improving the current level of understanding of host-microbiota interactions in IBS is important not only for determining the role of intestinal microbiota in IBS pathogenesis but also for therapeutic modulation of the microbiota. PMID:24627584

  13. Advances in understanding the effect of sinomenine on intestinal immune inflammation in inflammatory bowel disease%青藤碱对炎症性肠病中肠道免疫炎症影响的研究进展

    Institute of Scientific and Technical Information of China (English)

    田亮; 傅颖珺; 谢勇

    2011-01-01

    炎症性肠病(IBD)患者肠道免疫炎症反应异常,影响和调控肠道免疫炎性反应是其治疗方法之一.现已证明青藤碱(SN)可以通过抑制淋巴细胞增殖,影响免疫细胞功能,减少炎症介质生成,平衡细胞因子的分泌等多个环节来抑制机体免疫炎症反应.本文从IBD免疫发病机制入手,总结了目前SN对机体免疫功能影响方面的研究进展,为寻求SN调控肠道免疫炎症来治疗IBD提供参考.%Intestinal immune inflammatory response is abnormal in patients with inflammatory bowel disease (IBD). Control of intestinal immune inflammatory response represents one of the methods for treatment of IBD. It has been proved that sinomenine (SN) can inhibit lymphocyte proliferation, regulate immune cell function, reduce inflammation mediator production, modulate cytokine secretion, and thereby suppress the immune inflammatory response. This article gives an overview of the role of the immune response in the pathogenesis of IBD and summarizes the recent advances in understanding the effect of SN on intestinal immune inflammation in IBD,seeking to provide a new reference for the treatment of IBD.

  14. Helminth infections and intestinal inflammation

    Institute of Scientific and Technical Information of China (English)

    Li Jian Wang; Yue Cao; Hai Ning Shi

    2008-01-01

    Evidence from epidemiological studies indicates an inverse correlation between the incidence of certain immune-mediated diseases,including inflammatory bowel diseases(IBD),and exposure to helminths.Helminth parasites are the classic inducers of Th2 responses.The Th2-polarized T cell response driven by helminth infection has been linked to the attenuation of some damaging Th1 driven inflammatory responses,preventing some Th1-mediated autoimmune diseases in the host,including experimentally induced colitis.Helminth parasites(the porcine whipworm,Trichurissuis)have been tested for treating IBD patients,resulting in clinical amelioration of the disease.As a result,there is a great deal of interest in the research community in exploring the therapeutic use of helminth parasites for the control of immune-mediated diseases,including IBD.However,recent studies have provided evidence indicating the exacerbating effects of helminths on bacterial as well as non-infectious colitis in animal models.Therefore,a better understanding of mechanisms by which helminths modulate host immune responses in the gut may reveal novel,more effective and safer approaches to helminth-based therapy of IBD.(C)2008 The WJG Press.All rights reserved.

  15. Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine.

    Science.gov (United States)

    De Lisle, Robert C; Roach, Eileen; Jansson, Kyle

    2007-09-01

    The accumulation of mucus in affected organs is characteristic of cystic fibrosis (CF). The CF mouse small intestine has dramatic mucus accumulation and exhibits slower interdigestive intestinal transit. These factors are proposed to play cooperative roles that foster small intestinal bacterial overgrowth (SIBO) and contribute to the innate immune response of the CF intestine. It was hypothesized that decreasing the mucus accumulation would reduce SIBO and might improve other aspects of the CF intestinal phenotype. To test this, solid chow-fed CF mice were treated with an osmotic laxative to improve gut hydration or liquid-fed mice were treated orally with N-acetylcysteine (NAC) to break mucin disulfide bonds. Treatment with laxative or NAC reduced mucus accumulation by 43% and 50%, respectively, as measured histologically as dilation of the intestinal crypts. Laxative and NAC also reduced bacterial overgrowth in the CF intestine by 92% and 63%, respectively. Treatment with laxative normalized small intestinal transit in CF mice, whereas NAC did not. The expression of innate immune response-related genes was significantly reduced in laxative-treated CF mice, whereas there was no significant effect in NAC-treated CF mice. In summary, laxative and NAC treatments of CF mice reduced mucus accumulation to a similar extent, but laxative was more effective than NAC at reducing bacterial load. Eradication of bacterial overgrowth by laxative treatment was associated with normalized intestinal transit and a reduction in the innate immune response. These results suggest that both mucus accumulation and slowed interdigestive small intestinal transit contribute to SIBO in the CF intestine.

  16. Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine.

    Science.gov (United States)

    De Lisle, Robert C; Roach, Eileen; Jansson, Kyle

    2007-09-01

    The accumulation of mucus in affected organs is characteristic of cystic fibrosis (CF). The CF mouse small intestine has dramatic mucus accumulation and exhibits slower interdigestive intestinal transit. These factors are proposed to play cooperative roles that foster small intestinal bacterial overgrowth (SIBO) and contribute to the innate immune response of the CF intestine. It was hypothesized that decreasing the mucus accumulation would reduce SIBO and might improve other aspects of the CF intestinal phenotype. To test this, solid chow-fed CF mice were treated with an osmotic laxative to improve gut hydration or liquid-fed mice were treated orally with N-acetylcysteine (NAC) to break mucin disulfide bonds. Treatment with laxative or NAC reduced mucus accumulation by 43% and 50%, respectively, as measured histologically as dilation of the intestinal crypts. Laxative and NAC also reduced bacterial overgrowth in the CF intestine by 92% and 63%, respectively. Treatment with laxative normalized small intestinal transit in CF mice, whereas NAC did not. The expression of innate immune response-related genes was significantly reduced in laxative-treated CF mice, whereas there was no significant effect in NAC-treated CF mice. In summary, laxative and NAC treatments of CF mice reduced mucus accumulation to a similar extent, but laxative was more effective than NAC at reducing bacterial load. Eradication of bacterial overgrowth by laxative treatment was associated with normalized intestinal transit and a reduction in the innate immune response. These results suggest that both mucus accumulation and slowed interdigestive small intestinal transit contribute to SIBO in the CF intestine. PMID:17615175

  17. Intestinal inflammation-induced child growth failure:immunologic and endocrine mechanisms%肠道炎症阻滞儿童体格生长的免疫和内分泌机制

    Institute of Scientific and Technical Information of China (English)

    马静秋

    2011-01-01

    Faltering linear growth is commonly encountered in children with intestinal inflammation. Growth hormone ( GH) and insulin-like growth factor-1 ( IGF-1 ) are important regulators of postnatal longitudinal bone growth. Inhibition of GH/IGF axis will result in growth failure in young children. Pro-inflammatory cytokines such as interleukin-1 f$ (IL-ip), tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6) abnormally increase in children with intestinal inflammation, and may affect linear growth both systemically and locally at the level of the growth plate though disturbing the GH/IGF axis.%肠道炎症常伴发儿童的生长落后.生长激素(GH)和胰岛素生长因子-1(IGF-1)是调控出生后骨骼纵向生长的重要物质,抑制GH/IGF轴可阻滞儿童体格生长.肠道发生炎症时,异常升高的促炎症因子IL-1β、IL-6和TNF-a通过干扰GH/IGF轴,系统性以及在生长板局部水平影响骨骼生长,进而导致儿童生长阻滞.

  18. Pretreatment with Xuebijing injection alleviates systemic inflammatory response induced by severe heat-stroke via ameliorating intestinal injury in rats%血必净注射液预处理通过减轻小肠损伤缓解重症中暑大鼠全身炎症反应

    Institute of Scientific and Technical Information of China (English)

    陈怿; 童华生; 潘志国; 陈玉兰; 林幼萍; 江东新; 苏磊

    2015-01-01

    those of model group [TNF-α (μg/L):340.45±68.57 vs. 443.00±110.10, IL-1β (μg/L): 191.33±82.78 vs. 436.37±163.64, IL-6 (μg/L): 192.21±37.89 vs. 342.70±92.42, LPS (μg/L): 0.43±0.17 vs. 0.68±0.22, allP< 0.01]. Infiltration of inflammatory cells, necrosis and hemorrhage in intestinal mucosa were found in the intestine of heat-stroke animals in model group. The pathological lesions in XBJ group were milder than those of model group, with a decreased pathological injury score compared with model group (2.10±1.15 vs. 3.20±0.67,P< 0.01). The expression of iNOS and apoptosis of cells in intestinal tissue in model group were increased compared with that of sham group, but they were significantly less marked in XBJ group compared with model group [iNOS (adjustedA value): 0.32±0.15 vs. 0.74±0.17, apoptotic index: 0.23±0.08 vs. 0.56±0.07, bothP< 0.01]. The order of expression for occludin protein from high to low was sham group, XBJ group and model group (A value was 0.96±0.25, 0.62±0.20, 0.33±0.11, respectively). Furthermore, there was significant difference in the expression of occludin protein between model group and both XBJ group and sham group (bothP<0.01).Conclusions Xuebijing injection alleviates inflammation and endotoxemia produced by severe heat-stroke in rats. The mechanism may be related to amelioration of oxidative injury, apoptosis, and dysfunction of tight junction protein occludin expression.%目的:观察血必净注射液预处理对重症中暑大鼠炎症反应的影响,并从减轻小肠损伤方面探讨其可能机制。方法 SPF级健康成年雄性Wistar大鼠36只,按随机数字表法分为假手术组、重症中暑模型组和血必净预处理组(血必净组),每组12只。将大鼠置于人工气候舱内〔温度(40±2)℃,湿度(65±5)%〕制备经典中暑模型,热应激时间为60 min;假手术组大鼠置于25℃室温下观察。于实验开始时及热应激后取股动脉血,采用酶联

  19. IL-18Rα-deficient CD4+T cells induce intestinal inflammation in the CD45RBhitransfer model of colitis despite impaired innate responsiveness

    DEFF Research Database (Denmark)

    Holmkvist, Petra; Pool, Lieneke; Hägerbrand, Karin;

    2016-01-01

    IL-18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4+ T-cell function remains unclear. Here we show that murine intestinal CD4+ T cells express high levels of IL-18Rα and provide evidence that IL-18Rα expression is induced on these ce......IL-18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4+ T-cell function remains unclear. Here we show that murine intestinal CD4+ T cells express high levels of IL-18Rα and provide evidence that IL-18Rα expression is induced...... on these cells subsequent to their entry into the intestinal mucosa. Using the CD45RBhi T-cell transfer colitis model, we show that IL-18Rα is expressed on IFN-γ+, IL-17+ and IL-17+IFN-γ+ effector CD4+ T cells in the inflamed colonic lamina propria (cLP) and mesenteric lymph node (MLN) and is required...... for the optimal generation and/or maintenance of IFN-γ-producing cells in the cLP. In the steady state and during colitis, TCR-independent cytokine-induced IFN-γ and IL-17 production by intestinal CD4+ T cells was largely IL-18Rα−dependent. Despite these findings however, IL-18Rα−deficient CD4+ T cells induced...

  20. Modification in Oxidative Stress, Inflammation, and Lipoprotein Assembly in Response to Hepatocyte Nuclear Factor 4α Knockdown in Intestinal Epithelial Cells*

    OpenAIRE

    Marcil, Valérie; Seidman, Ernest; Sinnett, Daniel; Boudreau, François; Gendron, Fernand-Pierre; Beaulieu, Jean-François; Ménard, Daniel; Precourt, Louis-Philippe; Amre, Devendra; Levy, Emile

    2010-01-01

    Hepatocyte nuclear factor 4α (HNF4α) is a nuclear transcription factor mainly expressed in the liver, intestine, kidney, and pancreas. Many of its hepatic and pancreatic functions have been described, but limited information is available on its role in the gastrointestinal tract. The objectives of this study were to evaluate the anti-inflammatory and antioxidant functions of HNF4α as well as its implication in intestinal lipid transport and metabolism. To this end, the HNF4A gene was knocked ...

  1. Cell walls of Saccharomyces cerevisiae differentially modulated innate immunity and glucose metabolism during late systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Bushansingh Baurhoo

    Full Text Available BACKGROUND: Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown. METHODS AND PRINCIPAL FINDINGS: Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-α, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK and liver glycolysis (ENO2, and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS down-regulation and ATP citrate lyase (ACLY and malic enzyme (ME up-regulations. However, MOS host

  2. Effects of Lactobacillus plantarum 2142 and sodium n-butyrate in lipopolysaccharide-triggered inflammation: comparison of a porcine intestinal epithelial cell line and primary hepatocyte monocultures with a porcine enterohepatic co-culture system.

    Science.gov (United States)

    Farkas, O; Mátis, G; Pászti-Gere, E; Palócz, O; Kulcsár, A; Petrilla, J; Csikó, Gy; Neogrády, Zs; Gálfi, P

    2014-09-01

    This study was based on our previously developed double-layered enterohepatic co-culture system, composed of nontumorigenic porcine intestinal epithelial cell line (IPEC-J2) and primary culture of porcine hepatocytes. The anti-inflammatory effect of spent culture supernatant of Lactobacillus plantarum 2142 (Lp2142; 13.3%) and sodium n-butyrate (2 mM) was tested on IPEC-J2 and hepatocyte monocultures as well as on the gut-liver co-culture. To mimic inflammation, lipopolysaccharide (LPS; 1 and 10 μg/mL) was applied. Production of IL-8 and IL-6 was measured as a marker of inflammatory responses. The paracellular permeability of the intestinal epithelium was also monitored by fluoresceinisothiocyanate-labeled dextran 4 assay. Significant increase of IL-8 concentration was observed in the IPEC-J2 monoculture (P Lactobacillus plantarum 2142 decreased IL-8 level after incubation with 1 μg/mL LPS (P < 0.001), while in case of 10 μg/mL LPS treatment only a marginal lowering in IL-8 (P = 0.064) release was measured. The IL-6 concentration was significantly reduced (P < 0.01 in case of 1 μg/mL LPS treatment) by Lp2142 in the co-culture. Contrarily, the elevated IL-8 and IL-6 level of hepatocytes has not been reduced in case of either butyrate or Lp2142 addition. The enterohepatic co-culture model offers a possibility for fast and reliable screening of new candidates against enteric inflammation, which are of special interest in porcine medicine and health management. According to our results, Lp2142 and butyrate both seem to be effective as anti-inflammatory agents in LPS-triggered inflammatory response, tested in the gut-liver co-culture model.

  3. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  4. Intestinal microbiota and ulcerative colitis.

    Science.gov (United States)

    Ohkusa, Toshifumi; Koido, Shigeo

    2015-11-01

    There is a close relationship between the human host and the intestinal microbiota, which is an assortment of microorganisms, protecting the intestine against colonization by exogenous pathogens. Moreover, the intestinal microbiota play a critical role in providing nutrition and the modulation of host immune homeostasis. Recent reports indicate that some strains of intestinal bacteria are responsible for intestinal ulceration and chronic inflammation in inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD). Understanding the interaction of the intestinal microbiota with pathogens and the human host might provide new strategies treating patients with IBD. This review focuses on the important role that the intestinal microbiota plays in maintaining innate immunity in the pathogenesis and etiology of UC and discusses new antibiotic therapies targeting the intestinal microbiota.

  5. 血红素氧合酶-1对心力衰竭大鼠肠道炎症的保护机制%Protective mechanism of heme oxygenase-1 on intestine in heart failure rats by suppression of intestinal inflammation

    Institute of Scientific and Technical Information of China (English)

    干卓坤; 张丽; 刘秀华; 李瑞生; 龚美亮; 周玉; 张丽萍

    2014-01-01

    目的:研究血红素氧合酶-1(HO-1)对心力衰竭(心衰)大鼠肠道炎症的保护机制。方法通过冠状动脉结扎术造成心肌梗死建立心衰大鼠模型(雄性,Wistar大鼠),每组10只,分为心肌梗死(MI)模型组、MI+钴-原卟啉(MI+Copp)组、MI+锡中卟啉(MI+SnMP)组,以正常大鼠作为对照组,分别腹腔注射生理盐水、Copp溶液、SnMP溶液。8周后取门静脉及下腔静脉血检测血浆内毒素含量,通过Western印迹测定小肠HO-1的表达,比色法测定小肠一氧化碳(CO)浓度,酶联免疫吸附法测定小肠肿瘤坏死因子-α和白细胞介素-10水平。结果与MI组比较,MI+Copp组HO-1和CO水平明显升高,血浆内毒素含量减少,肠道炎症减轻,而MI+SnMP组HO-1无明显变化,CO明显降低,血浆内毒素浓度升高,小肠炎症加重。结论 HO-1可抑制心衰大鼠肠道炎症,该作用可能与CO有关。%Objective To investigate the underlying mechanism through which heme oxygenase-1 (HO-1) protects intestine against inflammation in rats with heart failure. Methods Heart failure model was established in male Wistar rats by myocardial infarction (MI) with coronary ligation. These model rats were randomized into 3 experimental groups (10 rats in each group):Myocardial infarction (MI), MI+cobalt protoporphyrin(Copp), and MI+stannum+mesoporphyrin Ⅸ dichloride (SnMP;a HO-1 inhibitor) groups, receiving intra-peritoneal injection of saline, cobalt protoporphyrin solution, and stannum mesoporphyrin Ⅸ dichloride solution, respectively. Another 10 rats served as normal controls and received intraperitoneal injection of normal saline. After 8 weeks, the endotoxin level in portal vein and inferior vena cava, the expression of HO-1, and the contents of carbon monoxide (CO), tumor necrosis factor (TNF)-α, and interleukin-10 in the intestine were determined by Western blotting, colorimetry, and enzyme

  6. Arctigenin Confers Neuroprotection Against Mechanical Trauma Injury in Human Neuroblastoma SH-SY5Y Cells by Regulating miRNA-16 and miRNA-199a Expression to Alleviate Inflammation.

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-Feng; Yan, Yu-Hui; Li, Shao-Heng; Wang, Yue; Meng, Ya-Kun; Yang, Jing-Xian; Kang, Ting-Guo

    2016-09-01

    Mechanical trauma injury is a severe insult to neural cells. Subsequent secondary injury involves the release of inflammatory factors that have dramatic consequences for undamaged cells, leading to normal cell death after the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary effects and evaluated the mechanism underlying the action of microRNA (miRNA)-199a and miRNA-16 in a mechanical trauma injury (MTI) model using SH-SY5Y cells in vitro. SH-SY5Y cells are often applied to in vitro models of neuronal function and differentiation. Recently, miRNAs have been demonstrated to play a crucial role in NF-κB and cholinergic signaling, which can regulate inflammation. The cell model was established by scratch-induced injury of human SH-SY5Y cells, which mimics the characteristics of MTI. A cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunocytochemistry were used to measure cell viability. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the inflammatory cytokine and cholinesterase (CHE) content. The lactate dehydrogenase (LDH) content was measured to assess the degree of cell injury. The mRNA levels were measured by RT-PCR to analyze ARC's mechanism of action. miRNA inhibitors and mimics were used to inhibit and strengthen the expression of miRNAs. Protein expression was detected by western blotting analysis. ARC treatment reduced the TNF-α and IL-6 levels as well as the number of TUNEL+ apoptotic SH-SY5Y cells surrounding the scratch and increased the IL-10 level compared to the controls. ARC attenuated the increase of the cell damage degree and LDH content induced by scratching, indicating increased cell survival. Mechanistic studies showed that ARC upregulated the miRNA-16 and miRNA-199a levels to reduce upstream protein (IKKα and IKKβ) expression and inhibit NF-κB signaling pathway activity; moreover, the increased miRNA-199a suppresses

  7. Arctigenin Confers Neuroprotection Against Mechanical Trauma Injury in Human Neuroblastoma SH-SY5Y Cells by Regulating miRNA-16 and miRNA-199a Expression to Alleviate Inflammation.

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-Feng; Yan, Yu-Hui; Li, Shao-Heng; Wang, Yue; Meng, Ya-Kun; Yang, Jing-Xian; Kang, Ting-Guo

    2016-09-01

    Mechanical trauma injury is a severe insult to neural cells. Subsequent secondary injury involves the release of inflammatory factors that have dramatic consequences for undamaged cells, leading to normal cell death after the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary effects and evaluated the mechanism underlying the action of microRNA (miRNA)-199a and miRNA-16 in a mechanical trauma injury (MTI) model using SH-SY5Y cells in vitro. SH-SY5Y cells are often applied to in vitro models of neuronal function and differentiation. Recently, miRNAs have been demonstrated to play a crucial role in NF-κB and cholinergic signaling, which can regulate inflammation. The cell model was established by scratch-induced injury of human SH-SY5Y cells, which mimics the characteristics of MTI. A cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunocytochemistry were used to measure cell viability. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the inflammatory cytokine and cholinesterase (CHE) content. The lactate dehydrogenase (LDH) content was measured to assess the degree of cell injury. The mRNA levels were measured by RT-PCR to analyze ARC's mechanism of action. miRNA inhibitors and mimics were used to inhibit and strengthen the expression of miRNAs. Protein expression was detected by western blotting analysis. ARC treatment reduced the TNF-α and IL-6 levels as well as the number of TUNEL+ apoptotic SH-SY5Y cells surrounding the scratch and increased the IL-10 level compared to the controls. ARC attenuated the increase of the cell damage degree and LDH content induced by scratching, indicating increased cell survival. Mechanistic studies showed that ARC upregulated the miRNA-16 and miRNA-199a levels to reduce upstream protein (IKKα and IKKβ) expression and inhibit NF-κB signaling pathway activity; moreover, the increased miRNA-199a suppresses

  8. Rosmarinus officinalis L. extract ameliorates intestinal inflammation through MAPKs/NF-κB signaling in a murine model of acute experimental colitis.

    Science.gov (United States)

    Medicherla, Kanakaraju; Ketkar, Avanee; Sahu, Bidya Dhar; Sudhakar, Godi; Sistla, Ramakrishna

    2016-07-13

    We investigated the anti-inflammatory and anti-colitis effects of Rosmarinus officinalis L. extract (RE) by using both in vitro LPS-activated mouse RAW 264.7 macrophages and in vivo dextran sulfate sodium (DSS)-induced experimental murine colitis and suggested the underlying possible mechanisms. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis was performed to identify the major components present in the RE. The clinical signs, biochemistry, immunoblot, ELISA and histology in colon tissues were assessed in order to elucidate the beneficial effect of RE. RE suppressed the LPS-induced pro-inflammatory cytokine production and the expressions of inflammatory proteins in macrophages. Administration of RE (50 and 100 mg kg(-1)) also significantly reduced the severity of DSS-induced murine colitis, as assessed by the clinical symptoms, colon length and histology. RE administration prevented the DSS-induced activation of p38, ERK and JNK MAPKs, attenuated IκBα phosphorylation and subsequent nuclear translocation and DNA binding of NF-κB (p65). RE also suppressed the COX-2 and iNOS expressions, decreased the levels of TNF-α and IL-6 cytokines and the myeloperoxidase activity in the colon tissue. Histological observation revealed that RE administration alleviated mucosal damage and inflammatory cell infiltration induced by DSS in the colon tissue. Hence, RE could be used as a new preventive and therapeutic food ingredient or as a dietary supplement for inflammatory bowel disease. PMID:27349640

  9. Thyroid hormone preconditioning alleviates reperfusion-induced renal inflammation in mice%甲状腺激素T3减轻小鼠再灌注肾脏炎症反应

    Institute of Scientific and Technical Information of China (English)

    王盼梁; 何康; 张明; 张建军

    2012-01-01

    (BUN) were determined 24 h after reperfusion in each group; renal histological damages were scored using PAS staining) the levels of neutrophil infiltration were evaluated by MPO staining, and IL-10, IL-1Ra mRNA expression was examined by real-time PCR at 1, 3, 6, 12, 24, and 48 h after reperfusion. Results The serum creatinine and BUN levels of T3 +IR group were significantly lower than those of IR group 24 h after reperfusion (P< 0.05), which was accompanied by lower histological score and significantly less neutrophil infiltration (P<0. 05). Real-time PCR results showed that IL-10 and IL-IRa mRNA expression in T3 +IR group was significantly higher than that in the IR group (P<0. 05) 12 h after reperfusion, which lasted for 48 h after reperfusion. The above parameters were similar between IR group and NaOH+IR group. Conclusion Thyroid hormone T3 preconditioning can alleviate renal IR injury, partly by increasing expression of IL-10 and IL-1Ra and subsequently reducing neutrophil infiltration at the late phase of renal IR.

  10. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  11. Intestinal leiomyoma

    Science.gov (United States)

    Leiomyoma - intestine ... McLaughlin P, Maher MM. The duodenum and small intestine. In: Adam A, Dixon AK, Gillard JH, Schaefer- ... Roline CE, Reardon RF. Disorders of the small intestine. In: Marx JA, Hockberger RS, Walls RM, et ...

  12. Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Anita C G Chua

    Full Text Available Chronic intestinal inflammation and high dietary iron are associated with colorectal cancer development. The role of Stat3 activation in iron-induced colonic inflammation and tumorigenesis was investigated in a mouse model of inflammation-associated colorectal cancer. Mice, fed either an iron-supplemented or control diet, were treated with azoxymethane and dextran sodium sulfate (DSS. Intestinal inflammation and tumor development were assessed by endoscopy and histology, gene expression by real-time PCR, Stat3 phosphorylation by immunoblot, cytokines by ELISA and apoptosis by TUNEL assay. Colonic inflammation was more severe in mice fed an iron-supplemented compared with a control diet one week post-DSS treatment, with enhanced colonic IL-6 and IL-11 release and Stat3 phosphorylation. Both IL-6 and ferritin, the iron storage protein, co-localized with macrophages suggesting iron may act directly on IL-6 producing-macrophages. Iron increased DSS-induced colonic epithelial cell proliferation and apoptosis consistent with enhanced mucosal damage. DSS-treated mice developed anemia that was not alleviated by dietary iron supplementation. Six weeks post-DSS treatment, iron-supplemented mice developed more and larger colonic tumors compared with control mice. Intratumoral IL-6 and IL-11 expression increased in DSS-treated mice and IL-6, and possibly IL-11, were enhanced by dietary iron. Gene expression of iron importers, divalent metal transporter 1 and transferrin receptor 1, increased and iron exporter, ferroportin, decreased in colonic tumors suggesting increased iron uptake. Dietary iron and colonic inflammation synergistically activated colonic IL-6/IL-11-Stat3 signaling promoting tumorigenesis. Oral iron therapy may be detrimental in inflammatory bowel disease since it may exacerbate colonic inflammation and increase colorectal cancer risk.

  13. Intravital autofluorescence 2-photon microscopy of murine intestinal mucosa with ultra-broadband femtosecond laser pulse excitation: image quality, photodamage, and inflammation

    Science.gov (United States)

    Klinger, Antje; Krapf, Lisa; Orzekowsky-Schroeder, Regina; Koop, Norbert; Vogel, Alfred; Hüttmann, Gereon

    2015-11-01

    Ultra-broadband excitation with ultrashort pulses may enable simultaneous excitation of multiple endogenous fluorophores in vital tissue. Imaging living gut mucosa by autofluorescence 2-photon microscopy with more than 150 nm broad excitation at an 800-nm central wavelength from a sub-10 fs titanium-sapphire (Ti:sapphire) laser with a dielectric mirror based prechirp was compared to the excitation with 220 fs pulses of a tunable Ti:sapphire laser at 730 and 800 nm wavelengths. Excitation efficiency, image quality, and photochemical damage were evaluated. At similar excitation fluxes, the same image brightness was achieved with both lasers. As expected, with ultra-broadband pulses, fluorescence from NAD(P)H, flavines, and lipoproteins was observed simultaneously. However, nonlinear photodamage apparent as hyperfluorescence with functional and structural alterations of the tissue occurred earlier when the laser power was adjusted to the same image brightness. After only a few minutes, the immigration of polymorphonuclear leucocytes into the epithelium and degranulation of these cells, a sign of inflammation, was observed. Photodamage is promoted by the higher peak irradiances and/or by nonoptimal excitation of autofluorescence at the longer wavelength. We conclude that excitation with a tunable narrow bandwidth laser is preferable to ultra-broadband excitation for autofluorescence-based 2-photon microscopy, unless the spectral phase can be controlled to optimize excitation conditions.

  14. Evaluation of a Multiplex Real-Time PCR Assay for Detecting Major Bacterial Enteric Pathogens in Fecal Specimens: Intestinal Inflammation and Bacterial Load Are Correlated in Campylobacter Infections.

    Science.gov (United States)

    Wohlwend, Nadia; Tiermann, Sacha; Risch, Lorenz; Risch, Martin; Bodmer, Thomas

    2016-09-01

    A total of 1,056 native or Cary-Blair-preserved stool specimens were simultaneously tested by conventional stool culturing and by enteric bacterial panel (EBP) multiplex real-time PCR for Campylobacter jejuni, Campylobacter coli, Salmonella spp., and shigellosis disease-causing agents (Shigella spp. and enteroinvasive Escherichia coli [EIEC]). Overall, 143 (13.5%) specimens tested positive by PCR for the targets named above; 3 coinfections and 109 (10.4%) Campylobacter spp., 17 (1.6%) Salmonella spp., and 20 (1.9%) Shigella spp./EIEC infections were detected. The respective positive stool culture rates were 75 (7.1%), 14 (1.3%), and 7 (0.7%). The median threshold cycle (CT) values of culture-positive specimens were significantly lower than those of culture-negative ones (CT values, 24.3 versus 28.7; P Campylobacter infections, the respective median fecal calprotectin concentrations in PCR-negative/culture-negative (n = 40), PCR-positive/culture-negative (n = 14), and PCR-positive/culture-positive (n = 15) specimens were 134 mg/kg (interquartile range [IQR], 30 to 1,374 mg/kg), 1,913 mg/kg (IQR, 165 to 3,813 mg/kg), and 5,327 mg/kg (IQR, 1,836 to 18,213 mg/kg). Significant differences were observed among the three groups (P Campylobacter spp., Salmonella spp., and Shigella spp./EIEC using the BD Max EBP assay will result in timely diagnosis and improved sensitivity. The determination of inflammatory markers, such as calprotectin, in fecal specimens may aid in the interpretation of PCR results, particularly for enteric pathogens associated with mucosal damage and colonic inflammation. PMID:27307458

  15. Retroperitoneal inflammation

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001255.htm Retroperitoneal inflammation To use the sharing features on this page, please enable JavaScript. Retroperitoneal inflammation is swelling that occurs in the retroperitoneal space. ...

  16. Buffet Load Alleviation

    Science.gov (United States)

    Ryall, T. G.; Moses, R. W.; Hopkins, M. A.; Henderson, D.; Zimcik, D. G.; Nitzsche, F.

    2004-01-01

    High performance aircraft are, by their very nature, often required to undergo maneuvers involving high angles of attack. Under these conditions unsteady vortices emanating from the wing and the fuselage will impinge on the twin fins (required for directional stability) causing excessive buffet loads, in some circumstances, to be applied to the aircraft. These loads result in oscillatory stresses, which may cause significant amounts of fatigue damage. Active control is a possible solution to this important problem. A full-scale test was carried out on an F/A-18 fuselage and fins using piezoceramic actuators to control the vibrations. Buffet loads were simulated using very powerful electromagnetic shakers. The first phase of this test was concerned with the open loop system identification whereas the second stage involved implementing linear time invariant control laws. This paper looks at some of the problems encountered as well as the corresponding solutions and some results. It is expected that flight trials of a similar control system to alleviate buffet will occur as early as 2001.

  17. RegIII proteins as gatekeepers of the intestinal epithelium

    NARCIS (Netherlands)

    Loonen, L.M.P.

    2013-01-01

    Mammalian RegIII proteins are expressed in the intestine and in the pancreas in response to inflammation or infection. In the mouse intestine, expression of RegIIIβ and RegIIIγ is increased by microbial colonization, inflammation and infection. At the outset of this thesis human PAP and m

  18. Determination of tolerable fatty acids and cholera toxin concentrations using human intestinal epithelial cells and BALB/c mouse macrophages.

    Science.gov (United States)

    Tamari, Farshad; Tychowski, Joanna; Lorentzen, Laura

    2013-01-01

    The positive role of fatty acids in the prevention and alleviation of non-human and human diseases have been and continue to be extensively documented. These roles include influences on infectious and non-infectious diseases including prevention of inflammation as well as mucosal immunity to infectious diseases. Cholera is an acute intestinal illness caused by the bacterium Vibrio cholerae. It occurs in developing nations and if left untreated, can result in death. While vaccines for cholera exist, they are not always effective and other preventative methods are needed. We set out to determine tolerable concentrations of three fatty acids (oleic, linoleic and linolenic acids) and cholera toxin using mouse BALB/C macrophages and human intestinal epithelial cells, respectively. We solubilized the above fatty acids and used cell proliferation assays to determine the concentration ranges and specific concentrations of the fatty acids that are not detrimental to human intestinal epithelial cell viability. We solubilized cholera toxin and used it in an assay to determine the concentration ranges and specific concentrations of cholera toxin that do not statistically decrease cell viability in BALB/C macrophages. We found the optimum fatty acid concentrations to be between 1-5 ng/μl, and that for cholera toxin to be < 30 ng per treatment. This data may aid future studies that aim to find a protective mucosal role for fatty acids in prevention or alleviation of cholera infections. PMID:23748896

  19. Small intestinal ischemia and infarction

    Science.gov (United States)

    Intestinal necrosis; Ischemic bowel - small intestine; Dead bowel - small intestine; Dead gut - small intestine; Infarcted bowel - small intestine; Atherosclerosis - small intestine; Hardening of the arteries - small intestine

  20. Basophils in inflammation.

    Science.gov (United States)

    Schwartz, Christian; Eberle, Joerg U; Voehringer, David

    2016-05-01

    Basophils are functionally closely related to mast cells. Both cell types express the high-affinity IgE receptor (FcεRI) and rapidly release preformed mediator from intracellular stores upon IgE-mediated activation. However, in contrast to mast cells basophils finish their maturation in the bone marrow and have a lifespan of only 2-3 days. Basophil numbers increase in response to IL-3 or TSLP and migrate into tissues to promote type 2 immune responses. Here we review recent advances regarding the pro- and anti-inflammatory functions of basophils in murine models and human allergic inflammation of the skin, lung and intestine. PMID:25959388

  1. Gut Microbiota and Inflammation

    Directory of Open Access Journals (Sweden)

    Goran Molin

    2011-06-01

    Full Text Available Systemic and local inflammation in relation to the resident microbiota of the human gastro-intestinal (GI tract and administration of probiotics are the main themes of the present review. The dominating taxa of the human GI tract and their potential for aggravating or suppressing inflammation are described. The review focuses on human trials with probiotics and does not include in vitro studies and animal experimental models. The applications of probiotics considered are systemic immune-modulation, the metabolic syndrome, liver injury, inflammatory bowel disease, colorectal cancer and radiation-induced enteritis. When the major genomic differences between different types of probiotics are taken into account, it is to be expected that the human body can respond differently to the different species and strains of probiotics. This fact is often neglected in discussions of the outcome of clinical trials with probiotics.

  2. Intestinal obstruction

    Science.gov (United States)

    ... of the major causes of intestinal obstruction in infants and children. Causes of paralytic ileus may include: Bacteria or viruses that cause intestinal infections ( gastroenteritis ) Chemical, electrolyte, or mineral imbalances (such as decreased ...

  3. Endometriosis intestinal Intestinal endometriosis

    OpenAIRE

    C.I. González; M. Cires; F. J. Jiménez; Rubio, T.

    2008-01-01

    La endometriosis es un trastorno ginecológico crónico, benigno y frecuente entre las mujeres en edad fértil, estimándose que existe algún grado de endometriosis hasta en el 15% de las mujeres premenopáusicas, asociándose a historia de infertilidad, antecedente de cesárea, dismenorrea y anormalidad en el sangrado uterino. Se cree que es debida al ascenso por las trompas de Falopio de contenido menstrual (menstruación retrógrada). En la afectación intestinal, el colon es el segmento más frecuen...

  4. Endometriosis intestinal Intestinal endometriosis

    Directory of Open Access Journals (Sweden)

    C.I. González

    2008-08-01

    Full Text Available La endometriosis es un trastorno ginecológico crónico, benigno y frecuente entre las mujeres en edad fértil, estimándose que existe algún grado de endometriosis hasta en el 15% de las mujeres premenopáusicas, asociándose a historia de infertilidad, antecedente de cesárea, dismenorrea y anormalidad en el sangrado uterino. Se cree que es debida al ascenso por las trompas de Falopio de contenido menstrual (menstruación retrógrada. En la afectación intestinal, el colon es el segmento más frecuentemente afectado, sobre todo a nivel rectosigmodeo. La clínica de presentación es inespecífica, siendo lo más frecuente el dolor abdominal y/o pélvico de tipo cólico que coincide o se exacerba con la menstruación. El diagnóstico diferencial incluye la enfermedad inflamatoria intestinal, diverticulitis, colitis isquémica y procesos neoplásicos, siendo el diagnóstico definitivo anatomopatológico. En cuanto al tratamiento, éste dependerá de la clínica y de la edad de la paciente, así como de sus deseos de embarazo.Endometriosis is a chronic, benign gynaecological disorder that is frequent in women of a child-bearing age. It is estimated that there is some degree of endometriosis in as many as 15% of pre-menopausal women, associated with a history of infertility, caesarean antecedents, dysmenorrhoea and abnormality in uterine bleeding. It is believed to be due to the rise of menstrual contents through the Fallopian tubes (retrograde menstruation. In the intestinal affectation, the colon is the segment most frequently affected, above all at the rectosigmoidal level. The clinical features are unspecific, with abdominal pain the most frequent and/or pelvic pain of a cholic type that coincides with, or is exacerbated by, menstruation. Differential diagnosis includes intestinal inflammatory disease, diverticulitis, ischemic colitis and neoplastic processes, with the definitive diagnosis being anatomopathological. With respect to treatment

  5. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera-Hernandez (Monica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  6. ER stress transcription factor Xbp1 suppresses intestinal tumorigenesis and directs intestinal stem cells

    OpenAIRE

    Niederreiter, L.; Fritz, T. M. J.; Adolph, T. E.; Krismer, A.-M.; Offner, F. A.; Tschurtschenthaler, M.; Flak, M. B.; Hosomi, S.; Tomczak, M. F.; Kaneider, N. C.; Sarcevic, E.; Kempster, S. L.; Raine, T; Esser, D.; Rosenstiel, P.

    2013-01-01

    Unresolved endoplasmic reticulum (ER) stress in the epithelium can provoke intestinal inflammation. Hypomorphic variants of ER stress response mediators, such as X-box–binding protein 1 (XBP1), confer genetic risk for inflammatory bowel disease. We report here that hypomorphic Xbp1 function instructs a multilayered regenerative response in the intestinal epithelium. This is characterized by intestinal stem cell (ISC) expansion as shown by an inositol-requiring enzyme 1α (Ire1α)–mediated incre...

  7. Diffuse intestinal ganglioneuromatosis in a child.

    Science.gov (United States)

    Matthews, Mika A B; Adler, Brent H; Arnold, Michael A; Kumar, Soma; Carvalho, Ryan; Besner, Gail E

    2013-05-01

    A 7 year old male with a history of congenital neutropenia and growth hormone deficiency presented with abdominal pain, fevers, and diarrhea. Imaging and endoscopy revealed significant inflammation of the ascending colon with stenosis at the level of the hepatic flexure. A right hemicolectomy was performed, and pathologic findings were consistent with diffuse intestinal ganglioneuromatosis. Due to recurrent mass effect at the intestinal anastomotic site detected radiologically, a second intestinal resection was performed 7 months later. Genetic testing was negative for mutations in the RET protooncogene, NF1 and PTEN tumor suppressor genes. We report a case of diffuse intestinal ganglioneuromatosis in a child with congenital neutropenia. PMID:23701793

  8. A novel role of intestine epithelial GABAergic signaling in regulating intestinal fluid secretion.

    Science.gov (United States)

    Li, Yan; Xiang, Yun-Yan; Lu, Wei-Yang; Liu, Chuanyong; Li, Jingxin

    2012-08-15

    γ-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, and it is produced via the enzymatic activity of glutamic acid decarboxylase (GAD). GABA generates fast biological signaling through type A receptors (GABA(A)R), an anionic channel. Intriguingly, GABA is found in the jejunum epithelium of rats. The present study intended to determine whether a functional GABA signaling system exists in the intestinal epithelium and if so whether the GABA signaling regulates intestinal epithelial functions. RT-PCR, Western blot, and immunohistochemical assays of small intestinal tissues of various species were performed to determine the expression of GABA-signaling proteins in intestinal epithelial cells. Perforated patch-clamp recording was used to measure GABA-induced transmembrane current in the small intestine epithelial cell line IEC-18. The fluid weight-to-intestine length ratio was measured in mice that were treated with GABA(A)R agonist and antagonist. The effect of GABA(A)R antagonist on allergic diarrhea was examined using a mouse model. GABA, GAD, and GABA(A)R subunits were identified in small intestine epithelial cells of mice, rats, pigs, and humans. GABA(A)R agonist induced an inward current and depolarized IEC-18. Both GABA and the GABA(A)R agonist muscimol increased intestinal fluid secretion of rats. The increased intestinal secretion was largely decreased by the GABA(A)R antagonist picrotoxin or gabazine, but not by tetrodotoxin. The expression levels of GABA-signaling proteins were increased in the intestinal epithelium of mice that were sensitized and challenged with ovalbumin (OVA). The OVA-treated mice exhibited diarrhea, which was alleviated by oral administration of gabazine or picrotoxin. An endogenous autocrine GABAergic signaling exists in the mammalian intestinal epithelium, which upregulates intestinal fluid secretion. The intestinal GABAergic signaling becomes intensified in allergic diarrhea, and

  9. Effect of Neonatal Maternal Separation on Visceral Sensitivity and Intestinal Inflammation in Adult Rats%早期母婴分离对成年大鼠内脏感觉和肠道炎症的影响

    Institute of Scientific and Technical Information of China (English)

    林剑; 王承党

    2013-01-01

    心理-社会因素在肠易激综合征(IBS)的发病机制中起重要作用,但早期生活事件如母婴分离对内脏敏感性的负性影响尚存在争议.目的:探讨早期母婴分离对成年大鼠内脏感觉和肠道黏膜炎症的影响.方法:37只新生雄性Sprague-Dawley幼鼠随机分为正常对照组、母婴分离组、急性避水应激组.母婴分离组幼鼠出生第2d开始进行母婴分离,持续至出生后第3周.2月龄时大鼠接受结肠气囊扩张,行腹壁回撤反射(AWR)评分和腹壁肌电测定;观察结肠组织病理学变化,以甲苯胺蓝染色法测定肥大细胞(MC)计数和脱颗粒率;以ELISA法测定结肠组织IL-1β和类胰蛋白酶含量.结果:母婴分离组结肠组织学评分、MC计数、IL-1β和类胰蛋白酶含量均显著高于避水应激组、正常对照组(P<0.05).当结肠内气囊压力为40、60、80 mm Hg时,母婴分离组和避水应激组AWR评分和腹壁肌电幅值均显著高于正常对照组(P<0.05),且母婴分离组AWR评分和腹壁肌电幅值与上述各项炎症指标均呈正相关(P<0.05).结论:早期母婴分离和急性避水应激均可导致内脏感觉过敏,早期母婴分离还可诱导肠道黏膜低度炎症,这种低度炎症可能与内脏感觉过敏相关.%Background; Social and psychological factors play important roles in the pathogenesis of irritable bowel syndrome (IBS). However, it remains a controversy that early life events (such as maternal separation) have negative effects on the visceral sensitivity. Aims; To evaluate the role of neonatal maternal separation on visceral sensitivity and intestinal mucosal inflammation in adult rats. Methods; Thirty-seven newborn male Sprague-Dawley rats were randomly divided into control group, maternal separation group and acute water avoidance group. The newborn male rats in maternal separation group received maternal separation between the 2nd-21st day postnatally. At the 2nd month, abdominal

  10. Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion.

    Science.gov (United States)

    Chen, Jichun; Bryant, Mark A; Dent, James J; Sun, Yu; Desierto, Marie J; Young, Neal S

    2015-12-01

    A deletion of a telomerase RNA component (Terc(-/-)) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b(+) myeloid cells and decreased red blood cells and CD45R(+) B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit(+)Sca-1(+)Lin(-) (KSL) cells in old Terc(-/-) mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc(-/-) donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc(-/-) mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b(+) myeloid cells and a decrease in CD45R(+) B cells, similar to those observed in old Terc(-/-) mice. Treatment of 11-13 month old Terc(-/-) mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc(-/-) animals. PMID:26523501

  11. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    Science.gov (United States)

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  12. Islam, Globalization, and Poverty Alleviation

    Directory of Open Access Journals (Sweden)

    Dwi Sulastyawati

    2015-11-01

    Full Text Available Globalization is globab as well condition and situation, neither economically, politically, and socially. All countries that embrace open economic system have participated in the system of globalization. Today the world is under the influence of super power world. For instance, using dollar as the official currency for international transactions, so that dollar dominates in international transactions. As a result, the value of the debt of developing countries has increased due to the rising price of dollar. The increment of the debt value in developing countries led the government reduces subsidies for the community. Thus economic hardship perceived more and more for poor people. This resulted that poverty is hard to be alleviated. This article analyzes the various Islamic perspective and thoughts on the impact of globalization on poverty alleviation.DOI: 10.15408/aiq.v5i2.2123

  13. Inhibition of c-Jun N-terminal Kinase Signaling Pathway Alleviates Lipopolysaccharide-induced Acute Respiratory Distress Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Jian-Bo Lai

    2016-01-01

    Conclusions: Inhibiting JNK alleviated LPS-induced acute lung inflammation and had no effects on pulmonary edema and fibrosis. JNK inhibitor might be a potential therapeutic medication in ARDS, in the context of reducing lung inflammatory.

  14. Intestinal steroidogenesis.

    Science.gov (United States)

    Bouguen, Guillaume; Dubuquoy, Laurent; Desreumaux, Pierre; Brunner, Thomas; Bertin, Benjamin

    2015-11-01

    Steroids are fundamental hormones that control a wide variety of physiological processes such as metabolism, immune functions, and sexual characteristics. Historically, steroid synthesis was considered a function restricted to the adrenals and the gonads. In the past 20 years, a significant number of studies have demonstrated that steroids could also be synthesized or metabolized by other organs. According to these studies, the intestine appears to be a major source of de novo produced glucocorticoids as well as a tissue capable of producing and metabolizing sex steroids. This finding is based on the detection of steroidogenic enzyme expression as well as the presence of bioactive steroids in both the rodent and human gut. Within the intestinal mucosa, the intestinal epithelial cell layer is one of the main cellular sources of steroids. Glucocorticoid synthesis regulation in the intestinal epithelial cells is unique in that it does not involve the classical positive regulator steroidogenic factor-1 (SF-1) but a closely related homolog, namely the liver receptor homolog-1 (LRH-1). This local production of immunoregulatory glucocorticoids contributes to intestinal homeostasis and has been linked to pathophysiology of inflammatory bowel diseases. Intestinal epithelial cells also possess the ability to metabolize sex steroids, notably estrogen; this mechanism may impact colorectal cancer development. In this review, we contextualize and discuss what is known about intestinal steroidogenesis and regulation as well as the key role these functions play both in physiological and pathological conditions. PMID:25560486

  15. Rhubarb extract partially improves mucosal integrity in chemotherapy-induced intestinal mucositis

    Science.gov (United States)

    Bajic, Juliana E; Eden, Georgina L; Lampton, Lorrinne S; Cheah, Ker Y; Lymn, Kerry A; Pei, Jinxin V; Yool, Andrea J; Howarth, Gordon S

    2016-01-01

    AIM To investigate the effects of orally gavaged aqueous rhubarb extract (RE) on 5-fluorouracil (5-FU)-induced intestinal mucositis in rats. METHODS Female Dark Agouti rats (n = 8/group) were gavaged daily (1 mL) with water, high-dose RE (HDR; 200 mg/kg) or low-dose RE (LDR; 20mg/kg) for eight days. Intestinal mucositis was induced (day 5) with 5-FU (150 mg/kg) via intraperitoneal injection. Intestinal tissue samples were collected for myeloperoxidase (MPO) activity and histological examination. Xenopus oocytes expressing aquaporin 4 water channels were prepared to examine the effect of aqueous RE on cell volume, indicating a potential mechanism responsible for modulating net fluid absorption and secretion in the gastrointestinal tract. Statistical significance was assumed at P < 0.05 by one-way ANOVA. RESULTS Bodyweight was significantly reduced in rats administered 5-FU compared to healthy controls (P < 0.01). Rats administered 5-FU significantly increased intestinal MPO levels (≥ 307%; P < 0.001), compared to healthy controls. However, LDR attenuated this effect in 5-FU treated rats, significantly decreasing ileal MPO activity (by 45%; P < 0.05), as compared to 5-FU controls. 5-FU significantly reduced intestinal mucosal thickness (by ≥ 29% P < 0.001) as compared to healthy controls. LDR significantly increased ileal mucosal thickness in 5-FU treated rats (19%; P < 0.05) relative to 5-FU controls. In xenopus oocytes expressing AQP4 water channels, RE selectively blocked water influx into the cell, induced by a decrease in external osmotic pressure. As water efflux was unaltered by the presence of extracellular RE, the directional flow of water across the epithelial barrier, in the presence of extracellular RE, indicated that RE may alleviate water loss across the epithelial barrier and promote intestinal health in chemotherapy-induced intestinal mucositis. CONCLUSION In summary, low dose RE improves selected parameters of mucosal integrity and reduces ileal

  16. Innate immune activation in intestinal homeostasis.

    Science.gov (United States)

    Harrison, Oliver J; Maloy, Kevin J

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host protection from infectious pathogens; yet precisely how pathogenic and commensal microbes are distinguished is not understood. Furthermore, aberrant innate immune activation may also drive intestinal pathology, as patients with IBD exhibit extensive infiltration of innate immune cells to the inflamed intestine, and polymorphisms in many innate immunity genes influence susceptibility to IBD. Thus, a balanced interaction between the microbiota and innate immune activation is required to maintain a healthy mutualistic relationship between the microbiota and the host, which when disturbed can result in intestinal inflammation. PMID:21912101

  17. On the contribution of mucosal mast cells to the regulation of mouse intestinal barrier function

    OpenAIRE

    Rychter, J.

    2010-01-01

    The primary functions of the small intestine are the digestion and transport of luminal content and the absorption of nutrients. During these processes the intestinal mucosa is exposed to various ingested and resident pathogens. The ability of the intestinal wall to prevent transmucosal passage of toxins or of harmful micro-organisms and their products is defined as the intestinal barrier function. Defective intestinal barrier function plays a role in a number of disorders such as inflammator...

  18. Intestinal Stem Cells and their Roles during Mucosal Injury and Repair

    OpenAIRE

    Neal, Matthew D.; Richardson, Ward M.; Sodhi, Chhinder P.; Russo, Anthony M.; Hackam, David J.

    2010-01-01

    The ability of the host to respond to intestinal injury requires the regeneration of native tissue through a highly orchestrated response from the intestinal stem cells, a population of cells located within the intestinal crypts that have the capability to repopulate the entire villous. The field of intestinal stem cell biology is thus of great interest to surgeons and non-surgeons alike, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel disease,...

  19. Intestinal Malrotation

    Science.gov (United States)

    ... to maintain adequate nutrition (a condition known as short bowel syndrome). They may be dependent on intravenous nutrition for a time after surgery (or even permanently if too little intestine remains) ...

  20. Diffuse intestinal ganglioneuromatosis in a child

    OpenAIRE

    Matthews, Mika A.B.; Adler, Brent H.; Arnold, Michael A.; Kumar, Soma; Carvalho, Ryan; Besner, Gail E

    2013-01-01

    A 7 year old male with a history of congenital neutropenia and growth hormone deficiency presented with abdominal pain, fevers, and diarrhea. Imaging and endoscopy revealed significant inflammation of the ascending colon with stenosis at the level of the hepatic flexure. A right hemicolectomy was performed, and pathologic findings were consistent with diffuse intestinal ganglioneuromatosis. Due to recurrent mass effect at the intestinal anastomotic site detected radiologically, a second intes...

  1. RegIII proteins as gatekeepers of the intestinal epithelium

    OpenAIRE

    Loonen, L.M.P.

    2013-01-01

    Mammalian RegIII proteins are expressed in the intestine and in the pancreas in response to inflammation or infection. In the mouse intestine, expression of RegIIIβ and RegIIIγ is increased by microbial colonization, inflammation and infection. At the outset of this thesis human PAP and mouse RegIIIγ were reported to be bactericidal for Gram-positive bacteria. Additionally, human PAP had been shown to attenuate NF-κbsignallingin human monocytes and epithelial cells and ...

  2. Alleviating energy poverty: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Garima

    2010-09-15

    Energy services play an important role in human welfare. India faces acute energy poverty indicating lack of access of clean energy fuels. Access to electricity is limited to 56% households in India and about 89% of rural households depend on polluting energy sources. Energy poverty impacts income poverty as poor find it difficult to acquire high priced cleaner fuels. It also adversely impacts the socio economic conditions of women. The paper highlights the linkage of energy poverty with income poverty and gender inequality. It analyses measures taken to alleviate energy poverty and recommends regulatory and policy measures as way forward.

  3. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation.

    Science.gov (United States)

    Ravindran, Rajesh; Loebbermann, Jens; Nakaya, Helder I; Khan, Nooruddin; Ma, Hualing; Gama, Leonardo; Machiah, Deepa K; Lawson, Benton; Hakimpour, Paul; Wang, Yi-chong; Li, Shuzhao; Sharma, Prachi; Kaufman, Randal J; Martinez, Jennifer; Pulendran, Bali

    2016-03-24

    The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled non-repressed (GCN2) kinase is a key orchestrator of the ISR, and modulates protein synthesis in response to amino acid starvation. Here we demonstrate in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of Gcn2 (also known as Eif2ka4) in CD11c(+) APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and T helper 17 cell (TH17) responses, owing to enhanced inflammasome activation and interleukin (IL)-1β production. This was caused by reduced autophagy in Gcn2(-/-) intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes. Thus, conditional ablation of Atg5 or Atg7 in intestinal APCs resulted in enhanced ROS and TH17 responses. Furthermore, in vivo blockade of ROS and IL-1β resulted in inhibition of TH17 responses and reduced inflammation in Gcn2(-/-) mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2.

  4. {sup 18}F-F.D.G. PET imaging of infection and inflammation: intestinal, prosthesis replacements, fibrosis, sarcoidosis, tuberculosis..; La TEP au {sup 18}F-FDG dans la pathologie inflammatoire et infectieuse: intestinale, prothetique, fibrose, sarcoidose, tuberculose..

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Cortes, M.; Caresia, A.P.; Juan, R. de; Vidaller, A.; Mana, J.; Martinez-Yelamos, S.; Gamez, C. [Hospital Universitari de Bellvitge, Service TEP-Centre IDI, Services de Medecine Interne, Barcelone (Spain)

    2008-10-15

    Nuclear medicine plays an important role in the evaluation of infection and inflammation. A variety of diagnostic methods are available for imaging this inflammation and infection, most notably computed tomography, {sup 68}Ga scintigraphy or radionuclide labeled leucocytes. Fluorine 18 fluorodeoxyglucose ({sup 18}F-F.D.G.) is a readily available radiotracer that offers rapid, exquisitely sensitive high-resolution images by positron emission tomography (PET). Inflammation can be acute or chronic, the former showing predominantly neutrophilic granulocyte infiltrates, whereas in the latter, macrophages predominate. F.D.G. uptake in infection is based on the fact that mononuclear cells and granulocytes use large quantities of glucose by way of the hexose monophosphate shunts. {sup 18}F-F.D.G. PET accurately helps diagnose spinal osteomyelitis, diabetic foot and in inflammatory conditions such as sarcoidosis and tuberculosis.(it appears to be useful for defining the extent of disease and monitoring response to treatment). {sup 18}F-F.D.G. PET can also help localize the source of fever of undetermined origin, thereby guiding additional testing. {sup 18}F-F.D.G. PET may be of limited usefulness in postoperative patients and in patients with a failed joint prosthesis or bowel inflammatory disease. In this review, we will focus on the role of {sup 18}F-F.D.G. PET in the management of patients with inflammation or suspected or confirmed infection.

  5. Intestinal bile acid physiology and pathophysiology

    Institute of Scientific and Technical Information of China (English)

    Olga Mart(I)nez-Augustin; Ferm(I)n Sánchez de Medina

    2008-01-01

    Bile acids (Bas) have a long established role in fat digestion in the intestine by acting as tensioactives,due to their amphipatic characteristics.Bas are reabsorbed very efficiently by the intestinal epithelium and recycled back to the liver v/a transport mechanisms that have been largely elucidated.The transport and synthesis of Bas are tightly regulated in part by specific plasma membrane receptors and nuclear receptors.In addition to their primary effect,Bas have been claimed to play a role in gastrointestinal cancer,intestinal inflammation and intestinal ionic transport.Bas are not equivalent in any of these biological activities,and structural requirements have been generally identified.In particular,some Bas may be useful for cancer chemoprevention and perhaps in inflammatory bowel disease,although further research is necessary in this field.This review covers the most recent developments in these aspects of BA intestinal biology.

  6. Small Intestinal Bacterial Overgrowth: A Case-Based Review

    OpenAIRE

    Kristen H. Reynolds

    2015-01-01

    Small intestinal bacterial overgrowth (SIBO) is a condition of increased microbial load in the small intestine. The microbes feed on dietary carbohydrates and starches via fermentation, leading to gas production, inflammation and damage to the lining of the small intestine. Clinical presentation is varied, including abdominal pain, bloating, malabsorption and systemic symptoms. SIBO is associated with many challenging and chronic conditions such as fibromyalgia, chronic fatigue and chronic pa...

  7. Small & Large Intestine

    Science.gov (United States)

    ... the large intestine produces no digestive enzymes. Chemical digestion is completed in the small intestine before the chyme reaches the large intestine. Functions of the large intestine include the absorption of water and electrolytes and the elimination of ...

  8. Acquired causes of intestinal malabsorption.

    Science.gov (United States)

    van der Heide, F

    2016-04-01

    This review focuses on the acquired causes, diagnosis, and treatment of intestinal malabsorption. Intestinal absorption is a complex process that depends on many variables, including the digestion of nutrients within the intestinal lumen, the absorptive surface of the small intestine, the membrane transport systems, and the epithelial absorptive enzymes. Acquired causes of malabsorption are classified by focussing on the three phases of digestion and absorption: 1) luminal/digestive phase, 2) mucosal/absorptive phase, and 3) transport phase. Most acquired diseases affect the luminal/digestive phase. These include short bowel syndrome, extensive small bowel inflammation, motility disorders, and deficiencies of digestive enzymes or bile salts. Diagnosis depends on symptoms, physical examination, and blood and stool tests. There is no gold standard for the diagnosis of malabsorption. Further testing should be based on the specific clinical context and the suspected underlying disease. Therapy is directed at nutritional support by enteral or parenteral feeding and screening for and supplementation of deficiencies in vitamins and minerals. Early enteral feeding is important for intestinal adaptation in short bowel syndrome. Medicinal treatment options for diarrhoea in malabsorption include loperamide, codeine, cholestyramine, or antibiotics. PMID:27086886

  9. Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis.

    Science.gov (United States)

    Hainzl, Eva; Stockinger, Silvia; Rauch, Isabella; Heider, Susanne; Berry, David; Lassnig, Caroline; Schwab, Clarissa; Rosebrock, Felix; Milinovich, Gabriel; Schlederer, Michaela; Wagner, Michael; Schleper, Christa; Loy, Alexander; Urich, Tim; Kenner, Lukas; Han, Xiaonan; Decker, Thomas; Strobl, Birgit; Müller, Mathias

    2015-11-15

    In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2(-/-) mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22-STAT3 target genes is reduced in IECs from healthy and colitic Tyk2(-/-) mice. Experiments with conditional Tyk2(-/-) mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22-Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22-dependent colitis was confirmed in Citrobacter rodentium-induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3. PMID:26432894

  10. Chemically induced intestinal damage models in zebrafish larvae.

    Science.gov (United States)

    Oehlers, Stefan H; Flores, Maria Vega; Hall, Christopher J; Okuda, Kazuhide S; Sison, John Oliver; Crosier, Kathryn E; Crosier, Philip S

    2013-06-01

    Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described.

  11. Autophagy and intestinal homeostasis.

    Science.gov (United States)

    Patel, Khushbu K; Stappenbeck, Thaddeus S

    2013-01-01

    Nutrient absorption is the basic function that drives mammalian intestinal biology. To facilitate nutrient uptake, the host's epithelial barrier is composed of a single layer of cells. This constraint is problematic, as a design of this type can be easily disrupted. The solution during the course of evolution was to add numerous host defense mechanisms that can help prevent local and systemic infection. These mechanisms include specialized epithelial cells that produce a physiochemical barrier overlying the cellular barrier, robust and organized adaptive and innate immune cells, and the ability to mount an inflammatory response that is commensurate with a specific threat level. The autophagy pathway is a critical cellular process that strongly influences all these functions. Therefore, a fundamental understanding of the components of this pathway and their influence on inflammation, immunity, and barrier function will facilitate our understanding of homeostasis in the gastrointestinal tract. PMID:23216414

  12. 抑郁焦虑情绪与肠道炎症潜在交互作用探讨%Study on interaction of depression, anxiety and intestinal inflammation

    Institute of Scientific and Technical Information of China (English)

    许笑笑; 吴飞燕; 费宁; 连乐竞; 潘建春

    2016-01-01

    Objective: To investigate the interaction and the potential mechanism of stress and intestinal inlfammation.Methods: Stress model was established by eight different stress factors within 21 days, The intes-tinal inlfammation group was established by anal enema (TNBS), stress combined with intestinal inlfammation model were established by the combination of two models above. From 22 days, all rats were given behavioral tests, including forced swimming test (FST), the marble burying test, the number of fecal output and AWR test, then rats were sacriifced. The expressions of BDNF and phosphorylated cAMP in the hippocampus and frontal cortex, IL-1β, IL-6 in the ileum and colon were detected by Western Blotting.Results: The freezing time of stressed combined with intestinal infection group was signiifcantly lower in FST, the number of marbles buried in marble burying test was also signiifcantly lower, the number of fecal output and the score of AWR were obvi-ously reduced when compared with merely chronic stress group or merely intestinal inlfammation group. The expression of BDNF and p-CREB were reduced more signiifcantly whether in the hippocampus or frontal cortex. The expression of IL-1β and IL-6 increased more signiifcantly whether in the ileum or colon when compared with merely chronic stress group or merely intestinal inlfammation group.Conclusion: Depression or anxiety as psychological factors, has certain interaction with intestinal inlfammation. depression and anxiety emotions can increase the intestinal disorders, and the intestinal disorders can exacerbate depression or anxiety emotions also. The mechanism may be involved with enteric nervous system and central nervous system, the two system play the role by regulate the braingut peptide.%目的:探讨抑郁焦虑情绪与肠道炎症疾病之间存在的交互作用及其可能的机制。方法:建立大鼠慢性应激模型(应激组)、肠道炎症模型(肠道炎症组)、应激加肠

  13. Are there any different effects of Bifidobacterium, Lactobacillus and Streptococcus on intestinal sensation, barrier function and intestinal immunity in PI-IBS mouse model?

    Directory of Open Access Journals (Sweden)

    Huan Wang

    Full Text Available BACKGROUND AND AIMS: Research has increasingly suggested that gut flora plays an important role in the development of post-infectious irritable bowel syndrome (PI-IBS. Studies of the curative effect of probiotics for IBS have usually been positive but not always. However, the differences of treatment effects and mechanisms among probiotic stains, or mixture of them, are not clear. In this study, we compared the effects of different probiotics (Befidobacterium, Lactobacillus, Streptococcus or mixture of the three on intestinal sensation, barrier function and intestinal immunity in PI-IBS mouse model. METHODS: PI-IBS model was induced by Trichinella spiralis infection in mice. Different probiotics were administered to mice after 8 weeks infection. Visceral sensitivity was measured by scores of abdominal withdrawal reflex (AWR and the threshold intensity of colorectal distention. Colonic smooth muscle contractile response was assessed by contraction of the longitudinal muscle strips. Plasma diamine oxidase (DAO and d-lactate were determined by an enzymatic spectrophotometry. Expression of tight junction proteins and cytokines in ileum were measured by Western blotting. RESULTS: Compared to control mice, PI-IBS mice treated either alone with Befidobacterium or Lactobacillus (but not Streptococcus, or the mixture of the three exhibited not only decreased AWR score and contractile response, but also reduced plasma DAO and D-lactate. These probiotic treatments also suppressed the expression of proinflammatory cytokine IL-6 and IL-17 and promoted the expression of major tight junction proteins claudin-1 and occludin. The mixture of the three probiotic strains performed better than the individual in up-regulating these tight junction proteins and suppressing IL-17 expression. CONCLUSIONS: Bifidobacterium and Lactobacillus, but not Streptococcus, alleviated visceral hypersensitivity and recovered intestinal barrier function as well as inflammation in PI

  14. Inflammation and Heart Disease

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Inflammation and Heart Disease Updated:Apr 18,2016 Understand the risks of inflammation. Although it is not proven that inflammation causes ...

  15. Intestinal mucus accumulation in a child with acutemyeloblastic leukemia

    Directory of Open Access Journals (Sweden)

    Namık Özbek

    2009-12-01

    Full Text Available Intestinal mucus accumulation is a very rare situation observed in some solid tumors, intestinal inflammation, mucosal hyperplasia, elevated intestinal pressure, and various other diseases. However, it has never been described in acute myeloblastic leukemia. The pathogenesis of intestinal mucus accumulation is still not clear. Here, we report a 14-year-old girl with acute myeloblastic leukemia and febrile neutropenia in addition to typhlitis. She was also immobilized due to joint contractures of the lower extremities and had intestinal mucus accumulation, which was, at first, misdiagnosed as intestinal parasitosis. We speculate that typhlitis, immobilization and decreased intestinal motility due to usage of antiemetic drugs might have been the potential etiologic factors in this case. However, its impact on prognosis of the primary disease is unknown.

  16. Harnessing motivation to alleviate neglect

    Directory of Open Access Journals (Sweden)

    Charlotte eRussell

    2013-06-01

    Full Text Available The syndrome of spatial neglect results from the combination of a number of deficits in attention, with patients demonstrating both spatially lateralised and non-lateralised impairments. Previous reports have hinted that there may be a motivational component to neglect and that modulating this might alleviate some of the debilitating symptoms. Additionally, recent work on the effects of reward on attention in healthy participants has revealed improvements across a number of paradigms. As the primary deficit in neglect has been associated with attention, this evidence for reward’s effects is potentially important. However, until very recently there have been few empirical studies addressing this potential therapeutic avenue. Here we review the growing body of evidence that attentional impairments in neglect can be reduced by motivation, for example in the form of preferred music or anticipated monetary reward, and discuss the implications of this for treatments for these patients. Crucially these effects of positive motivation are not observed in all patients with neglect, suggesting that the consequences of motivation may relate to individual lesion anatomy. Given the key role of dopaminergic systems in motivational processes, we suggest that motivational stimulation might act as a surrogate for dopaminergic stimulation. In addition, we consider the relationship between clinical post stroke apathy and lack of response to motivation.

  17. [Intestinal endometriosis].

    Science.gov (United States)

    González Rodríguez, C I; Cires, M; Jiménez, F J; Rubio, T

    2008-01-01

    Endometriosis is a chronic, benign gynaecological disorder that is frequent in women of a child-bearing age. It is estimated that there is some degree of endometriosis in as many as 15% of pre-menopausal women, associated with a history of infertility, caesarean antecedents, dysmenorrhoea and abnormality in uterine bleeding. It is believed to be due to the rise of menstrual contents through the Fallopian tubes (retrograde menstruation). In the intestinal affectation, the colon is the segment most frequently affected, above all at the rectosigmoidal level. The clinical features are unspecific, with abdominal pain the most frequent and/or pelvic pain of a cholic type that coincides with, or is exacerbated by, menstruation. Differential diagnosis includes intestinal inflammatory disease, diverticulitis, ischemic colitis and neoplastic processes, with the definitive diagnosis being anatomopathological. With respect to treatment, this will depend on the clinical features and the age of the patient, as well as her wishes with regard to pregnancy. PMID:18953367

  18. Intestinal steroidogenesis

    OpenAIRE

    Bouguen, Guillaume; Dubuquoy, Laurent; Desreumaux, Pierre; Brunner, Thomas; Bertin, Benjamin

    2015-01-01

    Steroids are fundamental hormones that control a wide variety of physiological processes such as metabolism, immune functions, and sexual characteristics. Historically, steroid synthesis was considered a function restricted to the adrenals and the gonads. In the past 20 years, a significant number of studies have demonstrated that steroids could also be synthesized or metabolized by other organs. According to these studies, the intestine appears to be a major source of de novo produced glucoc...

  19. Reparative inflammation takes charge of tissue regeneration.

    Science.gov (United States)

    Karin, Michael; Clevers, Hans

    2016-01-21

    Inflammation underlies many chronic and degenerative diseases, but it also mitigates infections, clears damaged cells and initiates tissue repair. Many of the mechanisms that link inflammation to damage repair and regeneration in mammals are conserved in lower organisms, indicating that it is an evolutionarily important process. Recent insights have shed light on the cellular and molecular processes through which conventional inflammatory cytokines and Wnt factors control mammalian tissue repair and regeneration. This is particularly important for regeneration in the gastrointestinal system, especially for intestine and liver tissues in which aberrant and deregulated repair results in severe pathologies.

  20. Chronic Kidney Disease Induced Intestinal Mucosal Barrier Damage Associated with Intestinal Oxidative Stress Injury

    Science.gov (United States)

    Yu, Chao; Wang, Qiang; Zhou, Chunyu; Kang, Xin; Zhao, Shuang; Liu, Shuai; Fu, Huijun; Yu, Zhen; Peng, Ai

    2016-01-01

    Background. To investigate whether intestinal mucosal barrier was damaged or not in chronic kidney disease progression and the status of oxidative stress. Methods. Rats were randomized into two groups: a control group and a uremia group. The uremia rat model was induced by 5/6 kidney resection. In postoperative weeks (POW) 4, 6, 8, and 10, eight rats were randomly selected from each group to prepare samples for assessing systemic inflammation, intestinal mucosal barrier changes, and the status of intestinal oxidative stress. Results. The uremia group presented an increase trend over time in the serum tumor necrosis factor-alpha, interleukin-6 (IL-6) and IL-10, serum D-lactate and diamine oxidase, and intestinal permeability, and these biomarkers were significantly higher than those in control group in POW 8 and/or 10. Chiu's scores in uremia group were also increased over time, especially in POW 8 and 10. Furthermore, the intestinal malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were significantly higher in uremia group when compared with those in control group in POW 8 and/or 10. Conclusions. The advanced chronic kidney disease could induce intestinal mucosal barrier damage and further lead to systemic inflammation. The underlying mechanism may be associated with the intestinal oxidative stress injury. PMID:27493661

  1. Low dose of lipopolysaccharide pretreatment can alleviate the inflammatory response in wound infection mouse model

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Yang Liu; Yan-Rui Zhao; Jun-Lin Zhou

    2016-01-01

    Purpose:To assess the effects of lipopolysaccharide (LPS) pretreatment on wound infection mouse model and evaluate the biological safety of the optimal pretreatment dose in vivo.Methods:Mice were pretreated with LPS of different doses at 48 and 24 h before femoral medial longitudinal incision was made and infected with different bacteria.Results:It is showed that 0.5 mg/kg/time of LPS pretreatment can significantly alleviate the inflammation in mouse model infected with methicillin-resistances Staphylococcus aureus,methicillin-sensitive S.aureus,Pseudomonas aeruginosa,or Escherichia coli compared with doses of 0.25 mg/kg/time,1 mg/kg/time,and 1.5 mg/kg/time.Conclusions:LP5 pretreatment can alleviate the inflammation in mouse model and the optimal dose is 0.5 mg/kg/time,and meanwhile it does not damage organs' function.

  2. Mechanism of Interferon-γ–Induced Increase in T84 Intestinal Epithelial Tight Junction

    OpenAIRE

    Boivin, Michel A.; Roy, Praveen K.; Bradley, Angela; Kennedy, John C.; Rihani, Tuhama; Ma, Thomas Y.

    2009-01-01

    Interferon-γ (IFN-γ) is an important proinflammatory cytokine that plays a central role in the intestinal inflammatory process of inflammatory bowel disease. IFN-γ induced disturbance of the intestinal epithelial tight junction (TJ) barrier has been postulated to be an important mechanism contributing to intestinal inflammation. The intracellular mechanisms that mediate the IFN-γ induced increase in intestinal TJ permeability remain unclear. The aim of this study was to examine the role of th...

  3. Intestinal Iron Homeostasis and Colon Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yatrik M. Shah

    2013-06-01

    Full Text Available Colorectal cancer (CRC is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC.

  4. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    Science.gov (United States)

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis. PMID:27423629

  5. Puerarin Alleviates Neuropathic Pain by Inhibiting Neuroinflammation in Spinal Cord

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2014-01-01

    Full Text Available Neuropathic pain responds poorly to drug treatments, and partial relief is achieved in only about half of the patients. Puerarin, the main constituent of Puerariae Lobatae Radix, has been used extensively in China to treat hypertension and tumor. The current study examined the effects of puerarin on neuropathic pain using two most commonly used animal models: chronic constriction injury (CCI and diabetic neuropathy. We found that consecutive intrathecal administration of puerarin (4–100 nM for 7 days inhibited the mechanical and thermal nociceptive response induced by CCI and diabetes without interfering with the normal pain response. Meanwhile, in both models puerarin inhibited the activation of microglia and astroglia in the spinal dorsal horn. Puerarin also reduced the upregulated levels of nuclear factor-κB (NF-κB and other proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the spinal cord. In summary, puerarin alleviated CCI- and diabetes-induced neuropathic pain, and its effectiveness might be due to the inhibition of neuroinflammation in the spinal cord. The anti-inflammation effect of puerarin might be related to the suppression of spinal NF-κB activation and/or cytokines upregulation. We conclude that puerarin has a significant effect on alleviating neuropathic pain and thus may serve as a therapeutic approach for neuropathic pain.

  6. The Relationship between Small-Intestinal Bacterial Overgrowth and Intestinal Permeability in Patients with Irritable Bowel Syndrome

    OpenAIRE

    Park, Jung Ho; Park, Dong Il; Kim, Hong Joo; Cho, Yong Kyun; Sohn, Chong Il; Jeon, Woo Kyu; Kim, Byung Ik; Won, Kyoung Hee; Park, Soon Min

    2009-01-01

    Background/Aims Small-intestinal bacterial overgrowth (SIBO) is a frequent finding in patients with irritable bowel syndrome (IBS). Many patients with IBS also have abnormal intestinal permeability, which is probably due to low-grade inflammation in the intestinal mucosa. Our aim was to verify the relationship between SIBO and small-intestinal permeability in IBS patients. Methods A cohort of 38 IBS patients (20 women and 18 men; age range 16-70 years; mean age 40.2 years) with symptoms that ...

  7. Intestinal Coccidia

    Directory of Open Access Journals (Sweden)

    MJ Ggaravi

    2007-06-01

    Full Text Available Intestinal Coccidia are a subclass of Apicomplexa phylum. Eucoccidida are facultative heteroxenous, but some of them are monoxenous. They have sexual and asexual life cycle. Some coccidia are human pathogens, for example: Cryptosporidium: Cryptosporidiums has many species that are mammalian intestinal parasites.C. Parvum specie is a human pathogenic protozoa. Cryptosporidum has circle or ellipse shapes and nearly 4-6 mm. It is transmitted in warm seasons. Oocyst is obtained insexual life cycle that has 20% thin layer and 80% thick layer. Oocyst with thick layer is able to live a long time in nature. They are the third or forth of gastroentritis disease that have digestive disorder like anorexia, nausea, persistent diarrhoea, malabsorption and leanness. The disease forms choronic and acute stages and it is able to kill the immunodeficiency cases. Sometimes it has HIV symptoms similar to pneumonia and respiratory track infection. Laboratory diagnosis is based on Oocyst finding in stool exam and that shitter floatation and Cr (KOH2 are the best methods. Modified zyh-lnelson and fleocroum are the best staining methods too. This parasite is transmitted by zoonotic and Antroponotic origin. Molecular studies have shown two Genotypes (I&II. Genotype I is aquatic and II is zoonotic. The prevalence rate is 3% in infants and 10% in calves. Cyclospora: This parasite is novel and is bigger than cryptosporidium.It isn't known a clear life cycle but is transmitted by water, vegetables and fruits as raspberries. and mulberries. Human is a specific host. When a parasite is in the intestine it causes inflammatory reaction in Entrocyte.The patient shows watery diarrhoea with nausea, vomitting, pain, Stomach cramp, anorexia, malabsorption and cachexia. The disease period is 3 monthes in immunodeficiency cases but it is selflimited in normal cases. Autofluorescence characteristic is differential diagnosis, prevalence rate of disease is unknown. Isospora: This

  8. Nasogastric tube syndrome induced by an indwelling long intestinal tube.

    Science.gov (United States)

    Sano, Naoki; Yamamoto, Masayoshi; Nagai, Kentaro; Yamada, Keiichi; Ohkohchi, Nobuhiro

    2016-04-21

    The nasogastric tube (NGT) has become a frequently used device to alleviate gastrointestinal symptoms. Nasogastric tube syndrome (NTS) is an uncommon but potentially life-threatening complication of an indwelling NGT. NTS is characterized by acute upper airway obstruction due to bilateral vocal cord paralysis. We report a case of a 76-year-old man with NTS, induced by an indwelling long intestinal tube. He was admitted to our hospital for treatment of sigmoid colon cancer. He underwent sigmoidectomy to release a bowel obstruction, and had a long intestinal tube inserted to decompress the intestinal tract. He presented acute dyspnea following prolonged intestinal intubation, and bronchoscopy showed bilateral vocal cord paralysis. The NGT was removed immediately, and tracheotomy was performed. The patient was finally discharged in a fully recovered state. NTS be considered in patients complaining of acute upper airway obstruction, not only with a NGT inserted but also with a long intestinal tube. PMID:27099450

  9. Nasogastric tube syndrome induced by an indwelling long intestinal tube.

    Science.gov (United States)

    Sano, Naoki; Yamamoto, Masayoshi; Nagai, Kentaro; Yamada, Keiichi; Ohkohchi, Nobuhiro

    2016-04-21

    The nasogastric tube (NGT) has become a frequently used device to alleviate gastrointestinal symptoms. Nasogastric tube syndrome (NTS) is an uncommon but potentially life-threatening complication of an indwelling NGT. NTS is characterized by acute upper airway obstruction due to bilateral vocal cord paralysis. We report a case of a 76-year-old man with NTS, induced by an indwelling long intestinal tube. He was admitted to our hospital for treatment of sigmoid colon cancer. He underwent sigmoidectomy to release a bowel obstruction, and had a long intestinal tube inserted to decompress the intestinal tract. He presented acute dyspnea following prolonged intestinal intubation, and bronchoscopy showed bilateral vocal cord paralysis. The NGT was removed immediately, and tracheotomy was performed. The patient was finally discharged in a fully recovered state. NTS be considered in patients complaining of acute upper airway obstruction, not only with a NGT inserted but also with a long intestinal tube.

  10. Farewell to Animal Testing: Innovations on Human Intestinal Microphysiological Systems

    Directory of Open Access Journals (Sweden)

    Tae Hyun Kang

    2016-06-01

    Full Text Available The human intestine is a dynamic organ where the complex host-microbe interactions that orchestrate intestinal homeostasis occur. Major contributing factors associated with intestinal health and diseases include metabolically-active gut microbiota, intestinal epithelium, immune components, and rhythmical bowel movement known as peristalsis. Human intestinal disease models have been developed; however, a considerable number of existing models often fail to reproducibly predict human intestinal pathophysiology in response to biological and chemical perturbations or clinical interventions. Intestinal organoid models have provided promising cytodifferentiation and regeneration, but the lack of luminal flow and physical bowel movements seriously hamper mimicking complex host-microbe crosstalk. Here, we discuss recent advances of human intestinal microphysiological systems, such as the biomimetic human “Gut-on-a-Chip” that can employ key intestinal components, such as villus epithelium, gut microbiota, and immune components under peristalsis-like motions and flow, to reconstitute the transmural 3D lumen-capillary tissue interface. By encompassing cutting-edge tools in microfluidics, tissue engineering, and clinical microbiology, gut-on-a-chip has been leveraged not only to recapitulate organ-level intestinal functions, but also emulate the pathophysiology of intestinal disorders, such as chronic inflammation. Finally, we provide potential perspectives of the next generation microphysiological systems as a personalized platform to validate the efficacy, safety, metabolism, and therapeutic responses of new drug compounds in the preclinical stage.

  11. High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity

    Science.gov (United States)

    Park, Mi-Young; Kim, Min Young; Seo, Young Rok; Kim, Jong-Sang; Sung, Mi-Kyung

    2016-01-01

    Background: Excess energy supply induces chronic low-grade inflammation in association with oxidative stress in various tissues including intestinal epithelium. The objective of this study was to investigate the effect of high-fat diet (HFD) on intestinal cell membrane integrity and intestinal tumorigenesis in ApcMin/+ mice. Methods: Mice were fed with either normal diet (ND) or HFD for 12 weeks. The number of intestinal tumors were counted and biomarkers of endotoxemia, oxidative stress, and inflammation were determined. Changes in intestinal integrity was measured by fluorescein isothiocyanate (FITC)-dextran penetration and membrane gap junction protein expression. Results: HFD group had significantly higher number of tumors compared to ND group (P < 0.05). Blood total antioxidant capacity was lower in HFD group, while colonic 8-hydroxy-2′-deoxyguanosine level, a marker of oxidative damage, was higher in HFD group compared to that of ND group (P < 0.05). The penetration of FITC-dextran was substantially increased in HFD group (P < 0.05) while the expressions of membrane gap junction proteins including zonula occludens-1, claudin-1, and occludin were lower in HFD group (P < 0.05) compared to those in ND group. Serum concentration of lipopolysaccharide (LPS) receptor (CD14) and colonic toll-like receptor 4 (a LPS receptor) mRNA expression were significantly higher in HFD group than in ND group (P < 0.05), suggesting that significant endotoxemia may occur in HFD group due to the increased membrane permeability. Serum interleukin-6 concentration and myeloperoxidase activity were also higher in HFD group compared to those of ND group (P < 0.05). Conclusions: HFD increases oxidative stress disrupting intestinal gap junction proteins, thereby accelerating membrane permeability endotoxemia, inflammation, and intestinal tumorigenesis. PMID:27390738

  12. A resistant starch fiber diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease (CKD)

    Science.gov (United States)

    Inflammation is a constant feature and a major mediator of CKD progression. It is, in part, driven by altered gut microbiome and disruption of intestinal epithelial barrier, events which are primarily caused by: 1- urea influx in the intestine resulting in dominance of urease-possessing bacteria; 2-...

  13. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease

    Science.gov (United States)

    Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammoni...

  14. Inflammation of the Penis

    Science.gov (United States)

    ... the Penis Medical Dictionary Additional Content Medical News Inflammation of the Penis By Patrick J. Shenot, MD ... Testicular Disorders Introduction to Penile and Testicular Disorders Inflammation of the Penis Phimosis and Paraphimosis Urethral Stricture ...

  15. Inflammation of the Orbit

    Science.gov (United States)

    ... Diagnosis Treatment Medical Dictionary Additional Content Medical News Inflammation of the Orbit (Inflammatory Orbital Pseudotumor) By James ... Introduction to Eye Socket Disorders Cavernous Sinus Thrombosis Inflammation of the Orbit Orbital Cellulitis Preseptal Cellulitis Tumors ...

  16. Idiopathic sclerosing orbital inflammation

    NARCIS (Netherlands)

    J.D. Hsuan; D. Selva; A.A. McNab; T.J. Sullivan; P. Saeed; B.A. O'Donnell

    2006-01-01

    Objective: To perform a multicenter review of the clinical features and treatment of 31 patients with idiopathic sclerosing orbital inflammation. Methods: We included all patients with histologically confirmed idiopathic sclerosing orbital inflammation from 5 regional orbital centers. We reviewed th

  17. Role of T cell TGF beta signaling in intestinal cytokine responses and helminthic immune modulation

    Science.gov (United States)

    Colonization with helminthic parasites down-regulates inflammation in murine colitis and improves activity scores in human inflammatory bowel disease. Helminths induce mucosal regulatory T cells, which are important for intestinal immunologic homeostasis. Regulatory T cell function involves cytoki...

  18. The Journal of Inflammation

    OpenAIRE

    Punchard Neville A; Whelan Cliff J; Adcock Ian

    2004-01-01

    Abstract Welcome to the Journal of Inflammation, the first open-access, peer-reviewed, online journal to focus on all aspects of the study of inflammation and inflammatory conditions. While research into inflammation has resulted in great progress in the latter half of the 20th century, the rate of progress is rapidly accelerating. Thus there is a need for a vehicle through which this very diverse research can be made readily available to the scientific community. The Journal of Inflammation,...

  19. Prostaglandins and chronic inflammation

    OpenAIRE

    Aoki, Tomohiro; Narumiya, Shuh

    2012-01-01

    Chronic inflammation is the basis of various chronic illnesses including cancer and vascular diseases. However, much has yet to be learned how inflammation becomes chronic. Prostaglandins (PGs) are well established as mediators of acute inflammation, and recent studies in experimental animals have provided evidence that they also function in transition to and maintenance of chronic inflammation. One role PGs play in such processes is amplification of cytokine signaling. As such, PGs can facil...

  20. Establishment of Intestinal Bacteriology

    OpenAIRE

    Mitsuoka, Tomotari

    2014-01-01

    Research on intestinal bacteria began around the end of the 19th century. During the last 5 decades of the 20th century, research on the intestinal microbiota made rapid progress. At first, in my work, I first developed a method of comprehensive analysis of the intestinal microbiota, and then I established classification and identification methods for intestinal anaerobes. Using these methods I discovered a number of ecological rules governing the intestinal microbiota and the role of the int...

  1. Intestinal microbiota in inflammatory bowel disease: Friend of foe?

    OpenAIRE

    Fava, Francesca; Danese, Silvio

    2011-01-01

    Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy individuals the intestinal microbiota have a symbiotic relationship with the host organism and possess important and unique functions, including a metabolic function (i.e. digestion of dietary compounds and xenobiotics, fermentation of undigestible carbohydrates with production of...

  2. Intestinal necrosis in young patient due to arterial tumour embolism

    DEFF Research Database (Denmark)

    Dahle, Einar; Gögenur, Ismail; Nørgaard, Peter

    2012-01-01

    A patient in the thirties, currently undergoing chemotherapy for metastatic osteosarcoma diagnosed 3 years earlier, was admitted with in the emergency department with abdominal pain. Laparoscopic surgery revealed severe inflammation and an abscess. 18 cm of small intestine was removed because...... of intestinal necrosis. Histological examination showed several arterial tumour emboli, morphologically similar to the primary sarcoma. The patient died 1 year after successful surgery. Because of the improved survival of patients with osteosarcoma, acute mesenteric ischaemia should be considered in acute...

  3. Innate Immune Activation in Intestinal Homeostasis

    OpenAIRE

    Harrison, Oliver J.; Maloy, Kevin J.

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host prot...

  4. Increased intestinal marker absorption due to regional permeability changes and decreased intestinal transit during sepsis in the rat

    International Nuclear Information System (INIS)

    The intestinal barrier properties are impaired during inflammation and sepsis, but the mechanisms behind this are unknown and were therefore investigated during experimental sepsis in rats. The different-sized intestinal absorption markers 51Cr-labeled ethylenediaminetetraacetic acid (EDTA) and ovalbumin were gavaged to rats made septic by intra-abdominal bacterial implantation and to sham-operated rats. Regional tissue permeability was measured in diffusion chambers, and intestinal transit was evaluated by intestinal accumulation of gavaged 51Cr-EDTA. In comparison with the sham-operated rats, septic rats had higher 51Cr-EDTA levels in blood and urine and showed a prolonged intestinal transit. Septic rats also had a lower tissue permeability to both markers in the small intestines but higher permeability to ovalbumin in the colon. Rats receiving morphine to decrease intestinal motility showed similar changes, with a decreased intestinal transit and increased marker absorption. Thr results suggest that the increased intestinal absorption during sepsis was due to regional permeability changes and prolonged intestinal transit. 38 refs., 4 figs., 2 tabs

  5. Increased intestinal marker absorption due to regional permeability changes and decreased intestinal transit during sepsis in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Pantzar, N.; Jeppson, B.; Westroem, B.R.; Karlsson, B.W. [Univ. of Lund (Sweden)

    1994-11-01

    The intestinal barrier properties are impaired during inflammation and sepsis, but the mechanisms behind this are unknown and were therefore investigated during experimental sepsis in rats. The different-sized intestinal absorption markers {sup 51}Cr-labeled ethylenediaminetetraacetic acid (EDTA) and ovalbumin were gavaged to rats made septic by intra-abdominal bacterial implantation and to sham-operated rats. Regional tissue permeability was measured in diffusion chambers, and intestinal transit was evaluated by intestinal accumulation of gavaged {sup 51}Cr-EDTA. In comparison with the sham-operated rats, septic rats had higher {sup 51}Cr-EDTA levels in blood and urine and showed a prolonged intestinal transit. Septic rats also had a lower tissue permeability to both markers in the small intestines but higher permeability to ovalbumin in the colon. Rats receiving morphine to decrease intestinal motility showed similar changes, with a decreased intestinal transit and increased marker absorption. Thr results suggest that the increased intestinal absorption during sepsis was due to regional permeability changes and prolonged intestinal transit. 38 refs., 4 figs., 2 tabs.

  6. Kinins as mediators of intestinal secretion.

    Science.gov (United States)

    Gaginella, T S; Kachur, J F

    1989-01-01

    Kinins are small peptides that have diverse biological actions. Concentrations of kinins in the nanomolar or subnanomolar range induce intestinal smooth muscle contraction and evoke mucosal electrolyte secretion. Hyperkininemia is associated with effects on gastrointestinal motility and intestinal mucosal inflammation. Bradykinin and kallidin are the predominant kinins with effects on the gastrointestinal tract of mammals. Bradykinin stimulates chloride ion secretion by the guinea pig and rabbit ileum, rabbit colon, rat colon and monolayers of human HCA-7 cells. Kinins directly or indirectly stimulate phospholipase A2 and phospholipase C. Cells in the lamina propria of the mucosa (e.g., fibroblasts, mast cells, leukocytes), by liberating cyclooxygenase and lipoxygenase metabolites of arachidonic acid, are involved in the kinin response; direct effects on epithelial cells cannot be ruled out, however. Antagonists now exist for kinin receptors. Based on studies with these antagonists in smooth muscle preparations, two subgroups of kinin receptor have been identified. The B2-type receptor appears to be responsible for both the contraction of ileal muscle and ileal secretion. Kinins are probably more important as pathophysiological rather than as physiological mediators. They may amplify the effect of inflammatory products that induce intestinal secretion. The precise involvement of kinins in clinical mucosal secretory states and diarrhea will require quantitative assessment of their levels during each phase of mucosal inflammation. Additional studies on the mechanism of action of kinins will be essential in designing therapy to mitigate the symptoms associated with mucosal inflammation.

  7. Obesity, fatty liver disease and intestinal microbiota.

    Science.gov (United States)

    Arslan, Nur

    2014-11-28

    Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder that is increasing in prevalence with the worldwide epidemic of obesity. NAFLD is the hepatic manifestation of the metabolic syndrome. The term NAFLD describes a spectrum of liver pathology ranges from simple steatosis to steatosis with inflammation nonalcoholic steatohepatitis and even cirrhosis. Metabolic syndrome and NAFLD also predict hepatocellular carcinoma. Many genetic and environmental factors have been suggested to contribute to the development of obesity and NAFLD, but the exact mechanisms are not known. Intestinal ecosystem contains trillions of microorganisms including bacteria, Archaea, yeasts and viruses. Several studies support the relationship between the intestinal microbial changes and obesity and also its complications, including insulin resistance and NAFLD. Given that the gut and liver are connected by the portal venous system, it makes the liver more vulnerable to translocation of bacteria, bacterial products, endotoxins or secreted cytokines. Altered intestinal microbiota (dysbiosis) may stimulate hepatic fat deposition through several mechanisms: regulation of gut permeability, increasing low-grade inflammation, modulation of dietary choline metabolism, regulation of bile acid metabolism and producing endogenous ethanol. Regulation of intestinal microbial ecosystem by diet modifications or by using probiotics and prebiotics as a treatment for obesity and its complications might be the issue of further investigations.

  8. Osthole alleviates the inflammation in rats with diabetes-associated cognitive decline via inhibiting PI3K/Akt signaling pathway%蛇床子素通过抑制PI3 K/Akt信号通路减轻糖尿病脑病的炎症反应

    Institute of Scientific and Technical Information of China (English)

    毛小元; 周宏灏; 刘昭前

    2015-01-01

    Objective To explore the neuroprotective effects of osthole in rats with diabetes-associated cognitive decline ( DACD) and potential molecular mechanisms.Methods The learning and memory performance were assessed by Morris water maze test;The activi-ties of AChE, ChAT, inflammatory cytokines including NF-κB p65, TNF-αand IL-1βand caspase-3 in the hippocampus were detected by respective commercial kits;Western blot analysis was employed to determine the protein level of phosphor-Akt ( p-Akt) in the hippocampus. Results Osthole significantly improved learning and memory functions in diabetic groups.Additionally, the activities of AChE and inflam-matory cytokines including NF-κB p65, TNF-αand IL-1βand caspase-3 in the hippocampus were all remarkably decreased, while increased ChAT was found in diabetic rats.Furthermore, osthole also diminished the protein expression of p-Akt in diabetic rats.Conclusions Ost-hole exerts protective potential against DACD and this neuroprotection is associated with suppressing PI3K/Akt-mediated inflammation in dia-betic rats.It is likely to be a novel therapeutic drug for the treatment of diabetic patients with cognitive deficits in clinical practice.%目的 探讨蛇床子素( OST)对糖尿病脑病的神经保护作用及其分子机制. 方法 应用水迷宫实验检测OST对糖尿病大鼠模型学习记忆的影响;应用试剂盒法检测不同实验组海马中胆碱酯酶(AChE)和胆碱乙酰基转移酶(ChAT)、炎症因子(包括 NF-κB p65、TNF-α和 IL-1β)和caspase-3的活性;应用Western印迹方法检测检测不同实验组海马中磷酸化Akt( p-Akt)蛋白的表达. 结果 OST改善了糖尿病大鼠模型的学习记忆能力,降低了糖尿病大鼠模型组海马中AChE和炎症因子(包括NF-κB p65、TNF-α和IL-1β)及cascapse-3的活性(P<0.01),提高了ChAT的活性(P<0.01),降低了p-Akt蛋白的表达(P<0.01). 同时,当使用LY294002阻断PI3K后,OST抑制炎症的作用更

  9. Detecting inflammation and fibrosis in bowel wall with photoacoustic imaging in a Crohn's disease animal model

    Science.gov (United States)

    Xu, Guan; Johnson, Laura A.; Hu, Jack; Dillman, Jonathan R.; Higgins, Peter D. R.; Wang, Xueding

    2015-03-01

    Crohn's disease (CD) is an autoimmune disease affecting 700,000 people in the United States. This condition may cause obstructing intestinal narrowings (strictures) due to inflammation, fibrosis (deposition of collagen), or a combination of both. Utilizing the unique strong optical absorption of hemoglobin at 532 nm and collagen at 1370 nm, this study investigated the feasibility of non-invasively characterizing intestinal strictures using photoacoustic imaging (PAI). Three normal controls, ten pure inflammation and 9 inflammation plus fibrosis rat bowel wall samples were imaged. Statistical analysis of the PA measurements has shown the capability of discriminating the purely inflammatory from mixed inflammatory and fibrotic strictures.

  10. Small intestinal bacteria overgrowth decreases small intestinal motility in the NASH rats

    Institute of Scientific and Technical Information of China (English)

    Wan-Chun Wu; Wei Zhao; Sheng Li

    2008-01-01

    AIM: To explore the relationship between small intestinal motility and small intestinal bacteria overgrowth (SIBO) in Nonalcoholic steatohepatitis (NASH), and to investigate the effect of SIBO on the pathogenesis of NASH in rats. The effect of cidomycin in alleviating severity of NASH is also studied.METHODS: Forty eight rats were randomly divided into NASH group (n = 16), cidomycin group (n = 16)and control group (n = 16). Then each group were subdivided into small intestinal motility group (n = 8),bacteria group (n = 8) respectively. A semi-solid colored marker was used for monitoring small intestinal transit.The proximal small intestine was harvested under sterile condition and processed for quantitation for aerobes (E. coli) and anaerobes (Lactobacilli). Liver pathologic score was calculated to qualify the severity of hepatitis.Serum ALT, AST levels were detected to evaluate the severity of hepatitis.RESULTS: Small intestinal transit was inhibited in NASH group (P < 0.01). Rats treated with cidomycin had higher small intestine transit rate than rats in NASH group (P < 0.01). High fat diet resulted in quantitative alterations in the aerobes (E. coli) but not in the anoerobics (Lactobacill). There was an increase in the number of E. coli in the proximal small intestinal flora in NASH group than in control group (1.70 ± 0.12 log10 (CFU/g) vs 1.28 ± 0.07 log10 (CFU/g), P < 0.01). TNF-a concentration was significantly higher in NASH group than in control group (1.13±0.15 mmol/L vs 0.57±0.09 mmol/L, P < 0.01). TNF-α concentration was lower in cidomycin group than in NASH group (0.63±0.09 mmol/L vs 1.13 ± 0.15 mmol/L, P < 0.01). Treatment with cidomycin showed its effect by significantly lowering serum ALT, AST and TNF-α levels of NASH rats.CONCLUSION: SIBO may decrease small intestinal movement in NASH rats. SIBO may be an important pathogenesis of Nash. And treatment with cidomycin by mouth can alleviate the severity of NASH.

  11. Maintenance of a healthy trajectory of the intestinal microbiome during aging: A dietary approach

    NARCIS (Netherlands)

    Candela, M.; Biagi, E.; Brigidi, P.; O'Toole, P.W.; Vos, de W.M.

    2014-01-01

    Sharing an intense transgenomic metabolism with the host, the intestinal microbiota is an essential factor for several aspects of the human physiology. However, several age-related factors, such as changes diet, lifestyle, inflammation and frailty, force the deterioration of this intestinal microbio

  12. Characterizing intestinal strictures with acoustic resolution photoacoustic microscopy

    Science.gov (United States)

    Lei, Hao; Xu, Guan; Liu, Shengchun; Johnson, Laura A.; Moons, David S.; Higgins, Peter D. R.; Rice, Michael D.; Ni, Jun; Wang, Xueding

    2016-03-01

    Crohn's disease (CD) is an autoimmune disease, which may cause obstructing intestinal strictures due to inflammation, fibrosis (deposition of collagen), or a combination of both. Identifying the different stages of the disease progression is still challenging. In this work, we indicated the feasibility of non-invasively characterizing intestinal strictures using photoacoustic imaging (PAI), utilizing the uniquely optical absorption of hemoglobin and collagen. Surgically removed human intestinal stricture specimens were investigated with a prototype PAI system. 2D PA images with acoustic resolution at wavelength 532, 1210 and 1310 nm were formulated, and furthermore, the PA histochemical components images which show the microscopic distributions of histochemical components were solved. Imaging experiments on surgically removed human intestinal specimens has demonstrated the solved PA images were significantly different associated with the presence of fibrosis, which could be applied to characterize the intestinal strictures for given specimens.

  13. [Epithelial cell in intestinal homeostasis and inflammatory bowel diseases].

    Science.gov (United States)

    Zouiten-Mekki, Lilia; Serghini, Meriem; Fekih, Monia; Kallel, Lamia; Matri, Samira; Ben Mustapha, Nadia; Boubaker, Jalel; Filali, Azza

    2013-12-01

    Crohn's disease (CD) and ulcerative colitis (UC) are the principal inflammatory bowel diseases (IBD) which physiopathology is currently poorly elucidated. During these diseases, the participation of the epithelial cell in the installation and the perpetuation of the intestinal inflammation is now clearly implicated. In fact, the intestinal epithelium located at the interface between the internal environment and the intestinal luminal, is key to the homeostatic regulation of the intestinal barrier. This barrier can schematically be regarded as being three barriers in one: a physical, chemical and immune barrier. The barrier function of epithelial cell can be altered by various mechanisms as occurs in IBD. The goal of this article is to review the literature on the role of the epithelial cell in intestinal homeostasis and its implication in the IBD. PMID:24356146

  14. Intestinal obstruction repair

    Science.gov (United States)

    Repair of volvulus; Intestinal volvulus - repair; Bowel obstruction - repair ... Intestinal obstruction repair is done while you are under general anesthesia . This means you are asleep and DO NOT feel pain. ...

  15. Large intestine (colon) (image)

    Science.gov (United States)

    ... portion of the digestive system most responsible for absorption of water from the indigestible residue of food. The ileocecal valve of the ileum (small intestine) passes material into the large intestine at the ...

  16. Small Intestine Disorders

    Science.gov (United States)

    Your small intestine is the longest part of your digestive system - about twenty feet long! It connects your stomach to ... many times to fit inside your abdomen. Your small intestine does most of the digesting of the foods ...

  17. Prospect of vasoactive intestinal peptide therapy for COPD/PAH and asthma: a review

    OpenAIRE

    Lee Dongwon; Wu Dongmei; Sung Yong

    2011-01-01

    Abstract There is mounting evidence that pulmonary arterial hypertension (PAH), asthma and chronic obstructive pulmonary disease (COPD) share important pathological features, including inflammation, smooth muscle contraction and remodeling. No existing drug provides the combined potential advantages of reducing vascular- and bronchial-constriction, and anti-inflammation. Vasoactive intestinal peptide (VIP) is widely expressed throughout the cardiopulmonary system and exerts a variety of biolo...

  18. Intestinal barrier function in response to abundant or depleted mucosal glutathione in Salmonella-infected rats

    Directory of Open Access Journals (Sweden)

    Vink Carolien

    2009-04-01

    Full Text Available Abstract Background Glutathione, the main antioxidant of intestinal epithelial cells, is suggested to play an important role in gut barrier function and prevention of inflammation-related oxidative damage as induced by acute bacterial infection. Most studies on intestinal glutathione focus on oxidative stress reduction without considering functional disease outcome. Our aim was to determine whether depletion or maintenance of intestinal glutathione changes susceptibility of rats to Salmonella infection and associated inflammation. Rats were fed a control diet or the same diet supplemented with buthionine sulfoximine (BSO; glutathione depletion or cystine (glutathione maintenance. Inert chromium ethylenediamine-tetraacetic acid (CrEDTA was added to the diets to quantify intestinal permeability. At day 4 after oral gavage with Salmonella enteritidis (or saline for non-infected controls, Salmonella translocation was determined by culturing extra-intestinal organs. Liver and ileal mucosa were collected for analyses of glutathione, inflammation markers and oxidative damage. Faeces was collected to quantify diarrhoea. Results Glutathione depletion aggravated ileal inflammation after infection as indicated by increased levels of mucosal myeloperoxidase and interleukin-1β. Remarkably, intestinal permeability and Salmonella translocation were not increased. Cystine supplementation maintained glutathione in the intestinal mucosa but inflammation and oxidative damage were not diminished. Nevertheless, cystine reduced intestinal permeability and Salmonella translocation. Conclusion Despite increased infection-induced mucosal inflammation upon glutathione depletion, this tripeptide does not play a role in intestinal permeability, bacterial translocation and diarrhoea. On the other hand, cystine enhances gut barrier function by a mechanism unlikely to be related to glutathione.

  19. Obesity, inflammation, and the gut microbiota.

    Science.gov (United States)

    Cox, Amanda J; West, Nicholas P; Cripps, Allan W

    2015-03-01

    As the prevalence of obesity and associated disease continues to rise and concerns for the spiralling economic and social costs also escalate, innovative management strategies beyond primary prevention and traditional lifestyle interventions are urgently needed. The biological basis of disease is one avenue for further exploration in this context. Several key inflammatory markers have been consistently associated with both obesity and risk of adverse outcomes in obesity-associated diseases, which suggests that a persistent, low-grade, inflammatory response is a potentially modifiable risk factor. In this Review, we provide evidence supporting perturbation of the intestinal microbiota and changes in intestinal permeability as potential triggers of inflammation in obesity. Further characterisation of the mechanisms underpinning the triggers of such inflammatory responses in overweight and obese individuals could offer unique opportunities for intervention strategies to help ameliorate the risk of obesity-associated disease.

  20. Exercise, Inflammation and Aging

    OpenAIRE

    Jeffrey A Woods; Wilund, Kenneth R.; Martin, Stephen A.; Kistler, Brandon M.

    2011-01-01

    Aging results in chronic low grade inflammation that is associated with increased risk for disease, poor physical functioning and mortality. Strategies that reduce age-related inflammation may improve the quality of life in older adults. Regular exercise is recommended for older people for a variety of reasons including increasing muscle mass and reducing risk for chronic diseases of the heart and metabolic systems. Only recently has exercise been examined in the context of inflammation. This...

  1. ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice

    DEFF Research Database (Denmark)

    Kronqvist, Pauliina; Kawaguchi, Nobuko; Albrechtsen, Reidar;

    2002-01-01

    we examined the role of the transmembrane ADAM12, a disintegrin and metalloprotease, which is normally associated with development and regeneration of skeletal muscle. We demonstrate that ADAM12 overexpression in the dystrophin-deficient mdx mice alleviated the muscle pathology in these animals......, as evidenced by less muscle cell necrosis and inflammation, lower levels of serum creatine kinase, and less uptake of Evans Blue dye into muscle fibers. These studies demonstrate that ADAM12 directly or indirectly contributes to muscle cell regeneration, stability, and survival....

  2. poverty and poverty alleviation in globalised cities

    OpenAIRE

    Verena Ast

    2014-01-01

    In the light of increasing "division of the cities" and its underlying process of socio-spatial segregation researches focus more and more on the consequences of this process: the development of advantaged and disadvantaged districts within contemporary cities. Thereby especially poverty alleviation respectively poverty eradication in disadvantaged districts becomes an emerging and central field of intervention in social policies. This is due to the broad impact of poverty like higher risk of...

  3. Eicosapentaenoic Acid Enhances Heat Stress-Impaired Intestinal Epithelial Barrier Function in Caco-2 Cells

    OpenAIRE

    Guizhen Xiao; Liqun Tang; Fangfang Yuan; Wei Zhu; Shaoheng Zhang; Zhifeng Liu; Yan Geng; Xiaowen Qiu; Yali Zhang; Lei Su

    2013-01-01

    OBJECTIVE: Dysfunction of the intestinal epithelial tight junction (TJ) barrier is known to have an important etiologic role in the pathophysiology of heat stroke. N-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a role in maintaining and protecting the TJ structure and function. This study is aimed at investigating whether n-3 PUFAs could alleviate heat stress-induced dysfunction of intestinal tight junction. METHODS: Human i...

  4. Intestinal alkaline phosphatase: a summary of its role in clinical disease.

    Science.gov (United States)

    Fawley, Jason; Gourlay, David M

    2016-05-01

    Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP's physiologic function, mechanisms of action and current research in specific surgical diseases.

  5. Intestinal tuberkulose, en sjælden differentialdiagnose til Crohns sygdom hos en etnisk dansker

    DEFF Research Database (Denmark)

    Alexandraki, Maria Joanna; Wejse, Christian; Esbjørn, Mette;

    2015-01-01

    We report a case of intestinal tuberculosis in a 42-year-old Danish woman with stomach pain, weight loss and diarrhoea for months suspective of Crohn‘s disease. She underwent hysterectomy where white, small nodules were found on the small intestine. Biopsies showed non-necrotizing granulomatous...... inflammation. Gastroscopy and colonoscopy were normal. Capsule endoscopy revealed small intestine ulcers and a stenosis. A CT scan of the abdomen confirmed stenosis and inflammation of terminal ileum. QuantiFERON-TB Gold Test was positive and Mycobacterium tuberculosis was detected in faeces cultures....

  6. Inflammation in pulmonary arterial hypertension.

    Science.gov (United States)

    Price, Laura C; Wort, S John; Perros, Frédéric; Dorfmüller, Peter; Huertas, Alice; Montani, David; Cohen-Kaminsky, Sylvia; Humbert, Marc

    2012-01-01

    Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling of the precapillary pulmonary arteries, with excessive proliferation of vascular cells. Although the exact pathophysiology remains unknown, there is increasing evidence to suggest an important role for inflammation. Firstly, pathologic specimens from patients with PAH reveal an accumulation of perivascular inflammatory cells, including macrophages, dendritic cells, T and B lymphocytes, and mast cells. Secondly, circulating levels of certain cytokines and chemokines are elevated, and these may correlate with a worse clinical outcome. Thirdly, certain inflammatory conditions such as connective tissue diseases are associated with an increased incidence of PAH. Finally, treatment of the underlying inflammatory condition may alleviate the associated PAH. Underlying pathologic mechanisms are likely to be "multihit" and complex. For instance, the inflammatory response may be regulated by bone morphogenetic protein receptor type 2 (BMPR II) status, and, in turn, BMPR II expression can be altered by certain cytokines. Although antiinflammatory therapies have been effective in certain connective-tissue-disease-associated PAH, this approach is untested in idiopathic PAH (iPAH). The potential benefit of antiinflammatory therapies in iPAH is of importance and requires further study. PMID:22215829

  7. Acute intestinal anisakiasis: CT findings.

    Science.gov (United States)

    Ozcan, H N; Avcu, S; Pauwels, W; Mortelé, K J; De Backer, A I

    2012-09-01

    Small bowel anisakiasis is a relatively uncommon disease that results from consumption of raw or insufficiently pickled, salted, smoked, or cooked wild marine fish infected with Anisakis larvae. We report a case of intestinal anisakiasis in a 63-year-old woman presenting with acute onset of abdominal complaints one day after ingestion of raw wild-caught herring from the Northsea. Computed tomography (CT) scanning demonstrated thickening of the distal small bowel wall, mucosa with hyperenhancement, mural stratification, fluid accumulation within dilated small-bowel loops and hyperemia of mesenteric vessels. In patients with a recent history of eating raw marine fish presenting with acute onset of abdominal complaints and CT features of acute small bowel inflammation the possibility of anisakiasis should be considered in the differential diagnosis of acute abdominal syndromes.

  8. In Vivo and In Vitro Antinociceptive Effect of Fagopyrum cymosum (Trev. Meisn Extracts: A Possible Action by Recovering Intestinal Barrier Dysfunction

    Directory of Open Access Journals (Sweden)

    Lina Liu

    2012-01-01

    Full Text Available Fagopyrum cymosum (Trev. Meisn (Fag is a herb rhizome which has been widely used to treat diseases. To investigate the effects and mechanisms of the Fag on irritable bowel syndrome (IBS, in vivo neonatal pups maternal separation (NMS combined with intracolonic infusion of acetic acid (AA was employed to establish IBS rat models. Fag reduced their visceral hyperalgesia and the whole gut permeability, ameliorated colonic mucosa inflammation and injury, and upregulated the expression of decreased tight junction proteins (TJs of claudin-1, occludin, and ZO-1 (except ZO-2 in colonic epithelium. Caco-2 monolayer cells were incubated with TNF-α and IFN-γ  in vitro to establish an epithelial barrier dysfunction model whose transepithelial electrical resistance (TER depended more on dose of Fag than that of the controls, and whose TJs levels were lower than those of the controls. Fag upregulated the NP-40 insoluble and soluble components of the four TJs markedly in a dose-dependent manner. These data suggest that Fag alleviated the hyperalgesia of IBS rats by reducing intestinal inflammation and enhancing mucosal epithelial function after regulating the structure and function of TJs.

  9. Low molecular weight fucoidan modulates P-selectin and alleviates diabetic nephropathy.

    Science.gov (United States)

    Xu, Yingjie; Zhang, Quanbin; Luo, Dali; Wang, Jing; Duan, Delin

    2016-10-01

    Diabetic nephropathy (DN) is a serious microvascular complication that can lead to chronic and end-stage renal failure. It is understood that inflammation is associated with the onset and process of DN. Low molecular weight fucoidan (LMWF) isolated from Saccharina japonica has anti-inflammatory properties. Therefore, this study aimed to explore the mechanism of LMWF in DN model induced by streptozotocin. The biochemical indices levels showed LMWF reduced the DN diagnostic indices to protect renal function. The HE stained sections exhibited LMWF protected normal morphological structures and reduced inflammatory cell infiltration in the kidneys of DN rats. Furthermore, the levels of P-selectin and selectin-dependent inflammatory cytokines resulting from LMWF were obviously decreased at both the transcriptional and protein levels. Thus, our results found that LMWF protected the renal function in DN rats and alleviated inflammation through the modulation of P-selectin and inflammatory cytokines. LMWF may have therapeutic potential against DN.

  10. Low molecular weight fucoidan modulates P-selectin and alleviates diabetic nephropathy.

    Science.gov (United States)

    Xu, Yingjie; Zhang, Quanbin; Luo, Dali; Wang, Jing; Duan, Delin

    2016-10-01

    Diabetic nephropathy (DN) is a serious microvascular complication that can lead to chronic and end-stage renal failure. It is understood that inflammation is associated with the onset and process of DN. Low molecular weight fucoidan (LMWF) isolated from Saccharina japonica has anti-inflammatory properties. Therefore, this study aimed to explore the mechanism of LMWF in DN model induced by streptozotocin. The biochemical indices levels showed LMWF reduced the DN diagnostic indices to protect renal function. The HE stained sections exhibited LMWF protected normal morphological structures and reduced inflammatory cell infiltration in the kidneys of DN rats. Furthermore, the levels of P-selectin and selectin-dependent inflammatory cytokines resulting from LMWF were obviously decreased at both the transcriptional and protein levels. Thus, our results found that LMWF protected the renal function in DN rats and alleviated inflammation through the modulation of P-selectin and inflammatory cytokines. LMWF may have therapeutic potential against DN. PMID:27234491

  11. Systemic and intestinal levels of factor XIII-A

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Kvist, Peter Helding; Seidelin, Jakob Benedict;

    2016-01-01

    BACKGROUND: Subunit A of coagulation factor XIII (FXIII-A) is important for clot stability and acts in the subsequent wound healing process. Loss of plasma FXIII-A has been reported after surgery, sepsis, and inflammatory conditions. In the intestinal mucosa, FXIII-A is expressed by macrophages...... the loss of both FXIII antigen and activity during active disease. CONCLUSIONS: Intestinal inflammation in UC induces loss of M2 macrophages with subsequent loss of FXIII-A synthesis. The loss of cellular FXIII-A may impact migration and phagocytosis, and hence limit pathogen eradication in UC....... and cellular FXIII-A has been associated with phagocytosis and migration of macrophages. The objective was to evaluate the consequences of intestinal inflammation on resident mucosal macrophages, focusing on the level and distribution of FXIII-A. METHODS: Plasma and colonic biopsies were collected from 67...

  12. Inflammation and coagulation

    NARCIS (Netherlands)

    M. Levi; T. van der Poll

    2010-01-01

    In the pathogenesis of sepsis, inflammation and coagulation play a pivotal role. Increasing evidence points to an extensive cross-talk between these two systems, whereby inflammation leads to activation of coagulation, and coagulation also considerably affects inflammatory activity. Molecular pathwa

  13. Tumor Necrosis Factor Induces Developmental Stage-Dependent Structural Changes in the Immature Small Intestine

    Directory of Open Access Journals (Sweden)

    Kathryn S. Brown

    2014-01-01

    Full Text Available Background. Premature infants are commonly subject to intestinal inflammation. Since the human small intestine does not reach maturity until term gestation, premature infants have a unique challenge, as either acute or chronic inflammation may alter the normal development of the intestinal tract. Tumor necrosis factor (TNF has been shown to acutely alter goblet cell numbers and villus length in adult mice. In this study we tested the effects of TNF on villus architecture and epithelial cells at different stages of development of the immature small intestine. Methods. To examine the effects of TNF-induced inflammation, we injected acute, brief, or chronic exposures of TNF in neonatal and juvenile mice. Results. TNF induced significant villus blunting through a TNF receptor-1 (TNFR1 mediated mechanism, leading to loss of villus area. This response to TNFR1 signaling was altered during intestinal development, despite constant TNFR1 protein expression. Acute TNF-mediated signaling also significantly decreased Paneth cells. Conclusions. Taken together, the morphologic changes caused by TNF provide insight as to the effects of inflammation on the developing intestinal tract. Additionally, they suggest a mechanism which, coupled with an immature immune system, may help to explain the unique susceptibility of the immature intestine to inflammatory diseases such as NEC.

  14. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation

    NARCIS (Netherlands)

    Jensen, K.D.C.; Wang, Y.; Tait Wonjo, E.D.; Shastri, A.J.; Hu, K.; Cornel, L.; Boedec, E.; Ong, Y.C.; Chien, Y.H.; Hunter, C.A.; Boothroyd, J.C.; Saeij, J.P.J.

    2011-01-01

    European and North American strains of the parasite Toxoplasma gondii belong to three distinct clonal lineages, type I, type II, and type III, which differ in virulence. Understanding the basis of Toxoplasma strain differences and how secreted effectors work to achieve chronic infection is a major g

  15. 吸入氢气对肠缺血再灌注大鼠脑氧化应激及炎症反应的影响%Effects of hydrogen gas inhalation on cerebral oxidative stress and inflammation after intestinal ischemia/reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    陈烨; 黄国庆; 周述芝; 周军; 吴刚明; 欧册华; 王晓斌

    2014-01-01

    Objective To investigate the effects of hydrogen gas inhalation on cerebral oxidative stress and inflammation after intestinal ischemia/reperfusion (I/R) in rats and to understand the mechanism of(I/R neuroprotection.Method Forty-eight healthy male SD rats weighing 285-350 g were randomly allocated to one of 3 groups (n =16 each group):sham operation group (Sham),intestinal I/R group (I/R) and intestinal IR plus hydrogen gas inhalation group (IR + H2).The I/R model was produced by occlusion of superior mesenteric artery (SMA) for 90 min followed by reperfusion.Inhalation of 2% hydrogen gas was performed immediately after I/R for 3 h.All animals were sacrificed at 24 h after reperfusion in each group.Brain tissues of 8 animals in each group were harvested for detection of microglia by immunohistochemistry.The remaining 8 rats in each group were used for the following indicators analysis.The protein level of ionized calcium-binding adaptor molecular 1 (Iba-1,a marker of microglia) in the cortex was detected by Western blotting.The concentrations of ROS,MDA,IL-1β,IL-6,TNF-α,T-NOS,iNOS and NO in the cortex were measured.The MPO content and SOD activity were also measured.Result The Iba-1 staining was light in Sham group.However,the expression of Iba-1 was increased in I/R group,and H2 inhibited the expression of Iba-l.As compared with Sham group,the Iba-1 protein expression and the number of Iba-1 positive cells were increased significantly in I/R and I/R+ H2groups (P<0.01 or 0.05).As compared with Sham group,ROS,MDA,IL-1β,IL-6,TNF-α,T-NOS,iNOS and NO levels,and MPO activity were also increased in I/R and I/R + H2groups (P<0.01 or 0.05).As compared with I/R group,the above indicators in I/R + H2 group were markedly improved (P<0.05 or 0.01).Conclusion The inhalation H2 could inhibit intestinal I/R-induced activation of microglia and reduce cerebral oxidative stress and inflarnmatory response in rats.%目的 观察吸入氢气对肠缺血再灌注大鼠脑

  16. Triggers of airway inflammation.

    Science.gov (United States)

    Kerrebijn, K F

    1986-01-01

    Most asthmatics have hyperresponsive airways. This makes them more sensitive than non-asthmatics to bronchoconstricting environmental exposures which, in their turn, may enhance responsiveness. Airway inflammation is considered to be a key determinant of airway hyperresponsiveness: the fact that chronic airway inflammation in cystic fibrosis does not lead to airway hyperresponsiveness of any importance indicates, however, that the role of airway inflammation is complex and incompletely elucidated. The main inducers of airway inflammation are viral infections, antigens, occupational stimuli and pollutants. Although exercise, airway cooling and hyper- or hypotonic aerosols are potent stimuli of bronchoconstriction, it is questionable if airway inflammation is involved in their mode of action. Each of the above-mentioned stimuli is discussed, with emphasis laid on the relation of symptoms to mechanisms. PMID:3533597

  17. Therapeutic effect of JHPAD on intestinal adhesion

    Institute of Scientific and Technical Information of China (English)

    Fu Chun Chen; Guo Fu Cher; Jue Ming Lin

    2000-01-01

    AIM To observe the clinical effect of self-made Jinhuang Pingan Decoction (JHPAD) in treating intestinaladhesion.METHODS Among 580 cases of intestinal adhesion, 492 cases were treated with oral JHPAD alone; 88cases with incomplete intestinal obstruction were treated by gastrointestinal decompression, then givingconcentrated JHPAD through the GI tube as well as fluid replacement and anti-inflammation therapy.RESULTS Among 580 cases, 302 cases were cured, 232 cases, improved and 46 cases had no change, thetotal effective rate was 92.1%. In 492 patients treated with JHPAD alone, 264 cases had obvious effect, 202cases were improved and 26 cases had no effect, the total effective rate was 94.7%, and the corresponingresults in 88 cases treated with JHPAD and gastrointestinal decompression were 39 cases, 29 cases, 20 casesand 77.3% respectively. In addition, there was close relationship between the therapeutic efficacy anddisease course, and had significant statistical difference in therapeutic efficacy with the disease course of lessthan 30 d or over 12 m (x2=87.32, P<0.0001).CONCLUSION JHPAD has the effect of clearing heat, detoxication, anti-inflammation, relieving edema,analgesia, hemostasis and anti-adhesion in the treatment of intestinal adhesion. It has a satisfactory efficacyand no toxic reaction, so it is worthy to popularize in clinical practice.

  18. When Insult Is Added to Injury: Cross Talk between ILCs and Intestinal Epithelium in IBD

    Directory of Open Access Journals (Sweden)

    Esmé van der Gracht

    2016-01-01

    Full Text Available Inflammatory bowel disease (IBD is characterized by an impairment of the integrity of the mucosal epithelial barrier, which causes exacerbated inflammation of the intestine. The intestinal barrier is formed by different specialized epithelial cells, which separate the intestinal lumen from the lamina propria. In addition to its crucial role in protecting the body from invading pathogens, the intestinal epithelium contributes to intestinal homeostasis by its biochemical properties and communication to underlying immune cells. Innate lymphoid cells (ILCs are a recently described population of lymphocytes that have been implicated in both mucosal homeostasis and inflammation. Recent findings indicate a critical feedback loop in which damaged epithelium activates these innate immune cells to restore epithelial barrier function. This review will focus on the signalling pathways between damaged epithelium and ILCs involved in repair of the epithelial barrier and tissue homeostasis and the relationship of these processes with the control of IBD.

  19. Leukocyte Trafficking to the Small Intestine and Colon.

    Science.gov (United States)

    Habtezion, Aida; Nguyen, Linh P; Hadeiba, Husein; Butcher, Eugene C

    2016-02-01

    Leukocyte trafficking to the small and large intestines is tightly controlled to maintain intestinal immune homeostasis, mediate immune responses, and regulate inflammation. A wide array of chemoattractants, chemoattractant receptors, and adhesion molecules expressed by leukocytes, mucosal endothelium, epithelium, and stromal cells controls leukocyte recruitment and microenvironmental localization in intestine and in the gut-associated lymphoid tissues (GALTs). Naive lymphocytes traffic to the gut-draining mesenteric lymph nodes where they undergo antigen-induced activation and priming; these processes determine their memory/effector phenotypes and imprint them with the capacity to migrate via the lymph and blood to the intestines. Mechanisms of T-cell recruitment to GALT and of T cells and plasmablasts to the small intestine are well described. Recent advances include the discovery of an unexpected role for lectin CD22 as a B-cell homing receptor GALT, and identification of the orphan G-protein-coupled receptor 15 (GPR15) as a T-cell chemoattractant/trafficking receptor for the colon. GPR15 decorates distinct subsets of T cells in mice and humans, a difference in species that could affect translation of the results of mouse colitis models to humans. Clinical studies with antibodies to integrin α4β7 and its vascular ligand mucosal vascular addressin cell adhesion molecule 1 are proving the value of lymphocyte trafficking mechanisms as therapeutic targets for inflammatory bowel diseases. In contrast to lymphocytes, cells of the innate immune system express adhesion and chemoattractant receptors that allow them to migrate directly to effector tissue sites during inflammation. We review the mechanisms for innate and adaptive leukocyte localization to the intestinal tract and GALT, and discuss their relevance to human intestinal homeostasis and inflammation.

  20. Thrombomodulin: A Bifunctional Modulator of Inflammation and Coagulation in Sepsis

    Directory of Open Access Journals (Sweden)

    Takayuki Okamoto

    2012-01-01

    Full Text Available Deregulated interplay between inflammation and coagulation plays a pivotal role in the pathogenesis of sepsis. Therapeutic approaches that simultaneously target both inflammation and coagulation hold great promise for the treatment of sepsis. Thrombomodulin is an endogenous anticoagulant protein that, in cooperation with protein C and thrombin-activatable fibrinolysis inhibitor, serves to maintain the endothelial microenvironment in an anti-inflammatory and anticoagulant state. A recombinant soluble form of thrombomodulin has been approved to treat patients suffering from disseminated intravascular coagulation (DIC and has thus far shown greater therapeutic potential than heparin. A phase II clinical trial is currently underway in the USA to study the efficacy of thrombomodulin for the treatment of sepsis with DIC complications. This paper focuses on the critical roles that thrombomodulin plays at the intersection of inflammation and coagulation and proposes the possible existence of interactions with integrins via protein C. Finally, we provide a rationale for the clinical application of thrombomodulin for alleviating sepsis.

  1. The effect of dietary resistant starch type 2 on the microbiota and markers of gut inflammation in rural Malawi children

    Science.gov (United States)

    Resistant starch (RS) decreases intestinal inflammation in some settings. We tested the hypothesis that gut inflammation will be reduced with dietary supplementation with RS in rural Malawian children. Eighteen stunted 3-5-year-old children were supplemented with 8.5 g/day of RS type 2 for 4 weeks. ...

  2. Recent advances in basic and clinical aspects of inflammatory bowel disease: Which steps in the mucosal inflammation should we block for the treatment of inflammatory bowel disease?

    Institute of Scientific and Technical Information of China (English)

    Hitoshi Asakura; Kenji Suzuki; Terasu Honma

    2007-01-01

    There are four steps in the interaction between intestinal microbes and mucosal inflammation in genetically predisposed individuals from the viewpoints of basic and clinical aspects of inflammatory bowel disease (IBD). The first step is an interaction between intestinal microbes or their components and intestinal epithelial cells via receptors, the second step an interaction between macrophages and dendritic cells and mucosal lymphocytes, the third step an interaction between lymphocytes and vascular endothelial cells, and the fourth step an interaction between lymphocytes and granulocytes producing proinflammatory cytokines or free radicals and mucosal damage and repair. Recent therapeutic approaches for IBD aim to block these four steps in the intestinal inflammation of patients with IBD.

  3. Imaging of intestinal fibrosis: current challenges and future methods.

    Science.gov (United States)

    Stidham, Ryan W; Higgins, Peter Dr

    2016-08-01

    Crohn's disease (CD) activity assessments are dominated by inflammatory changes without discrete measurement of the coexisting fibrotic contribution to total bowel damage. Intestinal fibrosis impacts the development of severe structural complications and the overall natural history of CD. Measuring intestinal fibrosis is challenging and existing methods of disease assessment are unable to reliably distinguish fibrosis from inflammation. Both the immediate clinical need to measure fibrosis for therapeutic decision-making and the near-future need for tools to assess pipeline anti-fibrotic medications highlight the demand for biomarkers of fibrosis in CD. Developing non-invasive technologies exploit changes in intestinal perfusion, mechanical properties, and macromolecular content to provide quantitative markers of fibrosis. In this review of existing and experimental technologies for imaging intestinal fibrosis, we discuss the expanding capabilities of quantitative MR and ultrasound imaging, encouraging developments in non-invasive elastography, and emerging novel methods including photoacoustic imaging. PMID:27536361

  4. Intestinal mucosal adaptation

    OpenAIRE

    Drozdowski, Laurie; Thomson, Alan BR

    2006-01-01

    Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndrome, which occurs when the functional gut mass is reduced below the level necessary for adequate nutrient and water absorption. This condition may be congenital, or may be acquired as a result of a massive resection of the small bowel. Following resection, the intestine is capable...

  5. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Meda Anderson R.

    2001-01-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.

  6. Intestinal Pseudo-Obstruction

    Science.gov (United States)

    ... underlying illness, stop the medication, or do both. Nutritional Support People with intestinal pseudo-obstruction often need nutritional support to prevent malnutrition and weight loss. Enteral nutrition ...

  7. Intestinal mucosal adaptation

    Institute of Scientific and Technical Information of China (English)

    Laurie Drozdowski; Alan BR Thomson

    2006-01-01

    Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndrome, which occurs when the functional gut mass is reduced below the level necessary for adequate nutrient and water absorption. This condition may be congenital, or may be acquired as a result of a massive resection of the small bowel. Following resection, the intestine is capable of adaptation in response to enteral nutrients as well as other trophic stimuli. Identifying factors that may enhance the process of intestinal adaptation is an exciting area of research with important potential clinical applications.

  8. Breast milk, microbiota, and intestinal immune homeostasis.

    Science.gov (United States)

    Walker, W Allan; Iyengar, Rajashri Shuba

    2015-01-01

    Newborns adjust to the extrauterine environment by developing intestinal immune homeostasis. Appropriate initial bacterial colonization is necessary for adequate intestinal immune development. An environmental determinant of adequate colonization is breast milk. Although the full-term infant is developmentally capable of mounting an immune response, the effector immune component requires bacterial stimulation. Breast milk stimulates the proliferation of a well-balanced and diverse microbiota, which initially influences a switch from an intrauterine TH2 predominant to a TH1/TH2 balanced response and with activation of T-regulatory cells by breast milk-stimulated specific organisms (Bifidobacteria, Lactobacillus, and Bacteroides). As an example of its effect, oligosaccharides in breast milk are fermented by colonic bacteria producing an acid milieu for bacterial proliferation. In addition, short-chain fatty acids in breast milk activate receptors on T-reg cells and bacterial genes, which preferentially mediate intestinal tight junction expression and anti-inflammation. Other components of breast milk (defensins, lactoferrin, etc.) inhibit pathogens and further contribute to microbiota composition. The breast milk influence on initial intestinal microbiota also prevents expression of immune-mediated diseases (asthma, inflammatory bowel disease, type 1 diabetes) later in life through a balanced initial immune response, underscoring the necessity of breastfeeding as the first source of nutrition. PMID:25310762

  9. Multifocal stenosing ulceration of the small intestine

    Institute of Scientific and Technical Information of China (English)

    Hugh James Freeman

    2009-01-01

    Several reports have described an apparently uncommon clinicopathological disorder that is characterized by multifocal stenosing small-intestinal ulceration. Compared to Crohn's disease, the ulcers are not transmural and typically remain shallow, and involve only the mucosa and submucosa. The disorder seems to be localized in the jejunum and proximal ileum only, and not the distal ileum or colon. Only nonspecific inflammatory changes are present without giant cells or other typical features of granulomatous inflammation. Most patients present clinically with recurrent obstructive events that usually respond to steroids, surgical resection, or both. With the development of newer imaging modalities to visualize the small-intestinal mucosa, such as double-balloon enteroscopy, improved understanding of the long-term natural history of this apparently distinctive disorder should emerge.

  10. Estrogens, inflammation and cognition.

    Science.gov (United States)

    Au, April; Feher, Anita; McPhee, Lucy; Jessa, Ailya; Oh, Soojin; Einstein, Gillian

    2016-01-01

    The effects of estrogens are pleiotropic, affecting multiple bodily systems. Changes from the body's natural fluctuating levels of estrogens, through surgical removal of the ovaries, natural menopause, or the administration of exogenous estrogens to menopausal women have been independently linked to an altered immune profile, and changes to cognitive processes. Here, we propose that inflammation may mediate the relationship between low levels of estrogens and cognitive decline. In order to determine what is known about this connection, we review the literature on the cognitive effects of decreased estrogens due to oophorectomy or natural menopause, decreased estrogens' role on inflammation--both peripherally and in the brain--and the relationship between inflammation and cognition. While this review demonstrates that much is unknown about the intersection between estrogens, cognition, inflammation, we propose that there is an important interaction between these literatures.

  11. Orbital inflammation: Corticosteroids first.

    Science.gov (United States)

    Dagi Glass, Lora R; Freitag, Suzanne K

    2016-01-01

    Orbital inflammation is common, and may affect all ages and both genders. By combining a thorough history and physical examination, targeted ancillary laboratory testing and imaging, a presumptive diagnosis can often be made. Nearly all orbital inflammatory pathology can be empirically treated with corticosteroids, thus obviating the need for histopathologic diagnosis prior to initiation of therapy. In addition, corticosteroids may be effective in treating concurrent systemic disease. Unless orbital inflammation responds atypically or incompletely, patients can be spared biopsy.

  12. Extrathymically generated regulatory T cells control mucosal Th2 inflammation

    OpenAIRE

    Josefowicz, Steven Z.; Niec, Rachel E.; Kim, Hye Young; Treuting, Piper; Chinen, Takatoshi; Zheng, Ye; Umetsu, Dale T.; Rudensky, Alexander Y.

    2012-01-01

    A balance between pro- and anti-inflammatory mechanisms at mucosal interfaces, sites of constitutive exposure to microbes and non-microbial foreign substances, allows for efficient protection against pathogens yet prevents adverse inflammatory responses associated with allergy, asthma, and intestinal inflammation1. Regulatory T (Treg) cells prevent systemic and tissue-specific autoimmunity and inflammatory lesions at mucosal interfaces. These cells are generated in the thymus (tTreg cells) an...

  13. Effect of ecoimmunonutrition supports on maintenance of integrity of intestinal mucosal barrier in severe acute pancreatitis in dogs

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background One of the major causes of death in severe acute pancreatitis (SAP) is severe infection owing to bacterial translocation. Some clinical studies suggested that ecoimmunonutrition (EIN) as a new strategy had better treatment effect on SAP patients. But the experiment studies on the precise mechanism of the effect of EIN were less reported. In this study, we mainly investigated the effects of EIN on bacterial translocation in SAP model of dogs.Methods SAP was induced by retrograde infusion of 5% sodium taurocholate into the pancreatic duct in healthy hybrid dogs. The SAP dogs were supported with either parenteral nutrition (PN) or elemental enteral nutrition (EEN) or EIN. The levels of serum amylase, serum aminotransferase and plasma endotoxin were detected before and after pancreatitis induction. On the 7th day after nutrition supports, peritoneal fluid, mesenteric lymph nodes (MLN), liver, and pancreas were collected for bacterial culture with standard techniques to observe the incidence of bacterial translocation. Pathology changes of pancreas were analyzed by histopathologic grading and scoring of the severity of pancreas, and the degree of intestinal mucosal damage was assessed by measuring mucosal thickness, villus height, and crypt depth of ileum.Results Compared with PN and EEN, EIN significantly decreased the levels of serum amylase, serum aminotransferase, plasma endotoxin, and the incidence of bacterial translocation. Furthermore, compared with the others, the histology scores of inflammation in pancreas and the ileum injury (ileum mocosa thickness, villus height, and crypt depth) were significantly alleviated by EIN (P<0.05). Moreover, concerning liver function, the serum levels of alanine aminotransferase, aspartate aminotransferase and albumin were ameliorating significantly in the EIN group.Conclusion Our results suggested that EIN could maintain the integrity of intestinal mucosal barrier and reducing the incidence of bacterial translocation

  14. Alleviating Media Bias Through Intelligent Agent Blogging

    CERN Document Server

    Diaz-Aviles, Ernesto

    2009-01-01

    Consumers of mass media must have a comprehensive, balanced and plural selection of news to get an unbiased perspective; but achieving this goal can be very challenging, laborious and time consuming. News stories development over time, its (in)consistency, and different level of coverage across the media outlets are challenges that a conscientious reader has to overcome in order to alleviate bias. In this paper we present an intelligent agent framework currently facilitating analysis of the main sources of on-line news in El Salvador. We show how prior tools of text analysis and Web 2.0 technologies can be combined with minimal manual intervention to help individuals on their rational decision process, while holding media outlets accountable for their work.

  15. Alleviate Cellular Congestion Through Opportunistic Trough Filling

    Directory of Open Access Journals (Sweden)

    Yichuan Wang

    2014-04-01

    Full Text Available The demand for cellular data service has been skyrocketing since the debut of data-intensive smart phones and touchpads. However, not all data are created equal. Many popular applications on mobile devices, such as email synchronization and social network updates, are delay tolerant. In addition, cellular load varies significantly in both large and small time scales. To alleviate network congestion and improve network performance, we present a set of opportunistic trough filling schemes that leverage the time-variation of network congestion and delay-tolerance of certain traffic in this paper. We consider average delay, deadline, and clearance time as the performance metrics. Simulation results show promising performance improvement over the standard schemes. The work shed lights on addressing the pressing issue of cellular overload.

  16. Interleukin 19 reduces inflammation in chemically induced experimental colitis.

    Science.gov (United States)

    Matsuo, Yukiko; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Kuramoto, Nobuyuki; Nishiyama, Kazuhiro; Yoshida, Natsuho; Ikeda, Yoshihito; Fujimoto, Yasuyuki; Nakajima, Hidemitsu; Takeuchi, Tadayoshi

    2015-12-01

    Inflammatory bowel disease results from chronic dysregulation of the mucosal immune system and aberrant activation of both the innate and adaptive immune responses. Interleukin (IL)-19, a member of the IL-10 family, functions as an anti-inflammatory cytokine. Here, we investigated the contribution of IL-19 to intestinal inflammation in a model of T cell-mediated colitis in mice. Inflammatory responses in IL-19-deficient mice were assessed using the 2,4,6-trinitrobenzene sulfonic acid (TNBS) model of acute colitis. IL-19 deficiency aggravated TNBS-induced colitis and compromised intestinal recovery in mice. Additionally, the exacerbation of TNBS-induced colonic inflammation following genetic ablation of IL-19 was accompanied by increased production of interferon-gamma, IL-12 (p40), IL-17, IL-22, and IL-33, and decreased production of IL-4. Moreover, the exacerbation of colitis following IL-19 knockout was also accompanied by increased production of CXCL1, G-CSF and CCL5. Using this model of induced colitis, our results revealed the immunopathological relevance of IL-19 as an anti-inflammatory cytokine in intestinal inflammation in mice.

  17. Congenital intestinal lymphangiectasia

    Directory of Open Access Journals (Sweden)

    Popović Dušan Đ.

    2011-01-01

    Full Text Available Background. Congenital intestinal lymphangiectasia is a disease which leads to protein losing enteropathy. Tortous, dilated lymphatic vessels in the intestinal wall and mesenterium are typical features of the disease. Clinical manifestations include malabsorption, diarrhea, steatorrhea, edema and effusions. Specific diet and medication are required for disease control. Case report. A 19-year old male patient was hospitalized due to diarrhea, abdominal swelling, weariness and fatigue. Physical examination revealed growth impairment, ascites, and lymphedema of the right hand and forearm. Laboratory assessment indicated iron deficiency anaemia, lymphopenia, malabsorption, inflammatory syndrome, and urinary infection. Enteroscopy and video capsule endoscopy demonstrated dilated lymphatic vessels in the small intestine. The diagnosis was confirmed by intestinal biopsy. The patient was put on high-protein diet containing medium-chain fatty acids, somatotropin and suportive therapy. Conclusion. Congenital intestinal lymphangiectasia is a rare disease, usually diagnosed in childhood. Early recognition of the disease and adequate treatment can prevent development of various complications.

  18. Inflammation and keratoconus.

    Science.gov (United States)

    McMonnies, Charles W

    2015-02-01

    Keratoconus (KC) has been traditionally classified as a noninflammatory disease. Barring loss of function, the other classic signs of inflammation (heat, redness, swelling, pain) are not usually obvious or even apparent in KC. This clinical perspective examines the evidence and implications of numerous inflammatory processes that have been recognized in the tears of KC patients as well as some inflammation relevant differences found in the KC cornea. The roles of inflammation in corneal trauma attributed to eye rubbing and/or contact lens wear are examined as is the significance of atopy, allergic disease, dry eye disease, degradative enzyme activity, wound healing, reduced anti-inflammatory capacity, and ultraviolet irradiation. It is possible that any comorbidity that is inflammatory in nature may add synergistically to other forms of KC-related inflammation and exacerbate its pathogenetic processes. For example, some features of inflammation in ocular rosacea and associated corneal thinning and distortion could have some possible relevance to KC. An analogy is drawn with osteoarthritis, which also involves significant inflammatory processes but, like KC, does not meet all the classic criteria for an inflammatory disease. Classifying KC as quasi-inflammatory (inflammatory-related) rather than a noninflammatory disease appears to be more appropriate and may help focus attention on the possibility of developing effective anti-inflammatory therapies for its management. PMID:25397925

  19. Infliximab treatment reduces tensile strength in intestinal anastomosis

    DEFF Research Database (Denmark)

    Jensen, Jonas Sanberg; Petersen, Nacie Bello; Biagini, Matteo;

    2015-01-01

    BACKGROUND: The antitumor necrosis factor (infliximab [IFX]) has gained widespread use in the treatment of inflammatory bowel disease. However, several patients must undergo surgical treatment due to treatment failure and there is a potential risk that preoperative IFX treatment may have a negative...... and should be investigated further as a potential risk factor of anastomotic dehiscence in inflammatory bowel disease surgery....... effect on the healing process in intestinal anastomosis. The objective of this study was to examine the effect of repeated IFX treatment on anastomotic strength and degree of inflammation in the anastomotic line in the small intestine of rabbits. METHODS: Thirty-two rabbits were randomized (2...

  20. Intestinal invagination Invaginación intestinal.

    Directory of Open Access Journals (Sweden)

    Dayamnelys Aguilar Atanay

    Full Text Available Intestinal intussusceptions are the most frequent cause of acute surgical occlusive syndrome in infants; it is idiopathic in more than 90% of cases. Their treatment can be conservative, with reduction by means of imaging and hydrostatic procedures, or surgical. We presented the Good Clinical Practices Guideline for Intestinal intussusceptions, approved by consensus in the 3th National Good Clinical Practices Workshop in Pediatric Surgery (Camagüey, Cuba; February 23 – 26, 2004.
    La invaginación intestinal es la causa más frecuente del síndrome de abdomen agudo quirúrgico oclusivo en lactantes y es idiopática en más del 90 % de los casos. Su tratamiento puede ser conservador, con reducción mediante procedimientos hidrostáticos combinados con vigilancia imaginológica, o quirúrgico. Se presenta la Guía de Buenas Prácticas Clínicas para invaginación intestinal, aprobada por consenso en el 3er Taller Nacional de Buenas Prácticas Clínicas en Cirugía Pediátrica (Camagüey, 23 al 26 de febrero de 2004.

  1. Sinonasal inflammation in COPD

    DEFF Research Database (Denmark)

    Håkansson, Kåre; Konge, Lars; Thomsen, Sf;

    2013-01-01

    In this review we demonstrate that patients with chronic obstructive pulmonary disease (COPD) frequently report sinonasal symptoms. Furthermore, we present evidence that smoking on its own can cause nasal disease, and that in COPD patients, nasal inflammation mimics that of the bronchi. All...... this evidence suggests that COPD related sinonasal disease does exist and that smoking on its own rather than systemic inflammation triggers the condition. However, COPD related sinonasal disease remains to be characterized in terms of symptoms and endoscopic findings. In addition, more studies are needed...

  2. Lactococcus lactis expressing food-grade β-galactosidase alleviates lactose intolerance symptoms in post-weaning Balb/c mice.

    Science.gov (United States)

    Li, Jingjie; Zhang, Wen; Wang, Chuan; Yu, Qian; Dai, Ruirui; Pei, Xiaofang

    2012-12-01

    The endogenous β-galactosidase expressed in intestinal microbes is demonstrated to help humans in lactose usage, and treatment associated with the promotion of beneficial microorganism in the gut is correlated with lactose tolerance. From this point, a kind of recombinant live β-galactosidase delivery system using food-grade protein expression techniques and selected probiotics as vehicle was promoted by us for the purpose of application in lactose intolerance subjects. Previously, a recombinant Lactococcus lactis MG1363 strain expressing food-grade β-galactosidase, the L. lactis MG1363/FGZW, was successfully constructed and evaluated in vitro. This study was conducted to in vivo evaluate its efficacy on alleviating lactose intolerance symptoms in post-weaning Balb/c mice, which were orally administered with 1 × 10⁶ CFU or 1 × 10⁸ CFU of L. lactis MG1363/FGZW daily for 4 weeks before lactose challenge. In comparison with naïve mice, the mice administered with L. lactis MG1363/FGZW showed significant alleviation of diarrhea symptoms in less total feces weight within 6 h post-challenge and suppressed intestinal motility after lactose challenge, although there was no significant increase of β-galactosidase activity in small intestine. The alleviation also correlated with higher species abundance, more Bifidobacterium colonization, and stronger colonization resistance in mice intestinal microflora. Therefore, this recombinant L. lactis strain effectively alleviated diarrhea symptom induced by lactose uptake in lactose intolerance model mice with the probable mechanism of promotion of lactic acid bacteria to differentiate and predominantly colonize in gut microbial community, thus making it a promising probiotic for lactose intolerance subjects.

  3. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Directory of Open Access Journals (Sweden)

    Ozkan Onal

    2015-01-01

    prevented intestine from ischemia reperfusion injury. It is thought that the therapeutic effect of ozone is associated with increase in antioxidant enzymes and protection of cells from oxidation and inflammation.

  4. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Science.gov (United States)

    Onal, Ozkan; Yetisir, Fahri; Sarer, A. Ebru Salman; Zeybek, N. Dilara; Onal, C. Oztug; Yurekli, Banu; Celik, H. Tugrul; Sirma, Ayse; Kılıc, Mehmet

    2015-01-01

    intestine from ischemia reperfusion injury. It is thought that the therapeutic effect of ozone is associated with increase in antioxidant enzymes and protection of cells from oxidation and inflammation. PMID:26161005

  5. Periostin in Allergic Inflammation

    Directory of Open Access Journals (Sweden)

    Kenji Izuhara

    2014-01-01

    Full Text Available Periostin, an extracellular matrix protein belonging to the fasciclin family, has been shown to play a critical role in the process of remodeling during tissue/organ development or repair. Periostin functions as a matricellular protein in cell activation by binding to their receptors on cell surface, thereby exerting its biological activities. After we found that periostin is a downstream molecule of interleukin (IL-4 and IL-13, signature cytokines of type 2 immune responses, we showed that periostin is a component of subepithelial fibrosis in bronchial asthma, the first formal proof that periostin is involved in allergic inflammation. Subsequently, a great deal of evidence has accumulated demonstrating the significance of periostin in allergic inflammation. It is of note that in skin tissues, periostin is critical for amplification and persistence of allergic inflammation by communicating between fibroblasts and keratinocytes. Furthermore, periostin has been applied to development of novel diagnostics or therapeutic agents for allergic diseases. Serum periostin can reflect local production of periostin in inflamed lesions induced by Th2-type immune responses and also can predict the efficacy of Th2 antagonists against bronchial asthma. Blocking the interaction between periostin and its receptor, αv integrin, or down-regulating the periostin expression shows improvement of periostin-induced inflammation in mouse models or in in vitro systems. It is hoped that diagnostics or therapeutic agents targeting periostin will be of practical use in the near future.

  6. Immunsystemet ved kronisk inflammation

    DEFF Research Database (Denmark)

    Bendtzen, Klaus

    2008-01-01

    Innate and adaptive immunity has evolved as a defence against infections and as an important repair mechanism after physical injury. If elimination of microbes and healing is not achieved, or if the immune system is dysregulated, chronic inflammation ensues. Immune cells become engaged in prolonged...

  7. Alleviating energy poverty for the world's poor

    International Nuclear Information System (INIS)

    Improving energy services for poor households in developing countries remains one of the most pressing challenges facing the development community. The dependence of these households on traditional forms of energy leads to significant health impacts as well as other major disbenefits, yet there has been little progress in meeting this challenge. This viewpoint argues for an 'energy-poverty alleviation' fund to help provide modern energy services to these households. It also proposes an approach through which to create such a fund, namely by introducing an incremental levy on petroleum. Notably, this scheme does not need a global agreement since a levy could be introduced by major oil-exporting countries. The implementation of this mechanism would result in a climate-friendly outcome (even before taking into account the elimination of products of incomplete combustion resulting from the traditional household use of biomass-based fuels) while providing immense socio-economic benefits to the world's poor. Such an approach would allow significant progress on the sustainable development front while reducing global greenhouse gas emissions, and therefore is very much consistent with the United Nations Framework Convention on Climate Change

  8. An Online Alternative to Alleviate Communication Apprehension

    Directory of Open Access Journals (Sweden)

    Seyit Ahmet Çapan

    2013-05-01

    Full Text Available Anxiety is an affective factor commonly associated with one’s overall performance in a foreign language. As a component of foreign language anxiety, communication apprehension specifically correlates with successful oral production. A plethora of research (Bailey, Onwuegbuzie & Daley, 2003; Foss & Reitzel, 1988 has indicated that high levels of communication apprehension negatively affects one’s L2 communication abilities. Thus, this study intends to remedy negative effects of communication apprehension on EFL learners by virtual meetings held through computer-mediated communication. The participants (N: 18 in this study were selected through purposive sampling. The study employed both quantitative and qualitative techniques. To analyze the data collected, a non-parametric test, Wilcoxon Signed Rank Test, was utilized. The results indicated that computer-mediated communication via voice over IP tools made a significant contribution to alleviate communication apprehension levels in the participants with varying degrees of apprehension levels. The study yielded the most drastic reduction in the high apprehension group, since the participants in this group made a significant progress and ended up with moderate levels of communication apprehension. Also, the participants’ self-reports revealed that computer-mediated communication yielded remarkably positive changes in their attitudes towards communicating in the target language. Moreover, the study revealed that computer-mediated communication helped to increase their intercultural awareness. Finally, participants provided a bunch of practical suggestions as possible solutions for reducing communication apprehension.Keywords: apprehension, communication, computer-mediated, attitudes

  9. An Advanced Buffet Load Alleviation System

    Science.gov (United States)

    Burnham, Jay K.; Pitt, Dale M.; White, Edward V.; Henderson, Douglas A.; Moses, Robert W.

    2001-01-01

    This paper describes the development of an advanced buffet load alleviation (BLA) system that utilizes distributed piezoelectric actuators in conjunction with an active rudder to reduce the structural dynamic response of the F/A-18 aircraft vertical tails to buffet loads. The BLA system was defined analytically with a detailed finite-element-model of the tail structure and piezoelectric actuators. Oscillatory aerodynamics were included along with a buffet forcing function to complete the aeroservoelastic model of the tail with rudder control surface. Two single-input-single-output (SISO) controllers were designed, one for the active rudder and one for the active piezoelectric actuators. The results from the analytical open and closed loop simulations were used to predict the system performance. The objective of this BLA system is to extend the life of vertical tail structures and decrease their life-cycle costs. This system can be applied to other aircraft designs to address suppression of structural vibrations on military and commercial aircraft.

  10. Small intestine (image)

    Science.gov (United States)

    The small intestine is the portion of the digestive system most responsible for absorption of nutrients from food into the bloodstream. The pyloric sphincter governs the passage of partly digested food ...

  11. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger;

    2004-01-01

    membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption......A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and....../or prodrugs to these carriers in order to increasing oral bioavailability and distribution. A number of absorptive intestinal transporters are described in terms of gene and protein classification, driving forces, substrate specificities and cellular localization. When targeting absorptive large capacity...

  12. Interferon-γ regulates intestinal epithelial homeostasis through converging β-catenin signaling pathways

    OpenAIRE

    Nava, Porfirio; Koch, Stefan; Laukoetter, Mike G.; Lee, Winston Y.; Kolegraff, Keli; Capaldo, Christopher T.; Beeman, Neal; Addis, Caroline; Gerner-Smidt, Kirsten; Neumaier, Irmgard; Skerra, Arne; Li, Linheng; Parkos, Charles A.; Nusrat, Asma

    2010-01-01

    Inflammatory cytokines have been proposed to regulate epithelial homeostasis during intestinal inflammation. We report here that interferon-γ (IFN-γ) regulates the crucial homeostatic functions of cell proliferation and apoptosis through serine-threonine protein kinase AKT-β-catenin and Wingless-Int (Wnt)-β-catenin signaling pathways. Short-term exposure of intestinal epithelial cells to IFN-γ resulted in activation of β-catenin through AKT, followed by induction of the secreted Wnt inhibitor...

  13. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity.

    Science.gov (United States)

    Estaki, Mehrbod; DeCoffe, Daniella; Gibson, Deanna L

    2014-11-14

    Intestinal alkaline phosphatase (IAP) plays an essential role in intestinal homeostasis and health through interactions with the resident microbiota, diet and the gut. IAP's role in the intestine is to dephosphorylate toxic microbial ligands such as lipopolysaccharides, unmethylated cytosine-guanosine dinucleotides and flagellin as well as extracellular nucleotides such as uridine diphosphate. IAP's ability to detoxify these ligands is essential in protecting the host from sepsis during acute inflammation and chronic inflammatory conditions such as inflammatory bowel disease. Also important in these complications is IAP's ability to regulate the microbial ecosystem by forming a complex relationship between microbiota, diet and the intestinal mucosal surface. Evidence reveals that diet alters IAP expression and activity and this in turn can influence the gut microbiota and homeostasis. IAP's ability to maintain a healthy gastrointestinal tract has accelerated research on its potential use as a therapeutic agent against a multitude of diseases. Exogenous IAP has been shown to have beneficial effects when administered during ulcerative colitis, coronary bypass surgery and sepsis. There are currently a handful of human clinical trials underway investigating the effects of exogenous IAP during sepsis, rheumatoid arthritis and heart surgery. In light of these findings IAP has been marked as a novel agent to help treat a variety of other inflammatory and infectious diseases. The purpose of this review is to highlight the essential characteristics of IAP in protection and maintenance of intestinal homeostasis while addressing the intricate interplay between IAP, diet, microbiota and the intestinal epithelium.

  14. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome.

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-07-21

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 10(14) cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  15. Intestinal Behcet's disease with pyoderma gangrenosum: A case report

    Institute of Scientific and Technical Information of China (English)

    Toshio Nakamura; Hiroaki Yagi; Kiyotaka Kurachi; Shohachi Suzuki; Hiroyuki Konno

    2006-01-01

    We report here a very rare case of intestinal Behcet's disease with pyoderma gangrenosum. A 16-year-old woman who was diagnosed with intestinal Behcet's disease by the presence of cutaneous pathergy together with two major criteria (oral and genital aphthoses) and one minor criterion (gastrointestinal manifestations), was referred to our hospital with a left lower leg ulcer and abdominal pain in September 1989. Colonoscopy demonstrated flare-up colitis involving the entire colon. Her lower leg lesion was a painful destructive ulcer with an irregular margin and a ragged overhanging edge. Based on these clinical and laboratory findings, we diagnosed her cutaneous ulcer as pyoderma gangrenosum developing with exacerbated intestinal Behcet's disease.Her cutaneous and intestinal lesions were poorly controlled though she received oral prednisolone treatment for a month. Because of aggravated abdominal symptoms with peritoneal irritation, we performed total colectomy in November 1989. The resected specimen was histologically compatible with intestinal Behcet's disease showing severe inflammation with deep ulcerations and neutrophil accumulation. Subsequently,pyoderma gangrenosum rapidly improved. This clinical course may suggest the close relationship between pyoderma gangrenosum and intestinal Behcet's disease.

  16. Pediatric intestinal motility disorders

    OpenAIRE

    Gfroerer, Stefan; Rolle, Udo

    2015-01-01

    Pediatric intestinal motility disorders affect many children and thus not only impose a significant impact on pediatric health care in general but also on the quality of life of the affected patient. Furthermore, some of these conditions might also have implications for adulthood. Pediatric intestinal motility disorders frequently present as chronic constipation in toddler age children. Most of these conditions are functional, meaning that constipation does not have an organic etiology, but i...

  17. The intestinal stem cell

    OpenAIRE

    Barker, Nick; van de Wetering, Marc; Clevers, Hans

    2008-01-01

    The epithelium of the adult mammalian intestine is in a constant dialog with its underlying mesenchyme to direct progenitor proliferation, lineage commitment, terminal differentiation, and, ultimately, cell death. The epithelium is shaped into spatially distinct compartments that are dedicated to each of these events. While the intestinal epithelium represents the most vigorously renewing adult tissue in mammals, the stem cells that fuel this self-renewal process have been identified only rec...

  18. Arctigenin alleviates ER stress via activating AMPK

    Institute of Scientific and Technical Information of China (English)

    Yuan GU; Xiao-xiao SUN; Ji-ming YE; Li HE; Shou-sheng YAN; Hao-hao ZHANG; Li-hong HU; Jun-ying YUAN; Qiang YU

    2012-01-01

    Aim:To investigate the protective effects of arctigenin (ATG),a phenylpropanoid dibenzylbutyrolactone lignan from Arctium lappa L (Compositae),against ER stress in vitro and the underlying mechanisms.Methods:A cell-based screening assay for ER stress regulators was established.Cell viability was measured using MTT assay.PCR and Western blotting were used to analyze gene and protein expression.Silencing of the CaMKKβ,LKB1,and AMPKα1 genes was achieved by RNA interference (RNAi).An ATP bioluminescent assay kit was employed to measure the intracellular ATP levels.Results:ATG (2.5,5,and 10 μmol/L) inhibited cell death and unfolded protein response (UPR) in a concentration-dependent manner in cells treated with the ER stress inducer brefeldin A (100 nmol/L).ATG (1,5,and 10 μmol/L) significantly attenuated protein synthesis in cells through inhibiting mTOR-p7OS6K signaling and eEF2 activity,which were partially reversed by silencing AMPKα1 with RNAi.ATG (1-50 μmol/L) reduced intracellular ATP level and activated AMPK through inhibiting complex I-mediated respiration.Pretreatment of cells with the AMPK inhibitor compound C (25 μmol/L) rescued the inhibitory effects of ATG on ER stress.Furthermore,ATG (2.5 and 5μmol/L) efficiently activated AMPK and reduced the ER stress and cell death induced by palmitate (2 mmol/L) in INS-1 β cells.Conclusion:ATG is an effective ER stress alleviator,which protects cells against ER stress through activating AMPK,thus attenuating protein translation and reducing ER load.

  19. Agent Reward Shaping for Alleviating Traffic Congestion

    Science.gov (United States)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.

  20. COPD exacerbations, inflammation and treatment

    NARCIS (Netherlands)

    Bathoorn, Derk

    2007-01-01

    This thesis describes investigations into the inflammation in COPD, and its treatment. Inflammation in COPD is a central factor in the onset of the disease and its progression. During acute deteriorations of the disease, exacerbations, the inflammation is more severe, and depending on the cause of t

  1. Regulation of intestinal health and disease by innate lymphoid cells.

    Science.gov (United States)

    Sonnenberg, Gregory F

    2014-09-01

    Innate lymphoid cells (ILCs) are a recently appreciated immune cell population that is constitutively found in the healthy mammalian gastrointestinal (GI) tract and associated lymphoid tissues. Translational studies have revealed that alterations in ILC populations are associated with GI disease in patients, such as inflammatory bowel disease, HIV infection and colon cancer, suggesting a potential role for ILCs in either maintaining intestinal health or promoting intestinal disease. Mouse models identified that ILCs have context-dependent protective and pathologic functions either during the steady state, or following infection, inflammation or tissue damage. This review will discuss the associations of altered intestinal ILCs with human GI diseases, and the functional consequences of targeting ILCs in mouse models. Collectively, our current understanding of ILCs suggests that the development of novel therapeutic strategies to modulate ILC responses will be of significant clinical value to prevent or treat human GI diseases.

  2. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability

    Directory of Open Access Journals (Sweden)

    Karin ede Punder

    2015-05-01

    Full Text Available Chronic non-communicable diseases (NCDs are the leading causes of work absence, disability and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here we hypothesize that stresses (defined as homeostatic disturbances can induce low-grade inflammation by increasing the availability of water, sodium and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.

  3. Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis

    Directory of Open Access Journals (Sweden)

    Stefan H. Oehlers

    2012-07-01

    Exposure to retinoids for the treatment of acne has been linked to the etiology of inflammatory bowel disease (IBD. The intestinal mucus layer is an important structural barrier that is disrupted in IBD. Retinoid-induced alteration of mucus physiology has been postulated as a mechanism linking retinoid treatment to IBD; however, there is little direct evidence for this interaction. The zebrafish larva is an emerging model system for investigating the pathogenesis of IBD. Importantly, this system allows components of the innate immune system, including mucus physiology, to be studied in isolation from the adaptive immune system. This study reports the characterization of a novel zebrafish larval model of IBD-like enterocolitis induced by exposure to dextran sodium sulfate (DSS. The DSS-induced enterocolitis model was found to recapitulate several aspects of the zebrafish trinitrobenzene-sulfonic-acid (TNBS-induced enterocolitis model, including neutrophilic inflammation that was microbiota-dependent and responsive to pharmacological intervention. Furthermore, the DSS-induced enterocolitis model was found to be a tractable model of stress-induced mucus production and was subsequently used to identify a role for retinoic acid (RA in suppressing both physiological and pathological intestinal mucin production. Suppression of mucin production by RA increased the susceptibility of zebrafish larvae to enterocolitis when challenged with enterocolitic agents. This study illustrates a direct effect of retinoid administration on intestinal mucus physiology and, subsequently, on the progression of intestinal inflammation.

  4. Protective and pro-inflammatory roles of intestinal bacteria.

    Science.gov (United States)

    Reinoso Webb, Cynthia; Koboziev, Iurii; Furr, Kathryn L; Grisham, Matthew B

    2016-06-01

    The intestinal mucosal surface in all vertebrates is exposed to enormous numbers of microorganisms that include bacteria, archaea, fungi and viruses. Coexistence of the host with the gut microbiota represents an active and mutually beneficial relationship that helps to shape the mucosal and systemic immune systems of both mammals and teleosts (ray-finned fish). Due to the potential for enteric microorganisms to invade intestinal tissue and induce local and/or systemic inflammation, the mucosal immune system has developed a number of protective mechanisms that allow the host to mount an appropriate immune response to invading bacteria, while limiting bystander tissue injury associated with these immune responses. Failure to properly regulate mucosal immunity is thought to be responsible for the development of chronic intestinal inflammation. The objective of this review is to present our current understanding of the role that intestinal bacteria play in vertebrate health and disease. While our primary focus will be humans and mice, we also present the new and exciting comparative studies being performed in zebrafish to model host-microbe interactions. PMID:26947707

  5. Hydroxyethyl starch (HES 130/0.4 impairs intestinal barrier integrity and metabolic function: findings from a mouse model of the isolated perfused small intestine.

    Directory of Open Access Journals (Sweden)

    Yuk Lung Wong

    Full Text Available The application of hydroxyethyl starch (HES for volume resuscitation is controversially discussed and clinical studies have suggested adverse effects of HES substitution, leading to increased patient mortality. Although, the intestine is of high clinical relevance and plays a crucial role in sepsis and inflammation, information about the effects of HES on intestinal function and barrier integrity is very scarce. We therefore evaluated the effects of clinically relevant concentrations of HES on intestinal function and barrier integrity employing an isolated perfused model of the mouse small intestine.An isolated perfused model of the mouse small intestine was established and intestines were vascularly perfused with a modified Krebs-Henseleit buffer containing 3% Albumin (N=7 or 3% HES (130/0.4; N=7. Intestinal metabolic function (galactose uptake, lactate-to-pyruvate ratio, edema formation (wet-to-dry weight ratio, morphology (histological and electron microscopical analysis, fluid shifts within the vascular, lymphatic and luminal compartments, as well as endothelial and epithelial barrier permeability (FITC-dextran translocation were evaluated in both groups.Compared to the Albumin group, HES perfusion did not significantly change the wet-to-dry weight ratio and lactate-to-pyruvate ratio. However, perfusing the small intestine with 3% HES resulted in a significant loss of vascular fluid (p<0.01, an increased fluid accumulation in the intestinal lumen (p<0.001, an enhanced translocation of FITC-dextran from the vascular to the luminal compartment (p<0.001 and a significantly impaired intestinal galactose uptake (p<0.001. Morphologically, these findings were associated with an aggregation of intracellular vacuoles within the intestinal epithelial cells and enlarged intercellular spaces.A vascular perfusion with 3% HES impairs the endothelial and epithelial barrier integrity as well as metabolic function of the small intestine.

  6. The intestine is a blender

    Science.gov (United States)

    Yang, Patricia; Lamarca, Morgan; Kravets, Victoria; Hu, David

    According to the U.S. Department of Health and Human Services, digestive disease affects 60 to 70 million people and costs over 140 billion annually. Despite the significance of the gastrointestinal tract to human health, the physics of digestion remains poorly understood. In this study, we ask a simple question: what sets the frequency of intestinal contractions? We measure the frequency of intestinal contractions in rats, as a function of distance down the intestine. We find that intestines Contract radially ten times faster than longitudinally. This motion promotes mixing and, in turn, absorption of food products by the intestinal wall. We calculate viscous dissipation in the intestinal fluid to rationalize the relationship between frequency of intestinal contraction and the viscosity of the intestinal contents. Our findings may help to understand the evolution of the intestine as an ideal mixer.

  7. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis-induced periodontitis in mice.

    Science.gov (United States)

    Cai, Yu; Chen, ZhiBin; Liu, Hao; Xuan, Yan; Wang, XiaoXuan; Luan, QingXian

    2015-12-01

    Porphyromonas gingivalis causes inflammation, and leads to the periodontitis in gingival tissue damage and bone resorption. Epigallocatechin-3-gallate (EGCG) is a major polyphenol extract from green tea with plenty of pharmacological functions. The aim of this study was to determine whether continuous oral intake of EGCG would alleviate P. gingivalis-induced periodontitis. Eight-week BALB/c mice were administered with EGCG (0.02%) or vehicle in drinking water. They were fed normal food and orally infected with P. gingivalis every 2days, up to a total of 20 times, and then sacrificed at 15weeks of age. The P. gingivalis-challenged group markedly increased alveolar bone resorption of the maxillae in BALB/c mice by Micro-CT detection, and administration of EGCG resulted in a significant reduction in bone loss. Inflammation cytokine antibody array and enzyme linked immunosorbent assay revealed that some inflammatory mediators in serum were increased by P. gingivalis infection, but were lowered after EGCG treatment. High positive areas of IL-17 and IL-1β in the gingival tissue were observed in the P. gingivalis-challenged mice, and were reduced by EGCG treatment. Real-time polymerase chain reaction (PCR) analyses also showed the expressions of IL-1β, IL-6, IL-17, IL-23, TNF-α and other mediators in gingival tissue were higher in P. gingivalis-challenged mice, and were down-regulated with EGCG treatment, except IL-23. Our results suggest that EGCG, as a natural healthy substance, probably alleviates P. gingivalis-induced periodontitis by anti-inflammatory effect.

  8. Stress, Inflammation and Aging

    OpenAIRE

    Lavretsky, Helen; Newhouse, Paul A.

    2012-01-01

    This editorial provides a summary of the state of research on stress-related changes associated with aging and discuss how factors such as inflammation and sex steroid alterations may interact with psychosocial stress to affect the risk for mood and cognitive disturbance in older individuals. The authors provide an integrated summary of four studies reported in this issue of the journal and views on future direction in stress and aging research and interventions targeting resilience to stress.

  9. Myopia and Inflammation

    OpenAIRE

    Herbort, Carl P.; Marina Papadia; Piergiorgio Neri

    2011-01-01

    The correlation between myopia and intraocular inflammation has rarely been explored. The aim of this article is to review myopic changes induced by inflammatory diseases and inflammatory diseases related to myopia, followed by a discussion on inflammatory choroidal neovascularization. Clinical cases are used to illustrate these conditions. The review does not include inflammatory conditions caused by surgical interventions employed for treatment of myopia. Uveitic conditions that can induce ...

  10. Coagulation inhibitors in inflammation.

    Science.gov (United States)

    Esmon, C T

    2005-04-01

    Coagulation is triggered by inflammatory mediators in a number of ways. However, to prevent unwanted clot formation, several natural anticoagulant mechanisms exist, such as the antithrombin-heparin mechanism, the tissue factor pathway inhibitor mechanism and the protein C anticoagulant pathway. This review examines the ways in which these pathways are down-regulated by inflammation, thus limiting clot formation and decreasing the natural anti-inflammatory mechanisms that these pathways possess. PMID:15787615

  11. Obesity and metabolic inflammation

    OpenAIRE

    Xu, Haiyan

    2013-01-01

    Obesity epidemics affect 35.7% of adults and approximately 17% of children in the United States. Obesity has been associated with several health disorders, such as type 2 diabetes, cardiovascular diseases, fatty liver disease, and certain forms of cancer. Medical costs associated with obesity were estimated at $147 billion in 2008. Chronic tissue inflammation, particularly in adipose tissue, has been considered as a key underlying mechanism for the development of obesity-related metabolic syn...

  12. Hydrogen sulfide from a NaHS source attenuates dextran sulfate sodium (DSS)-induced inflammation via inhibiting nuclear factor-κB.

    Science.gov (United States)

    Chen, Xi; Liu, Xi-shuang

    2016-03-01

    This study investigated the alleviating effects of hydrogen sulfide (H2S), derived from sodium hydrosulfide (NaHS), on inflammation induced by dextran sulfate sodium (DSS) in both in vivo and in vitro models. We found that NaHS injection markedly decreased rectal bleeding, diarrhea, and histological injury in DSS-challenged mice. NaHS (20 μmol/L) reversed DSS-induced inhibition in cell viability in Caco-2 cells and alleviated pro-inflammation cytokine expression in vivo and in vitro, indicating an anti-inflammatory function for H2S. It was also found that H2S may regulate cytokine expression by inhibiting the nuclear factor-κB (NF-κB) signaling pathway. In conclusion, our results demonstrated that H2S alleviated DSS-induced inflammation in vivo and in vitro and that the signal mechanism might be associated with the NF-κB signaling pathway.

  13. Effects of adding fibrous feedstuffs to the diet of young pigs on growth performance, intestinal cytokines, and circulating acute phase proteins

    Science.gov (United States)

    The effects of adding fibrous feedstuffs on growth performance, intestinal cytokine expression, markers of inflammation, abundance of phosphorylated S6 kinase (S6K), and the expression of genes that control intestinal growth was evaluated in weanling pigs. Pigs (n = 120; 5.2 kg and 24 d of age) wer...

  14. Can Earth Sciences Help Alleviate Global Poverty?

    Science.gov (United States)

    Mutter, J. C.

    2004-12-01

    essential and could hold the key to making gains toward alleviating the burden of global poverty.

  15. Intestinal Malrotation: A Rare Cause of Small Intestinal Obstruction

    Directory of Open Access Journals (Sweden)

    Mesut Sipahi

    2014-01-01

    Full Text Available Background. The diagnosis of intestinal malrotation is established by the age of 1 year in most cases, and the condition is seldom seen in adults. In this paper, a patient with small intestinal malrotation-type intraperitoneal hernia who underwent surgery at an older age because of intestinal obstruction is presented. Case. A 73-year-old patient who presented with acute intestinal obstruction underwent surgery as treatment. Distended jejunum and ileum loops surrounded by a peritoneal sac and located between the stomach and transverse colon were determined. The terminal ileum had entered into the transverse mesocolon from the right lower part, resulting in kinking and subsequent segmentary obstruction. The obstruction was relieved, and the small intestines were placed into their normal position in the abdominal cavity. Conclusion. Small intestinal malrotations are rare causes of intestinal obstructions in adults. The appropriate treatment in these patients is placement of the intestines in their normal positions.

  16. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics

    Directory of Open Access Journals (Sweden)

    Sander eDe Kivit

    2014-02-01

    Full Text Available The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g. inflammatory bowel disease, irritable bowel syndrome (IBS, allergic gastroenteritis (e.g. eosinophilic gastroenteritis and allergic IBS and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLR play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation.

  17. Regulation of Intestinal Immune Responses through TLR Activation: Implications for Pro- and Prebiotics.

    Science.gov (United States)

    de Kivit, Sander; Tobin, Mary C; Forsyth, Christopher B; Keshavarzian, Ali; Landay, Alan L

    2014-01-01

    The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs) are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC) and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g., inflammatory bowel disease), irritable bowel syndrome (IBS), allergic gastroenteritis (e.g., eosinophilic gastroenteritis and allergic IBS), and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLRs play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation. PMID:24600450

  18. Dietary squid ink polysaccharide induces goblet cells to protect small intestine from chemotherapy induced injury.

    Science.gov (United States)

    Zuo, Tao; Cao, Lu; Xue, Changhu; Tang, Qing-Juan

    2015-03-01

    Gastrointestinal mucositis induced by chemotherapy is associated with alterations of intestinal barrier function due to the potential damage induced by anti-cancer drugs on the epithelial cells. Goblet cells, an important epithelial lining in the intestine, contribute to innate immunity by secreting mucin glycoproteins. Employing a mouse model of chemotherapy induced intestinal mucosal immunity injury by cyclophosphamide, we demonstrated for the first time that polysaccharide from the ink of Ommastrephes bartramii (OBP) enhanced Cyto18, which is a mucin expression in goblet cells. The up-regulation of mucins by OBP relied on the augmented quantity of goblet cells, but not on the changes in the ultrastructure of endoplasmic reticulum (ER). Our results may have important implications for enhanced immunopotentiation function of functional OBP on intestinal mucosal immunity against intestinal disorders involving inflammation and infection.

  19. The Role of IL-33 in Gut Mucosal Inflammation

    Directory of Open Access Journals (Sweden)

    Luca Pastorelli

    2013-01-01

    Full Text Available Interleukin (IL-33 is a recently identified cytokine belonging to the IL-1 family that is widely expressed throughout the body and has the ability to induce Th2 immune responses. In addition, IL-33 plays a key role in promoting host defenses against parasites through the expansion of a novel population of innate lymphoid cells. In recent years, a growing body of evidence has shown that the proinflammatory properties displayed by IL-33 are detrimental in several experimental models of inflammation; in others, however, IL-33 appears to have protective functions. In 2010, four different research groups consistently described the upregulation of IL-33 in patients with inflammatory bowel disease (IBD. Animal models of IBD were subsequently utilized in order to mechanistically determine the precise role of IL-33 in chronic intestinal inflammation, without, however, reaching conclusive evidence demonstrating whether IL-33 is pathogenic or protective. Indeed, data generated from these studies suggest that IL-33 may possess dichotomous functions, enhancing inflammatory responses on one hand and promoting epithelial integrity on the other. This review focuses on the available data regarding IL-33/ST2 in the physiological and inflammatory states of the gut in order to speculate on the possible roles of this novel IL-1 family member in intestinal inflammation.

  20. Preclinical Cancer Chemoprevention Studies Using Animal Model of Inflammation-Associated Colorectal Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Takuji Tanaka

    2012-07-01

    Full Text Available Inflammation is involved in all stages of carcinogenesis. Inflammatory bowel disease, such as ulcerative colitis and Crohn’s disease is a longstanding inflammatory disease of intestine with increased risk for colorectal cancer (CRC. Several molecular events involved in chronic inflammatory process are reported to contribute to multi-step carcinogenesis of CRC in the inflamed colon. They include over-production of free radicals, reactive oxygen and nitrogen species, up-regulation of inflammatory enzymes in arachidonic acid biosynthesis pathway, up-regulation of certain cytokines, and intestinal immune system dysfunction. In this article, firstly I briefly introduce our experimental animal models where colorectal neoplasms rapidly develop in the inflamed colorectum. Secondary, data on preclinical cancer chemoprevention studies of inflammation-associated colon carcinogenesis by morin, bezafibrate, and valproic acid, using this novel inflammation-related colorectal carcinogenesis model is described.

  1. Preclinical Cancer Chemoprevention Studies Using Animal Model of Inflammation-Associated Colorectal Carcinogenesis

    International Nuclear Information System (INIS)

    Inflammation is involved in all stages of carcinogenesis. Inflammatory bowel disease, such as ulcerative colitis and Crohn’s disease is a longstanding inflammatory disease of intestine with increased risk for colorectal cancer (CRC). Several molecular events involved in chronic inflammatory process are reported to contribute to multi-step carcinogenesis of CRC in the inflamed colon. They include over-production of free radicals, reactive oxygen and nitrogen species, up-regulation of inflammatory enzymes in arachidonic acid biosynthesis pathway, up-regulation of certain cytokines, and intestinal immune system dysfunction. In this article, firstly I briefly introduce our experimental animal models where colorectal neoplasms rapidly develop in the inflamed colorectum. Secondary, data on preclinical cancer chemoprevention studies of inflammation-associated colon carcinogenesis by morin, bezafibrate, and valproic acid, using this novel inflammation-related colorectal carcinogenesis model is described

  2. Preclinical Cancer Chemoprevention Studies Using Animal Model of Inflammation-Associated Colorectal Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takuji [Cytopatholgy Division, Tohkai Cytopathology Institute, Cancer Research and Prevention (TCI-CaRP), 5-1-2 Minami-uzura, Gifu 500-8285 (Japan); Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan)

    2012-07-16

    Inflammation is involved in all stages of carcinogenesis. Inflammatory bowel disease, such as ulcerative colitis and Crohn’s disease is a longstanding inflammatory disease of intestine with increased risk for colorectal cancer (CRC). Several molecular events involved in chronic inflammatory process are reported to contribute to multi-step carcinogenesis of CRC in the inflamed colon. They include over-production of free radicals, reactive oxygen and nitrogen species, up-regulation of inflammatory enzymes in arachidonic acid biosynthesis pathway, up-regulation of certain cytokines, and intestinal immune system dysfunction. In this article, firstly I briefly introduce our experimental animal models where colorectal neoplasms rapidly develop in the inflamed colorectum. Secondary, data on preclinical cancer chemoprevention studies of inflammation-associated colon carcinogenesis by morin, bezafibrate, and valproic acid, using this novel inflammation-related colorectal carcinogenesis model is described.

  3. [Small intestine bacterial overgrowth].

    Science.gov (United States)

    Leung Ki, E L; Roduit, J; Delarive, J; Guyot, J; Michetti, P; Dorta, G

    2010-01-27

    Small intestine bacterial overgrowth (SIBO) is a condition characterised by nutrient malabsorption and excessive bacteria in the small intestine. It typically presents with diarrhea, flatulence and a syndrome of malabsorption (steatorrhea, macrocytic anemia). However, it may be asymptomatic in the eldery. A high index of suspicion is necessary in order to differentiate SIBO from other similar presenting disorders such as coeliac disease, lactose intolerance or the irritable bowel syndrome. A search for predisposing factor is thus necessary. These factors may be anatomical (stenosis, blind loop), or functional (intestinal hypomotility, achlorydria). The hydrogen breath test is the most frequently used diagnostic test although it lacks standardisation. The treatment of SIBO consists of eliminating predisposing factors and broad-spectrum antibiotic therapy. PMID:20214190

  4. Small intestine aspirate and culture

    Science.gov (United States)

    ... ency/article/003731.htm Small intestine aspirate and culture To use the sharing features on this page, please enable JavaScript. Small intestine aspirate and culture is a lab test to check for infection ...

  5. Intestinal Failure (Short Bowel Syndrome)

    Science.gov (United States)

    ... the area where the intestine was reconnected N Kidney stones or gallstones due to poor absorption of calcium or bile How is intestinal failure treated? The diet needs to be adjusted according to the intestine’s ...

  6. Small intestine contrast injection (image)

    Science.gov (United States)

    ... and throat, through the stomach into the small intestine. When in place, contrast dye is introduced and ... means of demonstrating whether or not the small intestine is normal when abnormality is suspected.

  7. Alleviation of capsular formations on silicone implants in rats using biomembrane-mimicking coatings.

    Science.gov (United States)

    Park, Ji Ung; Ham, Jiyeon; Kim, Sukwha; Seo, Ji-Hun; Kim, Sang-Hyon; Lee, Seonju; Min, Hye Jeong; Choi, Sunghyun; Choi, Ra Mi; Kim, Heejin; Oh, Sohee; Hur, Ji An; Choi, Tae Hyun; Lee, Yan

    2014-10-01

    Despite their popular use in breast augmentation and reconstruction surgeries, the limited biocompatibility of silicone implants can induce severe side effects, including capsular contracture - an excessive foreign body reaction that forms a tight and hard fibrous capsule around the implant. This study examines the effects of using biomembrane-mimicking surface coatings to prevent capsular formations on silicone implants. The covalently attached biomembrane-mimicking polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), prevented nonspecific protein adsorption and fibroblast adhesion on the silicone surface. More importantly, in vivo capsule formations around PMPC-grafted silicone implants in rats were significantly thinner and exhibited lower collagen densities and more regular collagen alignments than bare silicone implants. The observed decrease in α-smooth muscle actin also supported the alleviation of capsular formations by the biomembrane-mimicking coating. Decreases in inflammation-related cells, myeloperoxidase and transforming growth factor-β resulted in reduced inflammation in the capsular tissue. The biomembrane-mimicking coatings used on these silicone implants demonstrate great potential for preventing capsular contracture and developing biocompatible materials for various biomedical applications.

  8. Small intestinal bacterial overgrowth syndrome

    Institute of Scientific and Technical Information of China (English)

    Jan; Bures; Jiri; Cyrany; Darina; Kohoutova; Miroslav; Frstl; Stanislav; Rejchrt; Jaroslav; Kvetina; Viktor; Vorisek; Marcela; Kopacova

    2010-01-01

    Human intestinal microbiota create a complex polymi-crobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO).SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastro-intestinal tract. There...

  9. Immune-epithelial crosstalk at the intestinal surface.

    Science.gov (United States)

    Wittkopf, Nadine; Neurath, Markus F; Becker, Christoph

    2014-03-01

    The intestinal tract is one of the most complex organs of the human body. It has to exercise various functions including food and water absorption, as well as barrier and immune regulation. These functions affect not only the gut itself, but influence the overall health of the organism. Diseases involving the gastrointestinal tract such as inflammatory bowel disease and colorectal cancer therefore severely affect the patient's quality of life and can become life-threatening. Intestinal epithelial cells (IECs) play an important role in intestinal inflammation, infection, and cancer development. IECs not only constitute the first barrier in the gut against the lumen, they also constantly signal information about the gut lumen to immune cells, thereby influencing their behaviour. In contrast, by producing various antimicrobial peptides, IECs shape the microbial community within the gut. IECs also respond to cytokines and other mediators of immune cells in the lamina propria. Interactions between epithelial cells and immune cells in the intestine are responsible for gut homeostasis, and modulations of this crosstalk have been reported in studies of gut diseases. This review discusses the wide field of immune-epithelial interactions and shows the importance of immune-epithelial crosstalk in the intestine to gut homeostasis and the overall health status. PMID:24469679

  10. Epithelial calcineurin controls microbiota-dependent intestinal tumor development.

    Science.gov (United States)

    Peuker, Kenneth; Muff, Stefanie; Wang, Jun; Künzel, Sven; Bosse, Esther; Zeissig, Yvonne; Luzzi, Giuseppina; Basic, Marijana; Strigli, Anne; Ulbricht, Andrea; Kaser, Arthur; Arlt, Alexander; Chavakis, Triantafyllos; van den Brink, Gijs R; Schafmayer, Clemens; Egberts, Jan-Hendrik; Becker, Thomas; Bianchi, Marco E; Bleich, André; Röcken, Christoph; Hampe, Jochen; Schreiber, Stefan; Baines, John F; Blumberg, Richard S; Zeissig, Sebastian

    2016-05-01

    Inflammation-associated pathways are active in intestinal epithelial cells (IECs) and contribute to the pathogenesis of colorectal cancer (CRC). Calcineurin, a phosphatase required for the activation of the nuclear factor of activated T cells (NFAT) family of transcription factors, shows increased expression in CRC. We therefore investigated the role of calcineurin in intestinal tumor development. We demonstrate that calcineurin and NFAT factors are constitutively expressed by primary IECs and selectively activated in intestinal tumors as a result of impaired stratification of the tumor-associated microbiota and toll-like receptor signaling. Epithelial calcineurin supports the survival and proliferation of cancer stem cells in an NFAT-dependent manner and promotes the development of intestinal tumors in mice. Moreover, somatic mutations that have been identified in human CRC are associated with constitutive activation of calcineurin, whereas nuclear translocation of NFAT is associated with increased death from CRC. These findings highlight an epithelial cell-intrinsic pathway that integrates signals derived from the commensal microbiota to promote intestinal tumor development. PMID:27043494

  11. Regulation of Inflammation by Short Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Renato T. Nachbar

    2011-10-01

    Full Text Available The short chain fatty acids (SCFAs acetate (C2, propionate (C3 and butyrate (C4 are the main metabolic products of anaerobic bacteria fermentation in the intestine. In addition to their important role as fuel for intestinal epithelial cells, SCFAs modulate different processes in the gastrointestinal (GI tract such as electrolyte and water absorption. These fatty acids have been recognized as potential mediators involved in the effects of gut microbiota on intestinal immune function. SCFAs act on leukocytes and endothelial cells through at least two mechanisms: activation of GPCRs (GPR41 and GPR43 and inhibiton of histone deacetylase (HDAC. SCFAs regulate several leukocyte functions including production of cytokines (TNF-α, IL-2, IL-6 and IL-10, eicosanoids and chemokines (e.g., MCP-1 and CINC-2. The ability of leukocytes to migrate to the foci of inflammation and to destroy microbial pathogens also seems to be affected by the SCFAs. In this review, the latest research that describes how SCFAs regulate the inflammatory process is presented. The effects of these fatty acids on isolated cells (leukocytes, endothelial and intestinal epithelial cells and, particularly, on the recruitment and activation of leukocytes are discussed. Therapeutic application of these fatty acids for the treatment of inflammatory pathologies is also highlighted.

  12. Control of neutrophil inflammation at mucosal surfacesby secreted epithelial products

    Directory of Open Access Journals (Sweden)

    Rose L. Szabady

    2013-07-01

    Full Text Available The human intestine is a large and delicately balanced organ, responsible for efficiently absorbing nutrients and selectively eliminating disease-causing pathogens. The gut architecture consists of a single layer of epithelial cells that forms a barrier against the food antigens and resident microbiota within the lumen. This barrier is augmented by a thick layer of mucus on the luminal side and an underlying lamina propria containing a resident population of immune cells. Attempted breaches of the intestinal barrier by pathogenic bacteria result in the rapid induction of a coordinated innate immune response that includes release of antimicrobial peptides, activation of pattern recognition receptors, and recruitment of various immune cells. In recent years, the role of epithelial cells in initiating this immune response has been increasingly appreciated. In particular, epithelial cells are responsible for the release of a variety of factors that attract neutrophils, the body’s trained bacterial killers. In this review we will highlight recent research that details a new understanding of how epithelial cells directionally secrete specific compounds at distinct stages of the inflammatory response in order to coordinate the immune response to intestinal microbes. In addition to their importance during the response to infection, evidence suggests that dysregulation of these pathways may contribute to pathologic inflammation during inflammatory bowel disease. Therefore, a continued understanding of the mechanisms by which epithelial cells control neutrophil migration into the intestine will have tremendous benefits in both the understanding of biological processes and the identification of potential therapeutic targets.

  13. CD137 facilitates the resolution of acute DSS-induced colonic inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Julia M Martínez Gómez

    Full Text Available BACKGROUND: CD137 and its ligand (CD137L are potent immunoregulatory molecules that influence activation, proliferation, differentiation and cell death of leukocytes. Expression of CD137 is upregulated in the lamina propria cells of Crohn's disease patients. Here, the role of CD137 in acute Dextran-Sodium-Sulfate (DSS-induced colitis in mice was examined. METHODS: We induced acute large bowel inflammation (colitis via DSS administration in CD137(-/- and wild-type (WT mice. Colitis severity was evaluated by clinical parameters (weight loss, cytokine secretion in colon segment cultures, and scoring of histological inflammatory parameters. Additionally, populations of lamina propria mononuclear cells (LPMNC and intraepithelial lymphocytes (IEL were characterized by flow cytometry. In a subset of mice, resolution of intestinal inflammation was evaluated 3 and 7 days after withdrawal of DSS. RESULTS: We found that both CD137(-/- and WT mice demonstrated a similar degree of inflammation after 5 days of DSS exposure. However, the resolution of colonic inflammation was impaired in the absence of CD137. This was accompanied by a higher histological score of inflammation, and increased release of the pro-inflammatory mediators granulocyte macrophage colony-stimulating factor (GM-CSF, CXCL1, IL-17 and IFN-γ. Further, there were significantly more neutrophils among the LPMNC of CD137(-/- mice, and reduced numbers of macrophages among the IEL. CONCLUSION: We conclude that CD137 plays an essential role in the resolution of acute DSS-induced intestinal inflammation in mice.

  14. Small Intestine Early Innate Immunity Response during Intestinal Colonization by Escherichia coli Depends on Its Extra-Intestinal Virulence Status.

    Science.gov (United States)

    Tourret, Jérôme; Willing, Benjamin P; Croxen, Matthew A; Dufour, Nicolas; Dion, Sara; Wachtel, Sarah; Denamur, Erick; Finlay, B Brett

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) strains live as commensals in the digestive tract of the host, but they can also initiate urinary tract infections. The aim of this work was to determine how a host detects the presence of a new UPEC strain in the digestive tract. Mice were orally challenged with UPEC strains 536 and CFT073, non-pathogenic strain K12 MG1655, and ΔPAI-536, an isogenic mutant of strain 536 lacking all 7 pathogenicity islands whose virulence is drastically attenuated. Intestinal colonization was measured, and cytokine expression was determined in various organs recovered from mice after oral challenge. UPEC strain 536 efficiently colonized the mouse digestive tract, and prior Enterobacteriaceae colonization was found to impact strain 536 colonization efficiency. An innate immune response, detected as the production of TNFα, IL-6 and IL-10 cytokines, was activated in the ileum 48 hours after oral challenge with strain 536, and returned to baseline within 8 days, without a drop in fecal pathogen load. Although inflammation was detected in the ileum, histology was normal at the time of cytokine peak. Comparison of cytokine secretion 48h after oral gavage with E. coli strain 536, CFT073, MG1655 or ΔPAI-536 showed that inflammation was more pronounced with UPECs than with non-pathogenic or attenuated strains. Pathogenicity islands also seemed to be involved in host detection, as IL-6 intestinal secretion was increased after administration of E. coli strain 536, but not after administration of ΔPAI-536. In conclusion, UPEC colonization of the mouse digestive tract activates acute phase inflammatory cytokine secretion but does not trigger any pathological changes, illustrating the opportunistic nature of UPECs. This digestive tract colonization model will be useful for studying the factors controlling the switch from commensalism to pathogenicity.

  15. Small Intestine Early Innate Immunity Response during Intestinal Colonization by Escherichia coli Depends on Its Extra-Intestinal Virulence Status

    Science.gov (United States)

    Willing, Benjamin P.; Croxen, Matthew A.; Dufour, Nicolas; Dion, Sara; Wachtel, Sarah; Denamur, Erick; Finlay, B. Brett

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) strains live as commensals in the digestive tract of the host, but they can also initiate urinary tract infections. The aim of this work was to determine how a host detects the presence of a new UPEC strain in the digestive tract. Mice were orally challenged with UPEC strains 536 and CFT073, non-pathogenic strain K12 MG1655, and ΔPAI-536, an isogenic mutant of strain 536 lacking all 7 pathogenicity islands whose virulence is drastically attenuated. Intestinal colonization was measured, and cytokine expression was determined in various organs recovered from mice after oral challenge. UPEC strain 536 efficiently colonized the mouse digestive tract, and prior Enterobacteriaceae colonization was found to impact strain 536 colonization efficiency. An innate immune response, detected as the production of TNFα, IL-6 and IL-10 cytokines, was activated in the ileum 48 hours after oral challenge with strain 536, and returned to baseline within 8 days, without a drop in fecal pathogen load. Although inflammation was detected in the ileum, histology was normal at the time of cytokine peak. Comparison of cytokine secretion 48h after oral gavage with E. coli strain 536, CFT073, MG1655 or ΔPAI-536 showed that inflammation was more pronounced with UPECs than with non-pathogenic or attenuated strains. Pathogenicity islands also seemed to be involved in host detection, as IL-6 intestinal secretion was increased after administration of E. coli strain 536, but not after administration of ΔPAI-536. In conclusion, UPEC colonization of the mouse digestive tract activates acute phase inflammatory cytokine secretion but does not trigger any pathological changes, illustrating the opportunistic nature of UPECs. This digestive tract colonization model will be useful for studying the factors controlling the switch from commensalism to pathogenicity. PMID:27096607

  16. Congenital intestinal atresia.

    Science.gov (United States)

    Davenport, M; Bianchi, A

    1990-09-01

    Surgery for infants with intestinal atresia has evolved along with the development of specialized neonatal surgical units. This once fatal condition now carries a better than 85% chance of survival and an excellent long-term prognosis. Recent advances in bowel preservation techniques have reduced morbidity and improved gut function in both the long and the short term. PMID:2257399

  17. Intestinal volvulus in cetaceans.

    Science.gov (United States)

    Begeman, L; St Leger, J A; Blyde, D J; Jauniaux, T P; Lair, S; Lovewell, G; Raverty, S; Seibel, H; Siebert, U; Staggs, S L; Martelli, P; Keesler, R I

    2013-07-01

    Intestinal volvulus was recognized as the cause of death in 18 cetaceans, including 8 species of toothed whales (suborder Odontoceti). Cases originated from 11 institutions from around the world and included both captive (n = 9) and free-ranging (n = 9) animals. When the clinical history was available (n = 9), animals consistently demonstrated acute dullness 1 to 5 days prior to death. In 3 of these animals (33%), there was a history of chronic gastrointestinal illness. The pathological findings were similar to those described in other animal species and humans, and consisted of intestinal volvulus and a well-demarcated segment of distended, congested, and edematous intestine with gas and bloody fluid contents. Associated lesions included congested and edematous mesentery and mesenteric lymph nodes, and often serofibrinous or hemorrhagic abdominal effusion. The volvulus involved the cranial part of the intestines in 85% (11 of 13). Potential predisposing causes were recognized in most cases (13 of 18, 72%) but were variable. Further studies investigating predisposing factors are necessary to help prevent occurrence and enhance early clinical diagnosis and management of the condition. PMID:23150643

  18. The intestinal stem cell.

    NARCIS (Netherlands)

    Barker, N.; van de Wetering, M.L.; Clevers, H.

    2008-01-01

    The epithelium of the adult mammalian intestine is in a constant dialog with its underlying mesenchyme to direct progenitor proliferation, lineage commitment, terminal differentiation, and, ultimately, cell death. The epithelium is shaped into spatially distinct compartments that are dedicated to ea

  19. Aging and the intestine

    Institute of Scientific and Technical Information of China (English)

    Laurie Drozdowski; Alan BR Thomson

    2006-01-01

    Over the lifetime of the animal, there are many changes in the function of the body's organ systems. In the gastrointestinal tract there is a general modest decline in the function of the esophagus, stomach, colon,pancreas and liver. In the small intestine, there may be subtle alterations in the intestinal morphology, as well as a decline in the uptake of fatty acids and sugars.The malabsorption may be partially reversed by aging glucagon-like peptide 2 (GLP2) or dexamethasone.Modifications in the type of lipids in the diet will influence the intestinal absorption of nutrients: for example, in mature rats a diet enriched with saturated as compared with polysaturated fatty acids will enhance lipid and sugar uptake, whereas in older animals the opposite effect is observed. Thus, the results of studies of the intestinal adaptation performed in mature rats does not necessarily apply in older animals. The age-associated malabsorption of nutrients that occurs with aging may be one of the several factors which contribute to the malnutrition that occurs with aging.

  20. Human intestinal flora and the induction of chronic arthritis : studies in an animal model.

    NARCIS (Netherlands)

    A.J. Severijnen

    1990-01-01

    textabstractThe etiology of rheumatoid arthritis (RA), a chronic joint inflammation, is unknown. A microbial involvement is suspected, but no particular microorganism has been incriminated. The human intestinal microflora is an abundant and continuous source of bacterial antigens and may be involved

  1. Myopia and Inflammation

    Directory of Open Access Journals (Sweden)

    Carl P Herbort

    2011-01-01

    Full Text Available The correlation between myopia and intraocular inflammation has rarely been explored. The aim of this article is to review myopic changes induced by inflammatory diseases and inflammatory diseases related to myopia, followed by a discussion on inflammatory choroidal neovascularization. Clinical cases are used to illustrate these conditions. The review does not include inflammatory conditions caused by surgical interventions employed for treatment of myopia. Uveitic conditions that can induce a myopic shift include sclero-choroidal inflammation, lens induced myopia due to steroid cataracts, juvenile idiopathic arthritis (JIA induced myopia, and transient drug induced myopia due to sulfonamides and acetazolamide used for treatment of ocular toxoplasmosis and inflammatory cystoid macular edema, respectively. Most inflammatory conditions related to myopia are conditions involving the choriocapillaris. These include multifocal choroiditis and/or punctate inner choroiditis, multiple evanescent white dot syndrome and acute idiopathic blind spot enlargement. It can be hypothesized that fragility of the choriocapillaris due to particular anatomic changes due to myopia, together with unknown immunogenetic factors predispose myopic eyes to primary inflammatory choriocapillaropathies.

  2. Myopia and inflammation.

    Science.gov (United States)

    Herbort, Carl P; Papadia, Marina; Neri, Piergiorgio

    2011-10-01

    The correlation between myopia and intraocular inflammation has rarely been explored. The aim of this article is to review myopic changes induced by inflammatory diseases and inflammatory diseases related to myopia, followed by a discussion on inflammatory choroidal neovascularization. Clinical cases are used to illustrate these conditions. The review does not include inflammatory conditions caused by surgical interventions employed for treatment of myopia. Uveitic conditions that can induce a myopic shift include sclero-choroidal inflammation, lens induced myopia due to steroid cataracts, juvenile idiopathic arthritis (JIA) induced myopia, and transient drug induced myopia due to sulfonamides and acetazolamide used for treatment of ocular toxoplasmosis and inflammatory cystoid macular edema, respectively. Most inflammatory conditions related to myopia are conditions involving the choriocapillaris. These include multifocal choroiditis and/or punctate inner choroiditis, multiple evanescent white dot syndrome and acute idiopathic blind spot enlargement. It can be hypothesized that fragility of the choriocapillaris due to particular anatomic changes due to myopia, together with unknown immunogenetic factors predispose myopic eyes to primary inflammatory choriocapillaropathies. PMID:22454750

  3. Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut.

    Science.gov (United States)

    Michielan, Andrea; D'Incà, Renata

    2015-01-01

    The pathogenesis of inflammatory bowel disease (IBD) is multifactorial with data suggesting the role of a disturbed interaction between the gut and the intestinal microbiota. A defective mucosal barrier may result in increased intestinal permeability which promotes the exposition to luminal content and triggers an immunological response that promotes intestinal inflammation. IBD patients display several defects in the many specialized components of mucosal barrier, from the mucus layer composition to the adhesion molecules that regulate paracellular permeability. These alterations may represent a primary dysfunction in Crohn's disease, but they may also perpetuate chronic mucosal inflammation in ulcerative colitis. In clinical practice, several studies have documented that changes in intestinal permeability can predict IBD course. Functional tests, such as the sugar absorption tests or the novel imaging technique using confocal laser endomicroscopy, allow an in vivo assessment of gut barrier integrity. Antitumor necrosis factor-α (TNF-α) therapy reduces mucosal inflammation and restores intestinal permeability in IBD patients. Butyrate, zinc, and some probiotics also ameliorate mucosal barrier dysfunction but their use is still limited and further studies are needed before considering permeability manipulation as a therapeutic target in IBD.

  4. Chronic Inflammation in Cancer Development

    OpenAIRE

    Multhoff, Gabriele; Molls, Michael; Radons, Jürgen

    2012-01-01

    Chronic inflammatory mediators exert pleiotropic effects in the development of cancer. On the one hand, inflammation favors carcinogenesis, malignant transformation, tumor growth, invasion, and metastatic spread; on the other hand inflammation can stimulate immune effector mechanisms that might limit tumor growth. The link between cancer and inflammation depends on intrinsic and extrinsic pathways. Both pathways result in the activation of transcription factors such as NF-κB, STAT-3, and HIF-...

  5. The crosstalk between gut inflammation and gastrointestinal disorders during acute pancreatitis.

    Science.gov (United States)

    Guo, Zhen-Zhen; Wang, Pu; Yi, Zhi-Hui; Huang, Zhi-Yin; Tang, Cheng-Wei

    2014-01-01

    The intestinal inflammation caused by intestinal ischemia reperfusion during acute pancreatitis (AP) often leads to multiple organ dysfunction and aggravation of acute pancreatitis. This review concerns up-date progress of the pathophysiology and molecular mechanism of the excessive production of gut-derived cytokines. The regulation effects of immuno-neuro-endocrine network for pancreatic necrosis are the basis for pharmacological therapeutic in AP. The translation from basic research to clinical trials for the prevention or treatment of severe acute pancreatitis (SAP) is of great value. Early enteral nutrition is necessary for the restitution, proliferation, and differentiation of the intestinal epithelial cells adjacent to the wounded area. Clearance of the excess intestinal bacteria and supplement of probiotics may be helpful to prevent bacterial translocation and infection of pancreas. PMID:23782148

  6. Interaction between food components, intestinal microbiota and intestinal mucosa as a function of intestinal health

    NARCIS (Netherlands)

    Venema, K.; Sandt, H. van de

    2003-01-01

    Interaction between food components, intestinal microbiota and intestinal mucosa was studied as a function of intestinal health. A microbiota was found to be important for the onset and progression of inflammatory diseases. Studies revealed a prominent effect of micro-organisms on the gene expressio

  7. Research Progress of Tourism-oriented Poverty Alleviation in China

    Institute of Scientific and Technical Information of China (English)

    Guoqing; HUANG; Pengfei; XIE

    2013-01-01

    Through systematic summary of domestic research documents about China’s tourism-oriented poverty alleviation in recent 10 years,it is found that researches mainly focus on 5 aspects:effect of tourism-oriented poverty alleviation,model and development strategy,benefit of poverty stricken people,practice of tourism-oriented poverty alleviation in specific region,and other related problems.At present,academic circle mainly has weak points of research content,method,object and region in tourism-oriented poverty alleviation.Finally,it points out key research interests:(1)Strengthening combination of qualitative and quantitative researches;(2)Expanding research fields and scope and promoting in-depth researches;(3)Analyzing benefiting mechanism of poverty-stricken people participating in tourism development in depth with poverty-stricken people as research objects;(4)Increasing scale development of perception research on effect of tourism-oriented poverty alleviation and research on measurement testing,to make subsequent research have reliability and comparability.

  8. Effect of Candida albicans on Intestinal Ischemia-reperfusion Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    Lei Yan; Chun-Rong Wu; Chen Wang; Chun-Hui Yang; Guang-Zhi Tong; Jian-Guo Tang

    2016-01-01

    Background:Inflammation is supposed to play a key role in the pathophysiological processes of intestinal ischemia-reperfusion injury (IIRI),and Candida albicans in human gut commonly elevates inflammatory cytokines in intestinal mucosa.This study aimed to explore the effect of C albicans on IIRI.Methods:Fifty female Wistar rats were divided into five groups according to the status of C albicans infection and IIRI operation:group blank and sham;group blank and IIRI;group cefoperazone plus IIRI;group C.albicans plus cefoperazone and IIRI (CCI);and group C.albicans plus cefoperazone and sham.The levels of inflammatory factors tumor necrosis factor (TNF)-α,interleukin (IL)-6,IL-1β,and diamine oxidase (DAO) measured by enzyme-linked immunosorbent assay were used to evaluate the inflammation reactivity as well as the integrity of small intestine.Histological scores were used to assess the mucosal damage,and the C albicans blood translocation was detected to judge the permeability of intestinal mucosal barrier.Results:The levels of inflammatory factors TNF-α,IL-6,and IL-1β in serum and intestine were higher in rats undergone both C.albicans infection and IIRI operation compared with rats in other groups.The levels of DAO (serum:44.13 ± 4.30 pg/ml,intestine:346.21 ± 37.03 pg/g) and Chiu scores (3.41 ± 1.09) which reflected intestinal mucosal disruption were highest in group CCI after the operation.The number of C.albicans translocated into blood was most in group CCI ([33.80 ± 6.60] × 102 colony forming unit (CFU)/ml).Conclusion:Intestinal C.albicans infection worsened the IIRI-induced disruption of intestinal mucosal barrier and facilitated the subsequent C.albicans translocation and dissemination.

  9. [Evaluation of nasal inflammation].

    Science.gov (United States)

    De La Torre Morín, F; Sánchez Machín, I

    2006-01-01

    In the reaction of immediate hypersensibility to alergene is joined to its specific type IgE antibody, also united to the high affinity receptors for IgE (FccI) of the effecters cells fundamentally mastocites and basophiles. The interbreeding of these molecules Fcc to RI, after the union ofpolyvalent antigenes to IgE, active these cells, producing three biologic responses: excitosis of the preformed content of its granules, synthesization of lipidic mediators and citoquine secretion. The inflammation mediators are in last term, substances responsible of the clinic symptomatology. They can be divided generally in preformed mediators (biogene amines and macromolecules of the granules) and of new synthese mediators (lipidic and citoquine mediators). PMID:16749721

  10. SOCS, inflammation and autoimmunity

    Directory of Open Access Journals (Sweden)

    Akihiko eYoshimura

    2012-03-01

    Full Text Available Cytokines play essential roles in innate and adaptive immunity. However, excess cytokines or dysregulation of cytokine signaling can cause a variety of diseases, including allergies, autoimmune diseases, inflammation, and cancer. Most cytokines utilize the so-called Janus kinase-signal transducers and activators of transcription (JAK-STAT pathway. This pathway is negatively regulated by various mechanisms including suppressors of cytokine signaling (SOCS proteins. SOCS proteins bind to JAK or cytokine receptors, thereby suppressing further signaling events. Especially, SOCS1 and SOCS3 are strong inhibitors of JAK, because these two contain kinase inhibitory region (KIR at the N-terminus. Studies using conditional knockout mice have shown that SOCS proteins are key physiological as well as pathological regulators of immune homeostasis. Recent studies have also demonstrated that SOCS1 and SOCS3 are important regulators of helper T cell differentiation and functions.

  11. Death in the intestinal epithelium-basic biology and implications for inflammatory bowel disease.

    Science.gov (United States)

    Blander, J Magarian

    2016-07-01

    Every 4-5 days, intestinal epithelial cells (IEC) are terminated as they reach the end of their life. This process ensures that the epithelium is comprised of the fittest cells that maintain an impermeable barrier to luminal contents and the gut microbiota, as well as the most metabolically able cells that conduct functions in nutrient absorption, digestion, and secretion of antimicrobial peptides. IEC are terminated by apical extrusion-or shedding-from the intestinal epithelial monolayer into the gut lumen. Whether death by apoptosis signals extrusion or death follows expulsion by younger IEC has been a matter of debate. Seemingly a minor detail, IEC death before or after apical extrusion bears weight on the potential contribution of apoptotic IEC to intestinal homeostasis as a consequence of their recognition by intestinal lamina propria phagocytes. In inflammatory bowel disease (IBD), excessive death is observed in the ileal and colonic epithelium. The precise mode of IEC death in IBD is not defined. A highly inflammatory milieu within the intestinal lamina propria, rich in the proinflammatory cytokine, TNF-α, increases IEC shedding and compromises barrier integrity fueling more inflammation. A milestone in the treatment of IBD, anti-TNF-α therapy, may promote mucosal healing by reversing increased and inflammation-associated IEC death. Understanding the biology and consequences of cell death in the intestinal epithelium is critical to the design of new avenues for IBD therapy.

  12. Lansoprazole ameliorates intestinal mucosal damage induced by ischemia-reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Ichikawa; Toshikazu Yoshikawa; Norimasa Yoshida; Tomohisa Takagi; Naoya Tomatsuri; Kazuhiro Katada; Yutaka Isozaki; Kazuhiko Uchiyama; Yuji Naito; Takeshi Okanoue

    2004-01-01

    AIM: To investigate the protective effect of lansoprazole on ischemia and reperfusion (I/R)-induced rat intestinal mucosal injury in vivo.METHODS: Intestinal damage was induced by clamping both the superior mesenteric artery and the celiac trunk for 30 min followed by reperfusion in male Sprague-Dawley rats. Lansoprazole was given to rats intraperitoneally 1 h before vascular clamping.RESULTS: Both the intraluminal hemoglobin and protein levels, as indices of mucosal damage, significantly increased in I/R-groups comparion with those of shamoperation groups. These increases in intraluminal hemoglobin and protein levels were significantly inhibited by the treatment with lansoprazole at a dose of 1 mg/kg. Small intestine exposed to I/R resulted in mucosal inflammation that was characterized by significant increases in thiobarbituric acidreactive substances (TBARS), tissue-associated myeloperoxidase activity (MPO), and mucosal content of rat cytokine-induced neutrophil chemoattractant-1 (CINC-1).These increases in TBARS, MPO activities and CINC-1 content in the intestinal mucosa after I/R were all inhibited by pretreatment with lansoprazole at a dose of 1 mg/kg.Furthermore, the CINC-1 mRNA expression was increased during intestinal I/R, and this increase in mRNA expression was inhibited by treatment with lansoprazole.CONCLUSION: Lansoprazole inhibits lipid peroxidation and reduces development of intestinal mucosal inflammation induced by I/R in rats, suggesting that lansoprazole may have a therapeutic potential for I/R injury.

  13. Death in the intestinal epithelium-basic biology and implications for inflammatory bowel disease.

    Science.gov (United States)

    Blander, J Magarian

    2016-07-01

    Every 4-5 days, intestinal epithelial cells (IEC) are terminated as they reach the end of their life. This process ensures that the epithelium is comprised of the fittest cells that maintain an impermeable barrier to luminal contents and the gut microbiota, as well as the most metabolically able cells that conduct functions in nutrient absorption, digestion, and secretion of antimicrobial peptides. IEC are terminated by apical extrusion-or shedding-from the intestinal epithelial monolayer into the gut lumen. Whether death by apoptosis signals extrusion or death follows expulsion by younger IEC has been a matter of debate. Seemingly a minor detail, IEC death before or after apical extrusion bears weight on the potential contribution of apoptotic IEC to intestinal homeostasis as a consequence of their recognition by intestinal lamina propria phagocytes. In inflammatory bowel disease (IBD), excessive death is observed in the ileal and colonic epithelium. The precise mode of IEC death in IBD is not defined. A highly inflammatory milieu within the intestinal lamina propria, rich in the proinflammatory cytokine, TNF-α, increases IEC shedding and compromises barrier integrity fueling more inflammation. A milestone in the treatment of IBD, anti-TNF-α therapy, may promote mucosal healing by reversing increased and inflammation-associated IEC death. Understanding the biology and consequences of cell death in the intestinal epithelium is critical to the design of new avenues for IBD therapy. PMID:27250564

  14. Activation of intestinal epithelial Stat3 orchestrates tissue defense during gastrointestinal infection.

    Directory of Open Access Journals (Sweden)

    Nadine Wittkopf

    Full Text Available Gastrointestinal infections with EHEC and EPEC are responsible for outbreaks of diarrheal diseases and represent a global health problem. Innate first-line-defense mechanisms such as production of mucus and antimicrobial peptides by intestinal epithelial cells are of utmost importance for host control of gastrointestinal infections. For the first time, we directly demonstrate a critical role for Stat3 activation in intestinal epithelial cells upon infection of mice with Citrobacter rodentium - a murine pathogen that mimics human infections with attaching and effacing Escherichia coli. C. rodentium induced transcription of IL-6 and IL-22 in gut samples of mice and was associated with activation of the transcription factor Stat3 in intestinal epithelial cells. C. rodentium infection induced expression of several antimicrobial peptides such as RegIIIγ and Pla2g2a in the intestine which was critically dependent on Stat3 activation. Consequently, mice with specific deletion of Stat3 in intestinal epithelial cells showed increased susceptibility to C. rodentium infection as indicated by high bacterial load, severe gut inflammation, pronounced intestinal epithelial cell death and dissemination of bacteria to distant organs. Together, our data implicate an essential role for Stat3 activation in intestinal epithelial cells during C. rodentium infection. Stat3 concerts the host response to bacterial infection by controlling bacterial growth and suppression of apoptosis to maintain intestinal epithelial barrier function.

  15. Gut microbiota as a key player in triggering obesity, systemic inflammation and insulin resistance.

    Science.gov (United States)

    Escobedo, Galileo; López-Ortiz, Eduardo; Torres-Castro, Israel

    2014-01-01

    Obesity-related systemic inflammation contributes to develop insulin resistance. The main factors involved in the relationship of obesity with systemic inflammation and insulin resistance have not been completely elucidated. Microbiota includes around 1013 to 1014 microbes harboring the human gut, which are clustered in approximately a thousand different bacterial species. Several studies suggest that imbalance in the intestinal bacterial population could result in obesity, systemic inflammation and metabolic dysfunction. Here, we review the main bacterial groups observed in obesity as well as their possible role in increasing the intestinal permeability and lipopolysaccharide-related endotoxemia. Furthermore, we point out the role of intestinal dysbiosis in the inflammatory activation of macrophages with the ability to infiltrate in the visceral adipose tissue and induce insulin resistance. Finally, we discuss the apparent beneficial use of prebiotics and probiotics in ameliorating both systemic inflammation and metabolic dysfunction. Present information may be useful in the future design of novel therapies focused on treating obesity and insulin resistance by restoring the gut microbiota balance.

  16. Embryological development of the intestine and necrotizing enterocolitis

    Directory of Open Access Journals (Sweden)

    Anna De Magistris

    2016-08-01

    Full Text Available It is possible to distinguish two phases in the development and maturation of the intestine: intra-uterine and extra-uterine. Up until the 13th week of the embryological phase, a fetus’ development is not controlled by factors external to the alimentary canal. It is instead guided by the homeotic genes that control the proliferation and differentiation during the embryogenesis.     A fetus’ interaction with the external environment starts with the perforation of the buccal membrane, when the fetus starts swallowing the amniotic fluid. Both in pathological and physiological conditions, the encounter with the microbiota – that surely happens at birth, but could happen before as well – furnishes to the developing intestine elements which are necessary and essential to the growth of the organ, the barrier function, and the specific and nonspecific immunity. The link between development, maturation and inflammation is very important and influences the entire intestinal homeostasis. In case of preterm birth, the immaturity of the system creates a proinflammatory environment where the tolerance of the commensal microbiota cannot be taken for granted, and the maternal milk is not always available. These grounds are preconditions for the Necrotizing Enterocolitis (NEC. NEC is a calamitous pathology for a preterm baby, able to increase mortality, morbidity and the length of hospitalization. This review aims at understanding how to prevent NEC. It will do so by analyzing the mechanisms of the development of the inflammation at intestinal level, and at the level of its regulation. Several evidences, both clinical and experimental, show that the main form of NEC prevention is the dispensation of maternal milk. Maternal milk allows a proper growth and development of the intestine, a proper settlement of the microbiota, and control over the intestinal inflammation. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th

  17. Intestinal Malakoplakia in Children

    Directory of Open Access Journals (Sweden)

    Fatemeh Mahjoub

    2008-04-01

    Full Text Available Objective: Malakoplakia is a rare inflammatory disease, related to enterobacterial infection in the context of a disorder of cell-mediated immunity. Malakoplakia is exceptional in children and usually involves the gastrointestinal tract. The diagnosis is exclusively based on histological analysis.Cases Presentation: In this paper we have reported 3 children with intestinal malakoplakia which were enrolled during a period of 6 years between 2001 to 2006 at Childrens Medical Center. Two were male, and one female. The main clinical manifestations were: chronic bloody and mucosal diarrhea, abdominal pain and polypoid masses detected by diagnostic colonoscopy. Histological diagnosis proved to be definite in these cases. The response to drug treatment with trimethoprim-sulfamthoxazole in all three patients was good. Conclusion: The presence of intestinal malakoplakia must be ruled out in every child having chronic bloody mucosal diarrhea.

  18. Intestinal sugar transport

    Institute of Scientific and Technical Information of China (English)

    Laurie A Drozdowski; Alan BR Thomson

    2006-01-01

    Carbohydrates are an important component of the diet.The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysaccharides. Most carbohydrates are digested by salivary and pancreatic amylases, and are further broken down into monosaccharides by enzymes in the brush border membrane (BBM) of enterocytes. For example, lactase-phloridzin hydrolase and sucraseisomaltase are two disaccharidases involved in the hydrolysis of nutritionally important disaccharides. Once monosaccharides are presented to the BBM, mature enterocytes expressing nutrient transporters transport the sugars into the enterocytes. This paper reviews the early studies that contributed to the development of a working model of intestinal sugar transport, and details the recent advances made in understanding the process by which sugars are absorbed in the intestine.

  19. Small intestinal transplantation.

    LENUS (Irish Health Repository)

    Quigley, E M

    2012-02-03

    The past few years have witnessed a considerable shift in the clinical status of intestinal transplantation. A great deal of experience has been gained at the most active centers, and results comparable with those reported at a similar stage in the development of other solid-organ graft programs are now being achieved by these highly proficient transplant teams. Rejection and its inevitable associate, sepsis, remain ubiquitous, and new immunosuppressant regimes are urgently needed; some may already be on the near horizon. The recent success of isolated intestinal grafts, together with the mortality and morbidity attendant upon the development of advanced liver disease related to total parenteral nutrition, has prompted the bold proposal that patients at risk for this complication should be identified and should receive isolated small bowel grafts before the onset of end-stage hepatic failure. The very fact that such a suggestion has begun to emerge reflects real progress in this challenging field.

  20. Intestinal sensing of nutrients.

    Science.gov (United States)

    Tolhurst, Gwen; Reimann, Frank; Gribble, Fiona M

    2012-01-01

    Ingestion of a meal triggers a range of physiological responses both within and outside the gut, and results in the remote modulation of appetite and glucose homeostasis. Luminal contents are sensed by specialised chemosensitive cells scattered throughout the intestinal epithelium. These enteroendocrine and tuft cells make direct contact with the gut lumen and release a range of chemical mediators, which can either act in a paracrine fashion interacting with neighbouring cells and nerve endings or as classical circulating hormones. At the molecular level, the chemosensory machinery involves multiple and complex signalling pathways including activation of G-protein-coupled receptors and solute carrier transporters. This chapter will discuss our current knowledge of the molecular mechanisms underlying intestinal chemosensation with a particular focus on the relatively well-characterised nutrient-triggered secretion from the enteroendocrine system. PMID:22249821

  1. Intestinal volvulus in cetaceans

    OpenAIRE

    Begeman, L.; St. Leger, J.; Blyde, D.; Jauniaux, Thierry; Lair, S; Lovewell, G.; Raverty, S; Seibel, H.; Siebert, U; Staggs, S.; Martelli, P.; Keesler, R.

    2013-01-01

    Intestinal volvulus was recognized as the cause of death in 18 cetaceans, including 8 species of toothed whales (suborder Odontoceti). Cases originated from 11 institutions from around the world and included both captive (n = 9) and free-ranging (n = 9) animals. When the clinical history was available (n = 9), animals consistently demonstrated acute dullness 1 to 5 days prior to death. In 3 of these animals (33%), there was a history of chronic gastrointestinal illness. The pathological findi...

  2. Intestinal Phosphate Transport

    OpenAIRE

    Sabbagh, Yves; Giral, Hector; Caldas, Yupanqui; Levi, Moshe; Schiavi, Susan C.

    2011-01-01

    Phosphate is absorbed in the small intestine by at least two distinct mechanisms: paracellular phosphate transport which is dependent on passive diffusion and active transport which occurs through the sodium-dependent phosphate co-transporters. Despite evidence emerging for other ions, regulation of the phosphate specific paracellular pathways remains largely unexplored. In contrast, there is a growing body of evidence that active transport through the sodium-dependent phosphate co-transporte...

  3. Experimental investigations on wake vortices and their alleviation

    Science.gov (United States)

    Savaş, Ömer

    2005-05-01

    Recent wake vortex research in the laboratory has benefited considerably from concurrent analytical and numerical research on the instability of vortex systems. Tow tank, with dye flow visualization and particle image velocimetry is the most effective combination for laboratory research. Passive and active wake alleviation schemes have been successfully demonstrated in the laboratory. The passive alleviation systems exploit the natural evolution of vortex instabilities while the active systems rely on hastening selected instabilities by forcing the vortices individually or as a system. Their practical applicability, however, will have to meet further criteria beyond those dictated by fluid dynamics. To cite this article: Ö. Savaş, C. R. Physique 6 (2005).

  4. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis.

    Science.gov (United States)

    Motta, Jean-Paul; Bermúdez-Humarán, Luis G; Deraison, Céline; Martin, Laurence; Rolland, Corinne; Rousset, Perrine; Boue, Jérôme; Dietrich, Gilles; Chapman, Kevin; Kharrat, Pascale; Vinel, Jean-Pierre; Alric, Laurent; Mas, Emmanuel; Sallenave, Jean-Michel; Langella, Philippe; Vergnolle, Nathalie

    2012-10-31

    Elafin, a natural protease inhibitor expressed in healthy intestinal mucosa, has pleiotropic anti-inflammatory properties in vitro and in animal models. We found that mucosal expression of Elafin is diminished in patients with inflammatory bowel disease (IBD). This defect is associated with increased elastolytic activity (elastase-like proteolysis) in colon tissue. We engineered two food-grade strains of lactic acid bacteria (LAB) to express and deliver Elafin to the site of inflammation in the colon to assess the potential therapeutic benefits of the Elafin-expressing LAB. In mouse models of acute and chronic colitis, oral administration of Elafin-expressing LAB decreased elastolytic activity and inflammation and restored intestinal homeostasis. Furthermore, when cultures of human intestinal epithelial cells were treated with LAB secreting Elafin, the inflamed epithelium was protected from increased intestinal permeability and from the release of cytokines and chemokines, both of which are characteristic of intestinal dysfunction associated with IBD. Together, these results suggest that oral delivery of LAB secreting Elafin may be useful for treating IBD in humans. PMID:23115353

  5. Neonatal Gut Microbiota and Human Milk Glycans Cooperate to Attenuate Infection and Inflammation.

    Science.gov (United States)

    Newburg, David S; He, Yingying

    2015-12-01

    Glycans of the intestinal mucosa and oligosaccharides of human milk influence the early colonization of the infant gut and establishment of mucosal homeostasis, and differences in colonization of the gut influence the ontogeny of glycans on the surface of the intestinal mucosa, proinflammatory signaling, homeostasis, and resilience to insult. This interkingdom reciprocal interaction is typical of a mutualistic symbiotic relationship. The period in which the infant gut most needs protection from hypersensitive inflammation overlaps with the recommended period of exclusive nursing; electively substituting artificial formula that lacks human milk protective glycans seems ill advised, especially for premature infants.

  6. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats.

    Science.gov (United States)

    Han, B; Zhao, Z G; Zhang, L M; Li, S G; Niu, C Y

    2015-07-01

    Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.

  7. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Zhao, Z.G.; Zhang, L.M.; Li, S.G.; Niu, C.Y. [Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou (China)

    2015-04-28

    Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H{sub 2}S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H{sub 2}S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H{sub 2}S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H{sub 2}S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H{sub 2}S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H{sub 2}S and H{sub 2}S-mediated inflammation.

  8. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats

    Directory of Open Access Journals (Sweden)

    B. Han

    2015-07-01

    Full Text Available Posthemorrhagic shock mesenteric lymph (PHSML is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S in PHSML drainage in alleviating acute kidney injury (AKI by administering D,L-propargylglycine (PPG and sodium hydrosulfide hydrate (NaHS to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage, and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage. Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE, Toll-like receptor 4 (TLR4, interleukin (IL-10, IL-12, and tumor necrosis factor (TNF-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.

  9. Ginkgolide B functions as a determinant constituent of Ginkgolides in alleviating lipopolysaccharide-induced lung injury.

    Science.gov (United States)

    Wu, Fugen; Shi, Wei; Zhou, Guojun; Yao, Hongyi; Xu, Chengyun; Xiao, Weiqiang; Wu, Junsong; Wu, Ximei

    2016-07-01

    Ginkgolides are the major bioactive components of Ginkgo biloba extracts, however, the exact constituents of Ginkgolides contributing to their pharmacological effects remain unknown. Herein, we have determined the anti-inflammatory effects of Ginkgolide B (GB) and Ginkgolides mixture (GM) at equivalent dosages against lipopolysaccharide (LPS)-induced inflammation. RAW 264.7 cell culture model and mouse model of LPS-induced lung injury were used to evaluate in vitro and in vivo effects of GB and GM, respectively. In RAW 264.7 cells, GB and GM at equivalent dosages exhibit an identical capacity to attenuate LPS-induced inducible nitric oxide synthase mRNA and protein expression and subsequent NO production. Likewise, GB and GM possess almost the same potency in attenuating LPS-induced expression and activation of nuclear factor kappa B (p65) and subsequent increases in tumor necrosis factor-α mRNA levels. In LPS-induced pulmonary injury, GB and GM at the equivalent dosages have equal efficiency in attenuating the accumulation of inflammatory cells, including neutrophils, lymphocytes, and macrophages, and in improving the histological damage of lungs. Moreover, GB and GM at equivalent dosages decrease the exudation of plasma protein to the same degree, whereas GM is superior to GB in alleviating myeloperoxidase activities. Finally, though GB and GM at equivalent dosages appear to reduce LPS-induced IL-1β mRNA and protein levels and IL-10 protein levels to the same degree, GM is more potent than GB to attenuate the IL-10 mRNA levels. Taken together, this study demonstrates that GB functions as the determinant constituent of Ginkgolides in alleviating LPS-induced lung injury. PMID:27261579

  10. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats

    International Nuclear Information System (INIS)

    Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation

  11. Supplemental calcium attenuates the colitis-related increase in diarrhea, intestinal permeability, and extracellular matrix breakdown in HLA-B27 transgenic rats.

    NARCIS (Netherlands)

    Schepens, M.A.; Schonewille, A.J.; Vink, C.; Schothorst, E.M. van; Kramer, E.; Hendriks, T.; Brummer, R.J.; Keijer, J.; Meer, R. van der; Bovee-Oudenhoven, I.M.

    2009-01-01

    We have shown in several controlled rat and human infection studies that dietary calcium improves intestinal resistance and strengthens the mucosal barrier. Reinforcement of gut barrier function may alleviate inflammatory bowel disease (IBD). Therefore, we investigated the effect of supplemental cal

  12. Global Hypoxia-Ischemia Induced Inflammation and Structural Changes in the Preterm Ovine Gut Which Were Not Ameliorated by Mesenchymal Stem Cell Treatment

    Science.gov (United States)

    Nikiforou, Maria; Willburger, Carolin; de Jong, Anja E; Kloosterboer, Nico; Jellema, Reint K; Ophelders, Daan RMG; Steinbusch, Harry WM; Kramer, Boris W; Wolfs, Tim GAM

    2016-01-01

    Perinatal asphyxia, a condition of impaired gas exchange during birth, leads to fetal hypoxia-ischemia (HI) and is associated with postnatal adverse outcomes including intestinal dysmotility and necrotizing enterocolitis. Evidence from adult animal models of transient, locally induced intestinal HI has shown that inflammation is essential in HI-induced injury of the gut. Importantly, mesenchymal stem cell (MSC) treatment prevented this HI-induced intestinal damage. We therefore assessed whether fetal global HI induced inflammation, injury and developmental changes in the gut and whether intravenous MSC administration ameliorated these HI-induced adverse intestinal effects. In a preclinical ovine model, fetuses were subjected to umbilical cord occlusion (UCO), with or without MSC treatment, and euthanized 7 d after UCO. Global HI increased the number of myeloperoxidase-positive cells in the mucosa, upregulated messenger RNA (mRNA) levels of interleukin (IL)-1β and IL-17 in gut tissue and caused T-cell invasion in the intestinal muscle layer. Intestinal inflammation following global HI was associated with increased Ki67+ cells in the muscularis and subsequent muscle hyperplasia. Global HI caused distortion of glial fibrillary acidic protein immunoreactivity in the enteric glial cells and increased synaptophysin and serotonin expression in the myenteric ganglia. Intravenous MSC treatment did not ameliorate these HI-induced adverse intestinal events. Global HI resulted in intestinal inflammation and enteric nervous system abnormalities, which are clinically associated with postnatal complications, including feeding intolerance, altered gastrointestinal transit and necrotizing enterocolitis. The intestinal histopathological changes were not prevented by intravenous MSC treatment directly after HI, indicating that alternative treatment regimens for cell-based therapies should be explored. PMID:27257938

  13. Leptospira and Inflammation

    Directory of Open Access Journals (Sweden)

    C. F. Gonçalves-de-Albuquerque

    2012-01-01

    Full Text Available Leptospirosis is an important zoonosis and has a worldwide impact on public health. This paper will discuss both the role of immunogenic and pathogenic molecules during leptospirosis infection and possible new targets for immunotherapy against leptospira components. Leptospira, possess a wide variety of mechanisms that allow them to evade the host immune system and cause infection. Many molecules contribute to the ability of Leptospira to adhere, invade, and colonize. The recent sequencing of the Leptospira genome has increased our knowledge about this pathogen. Although the virulence factors, molecular targets, mechanisms of inflammation, and signaling pathways triggered by leptospiral antigens have been studied, some questions are still unanswered. Toll-like receptors (TLRs are the primary sensors of invading pathogens. TLRs recognize conserved microbial pattern molecules and activate signaling pathways that are pivotal to innate and adaptive immune responses. Recently, a new molecular target has emerged—the Na/K-ATPase—which may contribute to inflammatory and metabolic alteration in this syndrome. Na/K-ATPase is a target for specific fatty acids of host origin and for bacterial components such as the glycolipoprotein fraction (GLP that may lead to inflammasome activation. We propose that in addition to TLRs, Na/K-ATPase may play a role in the innate response to leptospirosis infection.

  14. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation.

    Science.gov (United States)

    McPhee, Joseph B; Schertzer, Jonathan D

    2015-12-01

    The bacteria that inhabit us have emerged as factors linking immunity and metabolism. Changes in our microbiota can modify obesity and the immune underpinnings of metabolic diseases such as Type 2 diabetes. Obesity coincides with a low-level systemic inflammation, which also manifests within metabolic tissues such as adipose tissue and liver. This metabolic inflammation can promote insulin resistance and dysglycaemia. However, the obesity and metabolic disease-related immune responses that are compartmentalized in the intestinal environment do not necessarily parallel the inflammatory status of metabolic tissues that control blood glucose. In fact, a permissive immune environment in the gut can exacerbate metabolic tissue inflammation. Unravelling these discordant immune responses in different parts of the body and establishing a connection between nutrients, immunity and the microbiota in the gut is a complex challenge. Recent evidence positions the relationship between host gut barrier function, intestinal T cell responses and specific microbes at the crossroads of obesity and inflammation in metabolic disease. A key problem to be addressed is understanding how metabolite, immune or bacterial signals from the gut are relayed and transferred into systemic or metabolic tissue inflammation that can impair insulin action preceding Type 2 diabetes.

  15. Urban agriculture and urban poverty alleviation: South African debates

    OpenAIRE

    Rogerson, Christian M.

    1998-01-01

    Growing international attention has focussed on the potential role of urban agriculture in poverty alleviation. The aim in this paper is to analyse the existing challenge of urban poverty in South Africa and examine the potential role of urban agriculture as a component of a pro-poor urban development strategy.

  16. Training Teachers as Key Players in Poverty Alleviation

    Science.gov (United States)

    Benavente, Ana; Ralambomanana, Stangeline; Mbanze, Jorge

    2008-01-01

    This article presents several questions, reflections and suggestions on pre-service and in-service teacher training that arose during the project "Curricular innovation and poverty alleviation in sub-Saharan Africa". While recognizing that the situation in the nine countries taking part in the project, and in many other countries in the southern…

  17. Alleviation Effects of Rare Earth on Cd Stress to Rape

    Institute of Scientific and Technical Information of China (English)

    马建军; 张淑侠; 朱京涛; 吴贺平

    2004-01-01

    Using rapes as test materials, the fastness expression and alleviation effect of rapes were studied under Cd stress condition, as the rapeseeds were dipped in the single element(La, Ce, Nd, Pr)and mixed rare earth(RE). The results indicate that, under Cd stress, the dry and fresh weight are increased by both the single element and mixed rare earth treatment, and the fastness of rape is improved.The single element of rare earth decreases the Cd content in rape roots and transmits Cd to the edible parts above the ground in which the alleviation effect of Ce is most significant.La treatment takes the second place, so that the poisonous effect of heavy metal Cd is eased.The mixed rare earth doesn't alleviate the assimilation of Cd in rape roots, but accelerates the transfer of Cd to the parts above the ground. The research puts forward that the alleviation of rare earth on Cd stress has connection with the decrease of Ca content.

  18. Helping Alleviate Statistical Anxiety with Computer Aided Statistical Classes

    Science.gov (United States)

    Stickels, John W.; Dobbs, Rhonda R.

    2007-01-01

    This study, Helping Alleviate Statistical Anxiety with Computer Aided Statistics Classes, investigated whether undergraduate students' anxiety about statistics changed when statistics is taught using computers compared to the traditional method. Two groups of students were questioned concerning their anxiety about statistics. One group was taught…

  19. Elder Abuse and Neglect Risk Alleviation in Protective Services.

    Science.gov (United States)

    Burnes, David P R; Rizzo, Victoria M; Courtney, Erin

    2014-01-01

    Little is known about conditions associated with favorable elder mistreatment (EM) case outcomes. The fundamental goal of EM protective service programs is to alleviate risk associated with substantiated cases of elder abuse and neglect. Using the EM socio-cultural model, this study examined victim, perpetrator, victim-perpetrator relationship, social embeddedness, and socio-cultural factors predicting risk alleviation of EM cases. Data from a random sample of EM protective social service cases (n = 250) at a large community agency in New York City were collected and coded by multiple, independent raters. Multinomial and binary logistic regression were used to examine undifferentiated risk alleviation for the entire sample of EM cases as well as differentiated financial, emotional, and physical abuse sub-types. Undifferentiated EM risk alleviation was associated with male victim gender, older victim age, previous community help-seeking, and victim-perpetrator dyads characterized by a separate living arrangement and shorter term abuse longevity. Financial abuse cases with younger perpetrators were less likely to have risk reduction. Physical abuse risk reduction was less likely when the perpetrator was male and the victim-perpetrator dyad included different genders. Distinct findings across EM sub-types suggest a need to develop targeted practice strategies with clients experiencing different forms of EM. Findings highlight a need to develop EM protective service infrastructure around perpetrator rehabilitation. PMID:24407144

  20. Adipose stromal cells primed with hypoxia and inflammation enhance cardiomyocyte proliferation rate in vitro through STAT3 and Erk1/2

    NARCIS (Netherlands)

    Przybyt, Ewa; Krenning, Guido; Brinker, Marja G. L.; Harmsen, Martin C.

    2013-01-01

    Background: Experimental clinical stem cell therapy has been used for more than a decade to alleviate the adverse aftermath of acute myocardial infarction (aMI). The post-infarcted myocardial microenvironment is characterized by cardiomyocyte death, caused by ischemia and inflammation. These conditi

  1. Keratins Are Altered in Intestinal Disease-Related Stress Responses

    Science.gov (United States)

    Helenius, Terhi O.; Antman, Cecilia A.; Asghar, Muhammad Nadeem; Nyström, Joel H.; Toivola, Diana M.

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  2. Keratins Are Altered in Intestinal Disease-Related Stress Responses.

    Science.gov (United States)

    Helenius, Terhi O; Antman, Cecilia A; Asghar, Muhammad Nadeem; Nyström, Joel H; Toivola, Diana M

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  3. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice.

    Science.gov (United States)

    Goodwin, Meagan; Sueblinvong, Viranuj; Eisenhauer, Philip; Ziats, Nicholas P; LeClair, Laurie; Poynter, Matthew E; Steele, Chad; Rincon, Mercedes; Weiss, Daniel J

    2011-07-01

    Bone marrow-derived mesenchymal stromal cells (BMSCs) mitigate inflammation in mouse models of acute lung injury. However, specific mechanisms of BMSC actions on CD4 T lymphocyte-mediated inflammation in vivo remain poorly understood. Limited data suggests promotion of Th2 phenotype in models of Th1-mediated diseases. However, whether this might alleviate or worsen Th2-mediated diseases such as allergic asthma is unknown. To ascertain the effects of systemic administration of BMSCs in a mouse model of Th2-mediated allergic airways inflammation, ovalbumin (OVA)-induced allergic airways inflammation was induced in wild-type C57BL/6 and BALB/c mice as well as in interferon-γ (IFNγ) receptor null mice. Effects of systemic administration during antigen sensitization of either syngeneic or allogeneic BMSC on airways hyperreactivity, lung inflammation, antigen-specific CD4 T lymphocytes, and serum immunoglobulins were assessed. Both syngeneic and allogeneic BMSCs inhibited airways hyperreactivity and lung inflammation through a mechanism partly dependent on IFNγ. However, contrary to existing data, BMSCs did not affect antigen-specific CD4 T lymphocyte proliferation but rather promoted Th1 phenotype in vivo as assessed by both OVA-specific CD4 T lymphocyte cytokine production and OVA-specific circulating immunoglobulins. BMSCs treated to prevent release of soluble mediators and a control cell population of primary dermal skin fibroblasts only partly mimicked the BMSC effects and in some cases worsened inflammation. In conclusion, BMSCs inhibit Th2-mediated allergic airways inflammation by influencing antigen-specific CD4 T lymphocyte differentiation. Promotion of a Th1 phenotype in antigen-specific CD4 T lymphocytes by BMSCs is sufficient to inhibit Th2-mediated allergic airways inflammation through an IFNγ-dependent process. PMID:21544902

  4. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases

    Institute of Scientific and Technical Information of China (English)

    Roberto Berni Canani; Margherita Di Costanzo; Ludovica Leone; Monica Pedata; Rosaria Meli; Antonio Calignano

    2011-01-01

    The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from nonabsorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport,ameliorates mucosal inflammation and oxidative status,reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition,a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases,hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different;many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine.

  5. Application of chemokine receptor antagonist with stents reduces local inflammation and suppresses cancer growth.

    Science.gov (United States)

    Mao, Ai-Wu; Jiang, Ting-Hui; Sun, Xian-Jun; Peng, Jian

    2015-11-01

    Severe pain and obstructive jaundice resulting from invasive cholangiocarcinoma or pancreatic carcinoma can be alleviated by implantation of biliary and duodenal stents. However, stents may cause local inflammation to have an adverse effect on the patients' condition and survival. So far, no efficient approaches have been applied to prevent the occurrence of stents-related inflammation. Here, we reported significantly higher levels of serum stromal cell-derived factor 1 (SDF-1) in the patients that developed stents-associated inflammation. A higher number of inflammatory cells have been detected in the cancer close to stent in the patients with high serum SDF-1. Since chemokine plays a pivotal role in the development of inflammation, we implanted an Alzet osmotic pump with the stents to gradually release AMD3100, a specific inhibitor binding of SDF-1 and its receptor C-X-C chemokine receptor 4 (CXCR4), at the site of stents in mice that had developed pancreatic cancer. We found that AMD3100 significantly reduced local inflammation and significantly inhibited cancer cell growth, resulting in improved survival of the mice that bore cancer. Moreover, the suppression of cancer growth may be conducted through modulation of CyclinD1, p21, and p27 in the cancer cells. Together, these data suggest that inhibition of chemokine signaling at the site of stents may substantially improve survival through suppression of stent-related inflammation and tumor growth.

  6. Elenoside increases intestinal motility

    Institute of Scientific and Technical Information of China (English)

    E Navarro; SJ Alonso; R Navarro; J Trujillo; E Jorge

    2006-01-01

    AIM: To study the effects of elenoside, an arylnaphthalene lignan from Justicia hyssopifolia, on gastrointestinal motility in vivo and in vitro in rats.METHODS: Routine in vivo experimental assessments were catharsis index, water percentage of boluses,intestinal transit, and codeine antagonism. The groups included were vehicle control (propylene glycol-ethanolplant oil-tween 80), elenoside (i.p. 25 and 50 mg/kg),cisapride (i.p. 10 mg/kg), and codeine phosphate (intragastric route, 50 mg/kg). In vitro approaches used isolated rat intestinal tissues (duodenum, jejunum, and ileum). The effects of elenoside at concentrations of 3.2× 10-4, 6.4 × 10-4 and 1.2 × 10-3 mol/L, and cisapride at 10-6 mol/L were investigated.RESULTS: Elenoside in vivo produced an increase in the catharsis index and water percentage of boluses and in the percentage of distance traveled by a suspension of activated charcoal. Codeine phosphate antagonized the effect of 25 mg/kg of elenoside. In vitro, elenoside in duodenum, jejunum and ileum produced an initial decrease in the contraction force followed by an increase.Elenoside resulted in decreased intestinal frequency in duodenum, jejunum, and ileum. The in vitro and in vivo effects of elenoside were similar to those produced by cisapride.CONCLUSION: Elenoside is a lignan with an action similar to that of purgative and prokinetics drugs.Elenoside, could be an alternative to cisapride in treatment of gastrointestinal diseases as well as a preventive therapy for the undesirable gastrointestinal effects produced by opioids used for mild to moderate pain.

  7. Imaging infection and inflammation

    International Nuclear Information System (INIS)

    imaging acute infection on the intensive therapy unit or to reduce radiation dose in the monitoring of a child with inflammatory bowel disease who had to suffer the indignity of a colonoscopy or a barium enema. We also look forward to newer techniques, certainly the use of immuno globulins, both pooled human and monoclonal antibodies directed either against leukocytes or a specific pathogen may prove useful. The new molecular medicine is starting to exploit our knowledge of the mechanisms of infection and inflammation. It may be possible to produce artificial peptides to localize at sites of infections and/or inflammation. Simpler techniques such as radio labelled antibiotics may be the answer. At present one such antibiotic, a quinilone labelled with Technetium-99 m (called infecton) in undergoing an international IAEA trial. A more complex approach will be the use of radio labelled drugs wrapped in 'stealth'liposomes to avoid liver uptake but deliver the pharmaceutical to the granulocyte in vivo. All are under development. We must however also deliver the best clinical service we can at present delivering accurate results with the lowest radiation dose and available when the patient needs it. As such Tc-99 m HMPAO labelled leukocytes and Gallium-67 are still probably the methods of choice in most situations thoung this may be tempered by local needs and factors

  8. Intestinal transplantation: living related.

    Science.gov (United States)

    Pollard, S G

    1997-01-01

    The use of live donors in intestinal transplantation could potentially both reduce the severity of rejection responses against this highly immunogenic organ by better tissue matching and also reduce cold ischaemia times. These two advantages over cadaveric grafts could preserve mucosal integrity and reduce the risk of systemic sepsis from bacterial translocation. The disadvantages of live donation are the inherent risk to the donor and the compromise of using a shorter graft. Although only a handful of such cases have been performed, the success rate has been high and this is a therapeutic modality which should be explored further. PMID:9536535

  9. INTESTINAL PARASITES IN IRAN

    OpenAIRE

    Mohammad, K; M.R. Zalie; S. Sirous; Masjedi, M. R.

    1995-01-01

    The purpose of this study was to investigate the status and epidemiology of Intestinal Parasites in Iran. The information was driven from an extensive Health Survey which was done by the Ministry of Health and Medical Education, deputy of Research Affairs in 1990-92. Sampling fraction was 1 per 1000 of individuals aged between 2 and 69, the sampling method was cluster sampling and each cluster consisted of 7 families. Formal-ether was the method of finding parasites which included: Oxior, Asc...

  10. Intestinal parasitic infections and micronutrient deficiency: a review.

    Science.gov (United States)

    Hesham, M S; Edariah, A B; Norhayati, M

    2004-06-01

    Malnutrition including vitamin A and iron deficiency and parasitic diseases have a strikingly similar geographical distribution with the same people experiencing both insults together for much of their lives. Parasitic infections are thought to contribute to child malnutrition and micronutrient deficiency through subtle reduction in digestion and absorption, chronic inflammation and loss of nutrients. Parasites may affect the intake of food; it's subsequent digestion and absorption, metabolism and the maintenance of nutrient pools. The most important parasites related to nutritional status are intestinal parasites especially soil transmitted helminthes, Giardia duodenalis, Entamoeba histolytica, followed by other parasites such as the coccidia, Schistosoma sp. and malarial parasites.

  11. Apoptosis and inflammation

    Directory of Open Access Journals (Sweden)

    C. Haanen

    1995-01-01

    Full Text Available During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972 introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.

  12. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice.

    Directory of Open Access Journals (Sweden)

    Lea-Maxie Haag

    Full Text Available BACKGROUND: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. METHODOLOGY/PRINCIPAL FINDINGS: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. CONCLUSION/SIGNIFICANCE: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiota composition towards elevated E. coli loads during intestinal inflammation as well as in infant mice. Intestinal inflammation and microbiota shifts thus represent potential risk factors for C. jejuni infection. Corresponding interplays between C. jejuni and microbiota might

  13. Liver Cirrhosis and Intestinal Bacterial Translocation

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Intestinal barrier dysfunction, facilitating translocation of bacteria and bacterial products, plays an important role in the pathophysiology of liver cirrhosis and its complications. Intestinal defense system including microbial barrier, immunologic barrier, mechanical barrier, chemical barrier, plays an important role in the maintenance of intestinal function. Under normal circumstances, the intestinal barrier can prevent intestinal bacteria through the intestinal wall from spreading to the body. Severe infection, trauma, shock, cirrhosis, malnutrition, immune suppression conditions, intestinal bacteria and endotoxin translocation, can lead to multiple organ dysfunction. The intestinal microlfora is not only involved in the digestion of nutrients, but also in local immunity, forming a barrier against pathogenic microorganisms. The derangement of the gut microlfora may lead to microbial translocation, deifned as the passage of viable microorganisms or bacterial products from the intestinal lumen to the mesenteric lymph nodes and other extraintestinal sites. In patients with cirrhosis, primary and intestinal lfora imbalance, intestinal bacterial overgrowth, intestinal mucosal barrier dysfunction, endotoxemia is associated with weakened immunity.

  14. Alveolar inflammation in cystic fibrosis

    DEFF Research Database (Denmark)

    Ulrich, Martina; Worlitzsch, Dieter; Viglio, Simona;

    2010-01-01

    BACKGROUND: In infected lungs of the cystic fibrosis (CF) patients, opportunistic pathogens and mutated cystic fibrosis transmembrane conductance regulator protein (CFTR) contribute to chronic airway inflammation that is characterized by neutrophil/macrophage infiltration, cytokine release...

  15. Eosinophilic airway inflammation in COPD

    OpenAIRE

    Saha, Shironjit; Brightling, Christopher E.

    2006-01-01

    Chronic obstructive pulmonary disease is a common condition and a major cause of mortality. COPD is characterized by irreversible airflow obstruction. The physiological abnormalities observed in COPD are due to a combination of emphysema and obliteration of the small airways in association with airway inflammation. The predominant cells involved in this inflammatory response are CD8+ lymphocytes, neutrophils, and macrophages. Although eosinophilic airway inflammation is usually considered a f...

  16. Endogenous Receptor Agonists: Resolving Inflammation

    OpenAIRE

    Gerhard Bannenberg; Makoto Arita; Serhan, Charles N.

    2007-01-01

    Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsa...

  17. INFLAMMATION AND ACUTE PHASE RESPONSE

    OpenAIRE

    Farah Aziz Khan; Mohd Fareed Khan

    2010-01-01

    Inflammation caused by infection takes place by the cooperative cascade of cytokines and leukocytes. Tumor necrosis factor, interlukin-1, and interlukin-6 play important roles as proinflammatory cytokines to mediate local inflammation and activate other inflammatory cells e.g. neutrophils, monocytes, and macrophages. At least 15 different low molecular weight cytokine are secreted by activated leukocytes and are responsible for triggering acute phase response in the form of fever, leukocytosi...

  18. Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption.

    Science.gov (United States)

    Ghosal, Abhisek; Lambrecht, Nils; Subramanya, Sandeep B; Kapadia, Rubina; Said, Hamid M

    2013-01-01

    The Slc5a6 gene expresses a plasma membrane protein involved in the transport of the water-soluble vitamin biotin; the transporter is commonly referred to as the sodium-dependent multivitamin transporter (SMVT) because it also transports pantothenic acid and lipoic acid. The relative contribution of the SMVT system toward carrier-mediated biotin uptake in the native intestine in vivo has not been established. We used a Cre/lox technology to generate an intestine-specific (conditional) SMVT knockout (KO) mouse model to address this issue. The KO mice exhibited absence of expression of SMVT in the intestine compared with sex-matched littermates as well as the expected normal SMVT expression in other tissues. About two-thirds of the KO mice died prematurely between the age of 6 and 10 wk. Growth retardation, decreased bone density, decreased bone length, and decreased biotin status were observed in the KO mice. Microscopic analysis showed histological abnormalities in the small bowel (shortened villi, dysplasia) and cecum (chronic active inflammation, dysplasia) of the KO mice. In vivo (and in vitro) transport studies showed complete inhibition in carrier-mediated biotin uptake in the intestine of the KO mice compared with their control littermates. These studies provide the first in vivo confirmation in native intestine that SMVT is solely responsible for intestinal biotin uptake. These studies also provide evidence for a casual association between SMVT function and normal intestinal health.

  19. Bifidobacterium lactis 420 and fish oil enhance intestinal epithelial integrity in Caco-2 cells.

    Science.gov (United States)

    Mokkala, Kati; Laitinen, Kirsi; Röytiö, Henna

    2016-03-01

    Increased intestinal permeability is a predisposing factor for low-grade inflammation-associated conditions, including obesity and type 2 diabetes. Dietary components may influence intestinal barrier integrity. We hypothesized that the dietary supplements Bifidobacterium lactis 420, Lactobacillus rhamnosus HN001, and fish oil have beneficial impacts on intestinal barrier integrity. In addition, we hypothesized that the coadministration of these components results in synergistic benefits to the integrity of the intestinal barrier. To study this, we investigated the impact of cell-free culture supernatant from dietary supplements B lactis 420 and L rhamnosus HN001, and fish oil, separately and in combination, on intestinal permeability in a CaCo-2 cell model. Administered separately, both B lactis 420 supernatant and fish oil significantly increased the integrity of the intestinal epithelial barrier, as determined by an increase in transepithelial electrical resistance (TEER), whereas L rhamnosus did not. The TEER increase with B lactis 420 was dose dependent. Interestingly, a combination of B lactis 420 supernatant and fish oil negated the increase in TEER of the single components. mRNA expression of tight junction proteins, measured by real-time quantitative polymerase chain reaction, was not altered, but the mRNA expression of myosin light chain kinase increased after fish oil treatment. To conclude, single dietary components, namely, B lactis 420 and fish oil, induced beneficial effects on intestinal barrier integrity in vitro, whereas a combination of 2 beneficial test compounds resulted in a null effect. PMID:26923511

  20. Changes of Intestinal Permeability in Cholelithiasis Patients

    Institute of Scientific and Technical Information of China (English)

    Shao-long Sun; Shuo-dong Wu; Dong-xu Cui; Bao-lin Liu; Xian-wei Dai

    2009-01-01

    @@ In normal condition,intestine mucosa possesses barrier function.When the barrier function of intestine mucosa was damaged,intestinal bacteria,endotoxin,or other substances would enter blood.It is generally accepted that biliary bacteria origins from the intestine either via duodenal papilla or intestinal mucosa.In this study,we aimed to investigate the intestinal permeability changes of cholelithiasis patients to elucidate the possible pathogenesis of cholelithiasis.

  1. Docosahexaenoic Acid, Inflammation, and Bacterial Dysbiosis in Relation to Periodontal Disease, Inflammatory Bowel Disease, and the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Michael F. Roizen

    2013-08-01

    Full Text Available Docosahexaenoic acid (DHA, a long-chain omega-3 polyunsaturated fatty acid, has been used to treat a range of different conditions, including periodontal disease (PD and inflammatory bowel disease (IBD. That DHA helps with these oral and gastrointestinal diseases in which inflammation and bacterial dysbiosis play key roles, raises the question of whether DHA may assist in the prevention or treatment of other inflammatory conditions, such as the metabolic syndrome, which have also been linked with inflammation and alterations in normal host microbial populations. Here we review established and investigated associations between DHA, PD, and IBD. We conclude that by beneficially altering cytokine production and macrophage recruitment, the composition of intestinal microbiota and intestinal integrity, lipopolysaccharide- and adipose-induced inflammation, and insulin signaling, DHA may be a key tool in the prevention of metabolic syndrome.

  2. MDCT in blunt intestinal trauma

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Stefania [Department of Diagnostic Imaging, ' A.Cardarelli' Hospital, 80131 Naples (Italy)]. E-mail: stefromano@libero.it; Scaglione, Mariano [Department of Diagnostic Imaging, ' A.Cardarelli' Hospital, 80131 Naples (Italy); Tortora, Giovanni [Department of Diagnostic Imaging, ' A.Cardarelli' Hospital, 80131 Naples (Italy); Martino, Antonio [Trauma Center, ' A.Cardarelli' Hospital, 80131 Naples (Italy); Di Pietto, Francesco [Department of Diagnostic Imaging, ' A.Cardarelli' Hospital, 80131 Naples (Italy); Romano, Luigia [Department of Diagnostic Imaging, ' A.Cardarelli' Hospital, 80131 Naples (Italy); Grassi, Roberto [Department ' Magrassi-Lanzara' , Section of Radiology, Second University of Naples, 80138 Naples (Italy)

    2006-09-15

    Injuries to the small and large intestine from blunt trauma represent a defined clinical entity, often not easy to correctly diagnose in emergency but extremely important for the therapeutic assessment of patients. This article summarizes the MDCT spectrum of findings in intestinal blunt lesions, from functional disorders to hemorrhage and perforation.

  3. Exercise, Intestinal Absorption, and Rehydration

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ KEYPOINTS 1. The proximal small intestine (duodenum & jejunum) is the primary site of fluid absorption. It absorbs about 50% to 60% of any given fluid load. The colon or large intestine absorbs approximately 80 to 90% of the fluid it receives, but accounts for only about 15% of the total fluid load.

  4. Hippo signalling directs intestinal fate

    DEFF Research Database (Denmark)

    le Bouteiller, Marie Catherine M; Jensen, Kim Bak

    2015-01-01

    Hippo signalling has been associated with many important tissue functions including the regulation of organ size. In the intestinal epithelium differing functions have been proposed for the effectors of Hippo signalling, YAP and TAZ1. These are now shown to have a dual role in the intestinal...

  5. Intestinal failure in obstructive jaundice

    Institute of Scientific and Technical Information of China (English)

    Stelios F. Assimakopoulos; Constantine E. Vagianos; Aristides Charonis; Vassiliki N. Nikolopoulou; Chrisoula D. Scopa

    2005-01-01

    @@ TO THE EDITOR We read with great interest the article by Ding LA and LiJS, which aimed to review the current knowledge on the physiology of normal intestinal barrier function and highlight the role of intestinal failure after various injurious insults in the development of septic complications or multiple organ failure with subsequent rapid clinical deterioration or even death.

  6. Oregano Essential Oil Improves Intestinal Morphology and Expression of Tight Junction Proteins Associated with Modulation of Selected Intestinal Bacteria and Immune Status in a Pig Model

    Directory of Open Access Journals (Sweden)

    Yi Zou

    2016-01-01

    Full Text Available Oregano essential oil (OEO has long been used to improve the health of animals, particularly the health of intestine, which is generally attributed to its antimicrobial and anti-inflammatory effects. However, how OEO acts in the intestine of pig is still unclear. This study was aimed at elucidating how OEO promotes the intestinal barrier integrity in a pig model. Pigs were fed a control diet alone or one supplemented with 25 mg/kg of OEO for 4 weeks. The OEO-treated pigs showed decreased (P<0.05 endotoxin level in serum and increased (P<0.05 villus height and expression of occludin and zonula occludens-1 (ZO-1 in the jejunum. These results demonstrated that the integrity of intestinal barrier was improved by OEO treatment. The OEO-treated pigs had a lower (P<0.05 population of Escherichia coli in the jejunum, ileum, and colon than the control. This is in accordance with the greater inactivation (P<0.05 of inflammation, which was reflected by the mitogen-activated protein kinase (MAPK, protein kinase B (Akt, and nuclear factor κB (NF-κB signaling pathways and expression of inflammatory cytokines in the jejunum. Our results show that OEO promotes intestinal barrier integrity, probably through modulating intestinal bacteria and immune status in pigs.

  7. Oregano Essential Oil Improves Intestinal Morphology and Expression of Tight Junction Proteins Associated with Modulation of Selected Intestinal Bacteria and Immune Status in a Pig Model.

    Science.gov (United States)

    Zou, Yi; Xiang, Quanhang; Wang, Jun; Peng, Jian; Wei, Hongkui

    2016-01-01

    Oregano essential oil (OEO) has long been used to improve the health of animals, particularly the health of intestine, which is generally attributed to its antimicrobial and anti-inflammatory effects. However, how OEO acts in the intestine of pig is still unclear. This study was aimed at elucidating how OEO promotes the intestinal barrier integrity in a pig model. Pigs were fed a control diet alone or one supplemented with 25 mg/kg of OEO for 4 weeks. The OEO-treated pigs showed decreased (P < 0.05) endotoxin level in serum and increased (P < 0.05) villus height and expression of occludin and zonula occludens-1 (ZO-1) in the jejunum. These results demonstrated that the integrity of intestinal barrier was improved by OEO treatment. The OEO-treated pigs had a lower (P < 0.05) population of Escherichia coli in the jejunum, ileum, and colon than the control. This is in accordance with the greater inactivation (P < 0.05) of inflammation, which was reflected by the mitogen-activated protein kinase (MAPK), protein kinase B (Akt), and nuclear factor κB (NF-κB) signaling pathways and expression of inflammatory cytokines in the jejunum. Our results show that OEO promotes intestinal barrier integrity, probably through modulating intestinal bacteria and immune status in pigs. PMID:27314026

  8. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota.

    Science.gov (United States)

    Engen, Phillip A; Green, Stefan J; Voigt, Robin M; Forsyth, Christopher B; Keshavarzian, Ali

    2015-01-01

    The excessive use of alcohol is a global problem causing many adverse pathological health effects and a significant financial health care burden. This review addresses the effect of alcohol consumption on the microbiota in the gastrointestinal tract (GIT). Although data are limited in humans, studies highlight the importance of changes in the intestinal microbiota in alcohol-related disorders. Alcohol-induced changes in the GIT microbiota composition and metabolic function may contribute to the well-established link between alcohol-induced oxidative stress, intestinal hyperpermeability to luminal bacterial products, and the subsequent development of alcoholic liver disease (ALD), as well as other diseases. In addition, clinical and preclinical data suggest that alcohol-related disorders are associated with quantitative and qualitative dysbiotic changes in the intestinal microbiota and may be associated with increased GIT inflammation, intestinal hyperpermeability resulting in endotoxemia, systemic inflammation, and tissue damage/organ pathologies including ALD. Thus, gut-directed interventions, such as probiotic and synbiotic modulation of the intestinal microbiota, should be considered and evaluated for prevention and treatment of alcohol-associated pathologies.

  9. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease

    OpenAIRE

    Zhang, Sufeng; Ermann, Joerg; Succi, Marc D.; Zhou, Allen; Hamilton, Matthew J.; Cao, Bonnie; Korzenik, Joshua R.; Glickman, Jonathan N.; Vemula, Praveen K.; Glimcher, Laurie H.; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M.

    2015-01-01

    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amph...

  10. Lactobacillus rhamnosus GG reduces hepatic TNFα production and inflammation in chronic alcohol-induced liver injury

    OpenAIRE

    Wang, Yuhua; Liu, Yanlong; Kirpich, Irina; Ma, Zhenhua; Wang, Cuiling; Zhang, Min; Suttles, Jill; McClain, Craig; Feng, Wenke

    2013-01-01

    The therapeutic effects of probiotic treatment in alcoholic liver disease (ALD) have been studied in both patients and experimental animal models. Although the precise mechanisms of the pathogenesis of ALD are not fully understood, gut-derived endotoxin has been postulated to play a crucial role in hepatic inflammation. Previous studies have demonstrated that probiotic therapy reduces circulating endotoxin derived from intestinal Gram-negative bacteria in ALD. In this study, we investigated t...

  11. Activation of Myenteric Glia during Acute Inflammation In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Corinna Rosenbaum

    Full Text Available Enteric glial cells (EGCs are the main constituent of the enteric nervous system and share similarities with astrocytes from the central nervous system including their reactivity to an inflammatory microenvironment. Previous studies on EGC pathophysiology have specifically focused on mucosal glia activation and its contribution to mucosal inflammatory processes observed in the gut of inflammatory bowel disease (IBD patients. In contrast knowledge is scarce on intestinal inflammation not locally restricted to the mucosa but systemically affecting the intestine and its effect on the overall EGC network.In this study, we analyzed the biological effects of a systemic LPS-induced hyperinflammatory insult on overall EGCs in a rat model in vivo, mimicking the clinical situation of systemic inflammation response syndrome (SIRS. Tissues from small and large intestine were removed 4 hours after systemic LPS-injection and analyzed on transcript and protein level. Laser capture microdissection was performed to study plexus-specific gene expression alterations. Upon systemic LPS-injection in vivo we observed a rapid and dramatic activation of Glial Fibrillary Acidic Protein (GFAP-expressing glia on mRNA level, locally restricted to the myenteric plexus. To study the specific role of the GFAP subpopulation, we established flow cytometry-purified primary glial cell cultures from GFAP promotor-driven EGFP reporter mice. After LPS stimulation, we analyzed cytokine secretion and global gene expression profiles, which were finally implemented in a bioinformatic comparative transcriptome analysis. Enriched GFAP+ glial cells cultured as gliospheres secreted increased levels of prominent inflammatory cytokines upon LPS stimulation. Additionally, a shift in myenteric glial gene expression profile was induced that predominantly affected genes associated with immune response.Our findings identify the myenteric GFAP-expressing glial subpopulation as particularly

  12. Modulation of visceral pain and inflammation by protease-activated receptors

    OpenAIRE

    Vergnolle, Nathalie

    2004-01-01

    The gastrointestinal (GI) tract is exposed to a large array of proteases, under both physiological and pathophysiological conditions. The discovery of G protein-coupled receptors activated by proteases, the protease-activated receptors (PARs), has highlighted new signaling functions for proteases in the GI tract, particularly in the domains of inflammation and pain mechanisms. Activation of PARs by selective peptidic agonists in the intestine or the pancreas leads to inflammatory events and c...

  13. Interaction of Dietary Fatty Acids with Tumour Necrosis Factor Family Cytokines during Colon Inflammation and Cancer

    OpenAIRE

    Jiřina Hofmanová; Nicol Straková; Alena Hyršlová Vaculová; Zuzana Tylichová; Barbora Šafaříková; Belma Skender; Alois Kozubík

    2014-01-01

    Intestinal homeostasis is precisely regulated by a number of endogenous regulatory molecules but significantly influenced by dietary compounds. Malfunction of this system may result in chronic inflammation and cancer. Dietary essential n-3 polyunsaturated fatty acids (PUFAs) and short-chain fatty acid butyrate produced from fibre display anti-inflammatory and anticancer activities. Both compounds were shown to modulate the production and activities of TNF family cytokines. Cytokines from the ...

  14. Bioavailability of lemon verbena (Aloysia triphylla) polyphenols in rats: impact of colonic inflammation.

    Science.gov (United States)

    Felgines, Catherine; Fraisse, Didier; Besson, Catherine; Vasson, Marie-Paule; Texier, Odile

    2014-05-28

    Lemon verbena (Aloysia triphylla) infusion, a widely consumed herbal tea, contains significant amounts of polyphenols such as flavone diglucuronides and phenylpropanoid glycosides (mainly verbascoside). We have recently shown that lemon verbena infusion offers beneficial effects against dextran sodium sulphate (DSS)-induced colonic inflammation in rats. The present study aimed to evaluate the bioavailability and intestinal absorption of polyphenols derived from lemon verbena infusion in both healthy and colitic rats. For this purpose, lemon verbena infusion was given to rats ad libitum for 14 d, and then 4 % DSS was added to the infusion for 7 d. Before and after DSS administration, 24 h urinary excretion of polyphenols was determined. Flavones were excreted in the urine as conjugated aglycones, and their excretion was not significantly altered by colonic inflammation. Only trace amounts of verbascoside were excreted in the urine, but various metabolites (hydroxycinnamic acids) were detected. The urinary excretion of hydroxycinnamic acids, particularly that of caffeic acid, increased after DSS administration (P< 0·05). Only flavone aglycones (luteolin and diosmetin) were excreted in the faeces in small proportions (3·2 % of ingested flavones). Intestinal absorption of lemon verbena polyphenols was examined using an in situ intestinal perfusion model. Intestinal absorption of verbascoside and flavone diglucuronides did not significantly differ between the healthy and colitic rats. Collectively, these results show that intestinal absorption and urinary excretion of lemon verbena flavone diglucuronides were not altered by colonic inflammation, but that urinary excretion of hydroxycinnamic acids derived from verbascoside was affected in a colitic situation. PMID:24513110

  15. Chronic Inflammation and γδ T Cells.

    Science.gov (United States)

    Fay, Nathan S; Larson, Emily C; Jameson, Julie M

    2016-01-01

    The epithelial tissues of the skin, lungs, reproductive tract, and intestines are the largest physical barriers the body has to protect against infection. Epithelial tissues are woven with a matrix of immune cells programed to mobilize the host innate and adaptive immune responses. Included among these immune cells are gamma delta T lymphocytes (γδ T cells) that are unique in their T cell receptor usage, location, and functions in the body. Stress reception by γδ T cells as a result of traumatic epithelial injury, malignancy, and/or infection induces γδ T cell activation. Once activated, γδ T cells function to repair tissue, induce inflammation, recruit leukocytes, and lyse cells. Many of these functions are mediated via the production of cytokines and growth factors upon γδ T cell activation. Pathogenesis of many chronic inflammatory diseases involves γδ T cells; some of which are exacerbated by their presence, while others are improved. γδ T cells require a delicate balance between their need for acute inflammatory mediators to function normally and the detrimental impact imparted by chronic inflammation. This review will focus on the recent progress made in understanding how epithelial γδ T cells influence the pathogenesis of chronic inflammatory diseases and how a balance between acute and chronic inflammation impacts γδ T cell function. Future studies will be important to understand how this balance is achieved. PMID:27303404

  16. Thymic Stromal Lymphopoietin Improves Survival and Reduces Inflammation in Sepsis.

    Science.gov (United States)

    Piliponsky, Adrian M; Lahiri, Asha; Truong, Phuong; Clauson, Morgan; Shubin, Nicholas J; Han, Hongwei; Ziegler, Steven F

    2016-08-01

    The mechanisms that contribute to homeostasis of the immune system in sepsis are largely unknown. One study suggests a potential detrimental role for thymic stromal lymphopoietin (TSLP) in sepsis; however, the immune-regulatory effects of TSLP on myeloid cells within the intestinal microenvironment suggest the contrary. Our objective was to clarify TSLP's role in sepsis. Cecal ligation and puncture was performed in mice with total or myeloid-specific deficiency in the TSLP receptor (TSLPR). Survival was monitored closely, peritoneal fluids and plasma were analyzed for markers of inflammation, and myeloid cell numbers and their ability to produce inflammatory mediators was determined. The interaction of TSLP with TSLPR in myeloid cells contributed to mouse survival after septic peritonitis. Mice with TSLPR deficiency in myeloid cells displayed excessive local and systemic inflammation levels (e.g., increased inflammatory cell and cytokine levels) relative to control mice. Moreover, hepatic injury was exacerbated in mice with TSLPR deficiency in their myeloid cells. However, the enhanced inflammatory response did not affect the ability of these mice to clear bacteria. Resident neutrophils and macrophages from septic mice with TSLPR deficiency exhibited an increased ability to produce proinflammatory cytokines. Collectively, our findings suggest that the effects of TSLP on myeloid cells are crucial in reducing the multiple organ failure that is associated with systemic inflammation, which highlights the significance of this cytokine in modulating the host response to infection and in reducing the risks of sepsis development. PMID:26934097

  17. Chronic Inflammation and  T Cells

    Directory of Open Access Journals (Sweden)

    Nathan S Fay

    2016-05-01

    Full Text Available The epithelial tissues of the skin, lungs, reproductive tract, and intestines are the largest physical barriers the body has to protect against infection. Epithelial tissues are woven with a matrix of immune cells programmed to mobilize the host innate and adaptive immune responses. Included among these immune cells are  T cells that are unique in their TCR usage, location, and functions in the body. Stress reception by  T cells as a result of traumatic epithelial injury, malignancy, and/or infection induces  T cell activation. Once activated,  T cells function to repair tissue, induce inflammation, recruit leukocytes, and lyse cells. Many of these functions are mediated via the production of cytokines and growth factors upon  T cell activation. Pathogenesis of many chronic inflammatory diseases involve  T cells; some of which are exacerbated by their presence, while others are improved.  T cells require a delicate balance between their need for acute inflammatory mediators to function normally and the detrimental impact imparted by chronic inflammation. This review will focus on the recent progress made in understanding how epithelial  T cells influence the pathogenesis of chronic inflammatory diseases and how a balance between acute and chronic inflammation impacts  T cell function. Future studies will be important to understand how this balance is achieved.

  18. NITRIC OXIDE INTERFERES WITH HYPOXIA SIGNALING DURING COLONIC INFLAMMATION

    Directory of Open Access Journals (Sweden)

    Cintia Rabelo e Paiva CARIA

    2014-12-01

    Full Text Available Context Intestinal inflammation can induce a local reduction in oxygen levels that triggers an adaptive response centered on the expression of hypoxia-inducible factors (HIFs. Nitric oxide, a well-described inflammatory mediator, may interfere with hypoxia signaling. Objectives We aimed to evaluate the role of nitric oxide in hypoxia signaling during colonic inflammation. Methods Colitis was induced by single (acute or repeated (reactivated colitis trinitrobenzenosulfonic acid administration in rats. In addition, one group of rats with reactivated colitis was also treated with Nw-Nitro-L-arginine methyl ester hydrochloride to block nitric oxide synthase. Colitis was assessed by macroscopic score and myeloperoxidase activity in the colon samples. Hypoxia was determined using the oxygen-dependent probe, pimonidazole. The expression of HIF-1α and HIF-induced factors (vascular endothelial growth factor - VEGF and apelin was assessed using Western blotting. Results The single or repeated administration of trinitrobenzenosulfonic acid to rats induced colitis which was characterized by a high macroscopic score and myeloperoxidase activity. Hypoxia was observed with both protocols. During acute colitis, HIF-1α expression was not increased, but VEGF and apelin were increased. HIF-1α expression was inhibited during reactivated colitis, and VEGF and apelin were not increased. Nw-Nitro-L-arginine methyl ester hydrochloride blockade during reactivated colitis restored HIF-1α, VEGF and apelin expression. Conclusions Nitric oxide could interfere with hypoxia signaling during reactivated colitis inflammation modifying the expression of proteins regulated by HIF-1α.

  19. Effet protecteur des polyphénols de la verveine odorante dans un modèle d'inflammation colique chez le rat

    OpenAIRE

    Lenoir, Loïc

    2011-01-01

    Polyphenols are micronutrients widely distributed in foods of plant origin and theirconsumption has been associated with a decreased risk of various pathologies such ascardiovascular diseases, neurodegenerative diseases and cancer. This effect of polyphenolsis sustained by their antioxidative and anti-inflammatory properties. Due to their poorabsorption in the small intestine, high amounts of polyphenols reach the colon where theycan exert such properties. Intestinal inflammation results from...

  20. Alleviating α quenching by solar wind and meridional flows

    Science.gov (United States)

    Mitra, D.; Moss, D.; Tavakol, R.; Brandenburg, A.

    2011-02-01

    Aims: We study the ability of magnetic helicity expulsion to alleviate catastrophic α-quenching in mean field dynamos in two-dimensional spherical wedge domains. Methods: Motivated by the physical state of the outer regions of the Sun, we consider α^2Ω mean field models with a dynamical α quenching. We include two mechanisms which have the potential to facilitate helicity expulsion, namely advection by a mean flow ("solar wind") and meridional circulation. Results: We find that a wind alone can prevent catastrophic quenching, with the field saturating at finite amplitude. In certain parameter ranges, the presence of a large-scale meridional circulation can reinforce this alleviation. However, the saturated field strengths are typically below the equipartition field strength. We discuss possible mechanisms that might increase the saturated field.