WorldWideScience

Sample records for allergic asthmatic airway

  1. Pentraxin 3 (PTX3 expression in allergic asthmatic airways: role in airway smooth muscle migration and chemokine production.

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    Full Text Available BACKGROUND: Pentraxin 3 (PTX3 is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by immune and structural cells. However, very little is known about the expression of PTX3 and its role in allergic asthma. OBJECTIVES AND METHODS: We sought to determine the PTX3 expression in asthmatic airways and its function in human airway smooth muscle cells (HASMC. In vivo PTX3 expression in bronchial biopsies of mild, moderate and severe asthmatics was analyzed by immunohistochemistry. PTX3 mRNA and protein were measured by real-time RT-PCR and ELISA, respectively. Proliferation and migration were examined using (3H-thymidine incorporation, cell count and Boyden chamber assays. RESULTS: PTX3 immunoreactivity was increased in bronchial tissues of allergic asthmatics compared to healthy controls, and mainly localized in the smooth muscle bundle. PTX3 protein was expressed constitutively by HASMC and was significantly up-regulated by TNF, and IL-1β but not by Th2 (IL-4, IL-9, IL-13, Th1 (IFN-γ, or Th-17 (IL-17 cytokines. In vitro, HASMC released significantly higher levels of PTX3 at the baseline and upon TNF stimulation compared to airway epithelial cells (EC. Moreover, PTX3 induced CCL11/eotaxin-1 release whilst inhibited the fibroblast growth factor-2 (FGF-2-driven HASMC chemotactic activity. CONCLUSIONS: Our data provide the first evidence that PTX3 expression is increased in asthmatic airways. HASMC can both produce and respond to PTX3. PTX3 is a potent inhibitor of HASMC migration induced by FGF-2 and can upregulate CCL11/eotaxin-1 release. These results raise the possibility that PTX3 may play a dual role in allergic asthma.

  2. Uncoordinated production of Laminin-5 chains in airways epithelium of allergic asthmatics

    Directory of Open Access Journals (Sweden)

    Virtanen Ismo

    2005-09-01

    Full Text Available Abstract Background Laminins are a group of proteins largely responsible for the anchorage of cells to basement membranes. We hypothesized that altered Laminin chain production in the bronchial mucosa might explain the phenomenon of epithelial cell shedding in asthma. The aim was to characterize the presence of Laminin chains in the SEBM and epithelium in allergic and non-allergic asthmatics. Patients and methods Biopsies were taken from the bronchi of 11 patients with allergic and 9 patients with non-allergic asthma and from 7 controls and stained with antibodies against the Laminin (ln chains alpha1-alpha5, beta1-beta2 and gamma1-gamma2. Results Lns-2,-5 and -10 were the main Laminins of SEBM. The layer of ln-10 was thicker in the two asthmatic groups while an increased thickness of lns-2 and -5 was only seen in allergic asthmatics. The ln gamma2-chain, which is only found in ln 5, was exclusively expressed in epithelial cells in association with epithelial injury and in the columnar epithelium of allergic asthmatics. Conclusion The uncoordinated production of chains of ln-5 in allergic asthma could have a bearing on the poor epithelial cell anchorage in these patients.

  3. Phloretin Attenuates Allergic Airway Inflammation and Oxidative Stress in Asthmatic Mice

    Science.gov (United States)

    Huang, Wen-Chung; Fang, Li-Wen; Liou, Chian-Jiun

    2017-01-01

    Phloretin (PT), isolated from the apple tree, was previously demonstrated to have antioxidative and anti-inflammatory effects in macrophages and anti-adiposity effects in adipocytes. Inflammatory immune cells generate high levels of reactive oxygen species (ROS) for stimulated severe airway hyperresponsiveness (AHR) and airway inflammation. In this study, we investigated whether PT could reduce oxidative stress, airway inflammation, and eosinophil infiltration in asthmatic mice, and ameliorate oxidative and inflammatory responses in tracheal epithelial cells. BALB/c mice were sensitized with ovalbumin (OVA) to induce asthma symptoms. Mice were randomly assigned to the five experimental groups: normal controls; OVA-induced asthmatic mice; and OVA-induced mice injected intraperitoneally with one of the three PT doses (5, 10, or 20 mg/kg). In addition, we treated inflammatory human tracheal epithelial cells (BEAS-2B cells) with PT to assess oxidative responses and the levels of proinflammatory cytokines and chemokines. We found that PT significantly reduced goblet cell hyperplasia and eosinophil infiltration, which decreased AHR, inflammation, and oxidative responses in the lungs of OVA-sensitized mice. PT also decreased malondialdehyde levels in the lung and reduced Th2 cytokine production in bronchoalveolar lavage fluids. Furthermore, PT reduced ROS, proinflammatory cytokines, and eotaxin production in BEAS-2B cells. PT also suppressed monocyte cell adherence to inflammatory BEAS-2B cells. These findings suggested that PT alleviated pathological changes, inflammation, and oxidative stress by inhibiting Th2 cytokine production in asthmatic mice. PT showed therapeutic potential for ameliorating asthma symptoms in the future. PMID:28243240

  4. Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associates with loss of central airway function

    Directory of Open Access Journals (Sweden)

    Bunn Janice Y

    2010-03-01

    Full Text Available Abstract Background Asthma is a chronic inflammatory disease of the airway that is characterized by a Th2-type of immune response with increasing evidence for involvement of Th17 cells. The role of IL-6 in promoting effector T cell subsets suggest that IL-6 may play a functional role in asthma. Classically IL-6 has been viewed as an inflammatory marker, along with TNFα and IL-1β, rather than as regulatory cytokine. Objective To investigate the potential relationship between IL-6 and other proinflammatory cytokines, Th2/Th17 cytokines and lung function in allergic asthma, and thus evaluate the potential role of IL-6 in this disease. Methods Cytokine levels in induced sputum and lung function were measured in 16 healthy control and 18 mild-moderate allergic asthmatic subjects. Results The levels of the proinflammatory biomarkers TNFα and IL-1β were not different between the control and asthmatic group. In contrast, IL-6 levels were specifically elevated in asthmatic subjects compared with healthy controls (p S = 0.53, p Conclusions In mild-moderate asthma, IL-6 dissociates from other proinflammatory biomarkers, but correlates with IL-13 levels. Furthermore, IL-6 may contribute to impaired lung function in allergic asthma.

  5. Can Airway Tolerance be Promoted Immunopharmacologically with Aspirin in Aspirin-insensitive Allergic Bonchial Asthmatics by T Regulatory Cells (Tregs-directed Immunoregulatory Therapy?

    Directory of Open Access Journals (Sweden)

    Muzammal Hussain

    2012-07-01

    Full Text Available The pathobiology of allergic bronchial asthma is mediated by over-expressed T helper type 2 (Th2-biased immune responses to harmless environmental antigens, leading to airway inflammation and hyper-responsiveness. These Th2 responses are normally suppressed by functional T regulatory cells (Tregs, which maintain the airway tolerance. However, the Tregs activity is conceived to be compromised in allergic asthmatics. The curative therapy to counteract this immune dysregulation is not available so far, and to devise such a remedy is the current research impetus in allergic asthma therapeutics. One of the novel insights is to consider a Tregs-directed immunoregulatory therapy that could harness endogenous Tregs to redress the Th2/Tregs imbalance, thus enhancing the airway tolerance. Aspirin or acetylsalicylic acid (ASA is a prototype non-steroidal anti-inflammatory drug that possesses intriguing immunopharmacological attributes. For example, it can enhance the number or the frequency of functional Tregs, especially natural CD4+ CD25+ FoxP3+ Tregs, either directly or by inducing tolerogenic activity in dendritic cells (DCs. It is also considered to be beneficial for the induction of immunological tolerance in autoimmunity and graft rejection. This raises the question whether ASA, if exploited optimally, may be used to induce and harness endogenous Tregs activity for redressing Th2/Tregs imbalance in allergic asthma. In this paper, we hypothesise that ASA may help to counteract the underlying immune dysregulation in allergic asthma by promoting airway tolerance. Nevertheless, the future research in this regard will selectively need to be targeted to allergic asthma models, which are ASA insensitive, as ASA has some adverse background and is contraindicated in asthmatics who are sensitive to it.

  6. Relationship between airway pathophysiology and airway inflammation in older asthmatics

    DEFF Research Database (Denmark)

    Porsbjerg, Celeste M; Gibson, Peter G; Pretto, Jeffrey J;

    2013-01-01

    BACKGROUND AND OBJECTIVE: Asthma-related morbidity is greater in older compared with younger asthmatics. Airway closure is also greater in older asthmatics, an observation that may be explained by differences in airway inflammation. We hypothesized that in older adult patients with asthma......: Mean patient age was 67 years (confidence interval: 63-71) with a mean FEV1 of 78 % predicted (confidence interval: 70-85%). AHR correlated with sputum eosinophils (r = 0.68, P = 0.005) and eNO (r = 0.71, P ... or eNO. CONCLUSIONS: In older patients with asthma, airway inflammatory cells are linked to abnormal airway physiology. Eosinophilic airway inflammation is associated with AHR while neutrophilic inflammation may be an important determinant of airflow limitation at rest and airway closure during...

  7. Disordered microbial communities in asthmatic airways.

    Directory of Open Access Journals (Sweden)

    Markus Hilty

    Full Text Available BACKGROUND: A rich microbial environment in infancy protects against asthma [1], [2] and infections precipitate asthma exacerbations [3]. We compared the airway microbiota at three levels in adult patients with asthma, the related condition of COPD, and controls. We also studied bronchial lavage from asthmatic children and controls. PRINCIPAL FINDINGS: We identified 5,054 16S rRNA bacterial sequences from 43 subjects, detecting >70% of species present. The bronchial tree was not sterile, and contained a mean of 2,000 bacterial genomes per cm(2 surface sampled. Pathogenic Proteobacteria, particularly Haemophilus spp., were much more frequent in bronchi of adult asthmatics or patients with COPD than controls. We found similar highly significant increases in Proteobacteria in asthmatic children. Conversely, Bacteroidetes, particularly Prevotella spp., were more frequent in controls than adult or child asthmatics or COPD patients. SIGNIFICANCE: The results show the bronchial tree to contain a characteristic microbiota, and suggest that this microbiota is disturbed in asthmatic airways.

  8. Functional phenotype of airway myocytes from asthmatic airways

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Ojo, Oluwaseun O.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha

    2013-01-01

    In asthma, the airway smooth muscle (ASM) cell plays a central role in disease pathogenesis through cellular changes which may impact on its microenvironment and alter ASM response and function. The answer to the long debated question of what makes a 'healthy' ASM cell become 'asthmatic' still remai

  9. The role of potassium channels in the nitric oxide-induced relaxation of human airway smooth muscle of passively sensitization by serum from allergic asthmatic patients

    Institute of Scientific and Technical Information of China (English)

    Tao Ye; Yongjian Xu; Zhenxiang Zhang; Xiansheng Liu; Zhao Yang; Baoan Gao

    2006-01-01

    Objective: To investigate the role of large Ca2+-activated, delayed-rectifier and ATP-sensitive potassium channel in regulating the relaxation induced by nitric oxide (NO) in normal and passively sensitized human airway smooth muscle (HASM) with serum from asthmatic patients. Methods: The effects of NO or/and potassium channel blockers on the tensions of normal and passively sensitized HASM were measured by using nitric oxide donor and potassium blockers, with the isometric tension recording technique. Results: Showed that (1)In the control group and passively sensitized group, Kv blocker (4-AP) cause concentration-dependent augmentation in the contraction induced by histamine (1 ×10-4 mol/L), (P < 0.05), but Glib (1 × 10-2 mol/L)and TEA (1×10-3 mol/L) have no significant effects on the contraction induced by histamine (1×10-4 mol/L). The maximum tension induced by histamine in passively sensitized group is higher than that in the control group (P < 0.05). (2) NO-donor Sodium Nitroprusside (SNP) bring about significant relaxation in normal and passively sensitized HASM rings (P < 0.05). Relaxations of passively sensitized airway rings [ (29.4 ± 3.3)% ] were significant less than those of normal HASM rings [ (44.1 ± 10.2)% ], (P <0.05).(3) Glib(1×10-2 mol/L)have no significant effect on the relaxations induced by SNP(1×10-4 mol/L). 4-AP(1×10-2 mol/L) inhibited relaxation induced by SNP (1×10-4 mol/L), (P < 0.01). TEA (1×10-3 mol/L) inhibited relaxation induced by SNP (1×10-4mol/L) (P < 0.05), and the inhibiting effect in passively sensitized HASM rings were significant less than in normal HASM, (P <0.05). Conclusion: It was concluded that SNP(NO-donor) relaxed the contraction of HASM partly via BKca channel opening. In passively sensitized HASM in vitro, the relaxation of SNP decreased compared with control group, which might be associated with the down-regulating activity of BKca in passively sensitized HASM.

  10. Is Health-Related Quality of Life Associated with Upper and Lower Airway Inflammation in Asthmatics?

    Directory of Open Access Journals (Sweden)

    Nicola Scichilone

    2013-01-01

    Full Text Available Background. Allergic diseases impair health-related quality of life (HR-QoL. However, the relationship between airway inflammation and HR-QoL in patients with asthma and rhinitis has not been fully investigated. We explored whether the inflammation of upper and lower airways is associated with HR-QoL. Methods. Twenty-two mild allergic asthmatics with concomitant rhinitis (10 males, 38 ± 17 years were recruited. The Rhinasthma was used to identify HR-QoL, and the Asthma Control Test (ACT was used to assess asthma control. Subjects underwent lung function and exhaled nitric oxide (eNO test, collection of exhaled breath condensate (EBC, and nasal wash. Results. The Rhinasthma Global Summary score (GS was 25 ± 11. No relationships were found between GS and markers of nasal allergic inflammation (% eosinophils: , ; ECP: , or bronchial inflammation (pH of the EBC: , ; bronchial NO: , ; alveolar NO: , . The mean ACT score was 18. When subjects were divided into controlled (ACT ≥ 20 and uncontrolled (ACT < 20, the alveolar NO significantly correlated with GS in uncontrolled asthmatics (, . Conclusions. Upper and lower airways inflammation appears unrelated to HR-QoL associated with respiratory symptoms. These preliminary findings suggest that, in uncontrolled asthma, peripheral airway inflammation could be responsible for impaired HR-QoL.

  11. An ovine tracheal explant culture model for allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Abeynaike Latasha

    2010-08-01

    Full Text Available Abstract Background The airway epithelium is thought to play an important role in the pathogenesis of asthmatic disease. However, much of our understanding of airway epithelial cell function in asthma has been derived from in vitro studies that may not accurately reflect the interactive cellular and molecular pathways active between different tissue constituents in vivo. Methods Using a sheep model of allergic asthma, tracheal explants from normal sheep and allergic sheep exposed to house dust mite (HDM allergen were established to investigate airway mucosal responses ex vivo. Explants were cultured for up to 48 h and tissues were stained to identify apoptotic cells, goblet cells, mast cells and eosinophils. The release of cytokines (IL-1α, IL-6 and TNF-α by cultured tracheal explants, was assessed by ELISA. Results The general morphology and epithelial structure of the tracheal explants was well maintained in culture although evidence of advanced apoptosis within the mucosal layer was noted after culture for 48 h. The number of alcian blue/PAS positive mucus-secreting cells within the epithelial layer was reduced in all cultured explants compared with pre-cultured (0 h explants, but the loss of staining was most evident in allergic tissues. Mast cell and eosinophil numbers were elevated in the allergic tracheal tissues compared to naïve controls, and in the allergic tissues there was a significant decline in mast cells after 24 h culture in the presence or absence of HDM allergen. IL-6 was released by allergic tracheal explants in culture but was undetected in cultured control explants. Conclusions Sheep tracheal explants maintain characteristics of the airway mucosa that may not be replicated when studying isolated cell populations in vitro. There were key differences identified in explants from allergic compared to control airways and in their responses in culture for 24 h. Importantly, this study establishes the potential for the

  12. Gene expression in asthmatic airway smooth muscle: a mixed bag.

    Science.gov (United States)

    Pascoe, Christopher D; Swyngedouw, Nicholas E; Seow, Chun Y; Paré, Peter D

    2015-02-01

    It has long been known that airway smooth muscle (ASM) contraction contributes significantly to the reversible airflow obstruction that defines asthma. It has also been postulated that phenotypic changes in ASM contribute to the airway hyper-responsiveness (AHR) that is a characteristic feature of asthma. Although there is agreement that the mass of ASM surrounding the airways is significantly increased in asthmatic compared with non-asthmatic airways, it is still uncertain whether there are quantitative or qualitative changes in the level of expression of the genes and proteins involved in the canonical contractile pathway in ASM that could account for AHR. This review will summarize past attempts at quantifying gene expression changes in the ASM of asthmatic lungs as well as non-asthmatic ASM cells stimulated with various inflammatory cytokines. The lack of consistent findings in asthmatic samples coupled with the relative concordance of results from stimulated ASM cells suggests that changes to the contractility of ASM tissues in asthma may be dependent on the presence of an inflammatory environment surrounding the ASM layer. Removal of the ASM from this environment could explain why hypercontractility is rarely seen ex vivo.

  13. The transcription factor PU.1 promotes alternative macrophage polarization and asthmatic airway inflammation.

    Science.gov (United States)

    Qian, Feng; Deng, Jing; Lee, Yong Gyu; Zhu, Jimmy; Karpurapu, Manjula; Chung, Sangwoon; Zheng, Jun-Nian; Xiao, Lei; Park, Gye Young; Christman, John W

    2015-12-01

    The transcription factor PU.1 is involved in regulation of macrophage differentiation and maturation. However, the role of PU.1 in alternatively activated macrophage (AAM) and asthmatic inflammation has yet been investigated. Here we report that PU.1 serves as a critical regulator of AAM polarization and promotes the pathological progress of asthmatic airway inflammation. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, conditional PU.1-deficient (PU/ER(T)(+/-)) mice displayed attenuated allergic airway inflammation, including decreased alveolar eosinophil infiltration and reduced production of IgE, which were associated with decreased mucous glands and goblet cell hyperplasia. The reduced asthmatic inflammation in PU/ER(T)(+/-) mice was restored by adoptive transfer of IL-4-induced wild-type (WT) macrophages. Moreover, after treating PU/ER(T)(+/-) mice with tamoxifen to rescue PU.1 function, the allergic asthmatic inflammation was significantly restored. In vitro studies demonstrate that treatment of PU.1-deficient macrophages with IL-4 attenuated the expression of chitinase 3-like 3 (Ym-1) and resistin-like molecule alpha 1 (Fizz-1), two specific markers of AAM polarization. In addition, PU.1 expression in macrophages was inducible in response to IL-4 challenge, which was associated with phosphorylation of signal transducer and activator of transcription 6 (STAT6). Furthermore, DRA challenge in sensitized mice almost abrogated gene expression of Ym-1 and Fizz-1 in lung tissues of PU/ER(T)(+/-) mice compared with WT mice. These data, all together, indicate that PU.1 plays a critical role in AAM polarization and asthmatic inflammation.

  14. A study of airway smooth muscle in asthmatic and non-asthmatic airways using PS-OCT (Conference Presentation)

    Science.gov (United States)

    Adams, David C.; Holz, Jasmin A.; Szabari, Margit V.; Hariri, Lida P.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    Present understanding of the pathophysiological mechanisms of asthma has been severely limited by the lack of an imaging modality capable of assessing airway conditions of asthma patients in vivo. Of particular interest is the role that airway smooth muscle (ASM) plays in the development of asthma and asthma related symptoms. With standard Optical Coherence Tomography (OCT), imaging ASM is often not possible due to poor structural contrast between the muscle and surrounding tissues. A potential solution to this problem is to utilize additional optical contrast factors intrinsic to the tissue, such as birefringence. Due to its highly ordered structure, ASM is strongly birefringent. Previously, we demonstrated that Polarization Sensitive OCT(PS-OCT) has the potential to be used to visualize ASM as well as easily segment it from the surrounding (weakly) birefringent tissue by exploiting a property which allows it to discriminate the orientation of birefringent fibers. We have already validated our technology with a substantial set of histological comparisons made against data obtained ex vivo. In this work we present a comprehensive comparison of ASM distributions in asthmatic and non-asthmatic human volunteers. By isolating the ASM we parameterize its distribution in terms of both thickness and band width, calculated volumetrically over centimeters of airway. Using this data we perform analyses of the asthmatic and non-asthmatic airways using a broad number and variety and subjects.

  15. FoxO1 regulates allergic asthmatic inflammation through regulating polarization of the macrophage inflammatory phenotype.

    Science.gov (United States)

    Chung, Sangwoon; Lee, Tae Jin; Reader, Brenda F; Kim, Ji Young; Lee, Yong Gyu; Park, Gye Young; Karpurapu, Manjula; Ballinger, Megan N; Qian, Feng; Rusu, Luiza; Chung, Hae Young; Unterman, Terry G; Croce, Carlo M; Christman, John W

    2016-04-05

    Inflammatory monocyte and tissue macrophages influence the initiation, progression, and resolution of type 2 immune responses, and alveolar macrophages are the most prevalent immune-effector cells in the lung. While we were characterizing the M1- or M2-like macrophages in type 2 allergic inflammation, we discovered that FoxO1 is highly expressed in alternatively activated macrophages. Although several studies have been focused on the fundamental role of FoxOs in hematopoietic and immune cells, the exact role that FoxO1 plays in allergic asthmatic inflammation in activated macrophages has not been investigated. Growing evidences indicate that FoxO1 acts as an upstream regulator of IRF4 and could have a role in a specific inflammatory phenotype of macrophages. Therefore, we hypothesized that IRF4 expression regulated by FoxO1 in alveolar macrophages is required for established type 2 immune mediates allergic lung inflammation. Our data indicate that targeted deletion of FoxO1 using FoxO1-selective inhibitor AS1842856 and genetic ablation of FoxO1 in macrophages significantly decreases IRF4 and various M2 macrophage-associated genes, suggesting a mechanism that involves FoxO1-IRF4 signaling in alveolar macrophages that works to polarize macrophages toward established type 2 immune responses. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, macrophage specific FoxO1 overexpression is associated with an accentuation of asthmatic lung inflammation, whereas pharmacologic inhibition of FoxO1 by AS1842856 attenuates the development of asthmatic lung inflammation. Thus, our study identifies a role for FoxO1-IRF4 signaling in the development of alternatively activated alveolar macrophages that contribute to type 2 allergic airway inflammation.

  16. Silibinin attenuates allergic airway inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Ho [Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Jin, Guang Yu [Department of Radiology, Yanbian University Hospital, YanJi 133002 (China); Guo, Hui Shu [Centralab, The First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Piao, Hong Mei [Department of Respiratory Medicine, Yanbian University Hospital, YanJi 133000 (China); Li, Liang chang; Li, Guang Zhao [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China); Lin, Zhen Hua [Department of Pathology, Yanbian University School of Basic Medical Sciences, YanJi 133000 (China); Yan, Guang Hai, E-mail: ghyan@ybu.edu.cn [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  17. Airways obstruction in asthmatics induced by body cooling.

    Science.gov (United States)

    Chen, W Y; Horton, D J

    1978-02-01

    Pulmonary and thermoregulatory reactions to body cooling were studied in eight asthmatic and five normal subjects. The cooling was achieved by a cold shower at water temperature (T) of 15 degrees C for 1 min, followed by exposing the wet body to a high wind generated by a fan for another minute. The skin T, oral T and pulmonary functions were measured before and after cooling. After the cooling, skin T fell a mean of 7 degrees in all subjects and the oral T fell 0.5 degrees in the normals and 0.7 degrees in the asthmatics. In asthmatics, the post-cooling forced expiratory volume in 1 s (FEV1) and maximal mid-expiratory flow (MMEF) fell significantly (P less than .05) to a mean of 79% and 72%of baseline, respectively, and thoracic gas volume (TGV) and airway resistance (Raw) increased significantly to 133% and 198% of baseline, respectively. In normal subjects a small but significant increase in Raw was found. No obstruction developed in the asthmatics after a warm shower at 37 degrees or after breathing the cold shower mist. It is suggested that it is body cooling which leads first to vasoconstriction and then cooling of respiratory mucosa that initiates bronchoconstriction in asthmatics.

  18. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP and CCL11/eotaxin-1 in human asthmatic airways.

    Directory of Open Access Journals (Sweden)

    Gustavo Nino

    Full Text Available BACKGROUND: Thymic stromal lymphoproetin (TSLP is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. METHODS: Primary human bronchial epithelial cells (HBEC from control (n = 3 and asthmatic (n = 3 donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI conditions and treated apically with dsRNA (viral surrogate or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC from normal (n = 3 and asthmatic (n = 3 donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20 vs. non-asthmatic uninfected controls (n = 20. Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. RESULTS: Our data demonstrate that: 1 Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2 TSLP exposure induces unidirectional (apical secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3 Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. CONCLUSIONS: There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  19. Deficiency of nitric oxide in allergen-induced airway hyperreactivity to contractile agonists after the early asthmatic reaction : An ex vivo study

    NARCIS (Netherlands)

    deBoer, J; Meurs, H; Coers, W; Koopal, M; Bottone, AE; Visser, AC; Timens, W; Zaagsma, J

    1996-01-01

    1 Using a guinea-pig model of allergic asthma, we investigated the role of nitric oxide (NO) in allergen-induced airway hyperreactivity after the early asthmatic reaction, by examining the effects of the NO-synthase inhibitor N-omega-nitro-L-arginine methyl ester (L-NAME) on the responsiveness to me

  20. Role of L-arginine in the deficiency of nitric oxide and airway hyperreactivity after the allergen-induced early asthmatic reaction in guinea-pigs

    NARCIS (Netherlands)

    de Boer, J; Duyvendak, M; Schuurman, F.E; Pouw, F.M W; Zaagsma, Hans; Meurs, Herman

    1999-01-01

    1 Using a guinea-pig model of allergic asthma, we investigated the role of L-arginine limitation in the allergen-induced deficiency of nitric oxide (NO) and airway hyperreactivity (AHR) after the early asthmatic reaction, by examining the effects of various concentrations of the NO synthase (NOS) su

  1. Determinants of lung function and airway hyperresponsiveness in asthmatic children

    DEFF Research Database (Denmark)

    Bisgaard, H; Pedersen, S; Anhøj, J;

    2007-01-01

    Genetic Study (SAGA). RESULTS: The primary analysis studied the association between the lung function and delay of inhaled corticosteroids (ICS) after asthma diagnosis among asthmatic children and young adults with a history of regular ICS treatment (N=919). FEV(1) percent predicted (FEV(1)% pred) was 0......BACKGROUND: Asthma patients exhibit an increased rate of loss of lung function. Determinants to such decline are largely unknown and the modifying effect of steroid therapy is disputed. This cross-sectional study aimed to elucidate factors contributing to such decline and the possible modifying...... effect of steroid treatment. METHODS: We analyzed determinants of lung function and airway hyperresponsiveness (AHR) in a Scandinavian study of 2390 subjects from 550 families. Families were selected for the presence of two or more asthmatic children as part of a genetic study, Scandinavian Asthma...

  2. Allergic asthmatics show divergent lipid mediator profiles from healthy controls both at baseline and following birch pollen provocation.

    Directory of Open Access Journals (Sweden)

    Susanna L Lundström

    Full Text Available BACKGROUND: Asthma is a respiratory tract disorder characterized by airway hyper-reactivity and chronic inflammation. Allergic asthma is associated with the production of allergen-specific IgE and expansion of allergen-specific T-cell populations. Progression of allergic inflammation is driven by T-helper type 2 (Th2 mediators and is associated with alterations in the levels of lipid mediators. OBJECTIVES: Responses of the respiratory system to birch allergen provocation in allergic asthmatics were investigated. Eicosanoids and other oxylipins were quantified in the bronchoalveolar lumen to provide a measure of shifts in lipid mediators associated with allergen challenge in allergic asthmatics. METHODS: Eighty-seven lipid mediators representing the cyclooxygenase (COX, lipoxygenase (LOX and cytochrome P450 (CYP metabolic pathways were screened via LC-MS/MS following off-line extraction of bronchoalveolar lavage fluid (BALF. Multivariate statistics using OPLS were employed to interrogate acquired oxylipin data in combination with immunological markers. RESULTS: Thirty-two oxylipins were quantified, with baseline asthmatics possessing a different oxylipin profile relative to healthy individuals that became more distinct following allergen provocation. The most prominent differences included 15-LOX-derived ω-3 and ω-6 oxylipins. Shared-and-Unique-Structures (SUS-plot modeling showed a correlation (R(2 = 0.7 between OPLS models for baseline asthmatics (R(2Y[cum] = 0.87, Q(2[cum] = 0.51 and allergen-provoked asthmatics (R(2Y[cum] = 0.95, Q(2[cum] = 0.73, with the majority of quantified lipid mediators and cytokines contributing equally to both groups. Unique structures for allergen provocation included leukotrienes (LTB(4 and 6-trans-LTB(4, CYP-derivatives of linoleic acid (epoxides/diols, and IL-10. CONCLUSIONS: Differences in asthmatic relative to healthy profiles suggest a role for 15-LOX products of both ω-6 and ω-3 origin in allergic

  3. Cytokine serum profiles in allergic and non-allergic asthma. Increased production of IL-10 by non-allergic asthmatic patients.

    Science.gov (United States)

    Sánchez-Guerrero, I; Vegara, R P; Herrero, N; García-Alonso, A M; Luna, A; Alvarez, M R

    1997-01-01

    Studies were undertaken to determine whether differences in serum cytokine balances could be involved in the pathogenesis of allergic and in non-allergic asthma. At this propose, interferon-gamma, tumor necrosis factor-alpha, interleukin-2, interleukin-4, interleukin-6, and interleukin-10 were measured by enzimoimmunoassay. The analysis was performed on 24 allergic and 24 non-allergic asthmatic patients and 16 healthy subjects. IFN-gamma and TNF-alpha, included into the type 1 cytokines, appeared significantly increased in the allergic with respect to the non-allergic asthmatic patients (p = 0.01) and (p < 0.001) respectively, while IL-10, which belongs to the type 2 cytokines, was significantly increased in the non-allergic asthmatic (p < 0.001). The IL-6 analysis did not show any significant difference in either of the study group. The most interesting finding was the high serum IL-10 values detected in intrinsic asthmatic patients, which in turn, suggests that this cytokine could participate in the regulation of different immunological features that occurs in non-allergic asthma, and maybe it could indicate a higher stimulated state of cells in this type of asthma. The data presented in this report show a different cytokine profile in serum from allergic and non-allergic asthmatic patients and denote a stronger prevalence of type 2 cytokines in intrinsic asthma.

  4. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics

    Science.gov (United States)

    Blankman, Elizabeth; Jensen, Christopher C.; Krishnan, Ramaswamy; James, Alan L.; Elliot, John G.; Green, Francis H.; Liu, Jeffrey C.; Seow, Chun Y.; Park, Jin-Ah; Beckerle, Mary C.; Paré, Peter D.; Fredberg, Jeffrey J.; Smith, Mark A.

    2017-01-01

    Bronchospasm induced in non-asthmatic human subjects can be easily reversed by a deep inspiration (DI) whereas bronchospasm that occurs spontaneously in asthmatic subjects cannot. This physiological effect of a DI has been attributed to the manner in which a DI causes airway smooth muscle (ASM) cells to stretch, but underlying molecular mechanisms–and their failure in asthma–remain obscure. Using cells and tissues from wild type and zyxin-/- mice we report responses to a transient stretch of physiologic magnitude and duration. At the level of the cytoskeleton, zyxin facilitated repair at sites of stress fiber fragmentation. At the level of the isolated ASM cell, zyxin facilitated recovery of contractile force. Finally, at the level of the small airway embedded with a precision cut lung slice, zyxin slowed airway dilation. Thus, at each level zyxin stabilized ASM structure and contractile properties at current muscle length. Furthermore, when we examined tissue samples from humans who died as the result of an asthma attack, we found increased accumulation of zyxin compared with non-asthmatics and asthmatics who died of other causes. Together, these data suggest a biophysical role for zyxin in fatal asthma. PMID:28278518

  5. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma

    Science.gov (United States)

    Habibovic, Aida; Hristova, Milena; Heppner, David E.; Danyal, Karamatullah; Ather, Jennifer L.; Janssen-Heininger, Yvonne M.W.; Irvin, Charles G.; Poynter, Matthew E.; Lundblad, Lennart K.; Dixon, Anne E.; Geiszt, Miklos

    2016-01-01

    Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite–induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management.

  6. Polyopes affinis alleviates airway inflammation in a murine model of allergic asthma

    Indian Academy of Sciences (India)

    Dae-Sung Lee; Won Sun Park; Soo-Jin Heo; Seon-Heui Cha; Daekyung Kim; You-Jin Jeon; Sae-Gwang Park; Su-Kil Seo; Jung Sik Choi; Sung-Jae Park; Eun Bo Shim; Il-Whan Choi; Won-Kyo Jung

    2011-12-01

    Marine algae have been utilized in food as well as medicine products for a variety of purposes. The purpose of this study was to determine whether an ethanol extract of Polyopes affinis (P.affinis) can inhibit the pathogenesis of T helper 2 (Th2)-mediated allergen-induced airway inflammation in a murine model of asthma. Mice that were sensitized and challenged with ovalbumin (OVA) evidenced typical asthmatic reactions such as the following: an increase in the number of eosinophils in the bronchoalveolar lavage (BAL) fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways as well as the narrowing of the airway luminal; the development of airway hyperresponsiveness (AHR); the presence of pulmonary Th2 cytokines; and the presence of allergen-specific immunoglobulin E (IgE) in the serum. The successive intraperitoneal administration of P. affinis ethanolic extracts before the last airway OVA-challenge resulted in a significant inhibition of all asthmatic reactions. These data suggest that P. affinis ethanolic extracts possess therapeutic potential for the treatment of pulmonary allergic disorders such as allergic asthma.

  7. Bronchodilatory effect of Portulaca oleracea in airways of asthmatic patients.

    Science.gov (United States)

    Malek, F; Boskabady, M H; Borushaki, M T; Tohidi, M

    2004-07-01

    Therapeutic effects of Portulaca oleracea for respiratory diseases are indicated in ancient Iranian medical books. The relaxant effect of this plant have also been observed on smooth muscle tissue in previous studies. Therefore, in the present study, the bronchodilatory effect of the boiled extract of Portulaca oleracea in the airway of asthmatic patients was examined. The relaxant effect of the orally administered 0.25 ml/kg of 5% boiled extract in comparison with 3 mg/kg oral theophylline and 200 microg inhaled salbutamol was studied by measuring forced expiratory volume in one second (FEV1), peak expiratory flow (PEF), maximal mid-expiratory flow (MEF(25-75)), and specific airway conductance (sGaw). The FEV1, PEF, MEF(25-75), and sGaw were measured before, administration and repeated 15, 30, 60, 90, and 120 min after administration of the oral extract and theopylline. For inhaled salbutamol measurements were performed 5, 15, 30, and 60 min post-inhalation. Results showed that the boiled extract of Portulaca oleracea caused significant increases in all measured pulmonary function tests (PFTs), (P < 0.05 to P < 0.01). There was no significant difference between the maximum increase in measured PFTs due to the boiled extract and theophylline. However, maximum increase in PEF and MEF(25-75) due to the boiled extract were significantly lower than those of salbutamol (P < 0.05 for both cases). The onset of brochodilatory effect of extract was similar to that of theophylline beginning 60 min, but the effect of extract decline after 120 min after administration. In conclusion, the results of the present study showed that Portulaca oleracea has a relatively potent but transient bronchodilatory effect on asthmatic airways.

  8. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection

    Directory of Open Access Journals (Sweden)

    King Nicholas JC

    2006-05-01

    Full Text Available Abstract Background Exacerbations of asthma are associated with viral respiratory tract infections, of which rhinoviruses (RV are the predominant virus type. Airway smooth muscle is important in asthma pathogenesis, however little is known about the potential interaction of RV and human airway smooth muscle cells (HASM. We hypothesised that rhinovirus induction of inflammatory cytokine release from airway smooth muscle is augmented and differentially regulated in asthmatic compared to normal HASM cells. Methods HASM cells, isolated from either asthmatic or non-asthmatic subjects, were infected with rhinovirus. Cytokine production was assayed by ELISA, ICAM-1 cell surface expression was assessed by FACS, and the transcription regulation of IL-6 was measured by luciferase activity. Results RV-induced IL-6 release was significantly greater in HASM cells derived from asthmatic subjects compared to non-asthmatic subjects. This response was RV specific, as 5% serum- induced IL-6 release was not different in the two cell types. Whilst serum stimulated IL-8 production in cells from both subject groups, RV induced IL-8 production in only asthmatic derived HASM cells. The transcriptional induction of IL-6 was differentially regulated via C/EBP in the asthmatic and NF-κB + AP-1 in the non-asthmatic HASM cells. Conclusion This study demonstrates augmentation and differential transcriptional regulation of RV specific innate immune response in HASM cells derived from asthmatic and non-asthmatics, and may give valuable insight into the mechanisms of RV-induced asthma exacerbations.

  9. NEUROTROPHIN MEDIATION OF ALLERGIC AIRWAYS RESPONSES TO INHALED DIESEL PARTICLES IN MICE

    Science.gov (United States)

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway hyper-responsiveness. Diesel exhaust particulates (DEP) associated with the combustion of diesel fuel exacerbate many of these allergic airways respons...

  10. Blockade of Airway Inflammation by Kaempferol via Disturbing Tyk-STAT Signaling in Airway Epithelial Cells and in Asthmatic Mice

    OpenAIRE

    Ju-Hyun Gong; Daekeun Shin; Seon-Young Han; Sin-Hye Park; Min-Kyung Kang; Jung-Lye Kim; Young-Hee Kang

    2013-01-01

    Asthma is characterized by bronchial inflammation causing increased airway hyperresponsiveness and eosinophilia. The interaction between airway epithelium and inflammatory mediators plays a key role in the asthmatic pathogenesis. The in vitro study elucidated inhibitory effects of kaempferol, a flavonoid found in apples and many berries, on inflammation in human airway epithelial BEAS-2B cells. Nontoxic kaempferol at ≤20  μ M suppressed the LPS-induced IL-8 production through the TLR4 activat...

  11. Linker for activation of T cells contributes to airway inflammation in an asthmatic mouse model

    Institute of Scientific and Technical Information of China (English)

    GUO Xue-jun; REN Lian-ping; SUN Yi-ping; ZHOU Min; XU Wei-guo

    2010-01-01

    Background Allergic asthma is associated with airway inflammation and hyperresponsiveness caused by dysregulated production of cytokines secreted by allergen-specific helper T-type 2 (Th2) cells. The linker for activation of T cells (LAT)is a membrane-associated adaptor protein, which has been shown to take part in regulating T cell receptor (TCR)signaling and T cell homeostasis. In this study, we established an asthmatic mouse model to examine the changes in LAT levels during allergic airway disease and the effects of LAT transgenic expression on airway inflammation.Methods T ceils from mouse lung tissues were isolated from allergen challenged (ovalbumin (OVA)) and control mice,and the purity of these isolated T cells was examined by fluorescence-activated cell sorter (FACS). Semi-quantitative RT-PCR and Western blotting were used to detect the expression of the LAT gene and LAT protein, respectively. After an intranasally administered mixture of pCMV-HA-LAT plasmid and Lipofectamine 2000, 24 hours before and 72 hours after allergen challenge, the BALF cell count and the differential cytologies were studied. In addition, IL-4 and IFN-γ levels in the BALF were determined by ELISA, and pathological changes in lung tissues were observed.Results LAT protein and mRNA expression were decreased in lung T cells in a mouse model of allergen-induced airway disease. After intranasal administration of pCMV-HA-LAT, histopathological examination of the lungs showed that intervention with LAT overexpression prevented mice from developing airway inflammation, and the number of total cells,eosinophils, neutrophils, and lymphocytes in the BALF was reduced significantly compared with the OVA sensitized and challenged group. In addition, the Th2 cytokine IL-4 decreased, while the Th1 cytokine IFN-Y increased compared to the OVA sensitized and challenged group or the OVA sensitized group plus pCMV-HA treatment.Conclusion This study demonstrates that LAT might effectively diminish Th2

  12. Upper and lower airway pathology in young children with allergic- and non-allergic rhinitis

    DEFF Research Database (Denmark)

    Chawes, Bo Lk

    2011-01-01

    Allergic- and non-allergic rhinitis are very common diseases in childhood in industrialized countries. Although these conditions are widely trivialized by both parents and physicians they induce a major impact on quality of life for the affected children and a substantial drainage of health care...... symptom in both allergic- and non-allergic rhinitis, and eosinophilic inflammation is a hallmark of the allergic diseases. In paper I, we studied nasal eosinophilia and nasal airway patency assessed by acoustic rhinometry in children with allergic rhinitis, non-allergic rhinitis and healthy controls...... nasal eosinophilia albeit less than children with allergic rhinitis. These findings suggest different pathology in allergic- and non-allergic rhinitis which may have important clinical implications for early pharmacological treatment of rhinitis in young children. In paper II, we utilized the nasal...

  13. Anti-asthmatic effects of matrine in a mouse model of allergic asthma.

    Science.gov (United States)

    Fu, Qiang; Wang, Jing; Ma, Zhanqing; Ma, Shiping

    2014-04-01

    The aim of the study was to investigate the anti-asthmatic effects of matrine and the possible mechanisms. Asthma model was established by ovalbumin-induced. A total of 50 mice were randomly assigned to five experimental groups: control, model, dexamethasone (2 mg/kg) and matrine (50 mg/kg, 100 mg/kg). Airway resistance (Raw) was measured, histological studies were evaluated by the hematoxylin and eosin (HE) staining, interleukin-4 (IL-4) and interleukin-13 were evaluated by enzyme-linked immunosorbent assay (ELISA), IL-4 and IL-13 signal protein STAT6 was measured by western blotting. Our study demonstrated that matrine inhibited OVA-induced increases in Raw and eosinophil count; IL-4 and IL-13 were recovered. Histological studies demonstrated that matrine substantially inhibited OVA-induced eosinophilia in lung tissue. Western blotting studies demonstrated that matrine substantially inhibited STAT6 protein level. These findings suggest that matrine may effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma.

  14. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro-Filho, Jaime [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Moraes de Carvalho, Katharinne Ingrid [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Mendes, Diego da [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Melo, Christianne Bandeira [Laboratório de Inflamação, Instituto Biofisica Carlos Chagas Filho, UFRJ, Rio de Janeiro (Brazil); Martins, Marco Aurélio [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Dias, Celidarque da [Laboratório de Fitoquímica, Departamento de Ciências Farmacêuticas, UFPB, João Pessoa, Paraíba (Brazil); Piuvezam, Márcia Regina, E-mail: mrpiuvezam@ltf.ufpb.br [Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); and others

    2013-11-15

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  15. Accumulating evidence for increased velocity of airway smooth muscle shortening in asthmatic airway hyperresponsiveness.

    Science.gov (United States)

    Ijpma, Gijs; Matusovsky, Oleg; Lauzon, Anne-Marie

    2012-01-01

    It remains unclear whether airway smooth muscle (ASM) mechanics is altered in asthma. While efforts have originally focussed on contractile force, some evidence points to an increased velocity of shortening. A greater rate of airway renarrowing after a deep inspiration has been reported in asthmatics compared to controls, which could result from a shortening velocity increase. In addition, we have recently shown in rats that increased shortening velocity correlates with increased muscle shortening, without increasing muscle force. Nonetheless, establishing whether or not asthmatic ASM shortens faster than that of normal subjects remains problematic. Endobronchial biopsies provide excellent tissue samples because the patients are well characterized, but the size of the samples allows only cell level experiments. Whole human lungs from transplant programs suffer primarily from poor patient characterization, leading to high variability. ASM from several animal models of asthma has shown increased shortening velocity, but it is unclear whether this is representative of human asthma. Several candidates have been suggested as responsible for increased shortening velocity in asthma, such as alterations in contractile protein expression or changes in the contractile apparatus structure. There is no doubt that more remains to be learned about the role of shortening velocity in asthma.

  16. Upper and lower airway pathology in young children with allergic- and non-allergic rhinitis

    DEFF Research Database (Denmark)

    Chawes, Bo Lk

    2011-01-01

    Allergic- and non-allergic rhinitis are very common diseases in childhood in industrialized countries. Although these conditions are widely trivialized by both parents and physicians they induce a major impact on quality of life for the affected children and a substantial drainage of health care...... symptom in both allergic- and non-allergic rhinitis, and eosinophilic inflammation is a hallmark of the allergic diseases. In paper I, we studied nasal eosinophilia and nasal airway patency assessed by acoustic rhinometry in children with allergic rhinitis, non-allergic rhinitis and healthy controls...... or asthma should be considered inflamed in the entire respiratory tract. In paper III, we aimed to describe asthma and intermediary asthma end-points associated with allergic- and non-allergic rhinitis in preschool-aged children. At age 7 years, we evaluated prevalence of asthma, eczema, food sensitization...

  17. Small airway impairment in moderate to severe asthmatics without significant proximal airway obstruction.

    Science.gov (United States)

    Perez, Thierry; Chanez, Pascal; Dusser, Daniel; Devillier, Philippe

    2013-11-01

    Asthma is a disease characterized by inflammation which affects both proximal and distal airways. We evaluated the prevalence of small airway obstruction (SAO) in a group of clinically stable asthmatics with both normal forced expiratory volume in the first second (FEV1) and normal FEV1/forced vital capacity (FVC) and treated with an association of inhaled corticosteroids (ICSs) and long acting β2-agonists (LABAs). Clinical evaluation included the measurement of dyspnea, asthma control test and drug compliance. The prevalence of SAO was estimated by spirometry and plethysmography and defined by the presence of one or more of the following criteria: functional residual capacity (FRC) > 120% predicted (pred), residual volume (RV) > pred + 1.64 residual standard deviation (RSD), RV/total lung capacity (TLC) > pred + 1.64 RSD, forced expiratory flow (FEF)25-75% slow vital capacity (SVC) - FVC > 10%. Among the 441 patients who were included, 222 had normal FEV1 and FEV1/FVC. At least one criteria of SAO was found in 115 (52%) mainly lung hyperinflation (39% based on high FRC, RV or RV/TLC) and more rarely distal airflow limitation (15% based on FEF25-75% or FEF50%) or expiratory trapping (10% based on increased SVC - FVC). In the patients with only SAO (no PAO), there was no relationship between SAO, asthma history and the scores of dyspnea, asthma control or drug compliance. These results suggest that in asthmatics with normal FEV1 and FEV1/FVC, treated with ICSs and LABAs, SAO is found in more than half of the patients indicating that the routinely used lung function tests can underestimate dysfunctions occurring in the small airways.

  18. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    Science.gov (United States)

    Shipkowski, Kelly Anne

    disease would modulate the innate immune response to MWCNTs. We hypothesized that Th2 cytokines and the allergic asthmatic microenvironment would alter MWCNT-induced inflammasome activation and IL- 1beta secretion both in vitro and in vivo. In vitro, THP-1 cells, a human monocytic cell line, were differentiated into macrophages and exposed to MWCNTs and or recombinant Th2 cytokines, specifically IL-4 and/or IL-13. Exposure of THP-1 cells to MWCNTs alone caused dose-dependent secretion of IL-1beta, while co-exposure to IL-4 and/or IL-13 suppressed MWCNT-induced IL-1beta. Further analysis determined that IL-4 and IL-13 were phosphorylating the protein signal transducer and activator of transcription 6 (STAT6) and subsequently inhibiting inflammasome activation and function through suppression of caspase-1, a cysteine protease responsible for cleavage of pro-IL-1beta into an active, secretable form. In vivo, wild-type C57BL6 mice were sensitized intranasally with HDM allergen and exposed to MWCNTs via oropharyngeal aspiration. Treatment with MWCNTs alone induced secretion of IL-1beta in the bronchoalveolar lavage fluid (BALF) one day post-exposure, while sensitization with HDM prior to MWCNT exposure suppressed MWCNT-induced IL-1beta. Immunohistochemical (IHC) analysis of lung sections from exposed animals showed that HDM sensitization inhibited MWCNT-induced pro-casapse-1 protein expression, responsible for inflammasome activation, in the airway epithelium and macrophages. MWCNT exposure combined with HDM sensitization increased inflammatory cell infiltration and subsequent acute lung inflammation and chronic fibrosis. Analysis of the systemic effects of MWCNT exposure during allergic airway sensitization showed that MWCNTs and/or HDM allergen upregulated STAT3 mRNA expression in the lungs, liver, and spleen of exposed animals, and at the same induced mixed T helper (Th) responses in the different tissues. Collectively, these data suggest that the allergic microenvironment

  19. Prolonged ozone exposure in an allergic airway disease model: Adaptation of airway responsiveness and airway remodeling

    Directory of Open Access Journals (Sweden)

    Park Chang-Soo

    2006-02-01

    Full Text Available Abstract Background Short-term exposure to high concentrations of ozone has been shown to increase airway hyper-responsiveness (AHR. Because the changes in AHR and airway inflammation and structure after chronic ozone exposure need to be determined, the goal of this study was to investigate these effects in a murine model of allergic airway disease. Methods We exposed BALB/c mice to 2 ppm ozone for 4, 8, and 12 weeks. We measured the enhanced pause (Penh to methacholine and performed cell differentials in bronchoalveolar lavage fluid. We quantified the levels of IL-4 and IFN-γ in the supernatants of the bronchoalveolar lavage fluids using enzyme immunoassays, and examined the airway architecture under light and electron microscopy. Results The groups exposed to ozone for 4, 8, and 12 weeks demonstrated decreased Penh at methacholine concentrations of 12.5, 25, and 50 mg/ml, with a dose-response curve to the right of that for the filtered-air group. Neutrophils and eosinophils increased in the group exposed to ozone for 4 weeks compared to those in the filtered-air group. The ratio of IL-4 to INF-γ increased significantly after exposure to ozone for 8 and 12 weeks compared to the ratio for the filtered-air group. The numbers of goblet cells, myofibroblasts, and smooth muscle cells showed time-dependent increases in lung tissue sections from the groups exposed to ozone for 4, 8, and 12 weeks. Conclusion These findings demonstrate that the increase in AHR associated with the allergic airway does not persist during chronic ozone exposure, indicating that airway remodeling and adaptation following repeated exposure to air pollutants can provide protection against AHR.

  20. Overexpression of mclca3 in airway epithelium of asthmatic murine models with airway inflammation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui-lan; HE Li

    2010-01-01

    Asthma is a worldwide prevalent disease that is a considerable health burden in many countries.1 In recent years, the airway epithelium is increasingly recognized as a central contributor to the pathogenesis of asthma.2 One of the most highly induced genes in epithelial cells in experimental allergic airway disease is the third murine calcium-activated chloride channel homologue (mclca3, alias gob-5). Its human homology protein is hCLCA1,3,4 which has been identified as clinically relevant molecules in diseases with secretory dysfunctions including asthma and cystic fibrosis. In initial studies, mclca3 was thought to be a member of calcium-activated chloride channel (CaCCs) family,whereas some new interesting reports suggest that the two mclca3 cleavage products cannot form an anion channel on their own but may instead act as extracellular signaling molecules with as yet unknown functions and interacting partners.5

  1. Prostaglandin E2 and Transforming Growth Factor-β Play a Critical Role in Suppression of Allergic Airway Inflammation by Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kyu-Sup Cho

    Full Text Available The role of soluble factors in the suppression of allergic airway inflammation by adipose-derived stem cells (ASCs remains to be elucidated. Moreover, the major soluble factors responsible for the immunomodulatory effects of ASCs in allergic airway diseases have not been well documented. We evaluated the effects of ASCs on allergic inflammation in asthmatic mice treated with a prostaglandin E2 (PGE2 inhibitor or transforming growth factor-β (TGF-β neutralizing antibodies.Asthmatic mice were injected intraperitoneally with a PGE2 inhibitor or TGF-β neutralizing antibodies at approximately the same time as ASCs injection and were compared with non-treated controls. In asthmatic mice, ASCs significantly reduced airway hyperresponsiveness, the number of total inflammatory cells and eosinophils in the bronchoalveolar lavage fluid (BALF, eosinophilic inflammation, goblet cell hyperplasia, and serum total and allergen-specific IgE and IgG1. ASCs significantly inhibited Th2 cytokines, such as interleukin (IL-4, IL-5, and IL-13, and enhanced the Th1 cytokine (Interferon-γ and regulatory cytokines (IL-10 and TGF-β in the BALF and lung draining lymph nodes (LLNs. ASCs engraftment caused significant increases in the regulatory T cell (Treg and IL-10+ T cell populations in LLNs. However, blocking PGE2 or TGF-β eliminated the immunosuppressive effect of ASCs in allergic airway inflammation.ASCs are capable of secreting PGE2 and TGF-β, which may play a role in inducing Treg expansion. Furthermore, treatment with a PGE2 inhibitor or TGF-β neutralizing antibodies eliminated the beneficial effect of ASCs treatment in asthmatic mice, suggesting that PGE2 and TGF-β are the major soluble factors responsible for suppressing allergic airway inflammation.

  2. Endotoxin Is Not Essential for the Development of Cockroach Induced Allergic Airway Inflammation

    OpenAIRE

    2012-01-01

    Purpose Cockroach (CR) is an important inhalant allergen and can induce allergic asthma. However, the mechanism by which CR induces airway allergic inflammation and the role of endotoxin in CR extract are not clearly understood in regards to the development of airway inflammation. In this study, we evaluated whether endotoxin is essential to the development of CR induced airway allergic inflammation in mice. Materials and Methods Airway allergic inflammation was induced by intranasal administ...

  3. Cessation of dexamethasone exacerbates airway responses to methacholine in asthmatic mice.

    Science.gov (United States)

    Stengel, Peter W; Nickell, Laura E; Wolos, Jeffrey A; Snyder, David W

    2007-06-01

    In asthmatic mice, dexamethasone (30.0 mg/kg) was administered orally once daily on Days 24-27. One hour after dexamethasone on Day 25-27, the mice were exposed to ovalbumin aerosols. Twenty-eight days after the initial ovalbumin immunization, we found that dexamethasone reduced methacholine-induced pulmonary gas trapping and inhibited bronchoalveolar lavage eosinophils and neutrophils. However, five days after the last dose of dexamethasone and last ovalbumin aerosol exposure in other asthmatic mice, the airway obstructive response to methacholine was exacerbated in dexamethasone-treated mice compared to vehicle-treated mice on Day 32. Further, eosinophils, but not neutrophils, were still inhibited after cessation of dexamethasone. Thus, discontinuing dexamethasone worsened methacholine-induced pulmonary gas trapping of asthmatic mice in the absence of eosinophilic airway inflammation.

  4. Inhaled corticosteroids and growth of airway function in asthmatic children

    NARCIS (Netherlands)

    Merkus, PJFM; van Pelt, W; van Houwelingen, JC; van Essen-Zandvliet, LEM; Duiverman, EJ; Kerrebijn, KF; Quanjer, PH

    2004-01-01

    Airway inflammation and remodelling play an important role in the pathophysiology of asthma. Remodelling may affect childhood lung function, and this process may be reversed by anti-inflammatory treatment. The current study assessed longitudinaily whether asthma affects growth of airway function rel

  5. Association between allergic rhinitis and hospital resource use among asthmatic children in Norway

    DEFF Research Database (Denmark)

    Sazonov Kocevar, V; Thomas, J; Jonsson, L;

    2005-01-01

    of concomitant allergic rhinitis on asthma-related hospital resource utilization among children below 15 years of age with asthma in Norway. METHODS: A population-based retrospective cohort study of children (aged 0-14 years) with asthma was conducted using data from a patient-specific public national database......BACKGROUND: Preliminary evidence suggests that inadequately controlled allergic rhinitis in asthmatic patients can contribute towards increased asthma exacerbations and poorer symptom control, which may increase medical resource use. The objective of this study was therefore to assess the effect...... of hospital admissions during a 2-year period, 1998-1999. Multivariate linear regression, adjusting for risk factors including age, gender, year of admission, urban/rural residence and severity of asthma episode, estimated the association between allergic rhinitis and total hospital days. A multivariate Cox...

  6. Effect of Nuclear Factor-κB on Airway Remodeling in Asthmatic Rats

    Institute of Scientific and Technical Information of China (English)

    许淑云; 徐永健; 张珍祥; 倪望; 陈士新

    2004-01-01

    Summary: In order to investigate the effect of nuclear factor-κB (NF-κB) on airway remodeling in asthmatic rats, 18 Wistar rats were divided into three groups: asthmatic group; pyrrolidine dithiocarbamate (PDTC) group, in which rats were injected intraperitoneally with NF-κB specific inhibitor PDTC (100 mg/kg) before ovalbumin (OVA) challenge; control group. The NF-κB activity and the expression of inhibitory protein κBa (I-κBα) in airway were detected by electrophoretic mobility shift assay (EMSA), Western blot and immunohistochemistry respectively. The infiltration of inflammatory cells, the number of Goblet cells, the area of collagen and smooth muscle in airway were measured by means of image analysis system. The results showed that with the up-regulation of airway NF-κB activity in asthmatic group, the number of goblet cells (3.08 ±0.86/100μm basement membrane (BM)), the area of collagen (24.71 ± 4. 24 μm2/μm BM) and smooth muscle (13.81 ± 2.11 μm2/μm BM) in airway were significantly increased (P<0.05) as compared with control group (0.14±0. 05/100μm BM, 14.31 ±3.16 μm2/μm BM and 7.67±2.35 μm2/μm BM respectively) and PDTC group (0. 33±0. 14/100 μm BM, 18. 16±2.85 μm2/μm BM and 8.95±2.16 μm2/μm BM respectively). However, there was no significant difference between PDTC group and control group (P>0.05). It was concluded that the activity of NF-κB is increased in airway of asthmatic rats. Inhibition of NF-κB activation can attenuate constructional changes in asthma airway, suggesting NF-κB may contribute to asthmatic airway remodeling.

  7. Upper and lower airway pathology in young children with allergic- and non-allergic rhinitis

    DEFF Research Database (Denmark)

    Chawes, Bo

    2011-01-01

    Allergic- and non-allergic rhinitis are very common diseases in childhood in industrialized countries. Although these conditions are widely trivialized by both parents and physicians they induce a major impact on quality of life for the affected children and a substantial drainage of health care...... understood and there is a paucity of data objectivizing this association in young children. The aim of this thesis was to describe pathology in the upper and lower airways in young children from the COPSAC birth cohort with investigator-diagnosed allergic- and non-allergic rhinitis. Nasal congestion is a key...... children may contribute to the discovery of new mechanisms involved in pathogenesis and help direct future research to develop correctly timed preventive measures as well as adequate monitoring and treatment of children with rhinitis. Asthma is a common comorbidity in subjects with allergic rhinitis...

  8. Mucosal exposure to cockroach extract induces allergic sensitization and allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Arizmendi Narcy G

    2011-12-01

    Full Text Available Abstract Background Allergic sensitization to aeroallergens develops in response to mucosal exposure to these allergens. Allergic sensitization may lead to the development of asthma, which is characterized by chronic airway inflammation. The objective of this study is to describe in detail a model of mucosal exposure to cockroach allergens in the absence of an exogenous adjuvant. Methods Cockroach extract (CE was administered to mice intranasally (i.n. daily for 5 days, and 5 days later mice were challenged with CE for 4 consecutive days. A second group received CE i.n. for 3 weeks. Airway hyperresponsiveness (AHR was assessed 24 h after the last allergen exposure. Allergic airway inflammation was assessed by BAL and lung histology 48 h after the last allergen exposure. Antigen-specific antibodies were assessed in serum. Lungs were excised from mice from measurement of cytokines and chemokines in whole lung lysate. Results Mucosal exposure of Balb/c mice to cockroach extract induced airway eosinophilic inflammation, AHR and cockroach-specific IgG1; however, AHR to methacholine was absent in the long term group. Lung histology showed patchy, multicentric damage with inflammatory infiltrates at the airways in both groups. Lungs from mice from the short term group showed increased IL-4, CCL11, CXCL1 and CCL2 protein levels. IL4 and CXCL1 were also increased in the BAL of cockroach-sensitized mice in the short-term protocol. Conclusions Mucosal exposure to cockroach extract in the absence of adjuvant induces allergic airway sensitization characterized by AHR, the presence of Th2 cytokines in the lung and eosinophils in the airways.

  9. Multiple bronchoceles in a non-asthmatic patient with allergic bronchopulmonary aspergillosis.

    Science.gov (United States)

    Amin, Muhammad Umar; Mahmood, Rabia

    2008-09-01

    Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity reaction due to a fungus, Aspergillus fumigatus. It is typically seen in patients with long-standing asthma. Our patient was a non-asthmatic 18 years old male who presented with chronic cough for 2 years. Peripheral blood eosinophilia and elevated scrum IgE were observed. His x-ray chest revealed v-shaped opacity in the left upper lobe close to the hilum. High resolution computed tomographic scan of the chest revealed multiple dilated bronchi filled with mucous (bronchoceles) and central bronchiectasis (CB) involving main segmental bronchi. Central bronchiectasis (CB) was typical of ABPA but bronchocele formation was a rare manifestation of the disease. The patient was managed with oral prednisolone and was relieved of his symptoms. Occurrence of ABPA in non-asthmatics is very rare and deserves reporting.

  10. IL-25 promotes Th2 immunity responses in airway inflammation of asthmatic mice via activation of dendritic cells.

    Science.gov (United States)

    Hongjia, Li; Caiqing, Zhang; Degan, Lu; Fen, Liu; Chao, Wang; Jinxiang, Wu; Liang, Dong

    2014-08-01

    Allergic asthma occurs as a consequence of inappropriate immunologic inflammation to allergens and characterized by Th2 adaptive immune response. Recent studies indicated that interleukin (IL)-25, a member of the IL-17 cytokine family, had been implicated in inducing Th2 cell-dependent inflammation in airway epithelium and IL-25-deficient mice exhibit impaired Th2 immunity responses; however, how these cytokines influence innate immune responses remains poorly understood. In this study, we used ovalbumin (OVA) sensitization and challenge to induce the murine asthmatic model and confirmed by histological analysis of lung tissues and serum levels of total and OVA-specific immunoglobulin (Ig)-E. The expression of IL-25 was detected by quantitative real-time PCR and immunohistochemistry, respectively, and the dendritic cells (DCs) activation was detected by levels of CD80 and CD86 in bronchoalveolar lavage fluid (BALF) by flow cytometry. The mice sensitized and challenged with OVA showed high expression of IL-25 in both mRNA and protein levels in lungs. We detected the expression of CD80 and CD86 in BALF was also increased. A tight correlation between IL-25 mRNA and other Th2 cells producing cytokines such as IL-4, IL-5, and IL-13 in BALF was identified. Furthermore, when the asthmatic mice were treated with inhaled corticosteroids, the inflammatory cells infiltration and the inflammatory cytokines secretion were significantly decreased. In this study, we show that IL-25 promoted the accumulation of co-stimulatory molecules of CD80 and CD86 on DCs and then induced the differentiation of prime naive CD4(+) T cells to become proinflammatory Th2 cells and promoted Th2 cytokine responses in OVA-induced airway inflammation. The ability of IL-25 to promote the activation and differentiation of DCs population was identified as a link between the IL-17 cytokine family and the innate immune response and suggested a previously unrecognized innate immune pathway that promotes Th2

  11. Alteration of airway responsiveness mediated by receptors in ovalbumin-induced asthmatic E3 rats

    Institute of Scientific and Technical Information of China (English)

    Jing-wen LONG; Xu-dong YANG; Lei CAO; She-min LU; Yong-xiao CAO

    2009-01-01

    Aim:Airway hyperresponsiveness is a constant feature of asthma.The aim of the present study was to investigate airway hyperreactivity mediated by contractile and dilative receptors in an ovalbumin (OVA)-induced model of rat asthma.Methods:Asthmatic E3 rats were prepared by intraperitoneal injection with OVA/aluminum hydroxide and then challenged with intranasal instillation of OVA-PBS two weeks later.The myograph method was used to measure the responses of constriction and dilatation in the trachea,main bronchi and lobar bronchi.Results:In asthmatic E3 rata,β2 adrenoceptor-mediated relaxation of airway smooth muscle pre-contracted with 5-HT was inhibited,and there were no obvious difference in relaxation compared with normal E3 rats.Contraction of lobar bronchi mediated by 5-HT and sarafotoxin 6c was more potent than in the trachea or main bronchi.Airway contractions mediated by the endothelin (ET)A receptor,ETB receptor and M3 muscarinic receptor were augmented,and the augmented contraction was most obvious in lobar bronchi.The order of efficacy of contraction for lobar bronchi induced by agonists was ET-1,sarafotoxin 6c>ACh>5-HT.OX8 (an antibody against CD8+ T cells) strongly shifted and 0X35 (an antibody against CD4+ T cells) modestly shifted isoprenaline-induced concentration-relaxation curves in a nonparallel fashion to the left with an increased Rmax in asthmatic rats and sarafotoxin 6c-induced concentration-contractile curves to the right with a decreased Emax.Conclusion:The inhibition of airway relaxation and the augmentation of contraction mediated by receptors contribute to airway hyperresponsiveness and involve CD8+ and CD4+ T cells.

  12. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hu

    Full Text Available Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4 activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM, as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.

  13. Correlation among regional ventilation, airway resistance and particle deposition in normal and severe asthmatic lungs

    Science.gov (United States)

    Choi, Sanghun; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-11-01

    Computational fluid dynamic simulations are performed to investigate flow characteristics and quantify particle deposition with normal and severe asthmatic lungs. Continuity and Navier-Stokes equations are solved with unstructured meshes and finite element method; a large eddy simulation model is adopted to capture turbulent and/or transitional flows created in the glottis. The human airway models are reconstructed from CT volumetric images, and the subject-specific boundary condition is imposed to the 3D ending branches with the aid of an image registration technique. As a result, several constricted airways are captured in CT images of severe asthmatic subjects, causing significant pressure drop with high air speed because the constriction of airways creates high flow resistance. The simulated instantaneous velocity fields obtained are then employed to track transport and deposition of 2.5 μm particles. It is found that high flow resistance regions are correlated with high particle-deposition regions. In other words, the constricted airways can induce high airway resistance and subsequently increase particle deposition in the regions. This result may be applied to understand the characteristics of deposition of pharmaceutical aerosols or bacteria. This work was supported in part by NIH grants R01-HL094315 and S10-RR022421.

  14. Relationship between airway narrowing, patchy ventilation and lung mechanics in asthmatics.

    Science.gov (United States)

    Tgavalekos, N T; Musch, G; Harris, R S; Vidal Melo, M F; Winkler, T; Schroeder, T; Callahan, R; Lutchen, K R; Venegas, J G

    2007-06-01

    Bronchoconstriction in asthma results in patchy ventilation forming ventilation defects (VDefs). Patchy ventilation is clinically important because it affects obstructive symptoms and impairs both gas exchange and the distribution of inhaled medications. The current study combined functional imaging, oscillatory mechanics and theoretical modelling to test whether the degrees of constriction of airways feeding those units outside VDefs were related to the extent of VDefs in bronchoconstricted asthmatic subjects. Positron emission tomography was used to quantify the regional distribution of ventilation and oscillatory mechanics were measured in asthmatic subjects before and after bronchoconstriction. For each subject, ventilation data was mapped into an anatomically based lung model that was used to evaluate whether airway constriction patterns, consistent with the imaging data, were capable of matching the measured changes in airflow obstruction. The degree and heterogeneity of constriction of the airways feeding alveolar units outside VDefs was similar among the subjects studied despite large inter-subject variability in airflow obstruction and the extent of the ventilation defects. Analysis of the data amongst the subjects showed an inverse relationship between the reduction in mean airway conductance, measured in the breathing frequency range during bronchoconstriction, and the fraction of lung involved in ventilation defects. The current data supports the concept that patchy ventilation is an expression of the integrated system and not just the sum of independent responses of individual airways.

  15. Regulation of airway inflammation and remodeling in asthmatic mice by TLR3/TRIF signal pathway.

    Science.gov (United States)

    Yang, Mei; Wang, Hao-Ying; Chen, Jian-Chang; Zhao, Jing

    2017-03-23

    This paper aims to investigate the effect of Toll-like receptors 3 (TLR3)/TIR-domain-containing adapter-inducing interferon-β (TRIF) signal pathway on the airway inflammation and remodeling in asthmatic mice. C57BL/6 and TLR3(-/-) mice were randomly divided into three groups (10 mice per group), including Control group (mice inhaled phosphate buffer saline (PBS)), Asthma group (mice inhaled ovalbumin (OVA)) and polyriboinosinic-ribocytidylic acid (poly (I: C)) group (asthmatic mice were injected intraperitoneally with TLR3 agonist poly (I: C)). Hematoxylin-eosin (HE) staining, Wright-Giemsa staining, Enzyme-linked immunosorbent assay (ELISA), Immunohistochemistry, Hydroxyproline assay, quantitative real time polymerase chain reaction (qRT-PCR) and Western blot were used to assess for the indices of airway inflammation and remodeling. In terms of WT mice, all asthma groups with or without the addition of poly (I: C) showed exaggerated inflammation and remodeling in the airways as compared to Control group, which were more seriously in poly (I: C) group than Asthma group. Furthermore, we observed the significant inhibition of airway inflammation and remodeling in the TLR3(-/-) mice in both Asthma no matter with or without addition of poly (I: C) than the WT mice. TLR3 knockout could obviously relieve the airway inflammation and remodeling in asthma through inhibiting TLR3/TRIF signaling pathway.

  16. Airway responses to sulfate and sulfuric acid aerosols in asthmatics. An exposure-response relationship.

    Science.gov (United States)

    Utell, M J; Morrow, P E; Speers, D M; Darling, J; Hyde, R W

    1983-09-01

    Epidemiologic studies support an association between elevated levels of sulfates and increased symptoms in asthmatics. To determine if these pollutants produce airway responses, 17 asthmatics inhaled the following sulfates: sodium bisulfate, ammonium sulfate, ammonium bisulfate (NH4HSO4), or sulfuric acid (H2SO4) aerosols with an aerodynamic diameter of 0.80 micron at concentrations of 100 micrograms/m3, 450 micrograms/m3, and 1,000 micrograms/m3. A sodium chloride (NaCl) aerosol of similar characteristics, administered by double-blind randomization, served as a control. Subjects breathed these aerosols for a 16-minute period via a mouthpiece. Deposition studies showed 54 to 65% retention of the inhaled aerosols. At the 1,000 micrograms/m3 concentration, the Threshold Limit Value for occupational exposure, H2SO4 and NH4HSO4 inhalation produced significant reductions in specific airway conductance (SGaw) (p less than 0.05) and forced expiratory volume in one second (p less than 0.01) compared with NaCl or pre-exposure values. At the 450 micrograms/m3 concentration, only H2SO4 inhalation produced a significant reduction in SGaw (p less than 0.01). At 100 micrograms/m3, a level 3 to 5 times greater than peak urban levels, no significant change in airway function occurred after any sulfate exposure. These data indicate that asthmatics demonstrate bronchoconstriction after brief exposure to common acidic sulfate pollutants.

  17. β2-Agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D

    NARCIS (Netherlands)

    Trian, Thomas; Burgess, Janette K; Niimi, Kyoko; Moir, Lyn M; Ge, Qi; Berger, Patrick; Liggett, Stephen B; Black, Judith L; Oliver, Brian G

    2011-01-01

    BACKGROUND AND OBJECTIVE: Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. OBJECTIVE:

  18. Levodropropizine (LD) activity in allergic asthmatic patients, challenged with ultrasonically nebulized distilled water, metacholine and allergen-induced bronchospasm.

    Science.gov (United States)

    Bossi, R; Banfi, P; Filipazzi, V; Castelli, C; Braga, P C

    1994-04-01

    The antitussive compound Levodropropizine (LD) is active in animal bronchoconstriction induced by histamine and capsaicin and in man protects from bronchoconstriction induced by capsaicin. The primary objective of this study was to evaluate the mechanism of action of LD given at 60 mg t.i.d. as oral drops, for 8 days by means of specific bronchial challenges (allergens) and of aspecific challenges acting via different receptors and fibers (i.e. metacholine via cholinergic receptors and ultrasonically nebulized distilled water (UNDW) via histamine and neuropeptide release). The study design is randomized, double-blind, cross-over versus placebo in 30 allergic asthmatic patients. Baseline bronchial tone and bronchoconstrictor response to metacholine (MCh) were not modified by active treatment nor by placebo. On the contrary, in airway responsiveness to UNDW, the active treatment showed an antagonist effect against induced bronchoconstriction of 59% [activity ratio (AR) as antilog = 0.41; 95% confidence interval 0.35-0.54; p cough, LD is also partially effective in inhibiting bronchial hyperreactive response against specific allergen and UNDW bronchoconstriction. Hence, LD might act by partly inhibiting histamine and neuropeptide release.

  19. Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus.

    Directory of Open Access Journals (Sweden)

    Jianwu Bai

    Full Text Available Human airway epithelial cells are the principal target of human rhinovirus (HRV, a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1 to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2 to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model.Air-liquid interface (ALI human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively.ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3, and novel ones that were identified for the first time in this study (e.g. CCRL1.ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.

  20. Roles of IL-22 in Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Koichi Hirose

    2013-01-01

    Full Text Available IL-23- and IL-17A-producing CD4+ T cell (Th17 cell axis plays a crucial role in the development of chronic inflammatory diseases. In addition, it has been demonstrated that Th17 cells and their cytokines such as IL-17A and IL-17F are involved in the pathogenesis of severe asthma. Recently, IL-22, an IL-10 family cytokine that is produced by Th17 cells, has been shown to be expressed at the site of allergic airway inflammation and to inhibit allergic inflammation in mice. In addition to Th17 cells, innate lymphoid cells also produce IL-22 in response to allergen challenge. Functional IL-22 receptor complex is expressed on lung epithelial cells, and IL-22 inhibits cytokine and chemokine production from lung epithelial cells. In this paper, we summarize the recent progress on the roles of IL-22 in the regulation of allergic airway inflammation and discuss its therapeutic potential in asthma.

  1. Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease.

    Directory of Open Access Journals (Sweden)

    Ama-Tawiah Essilfie

    2011-10-01

    Full Text Available A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR. Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD. BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA and intranasally challenged with OVA 12-15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate and T lymphocytes (late, adaptive in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.

  2. Dietary Compound Kaempferol Inhibits Airway Thickening Induced by Allergic Reaction in a Bovine Serum Albumin-Induced Model of Asthma.

    Science.gov (United States)

    Shin, Daekeun; Park, Sin-Hye; Choi, Yean-Jung; Kim, Yun-Ho; Antika, Lucia Dwi; Habibah, Nurina Umy; Kang, Min-Kyung; Kang, Young-Hee

    2015-12-16

    Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an in vitro model of dinitrophenylated bovine serum albumin (DNP-BSA)-sensitized rat basophilic leukemia (RBL-2H3) mast cells and an in vivo model of BSA-challenged asthmatic mice. Nontoxic kaempferol at 10-20 μM suppressed β-hexosaminidase release and cyclooxygenase 2 (COX2)-mediated production of prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) in sensitized mast cells. Oral administration of ≤20 mg/kg kaempferol blocked bovine serum albumin (BSA) inhalation-induced epithelial cell excrescence and smooth muscle hypertrophy by attenuating the induction of COX2 and the formation of PGD2 and PGF2α, together with reducing the anti-α-smooth muscle actin (α-SMA) expression in mouse airways. Kaempferol deterred the antigen-induced mast cell activation of cytosolic phospholipase A2 (cPLA2) responsive to protein kinase Cμ (PKCμ) and extracellular signal-regulated kinase (ERK). Furthermore, the antigen-challenged activation of Syk-phospholipase Cγ (PLCγ) pathway was dampened in kaempferol-supplemented mast cells. These results demonstrated that kaempferol inhibited airway wall thickening through disturbing Syk-PLCγ signaling and PKCμ-ERK-cPLA2-COX2 signaling in antigen-exposed mast cells. Thus, kaempferol may be a potent anti-allergic compound targeting allergic asthma typical of airway hyperplasia and hypertrophy.

  3. LF-15 & T7, synthetic peptides derived from tumstatin, attenuate aspects of airway remodelling in a murine model of chronic OVA-induced allergic airway disease.

    Directory of Open Access Journals (Sweden)

    Karryn T Grafton

    Full Text Available BACKGROUND: Tumstatin is a segment of the collagen-IV protein that is markedly reduced in the airways of asthmatics. Tumstatin can play an important role in the development of airway remodelling associated with asthma due to its anti-angiogenic properties. This study assessed the anti-angiogenic properties of smaller peptides derived from tumstatin, which contain the interface tumstatin uses to interact with the αVβ3 integrin. METHODS: Primary human lung endothelial cells were exposed to the LF-15, T3 and T7 tumstatin-derived peptides and assessed for cell viability and tube formation in vitro. The impact of the anti-angiogenic properties on airways hyperresponsiveness (AHR was then examined using a murine model of chronic OVA-induced allergic airways disease. RESULTS: The LF-15 and T7 peptides significantly reduced endothelial cell viability and attenuated tube formation in vitro. Mice exposed to OVA+ LF-15 or OVA+T7 also had reduced total lung vascularity and AHR was attenuated compared to mice exposed to OVA alone. T3 peptides reduced cell viability but had no effect on any other parameters. CONCLUSION: The LF-15 and T7 peptides may be appropriate candidates for use as novel pharmacotherapies due to their small size and anti-angiogenic properties observed in vitro and in vivo.

  4. Aggravation of Allergic Airway Inflammation by Cigarette Smoke in Mice Is CD44-Dependent.

    Directory of Open Access Journals (Sweden)

    Smitha Kumar

    Full Text Available Although epidemiological studies reveal that cigarette smoke (CS facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation.Wild type (WT and CD44 knock-out (KO mice were exposed simultaneously to house dust mite (HDM extract and CS. Inflammatory cells, hyaluronic acid (HA and osteopontin (OPN levels were measured in bronchoalveolar lavage fluid (BALF. Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures.In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice.We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics.

  5. Myeloid differentiation-2 is a potential biomarker for the amplification process of allergic airway sensitization in mice

    Directory of Open Access Journals (Sweden)

    Daisuke Koyama

    2015-09-01

    Conclusions: Our data suggest MD-2 is a critical regulator of the establishment of allergic airway sensitization to HDM in mice. Serum MD-2 may represent a potential biomarker for the amplification of allergic sensitization and allergic inflammation.

  6. Eicosanoid Mediators in the Airway Inflammation of Asthmatic Patients: What is New?

    Science.gov (United States)

    Sanak, Marek

    2016-11-01

    Lipid mediators contribute to inflammation providing both pro-inflammatory signals and terminating the inflammatory process by activation of macrophages. Among the most significant biologically lipid mediators, these are produced by free-radical or enzymatic oxygenation of arachidonic acid named "eicosanoids". There were some novel eicosanoids identified within the last decade, and many of them are measurable in clinical samples by affordable chromatography-mass spectrometry equipment or sensitive immunoassays. In this review, we present some recent advances in understanding of the signaling by eicosanoid mediators during asthmatic airway inflammation. Eicosanoid profiling in the exhaled breath condensate, induced sputum, or their metabolites measurements in urine is complementary to the cellular phenotyping of asthmatic inflammation. Special attention is paid to aspirin-exacerbated respiratory disease, a phenotype of asthma manifested by the most profound changes in the profile of eicosanoids produced. A hallmark of this type of asthma with hypersensitivity to non-steroid anti-inflammatory drugs (NSAIDs) is to increase biosynthesis of cysteinyl leukotrienes on the systemic level. It depends on transcellular biosynthesis of leukotriene C₄ by platelets that adhere to granulocytes releasing leukotriene A₄. However, other abnormalities are also reported in this type of asthma as a resistance to anti-inflammatory activity of prostaglandin E₂ or a robust eosinophil interferon-γ response resulting in cysteinyl leukotrienes production. A novel mechanism is also discussed in which an isoprostane structurally related to prostaglandin E₂ is released into exhaled breath condensate during a provoked asthmatic attack. However, it is concluded that any single eicosanoid or even their complex profile can hardly provide a thorough explanation for the mechanism of asthmatic inflammation.

  7. EFFECT OF INHALED ENDOTOXIN ON AIRWAY AND CIRCULATING INFLAMMATORY CELL PHAGOCYTOSIS AND CD11B EXPRESSION IN ATOPIC ASTHMATIC SUBJECTS

    Science.gov (United States)

    Effect of inhaled endotoxin on airway and circulating inflammatory cell phagocytosis and CD11b expression in atopic asthmatic subjects Neil E. Alexis, PhD, Marlowe W. Eldridge, MD, David B. Peden, MD, MS Chapel Hill and Research Triangle Park, NCBackgrou...

  8. An imbalance in C/EBPs and increased mitochondrial activity in asthmatic airway smooth muscle cells: novel targets in asthma therapy?

    Science.gov (United States)

    Roth, Michael; Black, Judith L

    2009-06-01

    The asthma prevalence was increasing over the past two decades worldwide. Allergic asthma, caused by inhaled allergens of different origin or by food, is mediated by inflammatory mechanisms. The action of non-allergic asthma, induced by cold air, humidity, temperature or exercise, is not well understood. Asthma affects up to 15% of the population and is treated with anti-inflammatory and muscle relaxing drugs which allow symptom control. Asthma was first defined as a malfunction of the airway smooth muscle, later as an imbalanced immune response of the lung. Recent studies placed the airway smooth muscle again into the focus. Here we summarize the molecular biological basis of the deregulated function of the human airway smooth muscle cell as a cause or important contributor to the pathology of asthma. In the asthmatic human airway smooth muscle cells, there is: (i) a deregulation of cell differentiation due to low levels of maturation-regulating transcription factors such as CCAAT/enhancer binding proteins and peroxisome proliferator-activated receptors, thereby reducing the cells threshold to proliferate and to secrete pro-inflammatory cytokines under certain conditions; (ii) a higher basal energy turnover that is due to increased number and activity of mitochondria; and (iii) a modified feedback mechanism between cells and the extracellular matrix they are embedded in. All these cellular pathologies are linked to each other and to the innate immune response of the lung, but the sequence of events is unclear and needs further investigation. However, these findings may present the basis for the development of novel curative asthma drugs.

  9. Pycnogenol Ameliorates Asthmatic Airway Inflammation and Inhibits the Function of Goblet Cells.

    Science.gov (United States)

    Liu, Zhaoe; Han, Bo; Chen, Xing; Wu, Qiaoling; Wang, Lijun; Li, Gang

    2016-11-01

    Pycnogenol(®) (PYC) is utilized in the treatment of various diseases ranging from chronic inflammation to circulatory diseases, but its efficacy and functional mechanism in pediatric asthma continue to remain obscure. Therefore, the purpose of this study was to investigate the effectiveness and molecular mechanism of PYC on regulation of asthmatic airway inflammation. We found that PYC with tail intravenous injection of 50 mg/kg or intragastric administration of 100 mg/kg all reduced ovalbumin (OVA)-induced airway injury. Pharmacokinetics of PYC was evaluated by high-performance liquid chromatography assay, indicating that PYC was quickly absorbed into the blood after intragastric administration, and PYC metabolism was later improved gradually with increase of time after PYC administration. PYC has a higher bioavailability of 71.96%, and it was more easily absorbed by the body. PYC inhibited the number of total inflammatory cells and levels of interleukin (IL)-4, IL-5, IL-9, and IL-13 in bronchoalveolar lavage fluid of OVA-induced mice. PYC inhibited IL-13 secretion from the Th2 cells, thereby causing a reduction in expression of the signaling molecules in JAK/STAT6 pathway in airway epithelial cells. STAT6 silence suppressed IL-13-increased acetylcholine level. STAT6 overexpression promoted expression of goblet cell metaplasia-associated molecules (FOXA3, SPDEF, and Muc5ac). PYC suppressed OVA-induced expression of FOXA3, SPDEF, and Muc5ac in lung. Our findings indicate that PYC has a higher bioavailability and it prevents emergence of OVA-induced airway injury and airway inflammation in mice by inhibiting IL-13/JAK/STAT6 pathway and blocking release of acetylcholine to reduce goblet cell metaplasia.

  10. Expression of Leukemia Inhibitory Factor in Airway Epithelial Tissue of Asthmatic Rats

    Institute of Scientific and Technical Information of China (English)

    XIONG Weining; ZENG Daxiong; XU Yongjian; XIONG Shengdao; FANG Huijuan; CAO Yong; SONG Qingfeng; CAO Chao

    2007-01-01

    In order to investigate the expression of leukemia inhibitory factor (LIF) in airway epithelial tissues of normal and asthmatic rats, the influence of dexamethasone and the role of LIF in pathogenesis of asthma, 30 Sprague-Dawley (SD) rats were randomly divided into 3 groups (10 for each group): normal group, asthma model group, and dexamethasone-interfered group. In asthmamodel group and dexamethasone-interfered group, asthma rat models were established by intraperitoneal (i.p.) injection of 10% ovalbumin (OVA) and challenge with 1% OVA via inhalation. Rats in dexamethasone-interfered group were pretreated with dexamethasone (2 mg/kg, i.p) 30 min before each challenge. The expression of LIF protein in lung was detected by immunohistochemistry. The results showed that LIF protein was mainly expressed in cytoplasm of bronchial epithelial cells. The expression of LIF protein in the airway epithelial tissue of asthma model group was significantly higher than that in normal group and dexamethasone-interfered group (P<0.01), but there was no significant difference between normal group and dexamethasone-interfered group (P>0.05). It was concluded that the expression of LIF was increased significantly in the airway epithelial tissue of the asthma rats, and dexamethasone could down-regulate the expression of LIF. It was suggested that LIF might play an important role in the pathogenesis of asthma as an inflammation regulator.

  11. Inhibitory effects of l-theanine on airway inflammation in ovalbumin-induced allergic asthma.

    Science.gov (United States)

    Hwang, Yong Pil; Jin, Sun Woo; Choi, Jae Ho; Choi, Chul Yung; Kim, Hyung Gyun; Kim, Se Jong; Kim, Yongan; Lee, Kyung Jin; Chung, Young Chul; Jeong, Hye Gwang

    2017-01-01

    l-theanine, a water-soluble amino acid isolated from green tea (Camellia sinensis), has anti-inflammatory activity, antioxidative properties, and hepatoprotective effects. However, the anti-allergic effect of l-theanine and its underlying molecular mechanisms have not been elucidated. In this study, we investigated the protective effects of l-theanine on asthmatic responses, particularly airway inflammation and oxidative stress modulation in an ovalbumin (OVA)-induced murine model of asthma. Treatment with l-theanine dramatically attenuated the extensive trafficking of inflammatory cells into bronchoalveolar lavage fluid (BALF). Histological studies revealed that l-theanine significantly inhibited OVA-induced mucus production and inflammatory cell infiltration in the respiratory tract and blood vessels. l-theanine administration also significantly decreased the production of IgE, monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-4, IL-5, IL-13, tumor necrosis factor-alpha (TNF-α), and interferon-gamma in BALF. The lung weight decreased with l-theanine administration. l-theanine also markedly attenuated the OVA-induced generation of reactive oxygen species and the activation of nuclear factor kappa B (NF-κB) and matrix metalloprotease-9 in BALF. Moreover, l-theanine reduced the TNF-α-induced NF-κB activation in A549 cells. Together, these results suggest that l-theanine alleviates airway inflammation in asthma, which likely occurs via the oxidative stress-responsive NF-κB pathway, highlighting its potential as a useful therapeutic agent for asthma management.

  12. Effect of All-trans Retinoic Acid on Airway Inflammation in Asthmatic Rats and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    方红; 金红芳; 王宏伟

    2004-01-01

    Summary: The inhibitive effects of all-trans retinoic acid (ARTA) on airway inflammation in asthmatic rats and its mechanism on the basis of the regulation of nuclear factor kappaB (NF-κB) were explored. Thirty-two SD rats were randomly divided into 4 groups: control group, asthma group,dexamethasone treatment group and retinotic acid treatment group. The total and differential cell counts in the collected bronchoalveolar lavage fluid (BALF) were measured. The pathological changes in lung tissues were estimated by scoring. The expression of NF-κB inhibitor (IκBa), NF-κB,intercellular adhering molecule-1 (ICAM-1) in lung tissue was detected by immunohistochemical method. The results showed that in the two treatment groups, the total cell counts and proportion of inflammatory cells in BALF were significantly reduced, but there was no significant difference in differential cell counts in BALF between, them. The pathological changes in lung tissues in the treatment groups were significantly attenuated as compared with asthma group. Except the epithelial injury in retinotic acid treatment group was milder than in dexamethasone treatment group, the remaining lesions showed no significant difference between them. In the two treatment groups, the expression of IκBa was increased, while the expression of NF-κB and ICAM-1 decreased with the difference between the two groups being not significant. It was concluded that the similar anti-inflammatory effects and mechanism of ATRA on airway in asthmatic rats to those of dexamethasone were contributed to the increase of cytoplasmic IκBa content and suppression of NF-cB activation and expression.

  13. Inhibition of protein kinase C delta attenuates allergic airway inflammation through suppression of PI3K/Akt/mTOR/HIF-1 alpha/VEGF pathway.

    Directory of Open Access Journals (Sweden)

    Yun Ho Choi

    Full Text Available Vascular endothelial growth factor (VEGF is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α. Recently, inhibition of the mammalian target of rapamycin (mTOR has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K/Akt or protein kinase C-delta (PKC δ in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease.

  14. Impact of Adiponectin Overexpression on Allergic Airways Responses in Mice

    Directory of Open Access Journals (Sweden)

    Norah G. Verbout

    2013-01-01

    Full Text Available Obesity is an important risk factor for asthma. Obese individuals have decreased circulating adiponectin, an adipose-derived hormone with anti-inflammatory properties. We hypothesized that transgenic overexpression of adiponectin would attenuate allergic airways inflammation and mucous hyperplasia in mice. To test this hypothesis, we used mice overexpressing adiponectin (Adipo Tg. Adipo Tg mice had marked increases in both serum adiponectin and bronchoalveolar lavage (BAL fluid adiponectin. Both acute and chronic ovalbumin (OVA sensitization and challenge protocols were used. In both protocols, OVA-induced increases in total BAL cells were attenuated in Adipo Tg versus WT mice. In the acute protocol, OVA-induced increases in several IL-13 dependent genes were attenuated in Adipo Tg versus WT mice, even though IL-13 per se was not affected. With chronic exposure, though OVA-induced increases in goblet cells numbers per millimeter of basement membrane were greater in Adipo Tg versus WT mice, mRNA abundance of mucous genes in lungs was not different. Also, adiponectin overexpression did not induce M2 polarization in alveolar macrophages. Our results indicate that adiponectin protects against allergen-induced inflammatory cell recruitment to the airspaces, but not development of goblet cell hyperplasia.

  15. Notch Ligand DLL4 Alleviates Allergic Airway Inflammation via Induction of a Homeostatic Regulatory Pathway

    Science.gov (United States)

    Huang, Miao-Tzu; Chen, Yi-Lien; Lien, Chia-I; Liu, Wei-Liang; Hsu, Li-Chung; Yagita, Hideo; Chiang, Bor-Luen

    2017-01-01

    Notch is a pleiotropic signaling family that has been implicated in pathogenesis of allergic airway diseases; however, the distinct function of individual Notch ligands remains elusive. We investigated whether Notch ligands, Jagged1 and DLL4, exert differential effects in OVA-induced allergic asthma. We found that whilst Jagged1 inhibition mitigated Th2-dominated airway inflammation, blockage of DLL4 aggravated the Th2-mediated asthma phenotypes. Additionally, Jagged1 signaling blockage enhanced IL-17 production and neutrophilic airway infiltration. In vitro, exogenous Jagged1 induced Th2-skewed responses, whereas augmented DLL4 signaling displayed a dual role by promoting expansion of both Tregs and Th17. In vivo, DLL4 blockage impaired Treg differentiation which plausibly resulted in exaggerated asthma phenotypes. On the contrary, administration of DLL4-expressing antigen-presenting cells promoted endogenous Treg expansion and ameliorated the allergic responses. Therefore, whilst Jagged1 induces Th2-skewed inflammation, DLL4 elicits an essential self-regulatory mechanism via Treg-mediated pathway that counterbalances Jagged1-induced Th2 responses and facilitates resolution of the airway inflammation to restore homeostasis. These findings uncover a disparate function of Jagged1 and DLL4 in allergic airway diseases, hinting feasibility of Notch ligand-specific targeting in therapy of allergic airway diseases. PMID:28262821

  16. Effect of the Velvet Antler of Formosan Sambar Deer (Cervus unicolor swinhoei on the Prevention of an Allergic Airway Response in Mice

    Directory of Open Access Journals (Sweden)

    Ching-Yun Kuo

    2012-01-01

    Full Text Available Two mouse models were used to assay the antiallergic effects of the velvet antler (VA of Formosan sambar deer (Cervus unicolor swinhoei in this study. The results using the ovalbumin- (OVA- sensitized mouse model showed that the levels of total IgE and OVA-specific IgE were reduced after VA powder was administrated for 4 weeks. In addition, the ex vivo results indicated that the secretion of T helper cell 1 (Th1, regulatory T (Treg, and Th17 cytokines by splenocytes was significantly increased (P<0.05 when VA powder was administered to the mice. Furthermore, OVA-allergic asthma mice that have been orally administrated with VA powder showed a strong inhibition of Th2 cytokine and proinflammatory cytokine production in bronchoalveolar fluid compared to control mice. An increase in the regulatory T-cell population of splenocytes in the allergic asthma mice after oral administration of VA was also observed. All the features of the asthmatic phenotype, including airway inflammation and the development of airway hyperresponsiveness, were reduced by treatment with VA. These findings support the hypothesis that oral feeding of VA may be an effective way of alleviating asthmatic symptoms in humans.

  17. Acanthamoeba protease activity promotes allergic airway inflammation via protease-activated receptor 2.

    Science.gov (United States)

    Park, Mi Kyung; Cho, Min Kyoung; Kang, Shin Ae; Park, Hye-Kyung; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES) proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25) in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF) inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease.

  18. Acanthamoeba protease activity promotes allergic airway inflammation via protease-activated receptor 2.

    Directory of Open Access Journals (Sweden)

    Mi Kyung Park

    Full Text Available Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25 in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease.

  19. Prevention of house dust mite induced allergic airways disease in mice through immune tolerance.

    Science.gov (United States)

    Agua-Doce, Ana; Graca, Luis

    2011-01-01

    Allergic airways disease is a consequence of a Th2 response to an allergen leading to a series of manifestations such as production of allergen-specific IgE, inflammatory infiltrates in the airways, and airway hyper-reactivity (AHR). Several strategies have been reported for tolerance induction to allergens leading to protection from allergic airways disease. We now show that CD4 blockade at the time of house dust mite sensitization induces antigen-specific tolerance in mice. Tolerance induction is robust enough to be effective in pre-sensitized animals, even in those where AHR was pre-established. Tolerant mice are protected from airways eosinophilia, Th2 lung infiltration, and AHR. Furthermore, anti-CD4 treated mice remain immune competent to mount immune responses, including Th2, to unrelated antigens. Our findings, therefore, describe a strategy for tolerance induction potentially applicable to other immunogenic proteins besides allergens.

  20. Lung-homing of endothelial progenitor cells and airway vascularization is only partially dependant on eosinophils in a house dust mite-exposed mouse model of allergic asthma.

    Directory of Open Access Journals (Sweden)

    Nirooya Sivapalan

    Full Text Available Asthmatic responses involve a systemic component where activation of the bone marrow leads to mobilization and lung-homing of progenitor cells. This traffic may be driven by stromal cell derived factor-1 (SDF-1, a potent progenitor chemoattractant. We have previously shown that airway angiogenesis, an early remodeling event, can be inhibited by preventing the migration of endothelial progenitor cells (EPC to the lungs. Given intranasally, AMD3100, a CXCR4 antagonist that inhibits SDF-1 mediated effects, attenuated allergen-induced lung-homing of EPC, vascularization of pulmonary tissue, airway eosinophilia and development of airway hyperresponsiveness. Since SDF-1 is also an eosinophil chemoattractant, we investigated, using a transgenic eosinophil deficient mouse strain (PHIL whether EPC lung accumulation and lung vascularization in allergic airway responses is dependent on eosinophilic inflammation.Wild-type (WT BALB/c and eosinophil deficient (PHIL mice were sensitized to house dust mite (HDM using a chronic exposure protocol and treated with AMD3100 to modulate SDF-1 stimulated progenitor traffic. Following HDM challenge, lung-extracted EPCs were enumerated along with airway inflammation, microvessel density (MVD and airway methacholine responsiveness (AHR.Following Ag sensitization, both WT and PHIL mice exhibited HDM-induced increase in airway inflammation, EPC lung-accumulation, lung angiogenesis and AHR. Treatment with AMD3100 significantly attenuated outcome measures in both groups of mice. Significantly lower levels of EPC and a trend for lower vascularization were detected in PHIL versus WT mice.This study shows that while allergen-induced lung-homing of endothelial progenitor cells, increased tissue vascularization and development lung dysfunction can occur in the absence of eosinophils, the presence of these cells worsens the pathology of the allergic response.

  1. A pathogenic role for the integrin CD103 in experimental allergic airways disease.

    Science.gov (United States)

    Fear, Vanessa S; Lai, Siew Ping; Zosky, Graeme R; Perks, Kara L; Gorman, Shelley; Blank, Fabian; von Garnier, Christophe; Stumbles, Philip A; Strickland, Deborah H

    2016-11-01

    The integrin CD103 is the αE chain of integrin αEβ7 that is important in the maintenance of intraepithelial lymphocytes and recruitment of T cells and dendritic cells (DC) to mucosal surfaces. The role of CD103 in intestinal immune homeostasis has been well described, however, its role in allergic airway inflammation is less well understood. In this study, we used an ovalbumin (OVA)-induced, CD103-knockout (KO) BALB/c mouse model of experimental allergic airways disease (EAAD) to investigate the role of CD103 in disease expression, CD4(+) T-cell activation and DC activation and function in airways and lymph nodes. We found reduced airways hyper-responsiveness and eosinophil recruitment to airways after aerosol challenge of CD103 KO compared to wild-type (WT) mice, although CD103 KO mice showed enhanced serum OVA-specific IgE levels. Following aerosol challenge, total numbers of effector and regulatory CD4(+) T-cell subsets were significantly increased in the airways of WT but not CD103 KO mice, as well as a lack of DC recruitment into the airways in the absence of CD103. While total airway DC numbers, and their in vivo allergen capture activity, were essentially normal in steady-state CD103 KO mice, migration of allergen-laden airway DC to draining lymph nodes was disrupted in the absence of CD103 at 24 h after aerosol challenge. These data support a role for CD103 in the pathogenesis of EAAD in BALB/c mice through local control of CD4(+) T cell and DC subset recruitment to, and migration from, the airway mucosa during induction of allergic inflammation.

  2. Identification and quantification of basophils in the airways of asthmatics following segmental allergen challenge.

    Science.gov (United States)

    Dijkstra, Dorothea; Hennig, Christian; Hansen, Gesine; Biller, Heike; Krug, Norbert; Hohlfeld, Jens M

    2014-07-01

    During asthma attacks, allergens activate sensitized basophils in the lung, thereby aggravating symptoms. Due to the paucity of basophils in bronchial lavage fluid and the lack of specific basophil detection and quantification methods, basophil-directed research in these samples was hampered in the past. This study aimed to establish and validate a flow cytometry-based basophil detection and quantification method for human basophils from bronchoalveolar lavage (BAL) and blood as a prerequisite for a better understanding of their pathogenic contribution and subtyping of asthma phenotypes. BAL and blood leukocytes from seasonal asthmatics were analyzed by flow cytometry. Chipcytometry, a highly sensitive single-cell analysis method, was used to validate the staining panel for basophils. Cell differentials of May-Grünwald-Giemsa-stained cytospins were used to compare basophil percentages. BAL basophils are identifiable as CD123(+) HLA-DR(-) CD3(-) CD14(-) CD19(-) CD20(-) CD56(-) cells in flow cytometrical analysis. Their identity was validated by Chipcytometry. CD203c was highly expressed by BAL basophils, whereas it was expressed at variable levels on blood basophils. The two quantification methods correlated, although more basophils were detected by flow cytometry. Furthermore, the increase in basophil percentages in the lung correlated with the decrease in the basophil percentages in the blood after allergen challenge. We here validated a reliable basophil quantification method, which is independent of the cell's activation and degranulation state. The results obtained with this method indicate that basophils are directly recruited from the blood circulation to the airway lumen.

  3. In Utero Cigarette Smoke Affects Allergic Airway Disease But Does Not Alter the Lung Methylome.

    Directory of Open Access Journals (Sweden)

    Kenneth R Eyring

    Full Text Available Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma. Despite this as well as other smoking related risks, 11% of women still smoke during pregnancy. We hypothesized that cigarette smoke exposure during prenatal development generates long lasting differential methylation altering transcriptional activity that correlates with disease. In a house dust mite (HDM model of allergic airway disease, we measured airway hyperresponsiveness (AHR and airway inflammation between mice exposed prenatally to cigarette smoke (CS or filtered air (FA. DNA methylation and gene expression were then measured in lung tissue. We demonstrate that HDM-treated CS mice develop a more severe allergic airway disease compared to HDM-treated FA mice including increased AHR and airway inflammation. While DNA methylation changes between the two HDM-treated groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value < 0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Additionally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3 are differentially expressed between HDM-treated CS mice and HDM-treated FA mice. Our findings confirm that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease; however, it is unlikely that specific methylation changes account for the exposure-response relationship. These findings highlight the important role in utero cigarette smoke exposure plays in the development of allergic airway disease.

  4. Inhibition of allergic airway responses by heparin derived oligosaccharides: identification of a tetrasaccharide sequence

    Directory of Open Access Journals (Sweden)

    Ahmed Tahir

    2012-01-01

    Full Text Available Abstract Background Previous studies showed that heparin's anti-allergic activity is molecular weight dependent and resides in oligosaccharide fractions of Objective To investigate the structural sequence of heparin's anti-allergic domain, we used nitrous acid depolymerization of porcine heparin to prepare an oligosaccharide, and then fractionated it into disaccharide, tetrasaccharide, hexasaccharide, and octasaccharide fractions. The anti-allergic activity of each oligosaccharide fraction was tested in allergic sheep. Methods Allergic sheep without (acute responder and with late airway responses (LAR; dual responder were challenged with Ascaris suum antigen with and without inhaled oligosaccharide pretreatment and the effects on specific lung resistance and airway hyperresponsiveness (AHR to carbachol determined. Additional inflammatory cell recruitment studies were performed in immunized ovalbumin-challenged BALB/C mice with and without treatment. Results The inhaled tetrasaccharide fraction was the minimal effective chain length to show anti-allergic activity. This fraction showed activity in both groups of sheep; it was also effective in inhibiting LAR and AHR, when administered after the antigen challenge. Tetrasaccharide failed to modify the bronchoconstrictor responses to airway smooth muscle agonists (histamine, carbachol and LTD4, and had no effect on antigen-induced histamine release in bronchoalveolar lavage fluid in sheep. In mice, inhaled tetrasaccharide also attenuated the ovalbumin-induced peribronchial inflammatory response and eosinophil influx in the bronchoalveolar lavage fluid. Chemical analysis identified the active structure to be a pentasulfated tetrasaccharide ([IdoU2S (1→4GlcNS6S (1→4 IdoU2S (1→4 AMan-6S] which lacked anti-coagulant activity. Conclusions These results demonstrate that heparin tetrasaccharide possesses potent anti-allergic and anti-inflammatory properties, and that the domains responsible for anti-allergic

  5. Inflammatory airway features and hypothalamic-pituitary adrenal axis function in asthmatic rats combined with chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    CAI Cui; CAO Yu-xue; ZHANG Hong-ying; LE Jing-jing; DONG Jing-cheng; CUI Yan; XU Chang-qing; LIU Bao-jun; WU Jin-feng; DUAN Xiao-hong

    2010-01-01

    Background Bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) are both inflammatory airway diseases with different characteristics. However, there are many patients who suffer from both BA and COPD. This study was to evaluate changes of inflammatory airway features and hypothalamic-pituitary-adrenal (HPA) axis function in asthmatic rats combined with COPD.Methods Brown Norway (BN) rats were used to model the inflammatory airway diseases of BA, COPD and COPD+BA.These three models were compared and evaluated with respect to clinical symptoms, pulmonary histopathology, airway hyperresponsiveness (AHR), inflammatory cytokines and HPA axis function.Results The inflammatory airway features and HPA axis function in rats in the COPD+BA model group were greatly influenced. Rats in this model group showed features of the inflammatory diseases BA and COPD. The expression of inflammatory cytokines in this model group might be up or downregulated when both disease processes are present. The levels of corticotrophin releasing hormone mRNA and corticosterone in this model group were both significantly decreased than those in the control group (P <0.05).Conclusions BN rat can be used as an animal model of COPD+BA. By evaluating this animal model we found that the features of inflammation in rats in this model group seem to be exaggerated. The HPA axis functions in rats in this model group have been disturbed or impaired, which is prominent at the hypothalamic level.

  6. IL-4 and IL-13 signaling in allergic airway disease.

    Science.gov (United States)

    Gour, Naina; Wills-Karp, Marsha

    2015-09-01

    Aberrant production of the prototypical type 2 cytokines, interleukin (IL)-4 and IL-13 has long been associated with the pathogenesis of allergic disorders. Despite tremendous scientific inquiry, the similarities in their structure, and receptor usage have made it difficult to ascertain the distinct role that these two look-alike cytokines play in the onset and perpetuation of allergic inflammation. However, recent discoveries of differences in receptor distribution, utilization/assembly and affinity between IL-4 and IL-13, along with the discovery of unique innate lymphoid 2 cells (ILC2) which preferentially produce IL-13, not IL-4, are beginning to shed light on these mysteries. The purpose of this chapter is to review our current understanding of the distinct roles that IL-4 and IL-13 play in allergic inflammatory states and the utility of their modulation as potential therapeutic strategies for the treatment of allergic disorders.

  7. Allergic sensitization enhances the contribution of Rho-kinase to airway smooth muscle contraction

    NARCIS (Netherlands)

    Schaafsma, D.; Gosens, Reinout; Bos, I.S.T.; Meurs, Herman; Zaagsma, Hans; Nelemans, Herman

    2004-01-01

    1 Repeated allergen challenge has been shown to increase the role of Rho-kinase in airway smooth muscle (ASM) contraction. We considered the possibility that active allergic sensitization by itself, that is, without subsequent allergen exposure, could be sufficient to enhance Rho-kinase-mediated ASM

  8. Early sensitisation and development of allergic airway disease - risk factors and predictors

    DEFF Research Database (Denmark)

    Halken, Susanne

    2003-01-01

    The development and phenotypic expression of allergic airway disease depends on a complex interaction between genetic and several environmental factors, such as exposure to food, inhalant allergens and non-specific adjuvant factors (e.g. tobacco smoke, air pollution and infections). The first mon...... in childhood in high-risk infants and infants with early atopic manifestations....

  9. Establishment of Allergic Airway Inflammation Model in Late- phase Response of Sprague- Dawley Rats

    Institute of Scientific and Technical Information of China (English)

    朱敏敏; 傅诚章; 周钦海

    2002-01-01

    Objective To establish allergic airway inflammation model in late-phase airwayreaction of Sprague-Dawley (SD) rats. Methods Thirty-six SD rats were randomly divided intothree groups: control group (Group Ⅰ),single challenge group (Group Ⅱ),consecutive challenge group(Group Ⅲ). The rats in Group Ⅱ and Group Ⅲ were sensitized twice by injection of ovalbumin (OA) to-gether with aluminum hydroxide and Bordetella pertussis as adjuvants, followed by challenge withaerosolized OA for 20 min once in Group Ⅱ or one time on each day for one week in Group Ⅲ . Therats in Group Ⅰ received 0.9 % saline by injection and inhalation. Results Conpared uith groupⅠ , there were positive symptoms observed in the group Ⅱ and group Ⅲ; the amount of total leucocytesand eosinophil percentage in brochoalveolar lauage fluid (BALF) significantly increased (P<0.05 orP <0.01 respectively) in Group Ⅱ or Ⅲ; histopathologic changes of lung showed acute allergic inflam-mation changes in Group Ⅱ : Disrupted epithelium damaged subepithelial structure and eosinophil infiltra-tion the in the airway wall. As for the Group Ⅲ , there were allergen-induced characteristic features ofchronic allergic airways inflammation: hypertrophy and hyperplasia of bronchial smooth muscle, gobletcell hyperplasia , basement membrane thickening, eosinophil infiltration, edema. Conclusion The mod-el of allergic airway inflammation in late-phase response of SD rats was successfully established by OAsensitization (twice) and consecutive challenge.

  10. Retrovirus-mediated delivery of an IL-4 receptor antagonist inhibits allergic responses in a murine model of asthma

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This work reports the investigation of the effect of airway IL-4RA gene transfer by a recombinant retroviral vector on airway inflammation and airway responsiveness in asthmatic mice. The retrovirus-mediated delivery of IL-4RA to the airways of mice inhibited elevations of airway responsiveness and the development of allergic inflammation in asthmatic mice, and regulated the Th1/Th2 balance in OVA-sensitized and -challenged mouse models. This suggests that gene therapy is a therapeutic option for treating and controlling chronic airway inflammation and asthma symptoms.

  11. The role of the eosinophil-selective chemokine, eotaxin, in allergic and non-allergic airways inflammation

    Directory of Open Access Journals (Sweden)

    Conroy Dolores M

    1997-01-01

    Full Text Available Blood eosinophilia and tissue infiltration by eosinophils are frequently observed in allergic inflammation and parasitic infections. This selective accumulation of eosinophils suggested the existence of endogenous eosinophil-selective chemoattractants. We have recently discovered a novel eosinophil-selective chemoattractant which we called eotaxin in an animal model of allergic airways disease. Eotaxin is generated in both allergic and non-allergic bronchopulmonary inflammation. The early increase in eotaxin paralled eosinophil infiltration in the lung tissue in both models. An antibody to IL-5 suppressed lung eosinophilia, correlating with an inhibition of eosinophil release from bone marrow, without affecting eotaxin generation. This suggests that endogenous IL-5 is important for eosinophil migration but does not appear to be a stimulus for eotaxin production. Constitutive levels of eotaxin observed in guinea-pig lung may be responsible for the basal lung eosinophilia observed in this species. Allergen-induced eotaxin was present mainly in the epithelium and alveolar macrophages, as detected by immunostaining. In contrast there was no upregulation of eotaxin by the epithelial cells following the injection of Sephadex beads and the alveolar macrophage and mononuclear cells surrounding the granuloma were the predominant positive staining cells. Eotaxin and related chemokines acting through the CCR3 receptor may play a major role in eosinophil recruitment in allergic inflammation and parasitic diseases and thus offer an attractive target for therapeutic intervention.

  12. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    Science.gov (United States)

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities.

  13. 25-Hydroxyvitamin D, IL-31, and IL-33 in Children with Allergic Disease of the Airways

    Directory of Open Access Journals (Sweden)

    Anna Bonanno

    2014-01-01

    Full Text Available Low vitamin D is involved in allergic asthma and rhinitis. IL-31 and IL-33 correlate with Th2-associated cytokines in allergic disease. We investigated whether low vitamin D is linked with circulating IL-31 and IL-33 in children with allergic disease of the airways. 25-Hydroxyvitamin D [25(OH Vit D], IL-31, and IL-33 plasma levels were measured in 28 controls (HC, 11 allergic rhinitis (AR patients, and 35 allergic asthma with rhinitis (AAR patients. We found significant lower levels of 25(OH Vit D in AR and in AAR than in HC. IL-31 and IL-33 plasma levels significantly increased in AAR than HC. IL-31 and IL-33 positively correlated in AR and AAR. 25(OH Vit D deficient AAR had higher levels of blood eosinophils, exacerbations, disease duration, and total IgE than patients with insufficient or sufficient 25(OH Vit D. In AAR 25(OH Vit D levels inversely correlated with total allergen sIgE score and total atopy index. IL-31 and IL-33 did not correlate with 25(OH Vit D in AR and AAR. In conclusion, low levels of 25(OH Vit D might represent a risk factor for the development of concomitant asthma and rhinitis in children with allergic disease of the airways independently of IL-31/IL-33 Th2 activity.

  14. Non-Anticoagulant Fractions of Enoxaparin Suppress Inflammatory Cytokine Release from Peripheral Blood Mononuclear Cells of Allergic Asthmatic Individuals.

    Directory of Open Access Journals (Sweden)

    Madhur D Shastri

    Full Text Available Enoxaparin, a low-molecular-weight heparin, is known to possess anti-inflammatory properties. However, its clinical exploitation as an anti-inflammatory agent is hampered by its anticoagulant effect and the associated risk of bleeding.The aim of the current study was to examine the ability of non-anticoagulant fractions of enoxaparin to inhibit the release of key inflammatory cytokines in primed peripheral blood mononuclear cells derived from allergic mild asthmatics.Peripheral blood mononuclear cells from allergic asthmatics were activated with phytohaemag glutinin (PHA, concanavalin-A (ConA or phorbol 12-myristate 13-acetate (PMA in the presence or absence of enoxaparin fractions before cytokine levels were quantified using specific cytokine bead arrays. Together with nuclear magnetic resonance analysis,time-dependent and target-specific effects of enoxaparin fractions were used to elucidate structural determinants for their anti-inflammatory effect and gain mechanistic insights into their anti-inflammatory activity.Two non-anticoagulant fractions of enoxaparin were identified that significantly inhibited T-cell activation. A disaccharide fraction of enoxaparin inhibited the release of IL-4, IL-5, IL-13 and TNF-α by more than 57% while a tetrasaccharide fraction was found to inhibit the release of tested cytokines by more than 68%. Our data suggest that the observed response is likely to be due to an interaction of 6-O-sulfated tetrasaccharide with cellular receptor(s.The two identified anti-inflammatory fractions lacked anticoagulant activity and are therefore not associated with risk of bleeding. The findings highlight the potential therapeutic use of enoxaparin-derived fractions, in particular tetrasaccharide, in patients with chronic inflammatory disorders.

  15. The Effects of Proresolution of Ellagic Acid in an Experimental Model of Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Claudiney de Freitas Alves

    2013-01-01

    Full Text Available Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF, the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO activity, and P-selectin expression, but not activator protein 1 (AP-1 and nuclear factor kappa B (NF-κB pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation.

  16. Reduced levels of maternal progesterone during pregnancy increase the risk for allergic airway diseases in females only.

    Science.gov (United States)

    Hartwig, Isabel R V; Bruenahl, Christian A; Ramisch, Katherina; Keil, Thomas; Inman, Mark; Arck, Petra C; Pincus, Maike

    2014-10-01

    Observational as well as experimental studies support that prenatal challenges seemed to be associated with an increased risk for allergic airway diseases in the offspring. However, insights into biomarkers involved in mediating this risk are largely elusive. We here aimed to test the association between endogenous and exogenous factors documented in pregnant women, including psychosocial, endocrine, and life style parameters, and the risk for allergic airway diseases in the children later in life. We further pursued to functionally test identified factors in a mouse model of an allergic airway response. In a prospectively designed pregnancy cohort (n = 409 families), women were recruited between the 4th and 12th week of pregnancy. To investigate an association between exposures during pregnancy and the incidence of allergic airway disease in children between 3 and 5 years of age, multiple logistic regression analyses were applied. Further, in prenatally stressed adult offspring of BALB/c-mated BALB/c female mice, asthma was experimentally induced by ovalbumin (OVA) sensitization. In addition to the prenatal stress challenge, some pregnant females were treated with the progesterone derivative dihydrodydrogesterone (DHD). In humans, we observed that high levels of maternal progesterone in early human pregnancies were associated with a decreased risk for an allergic airway disease (asthma or allergic rhinitis) in daughters (adjusted OR 0.92; 95% confidence interval [CI] 0.84 to 1.00) but not sons (aOR 1.02, 95% CI 0.94-1.10). In mice, prenatal DHD supplementation of stress-challenged dams attenuated prenatal stress-induced airway hyperresponsiveness exclusively in female offspring. Reduced levels of maternal progesterone during pregnancy-which can result from high stress perception-increase the risk for allergic airway diseases in females but not in males. Key messages: Lower maternal progesterone during pregnancy increases the risk for allergic airway disease

  17. Therapeutic Effects of DNA Vaccine on Allergen-Induced Allergic Airway Inflammation in Mouse Model

    Institute of Scientific and Technical Information of China (English)

    Guoping Li; Zhigang Liu; Nanshan Zhong; Bin Liao1; Ying Xiong

    2006-01-01

    Vaccination with DNA encoding Dermatophagoides pteronyssinus group 2 (Der p 2) allergen previously showed its effects of immunologic protection on Der p 2 allergen-induced allergic airway inflammation in mice. In present study, we investigated whether DNA vaccine encoding Der p 2 could exert therapeutic role on allergen-induced allergic airway inflammation in mouse model and explored the mechanism of DNA vaccination in asthma specific-allergen immunotherapy. After sensitized and challenged by Der p 2, the BALB/c mice were immunized with DNA vaccine. The degrees of cellular infiltration were scored. IgE levels in serum and IL-4/lL-13 levels in BALF were determined by ELISA. The lung tissues were assessed by histological examinations. Expressions of STAT6 and NF-κB in lung were determined by immunohistochemistry staining. Vaccination of mice with DNA vaccine inhibited the development of airway inflammation and the production of mucin induced by allergen, and reduced the level of Der p 2-specific IgE level. Significant reductions of eosinophii infiltration and levels of IL-4and IL-13 in BALF were observed after vaccination. Further more, DNA vaccination inhibited STAT6 and NF-κBexpression in lung tissue in Der p 2-immunized mice. These results indicated that DNA vaccine encoding Der p 2allergen could be used for therapy of allergen-induced allergic airway inflammation in our mouse model.

  18. Allergic rhinitis and asthma: inflammation in a one-airway condition

    Directory of Open Access Journals (Sweden)

    Haahtela Tari

    2006-11-01

    Full Text Available Abstract Background Allergic rhinitis and asthma are conditions of airway inflammation that often coexist. Discussion In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cysteinyl leukotrienes, proteases, and a variety of cytokines, chemokines, and growth factors. Nasal biopsies in allergic rhinitis demonstrate accumulations of mast cells, eosinophils, and basophils in the epithelium and accumulations of eosinophils in the deeper subepithelium (that is, lamina propria. Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increases in the numbers of neutrophils and, in many, an extension of the changes to involve smaller airways (that is, bronchioli. Structural alterations (that is, remodeling of bronchi in mild asthma include epithelial fragility and thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, vascularity, interstitial collagen, and mucus-secreting glands. Remodeling in the nose is less extensive than that of the lower airways, but the epithelial reticular basement membrane may be slightly but significantly thickened. Conclusion Inflammation is a key feature of both allergic rhinitis and asthma. There are therefore potential benefits for application of anti-inflammatory strategies that target both these anatomic sites.

  19. Protease-activated receptor 2 activation of myeloid dendritic cells regulates allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Dienger Krista

    2011-09-01

    Full Text Available Abstract Background A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2; however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. Methods Mice (wild type and PAR-2-deficient were sensitized using German cockroach (GC feces (frass, the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production, serum IgE levels and airway hyperresponsiveness (AHR were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. Results Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice

  20. Volatile organic compounds enhance allergic airway inflammation in an experimental mouse model.

    Directory of Open Access Journals (Sweden)

    Ulrike Bönisch

    Full Text Available BACKGROUND: Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. METHODS: To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC flooring, sensitized with ovalbumin (OVA and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. RESULTS: Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB. Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. CONCLUSIONS: Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases.

  1. HB-EGF-Promoted Airway Smooth Muscle Cells and Their Progenitor Migration Contribute to Airway Smooth Muscle Remodeling in Asthmatic Mouse.

    Science.gov (United States)

    Wang, Qing; Li, Hequan; Yao, Yinan; Lu, Guohua; Wang, Yuehong; Xia, Dajing; Zhou, Jianying

    2016-03-01

    The airway smooth muscle (ASM) cells' proliferation, migration, and their progenitor's migration are currently regarded as causative factors for ASM remodeling in asthma. Heparin-binding epidermal growth factor (HB-EGF), a potent mitogen and chemotactic factor, could promote ASM cell proliferation through MAPK pathways. In this study, we obtained primary ASM cells and their progenitors from C57BL/6 mice and went on to explore the role of HB-EGF in these cells migration and the underlying mechanisms. We found that recombinant HB-EGF (rHB-EGF) intratracheal instillation accelerated ASM layer thickening in an OVA-induced asthmatic mouse. Modified Boyden chamber assay revealed that rHB-EGF facilitate ASM cell migration in a dose-dependent manner and ASM cells from asthmatic mice had a greater migration ability than that from normal counterparts. rHB-EGF could stimulate the phosphorylation of ERK1/2 and p38 in ASM cells but further migration assay showed that only epidermal growth factor receptor inhibitor (AG1478) or p38 inhibitor (SB203580), but not ERK1/2 inhibitor (PD98059), could inhibit rHB-EGF-mediated ASM cells migration. Actin cytoskeleton experiments exhibited that rHB-EGF could cause actin stress fibers disassembly and focal adhesions formation of ASM cells through the activation of p38. Finally, airway instillation of rHB-EGF promoted the recruitment of bone marrow-derived smooth muscle progenitor cells, which were transferred via caudal vein, migrating into the airway from the circulation. These observations demonstrated that ASM remodeling in asthma might have resulted from HB-EGF-mediated ASM cells and their progenitor cells migration, via p38 MAPK-dependent actin cytoskeleton remodeling.

  2. Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation.

    Science.gov (United States)

    Veres, Tibor Z; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-03-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell-T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2'-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell-cell contacts in a semi-automated fashion. Dendritic cell-T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa.

  3. Murine calcium-activated chloride channel family member 3 induces asthmatic airway inflammation independently of allergen exposure

    Institute of Scientific and Technical Information of China (English)

    MEI Li; HE Li; WU Si-si; ZHANG Bo; XU Yong-jian; ZHANG Zhen-xiang; ZHAO Jian-ping

    2013-01-01

    Background Expression of murine calcium-activated chloride channel family member 3 (mCLCA3) has been reported to be increased in the airway epithelium of asthmatic mice challenged with ovalbumin (OVA).However,its role in asthmatic airway inflammation under no OVA exposure has not yet been clarified.Methods mCLCA3 plasmids were transfected into the airways of normal BALB/c mice.mCLCA3 expression and airway inflammation in mouse lung tissue were evaluated.Cell differentials and cytokines in bronchoalveolar lavage fluid (BALF) were analyzed.The expression of mCLCA3 protein and mucus protein mucin-5 subtype AC (MUC5AC) were analyzed by Western blotting.The mRNA levels of mCLCA3,MUC5AC and interleukin-13 (IL-13) were determined quantitatively.Results mCLCA3 expression was not detected in the control group while strong immunoreactivity was detected in the OVA and mCLCA3 plasmid groups,and was strictly localized to the airway epithelium.The numbers of inflammatory cells in lung tissue and BALF were increased in both mCLCA3 plasmid and OVA groups.The protein and mRNA levels of mCLCA3 and MUC5AC in the lung tissue were significantly increased in the mCLCA3 plasmid and OVA groups compared to the control group.The level of IL-13,but not IL-4,IL-5,IFN-γ,CCL2,CCL5 or CCL11,was significantly increased compared with control group in BALF in the mCLCA3 plasmid and OVA groups.The level of IL-13 in the BALF in the mCLCA3 plasmid group was much higher than that in the OVA group (P <0.05).The level of mCLCA3 mRNA in lung tissue was positively correlated with the levels of MUC5AC mRNA in lung tissue,IL-13 mRNA in lung tissue,the number of eosinophils in BALF,and the content of IL-13 protein in BALF.The level of IL-13 mRNA in lung tissue was positively correlated with the number of eosinophils in BALF and the level of MUC5AC mRNA in lung tissue.Conclusion These findings suggest that increased expression of a single-gene,mCLCA3,could simulate an asthma attack,and its mechanism may

  4. Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner.

    Science.gov (United States)

    Dulek, Daniel E; Newcomb, Dawn C; Goleniewska, Kasia; Cephus, Jaqueline; Zhou, Weisong; Reiss, Sara; Toki, Shinji; Ye, Fei; Zaynagetdinov, Rinat; Sherrill, Taylor P; Blackwell, Timothy S; Moore, Martin L; Boyd, Kelli L; Kolls, Jay K; Peebles, R Stokes

    2014-09-01

    The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.

  5. Lipocalin2 protects against airway inflammation and hyperresponsiveness in a murine model of allergic airway disease

    DEFF Research Database (Denmark)

    Dittrich, A M; Krokowski, M; Meyer, H-A;

    2010-01-01

    Allergen-induced bronchial asthma is a chronic airway disease that involves the interplay of various genes with environmental factors triggering different inflammatory pathways.......Allergen-induced bronchial asthma is a chronic airway disease that involves the interplay of various genes with environmental factors triggering different inflammatory pathways....

  6. Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    Full Text Available BACKGROUND: The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR, contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma. METHODS AND FINDINGS: Primary Human Small Airway Epithelial Cells (SAEC were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS, cycloxygenase (COX-2, Prostaglandin (PG E(2, IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and

  7. Purified Aged Garlic Extract Modulates Allergic Airway Inflammation in Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Zare Ahad

    2008-09-01

    Full Text Available Garlic is known as a potent spice and a medicinal herb with broad therapeutic properties ranging from antibacterial to anticancer and anticoagulant. Our previous studies have shown some immunoregulatory effects for aged garlic extract, suggesting a key role for 14-kD glycoprotein of garlic in shifting the cytokine pattern to T helper-1. In present study, we investigated the effect of 1, 2, and 3 times intraperitoneal injections of aged garlic extract on an established allergic airway inflammation in murine model (BALB/c mice. The garlic extract, isolated by biochemical method, includes proteins precipitation by ammonium sulfate. After injection of the aged garlic extract, IFN-g, anti allergen specific IgE and IgG1 were measured in lavage and serum by ELISA and histological assessment was performed on the lung tissues. The results indicated that three-time intra peritoneal injections of the aged garlic extract caused a significant decrease in the hallmark criteria of allergic airway inflammation levels which included eosinophil percentage in lavage, peribronchial lung eosinophils, IgG1 level in lavage and serum, mucous producing goblet cells grade and peribronchial and perivascular inflammation. Our findings in the present research suggested that aged garlic extract has the potential of attenuation of inflammatory features of allergic airway inflammation in murine model.

  8. Alterations of the Murine Gut Microbiome with Age and Allergic Airway Disease.

    Science.gov (United States)

    Vital, Marius; Harkema, Jack R; Rizzo, Mike; Tiedje, James; Brandenberger, Christina

    2015-01-01

    The gut microbiota plays an important role in the development of asthma. With advanced age the microbiome and the immune system are changing and, currently, little is known about how these two factors contribute to the development of allergic asthma in the elderly. In this study we investigated the associations between the intestinal microbiome and allergic airway disease in young and old mice that were sensitized and challenged with house dust mite (HDM). After challenge, the animals were sacrificed, blood serum was collected for cytokine analysis, and the lungs were processed for histopathology. Fecal pellets were excised from the colon and subjected to 16S rRNA analysis. The microbial community structure changed with age and allergy development, where alterations in fecal communities from young to old mice resembled those after HDM challenge. Allergic mice had induced serum levels of IL-17A and old mice developed a greater allergic airway response compared to young mice. This study demonstrates that the intestinal bacterial community structure differs with age, possibly contributing to the exaggerated pulmonary inflammatory response in old mice. Furthermore, our results show that the composition of the gut microbiota changes with pulmonary allergy, indicating bidirectional gut-lung communications.

  9. Alterations of the Murine Gut Microbiome with Age and Allergic Airway Disease

    Directory of Open Access Journals (Sweden)

    Marius Vital

    2015-01-01

    Full Text Available The gut microbiota plays an important role in the development of asthma. With advanced age the microbiome and the immune system are changing and, currently, little is known about how these two factors contribute to the development of allergic asthma in the elderly. In this study we investigated the associations between the intestinal microbiome and allergic airway disease in young and old mice that were sensitized and challenged with house dust mite (HDM. After challenge, the animals were sacrificed, blood serum was collected for cytokine analysis, and the lungs were processed for histopathology. Fecal pellets were excised from the colon and subjected to 16S rRNA analysis. The microbial community structure changed with age and allergy development, where alterations in fecal communities from young to old mice resembled those after HDM challenge. Allergic mice had induced serum levels of IL-17A and old mice developed a greater allergic airway response compared to young mice. This study demonstrates that the intestinal bacterial community structure differs with age, possibly contributing to the exaggerated pulmonary inflammatory response in old mice. Furthermore, our results show that the composition of the gut microbiota changes with pulmonary allergy, indicating bidirectional gut-lung communications.

  10. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Haruka Aoki

    2014-01-01

    Full Text Available An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR, infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1 and acid-sensing ion channels (ASICs in severe acidic pH (of less than 6.0-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.

  11. Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K; Underwood, P Anne; Au, Wendy; Poniris, Maree H; Tamm, Michael; Ge, Qi; Roth, Michael; Black, Judith L

    2004-01-01

    BACKGROUND: Airway remodeling is a key feature of persistent asthma and includes alterations in the extracellular matrix protein profile around the airway smooth muscle (ASM) and hyperplasia of the ASM. We have previously shown that nonasthmatic ASM cells in culture produce a range of extracellular

  12. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection

    NARCIS (Netherlands)

    Oliver, Brian G G; Johnston, Sebastian L; Baraket, Melissa; Burgess, Janette K; King, Nicholas J C; Roth, Michael; Lim, Sam; Black, Judith L

    2006-01-01

    BACKGROUND: Exacerbations of asthma are associated with viral respiratory tract infections, of which rhinoviruses (RV) are the predominant virus type. Airway smooth muscle is important in asthma pathogenesis, however little is known about the potential interaction of RV and human airway smooth muscl

  13. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives.

    Science.gov (United States)

    Samitas, Konstantinos; Delimpoura, Vasiliki; Zervas, Eleftherios; Gaga, Mina

    2015-12-01

    Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in the development of airway remodelling. The use of monoclonal antibodies targeting IgE, such as omalizumab, has proven very effective in improving respiratory symptoms and quality of life, while reducing asthma exacerbations, emergency room visits and the use of systemic corticosteroids in allergic severe asthma. These effects are believed to be mainly mediated by omalizumab's inhibitory effect on the initiation and further propagation of the allergic inflammation cascade. However, there is evidence to suggest that anti-IgE treatment remains effective long after it has been discontinued. In part, these findings could be attributed to the possible ameliorating effects of anti-IgE treatment on airway remodelling. In this review, we discuss recent findings supporting the notion that anti-IgE treatment modulates the complex immune responses that manifest clinically as asthma and ameliorates airway remodelling changes often observed in allergic severe asthma phenotypes.

  14. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives

    Directory of Open Access Journals (Sweden)

    Konstantinos Samitas

    2015-12-01

    Full Text Available Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in the development of airway remodelling. The use of monoclonal antibodies targeting IgE, such as omalizumab, has proven very effective in improving respiratory symptoms and quality of life, while reducing asthma exacerbations, emergency room visits and the use of systemic corticosteroids in allergic severe asthma. These effects are believed to be mainly mediated by omalizumab's inhibitory effect on the initiation and further propagation of the allergic inflammation cascade. However, there is evidence to suggest that anti-IgE treatment remains effective long after it has been discontinued. In part, these findings could be attributed to the possible ameliorating effects of anti-IgE treatment on airway remodelling. In this review, we discuss recent findings supporting the notion that anti-IgE treatment modulates the complex immune responses that manifest clinically as asthma and ameliorates airway remodelling changes often observed in allergic severe asthma phenotypes.

  15. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takuma, E-mail: katotaku@doc.medic.mie-u.ac.jp [Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine (Japan); Tada-Oikawa, Saeko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine (Japan); Wang, Linan [Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine (Japan); Murata, Mariko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine (Japan); Kuribayashi, Kagemasa [Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine (Japan)

    2013-11-15

    In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen, but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases. - Highlights: • Oral exposure to TBT exacerbates airway inflammation. • TBT induces oxidative stress in secondary lymphoid organs, but not in the lung. • TBT preferentially induces regulatory T cell apoptosis over non-Treg cells. • TBT does not enhance pre-existing airway inflammation in sensitized mice. • Chemicals in food contaminants

  16. Cockroach protease allergen induces allergic airway inflammation via epithelial cell activation

    Science.gov (United States)

    Kale, Sagar L.; Agrawal, Komal; Gaur, Shailendra Nath; Arora, Naveen

    2017-01-01

    Protease allergens are known to enhance allergic inflammation but their exact role in initiation of allergic reactions at mucosal surfaces still remains elusive. This study was aimed at deciphering the role of serine protease activity of Per a 10, a major cockroach allergen in initiation of allergic inflammation at mucosal surfaces. We demonstrate that Per a 10 increases epithelial permeability by disruption of tight junction proteins, ZO-1 and occludin, and enhances the migration of Monocyte derived dendritic cell precursors towards epithelial layer as exhibited by trans-well studies. Per a 10 exposure also leads to secretion of IL-33, TSLP and intracellular Ca2+ dependent increase in ATP levels. Further, in vivo experiments revealed that Per a 10 administration in mice elevated allergic inflammatory parameters along with high levels of IL-33, TSLP, IL-1α and uric acid in the mice lungs. We next demonstrated that Per a 10 cleaves CD23 (low affinity IgE receptor) from the surface of PBMCs and purified B cells and CD25 (IL-2 receptor) from the surface of PBMCs and purified T cells in an activity dependent manner, which might favour Th2 responses. In conclusion, protease activity of Per a 10 plays a significant role in initiation of allergic airway inflammation at the mucosal surfaces. PMID:28198394

  17. Inhibition of allergic airway inflammation by antisense-induced blockade of STAT6 expression

    Institute of Scientific and Technical Information of China (English)

    TIAN Xin-rui; TIAN Xin-li; BO Jian-ping; LI Shao-gang; LIU Zhuo-la; NIU Bo

    2011-01-01

    Background The signal transducer and activator of transcription 6 (STAT6) expression in lung epithelial cells plays a pivotal role in asthma pathogenesis. Activation of STAT6 expression results in T helper cell type 2 (Th2) cell differentiation leading to Th2-mediated IgE production, development of allergic airway inflammation and hyperreactivity. Therefore,antagonizing the expression and/or the function of STAT6 could be used as a mode of therapy for allergic airway inflammation.Methods In this study, we synthesized a 20-mer phosphorothioate antisense oligonucleotide (ASODN) overlapping the translation starting site of STAT6 and constructed STAT6 antisense RNA (pANTI-STAT6), then transfected them into murine spleen lymphocytes and analyzed the effects of antagonizing STAT6 function in vitro and in a murine model of asthma.Results In vitro, we showed suppression of STAT6 expression and interleukin (IL)-4 production of lymphocytes by STAT6 ASODN. This effect was more prominent when cells were cultured with pANTI-STAT6. In a murine model of asthma associated with allergic pulmonary inflammation in ovalbumin (OVA)-sensitized mice, local intranasal administration of fluorescein isothiocyanate (FITC)-labeled STAT6 ASODN to DNA uptake in lung cells was accompanied by a reduction of intracellular STAT6 expression. Such intrapulmonary blockade of STAT6 expression abrogated signs of lung inflammation, infiltration of eosinophils and Th2 cytokine production.Conclusion These data suggest a critical role of STAT6 in the pathogenesis of asthma and the use of local delivery of STAT6 ASODN as a novel approach for the treatment of allergic airway inflammation such as in asthma.

  18. Sesamin attenuates allergic airway inflammation through the suppression of nuclear factor-kappa B activation.

    Science.gov (United States)

    Li, Liangchang; Piao, Hongmei; Zheng, Mingyu; Jin, Zhewu; Zhao, Liguang; Yan, Guanghai

    2016-12-01

    The aim of the present study is to determine the role of sesamin, the most abundant lignan in sesame seed oil, on the regulation of allergic airway inflammation in a murine asthma model. A BALB/c mouse model with allergic asthma was used to evaluate the effects of sesamin on nuclear factor-kappa B (NF-κB) activation. An enzyme-linked immunosorbent assay was used to determine protein expression in bronchoalveolar lavage (BAL) fluids. Hematoxylin and eosin staining was performed to examine histological changes. Moreover, western blot analysis was used to detect the expression of proteins in tissues. Prior to administering sesamin, the mice developed the following pathophysiological features of asthma: An increase in the number of inflammatory cells, increased levels of interleukin (IL)-4, IL-5 and IL-13, decreased levels of interferon-γ in BAL fluids and lung tissues, increased immunoglobulin E (IgE) levels in the serum and an increased activation of NF-κB in lung tissues. Following treatment with sesamin, the mice had evidently reduced peribronchiolar inflammation and airway inflammatory cell recruitment, inhibited production of several cytokines in BAL fluids and lung tissues, and decreased IgE levels. Following inhalation of ovalbumin, the administration of sesamin also inhibited the activation of NF-κB. In addition, sesamin administration reduced the phosphorylation of p38 mitogen-activated protein kinases (MAPKs). The present study demonstrates that sesamin decreases the activation of NF-κB in order to attenuate allergic airway inflammation in a murine model of asthma, possibly via the regulation of phosphorylation of p38 MAPK. These observations provide an important molecular mechanism for the potential use of sesamin in preventing and/or treating asthma, as well as other airway inflammatory disorders.

  19. DNA vaccine encoding Der p2 allergen down-regulates STAT6 expression in mouse model of allergen-induced allergic airway inflammation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Activation of signal transducer and activator of transcription 6 (STAT6 ) plays a critical role in the late phase of Th2-dependent allergy induction. STAT6 is essential to Th2 cell differentiation, recruitment, and effector function. Our previous study confirmed that DNA vaccination inhibited STAT6 expression of spleen cells induced by allergen. In the present study, we determined whether DNA vaccine encoding Dermatophagoides pteronyssinus group 2 (Der p2 ) could down-regulate the expression and activation of STAT6 in lung tissue from asthmatic mice.Methods After DNA vaccine immunization, BALB/c mice were sensitized by intraperitoneal injection and challenged by intranasal instillation of rDer p2. The levels of the cytokines IL-4 and IL-13 in BAL fluid were measured by enzyme-linked immunosorbent assay. The lung tissue was assessed by immunohistochemical staining with anti-STAT6. The protein expression of STAT6 was determined by Western blot. The activation of STAT6 binding ability was analyzed with electrophoretic mobility shift assay.Results DNA vaccine encoding Der p2 allergen effectively decreased the levels of IL-4 and IL-13 in the asthmatic mice. Histological evidence and Western blot showed that the expression of STAT6 in the DNA treated mice was markedly attenuated. STAT6 binding to specific DNA motif in lung tissue from the gene vaccinated mice was inhibited.Conclusion DNA vaccine encoding Der p2 prevents allergic pulmonary inflammation probably by inhibiting the STAT6 signaling pathway in mice with Der p2 allergen-induced allergic airway inflammation.

  20. Oroxylin A Inhibits Allergic Airway Inflammation in Ovalbumin (OVA)-Induced Asthma Murine Model.

    Science.gov (United States)

    Zhou, De-Gang; Diao, Bao-Zhong; Zhou, Wen; Feng, Jia-Long

    2016-04-01

    Oroxylin A, a natural flavonoid isolated from the medicinal herb Scutellaria baicalensis Georgi, has been reported to have anti-inflammatory property. In this study, we aimed to investigate the protective effects and mechanism of oroxylin A on allergic inflammation in OVA-induced asthma murine model. BABL/c mice were sensitized and airway-challenged with OVA to induce asthma. Oroxylin A (15, 30, and 60 mg/kg) was administered by oral gavage 1 h before the OVA treatment on day 21 to 23. The results showed that oroxylin A attenuated OVA-induced lung histopathologic changes, airway hyperresponsiveness, and the number of inflammatory cells. Oroxylin A also inhibited the levels of IL-4, IL-5, IL-13, and OVA-specific IgE in BALF. Furthermore, oroxylin A significantly inhibited OVA-induced NF-κB activation. In conclusion, these results suggested that oroxylin A inhibited airway inflammation in OVA-induced asthma murine model by inhibiting NF-κB activation. These results suggested that oroxylin A was a potential therapeutic drug for treating allergic asthma.

  1. A study on the relevance of airway inflammatory indices in induced sputum and airway hyperresponsiveness in asthmatics

    Institute of Scientific and Technical Information of China (English)

    厐亚敏

    2006-01-01

    Objective To analyze the correlations between NO3-/NO2-,eosinophil counts in induced sputum and airway hyperresponsiveness (AHR) and therefore to explore the clinical significance of these parameters in severity assessment and medication adjustment in patients with mild to moderate asthma. Methods From February 2003 to June 2004,35 outpatients with mild to moderate persistent asthma (mild:9, moderate:26) from Huaxi Hospital asthma clinic were treated with combined medi-

  2. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis.

    Science.gov (United States)

    Trompette, Aurélien; Gollwitzer, Eva S; Yadava, Koshika; Sichelstiel, Anke K; Sprenger, Norbert; Ngom-Bru, Catherine; Blanchard, Carine; Junt, Tobias; Nicod, Laurent P; Harris, Nicola L; Marsland, Benjamin J

    2014-02-01

    Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

  3. Immunomodulatory effects of Escherichia coli ATCC 25922 on allergic airway inflammation in a mouse model.

    Directory of Open Access Journals (Sweden)

    Wenhui Pang

    Full Text Available BACKGROUND: Hygiene hypothesis demonstrates that the lack of microbial exposure would promote the development of allergic airway disease (AAD. Therefore, the gut microbiota, including Escherichia coli (E. coli, would probably offer a potential strategy for AAD. OBJECTIVE: To investigate whether E. coli infection is able to suppress the induction of AAD and to elucidate the underlying mechanisms. METHODS: Nonpathogenic E. coli ATCC 25922 was infected by gavage before AAD phase in three patterns: 10(8 or 10(6 CFU in neonates or 10(8 CFU in adults. Then mice were sensitized and challenged with ovalbumin (OVA to induce allergic inflammation in both the upper and lower airways. Hallmarks of AAD, in terms of eosinophil infiltration and goblet cell metaplasia in subepithelial mucosa, Th2 skewing of the immune response, and levels of T regulate cells (Tregs, were examined by histological analysis, ELISA, and flow cytometry, respectively. RESULTS: E. coli, especially neonatally infected with an optimal dose, attenuated allergic responses, including a decrease in nasal rubbing and sneezing, a reduction in eosinophil inflammation and goblet cell metaplasia in subepithelial mucosa, decreased serum levels of OVA-specific IgE, and reduced Th2 (IL-4 cytokines. In contrast, this effect came with an increase of Th1 (IFN-r and IL-2 cytokines, and an enhancement of IL-10-secreting Tregs in paratracheal lymph nodes (PTLN. CONCLUSION: E. coli suppresses allergic responses in mice, probably via a shift from Th1 to Th2 and/or induction of Tregs. Moreover, this infection is age- and dose-dependent, which may open up novel possibilities for new therapeutic interventions.

  4. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Navarro-Xavier RA

    2016-05-01

    Full Text Available Roberta Araujo Navarro-Xavier,1 Karina Vieira de Barros,1 Iracema Senna de Andrade,1 Zaira Palomino,2 Dulce Elena Casarini,2 Vera Lucia Flor Silveira3 1Departamento de Fisiologia, 2Departamento de Medicina, 3Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil Background: The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6 or fish oil (rich in n-3 in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th-2 (interleukin [IL]-4, IL-5 and Th1 (interferon [IFN]-γ, tumor necrosis factor-α cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL or lungs. Methods: Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results: Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion: Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. Keywords: asthma, nitric oxide, n-6 fatty acids, n-3 fatty acids, cytokines

  5. Rhinovirus infection induces extracellular matrix protein deposition in asthmatic and nonasthmatic airway smooth muscle cells

    NARCIS (Netherlands)

    Kuo, Curtis; Lim, Sam; King, Nicholas J C; Johnston, Sebastian L; Burgess, Janette K; Black, Judith L; Oliver, Brian G

    2011-01-01

    Airway remodeling, which includes increases in the extracellular matrix (ECM), is a characteristic feature of asthma and is correlated to disease severity. Rhinovirus (RV) infections are associated with increased risk of asthma development in young children and are the most common cause of asthma ex

  6. CD40 and OX40 ligand are differentially regulated on asthmatic airway smooth muscle

    NARCIS (Netherlands)

    Krimmer, D I; Loseli, M; Hughes, J M; Oliver, B G G; Moir, L M; Hunt, N H; Black, J L; Burgess, J K

    2009-01-01

    BACKGROUND: CD40 and OX40 Ligand (OX40L) are cell-surface molecules expressed on airway smooth muscle (ASM) that can enhance inflammatory cell activation and survival. The aim of this study was to examine the effect of tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) on ASM

  7. Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K; Ge, Qi; Poniris, Maree; Boustany, Sarah; Twigg, Stephen M; Black, Judith L

    2006-01-01

    Transforming growth factor (TGF)-beta and connective tissue growth factor may be implicated in extracellular matrix protein deposition in asthma. We have recently reported that TGF-beta increased connective tissue growth factor expression in airway smooth muscle cells isolated from patients with ast

  8. CD40 and OX40 ligand are increased on stimulated asthmatic airway smooth muscle

    NARCIS (Netherlands)

    Burgess, Janette K; Blake, Anita E; Boustany, Sarah; Johnson, Peter R A; Armour, Carol L; Black, Judith L; Hunt, Nicholas H; Hughes, J Margaret

    2005-01-01

    BACKGROUND: Severe, persistent asthma is characterized by airway smooth muscle hyperplasia, inflammatory cell infiltration into the smooth muscle, and increased expression of many cytokines, including IL-4, IL-13, IL-1beta, and TNF-alpha. These cytokines have the potential to alter the expression of

  9. Chlamydia pneumoniae infection induced allergic airway sensitization is controlled by regulatory T-cells and plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Timothy R Crother

    Full Text Available Chlamydia pneumoniae (CP is associated with induction and exacerbation of asthma. CP infection can induce allergic airway sensitization in mice in a dose- and time-dependent manner. Allergen exposure 5 days after a low dose (mild-moderate, but not a high dose (severe CP infection induces antigen sensitization in mice. Innate immune signals play a critical role in controlling CP infection induced allergic airway sensitization, however these mechanisms have not been fully elucidated. Wild-type, TLR2-/-, and TLR4-/- mice were infected intranasally (i.n. with a low dose of CP, followed by i.n. exposure to human serum albumin (HSA and challenged with HSA 2 weeks later. Airway inflammation, immunoglobulins, eosinophils, and goblet cells were measured. Low dose CP infection induced allergic sensitization in TLR2-/- mice, but not in TLR4-/- mice, due to differential Treg responses in these genotypes. TLR2-/- mice had reduced numbers of Tregs in the lung during CP infection while TLR4-/- mice had increased numbers. High dose CP infection resulted in an increase in Tregs and pDCs in lungs, which prevented antigen sensitization in WT mice. Depletion of Tregs or pDCs resulted in allergic airway sensitization. We conclude that Tregs and pDCs are critical determinants regulating CP infection-induced allergic sensitization. Furthermore, TLR2 and TLR4 signaling during CP infection may play a regulatory role through the modulation of Tregs.

  10. Chlamydia pneumoniae infection induced allergic airway sensitization is controlled by regulatory T-cells and plasmacytoid dendritic cells.

    Science.gov (United States)

    Crother, Timothy R; Schröder, Nicolas W J; Karlin, Justin; Chen, Shuang; Shimada, Kenichi; Slepenkin, Anatoly; Alsabeh, Randa; Peterson, Ellena; Arditi, Moshe

    2011-01-01

    Chlamydia pneumoniae (CP) is associated with induction and exacerbation of asthma. CP infection can induce allergic airway sensitization in mice in a dose- and time-dependent manner. Allergen exposure 5 days after a low dose (mild-moderate), but not a high dose (severe) CP infection induces antigen sensitization in mice. Innate immune signals play a critical role in controlling CP infection induced allergic airway sensitization, however these mechanisms have not been fully elucidated. Wild-type, TLR2-/-, and TLR4-/- mice were infected intranasally (i.n.) with a low dose of CP, followed by i.n. exposure to human serum albumin (HSA) and challenged with HSA 2 weeks later. Airway inflammation, immunoglobulins, eosinophils, and goblet cells were measured. Low dose CP infection induced allergic sensitization in TLR2-/- mice, but not in TLR4-/- mice, due to differential Treg responses in these genotypes. TLR2-/- mice had reduced numbers of Tregs in the lung during CP infection while TLR4-/- mice had increased numbers. High dose CP infection resulted in an increase in Tregs and pDCs in lungs, which prevented antigen sensitization in WT mice. Depletion of Tregs or pDCs resulted in allergic airway sensitization. We conclude that Tregs and pDCs are critical determinants regulating CP infection-induced allergic sensitization. Furthermore, TLR2 and TLR4 signaling during CP infection may play a regulatory role through the modulation of Tregs.

  11. IL-10 is necessary for the expression of airway hyperresponsiveness but not pulmonary inflammation after allergic sensitization

    Science.gov (United States)

    Mäkelä, M. J.; Kanehiro, A.; Borish, L.; Dakhama, A.; Loader, J.; Joetham, A.; Xing, Z.; Jordana, M.; Larsen, G. L.; Gelfand, E. W.

    2000-05-01

    Cytokines play an important role in modulating inflammatory responses and, as a result, airway tone. IL-10 is a regulatory cytokine that has been suggested for treatment of asthma because of its immunosuppressive and anti-inflammatory properties. In contrast to these suggestions, we demonstrate in a model of allergic sensitization that mice deficient in IL-10 (IL-10/) develop a pulmonary inflammatory response but fail to exhibit airway hyperresponsiveness in both in vitro and in vivo assessments of lung function. Reconstitution of these deficient mice with the IL-10 gene fully restores development of airway hyperresponsiveness comparable to control mice. These results identify an important role of IL-10, downstream of the inflammatory cascade, in regulating the tone of the airways after allergic sensitization and challenge.

  12. Comparison of effect of granules and herbs of Bu-Shen-Yi-Qi-Tang on airway inflammation in asthmatic mice

    Institute of Scientific and Technical Information of China (English)

    Wei Ying; Lyu Yubao; Li Mihui; Luo Qingli; Sun Jing; Liu Feng; Lin Yanhua

    2014-01-01

    Background Bu-Shen-Yi-Qi-Tang (BSYQT),which is prescribed on the basis of clinical experience,is commonly used in clinics of traditional Chinese medicine (TCM) for asthma treatment.The components of BSYQT include Radix Astragali (RA),Herba Epimedii (HE) and Radix Rehmanniae (RR).The aim of this study was to compare the effect of granules and herbs of BSYQT on airway inflammation in asthmatic mice.Methods Sixty female BALB/c mice were randomly divided into the normal control (NC) group,asthmatic group (A),decoction of granules of BSYQT treatment group (GD),decoction of herbs of BSYQT treatment group (HD),and dexamethasone treatment group (DEX).The mouse asthmatic model was induced by ovalbumin (OVA) sensitization and challenge.GD and HD of BSYQT as well as DEX were prepared and administered by intragastric infusion.Airway hyperresponsiveness (AHR) to methacholine (Mch),lung histopathology analysis,inflammatory mediators in serum (IL-4,IL-5,IL-17A,IFN-γ,and eotaxin) and in lung (IL-4,IL-5,IFN-γ,and eotaxin) were selected for investigation and comparison.Results Both GD and HD treatment could decrease airway resistance (RL) and increase dynamic compliance (Cdyn) to Mch compared with the A group (P <0.05).HD treatment was more effective in RL reduction than Mch at doses of 3.125 and 6.25 mg/ml (P <0.05) and in Cdyn increase at Mch doses of 6.25 and 12.5 mg/ml (P <0.05).There were no marked differences in RL reduction and Cdyn improvement between mice in HD and DEX groups (P >0.05).Both GD and HD treatment markedly attenuated lung inflammation (P <0.05),and HD treatment demonstrated more significant therapeutic function in alleviating lung inflammation than that of GD and DEX treatment (P <0.05).Both GD and HD treatment resulted in a significant reduction in IL-4 and IL-17A levels and an increase in the IFN-γ level in serum compared with the A group (P <0.05).The effect of HD in lowering the IL-4 and IL-17A level was significantly greater than that of

  13. The effects of CpG-oligodeoxynucleotides on airway remodeling in chronic asthmatic mice

    Institute of Scientific and Technical Information of China (English)

    揭志军

    2006-01-01

    Objective To investigate if CpG-oligodeoxynucleofides (CpG-ODN) intervention has inhibitory effects on the development of airway remodeling in an ovalbumin (OVA) -sensitized mouse model of chronic asthma. Methods Forty female C57BL/6 mice were randomly divided into four groups (n=10): (1) Group A (chronic asthma model):mice were sensitized by intraperitoneal injection of OVA (10μg) precipitated with alumin-

  14. Allergic Fungal Rhinosinusitis and the Unified Airway: the Role of Antifungal Therapy in AFRS.

    Science.gov (United States)

    Ryan, Matthew W; Clark, Christopher M

    2015-12-01

    Allergic fungal sinusitis (AFS) or rhinosinusitis (AFRS) is a form of polypoid chronic rhinosinusitis that is believed to be due to hypersensitivity to fungal antigens. The disease is characterized by type 1 hypersensitivity to fungal allergens, dramatically elevated total serum IgE, accumulation of thick eosinophil-laden mucin with non-invasive fungal hyphae within the paranasal sinuses, nasal polyposis, and sinus bony remodeling. Because of many clinicopathologic similarities to allergic bronchopulmonary aspergillosis (ABPA), these conditions can be considered analogous examples of disease in the unified airway. However, these conditions rarely occur together and their treatment differs. The treatment of AFRS relies upon surgical removal of fungal hyphae in eosinophilic mucin, while antifungal therapy is used to clear fungi from the airways in ABPA. Several uncontrolled studies suggest there may be some benefit to antifungal agents in AFRS, but randomized trials of topical and systemic antifungal therapies have not shown beneficial results in chronic rhinosinusitis (CRS). Antifungal treatment within the sinonasal cavities does not appear to be an effective approach for most chronic sinusitis, and antifungal therapy for AFRS is unproven.

  15. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation.

    Science.gov (United States)

    Bartlett, Nathan W; Walton, Ross P; Edwards, Michael R; Aniscenko, Juliya; Caramori, Gaetano; Zhu, Jie; Glanville, Nicholas; Choy, Katherine J; Jourdan, Patrick; Burnet, Jerome; Tuthill, Tobias J; Pedrick, Michael S; Hurle, Michael J; Plumpton, Chris; Sharp, Nigel A; Bussell, James N; Swallow, Dallas M; Schwarze, Jurgen; Guy, Bruno; Almond, Jeffrey W; Jeffery, Peter K; Lloyd, Clare M; Papi, Alberto; Killington, Richard A; Rowlands, David J; Blair, Edward D; Clarke, Neil J; Johnston, Sebastian L

    2008-02-01

    Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations.

  16. Antigen-specific cytotoxic T lymphocytes target airway CD103+ and CD11b+ dendritic cells to suppress allergic inflammation.

    Science.gov (United States)

    Daniels, N J; Hyde, E; Ghosh, S; Seo, K; Price, K M; Hoshino, K; Kaisho, T; Okada, T; Ronchese, F

    2016-01-01

    Allergic airway inflammation is driven by the recognition of inhaled allergen by T helper type 2 (Th2) cells in the airway and lung. Allergen-specific cytotoxic T lymphocytes (CTLs) can strongly reduce airway inflammation, however, the mechanism of their inhibitory activity is not fully defined. We used mouse models to show that allergen-specific CTLs reduced early cytokine production by Th2 cells in lung, and their subsequent accumulation and production of interleukin (IL)-4 and IL-13. In addition, treatment with specific CTLs also increased the proportion of caspase(+) dendritic cells (DCs) in mediastinal lymph node (MLN), and decreased the numbers of CD103(+) and CD11b(+) DCs in the lung. This decrease required expression of the cytotoxic mediator perforin in CTLs and of the appropriate MHC-antigen ligand on DCs, suggesting that direct CTL-DC contact was necessary. Lastly, lung imaging experiments revealed that in airway-challenged mice XCR1-GFP(+) DCs, corresponding to the CD103(+) DC subset, and XCR1-GFP(-) CD11c(+) cells, which include CD11b(+) DCs and alveolar macrophages, both clustered in the areas surrounding the small airways and were closely associated with allergen-specific CTLs. Thus, allergen-specific CTLs reduce allergic airway inflammation by depleting CD103(+) and CD11b(+) DC populations in the lung, and may constitute a mechanism through which allergic immune responses are regulated.

  17. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma.

    Science.gov (United States)

    Al-Harbi, Naif O; Nadeem, A; Al-Harbi, Mohamed M; Imam, F; Al-Shabanah, Othman A; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M; Bahashwan, Saleh A

    2015-05-01

    Oxidant-antioxidant imbalance plays an important role in repeated cycles of airway inflammation observed in asthma. It is when reactive oxygen species (ROS) overwhelm antioxidant defenses that a severe inflammatory state becomes apparent and may impact vasculature. Several studies have shown an association between airway inflammation and cardiovascular complications; however so far none has investigated the link between airway oxidative stress and systemic/vascular oxidative stress in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of vascular/systemic oxidant-antioxidant balance. Rats were sensitized intraperitoneally with ovalbumin (OVA) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with OVA. Rats were then assessed for airway and vascular inflammation, oxidative stress (ROS, lipid peroxides) and antioxidants measured as total antioxidant capacity (TAC) and thiol content. Challenge with OVA led to increased airway inflammation and oxidative stress with a concomitant increase in vascular inflammation and oxidative stress. Oxidative stress in the vasculature was significantly inhibited by antioxidant treatment, N-acetyl cysteine; whereas hydrogen peroxide (H2O2) inhalation worsened it. Therefore, our study shows that oxidative airway inflammation is associated with vascular/systemic oxidative stress which might predispose these patients to increased cardiovascular risk.

  18. A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure.

    Directory of Open Access Journals (Sweden)

    Alba Llop-Guevara

    Full Text Available Allergic asthma is a chronic immune-inflammatory disease of the airways. Despite aeroallergen exposure being universal, allergic asthma affects only a fraction of individuals. This is likely related, at least in part, to the extent of allergen exposure. Regarding house dust mite (HDM, we previously identified the threshold required to elicit allergic responses in BALB/c mice. Here, we investigated the impact of an initial immune perturbation on the response to sub-threshold HDM exposure. We show that transient GM-CSF expression in the lung facilitated robust eosinophilic inflammation, long-lasting antigen-specific Th2 responses, mucus production and airway hyperresponsiveness. This was associated with increased IL-33 levels and activated CD11b(+ DCs expressing OX40L. GM-CSF-driven allergic responses were significantly blunted in IL-33-deficient mice. IL-33 was localized on alveolar type II cells and in vitro stimulation of human epithelial cells with GM-CSF enhanced intracellular IL-33 independently of IL-1α. Likewise, GM-CSF administration in vivo resulted in increased levels of IL-33 but not IL-1α. These findings suggest that exposures to environmental agents associated with GM-CSF production, including airway infections and pollutants, may decrease the threshold of allergen responsiveness and, hence, increase the susceptibility to develop allergic asthma through a GM-CSF/IL-33/OX40L pathway.

  19. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway.

    Science.gov (United States)

    Chong, Lei; Zhang, Weixi; Nie, Ying; Yu, Gang; Liu, Liu; Lin, Li; Wen, Shunhang; Zhu, Lili; Li, Changchong

    2014-10-01

    Curcumin, a natural product derived from the plant Curcuma longa, has been found to have anti-inflammatory, antineoplastic and antifibrosis effects. It has been reported that curcumin attenuates allergic airway inflammation in mice through inhibiting NF-κB and its downstream transcription factor GATA3. It also has been proved the antineoplastic effect of curcumin through down-regulating Notch1 receptor and its downstream nuclear transcription factor NF-κB levels. In this study, we aimed to investigate the anti-inflammatory effect of curcumin on acute allergic asthma and its underlying mechanisms. 36 male BALB/c mice were randomly divided into four groups (normal, asthma, asthma+budesonide and asthma+curcumin groups). BALF (bronchoalveolar lavage fluid) and lung tissues were analyzed for airway inflammation and the expression of Notch1, Notch2, Notch3, Notch4 and the downstream transcription factor GATA3. Our findings showed that the levels of Notch1 and Notch2 receptors were up-regulated in asthma group, accompanied by the increased expression of GATA3. But the expression of Notch2 receptor was lower than Notch1 receptor. Curcumin pretreatment improved the airway inflammatory cells infiltration and reversed the increasing levels of Notch1/2 receptors and GATA3. Notch3 receptor was not expressed in all of the four groups. Notch4 receptor protein and mRNA expression level in the four groups had no significant differences. The results of the present study suggested that Notch1 and Notch2 receptor, major Notch1 receptor, played an important role in the development of allergic airway inflammation and the inhibition of Notch1-GATA3 signaling pathway by curcumin can prevent the development and deterioration of the allergic airway inflammation. This may be a possible therapeutic option of allergic asthma.

  20. Increase in markers of airway inflammation after ozone exposure can be observed also in stable treated asthmatics with minimal functional response to ozone

    Directory of Open Access Journals (Sweden)

    Dente Federico L

    2010-01-01

    Full Text Available Abstract Background The discrepancy between functional and inflammatory airway response to ozone has been reported in normal subjects, but few data are available for stable asthmatics regularly treated with inhaled corticosteroids. Methods Twenty-three well controlled, regularly treated, mild-to-moderate asthmatic patients underwent two sequential randomised exposures to either filtered air or ozone (0.3 ppm for 2 hours in a challenge chamber. Pulmonary function (PF was monitored, and patients with FEV1 decrease greater than 10% from pre-challenge value were considered as responders. Immediately after each exposure, exhaled breath condensate (EBC was collected to measure malondialdehyde (MDA. Six hours after each exposure, PF and EBC collection were repeated, and sputum was induced to measure inflammatory cell counts and soluble mediators (IL-8 and neutrophil elastase. The response to ozone was also evaluated according to the presence of polymorphism in oxidative stress related NQO1 and GSTM1 genes. Results After ozone exposure, sputum neutrophils significantly increased in responders (n = 8, but not in nonresponders (n = 15. Other markers of neutrophil activation in sputum supernatant and MDA in EBC significantly increased in all patients, but only in nonresponders the increase was significant. In nonresponders, sputum eosinophils also significantly increased after ozone. There was a positive correlation between ozone-induced FEV1 fall and increase in sputum neutrophils. No difference in functional or inflammatory response to ozone was observed between subjects with or without the combination of NQO1wt- GSTM1null genotypes. Conclusions Markers of neutrophilic inflammation and oxidative stress increase also in asthmatic subjects not responding to ozone. A greater functional response to ozone is associated with greater neutrophil airway recruitment in asthmatic subjects.

  1. Maternal allergic contact dermatitis causes increased asthma risk in offspring

    Directory of Open Access Journals (Sweden)

    Kobzik Lester

    2007-07-01

    Full Text Available Abstract Background Offspring of asthmatic mothers have increased risk of developing asthma, based on human epidemiologic data and experimental animal models. The objective of this study was to determine whether maternal allergy at non-pulmonary sites can increase asthma risk in offspring. Methods BALB/c female mice received 2 topical applications of vehicle, dinitrochlorobenzene, or toluene diisocyanate before mating with untreated males. Dinitrochlorobenzene is a skin-sensitizer only and known to induce a Th1 response, while toluene diisocyanate is both a skin and respiratory sensitizer that causes a Th2 response. Both cause allergic contact dermatitis. Offspring underwent an intentionally suboptimal protocol of allergen sensitization and aerosol challenge, followed by evaluation of airway hyperresponsiveness, allergic airway inflammation, and cytokine production. Mothers were tested for allergic airway disease, evidence of dermatitis, cellularity of the draining lymph nodes, and systemic cytokine levels. The role of interleukin-4 was also explored using interleukin-4 deficient mice. Results Offspring of toluene diisocyanate but not dinitrochlorobenzene-treated mothers developed an asthmatic phenotype following allergen sensitization and challenge, seen as increased Penh values, airway inflammation, bronchoalveolar lavage total cell counts and eosinophilia, and Th2 cytokine imbalance in the lung. Toluene diisocyanate treated interleukin-4 deficient mothers were able to transfer asthma risk to offspring. Mothers in both experimental groups developed allergic contact dermatitis, but not allergic airway disease. Conclusion Maternal non-respiratory allergy (Th2-skewed dermatitis caused by toluene diisocyanate can result in the maternal transmission of asthma risk in mice.

  2. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Chen-Chen Lee

    2015-01-01

    Full Text Available This study investigated the immunomodulatory effects of ferulic acid (FA on antigen-presenting dendritic cells (DCs in vitro and its antiallergic effects against ovalbumin- (OVA- induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS stimulation induced a high level of interleukin- (IL- 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF- α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4, MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13, and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN- γ production in bronchoalveolar lavage fluid (BALF and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model.

  3. Inhibitory effect of acetamide-45 on airway inflammation and phosphodiesterase 4 in allergic rats

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Hua-hao SHEN; Jun-chun CHEN; Zhong CHEN

    2005-01-01

    Aim: To determine the effects of acetamide-45 on respiratory function, airway inflammation, and the activity of phosphodiesterase 4 (PDE4) in allergic rats.Methods: Rats were sensitized by a single intramuscular injection with ovalbumin (OVA) and were challenged with ovalbumin applied by using an aerosol repeatedly for 7 d after 2 weeks. Acetamide-45 at concentrations of 5, 10, or 30 mg/kg was then administered by intraperitoneal injection. Changes in dynamic lung compliance and lung resistance, the accumulation of inflammatory cells in bronchoalveolar lavage, PDE4 activity, and the concentration of interleukin-4 in rat lung tissue were determined. Results: Seven days of treatment with acetamide-45 prevented eosinophil accumulation in allergic rats. At doses of 5, 10, and 30 mg/kg, acetamide-45 decreased lung resistance to 0.20±0.04, 0.25±0.07, and 0.22±0.05compliance to 0.41±0.07, 0.39±0.06, and 0.42±0.09 mL/cmH2O (P<0.05 vs OVA).After being treated with different doses of acetamide-45, the PDE4 activities in the concentrations of interleukin-4 in lung tissue were 6.22± 1.13, 5.95± 1.20,and 5.68±2.20 μg/g protein (P<0.05 vs OVA). Conclusions: Acetamide-45 was found to improve respiratory function and inhibit airway inflammation in this animal model, and the PDE4 activity of lung tissue was obviously inhibited.Acetamide-45 was an effective anti-inflammatory agent in respiratory inflammation,and the mechanism of its action might depend on inhibition of PDE4.

  4. Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma

    DEFF Research Database (Denmark)

    Pilecki, Bartosz; Schlosser, Anders; Wulf-Johansson, Helle

    2015-01-01

    . In the current study we investigated the role of MFAP4 in experimental allergic asthma. METHODS: MFAP4-deficient mice were subjected to alum/ovalbumin and house dust mite induced models of allergic airway disease. In addition, human healthy and asthmatic primary bronchial smooth muscle cell cultures were used...... to evaluate MFAP4-dependent airway smooth muscle responses. RESULTS: MFAP4 deficiency attenuated classical hallmarks of asthma, such as eosinophilic inflammation, eotaxin production, airway remodelling and hyperresponsiveness. In wild-type mice, serum MFAP4 was increased after disease development...... and correlated with local eotaxin levels. MFAP4 was expressed in human bronchial smooth muscle cells and its expression was upregulated in asthmatic cells. Regarding the underlying mechanism, we showed that MFAP4 interacted with integrin αvβ5 and promoted asthmatic bronchial smooth muscle cell proliferation...

  5. Invasive versus noninvasive measurement of allergic and cholinergic airway responsiveness in mice

    Directory of Open Access Journals (Sweden)

    Hohlfeld Jens M

    2005-11-01

    Full Text Available Abstract Background This study seeks to compare the ability of repeatable invasive and noninvasive lung function methods to assess allergen-specific and cholinergic airway responsiveness (AR in intact, spontaneously breathing BALB/c mice. Methods Using noninvasive head-out body plethysmography and the decrease in tidal midexpiratory flow (EF50, we determined early AR (EAR to inhaled Aspergillus fumigatus antigens in conscious mice. These measurements were paralleled by invasive determination of pulmonary conductance (GL, dynamic compliance (Cdyn and EF50 in another group of anesthetized, orotracheally intubated mice. Results With both methods, allergic mice, sensitized and boosted with A. fumigatus, elicited allergen-specific EAR to A. fumigatus (p Conclusion We conclude that invasive and noninvasive pulmonary function tests are capable of detecting both allergen-specific and cholinergic AR in intact, allergic mice. The invasive determination of GL and Cdyn is superior in sensitivity, whereas the noninvasive EF50 method is particularly appropriate for quick and repeatable screening of respiratory function in large numbers of conscious mice.

  6. Inhibition of pan neurotrophin receptor p75 attenuates diesel particulate-induced enhancement of allergic airway responses in C57/B16J mice.

    Science.gov (United States)

    Farraj, Aimen K; Haykal-Coates, Najwa; Ledbetter, Allen D; Evansky, Paul A; Gavett, Stephen H

    2006-06-01

    Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.

  7. Aberrant expression of regulatory cytokine IL-35 and pattern recognition receptor NOD2 in patients with allergic asthma.

    Science.gov (United States)

    Wong, Chun Kwok; Leung, Ting Fan; Chu, Ida Miu Ting; Dong, Jie; Lam, Yvonne Yi On; Lam, Christopher Wai Kei

    2015-02-01

    We investigated the plasma concentration of the novel regulatory cytokine IL-35 and intracytosolic pattern recognition receptors nucleotide-binding oligomerization domain (NOD)-like receptors in granulocytes and explored their potential implication in disease severity monitoring of allergic asthma. The expression of circulating IL-35 and other pro-inflammatory mediators in asthmatic patients or control subjects were evaluated using enzyme-linked immunosorbent assay (ELISA). The intracellular expressions of NOD1 and NOD2 in CCR3+ granulocytes were assessed using flow cytometry. Plasma concentrations of IL-35, IL-17A, basophil activation marker basogranulin, and eosinophilic airway inflammation biomarker periostin were significantly elevated in allergic asthmatic patients compared to non-atopic control subjects (all probability (p) IL-35 concentration in asthmatic patients (all p IL-35 and periostin with disease severity score in asthmatic patients (both p IL-35 (p IL-35 may serve as a potential surrogate biomarker for disease severity of allergic asthma.

  8. The use of oscillometry as a measure of airway responsiveness in asthmatic children after histamine and methacholine bronchoprovocation with dosimeter-MedicAid and DeVilbiss nebulizers.

    Science.gov (United States)

    Kopriva, F; Szotkowská, J; Plocová, A; Závodská, J; Zápalka, M; Smatanová, D; Látalová, M; Slezáková, L; Radová, L

    2007-05-01

    To explore the use of oscillometry as a measure of airway responsiveness, 69 asthmatic children underwent histamine and methacholine bronchoprovocation using dosimeter-MedicAid (Jaeger Co.; Germany) and DeVilbiss nebulizers (DeVilbiss, Bornemouth; England). The mean increase in R5 resistance in challenge testing measured after methacholine with the dosimeter-MedicAid nebulizer was 77.14% compared with 65.05% using histamine. Using the dosimeter-DeVilbiss nebulizer, the mean increases in R5 resistance following methacholine and histamine testing were 57.50% and 59.36%, respectively. The resistance R5 over R20 significantly correlated with forced expiratory volume in 1 second (FEV1). The MedicAid produced a more aggressive challenge than the DeVilbliss nebulizer. Oscillometry can be used to monitor the level of airway hyperresponsiveness following bronchoprovocation tests.

  9. Airway protease/antiprotease imbalance in atopic asthmatics contributes to increased Influenza A virus cleavage and replication

    Directory of Open Access Journals (Sweden)

    Kesic Matthew J

    2012-09-01

    Full Text Available Abstract Asthmatics are more susceptible to influenza infections, yet mechanisms mediating this enhanced susceptibility are unknown. Influenza virus hemagglutinin (HA protein binds to sialic acid residues on the host cells. HA requires cleavage to allow fusion of the viral HA with host cell membrane, which is mediated by host trypsin-like serine protease. We show data here demonstrating that the protease:antiprotease ratio is increased in the nasal mucosa of asthmatics and that these changes were associated with increased proteolytic activation of influenza. These data suggest that disruption of the protease balance in asthmatics enhances activation and infection of influenza virus.

  10. Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutrophil elastase inhibition attenuates allergic airway responses

    Directory of Open Access Journals (Sweden)

    Koga Hikari

    2013-01-01

    Full Text Available Abstract Background Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR in previously sensitized and challenged mice. Methods BALB/c mice were sensitized and challenged (primary with ovalbumin (OVA. Six weeks later, a single OVA aerosol (secondary challenge was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge. Results Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice. Conclusion These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the

  11. Maternal Disononyl Phthalate Exposure Activates Allergic Airway Inflammation via Stimulatingthe Phosphoinositide 3-kinase/Akt Pathway in Rat Pups

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Jiao; XIE ChangMing; ZHAO Yan; WANG Xiu; andZHANG YunHui

    2015-01-01

    ObjectiveTo evaluate the effectof diisononyl phthalate (DINP) exposure during gestation and lacta-tion on allergic response in pups and to explore the role of phosphoinositide 3-kinase/Akt pathway on it. MethodsFemale Wistar rats were treated with DINP at different dosages (0, 5, 50,and 500 mg/kg of body weight per day). The pups were sensitized and challenged by ovalbumin (OVA). The airway response was assessed; the airway histological studies were performed by hematoxylin and eosin (HE) staining; and the relative cytokines in phosphoinositide 3-kinase (PI3K)/Akt pathway were measured by enzyme-linked immunosorbent assay (ELISA) and western blot analysis. ResultsThere was no significant difference in DINP’s effect on airway hyperresponsiveness (AHR) between male pups and female pups. In the 50 mg/(kg·d) DINP-treated group, airway response to OVA significantly increased and pups showed dramatically enhanced pulmonary resistance (RI) compared with those from controls (P<0.05). Enhanced Akt phosphorylation and NF-κB translocation, and Th2 cytokines expression were observed in pups of 50 mg/(kg·d) DINP-treated group. However, in the 5 and 500 mg/(kg·d) DINP-treated pups, no significant effects were observed. ConclusionTherewas an adjuvant effect of DINP on allergic airway inflammation in pups. Maternal DINP exposure could promote OVA-induced allergic airway response in pups in part by upregulation of PI3K/Akt pathway.

  12. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Brent C. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); Constant, Stephanie L. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); GW Cancer Institute, The George Washington University, Washington, DC 20037 (United States); Jurjus, Rosalyn A. [Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037 (United States); Ceryak, Susan M., E-mail: phmsmc@gwumc.edu [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States)

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  13. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.

    Science.gov (United States)

    Lee, Kyung Sun; Kim, So Ri; Park, Hee Sun; Park, Seoung Ju; Min, Kyung Hoon; Lee, Ka Young; Choe, Yeong Hun; Hong, Sang Hyun; Han, Hyo Jin; Lee, Young Rae; Kim, Jong Suk; Atlas, Daphne; Lee, Yong Chul

    2007-12-31

    Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease.

  14. Apical Localization of Zinc Transporter ZnT4 in Human Airway Epithelial Cells and Its Loss in a Murine Model of Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Chiara Murgia

    2011-10-01

    Full Text Available The apical cytoplasm of airway epithelium (AE contains abundant labile zinc (Zn ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.

  15. Nitrites in induced sputum as a simple and cheap non-invasive marker of airway inflammation for asthmatic schoolchildren.

    Science.gov (United States)

    Recabarren, Arturo; Apaza, Carlos; Castro-Rodríguez, José A

    2008-08-01

    To determine if there are differences in the nitric oxide metabolites (nitrites) in sputum of patients with persistent asthma and healthy schoolchildren, we performed a case-control study in a tertiary care hospital in Arequipa, Perú. Nitrites in induced sputum samples were measured using the Griess assay in 30 persistent asthmatics (mean age of 10.1 yr) and 30 controls (mean age of 11.9 yr). The mean +/- s.d. of nitrites among asthmatics was significantly higher than the controls (16.30 +/- 8.6 vs. 10.25 +/- 4.68 nmol/ml, respectively, p = 0.001). Moreover, the nitrite level in the sputum in children with severe persistent asthma was higher than in the level found in the moderate and mild asthmatics (32.83 +/- 9.48 vs. 18.10 +/- 1.96 vs. 11.84 +/- 4.73 nmol/ml, respectively, p < 0.01 for linear trend). This study showed for the first time in children that asthmatics have significantly higher levels of nitrites in induced sputum than healthy controls and that the level of nitrite correlates with the severity of the asthma. Nitrite levels in sputum, a simple and cheap, non-invasive method, may be a good alternative to measure the severity of inflammation in asthmatic children.

  16. 哮喘气道重塑与氧化应激的实验研究%Airway Remodeling and Oxidative Stress in Rat Asthmatic Model

    Institute of Scientific and Technical Information of China (English)

    王尧; 杨青; 郭锋; 况九龙; 李里香

    2011-01-01

    目的 探讨大鼠支气管哮喘模型的慢性气道炎症、气道重塑特征以及与氧化应激的关系.方法 以卵蛋白为过敏原致敏,反复多次激发以模拟临床反复发作过程,建立大鼠慢性哮喘模型.64只SD大鼠随机分为正常对照组和哮喘组,每组再进一步划分4、8、12、16 周4个时间段.观察指标:①肺泡灌洗液(bronchoalveolar lavage fluid,BALF)细胞计数与分类;②肺组织病理观察:进行支气管周围炎性细胞浸润及杯状细胞增殖评分,测定支气管壁的平滑肌面积、胶原沉积面积,及肺组织TGF-β1的积分光密度值(IOD值);③测定12周大鼠肺组织匀浆MDA含量、SOD活性及肺组织TGF-β1蛋白含量.结果 ①各时间段哮喘组的BALF细胞计数与正常对照组相比,差异均有统计学意义(均P<0.01).其中中性粒细胞百分比、黏液指数随时间推移呈增加趋势.②4周哮喘组即有气道管壁增厚、平滑肌增生、胶原沉积增多、管腔变小、TGF-β1的表达增多等气道重塑的特征,与对照组比较差异均有统计学意义(均P<0.01),并随时间推移呈增加趋势,以16周哮喘组最明显.③与对照组比较,哮喘组的MDA含量、TGF-β1含量均明显升高(均P<0.01),SOD活性明显降低(P<0.01).结论 通过延长卵蛋白激发时间可以成功制备SD大鼠慢性哮喘气道重塑模型;哮喘气道重塑在早期即出现,中性粒细胞及氧化应激可能参与哮喘的气道重塑.%Objective To approach the effect of prolonged allergen on airway remodeling and to understand the correlation between the chronic airway inflammation, airway remodeling and oxidative stress in rat asthmatic model. Methods Sixty-four female SD rats were randomly divided into 2 groups : control group and asthmatic group. The rats were sensitized with ovalbumin,and repeatedly exposed to aerosolized ovalbumin for 4 , 8 , 12,16 weeks. Inflammation cell count and classification in bronchoalveolar lavage

  17. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Zhiyu Zhang

    Full Text Available Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD.We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms.The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g. administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight, respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA content in fecal samples using real-time PCR.Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly.Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes

  18. Effect of nitrated pollen on airway inflammation in asthmatic mice%硝化花粉对哮喘小鼠气道炎症的影响

    Institute of Scientific and Technical Information of China (English)

    杨玲; 韩丽; 王根发; 田烨; 周妍

    2013-01-01

    Objective To observe the allergic airway inflammation and lung pathology in mice with asthma induced by nitrated pollen. Methods Sixty mice were randomly divided into 5 groups according to different sensitization and challenge. Group A to group D were asthma model groups, and group E was normal control group. The right lung tissues of mice were obtained, the pathological changes of lung tissues were observed with HE staining, and the tracheal wall thickness (total wall area/basement membrane perimeter, WAt/Pbm) and airway smooth muscle thickness (smooth muscle area/ basement membrane perimeter, WAm/Pbm) were calculated. The cytological changes in bronchoalveolar lavage fluid ( BALF) were observed, the level of nuclear factor kappa B ( NF-KB) p65 activation and expression of 3-nitrotyrosine (3-NT) in lung tissues were determined by immunohistochemieal method, and the apoptosis of eosinophils (EOS) in lung tissues was detected by TUNEL. Results The numbers of white cells, EOS and neutrophil ( NEU) and percents of them in total cells in BALF, WAt/Pbm and WAm/Pbm, the level of NF-KB p65 activation and expression of 3-NT in each asthma model group were significantly higher than those in group E (P < 0.01), while the apoptosis rate of eosinophils in lung tissues in each group was significantly lower than that in group E (P<0.01). Compared with the other model groups, the values of those indicators in group D in which mice were immunized and challenged with nitrated pollen changed more significantly (P<0.05 or P < 0.01). Pearson correlation analysis revealed that the expression of 3-NT was significantly negatively correlated with apoptosis rate of EOS (r= -0.632, P<0.05), and was significantly positively correlated with the level of NF-KB p65 activation (r =0.667, P<0.05). Conclusion High level of oxidative stress which exists in asthmatic mice immunized and challenged with nitrated pollen may elevate the expression of 3-NT, activate NF-KB signaling pathway, delay

  19. Programmed Death Ligand 1 Promotes Early-Life Chlamydia Respiratory Infection-Induced Severe Allergic Airway Disease.

    Science.gov (United States)

    Starkey, Malcolm R; Nguyen, Duc H; Brown, Alexandra C; Essilfie, Ama-Tawiah; Kim, Richard Y; Yagita, Hideo; Horvat, Jay C; Hansbro, Philip M

    2016-04-01

    Chlamydia infections are frequent causes of respiratory illness, particularly pneumonia in infants, and are linked to permanent reductions in lung function and the induction of asthma. However, the immune responses that protect against early-life infection and the mechanisms that lead to chronic lung disease are incompletely understood. In the current study, we investigated the role of programmed death (PD)-1 and its ligands PD-L1 and PD-L2 in promoting early-life Chlamydia respiratory infection, and infection-induced airway hyperresponsiveness (AHR) and severe allergic airway disease in later life. Infection increased PD-1 and PD-L1, but not PD-L2, mRNA expression in the lung. Flow cytometric analysis of whole lung homogenates identified monocytes, dendritic cells, CD4(+), and CD8(+) T cells as major sources of PD-1 and PD-L1. Inhibition of PD-1 and PD-L1, but not PD-L2, during infection ablated infection-induced AHR in later life. Given that PD-L1 was the most highly up-regulated and its targeting prevented infection-induced AHR, subsequent analyses focused on this ligand. Inhibition of PD-L1 had no effect on Chlamydia load but suppressed infection-induced pulmonary inflammation. Infection decreased the levels of the IL-13 decoy receptor in the lung, which were restored to baseline levels by inhibition of PD-L1. Finally, inhibition of PD-L1 during infection prevented subsequent infection-induced severe allergic airways disease in later life by decreasing IL-13 levels, Gob-5 expression, mucus production, and AHR. Thus, early-life Chlamydia respiratory infection-induced PD-L1 promotes severe inflammation during infection, permanent reductions in lung function, and the development of more severe allergic airway disease in later life.

  20. Airway protease/antiprotease imbalance in atopic asthmatics contributes to increased influenza A virus cleavage and replication

    Science.gov (United States)

    Asthmatics are more susceptible to influenza infections, yet mechanisms mediating this enhanced susceptibility are unknown. Influenza virus hemagglutinin (HA) protein binds to sialic add residues on the host cells. HA requires cleavage to allow fusion of the viral HA with host ce...

  1. Absence of Foxp3+ regulatory T cells during allergen provocation does not exacerbate murine allergic airway inflammation.

    Directory of Open Access Journals (Sweden)

    Abdul Mannan Baru

    Full Text Available Regulatory T cells (Tregs play a non-redundant role in maintenance of immune homeostasis. This is achieved by suppressing both, priming of naïve cells and effector cell functions. Although Tregs have been implicated in modulating allergic immune responses, their influence on distinct phases of development of allergies remains unclear. In this study, by using bacterial artificial chromosome (BAC-transgenic Foxp3-DTR (DEREG mice we demonstrate that the absence of Foxp3(+ Tregs during the allergen challenge surprisingly does not exacerbate allergic airway inflammation in BALB/c mice. As genetic disposition due to strain specificity may contribute significantly to development of allergies, we performed similar experiment in C57BL/6 mice, which are less susceptible to allergy in the model of sensitization used in this study. We report that the genetic background does not influence the consequence of this depletion regimen. These results signify the temporal regulation exerted by Foxp3(+ Tregs in limiting allergic airway inflammation and may influence their application as potential therapeutics.

  2. Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation

    Science.gov (United States)

    Elhaik Goldman, Shirin; Moshkovits, Itay; Shemesh, Avishai; Filiba, Ayelet; Tsirulsky, Yevgeny; Vronov, Elena; Shagan, Marilou; Apte, Ron N.; Benharroch, D aniel; Karo-Atar, Danielle; Dagan, Ron; Munitz, Ariel

    2016-01-01

    The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils’ (CCL24) and Th2 CD4+ T-cells’ chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation. PMID:27580126

  3. [Recombination and identification of sense and antisence CyclinD1 eukaryotic expression vectors and the effects of the vectors on the proliferation of airway smooth muscle cell in asthmatic rats].

    Science.gov (United States)

    Qiao, Li-Fen; Xu, Yong-Jian; Liu, Xian-Sheng; Xie, Jun-Gang; Du, Chun-Ling; Zhang, Jian; Ni, Wang; Chen, Shi-Xin

    2008-03-01

    This study is to investigate the expression of CyclinD1 in asthmatic rats and construct expression plasmids of sense and antisense CyclinD1 gene and transfect them to asthmatic airway smooth muscle cell to study the effects of CyclinD1 on the proliferation of airway smooth muscle cells in asthmatic rats. CyclinD1 cDNA was obtained by RT-PCR of total RNA extracted from the airway smooth muscle in asthmatic rats. The sequence was inserted into eukaryotic expression vector pcDNA3.1 (+) to recombinate the sense and antisense pcDNA3.1-CyclinD1 eukaryotic expression vector. The two recombinations and vector were then separately transfected into airway smooth muscle cell in asthmatic rats by using liposome. The expression level of CyclinD1 was certificated by Western blotting analysis. The proliferations of ASMCs isolated from asthmatic rats were examined with cell cycle analysis, MTT colorimetric assay and proliferating cell nuclear antigen (PCNA) immunocytochemical staining. Results showed (1) Compared with control group, the content of CyclinD1 was significantly increased; (2) It was comformed by restriction endonucleasa digestion and DNA sequence analysis that the expression plasmid of sense and antisense CyclinD1 were successfully recombinated. There was significant change of CyclinD1 expression between vector and sense CyclinD1 transfected cells, and the expression level of CyclinD1 in ASMC transfected with antisense CyclinD1 was lower than that in vector transfected cells (P <0.01); (3) In the asthmatic groups, compared with the vecter group, the percentage of S + G2M phase, absorbance A value of MTT and the expression rate of PCNA protein in ASMC transfected with pcDNA3. 1-CyclinD1 vector significantly increased. The values decreased remarkably in the pcDNA3,1-as CyclinD1 group. Statistical analysis revealed that there were significant differences in these indicators of cell proliferation in three groups (P <0.01). In the normal groups, statistical analysis

  4. Chlorinated pool attendance, airway epithelium defects and the risks of allergic diseases in adolescents: Interrelationships revealed by circulating biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Alfred, E-mail: Alfred.bernard@uclouvain.be; Nickmilder, Marc; Dumont, Xavier

    2015-07-15

    It has been suggested that allergic diseases might be epithelial disorders driven by various environmental stressors but the epidemiological evidence supporting this concept is limited. In a cross-sectional study of 835 school adolescents (365 boys; mean age, 15.5 yr), we measured the serum concentrations of Club cell protein (CC16), surfactant-associated protein D (SP-D) and of total and aeroallergen-specific IgE. We used the serum CC16/SP-D concentration ratio as an index integrating changes in the permeability (SP-D) and secretory function (CC16) of the airway epithelium. In both sexes, early swimming in chlorinated pools emerged as the most consistent and strongest predictor of low CC16 and CC16/SP-D ratio in serum. Among girls, a low CC16/SP-D ratio was associated with increased odds (lowest vs. highest tertile) for pet sensitization (OR 2.97, 95% CI 1.19–8.22) and for hay fever in subjects sensitized to pollen (OR 4.12, 95% CI 1.28–14.4). Among boys, a low CC16/SP-D ratio was associated with increased odds for house-dust mite (HDM) sensitization (OR 2.01, 95% CI 1.11–3.73), for allergic rhinitis in subjects sensitized to HDM (OR 3.52, 95% CI 1.22–11.1) and for asthma in subjects sensitized to any aeroallergen (OR 3.38, 95% CI 1.17–11.0), HDM (OR 5.20, 95% CI 1.40–24.2) or pollen (OR 5.82, 95% CI 1.51–27.4). Odds for allergic sensitization or rhinitis also increased with increasing SP-D or decreasing CC16 in serum. Our findings support the hypothesis linking the development of allergic diseases to epithelial barrier defects due to host factors or environmental stressors such as early swimming in chlorinated pools. - Highlights: • We conducted a cross-sectional study of 835 school adolescents. • The airway epithelium integrity was evaluated by measuring serum pneumoproteins. • The risk of allergic diseases was associated with a defective airway epithelium. • Childhood swimming in chlorinated pools can cause persistent epithelial

  5. THE USE OF SUPEROXIDE DISMUTASE IN ACCELERATING SYMPTOM RELIEF IN ASTHMATIC AND HOUSE DUST MITE ALLERGIC CHILDREN RECEIVING HOUSE DUST MITE IMMUNOTHERAPY: DOUBLE BLIND RANDOMIZED CONTROLLED CLINICAL TRIAL

    Directory of Open Access Journals (Sweden)

    Anang Endaryanto

    2015-09-01

    Full Text Available Objective: To evaluate the efficacy of superoxide dismutase (SOD in lung function (FEV1 reversibility and respiratory symptoms (drug scores, symptoms scores in asthmatic and house dust mite allergic children receiving house dust mites immunotherapy. Methods: Forty subjects aged 6–17 years old with asthma, tested positive for house dust mite allergy on skin prick test, and received immunotherapy were enrolled in this study. All subjects completed clinical based assessments and diary-based assessments for drug and symptom scores. Following a four-week baseline assessment, all subjects were randomized to receive SOD or placebo. Respiratory symptoms (drug and symptoms score and FEV1 were evaluated at the end of the 1st, 2nd, 3rd, and 4th weeks after randomization. Drug score, symptoms score, and FEV1 reversibility test results were analyzed using a Paired t test and repeated measure of ANOVA. Results: There was a significant difference in drug scores, symptoms score, and FEV1 reversibility test outcomes between SOD and placebo. SOD group showed a significant decrease in all outcome measures compared to those in placebo group. Conclusions: The use of SOD as antioxidants is effective in accelerating symptom relief for children with asthma and house dust mite allergy receiving house dust mite immunotherapy.

  6. Phosphodiesterase 4B is essential for TH2-cell function and development of airway hyperresponsiveness in allergic asthma

    Science.gov (United States)

    Catherine Jin, S.-L.; Goya, Sho; Nakae, Susumu; Wang, Dan; Bruss, Matthew; Hou, Chiaoyin; Umetsu, Dale; Conti, Marco

    2010-01-01

    Background Cyclic AMP (cAMP) signaling modulates functions of inflammatory cells involved in the pathogenesis of asthma, and type 4 cAMP-specific phosphodiesterases (PDE4s) are essential components of this pathway. Induction of the PDE4 isoform PDE4B is necessary for Toll-like receptor signaling in monocytes and macrophages and is associated with T cell receptor/CD3 in T cells; however, its exact physiological function in the development of allergic asthma remains undefined. Objectives We investigated the role of PDE4B in the development of allergen-induced airway hyperresponsiveness (AHR) and TH2-driven inflammatory responses. Methods Wild-type and PDE4B−/− mice were sensitized and challenged with ovalbumin and AHR measured in response to inhaled methacholine. Airway inflammation was characterized by analyzing leukocyte infiltration and cytokine accumulation in the airways. Ovalbumin-stimulated cell proliferation and TH2 cytokine production were determined in cultured bronchial lymph node cells. Results Mice deficient in PDE4B do not develop AHR. This protective effect was associated with a significant decrease in eosinophils recruitment to the lungs and decreased TH2 cytokine levels in the bronchoalveolar lavage fluid. Defects in T-cell replication, TH2 cytokine production, and dendritic cell migration were evident in cells from the airway-draining lymph nodes. Conversely, accumulation of the TH1 cytokine IFN-γ was not affected in PDE4B−/− mice. Ablation of the orthologous PDE4 gene PDE4A has no impact on airway inflammation. Conclusion By relieving a cAMP-negative constraint, PDE4B plays an essential role in TH2-cell activation and dendritic cell recruitment during airway inflammation. These findings provide proof of concept that PDE4 inhibitors with PDE4B selectivity may have efficacy in asthma treatment. PMID:21047676

  7. Effects of two inhaled corticosteroid/long-acting beta-agonist combinations on small-airway dysfunction in mild asthmatics measured by impulse oscillometry

    Directory of Open Access Journals (Sweden)

    Diong B

    2013-08-01

    propionate/salmeterol, while R5–R20, AX, Rp, and Cp were not significantly different within 240 minutes after budesonide/formoterol.Conclusion: These two ICS/LABA combinations initially improved the peripheral airway function of 12- to 45-year-old asthmatics significantly in about 5 minutes or less, as measured by R5–R20, AX, Rp, and/or Cp. After regular dosing for 4 weeks, pre- to postdose differences in these parameters had diminished significantly due to improved predose status of peripheral airways. Single dosing with ICS/LABA combinations in mild persistent asthma improves small-airway function, and the effect is maintained over a 12-hour interval by regular use for 4 weeks.Keywords: asthma, ICS/LABA combination, impulse oscillometry parameters, lung-model parameters, peripheral airway resistance, peripheral airway compliance

  8. Carbon Nanofibers Have IgE Adjuvant Capacity but Are Less Potent Than Nanotubes in Promoting Allergic Airway Responses

    Directory of Open Access Journals (Sweden)

    Unni Cecilie Nygaard

    2013-01-01

    Full Text Available There is a growing concern for the possible health impact of nanoparticles. The main objective of this study was to investigate the allergy-promoting capacity of four different carbon nanofiber (CNF samples in an injection and an airway mouse model of allergy. Secondly, the potency of the CNF was compared to the previously reported allergy-promoting capacity of carbon nanotubes (CNT in the airway model. Ultrafine carbon black particles (ufCBP were used as a positive control. Particles were given together with the allergen ovalbumin (OVA either by subcutaneous injection into the footpad or intranasally to BALB/cA mice. After allergen booster, OVA-specific IgE, IgG1, and IgG2a in serum were measured. In the airway model, inflammation was determined as influx of inflammatory cells (eosinophils, neutrophils, lymphocytes, and macrophages and by mediators (MCP-1 and TNF-α present in bronchoalveolar fluid (BALF. CNF and CNT both increased OVA-specific IgE levels in the two models, but in the airway model, the CNT gave a significantly stronger IgE response than the CNF. Furthermore, the CNT and not the CNF promoted eosinophil lung inflammation. Our data therefore suggest that nanotube-associated properties are particularly potent in promoting allergic responses.

  9. Amelioration of ovalbumin-induced allergic airway disease following Der p 1 peptide immunotherapy is not associated with induction of IL-35.

    Science.gov (United States)

    Moldaver, D M; Bharhani, M S; Wattie, J N; Ellis, R; Neighbour, H; Lloyd, C M; Inman, M D; Larché, M

    2014-03-01

    In the present study, we show therapeutic amelioration of established ovalbumin (OVA)-induced allergic airway disease following house dust mite (HDM) peptide therapy. Mice were sensitized and challenged with OVA and HDM protein extract (Dermatophagoides species) to induce dual allergen sensitization and allergic airway disease. Treatment of allergic mice with peptides derived from the major allergen Der p 1 suppressed OVA-induced airway hyperresponsiveness, tissue eosinophilia, and goblet cell hyperplasia upon rechallenge with allergen. Peptide treatment also suppressed OVA-specific T-cell proliferation. Resolution of airway pathophysiology was associated with a reduction in recruitment, proliferation, and effector function of T(H)2 cells and decreased interleukin (IL)-17⁺ T cells. Furthermore, peptide immunotherapy induced the regulatory cytokine IL-10 and increased the proportion of Fox p3⁺ cells among those expressing IL-10. Tolerance to OVA was not associated with increased IL-35. In conclusion, our results provide in vivo evidence for the creation of a tolerogenic environment following HDM peptide immunotherapy, leading to the therapeutic amelioration of established OVA-induced allergic airway disease.

  10. Inhibitory effects of Pycnogenol® (French maritime pine bark extract) on airway inflammation in ovalbumin-induced allergic asthma.

    Science.gov (United States)

    Shin, In-Sik; Shin, Na-Rae; Jeon, Chan-Mi; Hong, Ju-Mi; Kwon, Ok-Kyoung; Kim, Jong-Choon; Oh, Sei-Ryang; Hahn, Kyu-Woung; Ahn, Kyung-Seop

    2013-12-01

    Pycnogenol® (PYC) is a standardized extracts from the bark of the French maritime pine (Pinus maritime) and used as a herbal remedy for various diseases. In this study, we evaluated the effects of PYC on airway inflammation using a model of ovalbumin (OVA)-induced allergic asthma and RAW264.7 cells. PYC decreased nitric oxide production and reduced the interleukine (IL)-1β and IL-6 levels in LPS-stimulated RAW264.7 cells. PYC also reduced the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase (MMP)-9 and enhanced the expression of hemeoxygenase (HO)-1. In the in vivo experiment, PYC decreased the inflammatory cell count and the levels of IL-4, IL-5, IL-13, and immunoglobulin (Ig) E in BALF or serum. These results are consistent with the histological analysis findings, which showed that PYC attenuated the airway inflammation and mucus hypersecretion induced by OVA challenge. In addition, PYC enhanced the expression of HO-1. In contrast, PYC inhibited the elevated expression of iNOS and MMP-9 proteins induced by OVA challenge. In conclusion, PYC exhibits protective effects against OVA-induced asthma and LPS-stimulated RAW264.7 cells. These results suggest that PYC has potential as a therapeutic agent for the treatment of allergic asthma.

  11. The Ethanol Extract of Osmanthus fragrans Flowers Reduces Oxidative Stress and Allergic Airway Inflammation in an Animal Model

    Directory of Open Access Journals (Sweden)

    Chien-Ya Hung

    2013-01-01

    Full Text Available The Osmanthus fragrans flower, a popular herb in Eastern countries, contains several antioxidant compounds. Ben Cao Gang Mu, traditional Chinese medical literature, describes the usefulness of these flowers for phlegm and stasis reduction, arrest of dysentery with blood in the bowel, and stomachache and diarrhea treatment. However, modern evidence regarding the therapeutic efficacy of these flowers is limited. This study was aimed at assessing the antioxidative effects of the ethanol extract of O. fragrans flowers (OFE in vivo and evaluating its antioxidant maintenance and therapeutic effect on an allergic airway inflammation in mice. After OFE’s oral administration to mice, the values obtained in the oxygen radical absorbance capacity assay as well as the glutathione concentration in the lungs and spleens of mice increased while thiobarbituric acid reactive substances decreased significantly, indicating OFE’s significant in vivo antioxidant activity. OFE was also therapeutically efficacious in a mouse model of ovalbumin-induced allergic airway inflammation. Orally administered OFE suppressed ovalbumin-specific IgE production and inflammatory cell infiltration in the lung. Moreover, the antioxidative state of the mice improved. Thus, our findings confirm the ability of the O. fragrans flowers to reduce phlegm and suggest that OFE may be useful as an antiallergic agent.

  12. Sensitization to Airborne Ascospores, Basidiospores, and Fungal Fragments in Allergic Rhinitis and Asthmatic Subjects in San Juan, Puerto Rico

    Science.gov (United States)

    Rivera-Mariani, Félix E.; Nazario-Jiménez, Sylvette; López-Malpica, Fernando; Bolaños-Rosero, Benjamín

    2011-01-01

    Background Fungal spores are the predominant biological particulate in the atmosphere of Puerto Rico, yet their potential as allergens has not been studied in subjects with respiratory allergies. The purpose of this study was to determine the level of sensitization of subjects with respiratory allergies to these particles. Methods Serum samples were drawn from 33 subjects with asthma, allergic rhinitis, or nonallergic rhinitis and 2 controls with different skin prick test reactivity. An MK-3 sampler was used to collect air samples and the reactivity of the sera to fungal particles was detected with a halogen immunoassay. Results All subjects reacted to at least 1 fungal particle. Thirty-one subjects reacted to ascospores, 29 to basidiospores, 19 to hyphae/fungal fragments, and 12 to mitospores. The median percentage of haloes in allergic rhinitis subjects was 4.82% while asthma or nonallergic rhinitis subjects had values of 1.09 and 0.39%, respectively. Subjects with skin prick tests positive to 3, 2, 1, or no extract had 5.24, 1.09, 1.61, and, 0.57% of haloed particles, respectively. If skin prick tests were positive to basidiomycetes, pollen, animals, or deuteromycetes, the percentages of haloes were 4.72, 4.15, 3.63, and 3.31%, respectively. Of all haloed particles, 46% were unidentified, 25% ascospores, 20% basidiospores, 7% hyphae/fungal fragments, and 2% mitospores. IgE levels and the number of positive skin prick test extracts correlated with the percentage of haloes. Conclusion In tropical environments, sensitization to airborne basidiomycetes, ascomycetes, and fungal fragments seems to be more prevalent than sensitization to mitospores in subjects with active allergies, suggesting a possible role in exacerbations of respiratory allergies. PMID:21346362

  13. Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite.

    Directory of Open Access Journals (Sweden)

    Zhuang-Gui Chen

    Full Text Available Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. However, the initiating factor that links airway inflammation to remodeling is unknown. Thymic stromal lymphopoietin (TSLP, an epithelium-derived cytokine, can strongly activate lung dendritic cells (DCs through the TSLP-TSLPR and OX40L-OX40 signaling pathways to promote Th2 differentiation. To determine whether TSLP is the underlying trigger of airway remodeling in chronic allergen-induced asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extracts for up to 5 consecutive weeks. We showed that repeated respiratory exposure to HDM caused significant airway eosinophilic inflammation, peribronchial collagen deposition, goblet cell hyperplasia, and airway hyperreactivity (AHR to methacholine. These effects were accompanied with a salient Th2 response that was characterized by the upregulation of Th2-typed cytokines, such as IL-4 and IL-13, as well as the transcription factor GATA-3. Moreover, the levels of TSLP and transforming growth factor beta 1 (TGF-β1 were also increased in the airway. We further demonstrated, using the chronic HDM-induced asthma model, that the inhibition of Th2 responses via neutralization of TSLP with an anti-TSLP mAb reversed airway inflammation, prevented structural alterations, and decreased AHR to methacholine and TGF-β1 level. These results suggest that TSLP plays a pivotal role in the initiation and persistence of airway inflammation and remodeling in the context of chronic allergic asthma.

  14. Distinct microRNA Expression in Human Airway Cells of Asthmatic Donors Identifies a Novel Asthma-associated Gene

    Science.gov (United States)

    Airway inflammation is the hallmark of asthma and suggests a dysregulation of homeostatic mechanisms. MicroRNAs (miRNAs) are key regulators of gene expression, necessary for the proper function of cellular processes. Here, we tested the hypothesis that differences between healthy...

  15. PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasthmatic airway smooth muscle cells

    NARCIS (Netherlands)

    Chambers, Linda S.; Black, Judith L.; Ge, Qi; Carlin, Stephen M.; Au, Wendy W.; Poniris, Maree; Thompson, Joanne; Johnson, Peter R.; Burgess, Janette K.

    2003-01-01

    The protease-activated receptor-2 (PAR-2) is present on human airway smooth muscle (ASM) cells and can be activated by mast cell tryptase, trypsin, or an activating peptide (AP). Trypsin induced significant increases in PGE 2 release from human ASM cells after 6 and 24 h and also induced cyclooxygen

  16. PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasthmatic airway smooth muscle cells

    NARCIS (Netherlands)

    Chambers, Linda S; Black, Judith L; Ge, Qi; Carlin, Stephen M; Au, Wendy W; Poniris, Maree; Thompson, Joanne; Johnson, Peter R; Burgess, Janette K

    2003-01-01

    The protease-activated receptor-2 (PAR-2) is present on human airway smooth muscle (ASM) cells and can be activated by mast cell tryptase, trypsin, or an activating peptide (AP). Trypsin induced significant increases in PGE2 release from human ASM cells after 6 and 24 h and also induced cyclooxygena

  17. Single systemic administration of Ag85B of mycobacteria DNA inhibits allergic airway inflammation in a mouse model of asthma

    Directory of Open Access Journals (Sweden)

    Karamatsu K

    2012-12-01

    Full Text Available Katsuo Karamatsu,1,2 Kazuhiro Matsuo,3 Hiroyasu Inada,4 Yusuke Tsujimura,1 Yumiko Shiogama,1,2 Akihiro Matsubara,1,2 Mitsuo Kawano,5 Yasuhiro Yasutomi1,21Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, 2Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, 3Department of Research and Development, Japan BCG Laboratory, Tokyo, 4Department of Pathology, Suzuka University of Medical Science, Suzuka, 5Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, JapanAbstract: The immune responses of T-helper (Th and T-regulatory cells are thought to play a crucial role in the pathogenesis of allergic airway inflammation observed in asthma. The correction of immune response by these cells should be considered in the prevention and treatment of asthma. Native antigen 85B (Ag85B of mycobacteria, which cross-reacts among mycobacteria species, may play an important biological role in host–pathogen interaction since it elicits various immune responses by activation of Th cells. The current study investigated the antiallergic inflammatory effects of DNA administration of Ag85B from Mycobacterium kansasii in a mouse model of asthma. Immunization of BALB/c mice with alum-adsorbed ovalbumin followed by aspiration with aerosolized ovalbumin resulted in the development of allergic airway inflammation. Administration of Ag85B DNA before the aerosolized ovalbumin challenge protected the mice from subsequent induction of allergic airway inflammation. Serum and bronchoalveolar lavage immunoglobulin E levels, extent of eosinophil infiltration, and levels of Th2-type cytokines in Ag85B DNA-administered mice were significantly lower than those in control plasmid-immunized mice, and levels of Th1- and T-regulatory-type cytokines were enhanced by Ag85B

  18. [Recent advances in DNA vaccines against allergic airway disease: a review].

    Science.gov (United States)

    Ou, Jin; Xu, Yu; Shi, Wendan

    2013-12-01

    DNA vaccine is used in infectious diseases initially, and later is applied in neoplastic diseases, allergic diseases and other fields with the further understanding of DNA vaccine and the development of genetic engineering. DNA vaccine transfers the genes encoding exogenous antigens to plasmid vector and then is introduced into organism. It controls the antigen proteins synthesis, thus induces specific humoral and cellular immune responses. So it has a broad application prospect in allergic diseases. Compared with the traditional protein vaccines used in specific immunotherapy, DNA vaccine has many advantages, including high purity and specificity, and improvement of patients' compliance etc. However, there are still two unsolved problems. First, the transfection rate of unmodified naked DNA plasmid is not high, Second, it's difficult to induce ideal immune response. In this study, we will review the progress of DNA vaccine applications in respiratory allergic diseases and its various optimization strategies.

  19. Inhibitory Effect of Pycnogenol® on Airway Inflammation in Ovalbumin-Induced Allergic Rhinitis

    Science.gov (United States)

    Günel, Ceren; Demirci, Buket; Eryılmaz, Aylin; Yılmaz, Mustafa; Meteoğlu, İbrahim; Ömürlü, İmran Kurt; Başal, Yeşim

    2016-01-01

    Background The supplement Pycnogenol® (PYC) has been used for the treatment of several chronic diseases including allergic rhinitis (AR). However, the in vivo effects on allergic inflammation have not been identified to date. Aims To investigate the treatment results of PYC on allergic inflammation in a rat model of allergic rhinitis. Study Design Animal experimentation. Methods Allergic rhinitis was stimulated in 42 rats by intraperitoneal sensitization and intranasal challenge with Ovalbumin. The animals were divided into six subgroups: healthy controls, AR group, AR group treated with corticosteroid (dexamethasone 1 mg/kg; CS+AR), healthy rats group that were given only PYC of 10 mg/kg (PYC10), AR group treated with PYC of 3mg/kg (PYC3+AR), and AR group treated with PYC of 10 mg/kg (PYC10+AR). Interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10), and OVA-specific immunoglobulin E (Ig-E) levels of serum were measured. Histopathological changes in nasal mucosa and expression of tumor necrosis factor-α (TNF-α) and IL-1β were evaluated. Results The levels of the IL-4 were significantly decreased in the PYC3+AR, PYC10+AR and CS+AR groups compared with the AR group (p=0.002, p<0.001, p=0.006). The production of the IFN-γ was significantly decreased in the PYC3+AR and PYC10+AR groups compared with the AR group (p=0.013, p=0.001). The administration of PYC to allergic rats suppressed the elevated IL-10 production, especially in the PYC3+AR group (p=0.006). Mucosal edema was significantly decreased respectively after treatment at dose 3 mg/kg and 10 mg/kg PYC (both, p<0.001). The mucosal expression of TNF-α has significantly decreased in the PYC3+AR and PYC10+AR groups (p=0.005, p<0.001), while the IL-1β expression significantly decreased in the CS+AR, PYC3+AR, and PYC10+AR groups (p<0.001, p=0.003, p=0.001). Conclusion PYC has multiple suppressive effects on allergic response. Thus, PYC may be used as a supplementary agent in allergic response

  20. The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Sanchez, D. [Univ. of California Los Angeles School of Medicine, Div. of Clinical Immunology and Allergy, Los Angles, CA (United States)

    1997-12-31

    The increase in allergic airway disease has paralleled the increase in the use of fossil fuels. Studies were undertaken to examine whether extracts of polyaromatic hydrocarbons (PAH) from diesel exhaust particles (DEP) (PAH-DEP) acted as mucosal adjuvants to help initiate or enhance immunoglobulin E (IgE) production in response to common inhaled allergens. In vitro studies demonstrated that PAH-DEP enhanced IgE production by tonsilar B-cells in the presence of interleukin-4 (IL-4) and CD40 monoclonal antibody, and altered the nature of the IgE produced, i.e. a decrease in the CH4`-CHe5 variant, a marker for differentiation of IgE-producing B-cells, and an increase in the M2` variant. In vivo nasal provocation studies using 0.30 mg DEP in saline also showed enhanced IgE production in the human upper respiratory mucosa, accompanied by a reduced CH4`-CHe5 mRNA splice variant. The effect of DEP were also isotype-specific, with no effect on IgG, IgA, IgM, or albumin, but it produced a small increase in the IgG{sub 4} subclass. The ability of DEP to act as an adjuvant to the ragweed allergen Amb a I was examined by nasal provocation in ragweed allergic subjects using 0.3 mg DEP, Amb a I, or both. Although allergen and DEP each enhanced ragweed-specific IgE, DEP plus allergen promoted a 16-times greater antigen-specific IgE production. Nasal challenge with DEP also influenced cytokine production. Ragweed challenge resulted in a weak response, DEP challenge caused a strong but non-specific response, while allergen plus DEP caused a significant increase in the expression of mRNA for TH{sub 0} and TH{sub 2}-type cytokines (IL-4, IL-5, IL-6, IL-10, IL-13) with a pronounced inhibitory effect on IFN-{gamma} gene expression. These studies suggest that DEP can enhance B-cell differentiation, and by initiating and elevating IgE production, may play an important role in the increased incidence of allergic airway disease. (au)

  1. Airway oxidative stress causes vascular and hepatic inflammation via upregulation of IL-17A in a murine model of allergic asthma.

    Science.gov (United States)

    Al-Harbi, Naif O; Nadeem, Ahmed; Al-Harbi, Mohammed M; Ansari, Mushtaq A; AlSharari, Shakir D; Bahashwan, Saleh A; Attia, Sabry M; Al-Hosaini, Khaled A; Al Hoshani, Ali R; Ahmad, Sheikh F

    2016-05-01

    Oxidants are generated in asthmatic airways due to infiltration of inflammatory leukocytes and resident cells in the lung. Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide radical may leak into systemic circulation when generated in uncontrolled manner and may impact vasculature. Our previous studies have shown an association between airway inflammation and systemic inflammation; however so far none has investigated the impact of airway oxidative inflammation on hepatic oxidative stress and Th1/Th2/Th17 cytokine markers in liver/vasculature in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of systemic/hepatic Th1/Th2/Th17 cytokines balance and hepatic oxidative stress. Mice were sensitized intraperitoneally with cockroach extract (CE) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with CE. Mice were then assessed for systemic/hepatic inflammation through assessment of Th1/Th2/Th17 cytokines and oxidative stress (iNOS, protein nitrotyrosine, lipid peroxides and myeloperoxidase activity). Challenge with CE led to increased Th2/Th17 cytokines in blood/liver and hepatic oxidative stress. However, only Th17 related pro-inflammatory markers were upregulated by hydrogen peroxide (H2O2) inhalation in vasculature and liver, whereas antioxidant treatment, N-acetyl cysteine (NAC) downregulated them. Hepatic oxidative stress was also upregulated by H2O2 inhalation, whereas NAC attenuated it. Therefore, our study shows that airway oxidative inflammation may contribute to systemic inflammation through upregulation of Th17 immune responses in blood/liver and hepatic oxidative stress. This might predispose these patients to increased risk for the development of cardiovascular disorders.

  2. Effect of montelukast on excessive airway narrowing response to methacholine in adult asthmatic patients not on controller therapy

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; Diamant, Zuzana

    2009-01-01

    2-agonists p.r.n. only with a twice-documented absence of dose-response plateau, participated in a double-blind, parallel study with Mont (10 mg) or placebo once daily for 12 weeks. Mtc dose-response curves (0.03-256 mumol or >40% FEV(1) decline) were repeated every 4 weeks. The primary objective......Excessive airway narrowing is an important determinant of fatal asthma. This pathophysiological feature is characterized by the absence of a dose-response plateau to methacholine (Mtc). We investigated if the leukotriene receptor antagonist (LTRA) montelukast (Mont) can induce a dose-response.......9%, respectively, with no differences between the groups. After 12 weeks, a dose-response plateau was observed in two patients (Mont) and one patient (placebo) (NS), and comparison of changes from baseline in maximal decline in FEV(1) or PD(20) revealed no significant differences between groups. Twelve weeks...

  3. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13.

    Science.gov (United States)

    Noverr, Mairi C; Falkowski, Nicole R; McDonald, Rod A; McKenzie, Andrew N; Huffnagle, Gary B

    2005-01-01

    Lending support to the hygiene hypothesis, epidemiological studies have demonstrated that allergic disease correlates with widespread use of antibiotics and alterations in fecal microbiota ("microflora"). Antibiotics also lead to overgrowth of the yeast Candida albicans, which can secrete potent prostaglandin-like immune response modulators, from the microbiota. We have recently developed a mouse model of antibiotic-induced gastrointestinal microbiota disruption that is characterized by stable increases in levels of gastrointestinal enteric bacteria and Candida. Using this model, we have previously demonstrated that microbiota disruption can drive the development of a CD4 T-cell-mediated airway allergic response to mold spore challenge in immunocompetent C57BL/6 mice without previous systemic antigen priming. The studies presented here address important questions concerning the universality of the model. To investigate the role of host genetics, we tested BALB/c mice. As with C57BL/6 mice, microbiota disruption promoted the development of an allergic response in the lungs of BALB/c mice upon subsequent challenge with mold spores. In addition, this allergic response required interleukin-13 (IL-13) (the response was absent in IL-13(-/-) mice). To investigate the role of antigen, we subjected mice with disrupted microbiota to intranasal challenge with ovalbumin (OVA). In the absence of systemic priming, only mice with altered microbiota developed airway allergic responses to OVA. The studies presented here demonstrate that the effects of microbiota disruption are largely independent of host genetics and the nature of the antigen and that IL-13 is required for the airway allergic response that follows microbiota disruption.

  4. The ECM deposited by basal asthmatic and non-asthmatic ASM cells is different in composition but not biological function

    NARCIS (Netherlands)

    Harkness, L.; Ashton, A.; Burgess, J.

    2015-01-01

    Aim: The remodelled asthmatic airway has increased airway smooth muscle cell (ASMC) growth, expanded vasculature, and altered extracellular matrix (ECM). The ECM is the external cellular microenvironment which regulates cell behaviour. Under proliferative, inflammatory, or fibrotic conditions, the a

  5. Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    OpenAIRE

    Nemery Benoit; Vanoirbeek Jeroen AJ; Cataldo Didier D; Lanckacker Ellen A; Provoost Sharen; Maes Tania; Tournoy Kurt G; Joos Guy F

    2010-01-01

    Abstract Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis o...

  6. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma.

    Science.gov (United States)

    Caceres, Ana I; Brackmann, Marian; Elia, Maxwell D; Bessac, Bret F; del Camino, Donato; D'Amours, Marc; Witek, JoAnn S; Fanger, Chistopher M; Chong, Jayhong A; Hayward, Neil J; Homer, Robert J; Cohn, Lauren; Huang, Xiaozhu; Moran, Magdalene M; Jordt, Sven-Eric

    2009-06-02

    Asthma is an inflammatory disorder caused by airway exposures to allergens and chemical irritants. Studies focusing on immune, smooth muscle, and airway epithelial function revealed many aspects of the disease mechanism of asthma. However, the limited efficacies of immune-directed therapies suggest the involvement of additional mechanisms in asthmatic airway inflammation. TRPA1 is an irritant-sensing ion channel expressed in airway chemosensory nerves. TRPA1-activating stimuli such as cigarette smoke, chlorine, aldehydes, and scents are among the most prevalent triggers of asthma. Endogenous TRPA1 agonists, including reactive oxygen species and lipid peroxidation products, are potent drivers of allergen-induced airway inflammation in asthma. Here, we examined the role of TRPA1 in allergic asthma in the murine ovalbumin model. Strikingly, genetic ablation of TRPA1 inhibited allergen-induced leukocyte infiltration in the airways, reduced cytokine and mucus production, and almost completely abolished airway hyperreactivity to contractile stimuli. This phenotype is recapitulated by treatment of wild-type mice with HC-030031, a TRPA1 antagonist. HC-030031, when administered during airway allergen challenge, inhibited eosinophil infiltration and prevented the development of airway hyperreactivity. Trpa1(-/-) mice displayed deficiencies in chemically and allergen-induced neuropeptide release in the airways, providing a potential explanation for the impaired inflammatory response. Our data suggest that TRPA1 is a key integrator of interactions between the immune and nervous systems in the airways, driving asthmatic airway inflammation following inhaled allergen challenge. TRPA1 may represent a promising pharmacological target for the treatment of asthma and other allergic inflammatory conditions.

  7. [Allergic rhinitis in asthmatic patients].

    Science.gov (United States)

    Reyes, Paola; Larreal, Yraima; Arias, Julia; Rincón, Enrique; Valero, Nereida

    2014-01-01

    Antecedentes: la rinitis alérgica y el asma bronquial son procesos inflamatorios crónicos de las vías respiratorias, con una correlación que varía entre 28 y 78%. Objetivos: determinar la prevalencia de rinitis alérgica en pacientes asmáticos y clasificarla según las guías Rinitis Alérgica y su Impacto en Asma (ARIA), así como detectar las concentraciones séricas de IgE total y la existencia de eosinofilia nasal y en sangre periférica. Material y método: estudio en el que pacientes asmáticos entre 7 y 14 años de edad, consultantes del servicio de Pediatría del Hospital General del Sur Dr. Pedro Iturbe, Maracaibo, Estado Zulia, Venezuela, fueron encuestados acerca de signos y síntomas sugerentes de rinitis alérgica y su efecto en la calidad de vida. Se tomaron muestras sanguíneas e hisopado nasal para hacer las determinaciones objeto de estudio. Resultados: se evaluaron 60 pacientes asmáticos, 73.3% del sexo masculino y 70% escolares. La prevalencia de rinitis alérgica se estableció en 93.3%, el tipo más frecuente según ARIA fue el intermitente leve, con 42.8%. El signo clínico más frecuente fueron las ojeras alérgicas (86.6%) y el síntoma predominante fue el goteo nasal acuoso (83.3%), la afectación en cuanto a calidad de vida estuvo representada por trastornos del sueño (39.2%). El 85.7% de los encuestados tuvo porcentajes de eosinófilos mayores a 3% y 75% tuvo valores mayores de 100 UI de IgE total sérica. El 61.9% de las muestras de moco nasal de pacientes con rinitis mostró porcentajes de eosinófilos mayores a 10%. Conclusión: existe alta prevalencia de rinitis alérgica en asmáticos confirmada mediante pruebas de laboratorio que evidencian una respuesta inflamatoria mediada por IgE.

  8. Tracking of Inhaled Near-Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation.

    Science.gov (United States)

    Markus, M Andrea; Napp, Joanna; Behnke, Thomas; Mitkovski, Miso; Monecke, Sebastian; Dullin, Christian; Kilfeather, Stephen; Dressel, Ralf; Resch-Genger, Ute; Alves, Frauke

    2015-12-22

    Molecular imaging of inflammatory lung diseases, such as asthma, has been limited to date. The recruitment of innate immune cells to the airways is central to the inflammation process. This study exploits these cells for imaging purposes within the lung, using inhaled polystyrene nanoparticles loaded with the near-infrared fluorescence dye Itrybe (Itrybe-NPs). By means of in vivo and ex vivo fluorescence reflectance imaging of an ovalbumin-based allergic airway inflammation (AAI) model in hairless SKH-1 mice, we show that subsequent to intranasal application of Itrybe-NPs, AAI lungs display fluorescence intensities significantly higher than those in lungs of control mice for at least 24 h. Ex vivo immunofluorescence analysis of lung tissue demonstrates the uptake of Itrybe-NPs predominantly by CD68(+)CD11c(+)ECF-L(+)MHCII(low) cells, identifying them as alveolar M2 macrophages in the peribronchial and alveolar areas. The in vivo results were validated by confocal microscopy, overlapping tile analysis, and flow cytometry, showing an amount of Itrybe-NP-containing macrophages in lungs of AAI mice significantly larger than that in controls. A small percentage of NP-containing cells were identified as dendritic cells. Flow cytometry of tracheobronchial lymph nodes showed that Itrybe-NPs were negligible in lung draining lymph nodes 24 h after inhalation. This imaging approach may advance preclinical monitoring of AAI in vivo over time and aid the investigation of the role that macrophages play during lung inflammation. Furthermore, it allows for tracking of inhaled nanoparticles and can hence be utilized for studies of the fate of potential new nanotherapeutics.

  9. Rush immunotherapy in an experimental model of feline allergic asthma.

    Science.gov (United States)

    Reinero, Carol R; Byerly, Jenni R; Berghaus, Roy D; Berghaus, Londa J; Schelegle, Edward S; Hyde, Dallas M; Gershwin, Laurel J

    2006-03-15

    Specific allergen immunotherapy represents the only curative treatment of allergy. No studies have evaluated its efficacy in feline allergic asthma. We hypothesized that an abbreviated course of immunotherapy (rush immunotherapy, RIT) would blunt eosinophilic airways inflammation in experimental feline asthma induced with Bermuda grass allergen (BGA). The 6-month study included asthmatic-RIT treated cats; asthmatic-no RIT treated cats; and non-asthmatic cats. RIT involved increasing parenteral doses (20-200 microg) of BGA over 2 days. Numbers of eosinophils in bronchoalveolar lavage fluid (BALF), serum and BALF immunoglobulins, lymphocyte blastogenesis assays, and cytokines in blood and BALF were evaluated. BALF eosinophils decreased (P=0.048) only in asthmatic-RIT treated cats (baseline 1.1 x 10(6); Month 6, 2.4 x 10(5)). Serum BGA-specific IgG was higher (Peosinophilic airways inflammation in cats with experimental asthma. The mechanism of RIT may involve changes in allergen-specific immunoglobulins, induction of hyporesponsive lymphocytes, or alteration of cytokine profiles.

  10. Trichosanthin functions as Th2-type adjuvant in induction of allergic airway inflammation

    Institute of Scientific and Technical Information of China (English)

    Yuan Wang; Kairui Mao; Shuhui Sun; Guomei Lin; Xiaodong Wu; Gang Yao; Bing Sun

    2009-01-01

    It is important to understand the pathogenesis of asthma induced by natural allergens, which could exclude the interference of artificial adjuvant and provide insights of natural immune response in the disease. In the present study, we show that Trichosanthin (TCS) could induce airway inflammation even without the help of alum. Further-more, TCS appeared capable of replacing alum to promote OVA-specific airway inflammation. TCS induced accu-mulation of IL-4-producing eosinophiis in peritoneum at an early stage and the adjuvant function of TCS was elimi-nated by blockage of IL-4 at this stage. Finally, the eosinophils triggered by TCS from WT mice, but not from IL-4-deficient mice were shown to function as adjuvant for the induction of OVA-specific Th2 responses. Our data indicate that TCS is not only an allergen, but also a Th2-type adjuvant modulating the switching of immune responses to a Th2 pathway. This chain of events results from IL-4 production by eosinophils at an early stage of TCS-priming. In conclusion, TCS may be useful as a Th2 adjuvant, and innate immune cells, such as eosinophils, may be a good target to study the initiation of Th2 response.

  11. Antigen-Specific IgG ameliorates allergic airway inflammation via Fcγ receptor IIB on dendritic cells

    Directory of Open Access Journals (Sweden)

    Karasuyama Hajime

    2011-04-01

    allergic airway inflammation via FcγRIIB on DCs.

  12. Assessing mucus and airway morphology in response to a segmental allergen challenge using OCT (Conference Presentation)

    Science.gov (United States)

    Adams, David C.; Miller, Alyssa J.; Holz, Jasmin A.; Szabari, Margit V.; Hariri, Lida P.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    Asthma affects hundreds of millions of people worldwide, and the prevalence of the disease appears to be increasing. One of the most important aspects of asthma is the excessive bronchoconstriction that results in many of the symptoms experienced by asthma sufferers, but the relationship between bronchoconstriction and airway morphology is not clearly established. We present the imaging results of a study involving a segmental allergen challenge given to both allergic asthmatic (n = 12) and allergic non-asthmatic (n = 19) human volunteers. Using OCT, we have imaged and assessed baseline morphology in a right upper lobe (RUL) airway, serving as the control, and a right middle lobe (RML) airway, in which the allergen was to be administered. After a period of 24 hours had elapsed following the administration of the allergen, both airways were again imaged and the response morphology assessed. A number of airway parameters were measured and compared, including epithelial thickness, mucosal thickness and buckling, lumen area, and mucus content. We found that at baseline epithelial thickness, mucosal thickness, and mucosal buckling were greater in AAs than ANAs. We also observed statistically significant increases in these values 24 hours after the allergen had been administered for both the ANA and AA sets. In comparison, the control airway which received a diluent showed no statistically significant change.

  13. CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation.

    Science.gov (United States)

    Ma, Weilie; Bryce, Paul J; Humbles, Alison A; Laouini, Dhafer; Yalcindag, Ali; Alenius, Harri; Friend, Daniel S; Oettgen, Hans C; Gerard, Craig; Geha, Raif S

    2002-03-01

    The CC chemokine receptor 3 (CCR3) is expressed by eosinophils, mast cells, and Th2 cells. We used CCR3(-/-) mice to assess the role of CCR3 in a murine model of allergic skin inflammation induced by repeated epicutaneous sensitization with ovalbumin (OVA), and characterized by eosinophil skin infiltration, local expression of Th2 cytokines, and airway hyperresponsiveness (AHR) to inhaled antigen. Eosinophils and the eosinophil product major basic protein were absent from the skin of sham and OVA-sensitized CCR3(-/-) mice. Mast cell numbers and expression of IL-4 mRNA were normal in skin of CCR3(-/-) mice, suggesting that CCR3 is not important for infiltration of the skin by mast cells and Th2 cells. CCR3(-/-) mice produced normal levels of OVA-specific IgE, and their splenocytes secreted normal amounts of IL-4 and IL-5 following in vitro stimulation with OVA, indicating effective generation of systemic Th2 helper responses. Recruitment of eosinophils to lung parenchyma and bronchoalveolar lavage (BAL) fluid was severely impaired in CCR3(-/-) mice, which failed to develop AHR to methacholine following antigen inhalation. These results suggest that CCR3 plays an essential role in eosinophil recruitment to the skin and the lung and in the development of AHR.

  14. Plasma diamine oxidase activity in asthmatic children

    Directory of Open Access Journals (Sweden)

    Kyoichiro Toyoshima

    1996-01-01

    Full Text Available Histamine plays an important role in the development of asthmatic symptoms. Diamine oxidase (DAO histaminase, which inactivates histamine, is located in the intestine and kidney and is released into plasma. Plasma DAO activity in asthmatic children was measured by a recently developed high performance liquid chromatographic method using histamine as the DAO substrate. Diamine oxidase activity was higher in severely asthmatic children than in those with mild asthma. A time course study during the acute exacerbation phase revealed that DAO activity rose during acute asthmatic attacks and then decreased gradually over several days. Although the mechanisms of plasma DAO activity increase during acute asthmatic attacks could not be explained, data showed that plasma DAO activity is an important index of histamine metabolism in asthmatics and may relate to some mechanisms of acute exacerbation of airway inflammation. Consequently, fluctuations in plasma DAO can be used as one of various indices of instability in management of asthma.

  15. Impact of psychosocial stress on airway inflammation and its mechanism in a murine model of allergic asthma

    Institute of Scientific and Technical Information of China (English)

    LI Bei; DUAN Xiao-hong; WU Jin-feng; LIU Bao-jun; LUO Qing-li; JIN Hua-liang; DU Yi-jie

    2013-01-01

    Background It has already been recognized that psychosocial stress evokes asthma exacerbation; however,the mechanism of how stress gets inside the body is not clear.This study aimed to observe the impact of psychosocial stress on airway inflammation and its mechanism in the ovalbumin-induced asthmatic mice combined with social disruption stress.Methods Thirty-six male BALB/c mice were randomly divided into:control group,asthma group (ovalbumin-induced),asthma plus social disruption stress group (SDR),and SDR group.The open field video tracking system was used to assess animal behaviors.The invasive pulmonary resistance (RL) and dynamic lung compliance (cdyn) test system from Buxco was applied to detect pulmonary function.The enzyme-linked immunosorbent assay (ELISA) was utilized to determine OVA-IgE,T-helper type 2 (Th2) cytokines (IL-4,IL-5,IL-13) and corticosterone in mouse serum,the Th2 cytokines (IL-4,IL-5,IL-13,IL-6,TNF-α) in bronchoalveolar lavage fluid (BALF),and IL-6 and TNF-α levels in the supernatant of splenocytes cultured in vitro.Hematoxylin-eosin (H&E) staining was used to assess airway inflammation in lung histology.The cell count kit-8 assay (CCK-8) was applied to evaluate the inhibitory effect of corticosterone on splenocyte proliferation induced by lipopolysacchadde (LPS).Real time-PCR and Western blotting were utilized to determine glucocorticoid receptor (GR) mRNA and GR protein expression in lungs.Results The open field test showed that combined allergen exposure and repeated stress significantly shortened the time the mice spent in the center of the open field (P <0.01),increased ambulatory activity (P <0.01) and the count of fecal boli (P <0.01),but deceased vertical activity (P <0.01).Results from pulmonary function demonstrated that airway hyperresponsiveness (AHR) was enhanced by psychosocial stress compared with allergy exposure alone.The ELISA results showed that cytokines in serum and BALF were significantly increased (P <0

  16. Regulation of the development of asthmatic inflammation by in situ CD4(+)Foxp3 (+) T cells in a mouse model of late allergic asthma.

    Science.gov (United States)

    Nakashima, Tomomi; Hayashi, Toshiharu; Mizuno, Takuya

    2014-10-01

    CD4(+)Foxp3(+)T cells (Tregs) mediate homeostatic peripheral tolerance by suppressing helper T2 cells in allergy. However, the regulation of asthmatic inflammation by local (in situ) Tregs in asthma remains unclear. BALB/c mice sensitized and challenged with ovalbumin (OVA) (asthma group) developed asthmatic inflammation with eosinophils and lymphocytes, but not mast cells. The number of Tregs in the circulation, pulmonary lymph nodes (pLNs), and thymi significantly decreased in the asthma group compared to the control group without OVA sensitization and challenge in the effector phase. The development of asthmatic inflammation is inversely related to decreased Tregs with reduced mRNA expression such as interleukin (IL)-4, transforming growth factor-β1, and IL-10, but not interferon-γ, in pLNs. Moreover, M2 macrophages increased in the local site. The present study suggests that Tregs, at least in part, may regulate the development of asthmatic inflammation by cell-cell contact and regional cytokine productions.

  17. 哮喘豚鼠气道重塑与气道反应性 的图像分析%Image analysis of airway remodeling and responsiveness in asthmatic guinea pig

    Institute of Scientific and Technical Information of China (English)

    章晓初; 姚婉贞; 赵鸣武; 何其华; 陈月

    2001-01-01

    目的研究哮喘豚鼠气道重塑的机制及气道反应性的变化。方法实验分二组:对照组(20只)和哮喘组(20只),取双肺与不同刺激因素作用后作组织切片、HE染色,通过图像分析仪测定支气管内周长、管壁厚度、外周长,并计算平滑肌收缩百分比(PMS)。结果(1)哮喘组支气管壁厚度(WA/Pi)为(10.0±2.0)μm2/μm,支气管壁平滑肌厚度(平滑肌的面积/Pi)为(4.8±1.5)μm2/μm,对照组WA/Pi为(7.9±2.1)μm2/μm,平滑肌的面积/Pi为(3.1±2.0)μm2/μm,两组比较差异均有显著性(P<0.01),支气管壁平滑肌细胞核数量(N/Pi)哮喘组为(0.012 3±0.002 7)个/μm,对照组为(0.010±0.003)个/μm,两组比较差异有显著性(P<0.05)。(2)哮喘组气道平滑肌对腺苷的反应性(以PMS表示)为0.34±0.07,对照组为0.29±0.08,两组比较差异有显著性(P<0.05),联用氨茶碱和腺苷后,哮喘组PMS为0.26±0.07,与单用腺苷组(0.34±0.07)比较差异有显著性(P<0.01)。(3)在Ach作用下哮喘组的PMS为0.24±0.04,对照组为0.19±0.06,两组比较差异有显著性(P<0.05),联用肝素和Ach后,哮喘组PMS为0.20±0.04,与单用Ach组(0.24±0.04)比较差异有显著性(P<0.05)。结论哮喘气道平滑肌增生是气道重塑的主要原因,氨茶碱和肝素可以抑制气道对腺苷和乙酰胆碱的反应性。%Objective To observe the mechanism of airway remodeling and changes of airway responsiveness in guinea pig model of asthma. Methods 40 guinea pigs were randomly divided into two groups: control (20)and asthmatic group (20). After incubating with different stimulus, bilateral lung tissue section were stained with HE. Using image analysis system to measure the airway internal perimeter, wall area, external perimeter, etc. and calculate percentage of muscle shortening (PMS) according to formula

  18. Foxa2调控支气管哮喘气道黏液高分泌研究进展%Research progress of Foxa2 regulates asthmatic airway mucus hypersecretion

    Institute of Scientific and Technical Information of China (English)

    袁波; 梁娅莎; 罗凤鸣

    2015-01-01

    支气管哮喘(简称哮喘)是一种由多种细胞及细胞组分参与的慢性气道炎症性疾病,以 Th2型气道炎性反应、气道高反应性、气道重塑为其主要特征。叉头状转录因子2(the fork head box transcription factor-2,Foxa2)基因定位于染色体20p11.21,长度是2242 bp,高表达于气道上皮细胞和肺泡Ⅱ型上皮细胞中。在肺发育过程中,Foxa2参与 Th2型气道炎症、黏液生成以及杯状细胞化生调控。本文从 Foxa2与哮喘气道黏液分泌、杯状细胞化生研究进展作一综述。%Bronchial asthma (asthma)is a chronic airway inflammatory disease involved by many cells and cellular components,whose main features are Th2-dominated airway inflammatory reaction, airway hyperresponsiveness and airway remodeling.The fork head box transcription factor-2 (Foxa2 )is located on chromosome 20p1 1.21,with the length of 2 242 bp,is highly expressed in respiratory epithelial cells and alveolar type Ⅱ epithelial cells.In the process of lung development,Foxa2 regulates Th2-dominated airway inflammatory reaction,mucus formation and goblet cell metaplasia.This review will summarize the role of Foxa2 in asthmatic airway mucus secretion and goblet cell metaplasia.

  19. Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    Directory of Open Access Journals (Sweden)

    Nemery Benoit

    2010-01-01

    Full Text Available Abstract Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS and environmental tobacco smoke (ETS as well as exposure to diesel exhaust particles (DEP could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed.

  20. Notch ligand delta-like 4-pretreated dendritic cells alleviate allergic airway responses by enhancing IL-10 production.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Huang

    Full Text Available The Notch pathway plays a role in the processes of cell proliferation, differentiation, and apoptosis, which affect the development and function of various organs. Dendritic cells (DCs, as professional antigen-presenting cells (APCs, induce T cell activation and promote T cell differentiation by antigen stimulation. Research has shown that Notch ligand delta-like 4 (Dll4 in APCs is associated with stimulation of a Th1-type response. However, the regulatory roles of Dll4 in the activation and function of DCs have yet to be clearly elucidated. In this study, we demonstrated that activation of Dll4-pretreated bone marrow-derived DCs by performing ovalbumin (OVA stimulation expressed a high level of interleukin (IL-10 without diminishing IL-12 production. By contrast, the proinflammatory cytokines, IL-1β, IL-6, and tumor necrosis factor (TNF-α, decreased in Dll4-pretreated DCs by performing either lipopolysaccharide (LPS or OVA stimulation. Compared to fully mature DCs, lower levels of MHC class II CD40 and higher levels of CD80 and CD86 molecules were expressed in these semi-mature like DCs. Dll4 Notch signaling also enhanced Notch ligand mRNA expression of Dll1, Dll4, and Jagged1 in DCs. Dll4-modified DCs exhibited a reduced capacity to stimulate the proliferation of OVA-specific CD4(+ T cells, but actively promoted large amounts of IL-10 production in these activated T cells. Furthermore, immunomodulatory effects of Dll4-modified DCs were examined in an established asthmatic animal model. After adoptive transfer of OVA-pulsed plus Dll4-pretreated DCs in OVA-immunized mice, OVA challenge induced lower OVA-specific immunoglobulin E (IgE and higher IgG2a antibody production, lower eotaxin, keratinocyte-derived chemokine (KC, IL-5, and IL-13 release in bronchial alveolar lavage fluid, attenuated airway hyper-responsiveness, and promoted higher IL-10 and interferon (IFN-γ production in the spleen. In summary, our findings elucidate the new role of

  1. Severe upper airway obstruction during sleep.

    Science.gov (United States)

    Bonekat, H William; Hardin, Kimberly A

    2003-10-01

    Few disorders may manifest with predominantly sleep-related obstructive breathing. Obstructive sleep apnea (OSA) is a common disorder, varies in severity and is associated with significant cardiovascular and neurocognitive morbidity. It is estimated that between 8 and 18 million people in the United States have at least mild OSA. Although the exact mechanism of OSA is not well-delineated, multiple factors contribute to the development of upper airway obstruction and include anatomic, mechanical, neurologic, and inflammatory changes in the pharynx. OSA may occur concomitantly with asthma. Approximately 74% of asthmatics experience nocturnal symptoms of airflow obstruction secondary to reactive airways disease. Similar cytokine, chemokine, and histologic changes are seen in both disorders. Sleep deprivation, chronic upper airway edema, and inflammation associated with OSA may further exacerbate nocturnal asthma symptoms. Allergic rhinitis may contribute to both OSA and asthma. Continuous positive airway pressure (CPAP) is the gold standard treatment for OSA. Treatment with CPAP therapy has also been shown to improve both daytime and nighttime peak expiratory flow rates in patients with concomitant OSA and asthma. It is important for allergists to be aware of how OSA may complicate diagnosis and treatment of asthma and allergic rhinitis. A thorough sleep history and high clinical suspicion for OSA is indicated, particularly in asthma patients who are refractory to standard medication treatments.

  2. Thalidomide inhibits alternative activation of macrophages in vivo and in vitro: a potential mechanism of anti-asthmatic effect of thalidomide.

    Directory of Open Access Journals (Sweden)

    Hyun Seung Lee

    Full Text Available Thalidomide is known to have anti-inflammatory and immunomodulatory actions. However, the effect and the anti-asthmatic mechanism of thalidomide in the pathogenesis of asthmatic airways are not fully understood.This study is designed to determine the effect and the potential mechanism of thalidomide in the pathogenesis of asthmatic airways using animal model of allergic asthma.Six-week-old female BALB/C mice were sensitized with alum plus ovalbumin (OVA and were exposed to OVA via intranasal route for 3 days for challenge. Thalidomide 200 mg/kg was given via gavage twice a day from a day before the challenge and airway hyperresponsivenss (AHR, airway inflammatory cells, and cytokines in bronchoalveolar lavage fluids (BALF were evaluated. The expression levels of pro-inflammatory cytokines and other mediators were evaluated using ELISA, real time (RT-qPCR, and flow cytometry. CRL-2456, alveolar macrophage cell line, was used to test the direct effect of thalidomide on the activation of macrophages in vitro.The mice with thalidomide treatment showed significantly reduced levels of allergen-induced BALF and lung inflammation, AHR, and the expression of a number of pro-inflammatory cytokines and mediators including Th2 related, IL-17 cytokines, and altered levels of allergen-specific IgG1/IgG2a. Of interesting note, thalidomide treatment significantly reduced expression levels of allergen- or Th2 cytokine-stimulated alternative activation of macrophages in vivo and in vitro.These studies highlight a potential use of thalidomide in the treatment of allergic diseases including asthma. This study further identified a novel inhibitory effect of thalidomide on alternative activation of macrophages as a potential mechanism of anti-asthmatic effect of thalidomide.

  3. 茶多酚对哮喘大鼠气道炎症和气道重塑的干预研究%The Effects of Tea Polyphenols on Airway Inflammation and Airway Remodeling in Asthmatic Rats

    Institute of Scientific and Technical Information of China (English)

    杨青; 王尧; 李里香; 况九龙

    2012-01-01

    目的:研究茶多酚(TP)对支气管哮喘大鼠早期和晚期气道氧化应激水平及气道炎症、气道重塑的影响.方法:48只大鼠随机分对照组、哮喘组、早布地奈德(BUD)组、晚BUD组、早TP组和晚TP组,每组8只.早BUD组、早TP组在造模前2周药物干预,晚BUD组、晚TP组在造模5周后药物干预.造模12周时观察各项指标.测定支气管壁的平滑肌面积、胶原沉积面积,以及肺组织转化生长因子-β1 (TGF-β1)的表达.测定肺组织TGF-β1含量、丙二醛(MDA)含量及超氧化物歧化酶(SOD)活力.结果:早TP组、晚TP组、早BUD组干预后支气管壁平滑肌面积、胶原沉积面积和TGF-β1含量较哮喘组均有改善(P<0.05或P<0.01).晚BUD组较哮喘组无明显改善(P>0.05).哮喘组肺组织中MDA含量明显上升,SOD活性显著下降,与对照组比较差异有统计学意义(P<0.01);各药物干预后SOD活性均上升,MDA含量均下降,以早TP组最明显(P<0.01).SOD活性与MDA含量呈负相关,TGF-β1含量与MDA含量呈正相关.结论:茶多酚可能通过清除氧自由基,减少气道炎症及氧化应激,从而改善或延缓气道重塑的发生.%Objective: To observe the effects of tea polyphenols (TP) on oxidative stress level, airway inflammation and airway remodeling of early stage and late stage in asthmatic rats. Methods: Forty-eight rats were randomly divided into 6 groups, normal saline group, asthma group, early budesonide (early BUD) group, late BUD group, early TP group and late TP group. Drugs were administrated 2 weeks before sensitizing in early BUD group and early TP group, and administrated 5 weeks after sensitizing in late BUD group and late TP group. The lung tissues were harvested from rats 12 weeks after sensitizing. The smooth muscle area, collagen deposition area and the expression of transforming growth factor-β1 (TGF-βl) were assessed in bronchi and lung tissues. The contents of TGF-β1, malondialdehyde (MDA) and

  4. Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen

    Directory of Open Access Journals (Sweden)

    Morgan Carrie I

    2011-12-01

    Full Text Available Abstract Background Zinc supplementation can modulate immunity through inhibition of NF-κB, a transcription factor that controls many immune response genes. Thus, we sought to examine the mechanism by which zinc supplementation tempers the response to a common allergen and determine its effect on allergic airway inflammation. Methods Mice were injected with zinc gluconate prior to German cockroach (GC feces (frass exposure and airway inflammation was assessed. Primary bone marrow-derived neutrophils and DMSO-differentiated HL-60 cells were used to assess the role of zinc gluconate on tumor necrosis factor (TNFα expression. NF-κB:DNA binding and IKK activity were assessed by EMSA and in vitro kinase assay. Protein levels of A20, RIP1 and TRAF6 were assessed by Western blot analysis. Establishment of allergic airway inflammation with GC frass was followed by administration of zinc gluconate. Airway hyperresponsiveness, serum IgE levels, eosinophilia and Th2 cytokine production were assessed. Results Administration of zinc gluconate prior to allergen exposure resulted in significantly decreased neutrophil infiltration and TNFα cytokine release into the airways. This correlated with decreased NF-κB activity in the whole lung. Treatment with zinc gluconate significantly decreased GC frass-mediated TNFα production from bone-marrow derived neutrophils and HL-60 cells. We confirmed zinc-mediated decreases in NF-κB:DNA binding and IKK activity in HL-60 cells. A20, a natural inhibitor of NF-κB and a zinc-fingered protein, is a potential target of zinc. Zinc treatment did not alter A20 levels in the short term, but resulted in the degradation of RIP1, an important upstream activator of IKK. TRAF6 protein levels were unaffected. To determine the application for zinc as a therapeutic for asthma, we administered zinc following the establishment of allergic airway inflammation in a murine model. Zinc supplementation decreased airway hyperresponsiveness

  5. TLR-7 agonist attenuates airway reactivity and inflammation through Nrf2-mediated antioxidant protection in a murine model of allergic asthma.

    Science.gov (United States)

    Nadeem, Ahmed; Siddiqui, Nahid; Al-Harbi, Naif O; Al-Harbi, Mohammed M; Ahmad, Sheikh F

    2016-04-01

    Toll-like receptors (TLRs) through innate immune system recognize pathogen associated molecular patterns and play an important role in host defense against bacteria, fungi and viruses. TLR-7 is responsible for sensing single stranded nucleic acids of viruses but its activation has been shown to be protective in mouse models of asthma. The NADPH oxidase (NOX) enzymes family mainly produces reactive oxygen species (ROS) in the lung and is involved in regulation of airway inflammation in response to TLRs activation. However, NOX-4 mediated signaling in response to TLR-7 activation in a mouse model of allergic asthma has not been explored previously. Therefore, this study investigated the role TLR-7 activation and downstream oxidant-antioxidant signaling in a murine model of asthma. Mice were sensitized with ovalbumin (OVA) intraperitoneally and treated with TLR-7 agonist, resiquimod (RSQ) intranasally before each OVA challenge from days 14 to 16. Mice were then assessed for airway reactivity, inflammation, and NOX-4 and nuclear factor E2-related factor 2 (Nrf2) related signaling [inducible nitric oxide synthase (iNOS), nitrotyrosine, lipid peroxides and copper/zinc superoxide dismutase (Cu/Zn SOD)]. Treatment with RSQ reduced allergen induced airway reactivity and inflammation. This was paralleled by a decrease in ROS which was due to induction of Nrf2 and Cu/Zn SOD in RSQ treated group. Inhibition of MyD88 reversed RSQ-mediated protective effects on airway reactivity/inflammation due to reduction in Nrf2 signaling. SOD inhibition produced effects similar to MyD88 inhibition. The current study suggests that TLR-7 agonist is beneficial and may be developed into a therapeutic option in allergic asthma.

  6. Stimulation of allergen-loaded macrophages by TLR9-ligand potentiates IL-10-mediated suppression of allergic airway inflammation in mice

    Directory of Open Access Journals (Sweden)

    Hofman Gerard A

    2004-11-01

    Full Text Available Abstract Background Previously, we demonstrated that OVA-loaded macrophages (OVA-Mφ partially suppress OVA-induced airway manifestations of asthma in BALB/c mice. In vitro studies showed that OVA-Mφ start to produce IL-10 upon interaction with allergen-specific T cells, which might mediate their immunosuppressive effects. Herein, we examined whether IL-10 is essential for the immunosuppressive effects of OVA-Mφ in vivo, and whether ex vivo stimulation of the IL-10 production by OVA-Mφ could enhance these effects. Methods Peritoneal Mφ were loaded with OVA and stimulated with LPS or immunostimulatory sequence oligodeoxynucleotide (ISS-ODN in vitro. The increase of IL-10 production was examined and, subsequently, ex vivo stimulated OVA-Mφ were used to treat (i.v. OVA-sensitized mice. To further explore whether Mφ-derived IL-10 mediates the immunosuppressive effects, Mφ isolated from IL-10-/- mice were used for treatment. Results We found that stimulation with LPS or ISS-ODN highly increased the IL-10 production by OVA-Mφ (2.5-fold and 4.5-fold increase, respectively. ISS-ODN stimulation of OVA-Mφ significantly potentiated the suppressive effects on allergic airway inflammation. Compared to sham-treatment, ISS-ODN-stimulated OVA-Mφ suppressed the airway eosinophilia by 85% (vs. 30% by unstimulated OVA-Mφ, IL-5 levels in bronchoalveolar lavage fluid by 80% (vs. 50% and serum OVA-specific IgE levels by 60% (vs. 30%. Importantly, IL-10-/-Mφ that were loaded with OVA and stimulated with ISS-ODN ex vivo, failed to suppress OVA-induced airway inflammation. Conclusions These results demonstrate that Mφ-derived IL-10 mediates anti-inflammatory responses in a mouse model of allergic asthma, which both can be potentiated by stimulation with ISS-ODN.

  7. Routes of allergic sensitization and myeloid cell IKKβ differentially regulate antibody responses and allergic airway inflammation in male and female mice.

    Science.gov (United States)

    Bonnegarde-Bernard, Astrid; Jee, Junbae; Fial, Michael J; Steiner, Haley; DiBartola, Stephanie; Davis, Ian C; Cormet-Boyaka, Estelle; Tomé, Daniel; Boyaka, Prosper N

    2014-01-01

    Gender influences the incidence and/or the severity of several diseases and evidence suggests a higher rate of allergy and asthma among women. Most experimental models of allergy use mice sensitized via the parenteral route despite the fact that the mucosal tissues of the gastrointestinal and respiratory tracts are major sites of allergic sensitization and/or allergic responses. We analyzed allergen-specific Ab responses in mice sensitized either by gavage or intraperitoneal injection of ovalbumin together with cholera toxin as adjuvant, as well as allergic inflammation and lung functions following subsequent nasal challenge with the allergen. Female mice sensitized intraperitoneally exhibited higher levels of serum IgE than their male counterparts. After nasal allergen challenge, these female mice expressed higher Th2 responses and associated inflammation in the lung than males. On the other hand, male and female mice sensitized orally developed the same levels of allergen-specific Ab responses and similar levels of lung inflammation after allergen challenge. Interestingly, the difference in allergen-specific Ab responses between male and female mice sensitized by the intraperitoneal route was abolished in IKKβΔMye mice, which lack IKKβ in myeloid cells. In summary, the oral or systemic route of allergic sensitization and IKKβ signaling in myeloid cells regulate how the gender influences allergen-specific responses and lung allergic inflammation.

  8. Immunoregulatory Role of HLA-G in Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Giuseppe Murdaca

    2016-01-01

    Full Text Available Allergic diseases are sustained by a T-helper 2 polarization leading to interleukin-4 secretion, IgE-dependent inflammation, and mast cell and eosinophil activation. HLA-G molecules, both in membrane-bound and in soluble forms, play a central role in modulation of immune responses. Elevated levels of soluble HLA-G (sHLA-G molecules are detected in serum of patients with allergic rhinitis to seasonal and perennial allergens and correlate with allergen-specific IgE levels, clinical severity, drug consumption, and response to allergen-specific immunotherapy. sHLA-G molecules are also found in airway epithelium of patients with allergic asthma and high levels of sHLA-G molecules are detectable in plasma and bronchoalveolar lavage of asthmatic patients correlating with allergen-specific IgE levels. Finally, HLA-G molecules are expressed by T cells, monocytes-macrophages, and Langerhans cells infiltrating the dermis of atopic dermatitis patients. Collectively, although at present it is difficult to completely define the role of HLA-G molecules in allergic diseases, it may be suggested that they are expressed and secreted by immune cells during the allergic reaction in an attempt to suppress allergic inflammation.

  9. 过敏性哮喘动物模型在致敏、哮喘发作和气道高反应性等方面的应用研究%Sensitization, Airway Challenge and Airway Hyperresponsiveness in Animal Models of Allergic Asthma

    Institute of Scientific and Technical Information of China (English)

    张星东

    2012-01-01

    过敏性哮喘的发病率呈上升趋势.使用了几十年的主要治疗药物肾上腺糖皮质激素副作用较大,因此发现好的预防和治疗方法成为迫切要解决的问题.动物模型是研究人类疾病的重要手段,但不少疑难病的发病机理不明确,因而制备的动物模型和人类疾病的相似度有差异.但Ⅰ型变态反应作为过敏性哮喘的发病机理是比较明确的,据此制备的动物模型和人类的哮喘就有很高的相近度,结果的可信度就较高.本文回顾了哮喘动物模型制备的基本方法和某些重要的细节.着重讨论了当今最常用的气道高反应性模型的优劣.如果综合运用不同特点的模型尤其是能观察记录哮喘发作全过程包括速发和迟发反应的模型,将可以更直接地探索哮喘发病过程和治疗药物.对气道重塑及基因敲除和转基因技术在动物模型中的研究和使用也做了一般性论述.动物模型将是一个有力的工具为最后有效地预防和治疗过敏性哮喘找到突破口.%Allergic asthma is an important disease. The interflow of asthma between animal models and human is that the former is also established on type I hypersensitivity. Sensitization is the first step for animal models of asthma. The characteristics and reactivity of complete allergens and haptens may lead to different outcomes. Airway challenge is a useful tool to study asthmatic responses. The new methods enabled successful observation of early-phase and late-phase asthmatic responses. Work on the pathogenesis and therapy of asthma should be conducted with different models besides the one of airway hyperresponsiveness used popularly nowadays. Other applications using animal models including airway remodeling, gene knock-out, transgenesis and therapeutic drugs were also reviewed briefly.

  10. Undifferentiated bronchial fibroblasts derived from asthmatic patients display higher elastic modulus than their non-asthmatic counterparts.

    Directory of Open Access Journals (Sweden)

    Michal Sarna

    Full Text Available During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned 'ventral' stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-β-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.

  11. Undifferentiated bronchial fibroblasts derived from asthmatic patients display higher elastic modulus than their non-asthmatic counterparts.

    Science.gov (United States)

    Sarna, Michal; Wojcik, Katarzyna A; Hermanowicz, Pawel; Wnuk, Dawid; Burda, Kvetoslava; Sanak, Marek; Czyż, Jarosław; Michalik, Marta

    2015-01-01

    During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT) can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs) derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned 'ventral' stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-β-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.

  12. Effect of Inhaled Budesonide on Interleukin-4 and Interleukin-6 in Exhaled Breath Condensate of Asthmatic Patients

    Directory of Open Access Journals (Sweden)

    Chun-Hua Chi

    2016-01-01

    Conclusions: The concentration of IL-4 in the EBC of asthmatic patients decreased gradually with ICS treatment. Measurement of IL-4 in EBC could be useful to monitor airway inflammation in asthmatics.

  13. X-Ray based Lung Function measurement–a sensitive technique to quantify lung function in allergic airway inflammation mouse models

    Science.gov (United States)

    Dullin, C.; Markus, M. A.; Larsson, E.; Tromba, G.; Hülsmann, S.; Alves, F.

    2016-11-01

    In mice, along with the assessment of eosinophils, lung function measurements, most commonly carried out by plethysmography, are essential to monitor the course of allergic airway inflammation, to examine therapy efficacy and to correlate animal with patient data. To date, plethysmography techniques either use intubation and/or restraining of the mice and are thus invasive, or are limited in their sensitivity. We present a novel unrestrained lung function method based on low-dose planar cinematic x-ray imaging (X-Ray Lung Function, XLF) and demonstrate its performance in monitoring OVA induced experimental allergic airway inflammation in mice and an improved assessment of the efficacy of the common treatment dexamethasone. We further show that XLF is more sensitive than unrestrained whole body plethysmography (UWBP) and that conventional broncho-alveolar lavage and histology provide only limited information of the efficacy of a treatment when compared to XLF. Our results highlight the fact that a multi-parametric imaging approach as delivered by XLF is needed to address the combined cellular, anatomical and functional effects that occur during the course of asthma and in response to therapy.

  14. Targeting phosphoinositide 3-kinase δ for allergic asthma.

    Science.gov (United States)

    Rowan, Wendy C; Smith, Janet L; Affleck, Karen; Amour, Augustin

    2012-02-01

    Chronic inflammation in the lung has long been linked to the pathogenesis of asthma. Central to this airway inflammation is a T-cell response to allergens, with Th2 cytokines driving the differentiation, survival and function of the major inflammatory cells involved in the allergic cascade. PI3Kδ (phosphoinositide 3-kinase δ) is a lipid kinase, expressed predominantly in leucocytes, where it plays a critical role in immune receptor signalling. A selective PI3Kδ inhibitor is predicted to block T-cell activation in the lung, reducing the production of pro-inflammatory Th2 cytokines. PI3Kδ is also involved in B-cell and mast cell activation. Therefore the inhibition of PI3Kδ should dampen down the inflammatory cascade involved in the asthmatic response through a wide breadth of pharmacology. Current anti-inflammatory therapies, which are based on corticosteroids, are effective in controlling inflammation in mild asthmatics, but moderate/severe asthmatic patients remain poorly controlled, experiencing recurrent exacerbations. Corticosteroids have no effect on mast cell degranulation and do not act directly on B-cells, so, overall, a PI3Kδ inhibitor has the potential to deliver improvements in onset of action, efficacy and reduced exacerbations in moderate/severe asthmatics. Additionally, PI3Kδ inhibition is expected to block effects of Th17 cells, which are increasingly implicated in steroid-insensitive asthma.

  15. Cotinine Levels in Asthmatic Children

    Directory of Open Access Journals (Sweden)

    A Delpisheh

    2005-10-01

    Full Text Available Introduction: Asthmatic children are more at risk to environmental tobacco smoke exposure (ETS due to impaired lower airway function. Objective: To investigate the association of low socio-economic status and ETS exposure in asthmatic children. Design: A cross-sectional study on 425 primary school children (aged 5-11years in Merseyside, using a parent completed questionnaire and childrens’ saliva samples. Results: 25.9 % of children had doctor diagnosed asthma and 12 % had a history of hospital admission for respiratory illnesses. The symptom triad of cough, wheeze and breathlessness were reported for 8.5% of children. Mean cotinine level was 2.1 ng/ml (±0.6 SD. 45.6% of children were ETS exposed (cotinine levels >1.0 ng/ml. Asthmatic children and those from disadvantaged households were more likely to be ETS exposed, compared to non-asthmatic and those from advantaged households [OR=1.7 (95%CI=1.1-2.4] and [OR=2.1(1.8-3.2 respectively]. A synergic effect of parental asthma, deprivation and high cotinine levels on childhood asthma was observed in multivariate analysis. Conclusions: A high cotinine level was significantly associated with an increased risk of asthma in children particularly amongst disadvantaged households. Interventions aimed at limiting ETS exposure particularly among disadvantaged groups with asthmatic children are needed.

  16. The laminin β1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2010-12-01

    Full Text Available Abstract Background Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hypercontractile phenotype is dependent on laminin, which can be inhibited by the laminin-competing peptide Tyr-Ile-Gly-Ser-Arg (YIGSR. The role of laminins in ASM remodelling in chronic asthma in vivo, however, has not yet been established. Methods Using an established guinea pig model of allergic asthma, we investigated the effects of topical treatment of the airways with YIGSR on features of airway remodelling induced by repeated allergen challenge, including ASM hyperplasia and hypercontractility, inflammation and fibrosis. Human ASM cells were used to investigate the direct effects of YIGSR on ASM proliferation in vitro. Results Topical administration of YIGSR attenuated allergen-induced ASM hyperplasia and pulmonary expression of the proliferative marker proliferating cell nuclear antigen (PCNA. Treatment with YIGSR also increased both the expression of sm-MHC and ASM contractility in saline- and allergen-challenged animals; this suggests that treatment with the laminin-competing peptide YIGSR mimics rather than inhibits laminin function in vivo. In addition, treatment with YIGSR increased allergen-induced fibrosis and submucosal eosinophilia. Immobilized YIGSR concentration-dependently reduced PDGF-induced proliferation of cultured ASM to a similar extent as laminin-coated culture plates. Notably, the effects of both immobilized YIGSR and laminin were antagonized by soluble YIGSR. Conclusion These results indicate that the laminin-competing peptide YIGSR promotes a contractile, hypoproliferative ASM phenotype in vivo, an effect that appears to be linked to the microenvironment in which the cells are exposed to the peptide.

  17. The role of CTLA4-Ig in a mouse model against allergic asthma

    Institute of Scientific and Technical Information of China (English)

    万欢英; 周敏; 徐青; 黄绍光; 邓伟吾

    2003-01-01

    Objective To investigate CTLA4-Ig's potential role in therapy for allergic asthma by blocking B7/CD28 interactions with cytotoxic T lymphocyte antigen 4-Ig (CTLA4-Ig).Methods We divided BALB/C mice into the three groups: Sham/Sham (control), ovalbumin (OVA)/OVA and mCTLA4-Ig. Blood, bronchoalveolar lavage, histology and determination of cytokines were performed 24 hours after airway challenge. Results In the OVA/OVA group, the number of cells, the percentage of inflamed cells and the level of IL-4 in BALF were increased. Airways in our murine model for allergic asthma underwent pathological changes, which were significantly reduced after treatment with mCTLA4-Ig. Conclusion Blockage of co-stimulation with mCTLA4-Ig can inhibit allergy-specific response of T cells, and asthmatic response as well.

  18. Anti-inflammatory Potentials of Excretory/Secretory (ES and Somatic Products of Marshallagia marshalli on Allergic Airway Inflammation in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Sima PARANDE SHIRVAN

    2016-12-01

    Full Text Available Background: Inverse relationship between helminths infection and immune-mediated diseases has inspired researchers to investigate therapeutic potential of helminths in allergic asthma. Helminth unique ability to induce immunoregulatory responses has already been documented in several experimental studies. This study was designed to investigate whether excretory/secretory (ES and somatic products of Marshallagia marshalli modulate the development of ovalbumin-induced airway inflammation in a mouse model.Methods: This study was carried out at the laboratories of Immunology and Parasitology of Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran during spring and summer 2015. Allergic airway inflammation was induced in mice by intraperitoneal (IP injection with ovalbumin (OVA. The effects of ES and somatic products of M. marshalli were analyzed by inflammatory cell infiltration in bronchoalveolar lavage fluid (BALF, pathological changes and IgE response.Results: Treatment with ES and somatic products of M. marshalli decreased cellular infiltration into BALF when they were administered during sensitization with allergen. Pathological changes were decreased in helminth-treated group, as demonstrated by reduced inflammatory cell infiltration, goblet cell hyperplasia, epithelial lesion and smooth muscle hypertrophy. However, no significant differences were observed in IgE serum levels, cytokines and eosinophil counts between different groups.Conclusion: This study provides new insights into anti-inflammatory effects of ES and somatic products of M. marshalli, during the development of non-eosinophilic model of asthma. Further study is necessary to characterize immunomodulatory molecules derived from M. marshalli as a candidate for the treatment of airway inflammation.

  19. Expired nitric oxide levels in adult asthmatics

    Directory of Open Access Journals (Sweden)

    Chiharu Okada

    1996-01-01

    Full Text Available The expired nitric oxide (NO concentration is known to be higher in asthmatic subjects than in normal subjects. To elucidate the role of NO in asthma, we examined the expired NO concentrations in relation to the type (atopic, mixed, non- atopic, and severity (mild, moderate, severe of asthmatics, as well as the influence of steroid treatment. Twenty-seven normal subjects, 48 asthmatics, 8 subjects with allergic rhinitis, and 13 subjects with pulmonary emphysema participated in the study. The expired NO concentration was significantly higher in asthmatics and patients with allergic rhinitis than in normal subjects (P<0.01. No significant difference was observed between the expired NO concentration in patients with pulmonary emphysema and that of normal subjects. The expired NO concentrations were significantly lower in non- atopic asthma than in atopic asthma. Nitric oxide levels were significantly lower in severe asthma than in mild asthma. High doses of steroid treatment are often used in severe asthma. The dose of inhaled beclomethasone and expired NO concentrations showed a negative correlation (r= −0.51587, P<0.004. Drip infusion of hydrocortisone tended to increase the exhaled NO concentration just after drip infusion, however, it decreased after 24 h. These results suggest that steroid treatment decreases the expired NO concentrations in asthmatics, although it cannot be concluded that NO increases the severity of asthma. The measurement of expired NO concentrations is an easy, non-invasive test, which may be a useful tool for monitoring the condition of asthmatics.

  20. Suppression of allergic airway inflammation in a mouse model of asthma by exogenous mesenchymal stem cells%外源性间充质干细胞减轻支气管哮喘小鼠气道炎症的研究

    Institute of Scientific and Technical Information of China (English)

    黄芸; 欧阳海峰; 吴朔; 王文雅; 吴昌归

    2010-01-01

    目的 观察鸡卵清蛋白诱导小鼠支气管哮喘(简称哮喘)模型中外源性间充质干细胞(mesenchymal stem cells,MSC)在哮喘小鼠肺组织气道炎症中的作用.方法 45只雌性SPF级C57BL/6小鼠,体质量18~22 g.随机分为对照组(P:P:P)、哮喘组(O:P:O)和MSC治疗组(O:M:O).哮喘组与MSC治疗组第1天和第8天致敏,第15天、第16天和第17天使用OVA气道内滴入激发哮喘.MSC治疗组于哮喘造模第14天移植外源性MSC.对照组小鼠予PBS处理.三组小鼠于末次激发结束后24 h(第18天)处死,取支气管肺泡灌洗液上清,ELISA检测IL-5、IL-9及β-氨基己糖苷酶;支气管肺泡灌洗液细胞计数总细胞数、嗜酸粒细胞数;取肺组织行病理切片苏木精-伊红染色观察肺部气道炎症情况.结果 ①MSC下调了哮喘小鼠气道局部炎症;②MSC减轻了哮喘小鼠肺组织中的炎细胞浸润;③MSC减轻了哮喘小鼠气道中的肥大细胞脱颗粒现象;④MSC抑制了哮喘小鼠过度的Th2变态反应.结论 外源性MSC通过抑制Th2变态反应,减轻哮喘肺组织的气道炎症.%Objective To study the suppression of allergic airway inflammation in a mouse model of asthma by exogenous mesenchymal stem cells (MSC). Methods Forty five C57BL/6 mice were randomly divided into three groups:control group (15) ,asthmatic group (15) and MSC treated group (15). Asthma and MSC treatment groups were sensitized i. p. with OVA on day 1 and 8. Then, mice were challenged with OVA by the intratracheal route on day 15,16 and 17. On day 14,exogenous MSC (1× l06 cells in 1ml PBS) were administered through the tail vein to mice 1 day before the first airway challenge in the MSC treated group. Control mice were treated with PBS. Mice were sacrificed on day 18. BALF were obtained and centrifuged to pellets and supernatants. Pellets recovered for cellular analysis. Supernatants were stored at-80 for biochemical analyses. The total number of cells in BALF was counted and the

  1. Molecular Mechanism of the Additive Effects of Leukotriene Modifier in Asthmatic Patients Receiving Steroid Therapy

    Directory of Open Access Journals (Sweden)

    Kazuto Matsunaga

    2009-01-01

    Conclusions: LM caused a greater improvement in pulmonary function and airway inflammation in asthmatics with AR. The RANTES-mediated pathway may be involved in the improvement of the airflow limitation and airway lability by LM additive therapy in asthmatics receiving steroid therapy.

  2. Effects of obesity and weight loss on airway physiology and inflammation in asthma.

    Science.gov (United States)

    Sideleva, Olga; Black, Kendall; Dixon, Anne E

    2013-08-01

    Obesity is a major risk factor for asthma, but the mechanisms for the development of asthma in the setting of obesity are not known. The purpose of this article is to review the effects of obesity on airway inflammation in patients with asthma, and to discuss the effects of obesity on airway reactivity in patients with asthma. Obesity is particularly a risk factor for non-atopic asthma. Airway eosinophilic inflammation is not increased in obesity, in fact the preponderance of the evidence suggests that airway eosinophilia is decreased in obesity. There is some preliminary data suggesting that airway neutrophilia may be increased in obesity, and that this may be particularly related to dietary fats. Obesity also alters adaptive immunity, and may suppress lymphocyte function typically associated with asthmatic airway inflammation. Population based studies are somewhat inconsistent on the relationship between airway reactivity and asthma, however, recent studies in bariatric surgery show that weight loss surgery in severely obese patients decreases airway reactivity. One study suggested that this was particularly the case for those with low IgE (a marker of a low TH2 asthma phenotype), suggesting there may be some heterogeneity in asthma in obesity. There are likely to be two phenotypes of asthma in the obese: one group with early onset disease and asthma complicated by obesity, and a 2nd group with late onset disease with asthma consequent to obesity. Obesity leads to profound changes in airway function, and adaptive and innate immune responses which alter the nature of pre-existing allergic airway disease, and also cause new onset asthmatic disease.

  3. Environmental risk factors and allergic bronchial asthma.

    Science.gov (United States)

    D'Amato, G; Liccardi, G; D'Amato, M; Holgate, S

    2005-09-01

    The prevalence of allergic respiratory diseases such as bronchial asthma has increased in recent years, especially in industrialized countries. A change in the genetic predisposition is an unlikely cause of the increase in allergic diseases because genetic changes in a population require several generations. Consequently, this increase may be explained by changes in environmental factors, including indoor and outdoor air pollution. Over the past two decades, there has been increasing interest in studies of air pollution and its effects on human health. Although the role played by outdoor pollutants in allergic sensitization of the airways has yet to be clarified, a body of evidence suggests that urbanization, with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases observed in most industrialized countries, and there is considerable evidence that asthmatic persons are at increased risk of developing asthma exacerbations with exposure to ozone, nitrogen dioxide, sulphur dioxide and inhalable particulate matter. However, it is not easy to evaluate the impact of air pollution on the timing of asthma exacerbations and on the prevalence of asthma in general. As concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory allergy and bronchial asthma. Pollinosis is frequently used to study the interrelationship between air pollution and respiratory allergy. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc) can affect both components (biological and chemical) of this interaction. By attaching to the surface of pollen grains and of plant-derived particles of paucimicronic size, pollutants could modify not only the morphology of these antigen-carrying agents but also their allergenic

  4. Airway inflammation and peripheral airway function in asthmatic patients with different control levels%不同控制水平的支气管哮喘患者气道炎症与外周气道功能状态的研究

    Institute of Scientific and Technical Information of China (English)

    潘杨; 黄克武; 叶青; 刘学松; 武宝梅; 张君; 常晓红; 逯勇; 王辰

    2009-01-01

    Objective To observe the airway inflammation and peripheral airway function in asthmatic patients with different control levels, and to investigate whether the airway inflammation profile detected by induced sputum reflects the peripheral airway dysfunction. Methods The recruited asthmatic subjects (n=66) were divided into 3 groups: asthma controlled (8 male and 13 female), asthma partly controlled (12 male and 16 female), asthma uncontrolled (6 male and 11 female). Twenty healthy subjects served as the control group (9 male and 11 female). On the 1st day, all the subjects were required to take asthma control test (ACT), and to receive measurement of lung function by osciilometry and spirometry as well as inflammatory cell profile of induced sputum and the concentration of eosinophil cationic protein (ECP). Exhaled nitric oxide (Feso) was measured on the 2nd day, and oscillometry methacholine provocation was conducted for patients whose baseline FEV_1 was ≥70% predicted. The provocation process was terminated when airway resistance was increased by twice of the basic value, or when the mcthacholine reached the highest concentration. Then airway resistance and lung function were examined after 3 minutes. Finally, airway resistance and lung function were measured again after the subjects had 5 consecutive deep inspirations (DI). Correlation analysis was conducted between ACT scores and inflammatory cells count, ECP concentrations of induced sputum and FE_(NO) among different groups. The correlations were also made between the change of peripheral airway resistance triggered by provocation or DI and ACT scores, total eosinophil, ECP level of induced sputum, FE_(NO) respectively. Results The total eosinophil count and ECP level in induced sputum and FE_(NO) in asthmatic patients increased with the decline of control level. Negative correlations between ACT scores and total eosinophil count as well as the ECP level were observed (r = -0.43, -0.56, P 0.05) with

  5. T辅助细胞17与气道变态反应性疾病%Th17 and Airway Allergic Diseases

    Institute of Scientific and Technical Information of China (English)

    卢汉桂; 李添应

    2009-01-01

    The identification of novel helper T (Th) cell subsets, IL-17-producing Th ceils (Th17 cells) provided new insight for our understanding of the molecular mechanisms involved in the development of infectious and autoimmune diseases as well as immune responses, and thus led to revision of the classic Th1/Th2 paradigm. Th17 cells may also contribute to the pathogenesis of classically Th2-mediated allergic disorders. In this review, we summarize the current knowledge regarding IL-17 and Th17 cells and discuss their potential roles in the pathogenesis of allergic diseases of airway.%T辅助细胞17(helper T 17,Th17)是近年来新发现的独立的辅助T细胞亚群,以分泌白细胞介素17(interleukin 17,IL-17)为主要特征.现已证实Th17在自身免疫性疾病及感染等中发挥着重要的作用.随着对Th17细胞分化及调节的深入研究,人们发现其在以Th2主导的变态反应性疾病中也扮演着重要的角色.

  6. Neutrophil Inhibitory Factor Selectively Inhibits the Endothelium-Driven Transmigration of Eosinophils In Vitro and Airway Eosinophilia in OVA-Induced Allergic Lung Inflammation

    Directory of Open Access Journals (Sweden)

    Silvia Schnyder-Candrian

    2012-01-01

    Full Text Available Leukocyte adhesion molecules are involved in cell recruitment in an allergic airway response and therefore provide a target for pharmaceutical intervention. Neutrophil inhibitory factor (NIF, derived from canine hookworm (Ancylostoma caninum, binds selectively and competes with the A-domain of CD11b for binding to ICAM-1. The effect of recombinant NIF was investigated. Intranasal administration of rNIF reduced pulmonary eosinophilic infiltration, goblet cell hyperplasia, and Th2 cytokine production in OVA-sensitized mice. In vitro, transendothelial migration of human blood eosinophils across IL-4-activated umbilical vein endothelial cell (HUVEC monolayers was inhibited by rNIF (IC50: 4.6±2.6 nM; mean ± SEM, but not across TNF or IL-1-activated HUVEC monolayers. Treatment of eosinophils with rNIF together with mAb 60.1 directed against CD11b or mAb 107 directed against the metal ion-dependent adhesion site (MIDAS of the CD11b A-domain resulted in no further inhibition of transendothelial migration suggesting shared functional epitopes. In contrast, rNIF increased the inhibitory effect of blocking mAbs against CD18, CD11a, and VLA-4. Together, we show that rNIF, a selective antagonist of the A-domain of CD11b, has a prominent inhibitory effect on eosinophil transendothelial migration in vitro, which is congruent to the in vivo inhibition of OVA-induced allergic lung inflammation.

  7. Naturally occurring lung CD4(+)CD25(+) T cell regulation of airway allergic responses depends on IL-10 induction of TGF-beta.

    Science.gov (United States)

    Joetham, Anthony; Takeda, Katsuyuki; Takada, Katsuyuki; Taube, Christian; Miyahara, Nobuaki; Matsubara, Shigeki; Matsubara, Satoko; Koya, Toshiyuki; Rha, Yeong-Ho; Dakhama, Azzeddine; Gelfand, Erwin W

    2007-02-01

    Peripheral tolerance to allergens is mediated in large part by the naturally occurring lung CD4(+)CD25(+) T cells, but their effects on allergen-induced airway responsiveness have not been well defined. Intratracheal, but not i.v., administration of naive lung CD4(+)CD25(+) T cells before allergen challenge of sensitized mice, similar to the administration of the combination of rIL-10 and rTGF-beta, resulted in reduced airway hyperresponsiveness (AHR) and inflammation, lower levels of Th2 cytokines, higher levels of IL-10 and TGF-beta, and less severe lung histopathology. Significantly, CD4(+)CD25(+) T cells isolated from IL-10(-/-) mice had no effect on AHR and inflammation, but when incubated with rIL-10 before transfer, suppressed AHR, and inflammation, and was associated with elevated levels of bronchoalveolar lavage TGF-beta levels. By analogy, anti-TGF-beta treatment reduced regulatory T cell activity. These data identify naturally occurring lung CD4(+)CD25(+) T cells as capable of regulating lung allergic responses in an IL-10- and TGF-beta-dependent manner.

  8. Role of M2 Muscarinic Receptor in the Airway Response to Methacholine of Mice Selected for Minimal or Maximal Acute Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Juciane Maria de Andrade Castro

    2013-01-01

    Full Text Available Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh, which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic and allergen-induced (extrinsic airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax or minimally (AIRmin to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation.

  9. Neonatal supplementation of processed supernatant from Lactobacillus rhamnosus GG improves allergic airway inflammation in mice later in life

    NARCIS (Netherlands)

    Harb, H.; Tol, E.A.F. van; Heine, H.; Braaksma, M.; Gross, G.; Overkamp, K.; Hennen, M.; Alrifai, M.; Conrad, M.L.; Renz, H.; Garn, H.

    2013-01-01

    Background: Oral supplementation with probiotic bacteria can protect against the development of allergic and inflammatory diseases. Objective: The aim of this study was to investigate potential immunomodulatory and allergy-protective effects of processed Lactobacillus rhamnosus GG (LGG)-derived supe

  10. Role and interpretation of total serum IgE measurements in the diagnosis of allergic airway disease in adults

    NARCIS (Netherlands)

    Kerkhof, M; Dubois, AEJ; Postma, DS; Schouten, JP; de Monchy, JGR

    2003-01-01

    Background: While total IgE measurements are often used in clinical practice, it is unclear how they should be interpreted for the diagnosis of allergic disorders. We studied whether total IgE may be used to rule out or predict sensitization and whether there are age or gender differences. Methods:

  11. Inductive effect of niflumic acid on the airway goblet cells apoptosis in asthmatic mice%尼氟灭酸诱导支气管哮喘小鼠气道杯状细胞凋亡的研究

    Institute of Scientific and Technical Information of China (English)

    刘大鹏; 杨军兰; 任芳萍; 吴守振; 吴昌归; 宋立强

    2013-01-01

    目的 观察小鼠钙激活氯离子通道Ⅲ型(mCLCA3)阻断剂尼氟灭酸(NFA)诱导支气管哮喘(简称哮喘)小鼠气道杯状细胞凋亡的作用.方法 将BABL/c小鼠随机分为哮喘组、NFA治疗组和正常对照组.苏木精-伊红(HE)染色法检测各组小鼠肺组织慢性炎症状况,过碘酸-雪夫(PAS)特殊染色法、免疫组织化学法、末端转移酶标记法(TUNEL)分别检测各组小鼠小支气管中杯状细胞的数量及黏液分泌状况、Bax蛋白表达、细胞凋亡状况.结果 较正常对照组小鼠,哮喘组小鼠细支气管及血管周围明显出现炎症细胞浸润,并有上皮脱落,气道壁增厚,NFA治疗后上皮细胞脱落减少.较正常小鼠,哮喘组小鼠小支气管杯状细胞比例增多,黏液分泌增加(P<0.05).NFA治疗后,哮喘小鼠小支气管杯状细胞比例减少,黏液高分泌受抑制,且杯状细胞表达Bax蛋白阳性率、细胞凋亡率增加(P<0.05).杯状细胞表达Bax阳性率与细胞凋亡率呈正相关(r=0.91,P<0.01).结论 NFA可有效诱导哮喘小鼠气道杯状细胞凋亡,其机制可能是阻断mCLCA3表达,改变杯状细胞内外生理环境,上调促凋亡蛋白Bax表达,诱导凋亡发生.%Objective To evaluate the inductive effect of niflumic acid (NFA),an inhibitor of calcium-activated chloride channel(CLCA) on airway epithelium,on the airway goblet cells apoptosis in asthmatic mice.Methods BALB/c mice were randomly divided into an asthma group,a NFA treatment group and a sham-challenged asthmatic group.HE staining detected the chronic inflammation of the airway.PAS staining detected the cell counting and secretion of goblet cells.Immunohistochemistry method detected Bax proteins expression of goblet cells in small bronchus of all groups.TUNEL method detected apoptosis of goblet cells in small bronchus of all groups.Results Compared with shamchallenged asthmatic group,there was more significant inflammatory cell infiltration and epithelial

  12. GM-CSF production from human airway smooth muscle cells is potentiated by human serum

    Directory of Open Access Journals (Sweden)

    Maria B. Sukkar

    2000-01-01

    Full Text Available Recent evidence suggests that airway smooth muscle cells (ASMC actively participate in the airway inflammatory process in asthma. Interleukin–1β (IL–1β and tumour necrosis factor–α (TNF–α induce ASMC to release inflammatory mediators in vitro. ASMC mediator release in vivo, however, may be influenced by features of the allergic asthmatic phenotype. We determined whether; (1 allergic asthmatic serum (AAS modulates ASMC mediator release in response to IL–1β and TNF–α, and (2 IL–1β/TNF–α prime ASMC to release mediators in response to AAS. IL–5 and GMCSF were quantified by ELISA in culture supernatants of; (1 ASMC pre-incubated with either AAS, non-allergic non-asthmatic serum (NAS or MonomedTM (a serum substitute and subsequently stimulated with IL–1β and TNF–α and (2 ASMC stimulated with IL–1β/TNF–α and subsequently exposed to either AAS, NAS or MonomedTM. IL-1g and TNF–α induced GM-CSF release in ASMC pre-incubated with AAS was not greater than that in ASMC pre-incubated with NAS or MonomedTM. IL–1β and TNF–α, however, primed ASMC to release GM-CSF in response to human serum. GM-CSF production following IL–1β/TNF–α and serum exposure (AAS or NAS was significantly greater than that following IL–1β /TNF–α and MonomedTM exposure or IL–1β/TNF–α exposure only. Whilst the potentiating effects of human serum were not specific to allergic asthma, these findings suggest that the secretory capacity of ASMC may be up-regulated during exacerbations of asthma, where there is evidence of vascular leakage.

  13. Alterações orofaciais em doenças alérgicas de vias aéreas Orofacial alterations in allergic diseases of the airways

    Directory of Open Access Journals (Sweden)

    Anete Branco

    2007-09-01

    Full Text Available OBJETIVO: Apontar as possíveis alterações orofaciais decorrentes do sintoma "obstrução nasal" em pacientes portadores de doenças alérgicas de vias aéreas superiores, por meio de revisão de literatura. FONTES DE DADOS: Levantamento bibliográfico utilizando bancos de dados eletrônicos, como Medline, Ovid, SciELO e Lilacs, com as palavras-chave "asthma", "rhinitis" e "mouth breathing", abrangendo os 30 últimos anos. Foram incluídos artigos de revisão, estudos observacionais e ensaios clínicos. SÍNTESE DOS DADOS: A obstrução nasal é encontrada freqüentemente em doenças alérgicas de vias aéreas, como rinite e asma. A respiração bucal decorrente da obstrução nasal pode interferir de maneira direta no desenvolvimento infantil, com alterações no crescimento do crânio e orofacial, na fala, na alimentação, na postura corporal, na qualidade do sono e no desempenho escolar. CONCLUSÕES: Devido à variedade de alterações orofaciais encontradas na criança respiradora bucal decorrente de obstrução nasal por doenças alérgicas de vias aéreas, é necessário realizar diagnóstico e tratamento precoces por uma equipe multidisciplinar, composta por médico, ortodontista e fonoaudiólogo, contemplando a visão de uma via respiratória única, que traz conseqüências ao crescimento e desenvolvimento do sistema motor oral.OBJECTIVE: To study possible orofacial alterations originated from nasal obstruction symptoms in patients with allergic diseases of the superior airways, through search of scientific literature about the theme. DATA SOURCES: Bibliographic survey of the last 30 years using electronic data such as Medline, Ovid, SciELO and Lilacs, and the keywords "asthma", "rhinitis" and "mouth breathing". Revision articles, observational and clinical studies were included. DATA SYNTHESIS: Nasal obstruction is often found in patients with allergic diseases of airways, such as rhinitis and asthma. The mouth breathing originated

  14. The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Directory of Open Access Journals (Sweden)

    Xu Yu-Dong

    2010-08-01

    Full Text Available Abstract Background The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR, which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma. Methods In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism. Results In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses. Conclusions Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.

  15. Differential expression and function of breast regression protein 39 (BRP-39 in murine models of subacute cigarette smoke exposure and allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Coyle Anthony J

    2011-04-01

    Full Text Available Abstract Background While the presence of the chitinase-like molecule YKL40 has been reported in COPD and asthma, its relevance to inflammatory processes elicited by cigarette smoke and common environmental allergens, such as house dust mite (HDM, is not well understood. The objective of the current study was to assess expression and function of BRP-39, the murine equivalent of YKL40 in a murine model of cigarette smoke-induced inflammation and contrast expression and function to a model of HDM-induced allergic airway inflammation. Methods CD1, C57BL/6, and BALB/c mice were room air- or cigarette smoke-exposed for 4 days in a whole-body exposure system. In separate experiments, BALB/c mice were challenged with HDM extract once a day for 10 days. BRP-39 was assessed by ELISA and immunohistochemistry. IL-13, IL-1R1, IL-18, and BRP-39 knock out (KO mice were utilized to assess the mechanism and relevance of BRP-39 in cigarette smoke- and HDM-induced airway inflammation. Results Cigarette smoke exposure elicited a robust induction of BRP-39 but not the catalytically active chitinase, AMCase, in lung epithelial cells and alveolar macrophages of all mouse strains tested. Both BRP-39 and AMCase were increased in lung tissue after HDM exposure. Examining smoke-exposed IL-1R1, IL-18, and IL-13 deficient mice, BRP-39 induction was found to be IL-1 and not IL-18 or IL-13 dependent, while induction of BRP-39 by HDM was independent of IL-1 and IL-13. Despite the importance of BRP-39 in cellular inflammation in HDM-induced airway inflammation, BRP-39 was found to be redundant for cigarette smoke-induced airway inflammation and the adjuvant properties of cigarette smoke. Conclusions These data highlight the contrast between the importance of BRP-39 in HDM- and cigarette smoke-induced inflammation. While functionally important in HDM-induced inflammation, BRP-39 is a biomarker of cigarette smoke induced inflammation which is the byproduct of an IL-1

  16. Lymphocytes sensitivity to Fas stimulation in healthy and asthmatic children.

    Directory of Open Access Journals (Sweden)

    Katarzyna Gomułka

    2010-05-01

    Full Text Available The T cell hypothesis of asthma is based on the concept that the disease is driven and maintained by the persistence of a specialized subset of chronically activated T memory cells sensitized against an array of allergenic, occupational or viral antigens. Overreaction of CD4+ T cells in the peripheral blood and airway tissues is an invariant feature of asthma; therefore a potent mechanism for augmenting the number of activated T cells in this disease would be the resistance to the normally programmed pathway for cell death. The aim of the study was to evaluate the presence of apoptotic markers on peripheral blood lymphocytes from healthy and asthmatic children before and after stimulation with antiCD95 antibodies. The blood was collected from 21 children with atopic asthma suffering from allergic rhinitis because of house dust mite and/or grass pollen allergens and 8 healthy children matched for their age and sex. Blood was mixed with purified monoclonal antibody antiCD95 (Beckman Coulter, incubated for 24 hours and than stained with Annexin V andPI (Becton Dickinson. Prepared suspensions were analyzed with Cytomics FC 500 (Beckman Coulter flow cytometer. Annexin V(+/PI(- cells were characterized as early apoptotic, Annexin V(+/PI(+ as late apoptotic and Annexin V(-/PI(+ as dead. In unstimulated sample from asthmatic children 21.09+/-11.20% cells were characterized as Annexin V positive/PI negative. After stimulation with antiCD95 Annexin V positive/PI negative cells constituted 18.72+/-9.42% of cells, p=0.1. In unstimulated sample from healthy children 11.69+/-6.70% cells were characterized as Annexin V positive/PI negative. In the sample stimulated with antiCD95 16.54+/-2.98% of cells were Annexin V positive/PI negative, p=0.02. There were no differences between results of late apoptotic and necrotic lymphocytes from healthy and asthmatic children. Performed research indicates that lymphocytes from asthmatic children are resistant to Fas

  17. Type 2 innate lymphoid cells-new members of the "type 2 franchise" that mediate allergic airway inflammation.

    Science.gov (United States)

    Mjösberg, Jenny; Spits, Hergen

    2012-05-01

    Type 2 innate lymphoid cells (ILC2s) are members of an ILC family, which contains NK cells and Rorγt(+) ILCs, the latter including lymphoid tissue inducer (LTi) cells and ILCs producing IL-17 and IL-22. ILC2s are dedicated to the production of IL-5 and IL-13 and, as such, ILC2s provide an early and important source of type 2 cytokines critical for helminth expulsion in the gut. Several studies have also demonstrated a role for ILC2s in airway inflammation. In this issue of the European Journal of Immunology, Klein Wolterink et al. [Eur. J. Immunol. 2012. 42: 1106-1116] show that ILC2s are instrumental in several models of experimental asthma where they significantly contribute to production of IL-5 and IL-13, key cytokines in airway inflammation. This study sheds light over the relative contribution of ILC2s versus T helper type 2 cells (Th2) in type 2 mediated allergen-specific inflammation in the airways as discussed in this commentary.

  18. DNA vaccine encoding Der p 2 allergen generates immunologic protection in recombinant Der p 2 allergen-induced allergic airway inflammation mice model

    Institute of Scientific and Technical Information of China (English)

    LI Guo-ping; LIU Zhi-gang; QIU Jing; RAN Pi-xin; ZHONG Nan-shan

    2005-01-01

    Background DNA immunization is a promising novel type of immunotherapy against allergy. An estimated 79.2% patients with asthma, wheezing and/or rhinitis suffer from Dermatophagoides pteronyssinus group 2 (Der p 2) allegen. The aim of the present study was to determine whether DNA vaccine encoding Der p 2 could generate immunologic protection in recombinant Der p 2 (rDer p 2) allergen-induced allergic airway inflammation mice model and to understand the role of DNA vaccination in specific-allergen immunotherapy for asthma. Methods After DNA vaccination, BALB/c mice were sensitized by intraperitoneal injection (i.p) and challenged by intranasal instillation of rDer p 2. The lung tissues were assessed using hematoxylin and eosin. Mucus-producing goblet cells were identifed using periodic acid-Schiff(PAS)/alcian blue. The total cell number and composition of bronchoalveolar lavage samples were determined. The levels of the cytokines IL-4 and IFN-γ, as well as IgE and IgG2a in the serum were determined by enzyme-linked immunosorbent assay. Allergen-specific IL-4 and IFN-γ production by spleen cells were also measured by enzyme-linked immunosorbent assay. Expression of signal transducer and activator of transcription 6 (STAT6) in splenocytes were determined by Western blot. Results DNA vaccine encoding Der p 2 allergen inhibited extensive infiltration of inflammatory cells and production of mucin induced by allergen. The influx of eosinophils into the lung interstitium was significantly reduced after administration of DNA vaccine. Significant reductions of IL-4 and increase in levels of IFN-γ in bronchoalveolar lavage fluid were observed. The allergen-specific IgE was markedly decreased in mice receiving DNA vaccination. Allergen could induce higher IFN-γ, weaker IL-4 in cultured spleen cells from mice receiving DNA vaccine. DNA vaccination inhibited STAT6 expression of spleen cells induced by allergen. Conclusion These results indicated that DNA vaccine encoding

  19. Treatment of mice with fenbendazole attenuates allergic airways inflammation and Th2 cytokine production in a model of asthma.

    Science.gov (United States)

    Cai, Yeping; Zhou, Jiansheng; Webb, Dianne C

    2009-01-01

    Mouse models have provided a significant insight into the role of T-helper (Th) 2 cytokines such as IL-5 and IL-13 in regulating eosinophilia and other key features of asthma. However, the validity of these models can be compromised by inadvertent infection of experimental mouse colonies with pathogens such as oxyurid parasites (pinworms). While the benzimidazole derivative, fenbendazole (FBZ), is commonly used to treat such outbreaks, the effects of FBZ on mouse models of Th2 disease are largely unknown. In this investigation, we show that mice fed FBZ-supplemented food during the in utero and post-weaning period developed attenuated lung eosinophilia, antigen-specific IgG1 and Th2 cytokine responses in a model of asthma. Treatment of the mediastinal lymph node cells from allergic mice with FBZ in vitro attenuated cell proliferation, IL-5 and IL-13 production and expression of the early lymphocyte activation marker, CD69 on CD4(+) T cells and CD19(+) B cells. In addition, eosinophilia and Th2 responses remained attenuated after a 4-week withholding period in allergic mice treated preweaning with FBZ. Thus, FBZ modulates the amplitude of Th2 responses both in vivo and in vitro.

  20. Surfactant protein-A suppresses eosinophil-mediated killing of Mycoplasma pneumoniae in allergic lungs.

    Directory of Open Access Journals (Sweden)

    Julie G Ledford

    Full Text Available Surfactant protein-A (SP-A has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT and SP-A(-/- allergic mice challenged with the model antigen ovalbumin (Ova that were concurrently infected with Mp (Ova+Mp to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO, which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A(-/- mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation

  1. Allergic airway inflammation by nasal inoculation of particulate matter (PM2.5 in NC/Nga mice.

    Directory of Open Access Journals (Sweden)

    Keiki Ogino

    Full Text Available To evaluate the effect of airborne particulate matter 2.5 (PM2.5 in winter on airway inflammation, water-soluble supernatant (Sup and water-insoluble precipitate (Pre in PM2.5 were inoculated in NC/Nga mice with high sensitivity to mite allergens. Sup with aluminum oxide was injected intraperitoneally for sensitization. Five days later, Sup, Pre or both Sup and Pre were inoculated via the nasal route five times for more sensitization and a challenge inoculation on the 11th day in NC/Nga mice. On the 12th day, mice were examined for airway hyperresponsiveness (AHR, BALF cell count and IL-1β concentration, mRNA expression of Th1 and Th2 cytokines, chemokines such as eotaxin 1 and eotaxin 2, inflammasomal complex molecules such as IL-1β, caspase 1 and the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3 in lung tissue as well as histopathology. The synergistic effect of Sup and Pre was observed in terms of increases in AHR, BALF cells, the mRNA expression of IL-13, eotaxin1 and IL-1β, and the IL-1β concentration in BALF. Intracellular deposits of insoluble particulates were observed in macrophages around inflammatory granulation of the mouse group treated with Sup and Pre. These results suggest that PM2.5 can induce airway hyperresponsiveness in mice with genetically high sensitivity to mite allergens by an inflammasome-associated mechanism and synergistic action of insoluble particulates and soluble components.

  2. Eosinophil: central mediator of allergic asthma?

    Institute of Scientific and Technical Information of China (English)

    SHEN Hua-hao

    2005-01-01

    @@ Allergic asthma is a chronic disorder characterized by chronic airway inflammation, airway hyperresponsiveness, reversible airway obstruction, airway remodelling and mucus hypersecretion. It has been widely recognized that the infiltration of the lung with increased number of eosinophils is a hallmark of this disease.1

  3. [Physical activities and sports in asthmatic patients].

    Science.gov (United States)

    Todaro, A

    1983-05-31

    Asthma patients are too often advised to refrain from sport. Enforced sedentariness, especially in children, leads to muscle hypotonia, reduced mechanical efficiency, paramorphisms, and adverse psychological consequences. Not all asthmatics develop airway spasm as a result of exercise. On the other hand, there are subjects whose bronchial hyper-reactivity is stimulated solely by muscular effort. The pathogenesis of exercise-induced bronchospasm is not fully understood. In any event, numerous studies have demonstrated the beneficial and even therapeutic effect of physical exercise and sport in cases of asthma. Provided they are practised with judgment and in accordance with a suitable programme, swimming, activities of an alternating aerobic and anaerobic type, cross-country skiing, gymnastics, and fencing are primarily indicated. Some asthmatics have also won Olympic medals. In the light of the studies carried out so far, it is strongly suggested that asthmatics be encouraged to take up sport suitable to their psychophysical characteristics, and not kept wrapped up in cotton wool.

  4. Role of lysophosphatidic acid receptor LPA2 in the development of allergic airway inflammation in a murine model of asthma

    Directory of Open Access Journals (Sweden)

    Chun Jerold

    2009-11-01

    Full Text Available Abstract Background Lysophosphatidic acid (LPA plays a critical role in airway inflammation through G protein-coupled LPA receptors (LPA1-3. We have demonstrated that LPA induced cytokine and lipid mediator release in human bronchial epithelial cells. Here we provide evidence for the role of LPA and LPA receptors in Th2-dominant airway inflammation. Methods Wild type, LPA1 heterozygous knockout mice (LPA1+/-, and LPA2 heterozygous knockout mice (LPA2+/- were sensitized with inactivated Schistosoma mansoni eggs and local antigenic challenge with Schistosoma mansoni soluble egg Ag (SEA in the lungs. Bronchoalveolar larvage (BAL fluids and lung tissues were collected for analysis of inflammatory responses. Further, tracheal epithelial cells were isolated and challenged with LPA. Results BAL fluids from Schistosoma mansoni egg-sensitized and challenged wild type mice (4 days of challenge showed increase of LPA level (~2.8 fold, compared to control mice. LPA2+/- mice, but not LPA1+/- mice, exposed to Schistosoma mansoni egg revealed significantly reduced cell numbers and eosinophils in BAL fluids, compared to challenged wild type mice. Both LPA2+/- and LPA1+/- mice showed decreases in bronchial goblet cells. LPA2+/- mice, but not LPA1+/- mice showed the decreases in prostaglandin E2 (PGE2 and LPA levels in BAL fluids after SEA challenge. The PGE2 production by LPA was reduced in isolated tracheal epithelial cells from LPA2+/- mice. These results suggest that LPA and LPA receptors are involved in Schistosoma mansoni egg-mediated inflammation and further studies are proposed to understand the role of LPA and LPA receptors in the inflammatory process.

  5. Steroid Phobia among Parents of Asthmatic Children: Myths and Truth

    Directory of Open Access Journals (Sweden)

    Magdy M Zedan

    2010-09-01

    Full Text Available Asthma is one of the most common chronic diseases of childhood. Inhaled corticosteroids (ICS are the recommended controller drug for asthma treatment. The aim of our study was to determine concerns and fears of parents of children with asthma towards the use of ICS. One hundred parents of asthmatic children were interviewed using structural questionnaire. Airway inflammation was reported by only 6% of interviewed parents, whereas airway narrowing was addressed by 34%. Interesting data, 71% of parents were concerned with the role of steroids in asthma treatment, but more than half (53% of them addressed fears from side effects. Apparent gaps were found in knowledge of parents of asthmatic children about ICS as controller asthma medication. So, physician and health providers should explain to asthmatic parents that airway inflammation is the core for asthma management. This may remove fears about ICS and thus improve adherence to treatment.

  6. Effect of doxycycline on airway inflammation and remodeling in asthmatic rats%多西环素对哮喘大鼠气道炎症及气道重塑的影响

    Institute of Scientific and Technical Information of China (English)

    李静; 王亮; 杨红申; 李亚妹; 侯宏伟; 李香兰; 张聪瑶; 李玉静

    2015-01-01

    目的:探讨多西环素对哮喘大鼠气道炎症及重塑的预防作用及可能机制。方法将实验 SD 大鼠分为正常对照组、哮喘组、多西环素干预组。计数大鼠肺泡灌洗液中的细胞数并进行分类;检测血清中的白细胞介素5(IL-5)、白细胞介素13(IL-13)、肿瘤坏死因子α(TNF-α)的水平;检测肺组织中基质金属蛋白酶9(MMP-9)、肌动蛋白α(α-SMA)的表达;测定支气管基底膜周径(Pbm)、总管壁面积(WAt)、平滑肌面积(WAm)等反映气道壁厚度的指标,分析多西环素的影响。结果哮喘组与多西环素干预组的肺泡灌洗液细胞总数、嗜酸性粒细胞计数、支气管壁厚度、平滑肌厚度、血清 IL-5、IL-13及 TNF-α水平、肺组织 MMP-9、α-SMA 平均光度值均明显高于正常对照组,其中多西环素干预组均明显低于哮喘组(P <0.05)。结论多西环素可以影响炎症介质的生成及通过抑制 MMP-9的活性从而减轻哮喘的气道炎症及气道重塑。%ABSTRACT:Objective To investigate the effect of doxycycline on airway inflammation and remodeling in asthmatic rats.Methods Thirty-three male Sprague Dawley rats were randomly divided into three groups:control group,asthma group and doxycycline intervention group.Total cell number and different cell number in BALF were counted.The concentrations of serum IL-5,IL-13 were assayed by ELISA,and the concentration of serum TNF-αwas determined by radioimmunoassay.The expression of MMP-9 and α-SMA in lung tissues were observed by immunohistochemistry.Lung tissues were sliced and stained with HE.These parameters such as bronchial basement membrane perimeter (Pbm),total bronchial wall area (WAt)and smooth muscle area (WAm),which reflected the thickness of airway wall,were measured by image analysis system.Results The count of total cells and eosinophils significantly increased in asthma group and doxycycline intervention group than in control group(P <0.05),and the

  7. Transformation of adrenal medullary chromaffin cells increases asthmatic susceptibility in pups from allergen-sensitized rats

    Directory of Open Access Journals (Sweden)

    Feng Jun-Tao

    2012-11-01

    Full Text Available Abstract Background Studies have shown that epinephrine release is impaired in patients with asthma. The pregnancy of female rats (dams with asthma promotes in their pups the differentiation of adrenal medulla chromaffin cells (AMCCs into sympathetic neurons, mediated by nerve growth factor, which leads to a reduction in epinephrine secretion. However, the relatedness between the alteration of AMCCs and increased asthma susceptibility in such offspring has not been established. Methods In this study, we observed the effects of allergization via ovalbumin on rat pups born of asthmatic dams. Results Compared to the offspring of untreated controls, bronchial hyperreactivity and airway inflammation were more severe in the pups from sensitized (asthmatic dams. In pups exposed to nerve growth factor (NGF in utero these effects were aggravated further, but the effects were blocked in pups whose dams had been treated with anti-NGF. Furthermore, alterations in AMCC phenotype corresponded to the degree of bronchial hyperreactivity and lung lesions of the different treatment groups. Such AMCC alterations included degranulation of chromaffin granules, reduction of epinephrine and phenylethanolamine-n-methyl transferase, and elevation of NGF and peripherin levels. Conclusions Our results present evidence that asthma during the pregnancy of rat dams promotes asthma susceptibility in their offspring, and that the transformation of AMCCs to neurons induced by NGF plays an important role in this process.

  8. Effects of Zhichuan decoction on MMP-9,TIMP-1 during airway remodeling in asthmatic rats%止喘汤对哮喘大鼠模型气道重构中MMP-9、TIMP-1表达的影响

    Institute of Scientific and Technical Information of China (English)

    霍博雅; 张占锋

    2011-01-01

    Objective:To investigate the effects of Traditional Chinese Medicine(TCM) on airway remodeling and the expression of MM P-9 and TIMP-1 in asthmatic rats. Methods: Fifty Sprague-Dawley rats were randomly divided into five groups equally:normal control group,asthmatic group,budesonide aerosol group,scutellaria baicalensis group and Zhichuan decoction group. The model of asthma was established by OVA ( ovalbumin ) sensitizing and challenging; some lung tissues were sliced and stained with HE and morphological indicators of airway were measured by image analysis, the other lung tissues were sliced and stained with Immunohistochemistry and the expression of MMP-9 、TIMP-1 and collagen type IV was observed. Results: Compared with normal controls, the thickness of airway wall in asthmatic models was significantly increased,and the expression of MMP-9 and TIMP-1 was also increased significantly ( P < 0. 01). After intervention with TCM and budesonide aerosol, compared with asthmatic models, the thickness of airway became thinner significantly, meanwhile,the expression of MMP-9 and TIMP-1 was significantly decreased(P < 0. 01 ) ; then compared the two TCM, pulmonary fibrosis of intervention with compound medical herbs was lighter than intervention with the single ( P < 0. 05 ). Airway wall thickness and collagen type IV were associated with MMP-1、 TIMP-1 and MMP-9/TIMP-1. Conclusions: The TCM could decrease the deposition of collagen type IV and reduce the airway thickness by regulating MMP-9 and TIMP-1 levels and influencing the balance between MMP-9 and TIMP-1, the compound based on asthmatic basic pathogenesis of TCM is superior to single herbs.%目的:现察中药止喘汤对哮喘大鼠气道重构的干预,并探讨其对基质金属蛋白酶-9(MMP-9)及金属蛋白酶抑制剂-1(TIMP-1)表达的影响.方法:50只Sprague-Dawley(SD)大鼠随机分为正常组、哮喘组、布地奈德(BUD)组、黄芩组及止喘汤组5组.采用卵清白蛋白(OVA)致敏加激

  9. AMBIENT COARSE PARTICULATE MATTER ASSOCIATED WITH HEMATOLOGIC FACTORS IN ADULT ASTHMATICS

    Science.gov (United States)

    Introduction: The elderly and those with cardiovascular disease are susceptible to particulate matter (PM) exposures. Asthmatics are thought to be primarily affected by PM via airway inflammation. We investigated whether factors in blood hemostasis change in response to fluctuat...

  10. Increasing ventilation as an intervention in homes of asthmatic children

    DEFF Research Database (Denmark)

    Hogaard, Nina Viskum; Rubak, Sune Leisgaard Mørck; Halken, Susanne

    2016-01-01

    in children. We conducted a double-blind, placebo-controlled intervention study with 46 asthmatic, house dust mite allergic children. The aim was to investigate the association between indoor air quality in homes and severity of asthma, in particular the effect of increased ventilation rate and expected lower...

  11. The laminin beta 1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Bos, I. Sophie T.; Halayko, Andrew J.; Zaagsma, Johan; Meurs, Herman

    2010-01-01

    Background: Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hyper)contractile phenotype is dependent on laminin, which can

  12. An intranasal selective antisense oligonucleotide impairs lung cyclooxygenase-2 production and improves inflammation, but worsens airway function, in house dust mite sensitive mice

    Directory of Open Access Journals (Sweden)

    Pujols Laura

    2008-11-01

    Full Text Available Abstract Background Despite its reported pro-inflammatory activity, cyclooxygenase (COX-2 has been proposed to play a protective role in asthma. Accordingly, COX-2 might be down-regulated in the airway cells of asthmatics. This, together with results of experiments to assess the impact of COX-2 blockade in ovalbumin (OVA-sensitized mice in vivo, led us to propose a novel experimental approach using house dust mite (HDM-sensitized mice in which we mimicked altered regulation of COX-2. Methods Allergic inflammation was induced in BALBc mice by intranasal exposure to HDM for 10 consecutive days. This model reproduces spontaneous exposure to aeroallergens by asthmatic patients. In order to impair, but not fully block, COX-2 production in the airways, some of the animals received an intranasal antisense oligonucleotide. Lung COX-2 expression and activity were measured along with bronchovascular inflammation, airway reactivity, and prostaglandin production. Results We observed impaired COX-2 mRNA and protein expression in the lung tissue of selective oligonucleotide-treated sensitized mice. This was accompanied by diminished production of mPGE synthase and PGE2 in the airways. In sensitized mice, the oligonucleotide induced increased airway hyperreactivity (AHR to methacholine, but a substantially reduced bronchovascular inflammation. Finally, mRNA levels of hPGD synthase remained unchanged. Conclusion Intranasal antisense therapy against COX-2 in vivo mimicked the reported impairment of COX-2 regulation in the airway cells of asthmatic patients. This strategy revealed an unexpected novel dual effect: inflammation was improved but AHR worsened. This approach will provide insights into the differential regulation of inflammation and lung function in asthma, and will help identify pharmacological targets within the COX-2/PG system.

  13. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    Science.gov (United States)

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.

  14. Effects of dermatophagoides pteronyssinus allergen-specific immunotherapy on the serum interleukin-13 and pulmonary functions in asthmatic children

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhuang-gui; LI Ming; CHEN Yan-feng; JI Jing-zhi; LI Ya-ting; CHEN Wei; CHEN Fen-hua; CHEN Hong

    2009-01-01

    Background Airway remodeling is the specific pathological characteristics of asthma, which is related to the clinical symptoms, pulmonary function, and airway hyperreactivity. This study aimed at exploring the effects of dermatophagoides pteronyssinus allergen-specific immunotherapy (SIT) on the serum interleukin (IL)-13 and pulmonary functions in asthmatic children.Methods Fifty-eight pediatric asthma patients allergic to dust mite participated in this study. Thirty-five children received SIT with a standardized dermatophagoides pteronyssinus extract for one year (SIT group), and the other 23 children treated with inhaled corticosteroids (ICS group) according to the Global Initiative for Asthma (GINA) for one year. Serum levels of IL-13, IL-4 and interferon (IFN)-y were examined and the pulmonary functions were checked before and after the treatment.Results After the treatment, the number of emergency visiting for asthma attack in SIT group was significantly less than that in ICS group. The serum levels of IL-4 and IL-13 were clearly reduced, IFN-γ and the ratio of IFN-γ/IL-4 were significantly increased, the pulmonary functions (forced vital capacity (FVC), forced expiratory volume in one second percentage (FEV1%) and peak expiratory flow percentage (PEF%) were significantly improved in the SIT group.Meanwhile, IFN-y and the ratio of IFN-γ/IL-4 were greatly increased, but serum levels of IL-4 and IL-13 had less changes,the pulmonary functions (FVC, FEV1% and PEF%) were poorly improved in ICS group. The basic pulmonary functions in both groups were at the same level, which had made more improvement in SIT group than in ICS group one year later.Conclusions One year of dermatophagoides pteronyssinus SIT can significantly reduce the frequencies of emergency visiting for asthma attack and improve the pulmonary functions of children with allergic asthma, and that is attributed to SIT, which can reduce the levels of IL-4 and IL-13 and regulate the imbalance of the

  15. 地塞米松对支气管哮喘豚鼠白介素4、白介素5及气道反应性的影响%Effects of dexamethasone on interleukin-4,interleukin-5 and airway hyperresponsiveness of asthmatic model in guinea pig

    Institute of Scientific and Technical Information of China (English)

    谢柏梅; 范亮; 彭利静; 刘楠; 杨瑜莹; 张延海

    2008-01-01

    Objective To explore the effects of dexamethasone on interleukin-4 (IL-4) ,IL-5 in serum and airway hyperresponsiveness(AHR) of asthmatic model in guinea pig and to provide theoretical basis for the treatment of bronchial asthma(asthma). Methods This experiment included three groups:normal control group,asthmatic model group and dexamethasone treatment group,involving 10 guinea pigs in each group.Asthmatic models in guinea pigs were constructed by immunization of intraperitoneal injection with saline ovalbumin(OVA) and challenge of inspiration with nebulized OVA. A three-way cannula was inserted into the lumen of the trachea for mechanical ventilation and the intratracheal pressure (IP) was measured simultaneously for reflecting airway responsiveness. The levels of IL-4, IL-5 in serum of guinea pigs were determined using enzyme-linked immunosorbent assay (ELISA). Results The levels of IL-4, IL-5 of asthmatic model group (38.2±3.4) ng/L and (344.4±21.8) ng/L were significantly higher than those of normal control group (19.8±1.2) ng/L and (77.8±26.0) ng/L( P<0.01). The levels of IL-4,IL-5 of dexamethasone group (22. 0±1. 8) ng/L and (234.6±35.1) ng/L were significantly lower than those of asthmatic model group( P<0.01). The airway responsiveness of asthmatic model group (0. 013±0.014) g/L was significantly higher than that of normal control group (0. 168±0. 186) g/L (P<0.01). Compared with that of asthmatic model group, the airway responsiveness of dexamethasone group (0. 144±0. 154) g/L decreased significantly( P < 0.01), but they did not have any statistical significance from that of normal control group( P > 0.05). Conclusions Dexamethasone could efficiently decrease the AHR of asthmatic guinea pig. The mechanism may be that dexamethasone could prevent the production of IL-4, IL-5 in asthmatic guinea pig.%目的 探讨地塞米松对支气管哮喘(简称哮喘)豚鼠模型白介素4(IL-4)、IL-5水平及气道高反应性(airway hyperreactivity

  16. Focal adhesion kinase regulates collagen I-induced airway smooth muscle phenotype switching

    NARCIS (Netherlands)

    Dekkers, Bart G J; Spanjer, Anita I R; van der Schuyt, Robert D; Kuik, Willem Jan; Zaagsma, Johan; Meurs, Herman

    2013-01-01

    Increased extracellular matrix (ECM) deposition and airway smooth muscle (ASM) mass are major contributors to airway remodeling in asthma. Recently, we demonstrated that the ECM protein collagen I, which is increased surrounding asthmatic ASM, induces a proliferative, hypocontractile ASM phenotype.

  17. Dual ERK and phosphatidylinositol 3-kinase pathways control airway smooth muscle proliferation : differences in asthma

    NARCIS (Netherlands)

    Burgess, Janette K; Lee, Jin Hee; Ge, Qi; Ramsay, Emma E; Poniris, Maree H; Parmentier, Johannes; Roth, Michael; Johnson, Peter R A; Hunt, Nicholas H; Black, Judith L; Ammit, Alaina J

    2008-01-01

    Hyperplasia of airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely due to increased muscle proliferation. We have shown that ASM cells obtained from asthmatic patients proliferate faster than those obtained from non-asthmatic patients. In

  18. Exhaled carbon monoxide in asthmatics: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Huang Mao

    2010-04-01

    Full Text Available Abstract Background The non-invasive assessment of airway inflammation is potentially advantageous in asthma management. Exhaled carbon monoxide (eCO measurement is cheap and has been proposed to reflect airway inflammation and oxidative stress but current data are conflicting. The purpose of this meta-analysis is to determine whether eCO is elevated in asthmatics, is regulated by steroid treatment and reflects disease severity and control. Methods A systematic search for English language articles published between 1997 and 2009 was performed using Medline, Embase and Cochrane databases. Observational studies comparing eCO in non-smoking asthmatics and healthy subjects or asthmatics before and after steroid treatment were included. Data were independently extracted by two investigators and analyzed to generate weighted mean differences using either a fixed or random effects meta-analysis depending upon the degree of heterogeneity. Results 18 studies were included in the meta-analysis. The eCO level was significantly higher in asthmatics as compared to healthy subjects and in intermittent asthma as compared to persistent asthma. However, eCO could not distinguish between steroid-treated asthmatics and steroid-free patients nor separate controlled and partly-controlled asthma from uncontrolled asthma in cross-sectional studies. In contrast, eCO was significantly reduced following a course of corticosteroid treatment. Conclusions eCO is elevated in asthmatics but levels only partially reflect disease severity and control. eCO might be a potentially useful non-invasive biomarker of airway inflammation and oxidative stress in nonsmoking asthmatics.

  19. Neural plasticity occurs in the adrenal medulla of asthmatic rats

    Institute of Scientific and Technical Information of China (English)

    FENG Jun-tao; LI Xiao-zhao; HU Cheng-ping; WANG Jun; NIE Hua-ping

    2010-01-01

    Background Airway symptoms in asthma are related to decrease of epinephrine secretion, which may be ascribed to elevated nerve growth factor (NGF) in the organism.The aim of this study was to monitor the neuroendocrine alteration in the adrenal medulla of asthmatic rats.Methods Sixteen rats were randomly divided into two groups (n=8), control group and asthma group, and the asthmatic rats were sensitized and challenged with ovalbumin (OVA).The levels of NGF, epinephrine and norepinephrine in serum were detected by enzyme linked immunosorbent assay (ELISA), the NGF expression in adrenal medulla was detected by immunohistochemistry, and the changes in the ultrastructure of the adrenal medulla was observed by electron microscopy.Results The NGF expression was increased in asthmatic rats compared with control rats.Compared with control rats,the results indicated that the epinephrine level was decreased in asthmatic rats, but no significant difference was found in norepinephrine levels.We found more ganglion cells in the adrenal medulla of asthmatic rats than in control rats, with NGF immunostaining mainly located in these ganglion cells.Electron microscopic images showed the density of chromaffin granula decreased and there was shrunken nucleolemma in the adrenal medullary cells of asthmatic rats.Conclusion The innervation of the adrenal medulla is changed in asthmatic rats, and it may contribute to the epinephrine decrease in asthma.

  20. RPR 106541, a novel, airways-selective glucocorticoid: effects against antigen-induced CD4+ T lymphocyte accumulation and cytokine gene expression in the Brown Norway rat lung.

    Science.gov (United States)

    Underwood, S L; Raeburn, D; Lawrence, C; Foster, M; Webber, S; Karlsson, J A

    1997-10-01

    1. The effects of a novel 17-thiosteroid, RPR 106541, were investigated in a rat model of allergic airway inflammation. 2. In sensitized Brown Norway rats, challenge with inhaled antigen (ovalbumin) caused an influx of eosinophils and neutrophils into the lung tissue and airway lumen. In the lung tissue there was also an accumulation of CD4+ T lymphocytes and increased expression of mRNA for interleukin-4 (IL-4) and IL-5, but not interferon-gamma (IFN-gamma). These findings are consistent with an eosinophilia orchestrated by activated Th2-type cells. 3. RPR 106541 (10-300 microg kg[-1]), administered by intratracheal instillation into the airways 24 h and 1 h before antigen challenge, dose-dependently inhibited cell influx into the airway lumen. RPR 106541 (100 microg kg[-1]) caused a significant (PRPR 106541 was approximately 7 times and 4 times more potent than budesonide and fluticasone propionate, respectively. 4. When tested at a single dose (300 microg kg[-1]), RPR 106541 and fluticasone each caused a significant (PRPR 106541 and fluticasone (300 microg kg[-1]), but not budesonide (300 microg kg[-1]), significantly (PRPR 106541 (300 microg kg[-1]) also significantly (PRPR 106541 in this model, which mimics important aspects of airway inflammation in human allergic asthmatics, suggests that this glucocorticoid may be useful in the treatment of bronchial asthma.

  1. Regulation of actin dynamics by wnt-5a : Implications for human airway smooth muscle contraction

    NARCIS (Netherlands)

    Koopmans, Tim; Kumawat, Kuldeep; Menzen, Mark; Halayko, Andrew; Gosens, Reinoud

    2016-01-01

    An important pathophysiological feature of asthma is airway hyperresponsiveness (AHR), characterized by exaggerated bronchoconstriction in which the airway smooth muscle (ASM) is fundamentally involved. How the ASM in asthmatics differs from that in non-asthmatics is a current focus for research. We

  2. The Contribution of Allergen-Specific IgG to the Development of Th2-Mediated Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Jesse W. Williams

    2012-01-01

    Full Text Available In both human asthmatics and animal models of allergy, allergen-specific IgG can contribute to Th2-mediated allergic inflammation. Mouse models have elucidated an important role for IgG and Fc-gamma receptor (FcγR signaling on antigen presenting cells (APC for the induction of airway inflammation. These studies suggest a positive feedback loop between IgG produced by the adaptive B cell response and FcγR signaling on innate immune cells. Studies of IgG and FcγRs in humans with asthma or allergic lung disease have been more controversial. Some reports have identified associations between allergen-specific IgG and severity of allergic responses, while other studies have found associations of IgG subclass IgG4 with allergic tolerance. In this paper, we review the literature to help define the nature of IgG and FcγR signaling on innate immune cells and how it contributes to the development of allergic immune responses.

  3. 香烟烟雾对支气管哮喘患者气道炎性反应及肺功能的影响%Influence of the cigarette smoke in the airway inflammation and pulmonary function of the asthmatic patients

    Institute of Scientific and Technical Information of China (English)

    张彩苹; 杜永成; 许建英

    2011-01-01

    Objective To explore the influence of the cigarette smoke in the airway inflammation and pulmonary function of the asthmatic patients. Methods Twenty-five cases of asthmatic patients with cigarette smoke exposure, 22 cases of asthmatic patients without cigarette smoke exposure and 20 cases of normal control persons were involved in this study. The proportion of various inflammatory cells in the induced sputum, the levels of serum interleukin (IL)-8 and IL-4 and lung function (FEV1% expected value,FEV1/FVC% ) were detected. Results The infiltrating of neutrophils was primarily found in sputum of the asthmatic patients with cigarette smoke exposure, but the infiltrating of eosinophils was mainly in sputum of the asthmatic patients without cigarette smoke exposure. The levels of serum IL-8 and IL-4 of peripheral blood of asthmatic patients with cigarette smoke exposure [(277.02 ±71.37), (171.69 ±31.01) ng/L] were significantly higher than those in asthmatic patients without cigarette smoke exposure [(158.88 ± 21.95 ),( 111.42 ± 21.69 ) ng/L] and normal control persons [( 116.78 ± 71.37 ), (73.94 ± 15.72 ) ng/L] (P < 0.01 ).The FEV1% expected value and FEV1/FVC% of the asthmatic patients with cigarette smoke exposure [(51.12 ± 13.30) %, ( 49.16 ± 11.09 )%] was lower than those of asthmatic patients without cigarette smokeexposure [(81.81 ± 5.82)%, (79.00 ± 3.86)%] and normal control persona [(95.50 ± 10.11 )%, (83.18 ±6.04)%] (P < 0.01 ). The level of serum IL-8 was positively correlated to the neutrophils percentage in the induced sputum (r =0.742,P< 0.01 ) ,while negatively correlated to the FEV1% expected value(r =-0.739,P < 0.01 ). Conclusion Cigarette smoke may influence the airway inflammation of the asthmatic patients and accelerate the deterioration of their lung function by promoting the producing of IL-8.%目的 探讨香烟烟雾对支气管哮喘(简称哮喘)患者气道炎性反应

  4. Airway smooth muscle phenotype and function : interactions with current asthma therapies

    NARCIS (Netherlands)

    Halayko, A J; Tran, T; Ji, S Y; Yamasaki, A; Gosens, R

    2006-01-01

    Asthma incidence has climbed markedly in the past two decades despite an increased use of medications that suppress airway inflammation and repress contraction of smooth muscle that encircles the airways. Asthmatics exhibit episodes of airway inflammation that potentiates reversible airway smooth mu

  5. Inhibition of NF-κB Expression and Allergen-induced Airway Inflammation in a Mouse Allergic Asthma Model by Andrographolide

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Li Luo; Xiaoyun Wang; Bin Liao; Guoping Li

    2009-01-01

    Andrographolide from traditional Chinese herbal medicines previously showed it possesses a strong anti-inflammatory activity. In present study, we investigated whether Andrographolide could inhibit allergen-induced airway inflammation and airways hyper-responsiveness and explored the mechanism of Andrographolide on allergen-induced airway inflammation and airways hyper-responsiveness. After sensitized and challenged by ovalbumin, the BALB/c mice were administered intraperitoneally with Andrographolide. Hyper-responsiveness was recorded. The lung tissues were assessed by histological examinations. NF-κB in lung was determined by immunofluorescence staining and Western blotting. Treatment of mice with Androqrapholide displayed lower Penh in response to asthma group mice. After treatment with Andrographolide, the extent of inflammation and cellular infltrafion in the airway were reduced. Andrographolide interrupted NF-κB to express in cell nucleus. The level of NF-κB expression was inhibited by Andrographolide. The data indicate that Andrographolide from traditional Chinese herbal medicines could inhibit extensive infiltration of inflammatory cells in lung and decrease airway hyperreactivity. Andrographolide could inhibit NF-κB expression in lung and suppress NF-κB expressed in the nucleus of airway epithelial cells. Cellular & Molecular Immunology. 2009;6(5):381-385.

  6. Atopic asthmatic subjects but not atopic subjects without ...

    Science.gov (United States)

    BACKGROUND: Asthma is a known risk factor for acute ozone-associated respiratory disease. Ozone causes an immediate decrease in lung function and increased airway inflammation. The role of atopy and asthma in modulation of ozone-induced inflammation has not been determined. OBJECTIVE: We sought to determine whether atopic status modulates ozone response phenotypes in human subjects. METHODS: Fifty volunteers (25 healthy volunteers, 14 atopic nonasthmatic subjects, and 11 atopic asthmatic subjects not requiring maintenance therapy) underwent a 0.4-ppm ozone exposure protocol. Ozone response was determined based on changes in lung function and induced sputum composition, including airway inflammatory cell concentration, cell-surface markers, and cytokine and hyaluronic acid concentrations. RESULTS: All cohorts experienced similar decreases in lung function after ozone. Atopic and atopic asthmatic subjects had increased sputum neutrophil numbers and IL-8 levels after ozone exposure; values did not significantly change in healthy volunteers. After ozone exposure, atopic asthmatic subjects had significantly increased sputum IL-6 and IL-1beta levels and airway macrophage Toll-like receptor 4, Fc(epsilon)RI, and CD23 expression; values in healthy volunteers and atopic nonasthmatic subjects showed no significant change. Atopic asthmatic subjects had significantly decreased IL-10 levels at baseline compared with healthy volunteers; IL-10 levels did not significa

  7. Airway smooth muscle cell proliferation is increased in asthma

    NARCIS (Netherlands)

    Johnson, P R; Roth, Michael; Tamm, M; Hughes, J Margaret; Ge, Q; King, G; Burgess, J K; Black, J L

    2001-01-01

    UNLABELLED: Increased airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely to be the result of increased muscle proliferation. We have for the first time been able to culture ASM cells from asthmatic patients and to compare their prolifera

  8. Inhibitory Effects of Moldavica Total Flavone on Airway Inflammation and Hyperresponsiveness in Ovalbumin-induced Asthmatic Rats%香青兰总黄酮对哮喘大鼠气道炎症及高反应性的改善作用

    Institute of Scientific and Technical Information of China (English)

    康小龙; 何承辉; 邢建国; 闫丽丽

    2013-01-01

    OBJECTIVE To investigate the effects of moldavica total flavone on airway inflammation and hyperrespon-siveness in ovalbumin-induced asthmatic rats. METHODS The cough model in rats and asthma model in cavies were made by using ammonia water and histamine-acetylcholine chloride to observe the antitussive and antiasthmatic actions. The inhibitory effect on airway inflammation and hyperresponsiveness in ovalbumin-induced asthmatic rats were observed. RESLUTS The moldavica total flavone in middle and high dose group could extend the cough latent period in rats(.P<0.05 or 0.01) and gasp latent period in cavies (P<0.01), decreased the levels of serum ovalbumin specific IgE (P<0.01) and eosinophil counts in bronchoalveolar lavage fluid (P<0.01), attenuate the contraction of tracheal smooth muscle in ovalbumin-induced asthmatic rats (P<0.05 or 0.01). CONCLUSION Moldavica total flavone has antitussive and antiasthmatic actions and may inhibit ariway inflammation and hyperresponsiveness in asthma.%目的研究香青兰总黄酮对哮喘大鼠气道炎症及高反应性的影响.方法采用氨水引咳实验和磷酸组胺-氯化乙酰胆碱引喘实验观察香青兰总黄酮的镇咳、平喘作用;同时观察香青兰总黄酮对哮喘大鼠支气管肺泡灌洗液(BALF)中白细胞分类计数和离体气管螺旋条张力的影响.结果香青兰总黄酮中、高剂量能延长小鼠咳嗽潜伏期,减少小鼠2 min内咳嗽次数(P<0.05或P<0.01),延长豚鼠引喘潜伏期(P<0.01);降低哮喘大鼠血清卵白蛋白特异性IgE水平(P<0.01),减少BALF中嗜酸性粒细胞数量(P<0.01)及减小离体气管螺旋条张力(P<0.05或P<0.01).结论 香青兰总黄酮具有一定镇咳、平喘作用;可改善哮喘气道炎症及高反应性.

  9. Physiological Changes at Altitude in Nonasthmatic and Asthmatic Subjects

    Directory of Open Access Journals (Sweden)

    Dianna Louie

    2004-01-01

    Full Text Available Exercised-induced asthma is not due to exercise itself per se, but rather is due to cooling and/or drying of the airway because of the increased ventilation that accompanies exercise. Travel to high altitudes is accompanied by increased ventilation of cool, often dry, air, irrespective of the level of exertion, and by itself, this could represent an 'exercise' challenge for asthmatic subjects. Exercise-induced bronchoconstriction was measured at sea level and at various altitudes during a two-week trek through the Himalayas in a group of nonasthmatic and asthmatic subjects. The results of this study showed that in mild asthmatics, there was a significant reduction in peak expiratory flow at very high altitudes. Contrary to the authors' hypothesis, there was not a significant additional decrease in peak expiratory flow after exercise in the asthmatic subjects at high altitude. However, there was a significant fall in arterial oxygen saturation postexercise in the asthmatic subjects, a change that was not seen in the nonasthmatic subjects. These data suggest that asthmatic subjects develop bronchoconstriction when they go to very high altitudes, possibly via the same mechanism that causes exercise-induced asthma.

  10. Measurement of intraindividual airway tone heterogeneity and its importance in asthma

    OpenAIRE

    Brown, Robert H.; Togias, Alkis

    2016-01-01

    While airways have some degree of baseline tone, the level and variability of this tone is not known. It is also unclear whether there is a difference in airway tone or in the variability of airway tone between asthmatic and healthy individuals. This study examined airway tone and intraindividual airway tone heterogeneity (variance of airway tone) in vivo in 19 individuals with asthma compared with 9 healthy adults. All participants underwent spirometry, body plethysmography, and high-resolut...

  11. Cyclin D1 in ASM Cells from Asthmatics Is Insensitive to Corticosteroid Inhibition.

    Science.gov (United States)

    Allen, Jodi C; Seidel, Petra; Schlosser, Tobias; Ramsay, Emma E; Ge, Qi; Ammit, Alaina J

    2012-01-01

    Hyperplasia of airway smooth muscle (ASM) is a feature of the remodelled airway in asthmatics. We examined the antiproliferative effectiveness of the corticosteroid dexamethasone on expression of the key regulator of G(1) cell cycle progression-cyclin D1-in ASM cells from nonasthmatics and asthmatics stimulated with the mitogen platelet-derived growth factor BB. While cyclin D1 mRNA and protein expression were repressed in cells from nonasthmatics in contrast, cyclin D1 expression in asthmatics was resistant to inhibition by dexamethasone. This was independent of a repressive effect on glucocorticoid receptor translocation. Our results corroborate evidence demonstrating that corticosteroids inhibit mitogen-induced proliferation only in ASM cells from subjects without asthma and suggest that there are corticosteroid-insensitive proliferative pathways in asthmatics.

  12. Allergen uptake, activation, and IL-23 production by pulmonary myeloid DCs drives airway hyperresponsiveness in asthma-susceptible mice.

    Directory of Open Access Journals (Sweden)

    Ian P Lewkowich

    Full Text Available Maladaptive, Th2-polarized inflammatory responses are integral to the pathogenesis of allergic asthma. As regulators of T cell activation, dendritic cells (DCs are important mediators of allergic asthma, yet the precise signals which render endogenous DCs "pro-asthmatic", and the extent to which these signals are regulated by the pulmonary environment and host genetics, remains unclear. Comparative phenotypic and functional analysis of pulmonary DC populations in mice susceptible (A/J, or resistant (C3H to experimental asthma, revealed that susceptibility to airway hyperresponsiveness is associated with preferential myeloid DC (mDC allergen uptake, and production of Th17-skewing cytokines (IL-6, IL-23, whereas resistance is associated with increased allergen uptake by plasmacytoid DCs. Surprisingly, adoptive transfer of syngeneic HDM-pulsed bone marrow derived mDCs (BMDCs to the lungs of C3H mice markedly enhanced lung IL-17A production, and rendered them susceptible to allergen-driven airway hyperresponsiveness. Characterization of these BMDCs revealed levels of antigen uptake, and Th17 promoting cytokine production similar to that observed in pulmonary mDCs from susceptible A/J mice. Collectively these data demonstrate that the lung environment present in asthma-resistant mice promotes robust pDC allergen uptake, activation, and limits Th17-skewing cytokine production responsible for driving pathologic T cell responses central to the development of allergen-induced airway hyperresponsiveness.

  13. The Step Further to Understand the Role of Cytosolic Phospholipase A2 Alpha and Group X Secretory Phospholipase A2 in Allergic Inflammation: Pilot Study

    Directory of Open Access Journals (Sweden)

    Ewa Pniewska

    2014-01-01

    Full Text Available Allergens, viral, and bacterial infections are responsible for asthma exacerbations that occur with progression of airway inflammation. cPLA2α and sPLA2X are responsible for delivery of arachidonic acid for production of eicosanoids—one of the key mediators of airway inflammation. However, cPLA2α and sPLA2X role in allergic inflammation has not been fully elucidated. The aim of this study was to analyze the influence of rDer p1 and rFel d1 and lipopolysaccharide (LPS on cPLA2α expression and sPLA2X secretion in PBMC of asthmatics and in A549 cell line. PBMC isolated from 14 subjects, as well as A549 cells, were stimulated with rDer p1, rFel d1, and LPS. Immunoblotting technique was used to study the changes in cPLA2α protein expression and ELISA was used to analyze the release of sPLA2X. PBMC of asthmatics released more sPLA2X than those from healthy controls in the steady state. rDer p1 induced more sPLA2X secretion than cPLA2α protein expression. rFel d1 caused decrease in cPLA2α relative expression in PBMC of asthmatics and in A549 cells. Summarizing, Der p1 and Fel d1 involve phospholipase A2 enzymes in their action. sPLA2X seems to be one of important PLA2 isoform in allergic inflammation, especially caused by house dust mite allergens.

  14. Airway resistance at maximum inhalation as a marker of asthma and airway hyperresponsiveness

    Directory of Open Access Journals (Sweden)

    O'Connor George T

    2011-07-01

    Full Text Available Abstract Background Asthmatics exhibit reduced airway dilation at maximal inspiration, likely due to structural differences in airway walls and/or functional differences in airway smooth muscle, factors that may also increase airway responsiveness to bronchoconstricting stimuli. The goal of this study was to test the hypothesis that the minimal airway resistance achievable during a maximal inspiration (Rmin is abnormally elevated in subjects with airway hyperresponsiveness. Methods The Rmin was measured in 34 nonasthmatic and 35 asthmatic subjects using forced oscillations at 8 Hz. Rmin and spirometric indices were measured before and after bronchodilation (albuterol and bronchoconstriction (methacholine. A preliminary study of 84 healthy subjects first established height dependence of baseline Rmin values. Results Asthmatics had a higher baseline Rmin % predicted than nonasthmatic subjects (134 ± 33 vs. 109 ± 19 % predicted, p = 0.0004. Sensitivity-specificity analysis using receiver operating characteristic curves indicated that baseline Rmin was able to identify subjects with airway hyperresponsiveness (PC20 min % predicted, FEV1 % predicted, and FEF25-75 % predicted, respectively. Also, 80% of the subjects with baseline Rmin min > 145% predicted had hyperresponsive airways, regardless of clinical classification as asthmatic or nonasthmatic. Conclusions These findings suggest that baseline Rmin, a measurement that is easier to perform than spirometry, performs as well as or better than standard spirometric indices in distinguishing subjects with airway hyperresponsiveness from those without hyperresponsive airways. The relationship of baseline Rmin to asthma and airway hyperresponsiveness likely reflects a causal relation between conditions that stiffen airway walls and hyperresponsiveness. In conjunction with symptom history, Rmin could provide a clinically useful tool for assessing asthma and monitoring response to treatment.

  15. Local therapy with CpG motifs in a murine model of allergic airway inflammation in IFN-beta knock-out mice

    DEFF Research Database (Denmark)

    Matheu, Victor; Treschow, Alexandra; Teige, Ingrid;

    2005-01-01

    of CpG-ODN is not known. OBJECTIVE: Here, we aimed to elucidate the role of IFN-beta in the anti-allergic effect of CpG motifs. METHODS: We assessed the immune response in OVA-primed/OVA-challenged IFN-beta knockout (-/-) mice compared to wild type (WT) control, after intranasal and systemic treatment...

  16. Anthropogenic Climate Change and Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Hueiwang Anna Jeng

    2012-02-01

    Full Text Available Climate change is expected to have an impact on various aspects of health, including mucosal areas involved in allergic inflammatory disorders that include asthma, allergic rhinitis, allergic conjunctivitis and anaphylaxis. The evidence that links climate change to the exacerbation and the development of allergic disease is increasing and appears to be linked to changes in pollen seasons (duration, onset and intensity and changes in allergen content of plants and their pollen as it relates to increased sensitization, allergenicity and exacerbations of allergic airway disease. This has significant implications for air quality and for the global food supply.

  17. Change of bronchial hyperresponsiveness in asthmatic children

    Directory of Open Access Journals (Sweden)

    Stojković-Anđelković Anđelka

    2011-01-01

    Full Text Available Introduction. Bronchial hyperresponsiveness (BHR is a factor in predicting bronchial asthma independently of inflammation markers. Objective. The aims were to determine the frequency and important predictive facts of BHR and the effect of prophylaxis by Global Initiative for Asthma (GINA and National Asthma Education and Prevention Program (NAEPP on BHR in asthmatic children. Methods. BHR in 106 children was evaluated by the bronchoprovocation test with methacholine. Results. The prevalence rate of symptomatic BHR is 18% for crucial point of PC20=4.1±3.03 mg/ml and PD20=3.22±2.59 μmol methacholine. On average asthmatic children express moderate BHR, which persists even two years after administering prophylaxis. After two years bronchial reactivity is significantly smaller, the change of FEV1 is significantly smaller, the velocity of change of slope dose response curve (sDRC is faster and the provocative concentration of methacholine that causes wheezing is 2-3 times lower. A mild sDRC shows milder bronchoconstriction after two years. The fast change of bronchial reactivity in 41% of asthmatic children is contributed to aero-pollution with sulfur dioxide and/ or, possible insufficient and/or inadequate treatment during two years of administering prophylaxis. A simultaneous effect of allergens from home environment and grass and tree pollens and of excessive aero-pollution on children’s airways is important in the onset of symptomatic BHR. After two years of treatment by GINA and NAEPP children do not show asthma symptoms or show mild asthma symptoms, however bronchial sensitivity remains unchanged. Conclusion. Optimal duration of anti-inflammatory treatment in asthmatic children who show moderate bronchial hyperresponsiveness should be longer than two years.

  18. Naringenin Chalcone Suppresses Allergic Asthma by Inhibiting the Type-2 Function of CD4 T Cells

    Directory of Open Access Journals (Sweden)

    Chiaki Iwamura

    2010-01-01

    Conclusions: : The results of this study suggest that naringenin chalcone suppresses asthmatic symptoms by inhibiting Th2 cytokine production from CD4 T cells. Thus, naringenin chalcone may be a useful supplement for the suppression of allergic symptoms in humans.

  19. Current management of allergic rhinitis in children

    NARCIS (Netherlands)

    C. Georgalas; I. Terreehorst; W. Fokkens

    2010-01-01

    Over the last 20 years, there has been significant progress in our understanding of the pathophysiology of allergic rhinitis, including the discovery of new inflammatory mediators, the link between asthma and allergic rhinitis ('one airway-one disease' concept) and the introduction of novel therapeu

  20. Stimulation of allergen-loaded macrophages by TLR9-ligand potentiates IL-10-mediated suppression of allergic airway inflammation in mice

    NARCIS (Netherlands)

    Vissers, JLM; van Esch, BCAM; Jeurink, PV; Hofman, GA; van Oosterhout, AJM

    2004-01-01

    Background: Previously, we demonstrated that OVA-loaded macrophages (OVA-M) partially suppress OVA-induced airway manifestations of asthma in BALB/c mice. In vitro studies showed that OVA-M start to produce IL-10 upon interaction with allergen-specific T cells, which might mediate their immunosuppre

  1. KOTMIN13, a Korean herbal medicine alleviates allergic inflammation in vivo and in vitro

    OpenAIRE

    Lee, Eujin; Kim, Sun-Gun; Park, Na-Young; Park, Hyo-Hyun; Jeong, Kyu-Tae; Choi, Jongkeun; Lee, In-Hae; Lee, Hwadong; Kim, Keuk-Jun; Lee, Eunkyung

    2016-01-01

    Background The ethanol extract of KOTMIN13, composed of Inula japonica Flowers, Trichosanthes kirilowii Semen, Peucedanum praeruptorum Radix, and Allium macrostemon Bulbs, was investigated for its anti-asthmatic and anti-allergic activities. Methods The anti-asthmatic effects of KOTMIN13 were evaluated on ovalbumin (OVA)-induced murine asthma model. Anti-allergic properties of KOTMIN13 in bone-marrow derived mast cells (BMMC) and passive cutaneous anaphylaxis (PCA) in vivo were also examined....

  2. Effects of rapamycin on airway remodeling, IL-8 and IL-10 in asthmatic rats%雷帕霉素对哮喘大鼠气道重塑和白细胞介素-8白细胞介素-10的影响

    Institute of Scientific and Technical Information of China (English)

    余可斐; 熊紫君; 穆敬平; 周立志; 陈雄

    2014-01-01

    Objective To investigate the effects of rapamycin on airway remodeling and lung tissue IL-8 and IL-10 in asthmatic rats, and to explore the mechanism by which rapamycin intervene in airway inflammation and re-modeling in bronchial asthma, so as to provide experimental basis for clinical research. Methods The asthmatic rat model of airway remodeling was established. Then, 30 SD rats were randomly divided into 3 groups: normal control group, asthma group, and rapamycin intervention group, with 10 rats in each group. Airway remodeling was observed in lung tissue sections with hematoxylin-eosin staining. The IL-8 and IL-10 expressions in lung tissues of each group were measured by immunohistochemistry and image analysis technique. Results The rats in asthma group showed characteristic changes of airway remodeling, such as thickened airway walls, hyperplasia of smooth muscle, and mucus hypersecretion. Immunohistochemical staining showed increased IL-8 expression in structural cells and inflammatory cells in airway layers. The IL-10 level was significantly reduced. Compared with the asthma group, the rapamycin treatment group showed mild inflammatory reaction, less smooth muscle hyperplasia and mucus secretion. Immunohis-tochemical staining showed the lowered IL-8 expression and increased IL-10 expression in all cells, with statistical differences when compared with the control group (P<0.05). Conclusion In asthmatic rats, rapamycin can relieve air-way inflammation and remodeling, reduce IL-8 expression, increase IL-10 expression, modulate the imbalance of pro-inflammatory to anti-inflammatory cytokines proportion, and play a role in the anti-inflammation and immune regula-tion in bronchial asthma.%目的:观察雷帕霉素对哮喘大鼠模型气道重塑和肺组织白细胞介素(IL)-8、IL-10的影响,探讨其在干预支气管哮喘气道炎症和气道重塑中的作用机制,为临床研究提供实验依据。方法建立哮

  3. Development of Allergic Airway Disease in Mice following Antibiotic Therapy and Fungal Microbiota Increase: Role of Host Genetics, Antigen, and Interleukin-13

    OpenAIRE

    Mairi C Noverr; Falkowski, Nicole R.; McDonald, Rod A.; McKenzie, Andrew N.; Gary B Huffnagle

    2005-01-01

    Lending support to the hygiene hypothesis, epidemiological studies have demonstrated that allergic disease correlates with widespread use of antibiotics and alterations in fecal microbiota (“microflora”). Antibiotics also lead to overgrowth of the yeast Candida albicans, which can secrete potent prostaglandin-like immune response modulators, from the microbiota. We have recently developed a mouse model of antibiotic-induced gastrointestinal microbiota disruption that is characterized by stabl...

  4. Noninvasive positive pressure ventilation in acute asthmatic attack

    Directory of Open Access Journals (Sweden)

    A. Soroksky

    2010-03-01

    Full Text Available Asthma is characterised by reversible airway obstruction. In most patients, control of disease activity is easily achieved. However, in a small minority, asthma may be fatal. Between the two extremes lie patients with severe asthmatic attacks, refractory to standard treatment. These patients are at an increased risk of recurrent severe attacks, with respiratory failure, and mechanical ventilation. Invasive mechanical ventilation of the asthmatic patient is associated with a higher risk of complications and, therefore, is a measure of last resort. Noninvasive positive pressure ventilation (NPPV is another treatment modality that may be beneficial in patients with severe asthmatic attack who are at an increased risk of developing respiratory failure. These patients have the potential to benefit from early respiratory support in the form of NPPV. However, reports of NPPV in asthmatic patients are scarce, and its usage in asthmatic attacks is, therefore, still controversial. Only a few reports of NPPV in asthma have been published over the last decade. These studies mostly involve small numbers of patients and those who have problematic methodology. In this article we review the available evidence for NPPV in asthma and try to formulate our recommendations for NPPV application in asthma based on the available evidence and reports.

  5. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma.

    Science.gov (United States)

    An, S S; Bai, T R; Bates, J H T; Black, J L; Brown, R H; Brusasco, V; Chitano, P; Deng, L; Dowell, M; Eidelman, D H; Fabry, B; Fairbank, N J; Ford, L E; Fredberg, J J; Gerthoffer, W T; Gilbert, S H; Gosens, R; Gunst, S J; Halayko, A J; Ingram, R H; Irvin, C G; James, A L; Janssen, L J; King, G G; Knight, D A; Lauzon, A M; Lakser, O J; Ludwig, M S; Lutchen, K R; Maksym, G N; Martin, J G; Mauad, T; McParland, B E; Mijailovich, S M; Mitchell, H W; Mitchell, R W; Mitzner, W; Murphy, T M; Paré, P D; Pellegrino, R; Sanderson, M J; Schellenberg, R R; Seow, C Y; Silveira, P S P; Smith, P G; Solway, J; Stephens, N L; Sterk, P J; Stewart, A G; Tang, D D; Tepper, R S; Tran, T; Wang, L

    2007-05-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not "cure" asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored.

  6. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance.

    Science.gov (United States)

    Soroosh, Pejman; Doherty, Taylor A; Duan, Wei; Mehta, Amit Kumar; Choi, Heonsik; Adams, Yan Fei; Mikulski, Zbigniew; Khorram, Naseem; Rosenthal, Peter; Broide, David H; Croft, Michael

    2013-04-01

    Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3(+) iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3(+) Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma.

  7. Goishi tea consumption inhibits airway hyperresponsiveness in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Nakamura Hiroyuki

    2011-08-01

    Full Text Available Abstract Background Airway hyperresponsiveness (AHR is one of the important traits that characterize bronchial asthma. Goishi tea is a post-heating fermented tea that has been reported to have higher free radical scavenging activity. In this study, we evaluated the prophylactic effects of Goishi tea on AHR in BALB/c mice. Results The number of inflammatory cells in BAL fluid was considerably reduced in Goishi tea/Der f and Gallic acid/Der f groups as compared with Tap water/Der f group. Regarding inflammatory cells in BAL, a significant reduction of eosinophils and neutrophils was observed in Goishi tea-treated mice (p Der f group (p Der f group. In asthmatic mice (Tap water/Der f group, the intensity of airway resistance increased simultaneously with the increase in acetylcholine concentration in a dose-dependant way. AHR was significantly inhibited in Goishi tea/Der f and Gallic acid/Der f (p Der f group. Regarding serum specific-IgG1, significantly lower levels of this antibody were observed in Goishi tea/Der f and Gallic acid/Der f groups as compared with the Tap water/Der f group (p Conclusions The results suggest that Goishi tea consumption exerted an inhibitory effect on eosinophilic and neutrophilic infiltration in the lung, attenuated the increase in airway resistance and increased the production of adiponectin; thus reducing Der f induced allergic inflammatory process in mice.

  8. Liquid chromatography/mass spectrometry analysis of exhaled leukotriene B4 in asthmatic children

    Directory of Open Access Journals (Sweden)

    Barnes Peter J

    2005-10-01

    Full Text Available Abstract Background The role of leukotriene (LT B4, a potent inflammatory mediator, in atopic asthmatic and atopic nonasthmatic children is largely unknown. The lack of a gold standard technique for measuring LTB4 in exhaled breath condensate (EBC has hampered its quantitative assessment in this biological fluid. We sought to measure LTB4 in EBC in atopic asthmatic children and atopic nonasthmatic children. Exhaled nitric oxide (NO was measured as an independent marker of airway inflammation. Methods Fifteen healthy children, 20 atopic nonasthmatic children, 25 steroid-naïve atopic asthmatic children, and 22 atopic asthmatic children receiving inhaled corticosteroids were studied. The study design was of cross-sectional type. Exhaled LTB4 concentrations were measured using liquid chromatography/mass spectrometry-mass spectrometry (LC/MS/MS with a triple quadrupole mass spectrometer. Exhaled NO was measured by chemiluminescence with a single breath on-line method. LTB4 values were expressed as the total amount (in pg of eicosanoid expired in the 15-minute breath test. Kruskal-Wallis test was used to compare groups. Results Compared with healthy children [87.5 (82.5–102.5 pg, median and interquartile range], exhaled LTB4 was increased in steroid-naïve atopic asthmatic [255.1 (175.0–314.7 pg, p 4 than steroid-naïve asthmatics [125.0 (25.0–245.0 pg vs 255.1 (175.0–314.7 pg, p Conclusion In contrast to exhaled NO concentrations, exhaled LTB4 values are selectively elevated in steroid-naïve atopic asthmatic children, but not in atopic nonasthmatic children. Although placebo control studies are warranted, inhaled corticosteroids seem to reduce exhaled LTB4 in asthmatic children. LC/MS/MS analysis of exhaled LTB4 might provide a non-invasive, sensitive, and quantitative method for airway inflammation assessment in asthmatic children.

  9. Environmental and genetical factors in airway allergies

    OpenAIRE

    Katarzyna Idzik

    2012-01-01

    It is estimated that approximately 23% of the European population is clinically diagnosed with allergies. In the past three decades, an increase in the incidence of respiratory allergies was noted. At the beginning of the 20th century allergic inflammations affected only around 1% of the world population. Medical symptoms of allergic airway inflammation are variable for different patients. Airways allergy are complex phenotypes, which are determined by both genetic and...

  10. LOW-DOSE AIRBORNE ENDOTOXIN EXPOSURE ENHANCES BRONCHIAL RESPONSIVENESS TO INHALED ALLERGEN IN ATOPIC ASTHMATICS

    Science.gov (United States)

    Endotoxin exposure has been associated with both protection against development of TH2-immune responses during childhood and exacerbation of asthma in persons who already have allergic airway inflammation.1 Occupational and experimental inhalation exposures to endotoxin have been...

  11. Management of allergic Olympic athletes.

    Science.gov (United States)

    Fitch, K D

    1984-05-01

    Twenty percent of the recent Australian Olympic athletes have had an allergic disorder. Because of the ban on all sympathomimetic drugs except some beta 2-agonists. Olympic team physicians have a major responsibility to ensure that no competitor is disqualified for infringing on the antidoping rules of the Medical Commission of the International Olympic Committee. Inadvertent contravention of these regulations may occur because numerous banned sympathomimetics are available to athletes and their coaches without medical prescription and are frequently contained in combination preparations. The unbroken 24 yr in which asthmatics have won Olympic medals have been both before and after the introduction of drug tests. Currently a comprehensive range of preventive and therapeutic medications are available for asthmatics to compete with minimal respiratory disadvantage. It was, however, during a period of unnecessary restriction that an American swimmer forfeited his gold medal because of prerace ingestion of a banned sympathomimetic agent. Should adverse air quality be encountered during the Los Angeles Olympics, allergic competitors will be among the most inconvenienced . Athletes with allergic rhinitis and sinusitis will be the most disadvantaged because sympathomimetic vasoconstrictors remain banned. It is strongly recommended that the Medical Commission of the International Olympic Committee meet with an appropriate body of experts (i.e., the American Academy of Allergy and Immunology) to review this ban on vasoconstrictor agents.

  12. Eosinophilic airway inflammation in asthma is associated with an altered airway microbiome

    DEFF Research Database (Denmark)

    Sverrild, Asger; Kiilerich, Pia; Brejnrod, Asker

    2016-01-01

    BACKGROUND: Subjects with asthma have higher microbiome diversity, and an altered composition with more Proteobacteria and less Bacteroidetes compared to healthy controls. Studies comparing airway inflammation and airway microbiome are sparse, especially in subjects not on anti-inflammatory treat......BACKGROUND: Subjects with asthma have higher microbiome diversity, and an altered composition with more Proteobacteria and less Bacteroidetes compared to healthy controls. Studies comparing airway inflammation and airway microbiome are sparse, especially in subjects not on anti......-inflammatory treatment. OBJECTIVE: To describe the relationship between the airway microbiome and patterns of airway inflammation in steroid-free subjects with asthma and healthy controls. METHODS: Broncho-alveolar lavage was collected from 23 steroid-free, non-smoking subjects with asthma and 10 healthy controls....... The overall composition of the airway microbiome of asthmatics with the lowest levels of eosinophils, but not asthmatics with the highest levels of eosinophils deviated significantly from that of healthy individuals. Asthmatics with the lowest levels of eosinophils had an altered bacterial abundance profile...

  13. Dysregulation of the stress response in asthmatic children.

    Science.gov (United States)

    Priftis, K N; Papadimitriou, A; Nicolaidou, P; Chrousos, G P

    2009-01-01

    The stress system co-ordinates the adaptive responses of the organism to stressors of any kind. Inappropriate responsiveness may account for increased susceptibility to a variety of disorders, including asthma. Accumulated evidence from animal models suggests that exogenously applied stress enhances airway reactivity and increases allergen-induced airway inflammation. This is in agreement with the clinical observation that stressful life events increase the risk of a new asthma attack. Activation of the hypothalamic-pituitary-adrenal (HPA) axis by specific cytokines increases the release of cortisol, which in turn feeds back and suppresses the immune reaction. Data from animal models suggest that inability to increase glucocorticoid production in response to stress is associated with increased airway inflammation with mechanical dysfunction of the lungs. Recently, a growing body of evidence shows that asthmatic subjects who are not treated with inhaled corticosteroids (ICS) are likely to have an attenuated activity and/or responsiveness of their HPA axis. In line with this concept, most asthmatic children demonstrate improved HPA axis responsiveness on conventional doses of ICS, as their airway inflammation subsides. Few patients may experience further deterioration of adrenal function, a phenomenon which may be genetically determined.

  14. Role of Low Dosage Arsenic Trioxide on Pulmonary Dendritic Cells in Asthmatic Mice

    Institute of Scientific and Technical Information of China (English)

    周林福; 殷凯生; 周智敏

    2003-01-01

    Objective: To investigate the distribution and recruitment of pulmonary dendritic cells (DCs) and the influence of low dosage arsenic trioxide (As2O3) on them in the airway of asthmatic mice. Methods: Thirty BALB/c mice were randomly divided into 3 groups: the control group, the asthmatic group and the As2O3 treated group. The mice asthmatic model was induced via sensitizing with peritoneal injection of ovalbumin (OVA) for two times and then provocated with aerosol inhalation of OVA for a week. The treated group was peritoneally injected with 0.2 ml solution of As2O3 (4mg/kg) 0.5h after each provocation. The immunohistochemistry and computerised image analysis were applied to detect quantitatively the DCs in the lung and airway of mice. Results: All intraepithelial nonlymphoid dendritic cells-145 (NLDC-145) throughout the respiratory tree in the mice of the control group formed a network with the density of DCs varying from (575±54) cells/mm2 epithelial surface in the large airway, to (68±12) cells/mm2 epithelial surface in the small airway. The distribution of airway NLDC-145+ in the asthmatic group was similar to that in the control group, but its density was significantly upregulated (P<0.01). The distribution of airway NLDC-145 in the treated group was similar to that in the asthmatic group, only its density was significantly downregulated (P<0.01). Conclusion: There is an integral network of NLDC-145+ throughout the respiratory tree. To downregulate the density but not change the distribution of pulmonary DCs could be an important therapeutic mechanism of low dosage As2O3 in treating asthma.

  15. Occurrence of allergic bronchopulmonary mycosis in patients with asthma: An Eastern India experience

    Directory of Open Access Journals (Sweden)

    Sarkar Anirban

    2010-01-01

    Full Text Available Background: Allergic bronchopulmonary mycosis (ABPM is a clinical syndrome associated with immune sensitivity to various fungi notably Aspergillus spp. that colonize the airways of asthmatics. Early diagnosis and treatment with systemic corticosteroids is the key in preventing the progression of the disease to irreversible lung fibrosis. Aims: To study the occurrence of ABPM among asthma patients with fungal sensitization attending a chest clinic of a tertiary hospital of eastern India. The clinico-radiological and aetiological profiles are also described. Materials and Methods: All consecutive patients with asthma presenting to the chest clinic over a period of one year were screened for cutaneous hypersensitivity to 12 common fungal antigens. The skin test positive cases were further evaluated for ABPM using standard criteria. Results: One hundred and twenty-six asthma patients were screened using twelve common fungal antigens; forty patients (31.74% were found to be skin test positive, and ABPM was diagnosed in ten patients (7.93%. Of the 10 cases of ABPM, nine cases were those of allergic bronchopulmonary aspergillosis (ABPA and one case was identified as caused by sensitization to Penicillium spp. A majority of the cases of ABPM had advanced disease and had significantly lower FEV1 compared to non-ABPM skin test positive asthmatics. Central bronchiectasis on high resolution CT scan was the most sensitive and specific among the diagnostic parameters. Conclusion: There is a significant prevalence of ABPM in asthma patients attending our hospital and this reinforces the need to screen asthma patients for fungal sensitisation. This will help in early diagnosis and prevention of irreversible lung damage.

  16. Understanding allergic asthma from allergen inhalation tests

    Science.gov (United States)

    Cockcroft, Donald W; Hargreave, Fredrick E; O’Byrne, Paul M; Boulet, Louis-Philippe

    2007-01-01

    The allergen challenge has evolved, in less than 150 years, from a crude tool used to document the etiology of allergen-induced disease to a well-controlled tool used today to investigate the pathophysiology and pharmacotherapy of asthma. Highlights of the authors’ involvement with the allergen challenge include confirmation of the immunoglobulin E-dependence of the late asthmatic response, importance of (nonallergic) airway hyper-responsiveness as a determinant of the airway response to allergen, identification of allergen-induced increase in airway hyper-responsiveness, documentation of beta2-agonist-induced increase in airway response to allergen (including eosinophilic inflammation), advances in understanding the pathophysiology and kinetics of allergen-induced airway responses, and development of a muticentre clinical trial group devoted to using the allergen challenge for investigating promising new therapeutic strategies for asthma. PMID:17948142

  17. Divergent Inhibitor Susceptibility among Airway Lumen-Accessible Tryptic Proteases.

    Directory of Open Access Journals (Sweden)

    Shilpa Nimishakavi

    Full Text Available Tryptic serine proteases of bronchial epithelium regulate ion flux, barrier integrity, and allergic inflammation. Inhibition of some of these proteases is a strategy to improve mucociliary function in cystic fibrosis and asthmatic inflammation. Several inhibitors have been tested in pre-clinical animal models and humans. We hypothesized that these inhibitors inactivate a variety of airway protease targets, potentially with bystander effects. To establish relative potencies and modes of action, we compared inactivation of human prostasin, matriptase, airway trypsin-like protease (HAT, and β-tryptase by nafamostat, camostat, bis(5-amidino-2-benzimidazolylmethane (BABIM, aprotinin, and benzamidine. Nafamostat achieved complete, nearly stoichiometric and very slowly reversible inhibition of matriptase and tryptase, but inhibited prostasin less potently and was weakest versus HAT. The IC50 of nafamostat's leaving group, 6-amidino-2-naphthol, was >104-fold higher than that of nafamostat itself, consistent with suicide rather than product inhibition as mechanisms of prolonged inactivation. Stoichiometric release of 6-amidino-2-naphthol allowed highly sensitive fluorometric estimation of active-site concentration in preparations of matriptase and tryptase. Camostat inactivated all enzymes but was less potent overall and weakest towards matriptase, which, however was strongly inhibited by BABIM. Aprotinin exhibited nearly stoichiometric inhibition of prostasin and matriptase, but was much weaker towards HAT and was completely ineffective versus tryptase. Benzamidine was universally weak. Thus, each inhibitor profile was distinct. Nafamostat, camostat and aprotinin markedly reduced tryptic activity on the apical surface of cystic fibrosis airway epithelial monolayers, suggesting prostasin as the major source of such activity and supporting strategies targeting prostasin for inactivation.

  18. The high affinity IgE receptor (FcεRI) expression and function in airway smooth muscle.

    Science.gov (United States)

    Redhu, Naresh Singh; Gounni, Abdelilah S

    2013-02-01

    The airway smooth muscle (ASM) is no longer considered as merely a contractile apparatus and passive recipient of growth factors, neurotransmitters and inflammatory mediators signal but a critical player in the perpetuation and modulation of airway inflammation and remodeling. In recent years, a molecular link between ASM and IgE has been established through Fc epsilon receptors (FcεRs) in modulating the phenotype and function of these cells. Particularly, the expression of high affinity IgE receptor (FcεRI) has been noted in primary human ASM cells in vitro and in vivo within bronchial biopsies of allergic asthmatic subjects. The activation of FcεRI on ASM cells suggests a critical yet almost completely ignored network which may modulate ASM cell function in allergic asthma. This review is intended to provide a historical perspective of IgE effects on ASM and highlights the recent updates in the expression and function of FcεRI, and to present future perspectives of activation of this pathway in ASM cells.

  19. Environmental Effects on Fractional Exhaled Nitric Oxide in Allergic Children

    Directory of Open Access Journals (Sweden)

    Stefania La Grutta

    2012-01-01

    Full Text Available Fractional exhaled nitric oxide (FeNO is a non-invasive marker of airway inflammation in asthma and respiratory allergy. Environmental factors, especially indoor and outdoor air quality, may play an important role in triggering acute exacerbations of respiratory symptoms. The authors have reviewed the literature reporting effects of outdoor and indoor pollutants on FeNO in children. Although the findings are not consistent, urban and industrial pollution—mainly particles (PM2.5 and PM10, nitrogen dioxide (NO2, and sulfur dioxide (SO2—as well as formaldehyde and electric baseboard heating have been shown to increase FeNO, whilst ozone (O3 tends to decrease it. Among children exposed to Environmental Tobacco Smoke (ETS with a genetic polymorphisms in nitric oxide synthase genes (NOS, a higher nicotine exposure was associated with lower FeNO levels. Finally, although more studies are needed in order to better investigate the effect of gene and environment interactions which may affect the interpretation of FeNO values in the management of children with asthma, clinicians are recommended to consider environmental exposures when taking medical histories for asthma and respiratory allergy. Further research is also needed to assess the effects of remedial interventions aimed at reducing/abating environmental exposures in asthmatic/allergic patients.

  20. INFLUENCE OF A POSITIVE FAMILY HISTORY AND ASSOCIATED ALLERGIC DISEASES ON THE NATURAL COURSE OF ASTHMA

    NARCIS (Netherlands)

    ROORDA, RJ; GERRITSEN, J; VANAALDEREN, WMC; KNOL, K

    1992-01-01

    The outcome of childhood asthma was studied in a cohort of 406 asthmatic children, with emphasis on the influence of family history for allergic disease, as well as the influence of associated allergic diseases on prognosis. Sixty-two per cent had a positive family history for atopy. In young adulth

  1. Effect of interleukin-33 on Th1/Th2 cytokine ratio in peripheral lymphocytes in asthmatic mice

    Institute of Scientific and Technical Information of China (English)

    He Xinliang; Wu Wei; Lu Yan; Guo Yali; Hu Chaoliang; Huang Yuyun; Xu Yuzu

    2014-01-01

    Background Allergic asthma is a chronic airway inflammatory disease partly characterised by high concentration of T help 2 (Th2) cytokines in bronchoalveolar lavage fluid (BALF).There is no report on the relation of peripherally circulating blood lymphocytes and asthma.We explored the balance of Th2/Th1 cytokines in asthmatic mice.Exogenous recombinant interleukin (IL) 33 acted on mudne peripheral circulating blood lymphocytes,IL-5 cytokine was selected for assessing Th2 cytokines and interferon-gamma (IFN-y) for Th1 cytokines.Methods Female specific pathogen free BABL/c mice were sensitised by intraperitoneal injection of 20 μg of ovalbumin emulsified in 1 mg of aluminium hydroxide gel in a total volume of 200 μl,and challenged for 30 minutes in 7 consecutive days with an aerosol of 2 g ovalbumin in 100 ml of PBS.Then we collected BALF and isolated lymphocytes from the peripheral blood.The lymphocytes were divided into two groups:asthmatic group and normal group.Th1/Th2 cytokines was detected by enzyme-linked immunosorbent assay (ELISA) kits.Results In the asthma group,we found numerous eosinophils and lymphocytes on the glass slides.We then confirmed that the optimal concentration of IL-33 was 10 ng/ml and time of IL-33 stimulating lymphocytes was 24 hours.In the asthma group,the production of IL-5 was significantly increased over normal group after stimulation with IL-33 (P <0.05)and the production of IFNy was supressed from IL-33 stimulated lymphocytes (P <0.05).Conclusion IL-33 acts on lymphocytes of peripheral blood increasing secretion of Th2 cytokines and inhibiting secretion of Th1 cytokines.

  2. Evaluation of Right Ventricular Function by Tissue Doppler Echocardiography in Asthmatic Children

    Directory of Open Access Journals (Sweden)

    Mehdi Ghaderian

    2016-11-01

    Full Text Available BackgroundAsthma is the most chronic inflammatory disorder of the airways in children and asthmatic patients can experience cardiac dysfunction, pulmonary hypertension and finally cor pulmonale later in life. We aimed to investigate Right Ventricular (RV functions in asthmatic children by conventional and tissue Doppler echocardiography (TDE.Materials and Methods Pulmonary function tests, conventional and TDE examinations were performed on 42 asthmatic and 42 age- and gender matched healthy controls subjects (n=42.Results Compared with healthy children the RV wall was statistically thicker among asthmatic patients (P= 0.01. Conventional echocardiography had not significant difference between cases and controls, but TDE had significant difference between these two groups. Peak E’ velocity, A’ velocity, E’/A’ ratio and S’ in lateral and medial sites of tricuspid annulus valve, were significantly differ from control group in our patients (P

  3. KyoT2 downregulates airway remodeling in asthma.

    Science.gov (United States)

    Hu, Mei; Ou-Yang, Hai-Feng; Han, Xing-Peng; Ti, Xin-Yu; Wu, Chang-Gui

    2015-01-01

    The typical pathological features of asthma are airway remodeling and airway hyperresponsiveness (AHR). KyoT2, a negative modulator of Notch signaling, has been linked to asthma in several previous studies. However, whether KyoT2 is involved in the regulation of airway remodeling or the modulation of airway resistance in asthma is unclear. In this study, we aimed to evaluate the therapeutic potential of KyoT2 in preventing asthma-associated airway remodeling and AHR. BALB/c mice were used to generate a mouse model of asthma. Additionally, the expression of Hes1 and Notch1 in airway was analyzed using Immunofluorescence examination. The asthmatic mice were intranasally administered adenovirus expressing KyoT2 and were compared to control groups. Furthermore, subepithelial fibrosis and other airway remodeling features were analyzed using hematoxylin and eosin staining, Van Gieson's staining and Masson's trichrome staining. AHR was also evaluated. This study revealed that KyoT2 downregulated the expression of Hes1, repressed airway remodeling, and alleviated AHR in asthmatic mice. It is reasonable to assume that KyoT2 downregulates airway remodeling and resistance in asthmatic mice through a Hes1-dependent mechanism. Therefore, KyoT2 is a potential clinical treatment strategy for asthma.

  4. Quantitative computed tomography imaging of airway remodeling in severe asthma.

    Science.gov (United States)

    Grenier, Philippe A; Fetita, Catalin I; Brillet, Pierre-Yves

    2016-02-01

    Asthma is a heterogeneous condition and approximately 5-10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively.

  5. Hydrogen peroxide in exhaled air is increased in stable asthmatic children

    NARCIS (Netherlands)

    Q. Jobsis (Quirijn); H.C. Raatgeep (Rolien); P.W.M. Hermans (Peter); J.C. de Jongste (Johan)

    1997-01-01

    textabstractExhaled air condensate provides a noninvasive means of obtaining samples from the lower respiratory tract. Hydrogen peroxide (H2O2) in exhaled air has been proposed as a marker of airway inflammation. We hypothesized that in stable asthmatic children the H2O

  6. NO in exhaled air of asthmatic children is reduced by the leukotriene receptor antagonist montelukast

    DEFF Research Database (Denmark)

    Bisgaard, H; Loland, L; Oj, J A

    1999-01-01

    Nitric oxide in exhaled air (FENO) is increased in asthmatic children, probably reflecting aspects of airway inflammation. We have studied the effect of the leukotriene receptor antagonist (LTRA) montelukast on FENO with a view to elucidate potential anti-inflammatory properties of LTRAs. Twenty-...

  7. Treatment of allergic asthma: Modulation of Th2 cells and their responses

    Directory of Open Access Journals (Sweden)

    Erb Klaus J

    2011-08-01

    Full Text Available Abstract Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral, leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.

  8. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases.

    Science.gov (United States)

    Miyata, Jun; Arita, Makoto

    2015-01-01

    Omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are found naturally in fish oil and are commonly thought to be anti-inflammatory nutrients, with protective effects in inflammatory diseases including asthma and allergies. The mechanisms of these effects remain mostly unknown but are of great interest for their potential therapeutic applications. Large numbers of epidemiological and observational studies investigating the effect of fish intake or omega-3 fatty acid supplementation during pregnancy, lactation, infancy, childhood, and adulthood on asthmatic and allergic outcomes have been conducted. They mostly indicate protective effects and suggest a causal relationship between decreased intake of fish oil in modernized diets and an increasing number of individuals with asthma or other allergic diseases. Specialized pro-resolving mediators (SPM: protectins, resolvins, and maresins) are generated from omega-3 fatty acids such as EPA and DHA via several enzymatic reactions. These mediators counter-regulate airway eosinophilic inflammation and promote the resolution of inflammation in vivo. Several reports have indicated that the biosynthesis of SPM is impaired, especially in severe asthma, which suggests that chronic inflammation in the lung might result from a resolution defect. This article focuses on the beneficial aspects of omega-3 fatty acids and offers recent insights into their bioactive metabolites including resolvins and protectins.

  9. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases

    Directory of Open Access Journals (Sweden)

    Jun Miyata

    2015-01-01

    Full Text Available Omega-3 fatty acids, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA, are found naturally in fish oil and are commonly thought to be anti-inflammatory nutrients, with protective effects in inflammatory diseases including asthma and allergies. The mechanisms of these effects remain mostly unknown but are of great interest for their potential therapeutic applications. Large numbers of epidemiological and observational studies investigating the effect of fish intake or omega-3 fatty acid supplementation during pregnancy, lactation, infancy, childhood, and adulthood on asthmatic and allergic outcomes have been conducted. They mostly indicate protective effects and suggest a causal relationship between decreased intake of fish oil in modernized diets and an increasing number of individuals with asthma or other allergic diseases. Specialized pro-resolving mediators (SPM: protectins, resolvins, and maresins are generated from omega-3 fatty acids such as EPA and DHA via several enzymatic reactions. These mediators counter-regulate airway eosinophilic inflammation and promote the resolution of inflammation in vivo. Several reports have indicated that the biosynthesis of SPM is impaired, especially in severe asthma, which suggests that chronic inflammation in the lung might result from a resolution defect. This article focuses on the beneficial aspects of omega-3 fatty acids and offers recent insights into their bioactive metabolites including resolvins and protectins.

  10. CD4+ T cells enhance the unloaded shortening velocity of airway smooth muscle by altering the contractile protein expression.

    Science.gov (United States)

    Matusovsky, Oleg S; Nakada, Emily M; Kachmar, Linda; Fixman, Elizabeth D; Lauzon, Anne-Marie

    2014-07-15

    Abundant data indicate that pathogenesis in allergic airways disease is orchestrated by an aberrant T-helper 2 (Th2) inflammatory response. CD4(+) T cells have been localized to airway smooth muscle (ASM) in both human asthmatics and in rodent models of allergic airways disease, where they have been implicated in proliferative responses of ASM. Whether CD4(+) T cells also alter ASM contractility has not been addressed. We established an in vitro system to assess the ability of antigen-stimulated CD4(+) T cells to modify contractile responses of the Brown Norway rat trachealis muscle. Our data demonstrated that the unloaded velocity of shortening (Vmax) of ASM was significantly increased upon 24 h co-incubation with antigen-stimulated CD4(+) T cells, while stress did not change. Enhanced Vmax was dependent upon contact between the CD4(+) T cells and the ASM and correlated with increased levels of the fast (+)insert smooth muscle myosin heavy chain isoform. The levels of myosin light chain kinase and myosin light chain phosphorylation were also increased within the muscle. The alterations in mechanics and in the levels of contractile proteins were transient, both declining to control levels after 48 h of co-incubation. More permanent alterations in muscle phenotype might be attainable when several inflammatory cells and mediators interact together or after repeated antigenic challenges. Further studies will await new tissue culture methodologies that preserve the muscle properties over longer periods of time. In conclusion, our data suggest that inflammatory cells promote ASM hypercontractility in airway hyper-responsiveness and asthma.

  11. 臭氧氧化应激对小鼠急性过敏性气道炎症所致气道高反应性和黏液分泌的影响%Effects of ozone oxidative stress on the airway hyperresponsiveness and mucus production in mice with acute allergic airway inflammation

    Institute of Scientific and Technical Information of China (English)

    包爱华; 陈宇清; 张旻; 李锋; 周新

    2015-01-01

    Objective To explore the impact of ozone on the airway hyperresponsinveness (AHR),airway inflammation and mucus production in an allergic asthma mouse model.Methods Twenty-eight female BALB/c mice were randomly divided into 4 equal groups:healthy control,ozone control,asthma model,and ozone intervention.For asthma model establishing,the mice were sensitized and challenged with ovalbumin,while the controls received saline.For ozone exposure,the mice were exposed to 2.0 ppm ozone for 3 hrs,while the control treatment group exposed to filtered air for 3 hrs.Some measurements were performed 24 hrs after the exposure,including AHR,pulmonary inflammation,mucus secretion,epithelial barrier function,and the level of oxidant stress.Results Compared with the asthma model group,mice in the ozone intervention group exhibited lower LogPC100Penh (0.22 ±0.09 vs 0.50 ±0.19,t =3.06,P =0.006),higher bronchoalveolar lavage (BAL) neutrophil numbers [(0.80 ± 0.21) × 103/L vs (0.15 ± 0.06) × 103/L,t =3.63,P =0.019] and BAL concentration of lower molecular weight hyaluronan (LMW-HA) [(111 ±17) μg/Lvs (35 ±18) μg/L,t=5.12 P=0.000],TNF-α[(155 ±30) μg/Lvs (86±19) μg/L,t=2.15,P=0.044] and IL-13[(65±11) μg/Lvs (33 ±20) μg/L,t=2.95,P=0.008].Mice in the ozone intervention group showed higher lung pathological inflammation score (2.80 ± 0.10 vs 1.92 ±0.23,t =3.91,P =0.000) and upregulated expressions of TNF-α mRNA (7.0 ± 1.5 vs 3.57±1.20,t=2.65,P=0.014),CXCL-1 mRNA (7.0±1.1 vs2.5±1.0,t=4.12,P=0.000) and IL-17 mRNA (28.8 ±5.2 vs 16.4 ±4.4,t =6.33,P =0.000).Ozone exposure on the asthmatic mice also caused higher percentage of PAS positive-staining epithelial cells [(76.2 ± 8.7) % vs (55.8 ± 14.4) %,t =8.14,P =0.000] and higher epithelial surface mucus volume [(721 ± 584) nl/mm2 vs (272 ± 185) nl/mm2,t =5.78,P =0.000] as well as the MUC5ac mRNA expression (15.4 ±4.6 vs 7.0 ± 1.9,t =4.37,P =0.000).Besides,ozone exposure in the asthma model decreased epithelial

  12. Buccal health in asthmatic patients.

    Directory of Open Access Journals (Sweden)

    Nora Sexto Delgado

    2003-04-01

    Full Text Available Background: Buccal health as integral and determinant part of general health makes us find different ways and methods to elevate life quality in the population. Objective: To establish the risk of suffering from dental cavities in asthmatic patients. Methods: A non match case and control study constituted by 100 children selected at simple random from the universe of asthmatic patients belonging to the General Comprehensive doctor offices number 7,9,10, 11, 43, and 44 from Area II in Cienfuegos municipality. The controlled group was selected in the same offices but from the universe of non asthmatic children. The age in both groups was from 6 to 15 years old. Visits to the children´s home were carried out for the record of the information through health oral dental and buccal health knowledge surveys. Results: The index of cavities, lost, and obturated permanent teeth was higher (3, 28 than in the control group (0, 44. The buccal hygiene indexes and the level of knowledge in both groups did not show significant differences. The most used drugs in asthma therapy were salbutamol and ketotifeno which change the buccal milieu. The odds ratio technique between asthmatic and non asthmatic patients showed 4, 9 times more at risk of suffering from dental cavities in the first group. Finally, it can be stated that the asthmatic patients are more at risk of suffering from cavities than the non asthmatic ones, so a program for buccal health in these patients should be performed.

  13. Sputum interleukin-17 is increased and associated with airway neutrophilia in patients with severe asthma

    Institute of Scientific and Technical Information of China (English)

    SUN Yong-chang; ZHOU Qing-tao; YAO Wan-zhen

    2005-01-01

    @@ Asthma is a chronic inflammatory airway disease characterized by the involvement of many cells (including eosinophils, mast cells, T cells, neutrophils and airway epithelial cells) and their cellular components.1 While airway eosinophilic inflammation is considered as a characteristic of asthma, our previous reports2,3 and other recent studies4,5 have demonstrated that neutrophils may play important roles in airway inflammation, or even in airway remodeling, particularly in severe asthma. The mechanisms underlying the neutrophil accumulation in asthmatic airway remain to be elucidated. Interleukin-8 (IL-8) is a potent chemotactic factor for neutrophils, and was demonstrated to be increased in asthmatic airways.6,7 More recent studies have shown that T-cell derived IL-17 can accumulate neutrophils via a IL-8 dependent pathway.8,9 Whether IL-17/IL-8 mechanism is involved in airway inflammation in severe asthma is not clear.

  14. Connective tissue growth factor and vascular endothelial growth factor from airway smooth muscle interact with the extracellular matrix

    NARCIS (Netherlands)

    Burgess, Janette K; Ge, Qi; Poniris, Maree H; Boustany, Sarah; Twigg, Stephen M; Black, Judith L; Johnson, Peter R A

    2006-01-01

    Airway remodeling describes the structural changes that occur in the asthmatic airway that include airway smooth muscle hyperplasia, increases in vascularity due to angiogenesis, and thickening of the basement membrane. Our aim in this study was to examine the effect of transforming growth factor-be

  15. The impact of azithromycin therapy on the airway microbiota in asthma

    OpenAIRE

    Slater, Mariel; Rivett, Damian W.; Williams, Lisa; Martin, Matthew; Harrison, Timothy W.; Sayers, Ian; Bruce, Kenneth D; Shaw, Dominick E.

    2014-01-01

    There is interest in the use of macrolide antibiotics in asthma. Macrolides have been shown to improve airway hyperresponsiveness (AHR) and measures of airway inflammation.The degree of AHR may relate to the microbiota present in the airways, with a recent study reporting that patients with asthma with a significant improvement in AHR following treatment with clarithromycin had a higher bacterial diversity prior to treatment. To our knowledge, the impact on the asthmatic airway microbiota of ...

  16. The impact of azithromycin therapy on the airway microbiota in asthma

    OpenAIRE

    Slater, Mariel; Rivett, Damian W.; Williams, Lisa; Martin, Matthew; Harrison, Timothy W.; Sayers, Ian; Bruce, Kenneth D; Shaw, Dominick E.

    2013-01-01

    There is interest in the use of macrolide antibiotics in asthma. Macrolides have been shown to improve airway hyperresponsiveness (AHR) and measures of airway inflammation.The degree of AHR may relate to the microbiota present in the airways, with a recent study reporting that patients with asthma with a significant improvement in AHR following treatment with clarithromycin had a higher bacterial diversity prior to treatment. To our knowledge, the impact on the asthmatic airway microbiota of ...

  17. Targeting of CD25 and glucocorticoid-induced TNF receptor family-related gene-expressing T cells differentially modulates asthma risk in offspring of asthmatic and normal mother mice.

    Science.gov (United States)

    Hubeau, Cedric; Apostolou, Irina; Kobzik, Lester

    2007-02-01

    Immunological mechanisms leading to increased asthma susceptibility in early life remain obscure. In this study, we examined the effects of neonatal Ab treatments targeting T cell populations on the development of an asthma syndrome. We used a model of increased asthma susceptibility where offspring of asthmatic BALB/c mother mice are more prone (than normal pups) to develop the disease. Neonatal pretreatment of naive pups with mAb directed against the IL-2Ralpha chain (CD25), the costimulatory molecule glucocorticoid-induced TNFR family related gene, and the inhibitory molecule CTLA-4 elicited contrasting effects in offspring depending on the mother's asthma status. Specifically, neonatal CD25(high) T cell depletion stimulated asthma susceptibility in normal offspring whereas it ameliorated the condition of pups born of asthmatic mothers. Conversely, glucocorticoid-induced TNFR family related gene ligation as a primary signal reduced the spleen cellularity and largely abrogated asthma susceptibility in asthma-prone offspring, without inducing disease in normal pups. Striking changes in Th1/Th2 cytokine levels, especially IL-4, followed mAb pretreatment and were consistent with the impact on asthma susceptibility. These results point to major differences in neonatal T cell population and responsiveness related to maternal asthma history. Interventions that temporarily remove and/or inactivate specific T cell subsets may therefore prove useful to attenuate early life asthma susceptibility and prevent the development of Th2-driven allergic airway disease.

  18. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2013-03-01

    Full Text Available Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation threshold conditions and is designed to be flexible with respect to its representation vegetation species and plant functional types (PFTs. The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS, which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen

  19. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    Science.gov (United States)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2014-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF/CMAQ) modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California (USA) for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to

  20. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease.

    Science.gov (United States)

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T; House, James M; Flagan, Richard C; Avol, Edward L; Gilliland, Frank D; Guenther, Alex; Chung, Serena H; Lamb, Brian K; VanReken, Timothy M

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  1. [Asthma and allergic diseases in Sweden].

    Science.gov (United States)

    Lundbäck, B; Lindström, M; Forsberg, B

    1992-01-01

    Until recently the prevalence of asthma in Sweden was assessed to be 2-3 per cent. An increase in the prevalence of asthma and allergic rhinitis was noted among new conscripts undergoing health work-ups prior to military service with the most marked increase in northern Sweden, were 5 per cent of conscripts were reported to have asthma. In southern Sweden the prevalence remained about 2 per cent. More recent questionnaire studies in mid- and southern Sweden have reported similar rates of respiratory symptoms and use of anti-asthmatic drugs as in northern Sweden, suggesting that there may be no difference in asthma prevalence between the north and the south of the country. The exact prevalence of allergic diseases among Swedish adults is still not clear, but 40 per cent of adults in northern Sweden report that they often have wheezing in the chest, attacks of breathlessness, longstanding cough or sputum production. In questionnaire studies among children about 40 per cent of respondents have reported that they had asthma, allergic rhinitis or other type of hypersensitivity. The absence of generally accepted diagnostic criteria for asthma and allergic disorders in epidemiological studies makes comparison of prevalence difficult. It is thus not possible to be sure that the prevalence of asthma and allergic disorders in Sweden has recently increased. Risk factors for the development of asthma and allergic disorders are under study in Sweden. Several studies report an association in children between urban living and allergic disorders.

  2. Chlamydia muridarum infection subverts dendritic cell function to promote Th2 immunity and airways hyperreactivity.

    Science.gov (United States)

    Kaiko, Gerard E; Phipps, Simon; Hickey, Danica K; Lam, Chuan En; Hansbro, Philip M; Foster, Paul S; Beagley, Kenneth W

    2008-02-15

    There is strong epidemiological evidence that Chlamydia infection can lead to exacerbation of asthma. However, the mechanism(s) whereby chlamydial infection, which normally elicits a strong Th type 1 (Th1) immune response, can exacerbate asthma, a disease characterized by dominant Th type 2 (Th2) immune responses, remains unclear. In the present study, we show that Chlamydia muridarum infection of murine bone marrow-derived dendritic cells (BMDC) modulates the phenotype, cytokine secretion profile, and Ag-presenting capability of these BMDC. Chlamydia-infected BMDC express lower levels of CD80 and increased CD86 compared with noninfected BMDC. When infected with Chlamydia, BMDC secrete increased TNF-alpha, IL-6, IL-10, IL-12, and IL-13. OVA peptide-pulsed infected BMDC induced significant proliferation of transgenic CD4(+) DO11.10 (D10) T cells, strongly inhibited IFN-gamma secretion by D10 cells, and promoted a Th2 phenotype. Intratracheal transfer of infected, but not control noninfected, OVA peptide-pulsed BMDC to naive BALB/c mice, which had been i.v. infused with naive D10 T cells, resulted in increased levels of IL-10 and IL-13 in bronchoalveolar lavage fluid. Recipients of these infected BMDC showed significant increases in airways resistance and decreased airways compliance compared with mice that had received noninfected BMDC, indicative of the development of airways hyperreactivity. Collectively, these data suggest that Chlamydia infection of DCs allows the pathogen to deviate the induced immune response from a protective Th1 to a nonprotective Th2 response that could permit ongoing chronic infection. In the setting of allergic airways inflammation, this infection may then contribute to exacerbation of the asthmatic phenotype.

  3. Detrimental effects of albuterol on airway responsiveness requires airway inflammation and is independent of β-receptor affinity in murine models of asthma

    Directory of Open Access Journals (Sweden)

    Aimi Steven

    2011-03-01

    Full Text Available Abstract Background Inhaled short acting β2-agonists (SABA, e.g. albuterol, are used for quick reversal of bronchoconstriction in asthmatics. While SABA are not recommended for maintenance therapy, it is not uncommon to find patients who frequently use SABA over a long period of time and there is a suspicion that long term exposure to SABA could be detrimental to lung function. To test this hypothesis we studied the effect of long-term inhaled albuterol stereoisomers on immediate allergic response (IAR and airway hyperresponsiveness (AHR in mouse models of asthma. Methods Balb/C mice were sensitized and challenged with ovalbumin (OVA and then we studied the IAR to inhaled allergen and the AHR to inhaled methacholine. The mice were pretreated with nebulizations of either racemic (RS-albuterol or the single isomers (S- and (R-albuterol twice daily over 7 days prior to harvest. Results We found that all forms of albuterol produced a significant increase of IAR measured as respiratory elastance. Similarly, we found that AHR was elevated by albuterol. At the same time a mouse strain that is intrinsically hyperresponsive (A/J mouse was not affected by the albuterol isomers nor was AHR induced by epithelial disruption with Poly-L-lysine affected by albuterol. Conclusions We conclude that long term inhalation treatment with either isomer of albuterol is capable of precipitating IAR and AHR in allergically inflamed airways but not in intrinsically hyperresponsive mice or immunologically naïve mice. Because (S-albuterol, which lacks affinity for the β2-receptor, did not differ from (R-albuterol, we speculate that isomer-independent properties of the albuterol molecule, other than β2-agonism, are responsible for the effect on AHR.

  4. [Evaluation of occupational allergic diseases of the respiratory tract].

    Science.gov (United States)

    Pankova, V B

    2011-01-01

    The paper presents the basic etiological and pathogenetic aspects of occupational allergic diseases of the respiratory tract, discusses the clinical course, diagnosis, and priorities of the prevention of allergic diseases of the upper airways and bronchopulmonary apparatus from the action of industrial allergens.

  5. Allergic asthma exhaled breath metabolome: a challenge for comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Caldeira, M; Perestrelo, R; Barros, A S; Bilelo, M J; Morête, A; Câmara, J S; Rocha, S M

    2012-09-07

    Allergic asthma represents an important public health issue, most common in the paediatric population, characterized by airway inflammation that may lead to changes in volatiles secreted via the lungs. Thus, exhaled breath has potential to be a matrix with relevant metabolomic information to characterize this disease. Progress in biochemistry, health sciences and related areas depends on instrumental advances, and a high throughput and sensitive equipment such as comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (GC×GC-ToFMS) was considered. GC×GC-ToFMS application in the analysis of the exhaled breath of 32 children with allergic asthma, from which 10 had also allergic rhinitis, and 27 control children allowed the identification of several hundreds of compounds belonging to different chemical families. Multivariate analysis, using Partial Least Squares-Discriminant Analysis in tandem with Monte Carlo Cross Validation was performed to assess the predictive power and to help the interpretation of recovered compounds possibly linked to oxidative stress, inflammation processes or other cellular processes that may characterize asthma. The results suggest that the model is robust, considering the high classification rate, sensitivity, and specificity. A pattern of six compounds belonging to the alkanes characterized the asthmatic population: nonane, 2,2,4,6,6-pentamethylheptane, decane, 3,6-dimethyldecane, dodecane, and tetradecane. To explore future clinical applications, and considering the future role of molecular-based methodologies, a compound set was established to rapid access of information from exhaled breath, reducing the time of data processing, and thus, becoming more expedite method for the clinical purposes.

  6. Different Profile of Interleukin-10 Production in Circulating T Cells from Atopic Asthmatics Compared with Healthy Subjects

    Directory of Open Access Journals (Sweden)

    K Matsumoto

    2004-01-01

    Full Text Available BACKGROUND: Interleukin (IL-10 is a pleiotropic cytokine released from various cells, including T cells. Although IL-10 is suggested to inhibit allergic responses, its role in asthma remains uncertain. The purpose of the present study was to compare the profile of IL-10 in circulating T cells from stable atopic asthmatics, atopic nonasthmatics and healthy controls.

  7. T-cell repertoire in the blood and lungs of atopic asthmatics before and after ragweed challenge

    NARCIS (Netherlands)

    Yurovsky, VV; Weersink, EJM; Meltzer, SS; Moore, WC; Postma, DS; Bleecker, ER; White, B

    1998-01-01

    T cells play a pivotal role in initiating and orchestrating allergic responses in asthma. The goal of this work was to learn whether ragweed challenge in the lungs alters the T-cell repertoire expressed in the blood and lungs of atopic asthmatics. Analyses of cell numbers, differentials, and T-cell

  8. House dust mite induced allergic rhinitis in children in primary care : Epidemiology and Management

    NARCIS (Netherlands)

    C.M.A. de Bot (Cindy)

    2012-01-01

    textabstractAllergic rhinitis (AR) is an allergen-induced, upper-airway inflammatory disease. The characteristic symptoms of allergic rhinitis are a runny nose, sneezing, congestion, redness of the eyes, watering eyes, and itching of the eyes, nose and throat. Previously, allergic rhinitis was subdi

  9. Indoleamine 2,3-dioxygenase expression in patients with allergic rhinitis: a case-control study

    Directory of Open Access Journals (Sweden)

    Luukkainen Annika

    2011-12-01

    Full Text Available Abstract Background Indoleamine 2,3-dioxygenase (IDO is a tryptophan catalyzing enzyme. It has been suggested that it has a role in lower airway allergic inflammations, but its role in allergic rhinitis has not been investigated. Objective Our aim was to evaluate the expression of IDO in the nasal mucosa of allergic rhinitis patients allergic to birch pollen during peak exposure to birch pollen allergen and compare it to non-atopic patients. Methods IDO expression was immunohistochemically evaluated from nasal specimens obtained in- and off-season from otherwise healthy non-smoking volunteers both allergic to birch pollen (having mild or moderate allergic rhinoconjunctivitis and non-allergic controls. Results: The IDO expression levels were low in healthy controls and remained low also in patients allergic to birch pollen. There were no differences in the expression of IDO in- and off-season in either healthy or allergic subjects. Conclusions There is a controversy in the role of IDO in upper and lower airways during allergic airway disease. It seems that IDO is associated to allergic inflammations of the lower airways, but does not have a local role in the nasal cavity at least in mild or moderate forms of allergic rhinitis.

  10. Anti-asthmatic and anti-oxidative effect of Quince seed dichloromethane extract on a rat model of allergic asthma%维药榅桲籽提取物对哮喘大鼠抗炎、抗氧化功能的影响

    Institute of Scientific and Technical Information of China (English)

    麦丽帕提·木合巴提; 伊力亚斯·艾萨; 塔衣尔·吐尔逊; 哈木拉提·吾甫尔; 努尔买买提·艾买提

    2016-01-01

    目的:探讨榅桲籽提取物对实验性哮喘大鼠抗炎、抗氧化功能的影响。方法将健康雄性 SD大鼠72只随机分为正常对照组、哮喘模型组、地塞米松阳性对照组、榅桲籽低剂量组、榅桲籽中剂量组、榅桲籽高剂量组,每组12只。除了正常对照组外,其余各组以卵清蛋白致敏及激发的方法建立哮喘大鼠模型,正常对照组用PBS进行致敏和刺激。分别给予药物干预,末次给药后处死动物,采集标本,并检测 BALF和组织中炎性细胞数量、炎性细胞因子、活性氧及抗氧化酶含量,观察支气管肺组织形态学的改变。结果哮喘模型组 BALF中白细胞和 EOS增加,与正常对照组比较差异有显著统计学意义(P <0.01);榅桲籽各剂量组和阳性对照组 BALF中,白细胞和 EOS总数较哮喘模型组显著降低,差异有显著统计学意义(P <0.01)。喘模型组大鼠肺组织中 IL-4、IL-5含量均明显升高,与正常对照组比较差异有统计学意义(P <0.01);榅桲籽各剂量组大鼠肺组织中IL-4、IL-5含量较哮喘模型组明显降低,差异有统计学意义(P <0.01)。哮喘模型组MDA含量较正常对照组升高,差异有统计学意义(P <0.05);榅桲籽各治疗组MDA含量较哮喘模型组升高下降,差异有统计学意义(P <0.05)。哮喘模型组SOD、GSH活力降低,与正常对照组比较差异有显著统计学意义(P<0.01);榅桲籽治疗组SOD、GSH活力较哮喘模型组显著增加,差异有统计学意义(P <0.01)。结论维药榅桲籽可减轻气道炎症,抑制气道高反应性,改善气道氧化环境,发挥抗炎、平喘作用。%Objective To study the anti-asthmatic,anti-oxidative effect of Quince seed dichloromethane ex-tract to asthmatic rat on airway inflammation.Methods The extract was obtained from the Quince seed in dichloromethane.Rats were sensitized

  11. Airway remodeling in asthma: what really matters.

    Science.gov (United States)

    Fehrenbach, Heinz; Wagner, Christina; Wegmann, Michael

    2017-03-01

    Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and "endotyped" human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.

  12. Inhaled different Concentrations of Budesonide in Early Phase Interfere in Airway Inflammation and Remodeling in Asthmatic Rats%早期吸入不同浓度布地奈德对哮喘大鼠气道炎症和重构的干预

    Institute of Scientific and Technical Information of China (English)

    梁蕊; 金寿德; 邵玉霞; 张新; 刘立杰; 荣海芳

    2011-01-01

    Objective: To investigate the effect of inhaled different concentrations of budesonide in early phase on the airway inflammation and remodeling in asthmatic rats. Methods: Thirty-two rats were randomly divided into 4 groups: group A (n=8,control with saline), groupB (n=8,asthma with OVA),group C (n=8, asthma with OVA treated with low concentrations of budesonide in early phase), group D (n=8, asthma with OVA treated with high concentrations of budesonide in early phase). The bronchoalveolar lavage fluids (BALF) were classification in BALF studied in each group . The pathologic alteration of the bronchi and lung tissue was observed by HE staining. Expression of NGF and TGF-β1 were detected by immunohistochemistry, collagen deposition by Masson staining. The Morphological parameters including the number of inflammatory cell per unit airway area, bronchial basement membrane perimeter (Pbm), smooth muscle area( Wam), inner airway area( Wai), collagen area( Wcol) by computer image analysis software. Results: The total cell counts and the percentage of EOS in BALF the level of TNF-α , ET-1 increased compared with group A (P<0.01), group C and D reduced significantly compared with group B (P<0.01). The expression of NGF and TGF-β1, inflammatory cell counts around bronchus, airway smooth muscle hypertrophy ,the collagen deposition of reticular basement, airway inner wall area were significant higher than those groupA( P<0.01), the data in group C and D were significant lower than those in group B(P<0.01), there were apparent difference between group C and group D compared with group A (P<0.05,P<0.01). The difference between group C and group D.(P<0.05,P<0.01) Conclusion: Inhaled different concentrations of budesonide in early phase could apparently inhibit airway inflammation and remodeling, high concentrations of budesonide than low concentrations.%目的:研究早期吸入不同浓度布地奈德对哮喘大鼠气道炎症和气道重构的干预情况.方法:32

  13. Quantitative analysis of dynamic airway changes after methacholine and salbutamol inhalation on xenon-enhanced chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Joon; Goo, Jin Mo; Kim, Jong Hyo; Park, Eun-Ah [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Medical Research Center, Seoul (Korea, Republic of); Lee, Chang Hyun [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Medical Research Center, Seoul (Korea, Republic of); Seoul National University Hospital, Healthcare Gangnam Center, Seoul (Korea, Republic of); Jung, Jae-Woo; Park, Heung-Woo [Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Allergy and Clinical Immunology, Seoul (Korea, Republic of); Cho, Sang-Heon [Seoul National University Hospital, Healthcare Gangnam Center, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Allergy and Clinical Immunology, Seoul (Korea, Republic of)

    2012-11-15

    To investigate the dynamic changes in airways in response to methacholine and salbutamol inhalation and to correlate the xenon ventilation index on xenon-enhanced chest CTs in asthmatics. Thirty-one non-smokers (6 normal, 25 asthmatics) underwent xenon-enhanced chest CT and pulmonary function tests. Images were obtained at three stages (basal state, after methacholine inhalation and after salbutamol inhalation), and the total xenon ventilation index (TXVI) as well as airway values were measured and calculated. The repeated measures ANOVA and Spearman's correlation coefficient were used for statistical analysis. TXVI in the normal group did not significantly change (P > 0.05) with methacholine and salbutamol. For asthmatics, however, the TXVI significantly decreased after methacholine inhalation and increased after salbutamol inhalation (P < 0.05). Of the airway parameters, the airway inner area (IA) significantly increased after salbutamol inhalation in all airways (P < 0.01) in asthmatics. Airway IA, wall thickness and wall area percentage did not significantly decrease after methacholine inhalation (P > 0.05). IA of the large airways was well correlated with basal TXVI, FEV{sub 1} and FVC (P < 0.05). Airway IA is the most reliable parameter for reflecting the dynamic changes after methacholine and salbutamol inhalation, and correlates well with TXVI in asthmatics on xenon-enhanced CT. (orig.)

  14. Allergic and nonallergic asthma in children: are they distinct phenotypes?

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Mahdaviani

    2014-10-01

    Full Text Available The aim of current study is to describe clinical similarities and differences between atopic and non-atopic asthma in children. In a cross-sectional study, 95 asthmatic children (75 allergics and 20 nonallergics were included in the study. Demographic, clinical, and familial history were compared between two groups. There was no significant differences between variables like sex, age of onset (p=0.75, severity (p=0.70, and family history among the two groups (p=0.42. Patients with allergic asthma were significantly older than those with non- allergic asthma (11.28 ± 3.19 and 9.75 ± 2.35 years, respectively, p=0.02. The controversy lingers over the presence of a completely distinct phenotype of non-atopic asthma in children. Our study suggested that phenotypes of allergic and non-allergic asthma in children were not entirely distinct.

  15. [Associations of allergic and asthmatic patients in Europe].

    Science.gov (United States)

    Parra, A; Ferreiro, H; Olaguíbel, J M; García, B E; Mina, C; Azanza, C; del Amo, C

    2003-01-01

    Patients' associations are NGOs that emerge as a result of the needs of patients with chronic diseases that cannot be solved in the doctor's surgery. At the start, the role of the health personnel, in guiding and collaborating with them, was fundamental, and their aims and interests coincided to a high degree. Their healthy operation favored both the patients and, indirectly, the health professionals related to them. However, we must bear in mind that those interests are not identical and, on occasion, can be clearly divergent. This is why the independence of these associations cannot be renounced upon, and they are managed according to the growth in their size and social influence.

  16. Adjuvanted rush immunotherapy using CpG oligodeoxynucleotides in experimental feline allergic asthma.

    Science.gov (United States)

    Reinero, Carol R; Cohn, Leah A; Delgado, Cherlene; Spinka, Christine M; Schooley, Elizabeth K; DeClue, Amy E

    2008-02-15

    Allergic asthma is driven by relative overexpression of Th2 cell-derived cytokines in response to aeroallergens. In independent studies, both allergen-specific rush immunotherapy (RIT) and CpG oligodeoxynucleotides (ODN) showed promise in blunting eosinophilic inflammation in a model of feline allergic asthma. We hypothesized that RIT using allergen and CpG ODN would work synergistically to dampen the asthmatic phenotype in experimentally asthmatic cats. Twelve cats with asthma induced using Bermuda grass allergen (BGA) were studied. Of these, six were administered adjuvanted BGA RIT using CpG ODN #2142; six were administered placebo (saline) RIT and later crossed over to adjuvanted RIT. Over 2 days, subcutaneous CpG ODN (0.5ng/kg) with BGA (increasing doses every 2h from 20 to 200microg) was administered. Adverse events were recorded and compared with historical controls. Percentage of eosinophils in bronchoalveolar lavage fluid (BALF), % peripheral CD4+CD25+ T regulatory cells (Tregs), lymphocyte proliferation in response to ConA, and cytokine concentrations in BALF were measured over 2 months. Group mean BALF % eosinophils for the adjuvanted RIT cats were significantly lower at week 1 and month 1 (p=0.03 for both), and marginally significantly lower at month 2 (p=0.09) compared with placebo RIT cats. By the end of the study, 8/12 treated cats had BALF % eosinophils within the reference range for healthy cats. Adjuvanted RIT, but not placebo RIT, cats had significant decreases in the ConA stimulation index over time (p=0.05). BALF IL-4 concentrations were significantly higher at week 1 in adjuvanted RIT cats compared with baseline and month 2, and also with placebo RIT cats at week 1. No significant differences were detected between treatments or over time for IL-10 or IFN-gamma concentrations in BALF or for %Tregs cells in peripheral blood. Adjuvanted RIT using CpG ODN in experimental feline asthma dampens eosinophilic airway inflammation. Adverse effects

  17. MAPK/NF-κB-dependent upregulation of kinin receptors mediates airway hyperreactivity

    DEFF Research Database (Denmark)

    Zhang, Yaping; Cardell, Lars-Olaf; Edvinsson, Lars;

    2013-01-01

    Airway hyperreactivity (AHR) is a major feature of asthmatic and inflammatory airways. Cigarette smoke exposure, and bacterial and viral infections are well-known environmental risk factors for AHR, but knowledge about the underlying molecular mechanisms on how these risk factors lead to the deve...

  18. Nuclear factor erythroid 2-related factor 2 (Nrf2 regulates airway epithelial barrier integrity

    Directory of Open Access Journals (Sweden)

    Yoshitaka Shintani

    2015-09-01

    Conclusions: Our results indicated that the Nrf2/AOX1 pathway was important for enhancing airway epithelial barrier integrity. Because the airway epithelium of asthmatics is susceptible to reduced barrier integrity, this pathway might be a new therapeutic target for asthma.

  19. TIM-3 is not essential for development of airway inflammation induced by house dust mite antigens

    Directory of Open Access Journals (Sweden)

    Yoshihisa Hiraishi

    2016-10-01

    Conclusions: Our findings indicate that, in mice, TIM-3 is not essential for development of HDM-induced acute or chronic allergic airway inflammation, although it appears to be involved in reduced lymphocyte recruitment during HDM-induced chronic allergic airway inflammation.

  20. Effects of leptin on airway inflammation and the expression of Th1/Th2 cytokines in asthmatic rats%瘦素对支气管哮喘大鼠气道炎症及Th1/Th2细胞因子表达作用的影响

    Institute of Scientific and Technical Information of China (English)

    曹娟; 陈建辉; 朱述阳

    2009-01-01

    Objective To investigate the effects of hptin on airway inflammation and the expression of Th1/Th2 cytokines. Methods The obesity and acute asthma models were established in 40 female SD rats, which were randomly divided into a normal weight control group (group A), a normal weight asthmatic group (group B), a normal weight intervention group (group C), an obese control group (group D) and an obese asthmatic group (group E). The airway resistance and airway responsiveness were calculated by transpulmonary pressure and gas flow rate. The numbers of leukocytes, eosinophils (EOS) and neutrephils (N) in brenchoalveolar lavage fluid (BALF) were counted. The concentrations of interleukin-4 (IL-4), interferon-γ(IFN-γ) and leptin in serum and BALF were determined by ELISA. The protein and Mrna expression of leptin was measured by Western blot and RT-PCR respectively. Results The airway resistance in group C and E [(0.890±0.106)cm H2O·ml-1·s-1 (1.024±0.096)cm H2O·ml-1·s-1(1.129±0.107) cm H2O·ml-1·s-1, (0.946±0.104) cm H2O·ml-1·s-1, (1.124±0.095)cm H2O·ml-1·s-1, (1.135±0.105) cm H2O·ml-1·s-1,respectively.] was increased significantly compared to group B [(0.638±0.128) cm H2O·ml-1·s-1, (0.745±0.073) cm H2O·ml-1·s-1,(0.773±0.090) cm H2O·ml-1·s-1] (q=7.128, 8.712, 8.318, 11.300, 11.258, 11.447, all P<0.05). The numbers of leukocyte and neutrophils in group C and E [(91±9)×104/ml, (108±21)×104/ml, (12.4±4.0)×104/ml, (14.2±5.9)×104/ml, respectively.] were increased significantly compared to group B [(79±7)×104/ml, (2.4±1.1)×104/ml] (q= 2.923, 7.063, 8.629, 10.182,all P<0.05). The concentrations of IFN-γ were [(42.3±3.5) ng/L, (45.1±4.8) ng/L, (19.2±1.8) ng/L, (20.3±1.5)ng/L] in group C and E respectively, which were significantly higher than those of group B[(16.5±1.4) ng/L,(9.3±1.0) ng/L] (q= 21.607, 23.952, 16.919, 18.799, all P<0.05). The protein and Mrna expression of leptin in lung tissue in group C and E[(0.40±0.07)ng/L,(0

  1. Pregnancy Outcomes in Asthmatic Women

    Directory of Open Access Journals (Sweden)

    Mehran Karimi

    2008-06-01

    Full Text Available Asthma is considered to be the most common respiratory disorder complicating pregnancy. Seventy-six asthmatic and 152 non-asthmatic pregnant women were studied. Maternal asthma was significantly associated with adverse infant outcomes, including prematurity, low birth weight and the need for Cesarean delivery. The results of this study could indicate that pregnant women with asthma were at substantially increased risk for adverse infant outcomes and suggest the need for extra attention to mothers with asthma before and during pregnancy.

  2. Allergic rhinitis

    Science.gov (United States)

    ... invader References Baroody FM, Naclerio RM. Allergy and immunology of the upper airway. In: Flint PW, Haughey BH, Lund V, et al, eds. Cummings Otolaryngology: Head & Neck Surgery . 6th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap ...

  3. LONG TERM EFFECTS OF PRENATAL AND POSTNATAL AIRBORNE PAH EXPOSURE ON VENTILATORY LUNG FUNCTION OF NON-ASTHMATIC PREADOLESCENT CHILDREN. PROSPECTIVE BIRTH COHORT STUDY IN KRAKOW

    Science.gov (United States)

    Jedrychowski, Wieslaw A.; Perera, Frederica P.; Maugeri, Umberto; Majewska, Renata; Mroz, Elzbieta; Flak, Elzbieta; Camman, David; Sowa, Agata; Jacek, Ryszard

    2014-01-01

    The main goal of the study was to test the hypothesis that prenatal and postnatal exposure to polycyclic aromatic hydrocarbons (PAH) is associated with depressed lung function in non-asthmatic children. The study sample comprises 195 non-asthmatic children of non-smoking mothers, among whom the prenatal PAH exposure was assessed by personal air monitoring in pregnancy. At the age of 3, residential air monitoring was carried out to evaluate the residential PAH exposure indoors and outdoors. At the age of 5 to 8, children were given allergic skin tests for indoor allergens; and between 5–9 years lung function testing (FVC, FEV05, FEV1 and FEF25–75) was performed. The effects of prenatal PAH exposure on lung function tests repeated over the follow-up were adjusted in the General Estimated Equation (GEE) model for the relevant covariates. No association between FVC with prenatal PAH exposure was found; however for the FEV1 deficit associated with higher prenatal PAH exposure (above 37ng/m3) amounted to 53 mL (p = 0.050) and the deficit of FEF25–75 reached 164 mL (p=0.013). The corresponding deficits related to postnatal residential indoor PAH level (above 42 ng/m3) were 59 mL of FEV1 (p=0.028) and 140 mL of FEF25–75 (p=0.031). At the higher residential outdoor PAH level (above 90 ng/m3) slightly greater deficit of FEV1 (71mL, p = 0.009) was observed. The results of the study suggest that transplacental exposure to PAH compromises the normal developmental process of respiratory airways and that this effect is compounded by postnatal PAH exposure. PMID:25300014

  4. Long term effects of prenatal and postnatal airborne PAH exposures on ventilatory lung function of non-asthmatic preadolescent children. Prospective birth cohort study in Krakow.

    Science.gov (United States)

    Jedrychowski, Wieslaw A; Perera, Frederica P; Maugeri, Umberto; Majewska, Renata; Mroz, Elzbieta; Flak, Elzbieta; Camann, David; Sowa, Agata; Jacek, Ryszard

    2015-01-01

    The main goal of the study was to test the hypothesis that prenatal and postnatal exposures to polycyclic aromatic hydrocarbons (PAH) are associated with depressed lung function in non-asthmatic children. The study sample comprises 195 non-asthmatic children of non-smoking mothers, among whom the prenatal PAH exposure was assessed by personal air monitoring in pregnancy. At the age of 3, residential air monitoring was carried out to evaluate the residential PAH exposure indoors and outdoors. At the age of 5 to 8, children were given allergic skin tests for indoor allergens; and between 5 and 9 years lung function testing (FVC, FEV05, FEV1 and FEF25-75) was performed. The effects of prenatal PAH exposure on lung function tests repeated over the follow-up were adjusted in the General Estimated Equation (GEE) model for the relevant covariates. No association between FVC with prenatal PAH exposure was found; however for the FEV1 deficit associated with higher prenatal PAH exposure (above 37 ng/m(3)) amounted to 53 mL (p=0.050) and the deficit of FEF25-75 reached 164 mL (p=0.013). The corresponding deficits related to postnatal residential indoor PAH level (above 42 ng/m(3)) were 59 mL of FEV1 (p=0.028) and 140 mL of FEF25-75 (p=0.031). At the higher residential outdoor PAH level (above 90 ng/m(3)) slightly greater deficit of FEV1 (71 mL, p=0.009) was observed. The results of the study suggest that transplacental exposure to PAH compromises the normal developmental process of respiratory airways and that this effect is compounded by postnatal PAH exposure.

  5. Trichuris suis ova therapy for allergic rhinitis

    DEFF Research Database (Denmark)

    Bager, Peter; Arnved, John; Rønborg, Steen;

    2010-01-01

    Parasitic helminth infections can protect against allergic airway inflammation in experimental models and have been associated with a reduced risk of atopy and a reduced course of asthma in some observational studies. Although no clinical evidence exists to support the use of helminth therapy...

  6. Integrin αVβ5 Mediated TGF-β Activation by Airway Smooth Muscle Cells in Asthma

    OpenAIRE

    Tatler, Amanda L; John, Alison E.; Jolly, Lisa; Habgood, Anthony; Porte, Jo; Brightling, Chris; Knox, Alan J; Pang, Linhua; Sheppard, Dean; Huang, Xiaozhu; Jenkins, Gisli

    2011-01-01

    Severe asthma is associated with airway remodelling, characterised by structural changes including increased smooth muscle mass and matrix deposition in the airway, leading to deteriorating lung function. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine leading to increased synthesis of matrix molecules by human airway smooth muscle cells (HASMs) and is implicated in asthmatic airway remodelling. TGF-β is synthesised as a latent complex, sequestered in the extracellular matrix, ...

  7. Effect of recombinant IL-12 expression vector on the regulation of airway inflammation and the immune response of pregnancy asthmatic mice%重组IL-12表达载体构建及对妊娠期哮喘小鼠气道炎症的调节与免疫应答影响

    Institute of Scientific and Technical Information of China (English)

    马佳佳; Nick Lu; 陈必良; 滑玮; 张建芳

    2013-01-01

    Objective:To construct the eukaryotic expression vector with recombinant gene of interleukin-12( IL-12) , to identify its biological activity, and after it was transfected into airway, to observe its effect on the regulation of airway inflammation and the immune response in mice of asthma during pregnancy. Methods: The cDNA fragment of mIL-12 gene, which was amplified by PCR, was inserted into pcDNA3. 1 ( + ). After the digestion by restriction enzyme and the identification of sequencing, it was transiently transfected to P815 cells by liposome. Then we observed the expression and positioning of fluorescent protein in cells. Sixty female BALB/c mice were used to construct the model of asthma during pregnancy. All mice were randomly divided into 6 different groups. Pregnancy or non-pregnancy asthma mice treated with airway perfusing of 50 μ1 recombinant plasmid pcDNA3.1 ( + ) -mIL-12 and liposome complexes were named as API group and ANP1 group respectively. Accordingly, Pregnancy or non-pregnancy asthma mice treated with empty plasmid pcDNA3. 1 ( + ) were named as AP2 group and ANP2 group. Control mice (HNP group) and health pregnancy mice (HP group) were only treated with 50 |xl PBS. 24 hours after the final challenge, the airway inflammation was evaluated by the inflammatory cell counts of bronchoalveolar lavage fluid ( BALF) and the HE staining of lung tissue. The expression of IL-12 protein We successfully constructed the specific recombinant eukaryotic expression vector pcDNA3. 1( + )-mIL-12, and its expression in P815 cells is efficient. Among the asthmatic mice during pregnancy, the inflammatory changes of lung tissue in the recombinant plasmid group were significantly lessened than that in the empty plasmid group, while the cell number of leukocytes and Eos ( eosino-phil) , Neu (neutrophils) and Lym (lymphocytes) in BALF was significantly reduced (P<0.05). Proved by the results of RT-PCR and Western blot, in mice' s lung tissue. The expression of IL-12

  8. Immunopathology and Immunogenetics of Allergic Bronchopulmonary Aspergillosis

    Directory of Open Access Journals (Sweden)

    Alan P. Knutsen

    2011-01-01

    Full Text Available Allergic bronchopulmonary aspergillosis (ABPA is a Th2 hypersensitivity lung disease in response to Aspergillus fumigatus that affects asthmatic and cystic fibrosis (CF patients. Sensitization to A. fumigatus is common in both atopic asthmatic and CF patients, yet only 1%–2% of asthmatic and 7%–9% of CF patients develop ABPA. ABPA is characterized by wheezing and pulmonary infiltrates which may lead to pulmonary fibrosis and/or bronchiectasis. The inflammatory response is characterized by Th2 responses to Aspergillus allergens, increased serum IgE, and eosinophilia. A number of genetic risks have recently been identified in the development of ABPA. These include HLA-DR and HLA-DQ, IL-4 receptor alpha chain (IL-4RA polymorphisms, IL-10 −1082GA promoter polymorphisms, surfactant protein A2 (SP-A2 polymorphisms, and cystic fibrosis transmembrane conductance regulator gene (CFTR mutations. The studies indicate that ABPA patients are genetically at risk to develop skewed and heightened Th2 responses to A. fumigatus antigens. These genetic risk studies and their consequences of elevated biologic markers may aid in identifying asthmatic and CF patients who are at risk to the development of ABPA. Furthermore, these studies suggest that immune modulation with medications such as anti-IgE, anti-IL-4, and/or IL-13 monoclonal antibodies may be helpful in the treatment of ABPA.

  9. Relationship between Emotion, Severity of Illness and the Effect on IL-8 in Asthmatic Children%儿童情绪与哮喘病情的关系及对IL-8的影响

    Institute of Scientific and Technical Information of China (English)

    牛轶; 程自立; 王高华; 姜毅

    2002-01-01

    Objective: To examine the emotional states o f asthmatic children wit h different degrees of severity, as well as the effects of emotion on change of cytokines in airway. Methods: Asthmatic children were divi ded into two groups ac cording to the degrees of severity: moderate and mild. Their emotional states we re measured and results were compared. Correlation analysis was conducted betwee n scores on emotional scales and sputum levels of IL-8.Results: Total scores on anxiety and depression were higher in the moderate group than in the mild group. Negative correlation was found between levels of anxiety and IL-8 during acute exacerbation of asthmatic condition. Conclusion: Emotional distress was found to be increased with severity of asthmatic condition in children. Anxiety contribu ted to the decreased concentration of IL-8 in asthmatic children's airway.

  10. 血清霉菌特异性IgE阳性支气管哮喘患者的临床及过敏状态分析%Analysis of clinical features and allergic status of asthmatic patients with positive serum mycosisspecific IgE

    Institute of Scientific and Technical Information of China (English)

    牟艳; 叶伶; 龚颖; 张志风; 金美玲

    2013-01-01

    Objective To improve understanding of the clinical characteristics and diagnosis of allergic bronchopulmonary mycosis (ABPM).Methods We retrospectively analyzed the clinical data,including clinical symptoms,laboratory tests,pulmonary function tests and chest CT imaging of 95 asthmatic patients with positive serum mycosis-specific IgE from January 2010 to September 2012 in Zhongshan Hospital Affiliated to Fudan University.Results Of the 95 patients,59 cases met the diagnostic criteria of ABPM.There were 34 males and 25 females,with a mean age of (53 ± 4) years and a duration of asthma for (21 ±4) years.Thirty-six cases showed mycosis hypersensitivity (MH).There were 10 males and 26females,with a mean age of (46 ± 6) years and a duration of asthma for (16 ± 5) years.Clinical symptoms such as wheeze (52 vs 21,x2 =11.159,P =0.001),cough (54 vs 27,x2 =4.859,P =0.030) and expectoration (43 vs 9,x2 =25.731,P =0.000) were more common in the ABPM group compared to the MH group.In the ABPM group,58 were A.fumigatus-specific IgE antibody positive,34 Penicillium-specific IgE antibody positive and 1 only Penicillium-specific IgE antibody positive.While in the MH group,15 were A.fumigatus-specific IgE antibody positive,24 Penicillium-specific IgE antibody positive and 17 only Penicillium-specific IgE antibody positive.In the ABPM group,the percentage of positive fumigatus-specific IgE antibody was higher (58 vs 15,x2 =24.500,P =0.000),while the percentages of dermatophagoides pteronyssinus (21 vs 20,x2 =3.632,P =0.045) and Dermatophagoides farinae (17 vs 21,x2 =8.118,P =0.004) were lower.Total serum IgE [(4395 ± 1437) IU/ml vs (276 ± 133) IU/ml,T =4.384,P =0.000],peripheral eosinophil percentage [(12.56 ± 1.20) % vs (1.30 ± 0.15) %,t =8.175,P =0.000]and count [(2.09 ±0.43) × 109/L vs (0.19 ±0.04) × 109/L,t =7.032,P =0.000] were higher in the ABPM group as compared to the MH group.FEV1 % slightly declined in the ABPM group [(70.2 ± 2.3)%vs (78.3 ±3.2

  11. Relationship of circulating hyaluronic acid levels to disease control in asthma and asthmatic pregnancy.

    Science.gov (United States)

    Eszes, Noémi; Toldi, Gergely; Bohács, Anikó; Ivancsó, István; Müller, Veronika; Rigó, János; Losonczy, György; Vásárhelyi, Barna; Tamási, Lilla

    2014-01-01

    Uncontrolled asthma is a risk factor for pregnancy-related complications. Hyaluronic acid (HA), a potential peripheral blood marker of tissue fibrosis in various diseases, promotes eosinophil survival and plays a role in asthmatic airway inflammation as well as in physiological processes necessary to maintain normal pregnancy; however the level of circulating HA in asthma and asthmatic pregnancy is unknown. We investigated HA levels in asthmatic patients (N = 52; asthmatic pregnant (AP) N = 16; asthmatic non-pregnant (ANP) N = 36) and tested their relationship to asthma control. Serum HA level was lower in AP than in ANP patients (27 [24.7-31.55] vs. 37.4 [30.1-66.55] ng/mL, p = 0.006); the difference attenuated to a trend after its adjustment for patients' age (p = 0.056). HA levels and airway resistance were positively (r = 0.467, p = 0.004), HA levels and Asthma Control Test (ACT) total score inversely (r = -0.437, p = 0.01) associated in ANP patients; these relationships remained significant even after their adjustments for age. The potential value of HA in the determination of asthma control was analyzed using ROC analysis which revealed that HA values discriminate patients with ACT total score ≥20 (controlled patients) and asthma control, as it correlates with airway resistance and has good sensitivity in the detection of impaired asthma control. Decrease of HA level in pregnancy may be the consequence of pregnancy induced immune tolerance.

  12. 不同剂量致敏原对小鼠哮喘模型气道反应性的影响%Different doeses of ovalbumin sensitization in airway responsiveness in a murine model of asthma

    Institute of Scientific and Technical Information of China (English)

    唐晓媛; 于化鹏; 邓火金; 陈新; 樊慧珍; 龚雨新; 刘俊芳

    2011-01-01

    sections were prepared for histopathologic examination to evaluate the airway inflammation.The IgE, IFN-γ of blood and BALF were detected by ELISA method.Results: The skin of mice lip and tail was caynosis after the second allergic sensitization in asthmatic B group mice.The airway hyper responsiveness in asthmatic group was significantly higher than that in the control mice, and asthmatic B group's Penh was significantly higher than asthmatic A group.The total cell number and the eosinophils in BALF of the asthmatic mice were significantly higher than that in the control mice;The total cell number and the eosinophils in BALF of the asthmatic B group were insignificantly higher than that in asthmatic A group.The contents of IgE in peripheral blood and BALF of the asthmatic mice were significantly higher than that in the control mice, and which in the asthmatic B group were significantly higher than that in asthmatic A group.The contents of IFN-γ in peripheral blood and BALF of the asthmatic mice were significantly lower than that in control ones, were insignificantly higher in the asthmatic B group than those in asthmatic A group.Conclusion: A murine model of asthma is successfully established.The one sensitized with high does of OVA tends to have higher responsiveness than the group with low inducing does of OVA.

  13. Old dilemma : asthma with irreversible airway obstruction or COPD

    NARCIS (Netherlands)

    Fattahi, Fatemeh; Vonk, Judith M.; Bulkmans, Nicole; Fleischeuer, Ruth; Gouw, Annette; Grunberg, Katrien; Mauad, Thais; Popper, Helmut; Felipe-Silva, Aloisio; Vrugt, Bart; Wright, Joanne L.; Yang, Hui-Min; Kocks, Janwillem W. H.; Hylkema, Machteld N.; Postma, Dirkje S.; Timens, Wim; ten Hacken, Nick H. T.

    2015-01-01

    Older asthmatic patients may develop fixed airway obstruction and clinical signs of chronic obstructive pulmonary disease (COPD). We investigated the added value of pathological evaluation of bronchial biopsies to help differentiate asthma from COPD, taking into account smoking, age, and inhaled cor

  14. Correlations of Flow Structure and Particle Deposition with Structural Alterations in Severe Asthmatic Lungs

    Science.gov (United States)

    Choi, Sanghun; Miyawaki, Shinjiro; Choi, Jiwoong; Hoffman, Eric A.; Wenzel, Sally; Lin, Ching-Long

    2014-11-01

    Severe asthmatics are characterized by alterations of bifurcation angle, hydraulic diameter, circularity of the airways, and local shift of air-volume functional change. The characteristics altered against healthy human subjects can affect flow structure and particle deposition. A large-eddy-simulation (LES) model for transitional and turbulent flows is utilized to study flow characteristics and particle deposition with representative healthy and severe asthmatic lungs. For the subject-specific boundary condition, local air-volume changes are derived with two computed tomography images at inspiration and expiration. Particle transport simulations are performed on LES-predicted flow fields. In severe asthmatics, the elevated air-volume changes of apical lung regions affect the increased particle distribution toward upper lobes, especially for small particles. The constricted airways are significantly correlated with high wall shear stress, leading to the increased pressure drop and particle deposition. The structural alterations of bifurcation angle, circularity and hydraulic diameter in severe asthmatics are associated with the increase of particle deposition, wall shear stress and wall thickness. NIH Grants: U01-HL114494, R01-HL094315 and S10-RR022421. Computer time: XSEDE.

  15. Allergic sensitization

    DEFF Research Database (Denmark)

    van Ree, Ronald; Hummelshøj, Lone; Plantinga, Maud

    2014-01-01

    of allergic inflammation and display more plasticity in their cytokine profiles. At present, these include Th9, Th17, Th22, and Treg, in addition to Th1 and Th2. The spectrum of co-stimulatory signals coming from DCs determines which subset-characteristics will dominate. When IL-4 and/or IL-13 play a dominant...

  16. Barrier disrupting effects of alternaria alternata extract on bronchial epithelium from asthmatic donors.

    Directory of Open Access Journals (Sweden)

    Marina S Leino

    Full Text Available Sensitization and exposure to the allergenic fungus Alternaria alternata has been associated with increased risk of asthma and asthma exacerbations. The first cells to encounter inhaled allergens are epithelial cells at the airway mucosal surface. Epithelial barrier function has previously been reported to be defective in asthma. This study investigated the contribution of proteases from Alternaria alternata on epithelial barrier function and inflammatory responses and compared responses of in vitro cultures of differentiated bronchial epithelial cells derived from severely asthmatic donors with those from non-asthmatic controls. Polarised 16HBE cells or air-liquid interface (ALI bronchial epithelial cultures from non-asthmatic or severe asthmatic donors were challenged apically with extracts of Alternaria and changes in inflammatory cytokine release and transepithelial electrical resistance (TER were measured. Protease activity in Alternaria extracts was characterised and the effect of selectively inhibiting protease activity on epithelial responses was examined using protease inhibitors and heat-treatment. In 16HBE cells, Alternaria extracts stimulated release of IL-8 and TNFα, with concomitant reduction in TER; these effects were prevented by heat-treatment of the extracts. Examination of the effects of protease inhibitors suggested that serine proteases were the predominant class of proteases mediating these effects. ALI cultures from asthmatic donors exhibited a reduced IL-8 response to Alternaria relative to those from healthy controls, while neither responded with increased thymic stromal lymphopoietin (TSLP release. Only cultures from asthmatic donors were susceptible to the barrier-weakening effects of Alternaria. Therefore, the bronchial epithelium of severely asthmatic individuals may be more susceptible to the deleterious effects of Alternaria.

  17. The importance of synergy between deep inspirations and fluidization in reversing airway closure.

    Science.gov (United States)

    Donovan, Graham M; Sneyd, James; Tawhai, Merryn H

    2012-01-01

    Deep inspirations (DIs) and airway smooth muscle fluidization are two widely studied phenomena in asthma research, particularly for their ability (or inability) to counteract severe airway constriction. For example, DIs have been shown effectively to reverse airway constriction in normal subjects, but this is impaired in asthmatics. Fluidization is a connected phenomenon, wherein the ability of airway smooth muscle (ASM, which surrounds and constricts the airways) to exert force is decreased by applied strain. A maneuver which sufficiently strains the ASM, then, such as a DI, is thought to reduce the force generating capacity of the muscle via fluidization and hence reverse or prevent airway constriction. Understanding these two phenomena is considered key to understanding the pathophysiology of asthma and airway hyper-responsiveness, and while both have been extensively studied, the mechanism by which DIs fail in asthmatics remains elusive. Here we show for the first time the synergistic interaction between DIs and fluidization which allows the combination to provide near complete reversal of airway closure where neither is effective alone. This relies not just on the traditional model of airway bistability between open and closed states, but also the critical addition of previously-unknown oscillatory and chaotic dynamics. It also allows us to explore the types of subtle change which can cause this interaction to fail, and thus could provide the missing link to explain DI failure in asthmatics.

  18. The importance of synergy between deep inspirations and fluidization in reversing airway closure.

    Directory of Open Access Journals (Sweden)

    Graham M Donovan

    Full Text Available Deep inspirations (DIs and airway smooth muscle fluidization are two widely studied phenomena in asthma research, particularly for their ability (or inability to counteract severe airway constriction. For example, DIs have been shown effectively to reverse airway constriction in normal subjects, but this is impaired in asthmatics. Fluidization is a connected phenomenon, wherein the ability of airway smooth muscle (ASM, which surrounds and constricts the airways to exert force is decreased by applied strain. A maneuver which sufficiently strains the ASM, then, such as a DI, is thought to reduce the force generating capacity of the muscle via fluidization and hence reverse or prevent airway constriction. Understanding these two phenomena is considered key to understanding the pathophysiology of asthma and airway hyper-responsiveness, and while both have been extensively studied, the mechanism by which DIs fail in asthmatics remains elusive. Here we show for the first time the synergistic interaction between DIs and fluidization which allows the combination to provide near complete reversal of airway closure where neither is effective alone. This relies not just on the traditional model of airway bistability between open and closed states, but also the critical addition of previously-unknown oscillatory and chaotic dynamics. It also allows us to explore the types of subtle change which can cause this interaction to fail, and thus could provide the missing link to explain DI failure in asthmatics.

  19. A proton pump inhibitor, lansoprazole, ameliorates asthma symptoms in asthmatic patients with gastroesophageal reflux disease.

    Science.gov (United States)

    Shimizu, Yasuo; Dobashi, Kunio; Kobayashi, Setsuo; Ohki, Ichiro; Tokushima, Masahiko; Kusano, Motoyasu; Kawamura, Osamu; Shimoyama, Yasuyuki; Utsugi, Mitsuyoshi; Sunaga, Noriaki; Ishizuka, Tamotsu; Mori, Masatomo

    2006-07-01

    Aspiration of acid to the airway causes airway inflammation, and acid stress to the airway caused by gastroesophageal reflux disease (GERD) has been known as a potential mechanism of deteriorated asthma symptoms. However, the efficacy of the acid suppressive drugs, H(2)-receptor blockers (H(2) blocker) and proton pump inhibitors, on asthma symptoms and pulmonary functions remains controversial. We therefore designed the randomized prospective study to determine the efficacy of an H(2) blocker (roxatidine, 150 mg/day) and a proton pump inhibitor (lansoprazole, 30 mg/day) on asthma symptoms of 30 asthmatic patients with GERD. These patients were divided in the two groups (15 patients for each group) and treated with either roxatidine or lansoprazole. The diagnosis of GERD was established by the method of Los Angeles classification including mucosal minimum change of Grade M and questionnaire for the diagnosis of reflux disease (QUEST) score. The efficacy of acid suppressive drugs was evaluated by peak expiratory flow (PEF), asthma control questionnaire (ACQ) that evaluates the improvement of asthma symptoms, and forced expiratory volume in 1 second (FEV(1.0)). Lansoprazole, but not roxatidine, significantly improved PEF and ACQ scores (p < 0.05) with the improved QUEST scores. However, these acid suppressive drugs did not change the pulmonary function of FEV(1.0) in asthmatic patients. In conclusion, treatment with a proton pump inhibitor, lansoprazole, appears to be useful in improvement of asthma symptoms in asthmatic patients with GERD.

  20. INCREASED PRODUCTION OF NERVE GROWTH FACTOR, NEUROTROPHIN-3, AND NEUROTROPHIN-4 IN A PENICILLIUM CHRYSOGENUM -INDUCED ALLERGIC ASTHMA MODEL IN MICE

    Science.gov (United States)

    Increased levels of neurotrophins (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], neurotrophin [NT]-3, and/or NT-4) have been associated with asthmatics and in animal models of allergic asthma. In our mouse model for fungal allergic asthma, repeated pulmona...

  1. Unjamming and cell shape in the asthmatic airway epithelium

    Science.gov (United States)

    Park, Jin-Ah; Kim, Jae Hun; Bi, Dapeng; Mitchel, Jennifer A.; Qazvini, Nader Taheri; Tantisira, Kelan; Park, Chan Young; McGill, Maureen; Kim, Sae-Hoon; Gweon, Bomi; Notbohm, Jacob; Steward, Robert, Jr.; Burger, Stephanie; Randell, Scott H.; Kho, Alvin T.; Tambe, Dhananjay T.; Hardin, Corey; Shore, Stephanie A.; Israel, Elliot; Weitz, David A.; Tschumperlin, Daniel J.; Henske, Elizabeth P.; Weiss, Scott T.; Manning, M. Lisa; Butler, James P.; Drazen, Jeffrey M.; Fredberg, Jeffrey J.

    2015-10-01

    From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of close-packed collective systems--both inert and living--have the potential to jam. The collective can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed transition remains poorly understood, however, and structural properties characterizing these phases remain unknown. Using primary human bronchial epithelial cells, we show that the jamming transition in asthma is linked to cell shape, thus establishing in that system a structural criterion for cell jamming. Surprisingly, the collapse of critical scaling predicts a counter-intuitive relationship between jamming, cell shape and cell-cell adhesive stresses that is borne out by direct experimental observations. Cell shape thus provides a rigorous structural signature for classification and investigation of bronchial epithelial layer jamming in asthma, and potentially in any process in disease or development in which epithelial dynamics play a prominent role.

  2. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways.

    Directory of Open Access Journals (Sweden)

    Jill R Johnson

    Full Text Available Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1 levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (α-SMA and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease.

  3. Nebulized lidocaine blunts airway hyper-responsiveness in experimental feline asthma.

    Science.gov (United States)

    Nafe, Laura A; Guntur, Vamsi P; Dodam, John R; Lee-Fowler, Tekla M; Cohn, Leah A; Reinero, Carol R

    2013-08-01

    Nebulized lidocaine may be a corticosteroid-sparing drug in human asthmatics, reducing airway resistance and peripheral blood eosinophilia. We hypothesized that inhaled lidocaine would be safe in healthy and experimentally asthmatic cats, diminishing airflow limitation and eosinophilic airway inflammation in the latter population. Healthy (n = 5) and experimentally asthmatic (n = 9) research cats were administered 2 weeks of nebulized lidocaine (2 mg/kg q8h) or placebo (saline) followed by a 2-week washout and crossover to the alternate treatment. Cats were anesthetized to measure the response to inhaled methacholine (MCh) after each treatment. Placebo and doubling doses of methacholine (0.0625-32.0000 mg/ml) were delivered and results were expressed as the concentration of MCh increasing baseline airway resistance by 200% (EC200Raw). Bronchoalveolar lavage was performed after each treatment and eosinophil numbers quantified. Bronchoalveolar lavage fluid (BALF) % eosinophils and EC200Raw within groups after each treatment were compared using a paired t-test (P eosinophils in asthmatic cats treated with lidocaine (36±10%) or placebo (33 ± 6%). However, lidocaine increased the EC200Raw compared with placebo 10 ± 2 versus 5 ± 1 mg/ml; P = 0.043). Chronic nebulized lidocaine was well-tolerated in all cats, and lidocaine did not induce airway inflammation or airway hyper-responsiveness in healthy cats. Lidocaine decreased airway response to MCh in asthmatic cats without reducing airway eosinophilia, making it unsuitable for monotherapy. However, lidocaine may serve as a novel adjunctive therapy in feline asthmatics with beneficial effects on airflow obstruction.

  4. 荷瘤小鼠髓系来源抑制性细胞对哮喘小鼠气道炎症的影响%Effects of Myeloid Derived Suppressor Cells Derived from 4T1 Tumor-Bearing Mice on Airway Inflammation of Asthmatic Mice

    Institute of Scientific and Technical Information of China (English)

    廖原; 于化鹏; 陈新; 樊慧珍; 龚雨新

    2012-01-01

    Objective To investigate the effect of myeloid derived suppressor cells (MDSCs) on airway inflammation of asthmatic mice. Methods Five male BALB/c mice aged 6 weeks were used for preparing 4T1 tumor bearing mice. Thirty female BALB/c mice aged six weeks were randomly divided into a normal control group,an athmatic model group, and a cell transplantation group. The MDSCs were separated from myeloid tissue of tumor-bearing mice using a magnetic cell sorting system and cultured in RPMI medium 1640 containing GM-CSF. The morphologic characteristics of these cells were observed under light microscope and the phenotypic figures were analyzed with flow cytometry. The mice in the model group and the cell transplantation group were sensitized by ovalbumin and then stimulated with nebulized ovalbumin. The mice in the cell transplantation group were intravenously administered MDSCs which purified by magnetic cell sorting system at 10 days after sensitization. The airway inflammation was evaluated by HE staining. The total and differential cell counts in bronchoalveolar lavage fluid ( BALF) were measured. Results The neutrophil and eosinophil infiltration in pulmonary tissue was dramatically increased in the model group,but not observed in the normal control group and was much milder in the cell transplantation group. The total cell count,the eosinophil and lymphocyte counts in BALF of the model group and the cell transplantation group were significantly higher than those of the normal control group ( P < 0. 05) , and the number of eosinophils in BALF of the cell transplantation group was decreased when compared with that of the model group (P <0. 05). Conclusion MDSCs via intravenous infusion can effectively suppress airway inflammation in a mouse asthma model.%目的 初步探讨髓系来源抑制性细胞( MDSC)对哮喘小鼠气道炎症的影响.方法 将6周龄SPF级BALB/c雄鼠5只制成4T1乳腺癌细胞成瘤小鼠,用于制备MDSC.6周龄SPF级BALB/c雌鼠30只随

  5. EC-18, a synthetic monoacetyldiglyceride (1-palmitoyl-2-linoleoyl-3-acetylglycerol), attenuates the asthmatic response in an aluminum hydroxide/ovalbumin-induced model of asthma.

    Science.gov (United States)

    Shin, In-Sik; Shin, Na-Rae; Jeon, Chan-Mi; Kwon, Ok-Kyoung; Sohn, Ki-Young; Lee, Tae-Suk; Kim, Jae-Wha; Ahn, Kyung-Seop; Oh, Sei-Ryang

    2014-01-01

    EC-18 is a synthetic monoacetyldiaglyceride that is a major constituent in antlers of Sika deer (Cervus nippon Temmenick). In this study, we evaluated the protective effects of EC-18 on Th2-type cytokines, eosinophil infiltration, and other factors in an aluminum hydroxide/ovalbumin (OVA)-induced murine asthma model. Mice were sensitized on days 0 and 14 by intraperitoneal injection of OVA with aluminum hydroxide. On days 21, 22 and 23 after the initial sensitization, the mice received an airway challenge with OVA for 1h using an ultrasonic nebulizer. EC-18 was administered to mice by oral gavage at doses of 30mg/kg and 60mg/kg once daily from day 18 to 23. Methacholine responsiveness was measured 24h after the final OVA challenge, and the bronchoalveolar lavage fluid (BALF) was collected 48h after the final OVA challenge. EC-18 significantly reduced methacholine responsiveness, T helper type 2 (Th2) cytokines, eotaxin-1, immunoglobulin (Ig) E, IgG, and the number of inflammatory cells. In addition, EC-18-treated mice exhibited the reduction in the expression of inducible nitric oxide synthase (iNOS) in lung tissue. In the histological analysis using hematoxylin-eosin stain and periodic acid-Schiff stain, EC-18 attenuated the infiltration of inflammatory cells into the airway and reduced the level of mucus production. Our results showed that EC-18 effectively suppressed the asthmatic response induced by OVA challenge. These effects were considered to be associated with iNOS suppression. In conclusion, this study suggests that EC-18 may be a therapeutic agent for allergic asthma.

  6. Relationship between Asthma and Allergic Antigens in Rural Houses

    Institute of Scientific and Technical Information of China (English)

    DUEn-Chun; LIZhng-Min; 等

    1993-01-01

    Asthma is one of the most frequent and common diseases in China.It seriously threatens the health of the population.It is evident that mites present in rural houses may serve as an allergic antigen.In our survey,we have found several kindos of mites in farmers' houses in the northeastern part of China which have very close relation with asthmatic diseases.Investigations in rural houses further proved that the cause of asthma is certainly related with the allergic antigen of mites.The methods of prevention and contorl of mites are enumerated.

  7. [Study of cellular inflammatory response with bronchoalveolar lavage in allergic asthma, aspirin asthma and in extrinsic infiltrating alveolitis].

    Science.gov (United States)

    Muiño, Juan C; Garnero, Roberto; Caillet Bois, Ricardo; Gregorio, María J; Ferrero, Mercedes; Romero-Piffiguer, Marta

    2002-01-01

    The asthmatic inflammatory responses present different type of cells involved in this process, such as: Lymphocytes and Eosinophils. In experienced hands the bronchoalveolar lavage (BAL) is a well-tolerated and valuable tool for investigation of basic mechanisms in asthma and other immunological respiratory diseases. The purpose of this work was to study the different cells involved in asthmatic inflammatory responses in allergic and aspirin sensitivity patients and compared with Extrinsic Allergic Alveolitis patients (EAA) by BAL procedure. We studied 27 asthmatic patients. This group was divided by etiological conditions in: allergic asthmatic patients (a) (n: 19), (9 male and 10 female) demonstrated by reversible fall of FEV 1 (3) 20% and 2 or more positive skin test for common aeroallergens. The aspirin asthmatic patients (b) (n: 8) (5 male and 3 female) demonstrated by progressive challenge with aspirin and fall of FEV 1 (3) 20%. The third group with compatible symptoms and signs of EAA, demonstrated by lung biopsy, (n: 9) (8 male and 1 female) (c). We determined in all patients: Total IgE serum level by ELISA test. BAL was performed by standard procedure in all patients. The cells count were performed in BAL and were separated in Eosinophils, T lymphocytes defined by monoclonal anti CD 3 antibody, Lymphocytes CD 4 and CD 8 by monoclonal anti CD 4 and CD 8 antibodies respectively. The B lymphocytes defined by surface immunoglobulin isotypes IgG, IgM, IgA and IgE. The IgE level was in (a) 630 +/- 350 kU/L, in (b) it was 85 +/- 62 kU/L and in EAA (c) 55 +/- 23 kU/L, p allergic asthmatic patients as well as in aspirin sensitivity asthmatic patients. The LBA cellular profile of E.AA patients presented eosinophilia and CE8+ Lymphocite predominance when compared with both asthmatic cellular profile.

  8. Anti-inflammatory effects of pre-seasonal Th1-adjuvant vaccine to Parietaria judaica in asthmatics

    Directory of Open Access Journals (Sweden)

    Scichilone N

    2011-03-01

    Full Text Available Nicola Scichilone, Chiara Minaldi, Roberta Santagata, Salvatore Battaglia, Gaetana Camarda, Vincenzo Bellia Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S., Sezione di Pneumologia, University of Palermo, Palermo, ItalyBackground: The ultra-short course pre-seasonal allergy vaccine, containing appropriate allergoids with the adjuvant monophosphoryl lipid A (MPL, may be effective in treating allergic symptoms. Objective: To explore the timing of the immunological responses to the pre-seasonal allergy vaccine.Methods: Four subcutaneous injections of the active product (Pollinex Quattro were administered to 20 Parietaria-sensitive intermittent asthmatics (M/F: 12/8; age: 48 ± 10 years; FEV1% predicted: 108% ± 12% during the 6 weeks prior to the start of the pollen season. Exhaled breath condensate (EBC was collected immediately before the first and immediately after the last injections (t1 and t2, during the pollen season (t3 and after (t4 the pollen season. EBC was analyzed to determine the levels of pH and 8-isoprostane. Ten Parietaria-sensitive asthmatics served as the untreated control group at t1 and t2.Results: Measured pH levels were 7.64 ± 0.33 at t1, 7.67 ± 0.23 at t2, 7.72 ± 0.34 at t3, and 7.82 ± 0.34 at t4 (P = 0.049 vs baseline. 8-isoprostane levels were significantly lower than baseline at each visit (mean difference from baseline, for t2: —0.77 pg, P = 0.031; for t3: —0.92 pg, P = 0.010; for t4: —0.70 pg, P = 0.048. In the control group, pH levels were 7.73 ± 0.26 at baseline and did not change after 6 weeks (7.79 ± 0.25, P = 0.33. Similarly, the concentrations of 8-isoprostane in the control group were not different from those of the study group at baseline (P = 0.86, and the levels remained unchanged after 6 weeks (P = 0.58.Conclusion: These findings show that the ultra-short course of vaccine adjuvated with MPL acutely reduces the degree of airway inflammation, as expressed by markers of

  9. FcgammaRIIb inhibits allergic lung inflammation in a murine model of allergic asthma.

    Directory of Open Access Journals (Sweden)

    Nilesh Dharajiya

    Full Text Available Allergic asthma is characterized by airway eosinophilia, increased mucin production and allergen-specific IgE. Fc gamma receptor IIb (FcgammaRIIb, an inhibitory IgG receptor, has recently emerged as a negative regulator of allergic diseases like anaphylaxis and allergic rhinitis. However, no studies to date have evaluated its role in allergic asthma. Our main objective was to study the role of FcgammaRIIb in allergic lung inflammation. We used a murine model of allergic airway inflammation. Inflammation was quantified by BAL inflammatory cells and airway mucin production. FcgammaRIIb expression was measured by qPCR and flow cytometry and the cytokines were quantified by ELISA. Compared to wild type animals, FcgammaRIIb deficient mice mount a vigorous allergic lung inflammation characterized by increased bronchoalveolar lavage fluid cellularity, eosinophilia and mucin content upon ragweed extract (RWE challenge. RWE challenge in sensitized mice upregulated FcgammaRIIb in the lungs. Disruption of IFN-gamma gene abrogated this upregulation. Treatment of naïve mice with the Th1-inducing agent CpG DNA increased FcgammaRIIb expression in the lungs. Furthermore, treatment of sensitized mice with CpG DNA prior to RWE challenge induced greater upregulation of FcgammaRIIb than RWE challenge alone. These observations indicated that RWE challenge upregulated FcgammaRIIb in the lungs by IFN-gamma- and Th1-dependent mechanisms. RWE challenge upregulated FcgammaRIIb on pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells. FcgammaRIIb deficient mice also exhibited an exaggerated RWE-specific IgE response upon sensitization when compared to wild type mice. We propose that FcgammaRIIb physiologically regulates allergic airway inflammation by two mechanisms: 1 allergen challenge mediates upregulation of FcgammaRIIb on pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells by an IFN-gamma dependent mechanism; and 2 by attenuating the allergen specific Ig

  10. Measurement of intraindividual airway tone heterogeneity and its importance in asthma.

    Science.gov (United States)

    Brown, Robert H; Togias, Alkis

    2016-07-01

    While airways have some degree of baseline tone, the level and variability of this tone is not known. It is also unclear whether there is a difference in airway tone or in the variability of airway tone between asthmatic and healthy individuals. This study examined airway tone and intraindividual airway tone heterogeneity (variance of airway tone) in vivo in 19 individuals with asthma compared with 9 healthy adults. All participants underwent spirometry, body plethysmography, and high-resolution computed tomography at baseline and after maximum bronchodilation with albuterol. Airway tone was defined as the percent difference in airway diameter after albuterol at total lung capacity compared with baseline. The amount of airway tone in each airway varied both within and between subjects. The average airway tone did not differ significantly between the two groups (P = 0.09), but the intraindividual airway tone heterogeneity did (P = 0.016). Intraindividual airway tone heterogeneity was strongly correlated with airway tone (r = 0.78, P tone heterogeneity and conventional lung function outcomes. Intraindividual airway tone heterogeneity appears to be an important characteristic of airway pathophysiology in asthma.

  11. DETERMINATION OF THE HABITS OF ASTHMATIC PATIENTS ABOUT USING SUBSTANCE CONTAINING PERFUME

    Directory of Open Access Journals (Sweden)

    Ercan GOCGELDI

    2005-06-01

    Full Text Available Introduction: Air pollution, perfume, aerosol substances, odors of paint and detergent are the most important non-specific irritants stimulating the asthmatic attack. The odors of these substances exist for long time and form the serious risk for the asthmatic patients. This study was planned to determine the frequency of using perfume and substance containing perfume and the sensitivities to the substances among the asthmatic patients using inhaling steroid and b2-mimetic ant asthmatic drugs. Methods: This is a descriptive study and conducted among patients who applied to the Allergic Diseases outpatient service of Gulhane Military Medical Academia in October-December 2004. 83 asthmatic patients who accepted to participate to the study filled out a questionnaire that including patients habits relating perfume, cleaners with perfume, perfume for living room, toilets and bathrooms, and having dyspnea or not when exposed any kind of perfumes and using any b2-mimetik or not. Results: 73.5% (n=61 of participants were male, and 26.5 % (n=22 were women. Their ages were from 18 to 57 years. 79.5% (n=66 of participants expressed that they were sensitive to the odors mentioned and experienced the respiratory problems when they were at the surroundings by odour and 26.5% (n=22 of participants sometimes used the B2-mimetic antiasthmatic drugs for this reason. On the other hand; It was found that 68.7% (n=57 of participants regularly used the perfume for themselves everyday, 85.5% (n=71 of participants washed their clothings by using cleaners and/or softeners with perfume, 44.6% (n=37 of participants used the perfume for their rooms frequently, 62.7% (n=52 of participants used substance with perfume in their toilets and bathrooms. Conclusion: We conclude that the asthmatic patients have not sufficient knowledge about non-spesific irritants stimulating the asthmatic attack, and don’t behave sensitive. It’s important to plan properly the medical

  12. Sinobronchial allergic aspergillosis with allergic bronchopulmonary aspergillosis: a less common co-existence.

    Science.gov (United States)

    Upadhyay, Rashmi; Kant, Surya; Prakash, Ved; Saheer, S

    2014-11-04

    Allergic bronchopulmonary aspergillosis (ABPA) is an immunological pulmonary disorder that is characterised by a hyper-responsiveness of the airways to Aspergillus fumigatus. Although several other fungi may also present with similar clinical conditions, Aspergillus remains the most common fungal pathogen causing airway infections. Co-existence of ABPA with allergic Aspergillus sinusitis (AAS) is an uncommon presentation. The concept of one airway/one disease justifies the co-existence of ABPA with AAS, but it does not always hold true. We report a case of a 35-year-old woman who presented with symptoms suggestive of bronchial asthma. On further investigation, the radiological pattern showed fleeting shadows and CT scan showed central cystic bronchiectatic changes characteristic of ABPA. The nasal secretions were investigated for the presence of Aspergillus and were found to be positive. Hence a diagnosis of ABPA with AAS was established. The patient was treated with oral steroids and antifungal drugs.

  13. Sinobronchial allergic aspergillosis with allergic bronchopulmonary aspergillosis: a less common co-existence

    Science.gov (United States)

    Upadhyay, Rashmi; Kant, Surya; Prakash, Ved; Saheer, S

    2014-01-01

    Allergic bronchopulmonary aspergillosis (ABPA) is an immunological pulmonary disorder that is characterised by a hyper-responsiveness of the airways to Aspergillus fumigatus. Although several other fungi may also present with similar clinical conditions, Aspergillus remains the most common fungal pathogen causing airway infections. Co-existence of ABPA with allergic Aspergillus sinusitis (AAS) is an uncommon presentation. The concept of one airway/one disease justifies the co-existence of ABPA with AAS, but it does not always hold true. We report a case of a 35-year-old woman who presented with symptoms suggestive of bronchial asthma. On further investigation, the radiological pattern showed fleeting shadows and CT scan showed central cystic bronchiectatic changes characteristic of ABPA. The nasal secretions were investigated for the presence of Aspergillus and were found to be positive. Hence a diagnosis of ABPA with AAS was established. The patient was treated with oral steroids and antifungal drugs. PMID:25371437

  14. Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma

    Science.gov (United States)

    Singhania, Akul; Rupani, Hitasha; Jayasekera, Nivenka; Lumb, Simon; Hales, Paul; Gozzard, Neil; Davies, Donna E.

    2017-01-01

    Management of severe asthma remains a challenge despite treatment with glucocorticosteroid therapy. The majority of studies investigating disease mechanisms in treatment-resistant severe asthma have previously focused on the large central airways, with very few utilizing transcriptomic approaches. The small peripheral airways, which comprise the majority of the airway surface area, remain an unexplored area in severe asthma and were targeted for global epithelial gene expression profiling in this study. Differences between central and peripheral airways were evaluated using transcriptomic analysis (Affymetrix HG U133 plus 2.0 GeneChips) of epithelial brushings obtained from severe asthma patients (N = 17) and healthy volunteers (N = 23). Results were validated in an independent cohort (N = 10) by real-time quantitative PCR. The IL-13 disease signature that is associated with an asthmatic phenotype was upregulated in severe asthmatics compared to healthy controls but was predominantly evident within the peripheral airways, as were genes related to mast cell presence. The gene expression response associated with glucocorticosteroid therapy (i.e. FKBP5) was also upregulated in severe asthmatics compared to healthy controls but, in contrast, was more pronounced in central airways. Moreover, an altered epithelial repair response (e.g. FGFBP1) was evident across both airway sites reflecting a significant aspect of disease in severe asthma unadressed by current therapies. A transcriptomic approach to understand epithelial activation in severe asthma has thus highlighted the need for better-targeted therapy to the peripheral airways in severe asthma, where the IL-13 disease signature persists despite treatment with currently available therapy. PMID:28045928

  15. Non-invasive sampling methods of inflammatory biomarkers in asthma and allergic rhinitis

    NARCIS (Netherlands)

    Boot, Johan Diderik

    2009-01-01

    In this thesis, a series of clinical studies have been described, in which we applied, evaluated or modified novel and existing non- or semi-invasive sampling methods and detection techniques for the assessment of biomarkers in allergic airway inflammation.

  16. Links between allergic rhinitis and asthma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Allergic diseases of the airway, which include seasonal rhinitis, chronic perennial rhinitis and asthma, are recognized as inflammatory disorders of the airway mucosa,1-3 but differ in the location of the inflammatory reaction and clinical manifestations of the disease. Asthma and allergic rhinitis frequently coexist in the same patient and are thought to share common predisposing genetic factors which interact with the environmental influences. Both diseases have increased in prevalence over recent decades4,5 particularly in westernized countries. This increase has been largely attributed to environmental factors such as exposure to aerial pollutants,4,6 and early life events, including the degree of exposure to infectious agents which might affect IgE production,5,7 since there has been insufficient time for a significant change in the gene pool.

  17. Exposure to multi-walled carbon nanotubes results in aggravation of airway inflammation and remodeling and in increased production of epithelium-derived innate cytokines in a mouse model of asthma.

    Science.gov (United States)

    Ronzani, Carole; Casset, Anne; Pons, Françoise

    2014-02-01

    With the development of nanotechnologies, the potential adverse effects of nanomaterials such as multi-walled carbon nanotubes (MWCNT) on the respiratory tract of asthmatics are questioned. Furthermore, investigations are necessary to understand how these effects might arise. In the present study, we hypothesized that epithelium-derived innate cytokines that are considered as important promoting factors in allergy may contribute to an aggravating effect of MWCNT on asthma. We investigated in the mouse the effect of MWCNT on systemic immune response and airway inflammation and remodeling induced by the most frequent allergen so far associated with asthma, house dust mite (HDM), and we examined the production of the innate cytokines thymic stromal lymphopoietin (TSLP), IL-25, IL-33, and GM-CSF. Mice exposed to HDM exhibited specific IgG1 in serum and inflammatory cell infiltration, and increased Th2 cytokine production, mucus hyperproduction, and collagen deposition in the airways when compared to naïve animals. Levels of total IgG1 and HDM-specific IgG1, influx of macrophages, eosinophils and neutrophils, production of collagen, TGF-β1, and mucus, as well as levels of IL-13, eotaxin, and TARC, were dose-dependently increased in mice exposed to HDM and MWCNT compared to HDM alone. These effects were associated with an increased production of TSLP, IL-25, IL-33, and GM-CSF in the airways. Our data demonstrate that MWCNT increase in a dose-dependent manner systemic immune response, as well as airway allergic inflammation and remodeling induced by HDM in the mouse. Our data suggest also a role for airway epithelium and innate cytokines in these effects.

  18. The effect of stimuli on basophil-mediated atopic responses during asthmatic lying-in women and in newborns.

    Science.gov (United States)

    Yang, Ling; Guo, Yin-Shi; Jiang, Jin-Qi; Guo, Xue-Jun; Xu, Yi-Ping; Tian, Ye; Xiong, Ying; Han, Li

    2012-08-01

    Morbidity from allergic diseases is increasing. Basophils play a critical role in systemic anaphylaxis and chronic allergic inflammation. The prenatal environment must be regarded as a possible early risk factor for allergic diseases in children. Our objective was to determine if basophils harvested from neonates genetically predisposed to atopic disease had different levels of CD63 expression and IL-4 release properties in response to various stimuli (peptidoglycan, Dermatophagoides farinae, hyperosmotic mannitol). Blood samples were collected from 16 asthmatic and 18 healthy women and their newborns. Peripheral blood basophil histamine was measured using the human basophil degranulation test (HBDT), whereas activation was assessed by flow cytometric measurement of CD63 expression on the cord blood basophil surface. IL-4 levels were quantified by ELISA following allergen stimulation. The basophil degranulation index (DI) in granulocytes harvested from the peripheral blood of asthmatic women was assessed following stimulation with peptidoglycan (PGN), Dermatophagoides farinae (Df ) extract, or hyperosmotic mannitol. The DI was significantly higher in atopic women than in healthy controls. Upregulation of CD63 on the cord blood basophil surface was also detected in response to these stimuli. Basophils purified from the cord blood of neonates born to atopic mothers produced more IL-4 compared to basophils purified from the controls. These data suggested that various stimuli play a role in augmenting allergic reactions via modulation of activated basophil cytokine secretion. It may require new methods to stabilize the basophils in allergic diseases.

  19. Defective Resensitization in Human Airway Smooth Muscle Cells Evokes β-Adrenergic Receptor Dysfunction in Severe Asthma.

    Directory of Open Access Journals (Sweden)

    Manveen K Gupta

    Full Text Available β2-adrenergic receptor (β2AR agonists (β2-agonist are the most commonly used therapy for acute relief in asthma, but chronic use of these bronchodilators paradoxically exacerbates airway hyper-responsiveness. Activation of βARs by β-agonist leads to desensitization (inactivation by phosphorylation through G-protein coupled receptor kinases (GRKs which mediate β-arrestin binding and βAR internalization. Resensitization occurs by dephosphorylation of the endosomal βARs which recycle back to the plasma membrane as agonist-ready receptors. To determine whether the loss in β-agonist response in asthma is due to altered βAR desensitization and/or resensitization, we used primary human airway smooth muscle cells (HASMCs isolated from the lungs of non-asthmatic and fatal-asthmatic subjects. Asthmatic HASMCs have diminished adenylyl cyclase activity and cAMP response to β-agonist as compared to non-asthmatic HASMCs. Confocal microscopy showed significant accumulation of phosphorylated β2ARs in asthmatic HASMCs. Systematic analysis of desensitization components including GRKs and β-arrestin showed no appreciable differences between asthmatic and non-asthmatic HASMCs. However, asthmatic HASMC showed significant increase in PI3Kγ activity and was associated with reduction in PP2A activity. Since reduction in PP2A activity could alter receptor resensitization, endosomal fractions were isolated to assess the agonist ready β2ARs as a measure of resensitization. Despite significant accumulation of β2ARs in the endosomes of asthmatic HASMCs, endosomal β2ARs cannot robustly activate adenylyl cyclase. Furthermore, endosomes from asthmatic HASMCs are associated with significant increase in PI3Kγ and reduced PP2A activity that inhibits β2AR resensitization. Our study shows that resensitization, a process considered to be a homeostasis maintaining passive process is inhibited in asthmatic HASMCs contributing to β2AR dysfunction which may underlie

  20. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation

    DEFF Research Database (Denmark)

    Sverrild, Asger; Bergqvist, Anders; Baines, Katherine J;

    2016-01-01

    BACKGROUND: Airway hyperresponsiveness (AHR) to inhaled mannitol is associated with indirect markers of mast cell activation and eosinophilic airway inflammation. It is unknown how AHR to mannitol relates to mast cell phenotype, mast cell function and measures of eosinophilic inflammation in airway...... tissue. We compared the number and phenotype of mast cells, mRNA expression of mast cell-associated genes and number of eosinophils in airway tissue of subjects with asthma and healthy controls in relation to AHR to mannitol. METHODS: Airway hyperresponsiveness to inhaled mannitol was measured in 23 non......-smoking, corticosteroid-free asthmatic individuals and 10 healthy controls. Mast cells and eosinophils were identified in mucosal biopsies from all participants. Mast cells were divided into phenotypes based on the presence of chymase. mRNA expression of mast cell-associated genes was measured by real-time PCR. RESULTS...

  1. Elevated expression of placental growth factor is associated with airway-wall vascular remodelling and thickening in smokers with asthma

    Science.gov (United States)

    Wu, Dong; Lai, Tianwen; Yuan, Yalian; Chen, Min; Xia, Jun; Li, Wen; Pan, Guihai; Yuan, Binfan; Lv, Quanchao; Li, Yanyu; Li, Dongmin; Wu, Bin

    2017-01-01

    The increased expression of placental growth factor (PlGF) in chronic obstructive pulmonary disease and allergy-related asthma suggests its role in the pathogenesis of these diseases. In asthmatic smokers, airway remodelling is accompanied by an accelerated decline in lung function. However, whether PlGF contributes to the persistent airflow obstruction and vascular remodelling typically seen in asthmatic smokers is unknown. In this study we measured lung function, airway-wall thickening, and PlGF levels in serum and induced sputum in 74 asthmatic and 42 healthy smokers and never-smokers. Using human lung microvascular endothelial cells (HLMECs), we evaluated the in vitro effects of PlGF on each step of vascular remodelling, including proliferation, migration, stress-fibre expression, and tubule formation. Our data showed significantly higher serum and sputum PlGF levels in asthma patients, especially asthmatic smokers, than in healthy controls. Serum and sputum PlGF levels correlated negatively with post-bronchodilator forced expiratory volume in 1 s (FEV1) and the FEV1/forced vital capacity, but positively with airway-wall thickening. Stimulation of HLMECs with rhPlGF promoted all of the steps of airway-microvascular remodelling. These findings provide insights into the influence of cigarette smoking on the structural changes in the airways of asthmatics and the important pathogenic role played by PlGF. PMID:28220848

  2. Protective effect of sodium cromoglycate on lipopolysaccharide-induced bronchial obstruction in asthmatics.

    Science.gov (United States)

    Michel, O; Ginanni, R; Sergysels, R

    1995-11-01

    Lipopolysaccharides (LPS, the major part of endotoxins) are bacterial proinflammatory substances which can induce in asthmatic patients after inhalation a bronchial obstruction with an increase in both histamine bronchial hyperresponsiveness and blood inflammatory markers. The aim of the present study was to evaluate whether an acute inhalation of sodium cromoglycate, an anti-inflammatory and membrane-stabilizating agent, can block the LPS-induced lung function response. Using a double-blind placebo-controlled crossover method, 7 asthmatic subjects were submitted, at 4 days' interval, to a bronchial challenge test with either solvent solution or LPS (20 micrograms) preceded by inhalation of sodium cromoglycate (10 mg) or placebo. Compared to the solvent reaction, LPS induced a significant bronchial obstruction [measured by both the forced expiratory volume in 1 s (FEV1) and the airway resistances] beginning at the 60th minute and lasting more than 300 min (p sodium cromoglycate significantly inhibited the LPS-induced bronchial obstruction. The total lung capacity did not change significantly after LPS inhalation. Thus, this study showed that in asthmatics the LPS-induced FEV1 response is blocked by acute treatment with sodium cromoglycate. Sodium cromoglycate could be an active treatment in asthmatics exposed to house dust containing endotoxin.

  3. ADAM10 mediates the house dust mite-induced release of chemokine ligand CCL20 by airway epithelium

    NARCIS (Netherlands)

    Post, S.; Rozeveld, D.; Jonker, M. R.; Bischoff, R.; van Oosterhout, A. J.; Heijink, I. H.

    2015-01-01

    Background: House dust mite (HDM) acts on the airway epithelium to induce airway inflammation in asthma. We previously showed that the ability of HDM to induce allergic sensitization in mice is related to airway epithelial CCL20 secretion. Objective: As a disintegrin and metalloprotease (ADAM)s have

  4. Recent developments in the role of reactive oxygen species in allergic asthma

    Science.gov (United States)

    Qu, Jingjing; Li, Yuanyuan; Zhong, Wen

    2017-01-01

    Allergic asthma has a global prevalence, morbidity, and mortality. Many environmental factors, such as pollutants and allergens, are highly relevant to allergic asthma. The most important pathological symptom of allergic asthma is airway inflammation. Accordingly, the unique role of reactive oxygen species (ROS) had been identified as a main reason for this respiratory inflammation. Many studies have shown that inhalation of different allergens can promote ROS generation. Recent studies have demonstrated that several pro-inflammatory mediators are responsible for the development of allergic asthma. Among these mediators, endogenous or exogenous ROS are responsible for the airway inflammation of allergic asthma. Furthermore, several inflammatory cells induce ROS and allergic asthma development. Airway inflammation, airway hyper-responsiveness, tissue injury, and remodeling can be induced by excessive ROS production in animal models. Based on investigations of allergic asthma and ROS formation mechanisms, we have identified several novel anti-inflammatory therapeutic treatments. This review describes the recent data linking ROS to the pathogenesis of allergic asthma. PMID:28203435

  5. A Population-based Clinical Study of Allergic and Non-allergic Asthma

    DEFF Research Database (Denmark)

    Knudsen, T.B.; Thomsen, S.F.; Nolte, H.;

    2009-01-01

    Background. The aim of this study was to describe differences between allergic and non-allergic asthma in a large community-based sample of Danish adolescents and adults. Methods. A total of 1,186 subjects, 14 to 44 years of age, who in a screening questionnaire had reported a history of airway...... symptoms suggestive of asthma and/or allergy, or who were taking any medication for these conditions were clinically examined. All participants were interviewed about respiratory symptoms, and furthermore skin test reactivity, lung function, and airway responsiveness were measured. Results. A total of 489...... individuals had clinical asthma of whom 61% had allergic asthma, whereas 39% had non-allergic asthma. Subjects with non-allergic asthma were more likely to be females, OR = 2.24 (1.32-3.72), p = 0.003, and to have cough as the predominant symptom, OR = 1.96, (1.19-3.23), p = 0.008, but were less likely...

  6. The impact of allergic rhinitis and asthma on human nasal and bronchial epithelial gene expression.

    Directory of Open Access Journals (Sweden)

    Ariane H Wagener

    Full Text Available BACKGROUND: The link between upper and lower airways in patients with both asthma and allergic rhinitis is still poorly understood. As the biological complexity of these disorders can be captured by gene expression profiling we hypothesized that the clinical expression of rhinitis and/or asthma is related to differential gene expression between upper and lower airways epithelium. OBJECTIVE: Defining gene expression profiles of primary nasal and bronchial epithelial cells from the same individuals and examining the impact of allergic rhinitis with and without concomitant allergic asthma on expression profiles. METHODS: This cross-sectional study included 18 subjects (6 allergic asthma and allergic rhinitis; 6 allergic rhinitis; 6 healthy controls. The estimated false discovery rate comparing 6 subjects per group was approximately 5%. RNA was extracted from isolated and cultured epithelial cells from bronchial brushings and nasal biopsies, and analyzed by microarray (Affymetrix U133+ PM Genechip Array. Data were analysed using R and Bioconductor Limma package. For gene ontology GeneSpring GX12 was used. RESULTS: The study was successfully completed by 17 subjects (6 allergic asthma and allergic rhinitis; 5 allergic rhinitis; 6 healthy controls. Using correction for multiple testing, 1988 genes were differentially expressed between healthy lower and upper airway epithelium, whereas in allergic rhinitis with or without asthma this was only 40 and 301 genes, respectively. Genes influenced by allergic rhinitis with or without asthma were linked to lung development, remodeling, regulation of peptidases and normal epithelial barrier functions. CONCLUSIONS: Differences in epithelial gene expression between the upper and lower airway epithelium, as observed in healthy subjects, largely disappear in patients with allergic rhinitis with or without asthma, whilst new differences emerge. The present data identify several pathways and genes that might be

  7. Environmental and genetical factors in airway allergies

    Directory of Open Access Journals (Sweden)

    Katarzyna Idzik

    2012-12-01

    Full Text Available It is estimated that approximately 23% of the European population is clinically diagnosed with allergies. In the past three decades, an increase in the incidence of respiratory allergies was noted. At the beginning of the 20th century allergic inflammations affected only around 1% of the world population. Medical symptoms of allergic airway inflammation are variable for different patients. Airways allergy are complex phenotypes, which are determined by both genetic and environmental factors. Potential environmental factors include air pollution, tobacco smoke, diet and hygienic habits. The base of phenotypes diversity is still unknown. Genetic studies of allergic disease are complex , the disease derives from the global effect of a series of genes considered individually. What is more, there are epigenetic effects and interactions among the possible causal genes and a range of environmental factors. Single nucleotide polymorphism (SNP in genes encoding chemokines and their receptors, interleukins and their receptors, eosinophil peroxidase and leukotrienes have been found as a possible factor for a development of allergic airway inflammation. It is known that SNPs are specific for different cohort.

  8. EVALUATING ANTI-ASTHMATIC EFFECT OF POLYHERBAL AYURVEDIC DRUG BHARANGYADI ON RESPIRATORY MECHANICS USING MATLAB

    Directory of Open Access Journals (Sweden)

    Kajaria Divya

    2013-02-01

    Full Text Available Asthma is one of the most prevalent chronic inflammatory lung diseases among children and adults. A lot of work had been done in various field (including both modern and Ayurvedic on anti-asthmatic drugs to evaluate their action on lungs. The parameters chosen for assessing the properties of drug is mainly based on clinical improvement and improvement in pulmonary function test. These all method employed so far are indirect method for assessment of action of drug on lungs as change in pulmonary function may appear without any relevant change in lungs mechanics. In present study we assess the anti-asthmatic effect of drug directly on respiratory parameter by using MATLAB lung mechanics modeling. Administration of drug is equally distributed throughout lungs and produces significant increase in lung volume which is attributed to the decrease in airways resistance and increase in lung compliance.

  9. Allergen specific immunotherapy: The future cure for allergic asthma. Mechanisms and improvement in a mouse model

    NARCIS (Netherlands)

    Taher, Y.A.

    2007-01-01

    Allergic asthma is a disease characterized by persistent allergen-driven airway inflammation, remodeling and airway hyperresponsiveness (AHR). CD4+ T-cells, in particular T-helper type 2 (Th2) cells, play a critical role in orchestrating the disease process through the release of cytokines like IL-4

  10. Differences in allergen-induced T cell activation between allergic asthma and rhinitis: Role of CD28, ICOS and CTLA-4

    Directory of Open Access Journals (Sweden)

    Lacoeuille Yannick

    2011-02-01

    Full Text Available Abstract Background Th2 cell activation and T regulatory cell (Treg deficiency are key features of allergy. This applies for asthma and rhinitis. However with a same atopic background, some patients will develop rhinitis and asthma, whereas others will display rhinitis only. Co-receptors are pivotal in determining the type of T cell activation, but their role in allergic asthma and rhinitis has not been explored. Our objective was to assess whether allergen-induced T cell activation differs from allergic rhinitis to allergic rhinitis with asthma, and explore the role of ICOS, CD28 and CTLA-4. Methods T cell co-receptor and cytokine expressions were assessed by flow cytometry in PBMC from 18 house dust mite (HDM allergic rhinitics (R, 18 HDM allergic rhinitics and asthmatics (AR, 13 non allergic asthmatics (A and 20 controls, with or without anti-co-receptors antibodies. Results In asthmatics (A+AR, a constitutive decrease of CTLA-4+ and of CD4+CD25+Foxp3+ cells was found, with an increase of IFN-γ+ cells. In allergic subjects (R + AR, allergen stimulation induced CD28 together with IL-4 and IL-13, and decreased the proportion of CTLA-4+, IL-10+ and CD4+CD25+Foxp3+ cells. Anti-ICOS and anti-CD28 antibodies blocked allergen-induced IL-4 and IL-13. IL-13 production also involved CTLA-4. Conclusions T cell activation differs between allergic rhinitis and asthma. In asthma, a constitutive, co-receptor independent, Th1 activation and Treg deficiency is found. In allergic rhinitis, an allergen-induced Treg cell deficiency is seen, as well as an ICOS-, CD28- and CTLA-4-dependent Th2 activation. Allergic asthmatics display both characteristics.

  11. Development of an experimental model of maternal allergic asthma during pregnancy.

    Science.gov (United States)

    Clifton, Vicki L; Moss, Timothy J M; Wooldridge, Amy L; Gatford, Kathryn L; Liravi, Bahar; Kim, Dasom; Muhlhausler, Beverly S; Morrison, Janna L; Davies, Andrew; De Matteo, Robert; Wallace, Megan J; Bischof, Robert J

    2016-03-01

    Maternal asthma during pregnancy adversely affects pregnancy outcomes but identification of the cause/s, and the ability to evaluate interventions, is limited by the lack of an appropriate animal model. We therefore aimed to characterise maternal lung and cardiovascular responses and fetal-placental growth and lung surfactant levels in a sheep model of allergic asthma. Immune and airway functions were studied in singleton-bearing ewes, either sensitised before pregnancy to house dust mite (HDM, allergic, n = 7) or non-allergic (control, n = 5), and subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Maternal lung, fetal and placental phenotypes were characterised at 140 ± 1 days gestational age (term, ∼147 days). The eosinophil influx into lungs was greater after HDM challenge in allergic ewes than after saline challenge in control ewes before mating and in late gestation. Airway resistance increased throughout pregnancy in allergic but not control ewes, consistent with increased airway smooth muscle in allergic ewes. Maternal allergic asthma decreased relative fetal weight (-12%) and altered placental phenotype to a more mature form. Expression of surfactant protein B mRNA was 48% lower in fetuses from allergic ewes than controls, with a similar trend for surfactant protein D. Thus, allergic asthma in pregnant sheep modifies placental phenotype, and inhibits fetal growth and lung development consistent with observations from human pregnancies. Preconceptional allergen sensitisation and repeated airway challenges in pregnant sheep therefore provides an animal model to identify mechanisms of altered fetal development and adverse pregnancy outcomes caused by maternal asthma in pregnancy.

  12. Airway hyperresponsiveness; smooth muscle as the principal actor [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Anne-Marie Lauzon

    2016-03-01

    Full Text Available Airway hyperresponsiveness (AHR is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway.

  13. Leucocyte kinesis in blood, bronchoalveoli and nasal cavities during late asthmatic responses in guinea-pigs.

    Science.gov (United States)

    Nabe, T; Shinoda, N; Yamashita, K; Yamamura, H; Kohno, S

    1998-03-01

    Recently, we reported a reproducible model of asthma in guinea-pigs in vivo, which developed a late asthmatic response (LAR) as well as an early response. In this study, time-related changes in the occurrence of the LAR and leucocyte kinesis were assessed. Furthermore, the state of the activation of eosinophils that migrated into the lower airways was characterized in vitro. Guinea-pigs were alternately sensitized/challenged by inhalation with aerosolized ovalbumin adsorbed on aluminium hydroxide and ovalbumin alone, once every 2 weeks. At defined times before and after the fifth challenge, airway resistance was measured, blood was drawn and bronchoalveolar lavage (BAL) and nasal cavity lavage (NCL) were performed. Superoxide anion (.O2-) production of eosinophils was measured with cytochrome c. Occurrence of LAR and considerable increases in circulating eosinophils coincided with each other 5-7 h after the challenge. After 7 h, eosinophil infiltrations into bronchoalveolar spaces were observed. The capacity of eosinophils from the sensitized animals to produce .O2- was higher than those from the non-sensitized ones, when eosinophils were stimulated by platelet-activating factor. Although an increased number of eosinophils in the NCL fluid was observed, it was much less than that in the BAL fluid. Thus, it has been concluded that eosinophilia in the blood and the lung may participate in the occurrence of the late asthmatic response, which is thought to be preferentially evoked in the lower airways in guinea-pigs in vivo.

  14. Effects of formoterol-budesonide on airway remodeling in patients with moderate asthma

    Institute of Scientific and Technical Information of China (English)

    Ke WANG; Chun-tao LIU; Yong-hong WU; Yu-lin FENG; Hong-li BAI; En-sen MA; Fu-qiang WEN

    2011-01-01

    Aim: To evaluate the effect of inhaled formoterol-budesonide on airway remodeling in adult patients with moderate asthma.Methods: Thirty asthmatic patients and thirty control subjects were enrolled. Asthmatic subjects used inhaled Symbicort 4.5/160μg twice daily for one year. The effect of formoterol-budesonide on airway remodeling was assessed with comparing high-resolution computer tomography (HRCT) images of asthmatic patients and controls,as well as expression levels of cytokines and growth factors,inflammatory cell count in induced sputum,and airway hyper-responsiveness.Results: The differences in age and gender between the two groups were not significant. However,differences in FVC %pred,FEV1%pred,and PC20 between the two groups were significant. After treatment with formoterol-budesonide,the asthma patients' symptoms were relieved,and their lung function was improved. The WT and WA% of HRCT images in patients with asthma was increased,whereas treatment with formoterol-budesonide caused these values to decrease. The expression of MMP-9,TIMP-1,and TGF-β1 in induced sputum samples increased in patients with asthma and decreased dramatically after treatment with formoterol-budesonide.The WT and WA% are correlated with the expression levels of cytokines and growth factors,inflammatory cell count in induced sputum,and airway hyper-responsiveness,while these same values are correlated negatively with FEV1/FVC and FEV1%.Conclusion: Formoterol-budesonide might interfere in chronic inflammation and airway remodeling in asthmatic patients. HRCT can be used to effectively evaluate airway remodeling in asthmatic patients.

  15. [Effects of once-daily low-dose administration of sustained-release theophylline on airway inflammation and airway hyperresponsiveness in patients with asthma].

    Science.gov (United States)

    Terao, Ichiro

    2002-04-01

    Bronchial asthma is eosinophilic airway inflammation with enhanced airway responsiveness induced by eosinophilic granule proteins such as eosinophilic cationic protein (ECP) that are released from eosinophils. In the present study using 30 outpatients with mild to moderate asthma who had no history of treatment with steroid inhalation, we examined the effects of 4-week low-dose (200 mg/day) treatment with Uniphyl Tablets, a sustained-release theophylline formulated for once-daily dosing, on airway inflammation and airway hyperresponsiveness, as well as on respiratory function. Uniphyl Tablets significantly (p statistically significant (p V50 also showed statistically significant (p < 0.05) improvement. Mean blood theophylline concentration at the time the improvements were seen was 3.95 mg/mL. These results suggest that low-dose administration of Uniphyl Tablets has anti-airway inflammatory and anti-airway hyperresponsiveness effects in mild to moderate asthmatic patients.

  16. Pediatric allergic conjunctivitis and allergic rhinitis

    Institute of Scientific and Technical Information of China (English)

    Tong Qiao; Yizhen Hu; Zhinan Wang

    2008-01-01

    Objective: To assess the relationship between allergic conjunctivitis(AC) and allergic rhinitis(AR) in pediatric ophthalmology and E.N.T outpatient clinic. Methods:Eight hundred and ninety two patients were enrolled in survey during Mar. 2005~Jan. 2007, 407 allergic conjunctivitis cases were placed in the ophthalmology clinic group and 485 allergic rhinitis cases were from the E.N.T clinic.The comorbid disorders, histories, symptoms, signs of patients were recorded. Type 1 allergy was tested in 479 cases by a specific IgE antibody blood test. Eosinophils were detected in superficial conjunctival scrapings of the superior tarsal conjunctiva and mucosa surface scrapings of middle nasal meatus in 88 cases with both diseases. Results:302(74%), 374(92%), 116(29%) in 407 cases with allergic conjunctivitis had concomitant eczema, rhinitis and asthma, respectively; 334(69%), 430(89%), 145(30%) in 485 cases with allergic rhinitis had concomitant eczema, allergic conjunctivitis and asthma, respectively. The prevalence of allergic conjunctivitis concomitant allergic rhinitis and allergic rhinitis concomitant allergic conjunctivitis had no significant difference(x2=2.6, P>0.05). The prevalence of allergic conjunctivitis and allergic rhinitis concomitant eczema and asthma also had no significant difference (x2=3.08; x2=0.21, P>0.05). The degree of severity of two kinds of disease symptoms is not parallel, in the patients with seasonal allergic conjuctivitis(SAC) and perennial allergic conjunctivitis(PAC), the clinical signs of AR were always severer(x2=258.2, P<0.05)than those of AC. However, the results coincided with the cases with vernal keratoconjuctivitis(VKC)(x2=66.5, P<0.05); Eosinophils were revealed in 50(57%) conjunctival scrapings and nasal mucosa scrapings(x2=1.5, P>0.05), 47(53%) cases had positive results in both scrapings. The main aeroallergens were house dust mites, house dust and fungi, and the main food-allergens were fish, crab and shrimp

  17. Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma

    Directory of Open Access Journals (Sweden)

    Amatullah Hajera

    2011-02-01

    Full Text Available Abstract Background Arginase overexpression contributes to airways hyperresponsiveness (AHR in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR. Methods To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA and challenged with nebulized PBS (OVA/PBS or OVA (OVA/OVA for three consecutive days (sub-acute model or 12 weeks (chronic model, which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3, or HEPA-filtered air (FA, for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization. Results Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models. Conclusions This study demonstrates that arginase is upregulated following environmental exposures in murine models of

  18. Interleukin-16 in a mouse model of allergic asthma

    NARCIS (Netherlands)

    Bie, J.J. (Joris Johannes) de

    2001-01-01

    Allergic asthma is a disease which affects an increasing number of people. Patients with this illness suffer from variable airflow obstruction and increased airway responsiveness to a variety of stimuli. Furthermore, an inflammatory response in the lungs occurs, accompanied by enhanced mucus product

  19. Potential of immunoglobulin A to prevent allergic asthma

    NARCIS (Netherlands)

    A.K. Gloudemans (Anouk); B.N.M. Lambrecht (Bart); H.H. Smits (Hermelijn)

    2013-01-01

    textabstractAllergic asthma is characterized by bronchial hyperresponsiveness, a defective barrier function, and eosinophilic lower airway inflammation in response to allergens. The inflammation is dominated by Th2 cells and IgE molecules and supplemented with Th17 cells in severe asthma. In contras

  20. Salvinorin A Inhibits Airway Hyperreactivity Induced by Ovalbumin Sensitization

    OpenAIRE

    Rossi, Antonietta; Caiazzo, Elisabetta; Bilancia, Rossella; Riemma, Maria A.; Pagano, Ester; Cicala, Carla; Ialenti, Armando; Jordan K. Zjawiony; Izzo, Angelo A; Capasso, Raffaele; Roviezzo, Fiorentina

    2017-01-01

    Salvinorin A, a neoclerodane diterpene isolated from Salvia divinorum, exerts a number of pharmacological actions which are not solely limited to the central nervous system. Recently it has been demonstrated that Salvinorin A inhibits acute inflammatory response affecting leukotriene (LT) production. Since LTs are potent lipid mediators implicated in allergic diseases, we evaluated the effect of Salvinorin A on allergic inflammation and on airways following sensitization in the mouse. Mice we...

  1. Hyperpolarized 3He magnetic resonance imaging ventilation defects in asthma: relationship to airway mechanics.

    Science.gov (United States)

    Leary, Del; Svenningsen, Sarah; Guo, Fumin; Bhatawadekar, Swati; Parraga, Grace; Maksym, Geoffrey N

    2016-04-01

    In patients with asthma, magnetic resonance imaging (MRI) provides direct measurements of regional ventilation heterogeneity, the etiology of which is not well-understood, nor is the relationship of ventilation abnormalities with lung mechanics. In addition, respiratory resistance and reactance are often abnormal in asthmatics and the frequency dependence of respiratory resistance is thought to reflect ventilation heterogeneity. We acquiredMRIventilation defect maps, forced expiratory volume in one-second (FEV1), and airways resistance (Raw) measurements, and used a computational airway model to explore the relationship of ventilation defect percent (VDP) with simulated measurements of respiratory system resistance (Rrs) and reactance (Xrs).MRIventilation defect maps were experimentally acquired in 25 asthmatics before, during, and after methacholine challenge and these were nonrigidly coregistered to the airway tree model. Using the model coregistered to ventilation defect maps, we narrowed proximal (9th) and distal (14th) generation airways that were spatially related to theMRIventilation defects. The relationships forVDPwith Raw measured using plethysmography (r = 0.79), and model predictions of Rrs>14(r = 0.91,P 9(r = 0.88,P mechanics measurements were different (P mechanics and ventilation defects, impedance predictions were made using a computational airway tree model with simulated constriction of airways related to ventilation defects measured in mild-moderate asthmatics.

  2. Farnesol, a Sesquiterpene Alcohol in Herbal Plants, Exerts Anti-Inflammatory and Antiallergic Effects on Ovalbumin-Sensitized and -Challenged Asthmatic Mice

    Directory of Open Access Journals (Sweden)

    Chi-Mei Ku

    2015-01-01

    Full Text Available To investigate the effect of farnesol on allergic asthma, three farnesol doses were extra-added into AIN-76 feed consumed by ovalbumin- (OVA- sensitized and -challenged mice continuously for 5 weeks, at approximately 5, 25, and 100 mg farnesol/kg, BW/day. The results showed that there were no significant differences in body weight, feed intake, and visceral organ weights between the farnesol supplementation and dietary control groups. Farnesol supplementation decreased interleukin (IL-6/IL-10 level ratios in bronchoalveolar lavage fluid (BALF. Farnesol supplementation significantly (P0.05 decreased IL-4 but significantly (P<0.05 increased IL-2 levels secreted by the splenocytes in the presence of OVA, implying that farnesol might have a systemic antiallergic effect on allergic asthmatic mice. Farnesol supplementation significantly (P<0.05 increased IL-10 levels secreted by the splenocytes in the presence of OVA, suggesting that farnesol might have an anti-inflammatory potential to allergic asthmatic mice. Overall, our results suggest that farnesol supplementation may be beneficial to improve the Th2-skewed allergic asthmatic inflammation.

  3. Long-term asthma treatment guided by airway hyperresponsiveness in children : a randomised controlled trial

    NARCIS (Netherlands)

    Nuijsink, M.; Hop, W. C. J.; Sterk, P. J.; Duiverman, E. J.; de Jorgste, J. C.

    2007-01-01

    Management plans for childhood asthma show limited success in optimising asthma control. The aim of the present study was to assess whether a treatment strategy guided by airway hyperresponsiveness (AHR) increased the number of symptom-free days and improved lung function in asthmatic children, comp

  4. A review of anti-IgE monoclonal antibody (omalizumab) as add on therapy for severe allergic (IgE-mediated) asthma.

    Science.gov (United States)

    D'Amato, Gennaro; Salzillo, Antonello; Piccolo, Amedeo; D'Amato, Maria; Liccardi, Gennaro

    2007-08-01

    Bronchial asthma is recognized as a highly prevalent health problem in the developed and developing world with significant social and economic consequences. Increased asthma severity is not only associated with enhanced recurrent hospitalization and mortality but also with higher social costs. The pathogenetic background of allergic-atopic bronchial asthma is characterized by airway inflammation with infiltration of several cells (mast cells, basophils, eosinophils, monocytes, and T-helper (Th)2 lymphocytes). However, in atopic asthma the trigger factors for acute attacks and chronic worsening of bronchial inflammation are aeroallergens released by pollens, dermatophagoides, and pets, which are able to induce an immune response by interaction with IgE antibodies. Currently anti-inflammatory treatments are effective for most asthma patients, but there are asthmatic subjects whose disease is not completely controlled by inhaled or systemic corticosteroids and who account for a significant portion of the healthcare costs of asthma. A novel therapeutic approach to asthma and other allergic respiratory diseases involves interference in the action of IgE, and this antibody has been viewed as a target for novel immunological drug development in asthma. Omalizumab is a humanized recombinant monoclonal anti-IgE antibody approved for treatment of moderate to severe IgE-mediated (allergic) asthma. This non-anaphylactogenic anti-IgE antibody inhibits IgE functions, blocking free serum IgE and inhibiting their binding to cellular receptors. By reducing serum IgE levels and IgE receptor expression on inflammatory cells in the context of allergic cascade, omalizumab represents a new class of mast cells stabilizing drugs; it is a novel approach to the treatment of atopic asthma. Omalizumab therapy is well tolerated and significantly improves symptoms and disease control, reducing asthma exacerbations and the need to use high dosage of inhaled corticosteroids. Moreover, omalizumab

  5. HRCT findings of asthmatic children under maintenance therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyun Sook; Park, Jai Soung; Goo, Dong Erk; Lee, Hae Kyung; Kwon, Kui Hyang; Choi, Deuk Lin; Pyun, Bok Yang [Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2000-05-01

    The purpose of this study was to evaluate the HRCT findings of bronchial asthma during maintenance bronchodilator therapy and to determine whether there were irreversible bronchial changes occurred in pediatric patients with this condition. HRCT findings of the lung in 21 asthmatic children (14 boys and 7 girls aged between 3.5 and 13.8 (mean: 7.7) years) who were receiving maintenance bronchodilator therapy were retrospectively studied. At the time of CT examination, 16 were receiving nonsteroid bronchodilator therapy only, and five were receiving both bronchodilator and steroid therapy. Thirteen patients were defined as allergic and eight were nonallergic. The clinical severity of chronic asthma was graded as severe in seven cases, and moderate in 14. The duration of the disease ranged from 4 months to 6 years (mean 3.2 years). HRCT was performed in 19 cases for evaluation of the atelectasis, hyperinflation, and prominent bronchovascular bundles seen on plain radiographs, and in two cases for evaluation following acute exacerbation. A CT W-2000 scanner (Hitachi Medical Co. Tokyo, Japan) was used during the end inspiratory phase, and in addition, ten patients were scanned during the expiratory phase. Scans were reviewed for evidence of bronchial thickening, bronchiectasis, emphysema, abnormal density, mucus plugs, and other morphological abnormalities. The presence of bronchial wall thickening or air trapping was evaluated according to the duration, severity and type of asthma. Among the 21 patients, 7 (33.3%) had normal HRCT findings, while in 14 (66.7%), bronchial wall thickening was demonstrated. Eleven of the 14 patients with bronchial wall thickening(78.6%) also had air trapping. No patient was suffering from bronchiectasis or emphysema. There were no statistically significant correlations between the presence of bronchial wall thickening or air trapping and the duration of the disease, its severity, or type of asthma. There was, however, a statistically

  6. Exophiala pisciphila: a novel cause of allergic bronchopulmonary mycosis

    Science.gov (United States)

    Mador, M. Jeffery

    2016-01-01

    Allergic bronchopulmonary mycosis (ABPM) is a hypersensitivity reaction to fungal antigens, which may particularly plague uncontrolled asthmatics. Non-aspergillus fungal organisms may be implicated and may elicit a more severe immunologic response. Exophiala pisciphila, a marine organism, has not been reported as a culprit yet. However, this report indicates it may be implicated in unrelenting symptoms in a severe asthmatic patient who had become dependent on corticosteroids. Proper identification and adequate therapy of this organism led to complete resolution of respiratory symptoms, with adequate subsequent control of the asthma. ABPM may complicate asthma and lead to a lack of its control. Proper awareness, testing and treatment of non-aspergillus pulmonary mycosis is essential to proper asthma care and beneficial for its control. PMID:27499992

  7. Treating allergic rhinitis in pregnancy.

    Science.gov (United States)

    Piette, Vincent; Daures, Jean-Pierre; Demoly, Pascal

    2006-05-01

    Numerous pregnant women suffer from allergic rhinitis, and particular attention is required when prescribing drugs to these patients. In addition, physiologic changes associated with pregnancy could affect the upper airways. Evidence-based guidelines on the management of allergic rhinitis have been published. Medication can be prescribed during pregnancy when the apparent benefit of the drug is greater than the apparent risk. Usually, there is at least one "safe" drug from each major class used to control symptoms. All glucocorticosteroids are teratogenic in animals but, when the indication is clear (for diseases possibly associated, such as severe asthma exacerbation), the benefit of the drug is far greater than the risk. Inhaled glucocorticosteroids (eg, beclomethasone or budesonide) have not been incriminated as teratogens in humans and are used by pregnant women who have asthma. A few H1-antihistamines can safely be used as well. Most oral decongestants (except pseudoephedrine) are teratogenic in animals. There are no such data available for intranasal decongestants. Finally, pregnancy is not considered to be a contraindication for the continuation of immunotherapy.

  8. Role of extracellular signal-regulated kinase in regulating expression of interleukin 13 in lymphocytes from an asthmatic rat model

    Institute of Scientific and Technical Information of China (English)

    LI Yuan-yuan; LIU Xian-sheng; LIU Chang; XU Yong-jian; XIONG Wei-xing

    2010-01-01

    Background The extracellular signal-regulated kinase (ERK) is widely expressed in mammal cells and involved in airway proliferation and remodeling in asthma. In this study, we intend to explore the role of ERK in the expression of the Th2 cytokine, interleukin 13 (IL-13) in lymphocytes in asthma.Methods Forty Sprague-Dawley rats were randomly divided into two groups: normal control and asthmatic groups. Peripheral blood lymphocytes were isolated and purified from the blood of each rat and divided into five groups: control, asthmatic lymphocytes, asthmatic cells stimulated with ERK activator epidermal growth factor (EGF), or with ERK inhibitor PD98059, or with EGF and PD98059 together. The expression of phosphorylated-ERK (p-ERK) was observed by immunocvtochemical staining, the expression of ERK mRNA was determined by reverse transcriptase-PCR, IL-13 protein in supernatants was measured by ELISA.Results (1) The ERK mRNA level and the percentage of cells with p-ERK in lymphocytes from asthmatic rats were significantly higher than those in normal controls, and were significantly increased by EGF administration. This effect of EGF was significantly inhibited by PD98059 pretreatment. (2) IL-13 protein in supematants of asthmatic lymphocytes was higher than that produced by normal control lymphocytes, and was significantly increased by EGF treatment. This EGF effect was partly blocked by PD98059 pretreatment. (3) There was a significant positive correlation between the percentage of cells with p-ERK in peripheral blood lymphocytes and IL-13 protein in supematants of lymphocytes from asthmatic rats.Conclusions In asthma the ERK expression and activation levels were increased, as was the protein level of IL-13. The ERK signaling pathway may be involved in the increased expression of the Th2 cytokine IL-13 in asthma.

  9. Ozone exposure, vitamin C intake, and genetic susceptibility of asthmatic children in Mexico City: a cohort study

    Directory of Open Access Journals (Sweden)

    Moreno-Macías Hortensia

    2013-02-01

    Full Text Available Abstract Background We previously reported that asthmatic children with GSTM1 null genotype may be more susceptible to the acute effect of ozone on the small airways and might benefit from antioxidant supplementation. This study aims to assess the acute effect of ozone on lung function (FEF25-75 in asthmatic children according to dietary intake of vitamin C and the number of putative risk alleles in three antioxidant genes: GSTM1, GSTP1 (rs1695, and NQO1 (rs1800566. Methods 257 asthmatic children from two cohort studies conducted in Mexico City were included. Stratified linear mixed models with random intercepts and random slopes on ozone were used. Potential confounding by ethnicity was assessed. Analyses were conducted under single gene and genotype score approaches. Results The change in FEF25-75 per interquartile range (60 ppb of ozone in persistent asthmatic children with low vitamin C intake and GSTM1 null was −91.2 ml/s (p = 0.06. Persistent asthmatic children with 4 to 6 risk alleles and low vitamin C intake showed an average decrement in FEF25-75 of 97.2 ml/s per 60 ppb of ozone (p = 0.03. In contrast in children with 1 to 3 risk alleles, acute effects of ozone on FEF25-75 did not differ by vitamin C intake. Conclusions Our results provide further evidence that asthmatic children predicted to have compromised antioxidant defense by virtue of genetic susceptibility combined with deficient antioxidant intake may be at increased risk of adverse effects of ozone on pulmonary function.

  10. Mechanism of hypothalamic paraventricular nucleus in regulating asthmatic attack

    Institute of Scientific and Technical Information of China (English)

    Jia Liu; Rong Dong; Jian Xiao; Nina Liu

    2006-01-01

    lower limb.Lung function tests were carried out simultaneously.Small holes were drilled in the skull to introduce a concentric bipolar electrode in the direction of the PVN in order to perform electrolytic lesion.The electredes were connected to a lesion-producing device and a current of 1.0-1.5 mA was passed over a period of 10-15 s on each side of the PVN.The rats received 0.5 μg/0.5μL of KA in phosphate buffer(0.1 mol/L,pH 7.4),and the speed of infusion was 0.1μL per minute in order to perform KA-induced lesion of PVN.②Three days after operation of lesion,lung function tests were carried out.All the electrode and transducer were connected with data acquisition system. This technique yielded airway resistance(Raw),dynamic compliance(Cdyn),the expiratory time(Te)/the inspiratory time(Ti),minute ventilation volume(MW),EMGdi frequency and EMGdi integral.③The differences of the measurement data were compared using the t test.MAIN OUTCOME MEASURES:①The alteration of EEG and power spectrum of PVN during asthmatic attack in sensitized rats;②The effects of electrolytic lesion or KA-induced lesion of PVN on lung function in asthmatic rats.RESULTS: All the 48 rats were involved in the analysis of results.①Alteration of EEG and power spectrum:Five minutes after injection of ovalbumin into caudal vena,the breathing rate of the rat was obviously speeded up and the total power spectrum was increased[(18 476.71±2140.94),(13838.75+2983.26)mV2,P<0.01],the percentage of the δ power and θ power decreased significantly(P<0.01),while the percentage of αpower and β1 power were enhanced(P<0.05,0.01).Ten minutes after injection,the EEG power spectrum of PVN further shifted rightward,the total power gradually increased(P<0.01)which suggesting that the intensive hypersynchrony activities of PVN neurons.The percentage of δ power was decreased significantly(P<0.01).but the αβ1 and β2 were increased(P<0.01).Twenty-five minutes later,the breathing movements became

  11. IL-4 increases type 2, but not type 1, cytokine production in CD8+ T cells from mild atopic asthmatics

    Directory of Open Access Journals (Sweden)

    Coyle Anthony J

    2005-07-01

    Full Text Available Abstract Background Virus infections are the major cause of asthma exacerbations. CD8+ T cells have an important role in antiviral immune responses and animal studies suggest a role for CD8+ T cells in the pathogenesis of virus-induced asthma exacerbations. We have previously shown that the presence of IL-4 during stimulation increases the frequency of IL-5-positive cells and CD30 surface staining in CD8+ T cells from healthy, normal subjects. In this study, we investigated whether excess IL-4 during repeated TCR/CD3 stimulation of CD8+ T cells from atopic asthmatic subjects alters the balance of type 1/type 2 cytokine production in favour of the latter. Methods Peripheral blood CD8+ T cells from mild atopic asthmatic subjects were stimulated in vitro with anti-CD3 and IL-2 ± excess IL-4 and the expression of activation and adhesion molecules and type 1 and type 2 cytokine production were assessed. Results Surface expression of very late antigen-4 [VLA-4] and LFA-1 was decreased and the production of the type 2 cytokines IL-5 and IL-13 was augmented by the presence of IL-4 during stimulation of CD8+ T cells from mild atopic asthmatics. Conclusion These data suggest that during a respiratory virus infection activated CD8+ T cells from asthmatic subjects may produce excess type 2 cytokines and may contribute to asthma exacerbation by augmenting allergic inflammation.

  12. Signaling and regulation of G protein-coupled receptors in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Penn Raymond B

    2003-03-01

    Full Text Available Abstract Signaling through G protein-coupled receptors (GPCRs mediates numerous airway smooth muscle (ASM functions including contraction, growth, and "synthetic" functions that orchestrate airway inflammation and promote remodeling of airway architecture. In this review we provide a comprehensive overview of the GPCRs that have been identified in ASM cells, and discuss the extent to which signaling via these GPCRs has been characterized and linked to distinct ASM functions. In addition, we examine the role of GPCR signaling and its regulation in asthma and asthma treatment, and suggest an integrative model whereby an imbalance of GPCR-derived signals in ASM cells contributes to the asthmatic state.

  13. Pharmacokinetics of nebulized and oral procaterol in asthmatic and non-asthmatic subjects in relation to doping analysis

    DEFF Research Database (Denmark)

    Krogh, Nanna; Backer, Vibeke; Rzeppa, Sebastian

    2016-01-01

    The purpose of the present study was to investigate pharmacokinetics of procaterol in asthmatics and non-asthmatics after nebulized and oral administration in relation to doping. Ten asthmatic and ten non-asthmatic subjects underwent two pharmacokinetic trials. At first trial, 4 μg procaterol...... after nebulized administration. For doping control purposes, our observations indicate that it is possible to differentiate therapeutic nebulized administration of procaterol from proh ib ited use of oral procaterol....

  14. The effectiveness of fish oil supplementation in asthmatic rats is limited by an inefficient action on ASM function.

    Science.gov (United States)

    Miranda, D T S Z; Zanatta, A L; Dias, B C L; Fogaça, R T H; Maurer, J B B; Donatti, L; Calder, P C; Nishiyama, A

    2013-09-01

    Episodes of acute exacerbation are the major clinical feature of asthma and therefore represent an important focus for developing novel therapies for this disease. There are many reports that the n-3 fatty acids found in fish oil exert anti-inflammatory effects, but there are few studies of the action of fish oil on airway smooth muscle (ASM) function. In the present investigation, we evaluated the effect of fish oil supplementation on smooth muscle force of contraction in ovalbumin-induced asthmatic Wistar rats, and its consequences on static lung compliance, mucus production, leukocyte chemotaxis and production of proinflammatory cytokines. Fish oil supplementation suppressed the infiltration of inflammatory cells into the lung in asthmatic animals (2.04 ± 0.19 × 10(6) cells vs. 3.33 ± 0.43 × 10(6) cells in the control asthmatic group; P < 0.05). Static lung compliance increased with fish oil supplementation in asthmatic rats (0.640 ± 0.053 mL/cm H2O vs. 0.399 ± 0.043 mL/cm H2O; P < 0.05). However, fish oil did not prevent asthma-associated lung eosinophilia and did not affect the concentrations of tumor necrosis factor-α and interleukin-1β in lung tissue or the proportion of the airways obliterated with mucus. Fish oil had no effect on the force of contraction in asthmatic rats in response to acetylcholine (3.026 ± 0.274 mN vs. 2.813 ± 0.364 mN in the control asthmatic group). In conclusion, although fish oil exerts some benefits in this model of asthma, its effectiveness appears to be limited by an inefficient action on airway smooth muscle function.

  15. The effect of smoking cessation on airway inflammation in young asthma patients

    DEFF Research Database (Denmark)

    Westergaard, C G; Porsbjerg, C; Backer, V

    2014-01-01

    BACKGROUND: Smoking has been shown to have several detrimental effects on asthma, including poor symptom control, attenuated treatment response and accelerated decline in lung function. In spite of this, smoking is at least as common among asthma patients as in the rest of the population....... The aggravations of smoking on asthma may be caused by effects on airway inflammation, which has been found to be changed in asthmatic smokers. It is not known whether these smoking-induced airway inflammation changes are reversible after smoking cessation. OBJECTIVE: The aim of this study was to assess airway...... changes in asthmatic smokers before and during smoking cessation. METHODS: Forty-six smokers with asthma, all steroid-free (age range: 19-40), were recruited. All participants attempted smoking cessation over a period of 3 months. Visits were performed at weeks 0, 6 and 12 and included induced sputum, Fe...

  16. Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology.

    Science.gov (United States)

    Muraro, Antonella; Lemanske, Robert F; Hellings, Peter W; Akdis, Cezmi A; Bieber, Thomas; Casale, Thomas B; Jutel, Marek; Ong, Peck Y; Poulsen, Lars K; Schmid-Grendelmeier, Peter; Simon, Hans-Uwe; Seys, Sven F; Agache, Ioana

    2016-05-01

    In this consensus document we summarize the current knowledge on major asthma, rhinitis, and atopic dermatitis endotypes under the auspices of the PRACTALL collaboration platform. PRACTALL is an initiative of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology aiming to harmonize the European and American approaches to best allergy practice and science. Precision medicine is of broad relevance for the management of asthma, rhinitis, and atopic dermatitis in the context of a better selection of treatment responders, risk prediction, and design of disease-modifying strategies. Progress has been made in profiling the type 2 immune response-driven asthma. The endotype driven approach for non-type 2 immune response asthma, rhinitis, and atopic dermatitis is lagging behind. Validation and qualification of biomarkers are needed to facilitate their translation into pathway-specific diagnostic tests. Wide consensus between academia, governmental regulators, and industry for further development and application of precision medicine in management of allergic diseases is of utmost importance. Improved knowledge of disease pathogenesis together with defining validated and qualified biomarkers are key approaches to precision medicine.

  17. Potential of Immunoglobulin A to Prevent Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Anouk K. Gloudemans

    2013-01-01

    Full Text Available Allergic asthma is characterized by bronchial hyperresponsiveness, a defective barrier function, and eosinophilic lower airway inflammation in response to allergens. The inflammation is dominated by Th2 cells and IgE molecules and supplemented with Th17 cells in severe asthma. In contrast, in healthy individuals, allergen-specific IgA and IgG4 molecules are found but no IgE, and their T cells fail to proliferate in response to allergens, probably because of the development of regulatory processes that actively suppress responses to allergens. The presence of allergen-specific secretory IgA has drawn little attention so far, although a few epidemiological studies point at a reverse association between IgA levels and the incidence of allergic airway disease. This review highlights the latest literature on the role of mucosal IgA in protection against allergic airway disease, the mechanisms described to induce secretory IgA, and the role of (mucosal dendritic cells in this process. Finally, we discuss how this information can be used to translate into the development of new therapies for allergic diseases based on, or supplemented with, IgA boosting strategies.

  18. Treatment of allergic rhinitis during pregnancy.

    Science.gov (United States)

    Demoly, Pascal; Piette, Vincent; Daures, Jean-Pierre

    2003-01-01

    Allergic rhinitis is a frequent problem during pregnancy. In addition, physiological changes associated with pregnancy can affect the upper airways. Evidence-based guidelines on the management of allergic rhinitis have recently been published, the most recent being the Allergic Rhinitis and its Impact on Asthma (ARIA)--World Health Organization consensus. Many pregnant women experience allergic rhinitis and particular attention is required when prescribing drugs to these patients. Medication can be prescribed during pregnancy when the apparent benefit of the drug is greater than the apparent risk. Usually, there is at least one drug from each major class that can be safely utilised to control symptoms. All glucocorticosteroids are teratogenic in animals but, when the indication is clear (for diseases possibly associated, such as severe asthma exacerbation), the benefit of the drug is far greater than the risk. Inhaled glucocorticosteroids (e.g. beclomethasone or budesonide) have not been incriminated as teratogens in humans and are used by pregnant women who have asthma. A few histamine H(1)-receptor antagonists (H(1)-antihistamines) can safely be used as well. Most oral decongestants (except pseudoephedrine) are teratogenic in animals. There are no such data available for intra-nasal decongestants. Finally, pregnancy is not considered as a contraindication for the continuation of allergen specific immunotherapy.

  19. Montelukast modulates lung CysLT1 receptor expression and eosinophilic inflammation in asthmatic mice

    Institute of Scientific and Technical Information of China (English)

    Yan-jun ZHANG; Lei ZHANG; Shao-bin WANG; Hua-hao SHEN; Er-qing WEI

    2004-01-01

    AIM: To determine the expressions of cysteinyl leukotriene receptors, CysLT1 and CysLT2, in airway eosinophilic inflammation of OVA-induced asthmatic mice and the modulation by montelukast, a CysLT1 receptor antagonist.METHODS: Asthma model was induced by chronic exposure to ovalbumin (OVA) in C57BL/6 mice. The eosinophils in bronchoalveolar lavage (BAL) fluid and lung tissues were counted, IL-5 level in BAL fluid was measured,and CysLT1 and CysLT2 receptor mRNA expressions were detected by semi-quantitative RT-PCR. RESULTS:Montelukast (6 mg/kg, once per day for 20 d) significantly suppressed the increased eosinophils in BAL fluid and lung tissue, and increased IL-5 level in BAL fluid in OVA challenged mice. OVA challenge increased CysLT1 but decreased CysLT2 receptor mRNA expression. Montelukast inhibited the increased CysLT1 but not the reduced CysLT2 expression after OVA challenge. CONCLUSION: CysLT receptors are modulated immunologically, and montelukast inhibits up-regulation of CysLT1 receptor and airway eosinophilic inflammation in asthmatic mice.

  20. Exhaled breath temperature and exercise-induced bronchoconstriction in asthmatic children.

    Science.gov (United States)

    Peroni, Diego G; Chinellato, Iolanda; Piazza, Michele; Zardini, Federica; Bodini, Alessandro; Olivieri, Francesca; Boner, Attilio L; Piacentini, Giorgio L

    2012-03-01

    It has been hypothesized that exhaled breath temperature (EBT) is related to the degree of airway inflammation/remodeling in asthma. The purpose of this study was to evaluate the relationship between the level of airway response to exercise and EBT in a group of controlled or partly controlled asthmatic children. Fifty asthmatic children underwent measurements of EBT before and after a standardized exercise test. EBT was 32.92 ± 1.13 and 33.35 ± 0.95°C before and after exercise, respectively (P < 0.001). The % decrease in FEV(1) was significantly correlated with the increase in EBT (r = 0.44, P = 0.0013), being r = 0.49 (P < 0.005) in the children who were not receiving regular inhaled corticosteroids (ICS) and 0.37 (n.s.) in those who were. This study further supports the hypothesis that EBT can be considered a potential composite tool for monitoring asthma.

  1. Development of asthmatic inflammation in mice following early-life exposure to ambient environmental particulates and chronic allergen challenge

    Directory of Open Access Journals (Sweden)

    Cristan Herbert

    2013-03-01

    Childhood exposure to environmental particulates increases the risk of development of asthma. The underlying mechanisms might include oxidant injury to airway epithelial cells (AEC. We investigated the ability of ambient environmental particulates to contribute to sensitization via the airways, and thus to the pathogenesis of childhood asthma. To do so, we devised a novel model in which weanling BALB/c mice were exposed to both ambient particulate pollutants and ovalbumin for sensitization via the respiratory tract, followed by chronic inhalational challenge with a low mass concentration of the antigen. We also examined whether these particulates caused oxidant injury and activation of AEC in vitro. Furthermore, we assessed the potential benefit of minimizing oxidative stress to AEC through the period of sensitization and challenge by dietary intervention. We found that characteristic features of asthmatic inflammation developed only in animals that received particulates at the same time as respiratory sensitization, and were then chronically challenged with allergen. However, these animals did not develop airway hyper-responsiveness. Ambient particulates induced epithelial injury in vitro, with evidence of oxidative stress and production of both pro-inflammatory cytokines and Th2-promoting cytokines such as IL-33. Treatment of AEC with an antioxidant in vitro inhibited the pro-inflammatory cytokine response to these particulates. Ambient particulates also induced pro-inflammatory cytokine expression following administration to weanling mice. However, early-life dietary supplementation with antioxidants did not prevent the development of an asthmatic inflammatory response in animals that were exposed to particulates, sensitized and challenged. We conclude that injury to airway epithelium by ambient environmental particulates in early life is capable of promoting the development of an asthmatic inflammatory response in sensitized and antigen-challenged mice. These

  2. Effect of Smoking Abstinence and Reduction in Asthmatic Smokers Switching to Electronic Cigarettes: Evidence for Harm Reversal

    Directory of Open Access Journals (Sweden)

    Riccardo Polosa

    2014-05-01

    Full Text Available Electronic cigarettes (e-cigs are marketed as safer alternatives to tobacco cigarettes and have shown to reduce their consumption. Here we report for the first time the effects of e-cigs on subjective and objective asthma parameters as well as tolerability in asthmatic smokers who quit or reduced their tobacco consumption by switching to these products. We retrospectively reviewed changes in spirometry data, airway hyper-responsiveness (AHR, asthma exacerbations and subjective asthma control in smoking asthmatics who switched to regular e-cig use. Measurements were taken prior to switching (baseline and at two consecutive visits (Follow-up/1 at 6 (±1 and Follow-up/2 at 12 (±2 months. Eighteen smoking asthmatics (10 single users, eight dual users were identified. Overall there were significant improvements in spirometry data, asthma control and AHR. These positive outcomes were noted in single and dual users. Reduction in exacerbation rates was reported, but was not significant. No severe adverse events were noted. This small retrospective study indicates that regular use of e-cigs to substitute smoking is associated with objective and subjective improvements in asthma outcomes. Considering that e-cig use is reportedly less harmful than conventional smoking and can lead to reduced cigarette consumption with subsequent improvements in asthma outcomes, this study shows that e-cigs can be a valid option for asthmatic patients who cannot quit smoking by other methods.

  3. Molecular mechanism of icariin on rat asthmatic model

    Institute of Scientific and Technical Information of China (English)

    XU Chang-qing; LE Jing-jing; DUAN Xiao-hong; DU Wei-jing; LIU Bao-jun; WU Jing-feng; CAO Yu-xue; DONG Jing-cheng

    2011-01-01

    Background Effects of icariin on airway inflammation in asthmatic rats and the intervention of LPS induced inflammation are interfered with the machanism of icariin. Our study aimed to observe the effect of icariin on ovalbumin-induced imbalance of Th1/Th2 cytokine expression and its mechanism.Methods Sixty male SD rats were randomly divided into control group (PBS), asthma group (ovalbumin (OVA)-induced),dexamethasone group, and OVA+icariin low, medium and high dose groups (5, 10, 20 mg/kg, respectively). Each group had ten rats. The model of OVA sensitization was a rat asthma model. Enzyme-linked immunosorbent assay (ELISA)method was used to observe the effects of icariin on interleukin-4 (IL-4) and inerferon Y (IFN-Y) in rats' lung tissue.Immunohistochemical staining was applied to detect the intervention effects of icariin on T cells (T-bet) and gatabinding protein 3 (GATA-3) in rat pulmonary tissue. Realtime RT-PCR was used to observe the intervention effects of icariin on T-bet and GATA-3 mRNA expression in rat pulmonary tissue and spleen lymphocytes. Western blotting was used to observe the icariin intervention effects on T-bet, GATA-3 and nuclear factor-Kappa B (NF-κB) p65 protein expressions in rat pulmonary tissue.Results The ELISA results from pulmonary tissue showed that IL-4 expression was significantly reduced (P <0.05),while the IFN-y expression increased but not significantly when we compared OVA+icariin medium and high dose groups with the asthma group. Immunohistochemical staining of pulmonary tissue showed that the GATA-3 decreased significantly while the T-bet staining did not change in the OVA+icariin high dose group. In pulmonary tissue and spleen lymphocytes T-bet and GATA-3 mRNA expressions were significantly reduced (P <0.05) in icariin treatment groups compared with the asthma model group. GATA-3 and T-bet mRNA in rat spleen lymphocytes in the asthma group were higher than in the control group. GATA-3 mRNA expression in pulmonary

  4. Airway Responsiveness to Psychological Processes in Asthma and Health

    Directory of Open Access Journals (Sweden)

    Thomas eRitz

    2012-09-01

    Full Text Available Psychosocial factors have been found to impact airway pathophysiology in respiratory disease with considerable consistency. Influences on airway mechanics have been studied particularly well. The goal of this article is to review the literature on airway responses to psychological stimulation, discuss potential pathways of influence, and present a well-established emotion-induction paradigm to study airway obstruction elicited by unpleasant stimuli. Observational studies have found systematic associations between lung function and daily mood changes. The laboratory –based paradigm of bronchoconstrictive suggestion has been used successfully to elicit airway obstruction in a substantial proportion of asthmatic individuals. Other studies have demonstrated an enhancement of airway responses to standard airway challenges with exercise, allergens, or methacholine. Standardized emotion-induction techniques have consistently shown airway constriction during unpleasant stimulation, with surgery, blood and injury stimuli being particularly powerful. Findings with various forms of stress induction have been more mixed. A number of methodological factors may account for variability across studies, such as choice of measurement technique, temporal association between stimulation and measurement, and the specific quality and intensity of the stimulus material, in particular the extent of implied action-orientation. Research has also begun to elucidate physiological processes associated with psychologically induced airway responses, with vagal excitation and ventilatory influences being the most likely candidate pathways, whereas the role of specific central nervous system pathways and inflammatory processes has been less studied. The technique of emotion-induction using films has the potential to become a standardized challenge paradigm for the further exploration of airway hyperresponsiveness mediated by central nervous system processes.

  5. Bronchial hyperresponsiveness and anti-asthmatic therapy

    NARCIS (Netherlands)

    Kraan, Jan

    1990-01-01

    Many asthmatic patients experience shortness of breath or wheezing, when exposed to cold air, or irritants like baking fumes, exhaust gases or cigarette smoke. This clinical phenomenon has been called bronchial hypemsponsiveness (BHR), which is defined as an exaggerated broncho-obstructive response

  6. Reciprocal immunomodulatory effects of gamma interferon and interleukin-4 on filaria-induced airway hyperresponsiveness.

    Science.gov (United States)

    Mehlotra, R K; Hall, L R; Haxhiu, M A; Pearlman, E

    2001-03-01

    Tropical pulmonary eosinophilia (TPE) is a severe asthmatic syndrome of lymphatic filariasis, in which an allergic response is induced to microfilariae (Mf) in the lungs. Previously, in a murine model for TPE, we have demonstrated that recombinant interleukin-12 (IL-12) suppresses pulmonary eosinophilia and airway hyperresponsiveness (AHR) by modulating the T helper (Th) response in the lungs from Th2- to Th1-like, with elevated gamma-interferon (IFN-gamma) production and decreased IL-4 and IL-5 production. The present study examined the immunomodulatory roles of IL-4 and IFN-gamma in filaria-induced AHR and pulmonary inflammation using mice genetically deficient in these cytokines. C57BL/6, IL-4 gene knockout (IL-4(-/-)), and IFN-gamma(-/-) mice were first immunized with soluble Brugia malayi antigens and then inoculated intravenously with 200,000 live Mf. Compared with C57BL/6 mice, IL-4(-/-) mice exhibited significantly reduced AHR, whereas IFN-gamma(-/-) mice had increased AHR. Histopathologically, each mouse strain showed increased cellular infiltration into the lung parenchyma and bronchoalveolar space compared with naïve animals. However, consistent with changes in AHR, IL-4(-/-) mice had less inflammation than C57BL/6 mice, whereas IFN-gamma(-/-) mice had exacerbated pulmonary inflammation with the loss of pulmonary architecture. Systemically, IL-4(-/-) mice produced significantly higher IFN-gamma levels compared with C57BL/6 mice, whereas IFN-gamma(-/-) mice produced significantly higher IL-4 levels. These data indicate that IL-4 is required for the induction of filaria-induced AHR, whereas IFN-gamma suppresses AHR.

  7. Takes your breath away--the immunology of allergic alveolitis.

    Science.gov (United States)

    McSharry, C; Anderson, K; Bourke, S J; Boyd, G

    2002-04-01

    Extrinsic allergic alveolitis (synonym: hypersensitivity pneumonitis) is caused by inhaling antigenic aerosols which induce hypersensitivity responses in susceptible individuals. It is an interstitial inflammatory disease affecting the distal, gas-exchanging parts of the lung, in contrast to allergic asthma where the inflammation is more proximal, affecting the conducting airways. The aims of this review are to describe current concepts of the immunology of this model of lung inflammation, to describe some of the constitutional and environmental characteristics which affect disease susceptibility and development, and to describe topics for prospective study.

  8. Relationship among bacterial colonization, airway inflam- mation, and bronchodilator response in patients with stable chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Bronchodilator reversibility, a response of airway to bronchodilator, occurred in 64% of stable patients with chronic obstructive pulmonary disease (COPD).1 In patients with COPD who have a significant response to bronchodilators, a clinical and functional response to inhaled corticosteroids is similar to that in asthmatics.2

  9. Airway management in trauma

    Directory of Open Access Journals (Sweden)

    Rashid M Khan

    2011-01-01

    Full Text Available Trauma has assumed epidemic proportion. 10% of global road accident deaths occur in India. Hypoxia and airway mismanagement are known to contribute up to 34% of pre-hospital deaths in these patients. A high degree of suspicion for actual or impending airway obstruction should be assumed in all trauma patients. Objective signs of airway compromise include agitation, obtundation, cyanosis, abnormal breath sound and deviated trachea. If time permits, one should carry out a brief airway assessment prior to undertaking definitive airway management in these patients. Simple techniques for establishing and maintaining airway patency include jaw thrust maneuver and/or use of oro- and nas-opharyngeal airways. All attempts must be made to perform definitive airway management whenever airway is compromised that is not amenable to simple strategies. The selection of airway device and route- oral or -nasal, for tracheal intubation should be based on nature of patient injury, experience and skill level.

  10. Allergic Contact Dermatitis

    OpenAIRE

    Meltem Önder

    2009-01-01

    Allergic contact dermatitis is the delayed type hypersensitivity reaction to exogenous agents. Allergic contact dermatitis may clinically present acutely after allergen exposure and initial sensitization in a previously sensitized individual. Acute phase is characterized by erythematous, scaly plaques. In severe cases vesiculation and bullae in exposed areas are very characteristic. Repeated or continuous exposure of sensitized individual with allergen result in chronic dermatitis. Lichenific...

  11. Leukotriene B4, administered via intracerebroventricular injection, attenuates the antigen-induced asthmatic response in sensitized guinea pigs

    Directory of Open Access Journals (Sweden)

    Jiang Jun-Xia

    2010-02-01

    Full Text Available Abstract Background Despite intensive studies focused on the pathophysiology of asthmatic inflammation, little is known about how cross-talk between neuroendocrine and immune systems regulates the inflammatory response during an asthmatic attack. We recently showed corresponding changes of cytokines and leukotriene B4 (LTB4 in brain and lung tissues of antigen-challenged asthmatic rats. Here, we investigated how LTB4 interacts with the neuroendocrine-immune system in regulating antigen-induced asthmatic responses in sensitized guinea pigs. Methods Ovalbumin-sensitized guinea pigs were challenged by inhalation of antigen. Vehicle, LTB4 or U75302 (a selective LTB4 BLT1 receptor inhibitor was given via intracerebroventricular injection (i.c.v. 30 min before challenge. Airway contraction response was evaluated using Penh values before and after antigen challenge. The inflammatory response in lung tissue was evaluated 24 h after challenge. The LTB4 content of lung and brain homogenate preparations was detected by reversed phase high-performance liquid chromatography (RP-HPLC. Plasma levels of adrenocorticotropic hormone (ACTH and corticosterone (CORT were measured using ELISA kits. Results Antigen challenge impaired pulmonary function and increased inflammatory cell infiltration in lung tissue. These responses could be significantly suppressed by LTB4, 30 ng i.c.v., in ovalbumin-sensitized guinea pigs. LTB4 content of lung and brain homogenates from antigen-challenged guinea pigs was significantly increased. In addition, administration of LTB4 via i.c.v. markedly increased CORT and ACTH level in plasma before antigen challenge, and there were further increases in CORT and ACTH levels in plasma after antigen challenge. U75302, 100 ng i.c.v., completely blocked the effects of LTB4. In addition, U75302, 100 ng via i.c.v. injection, markedly decreased LTB4 content in lung homogenates, but not in brain homogenates. Conclusions Increased LTB4 levels in

  12. Effects of glucocorticoid and cysteinyl leukotriene 1 receptor antagonist on CD34 + hematopoietic cells in bone marrow of asthmatic mice

    Institute of Scientific and Technical Information of China (English)

    毛辉; 殷凯生; 王曾礼; 李富宇; 张希龙; 刘春涛; 雷松

    2004-01-01

    Background Corticosteroids remain the most effective therapy available for asthma. They have widespread effects on asthmatic airway inflammation. However, little is known about the effects of corticosteroids on the production of bone marrow inflammatory cells in asthma. This study observed the effects of glucocorticoid and cysteinyl leukotriene 1 receptor antagonist on CD34 + hematopoietic cells, so as to explore the possible effectiveness of a bone marrow-targeted anti-inflammatory strategy.Methods Balb/c mice were sensitized and challenged with ovalbumin (OVA) to establish an asthmatic model. For two consecutive weeks, asthmatic mice were challenged with OVA while being given either prednisone, montelukast, prednisone plus montelukast, or sterile saline solution. The mice were killed 24 hours after the last challenge with OVA, and bronchoalveolar lavage fluid (BALF),peripheral blood, and bone marrow were collected. Eosinophils in peripheral blood and BALF, and nucleated cells in BALF, peripheral blood, and bone marrow were counted. The percentages of CD34+cells, CD4 + T lymphocytes and CD8 + T lymphocytes among nucleated cells in peripheral blood and bone marrow were counted by flow cytometry. Immunocytochemistry and in situ hybridization were employed to detect expression of CD34 and interleukin (IL)-5Rαx mRNA (CD34 + IL-5Rα mRNA+ cells)among bone marrow hematopoietic cells.Results Compared with the sterile saline solution group, the number of eosinophils in BALF and peripheral blood, CD34 + cells in peripheral blood and bone marrow, and CD34 + IL-5Rc mRNA+ cells in bone marrow of mice from the prednisone and prednisone plus montelukast groups were significantly lower (P<0.01). The number of eosinophils in BALF from the montelukast group was also significantly lower (P<0.05).Conclusions The results suggest that, in this asthmatic mouse model, prednisone probably inhibits proliferation, differentiation, and migration of CD34 + cells in bone marrow, blocks

  13. Immunomodulatory effects of oak dust exposure in a murine model of allergic asthma.

    Science.gov (United States)

    Määttä, Juha; Haapakoski, Rita; Lehto, Maili; Leino, Marina; Tillander, Sari; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Savolainen, Kai; Alenius, Harri

    2007-09-01

    Repeated airway exposure to wood dust has been reported to cause adverse respiratory effects such as asthma and chronic bronchitis. In our recent study, we found that exposure of mice to oak dust induced more vigorous lung inflammation compared to birch dust exposure. In the present study, we assessed the immunomodulatory effects of repeated intranasal exposure to oak dust both in nonallergic and in ovalbumin-sensitized, allergic mice. Allergen-induced influx of eosinophils and lymphocytes was seen in the lungs of allergic mice. Oak dust exposure elicited infiltration of neutrophils, lymphocytes, and macrophages in nonallergic mice. Interestingly, oak dust-induced lung neutrophilia as well as oak dust-induced production of the proinflammatory cytokine TNF-alpha and chemokine CCL3 were significantly suppressed in allergic mice. On the other hand, allergen-induced expression of IL-13 mRNA and protein was significantly reduced in oak dust-exposed allergic mice. Finally, allergen-induced airway hyperreactivity to inhaled metacholine was significantly suppressed in oak dust-exposed allergic mice. The present results suggest that repeated airway exposure to oak dust can regulate pulmonary inflammation and airway responses depending on the immunological status of the animal.

  14. Gingival immunologic defense index: a new indicator for evaluating dental plaque infection risk in allergic children

    Directory of Open Access Journals (Sweden)

    Seno Pradopo

    2008-03-01

    Full Text Available There is a possible relationship between dental plaque and children allergic diseases. According to literatures, gingivitis suffered mostly by allergic children than control. Case reports also revealed that dental plaque control therapy was able to reduce, even eliminate rhinosinusitis and asthmatic symptoms without additional medications. However, the exact method for confirming the gingivitis-related allergy is still uncertain. Allergic diseases have multifactorial etiologies and dental plaque had been proposed as a new trigger of allergic symptoms. Nevertheless, since not every child with gingivitis suffered from allergy or vice versa, this uncertain phenomenon may lead to patients or other clinician disbelief. The objective of the present study was to propose a new method, which involving the Gingival immunologic defense index (GIDI to evaluate the susceptibility to allergic diseases. GIDI is an index that had been developed earlier for evaluating gingival immunologic defense with respect to immunoglobulin A (IgA levels. This index based on the simple count of the inflamed gingival surfaces of a child plus the measurement of salivary IgA content. It provides clinicians with important information about the immunologic defense potential of each subject. Interestingly, most allergic children also had inherited IgA deficiency, thus this concept is likely. Based on literatures, GIDI could be a potential index for evaluating the risk of allergic diseases through gingival health assessment. However, prior investigation to the value of Indonesian GIDI index which related to allergy should be conducted.

  15. Suppression of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a guinea pig model of asthma.

    Science.gov (United States)

    Mahajan, Shailaja G; Mehta, Anita A

    2011-01-10

    In the present study, the efficacy of β-sitosterol isolated from an n-butanol extract of the seeds of the plant Moringa oleifera (Moringaceae) was examined against ovalbumin-induced airway inflammation in guinea pigs. All animals (except group I) were sensitized subcutaneously and challenged with aerosolized 0.5% ovalbumin. The test drugs, β-sitosterol (2.5mg/kg) or dexamethasone (2.5mg/kg), were administered to the animals (p.o.) prior to challenge with ovalbumin. During the experimental period (on days 18, 21, 24 and 29), a bronchoconstriction test (0.25% acetylcholine for 30s) was performed and lung function parameters (tidal volume and respiration rate) were measured for each animal. On day 30, blood and bronchoalveolar lavaged fluid were collected to assess cellular content, and serum was collected for cytokine assays. Lung tissue was utilized for a histamine assay and for histopathology. β-sitosterol significantly increased the tidal volume (V(t)) and decreased the respiration rate (f) of sensitized and challenged guinea pigs to the level of non-sensitized control guinea pigs and lowered both the total and differential cell counts, particularly eosinophils and neutrophils, in blood and bronchoalveolar lavaged fluid. Furthermore, β-sitosterol treatment suppressed the increase in cytokine levels (TNFα, IL-4 and IL-5), with the exception of IL-6, in serum and in bronchoalveolar lavaged fluid detected in model control animals. Moreover, treatment with β-sitosterol protected against airway inflammation in lung tissue histopathology. β-sitosterol possesses anti-asthmatic actions that might be mediated by inhibiting the cellular responses and subsequent release/synthesis of Th2 cytokines. This compound may have therapeutic potential in allergic asthma.

  16. Plasminogen activator inhibitor-1 (PAI-1 and urokinase plasminogen activator (uPA in sputum of allergic asthma patients.

    Directory of Open Access Journals (Sweden)

    Sebastian Zukowski

    2008-06-01

    Full Text Available Urokinase plasminogen activator (uPA and its inhibitor (PAI-1 have been associated with asthma. The aim of this study was to evaluate concentration of uPA and PAI-1 in induced sputum of house dust mite allergic asthmatics (HDM-AAs. The study was performed on 19 HDM-AAs and 8 healthy nonatopic controls (HCs. Concentration of uPA and PAI-1 was evaluated in induced sputum supernatants using ELISA method. In HDM-AAs the median sputum concentration of uPA (128 pg/ml; 95% CI 99 to 183 pg/ml and PAI-1 (4063 pg/ml; 95%CI 3319 to 4784 pg/ml were significantly greater than in HCs (17 pg/ml; 95%CI 12 to 32 pg/ml; p<0.001 and 626 pg/ml; 95%CI 357 to 961 pg/ml; p<0.001 for uPA and PAI-1 respectively. The sputum concentration of uPA correlated with sputum total cell count (r=0.781; p=0.0001 and with logarithmically transformed exhaled nitric oxide concentration (eNO (r=0.486; p=0.035 but not with FEV1 or bronchial reactivity to histamine. On the contrary, the sputum PAI-1 concentration correlated with FEV1 (r=-0,718; p=0.0005 and bronchial reactivity to histamine expressed as log(PC20 (r=-0.824; p<0.0001 but did not correlate with sputum total cell count or eNO. The results of this study support previous observations linking PAI-1 with airway remodeling and uPA with cellular inflammation. Moreover, the observed effect of uPA seems to be independent of its fibrynolytic activity.

  17. MBP-Positive and CD11c-Positive Cells Are Associated with Different Phenotypes of Korean Patients with Non-Asthmatic Chronic Rhinosinusitis

    Science.gov (United States)

    Chang, Dong-Yeop; Eun, Kyung Mi; Shin, Hyun-Woo; Mo, Ji-Hun; Shin, Eui-Cheol; Jin, Hong Ryul; Shin, Sue; Roh, Eun Youn; Han, Doo Hee; Kim, Dae Woo

    2014-01-01

    Background Asthmatic nasal polyps primarily exhibit eosinophilic infiltration. However, the identities of the immune cells that infiltrate non-asthmatic nasal polyps remain unclear. Thus, we thought to investigate the distribution of innate immune cells and its clinical relevance in non-asthmatic chronic rhinosinusitis (CRS) in Korea. Methods Tissues from uncinate process (UP) were obtained from controls (n = 18) and CRS without nasal polyps (CRSsNP, n = 45). Nasal polyps (NP) and UP were obtained from CRS with nasal polyps (CRSwNP, n = 56). The innate immune cells was evaluated by immunohistochemistry such as, eosinophil major basic protein (MBP), tryptase, CD68, CD163, CD11c, 2D7, human neutrophil elastase (HNE) and its distribution was analyzed according to clinical parameters. Results In comparisons between UP from each group, CRSwNP had a higher number of MPB+, CD68+, and CD11c+ cells relative to CRSsNP. Comparisons between UP and NP from CRSwNP indicated that NP have a higher infiltrate of MBP+, CD163+, CD11c+, 2D7+ and HNE+ cells, whereas fewer CD68+ cells were found in NP. In addition, MBP+ and CD11c+ cells were increased from UP of CRSsNP, to UP of CRSwNP, and to NP of CRSwNP. Moreover, in UP from CRSwNP, the number of MBP+ and CD11c+ cells positively correlated with CT scores. In the analysis of CRSwNP phenotype, allergic eosinophilic polyps had a higher number of MBP+, tryptase+, CD11c+, 2D7+ cells than others, whereas allergic non-eosinophilic polyps showed mainly infiltration of HNE+ and 2D7+ cells. Conclusions The infiltration of MBP+ and CD11c+ innate immune cells show a significant association with phenotype and disease extent of CRS and allergic status also may influences cellular phenotype in non-asthmatic CRSwNP in Korea. PMID:25361058

  18. Pulmonary involvement and allergic disorders in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Nikolaos; E; Tzanakis; Ioanna; G; Tsiligianni; Nikolaos; M; Siafakas

    2010-01-01

    Inflammatory bowel disease (IBD) has been associated with either clinical or subclinical airway and parenchymal lung involvement and interstitial lung complications. Several studies have reported that atopy has a high prevalence in IBD patients. Overlapping allergic disorders seem to be present in both the respiratory and gastrointestinal systems. The purpose of this review is to update clinicians on recent available literature and to discuss the need for a highly suspicious approach by clinicians.

  19. Germinal Center Formation and Local Immunoglobulin E (IgE) Production in the Lung after an Airway Antigenic Challenge

    OpenAIRE

    1996-01-01

    Airway inflammation plays a central role in the pathogenesis of asthma. However, the precise contribution of all cell types in the development and maintenance of airway hyperreactivity and histopathology during allergic inflammation remains unclear. After sensitization of mice in the periphery, challenge by multiple intratracheal (i.t.) instillations of ovalbumin (OVA) results in eosinophilia, mononuclear cell infiltration, and airway epithelial changes analogous to that seen in asthma (Blyth...

  20. Old dilemma: asthma with irreversible airway obstruction or COPD.

    Science.gov (United States)

    Fattahi, Fatemeh; Vonk, Judith M; Bulkmans, Nicole; Fleischeuer, Ruth; Gouw, Annette; Grünberg, Katrien; Mauad, Thais; Popper, Helmut; Felipe-Silva, Aloisio; Vrugt, Bart; Wright, Joanne L; Yang, Hui-Min; Kocks, Janwillem W H; Hylkema, Machteld N; Postma, Dirkje S; Timens, Wim; Ten Hacken, Nick H T

    2015-11-01

    Older asthmatic patients may develop fixed airway obstruction and clinical signs of chronic obstructive pulmonary disease (COPD). We investigated the added value of pathological evaluation of bronchial biopsies to help differentiate asthma from COPD, taking into account smoking, age, and inhaled corticosteroid (ICS) use. Asthma and COPD patients (24 of each category) were matched for ICS use, age, FEV(1), and smoking habits. Five pulmonary and five general pathologists examined bronchial biopsies using an interactive website, without knowing patient information. They were asked to diagnose asthma or COPD on biopsy findings in both a pairwise and randomly mixed order of cases during four different phases, with intervals of 4-6 weeks, covering a maximal period of 36 weeks. Clinically concordant diagnoses of asthma or COPD varied between 63 %-73 %, without important differences between pairwise vs randomly mixed examination or between general vs pulmonary pathologists. The highest percentage of concordant diagnoses was in young asthmatic patients without ICS use and in COPD patients with ICS use. In non ICS users with fixed airway obstruction, a COPD diagnosis was favored if abnormal presence of glands, squamous metaplasia, and submucosal infiltrate was present and an asthma diagnosis in case of abnormal presence of goblet cells. In ICS users with fixed airway obstruction, abnormal presence of submucosal infiltrates, basement membrane thickening, eosinophils, and glands was associated with asthma. Histological characteristics in bronchial biopsies are reproducibly recognized by pathologists, yet the differentiation by histopathology between asthma and COPD is difficult without information about ICS use.

  1. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus.

    Directory of Open Access Journals (Sweden)

    Abigail Morris

    Full Text Available Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/- mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.

  2. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus.

    Science.gov (United States)

    Morris, Abigail; Wang, Bo; Waern, Ida; Venkatasamy, Radhakrishnan; Page, Clive; Schmidt, Eric P; Wernersson, Sara; Li, Jin-Ping; Spina, Domenico

    2015-01-01

    Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/-) mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT) control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil) recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD) found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.

  3. [Determination of serum immunoglobulins in asthmatic patients].

    Science.gov (United States)

    Cabrera Jiménez, M; Valdés Sánchez, A F; Argüelles Sobrino, D; Gómez Echevarría, A H; Lastra Alfonso, G

    1989-01-01

    One hundred eighty one asthmatic patients were evaluated at the Allergy Consultation in Hermanos Ameijeiras Clinical Surgical Hospital. A case history was made for each of the patients, where the family background and personal history of allergy was collected; possible precipitating factors (such as inhalable, food, infectious, irritant, as well as climate factors) and physical and respiratory examinations. Serum immunoglobulin tests (by means of the ultramicroanalitic system (SUMA) and the rest of Igs: IgA, IgG, IgM by means of Mancini's simple radial immunodifusion method were made. Total eosinophil count was made to all of the patients in the study as well as serial studies of the faces. An increase in the IgE and IgM figures was found in asthmatic patients related to individual controls, and in relation to the normal figures for the adult population in our country. IgA and IgG determinations were normal both in the asthmatic and control groups, related to the standard figures.

  4. Schistosomes induce regulatory features in human and mouse CD1d hi B cells: Inhibition of allergic inflammation by IL-10 and regulatory T cells

    NARCIS (Netherlands)

    L.E.P.M. van der Vlugt (Luciën); L.A. Labuda (Lucja); A. Ozir-Fazalalikhan (Arifa); E. Lievers (Ellen); A.K. Gloudemans (Anouk); K.-Y. Liu (Kit-Yeng); T.A. Barr (Tom); T. Sparwasser (Tim); L. Boon (Louis); U.A. Ngoa (Ulysse Ateba); E.N. Feugap (Eliane Ngoune); A.A. Adegnika (Ayola); P.G. Kremsner (Peter); D. Gray (David); M. Yazdanbakhsh (Maria); H.H. Smits (Hermelijn)

    2012-01-01

    textabstractChronic helminth infections, such as schistosomes, are negatively associated with allergic disorders. Here, using B cell IL-10-deficient mice, Schistosoma mansoni-mediated protection against experimental ovalbumin-induced allergic airway inflammation (AAI) was shown to be specifically de

  5. [Allergic reactions to transfusion].

    Science.gov (United States)

    Hergon, E; Paitre, M L; Coeffic, B; Piard, N; Bidet, J M

    1987-04-01

    Frequent allergic reactions following transfusion are observed. Usually, they are benign but sometimes we observe severe allergic reactions. Adverse reactions may be brought about by least two mechanisms. First, immediate-type hypersensibility reactions due to IgE. Secondly, anaphylactic-type reactions due to interaction between transfused IgA and class specific anti IgA in the recipient's plasma. They are characterized by their severest form (anaphylactic shock). The frequency of severe reactions following the transfusion blood plasma is very low. These transfusion reactions are complement-mediated and kinins-mediated. Prevention of allergic reactions is necessary among blood donors and recipients.

  6. Using optical coherence tomography (OCT) imaging in the evaluation of airway dynamics (Conference Presentation)

    Science.gov (United States)

    Szabari, Margit V.; Kelly, Vanessa J.; Applegate, Matthew B.; Chee, Chunmin; Tan, Khay M.; Hariri, Lida P.; Harris, R. Scott; Winkler, Tilo; Suter, Melissa J.

    2016-03-01

    Asthma is a chronic disease resulting in periodic attacks of coughing and wheezing due to temporarily constricted and clogged airways. The pathophysiology of asthma and the process of airway narrowing are not completely understood. Appropriate in vivo imaging modality with sufficient spatial and temporal resolution to dynamically assess the behavior of airways is missing. Optical coherence tomography (OCT) enables real-time evaluation of the airways during dynamic and static breathing maneuvers. Our aim was to visualize the structure and function of airways in healthy and Methacholine (MCh) challenged lung. Sheep (n=3) were anesthetized, mechanically ventilated and imaged with OCT in 4 dependent and 4 independent airways both pre- and post-MCh administration. The OCT system employed a 2.4 Fr (0.8 mm diameter) catheter and acquired circumferential cross-sectional images in excess of 100 frames per second during dynamic tidal breathing, 20 second static breath-holds at end-inspiration and expiration pressure, and in a response to a single deep inhalation. Markedly different airway behavior was found in dependent versus non-dependent airway segments before and after MCh injection. OCT is a non-ionizing light-based imaging modality, which may provide valuable insight into the complex dynamic behavior of airway structure and function in the normal and asthmatic lung.

  7. Japanese Guideline for Allergic Rhinitis

    OpenAIRE

    Kimihiro Okubo; Yuichi Kurono; Shigeharu Fujieda; Satoshi Ogino; Eiichi Uchio; Hiroshi Odajima; Hiroshi Takenaka; Kohtaro Baba

    2011-01-01

    Like asthma and atopic dermatitis, allergic rhinitis is an allergic disease, but of the three, it is the only type I allergic disease. Allergic rhinitis includes pollinosis, which is intractable and reduces quality of life (QOL) when it becomes severe. A guideline is needed to understand allergic rhinitis and to use this knowledge to develop a treatment plan. In Japan, the first guideline was prepared after a symposium held by the Japanese Society of Allergology in 1993. The current 6th editi...

  8. Can an ozone system generator reduce indoor triggers in asthmatic patient?

    Directory of Open Access Journals (Sweden)

    Alessandro Zanasi

    2015-09-01

    Full Text Available Objective: During the last decades, an increase in the prevalence of asthma and other allergic diseases has been recorded, together with modifications in the living environment and consequent changes in the quality of indoor air. Indoor environment is favorable to the proliferation of allergens such as: house dust mites, fungal spores and cockroaches. The primary action to be undertaken for an effective eradication of infectious agents constitutes in modifying the house environmental conditions, which make it favorable to infestations. Ozone can play a sanitize role, but at the same time it can cause inflammation, especially in the lung. The aim of this study was to verify the role and safety of ozone in the sanitation of the bedroom of a subject suffering from asthma. Methods: A daily ozone treatment was carried during a 14-day time period in the bedroom of an asthmatic patient. Aerobiological sampling in indoor air, microbiological sampling and detection of ATP bioluminescence on the surface were performed before and after treatment at the first day, as well as after treatment at the 7th and 14th day of the study. An aerobiological measurement was also performed outdoor of the patient and #8217;s bedroom only for the first day. Results: Our analysis confirms that low ozone levels induced a marked reduction of indoor air microbiological pollution without adverse effects on lung functionality of the asthmatic patient we considered. Conclusion: Our observations warrant further investigation on the role that ozone-based sterilization might have in controlling asthmatic symptoms. [J Exp Integr Med 2015; 5(3.000: 128-136

  9. Eosinophils in fungus-associated allergic pulmonary disease

    Directory of Open Access Journals (Sweden)

    Sumit eGhosh

    2013-02-01

    Full Text Available Asthma is frequently caused and/or exacerbated by sensitization to fungal allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma with fungal sensitization is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen that is worsened by environmental exposure to airborne fungi and which leads to a disease course that is often very difficult to treat with standard asthma therapies. As a result of complex interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to fungal allergens may experience a greater degree of airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. From their development in the bone marrow to their recruitment to the lung via chemokine and cytokine networks, eosinophils form an important component of the inflammatory milieu that is associated with this syndrome. Eosinophils are recognized as complex multi-factorial leukocytes with diverse functions in the context of allergic fungal asthma. In this review, we will consider recent advances in our understanding of the molecular mechanisms that are associated with eosinophil development and migration to the allergic lung in response to fungal inhalation, along with the eosinophil’s function in the immune response to and the immunopathology attributed to fungus-associated allergic pulmonary disease.

  10. Skin prick test results of atopic asthmatic subjects in a chest disease clinic in Sanliurfa

    Directory of Open Access Journals (Sweden)

    İbrahim Koç

    2015-06-01

    Full Text Available Objective: Skin prick test (SPT is used widely to determine the allergens in atopic patients. In this study, we aimed to determine the spectrum of aeroallergen sensitivity of atopic asthmatic subjects in Şanlıurfa district. Methods: We evaluated clinical, demographic findings and SPT results of 95 male and 162 female in a total 257 patients who had asthma and allergic symptoms. Results: Most common allergens causing a sensitivity reaction detected in our clinic were as follows; cockroach (56.8%, wheat pollen (53.3%, corn pollen (47.4%, grass pollen (36.5%, poplar tree pollen (26%, house dust mite (19.4%, pepper (16.7% and cat dander (15.1%. Conclusion: High levels of sensitivity to wheat and corn pollens and relatively low sensitivity levels of cat dander results meet our expectations in the area of agricultural land and where pet ownership is not common.

  11. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger

    2013-01-01

    -20% (mild), 20%-30% (moderate) or >30% (severe). Spirometry was performed annually and participants were divided into severity groups according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Data were analysed in a mixed effects regression model with log(airway lumen diameter......Rationale – Chronic Obstructive Pulmonary Disease (COPD) is a combination of chronic bronchitis and emphysema, which both ma