WorldWideScience

Sample records for allene oxide synthase

  1. Replacement of two amino acids of 9R-dioxygenase-allene oxide synthase of Aspergillus niger inverts the chirality of the hydroperoxide and the allene oxide.

    Science.gov (United States)

    Sooman, Linda; Wennman, Anneli; Hamberg, Mats; Hoffmann, Inga; Oliw, Ernst H

    2016-02-01

    The genome of Aspergillus niger codes for a fusion protein (EHA25900), which can be aligned with ~50% sequence identity to 9S-dioxygenase (DOX)-allene oxide synthase (AOS) of Fusarium oxysporum, homologues of the Fusarium and Colletotrichum complexes and with over 62% sequence identity to homologues of Aspergilli, including (DOX)-9R-AOS of Aspergillus terreus. The aims were to characterize the enzymatic activities of EHA25900 and to identify crucial amino acids for the stereospecificity. Recombinant EHA25900 oxidized 18:2n-6 sequentially to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE) and to a 9R(10)-allene oxide. 9S- and 9R-DOX-AOS catalyze abstraction of the pro-R hydrogen at C-11, but the direction of oxygen insertion differs. A comparison between twelve 9-DOX domains of 9S- and 9R-DOX-AOS revealed conserved amino acid differences, which could contribute to the chirality of products. The Gly616Ile replacement of 9R-DOX-AOS (A. niger) increased the biosynthesis of 9S-HPODE and the 9S(10)-allene oxide, whereas the Phe627Leu replacement led to biosynthesis of 9S-HPODE and the 9S(10)-allene oxide as main products. The double mutant (Gly616Ile, Phe627Leu) formed over 90% of the 9S stereoisomer of HPODE. 9S-HPODE was formed by antarafacial hydrogen abstraction and oxygen insertion, i.e., the original H-abstraction was retained but the product chirality was altered. We conclude that 9R-DOX-AOS can be altered to 9S-DOX-AOS by replacement of two amino acids (Gly616Ile, Phe627Leu) in the DOX domain.

  2. Suppression of allene oxide synthase 3 in potato increases degree of arbuscular mycorrhizal fungal colonization.

    Science.gov (United States)

    Morcillo, Rafael Jorge León; Navarrete, María Isabel Tamayo; Bote, Juan Antonio Ocampo; Monguio, Salomé Prat; García-Garrido, José Manuel

    2016-01-15

    Arbuscular mycorrhizal (AM) is a mutually beneficial interaction among higher plants and soil fungi of the phylum Glomeromycota. Numerous studies have pointed that jasmonic acid plays an important role in the development of the intraradical fungus. This compound belongs to a group of biologically active compounds known as oxylipins which are derived from the oxidative metabolism of polyunsaturated fatty acids. Studies of the regulatory role played by oxylipins in AM colonization have generally focused on jasmonates, while few studies exist on the 9-LOX pathway of oxylipins during AM formation. Here, the cDNA of Allene oxide synthase 3 (AOS3), a key enzyme in the 9-LOX pathway, was used in the RNA interference (RNAi) system to transform potato plants in order to suppress its expression. Results show increases in AOS3 gene expression and 9-LOX products in roots of wild type potato mycorrhizal plants. The suppression of AOS3 gene expression increases the percentage of root with mycorrhizal colonization at early stages of AM formation. AOS3 RNA interference lead to an induction of LOXA and 13-LOX genes, a reduction in AOS3 derived 9-LOX oxylipin compounds and an increase in jasmonic acid content, suggesting compensation between 9 and 13-LOX pathways. The results in a whole support the hypothesis of a regulatory role for the 9-LOX oxylipin pathway during mycorrhization.

  3. Crystallization and Preliminary X-ray Analysis of Allene Oxide Synthase, Cytochrome P450 CYP74A2, from Parthenium argentatum

    Science.gov (United States)

    Oxylipins are oxygenated derivatives of fatty acids and pivotal signaling molecules in plants and animals. Allene oxide synthase (AOS) is a key cytochrome P450 CYP74 enzyme involved in the biosynthesis of plant oxylipin jasmonates to convert 13(S)-hydroperoxide to allene oxide. Guayule (Parthenium a...

  4. Lipoxygenase-allene oxide synthase pathway in octocoral thermal stress response

    Science.gov (United States)

    Lõhelaid, H.; Teder, T.; Samel, N.

    2015-03-01

    Marine ecosystems are sensitive to elevated seawater temperature, with stony corals serving as model organisms for temperature-imposed declines in population viability and diversity. Several stress markers, including heat shock proteins, have been used for the detection and prediction of stress responses in stony corals. However, the stress indicators in soft corals remain elusive. In higher animals and plants, oxylipins synthesized by fatty acid di- and monooxygenases contribute to stress-induced signaling; however, the role of eicosanoid pathways in corals remains unclear. The eicosanoid gene specific to corals encodes for a natural fusion protein of allene oxide synthase and lipoxygenase ( AOS- LOX). In this work, using the easily cultivated soft coral Capnella imbricata as the stress response model, we monitored the expression of the AOS-LOX and the formation of arachidonic acid metabolites in response to an acute rise in water temperature. Gene expression profiles of two 70 kDa heat shock proteins ( Hsps: Hsp70 and Grp78) were used as a positive control for the stress response. In comparison with normal seawater temperature (23 °C), AOS- LOXa and Hsps were all up-regulated after modest (28 °C) and severe (31 °C) temperature elevation. While the up-regulation of AOS- LOXa and Grp78 was more sensitive to moderate temperature changes, Hsp70s were more responsive to severe heat shock. Concurrently, endogenous and exogenous AOS-LOXa-derived eicosanoids were up-regulated. Thus, together with the up-regulation of AOS- LOX by other abiotic and biotic stress stimuli, these data implicate AOS-LOX as part of the general stress response pathway in corals.

  5. Wounding stimulates ALLENE OXIDE SYNTHASE gene and increases the level of jasmonic acid in Ipomoea nil cotyledons

    Directory of Open Access Journals (Sweden)

    Emilia Wilmowicz

    2016-03-01

    Full Text Available Allene oxide synthase (AOS encodes the first enzyme in the lipoxygenase pathway, which is responsible for jasmonic acid (JA formation. In this study we report the molecular cloning and characterization of InAOS from Ipomoea nil. The full-length gene is composed of 1662 bp and encodes for 519 amino acids. The predicted InAOS contains PLN02648 motif, which is evolutionarily conserved and characteristic for functional enzymatic proteins. We have shown that wounding led to a strong stimulation of the examined gene activity in cotyledons and an increase in JA level, which suggest that this compound may be a modulator of stress responses in I. nil.

  6. Modes of Heme-Binding and Substrate Access for Cytochrome P450 CYP74A Revealed by Crystal Structures of Allene Oxide Synthase

    Science.gov (United States)

    Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates which are involved in signal and defense reactions in higher plants. The crystal structure...

  7. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway

    DEFF Research Database (Denmark)

    von Malek, Bernadette; van der Graaff, Eric; Schneitz, Kay;

    2002-01-01

    exhibits a male-sterile phenotype. The dde2-2 phenotype can be rescued by application of methyl jasmonate, indicating that the mutant is affected in jasmonic acid biosynthesis. The combination of genetic mapping and a candidate-gene approach identified a frameshift mutation in the ALLENE OXIDE SYNTHASE...

  8. Inducible nitric oxide synthase in renal transplantation

    NARCIS (Netherlands)

    Joles, JA; Vos, IH; Grone, HJ; Rabelink, TJ

    2002-01-01

    The importance of the endothelial isoform of nitric oxide synthase (eNOS) has been well established. Endothelium-derived nitric oxide has been shown to be essential for vascular homeostasis and modulation of eNOS has thus become a target in prevention of cardiovascular disease. The role of the induc

  9. Accounting for Diradical Character through DFT. The Case of Vinyl Allene Oxide Rearrangement.

    Science.gov (United States)

    López, Roberto Villar; Faza, Olalla Nieto; López, Carlos Silva

    2015-11-01

    The transformation of vinyl allene oxides into cyclopentenones is key to the biosynthesis of a number of hormone-like molecules in plants. Two competitive paths are generally accepted for this transformation: a concerted SN2-like mechanism and a stepwise path with a diradical oxyallyl intermediate. Recently, a new stepwise closed-shell path has been proposed that circumvents the key oxyallyl intermediate. In this work, we conduct a thorough computational investigation, including dynamic effects, to identify the most likely mechanism for this transformation.

  10. Endothelial nitric oxide synthase in the microcirculation.

    Science.gov (United States)

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  11. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  12. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...... I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different...... endothelium is consistent with a role for NO in the control of blood flow in human skeletal muscle....

  13. The nitric oxide synthase of mouse spermatozoa.

    Science.gov (United States)

    Herrero, M B; Goin, J C; Boquet, M; Canteros, M G; Franchi, A M; Perez Martinez, S; Polak, J M; Viggiano, J M; Gimeno, M A

    1997-07-01

    Nitric oxide synthase (NOS) was evidenced in mature mouse spermatozoa by means of biochemical techniques and Western blot. During 120 min of incubation, 10(7) spermatozoa synthesized 7 +/- 2 pmol of L-[14C]citrulline. Besides, L-citrulline formation depended on the incubation time and on the concentration of L-arginine present in the incubation medium. Different concentrations of N(G)-nitro-L-arginine methyl ester (L-NAME) but not aminoguanidine, inhibited L-[14C]citrulline formation. Western-blot analysis of solubilized sperm proteins revealed a unique band of M(r)=140 kDa with the neural, endothelial and inducible NOS antisera tested. These results provide evidence that mature mouse sperm contains a NOS isoform and that spermatozoa have the potential ability to synthesize NO, suggesting a role for endogenous NO on mammalian sperm function.

  14. Molecular Cloning and Characterization of an Allene Oxide Cyclase Gene Associated with Fiber Strength in Cotton

    Institute of Scientific and Technical Information of China (English)

    WANG Li-man; ZHU You-min; TONG Xiang-chao; HU Wen-jing; CAI Cai-ping; GUO Wang-zhen

    2014-01-01

    Allene oxide cyclase (AOC) is one of the most important enzymes in the biosynthetic pathway of the plant hormone jasmonic acid (JA). AOC catalyzes the conversion of allene oxide into 12-oxo-phytodienoic acid (OPDA), a precursor of JA. Using 28K cotton genome array hybridization, an expressed sequence tag (EST;GenBank accession no. ES792958) was investigated that exhibited signiifcant expression differences between lintless-fuzzless XinWX and linted-fuzzless XinFLM isogenic lines during ifber initiation stages. The EST was used to search the Gossypium EST database (http://www.ncbi.nlm.nih.gov/) for corresponding cDNA sequences encoding full-length open reading frames (ORFs). Identiifed ORFs were conifrmed using transcriptional and genomic data. As a result, a novel gene encoding AOC in cotton (Gossypium hirsutum AOC;GenBank accession no. KF383427) was cloned and characterized. The 741-bp GhAOC gene comprises three exons and two introns and encodes a polypeptide of 246 amino acids. Two homologous copies were identiifed in the tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, and one copy in the diploid cotton species G. herbaceum and G. raimondii. qRT-PCR showed that the GhAOC transcript was abundant in cotton ifber tissues from 8 to 23 days post anthesis (DPA), and the expression proifles were similar in the two cultivated tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, with a higher level of transcription in the former. One copy of GhAOC in tetraploid cotton was localized to chromosome 24 (Chr. D8) using the subgenome-speciifc single nucleotide polymorphism (SNP) marker analysis, which co-localized GhAOC to within 10 cM of a ifber strength quantitative trait locus (QTL) reported previously. GhAOC was highly correlated with ifber quality and strength (P=0.014) in an association analysis, suggesting a possible role in cotton ifber development, especially in secondary cell wall thickening.

  15. Allen Say.

    Science.gov (United States)

    Beck, Martha Davis

    1999-01-01

    This interview with Allen Say, a Japanese picture book author and illustrator, discusses his apprenticeship to a cartoonist; the use of color; the role of editors; the theme of searching for identity; landscapes; and his move to America. (LRW)

  16. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal...... and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant i......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  17. Significance of nitric oxide synthases: Lessons from triple nitric oxide synthases null mice.

    Science.gov (United States)

    Tsutsui, Masato; Tanimoto, Akihide; Tamura, Masahito; Mukae, Hiroshi; Yanagihara, Nobuyuki; Shimokawa, Hiroaki; Otsuji, Yutaka

    2015-01-01

    Nitric oxide (NO) is synthesized by three distinct NO synthases (neuronal, inducible, and endothelial NOSs), all of which are expressed in almost all tissues and organs in humans. The regulatory roles of NOSs in vivo have been investigated in pharmacological studies with non-selective NOS inhibitors. However, the specificity of the inhibitors continues to be an issue of debate, and the authentic significance of NOSs is still poorly understood. To address this issue, we generated mice in which all three NOS genes are completely disrupted. The triple NOSs null mice exhibited cardiovascular abnormalities, including hypertension, arteriosclerosis, myocardial infarction, cardiac hypertrophy, diastolic heart failure, and reduced EDHF responses, with a shorter survival. The triple NOSs null mice also displayed metabolic abnormalities, including metabolic syndrome and high-fat diet-induced severe dyslipidemia. Furthermore, the triple NOSs null mice showed renal abnormalities (nephrogenic diabetes insipidus and pathological renal remodeling), lung abnormalities (accelerated pulmonary fibrosis), and bone abnormalities (increased bone mineral density and bone turnover). These results provide evidence that NOSs play pivotal roles in the pathogenesis of a wide variety of disorders. This review summarizes the latest knowledge on the significance of NOSs in vivo, based on lessons learned from experiments with our triple mutant model.

  18. Nitric Oxide Synthase Inhibitors as Antidepressants

    DEFF Research Database (Denmark)

    Wegener, Gregers; Volke, Vallo

    2010-01-01

    been suggested to play major roles in the pathophysiology of mood and stress-related disorders. However, a few clinical and several pre-clinical studies, strongly suggest involvement of the nitric oxide (NO) signaling pathway in these disorders. Moreover, several of the conventional neurotransmitters...

  19. Nitric oxide synthase inhibition and cerebrovascular regulation

    DEFF Research Database (Denmark)

    Iadecola, C; Pelligrino, D A; Moskowitz, M A;

    1994-01-01

    tone and may play an important role in selected vasodilator responses of the cerebral circulation. Furthermore, evidence has been presented suggesting that NO participates in the mechanisms of cerebral ischemic damage. Despite the widespread attention that NO has captured in recent years and the large......There is increasing evidence that nitric oxide (NO) is an important molecular messenger involved in a wide variety of biological processes. Recent data suggest that NO is also involved in the regulation of the cerebral circulation. Thus, NO participants in the maintenance of resting cerebrovascular...

  20. Role of neuronal nitric oxide synthase and inducible nitric oxide synthase in intestinal injury in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Hui LU; Bing Zhu; Xin-Dong Xue

    2006-01-01

    AIM: To investigate the dynamic change and role of neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) in neonatal rat with intestinal injury and to define whether necrotizing enterocolitis (NEC) is associated with the levels of nitric oxide synthase (NOS) in the mucosa of the affected intestine tissue.METHODS: Wistar rats less than 24 h in age received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileum tissues were collected at 1, 3, 6, 12 and 24 h following LPS challenge for histological evaluation of NEC and for measurements of nNOS and iNOS. The correlation between the degree of intestinal injury and levels of NOS was determined.RESULTS: The LPS-injected pups showed a significant increase in injury scores versus the control. The expression of nNOS protein and mRNA was diminished after LPS injection. There was a negative significant correlation between the nNOS protein and the grade of median intestinal injury within 24 h. The expression of iNOS protein and mRNA was significantly increased in the peak of intestinal injury.CONCLUSION: nNOS and iNOS play different roles in LPS-induced intestinal injury. Caution should be exerted concerning potential therapeutic uses of NOS inhibitors in NEC.

  1. Asymmetric dimethylarginine, oxidative stress, and vascular nitric oxide synthase in essential hypertension

    DEFF Research Database (Denmark)

    Wang, Dan; Strandgaard, Svend; Iversen, Jens;

    2009-01-01

    We reported impaired endothelium-derived relaxation factor/nitric oxide (EDRF/NO) responses and constitutive nitric oxide synthase (cNOS) activity in subcutaneous vessels dissected from patients with essential hypertension (n = 9) compared with normal controls (n = 10). We now test the hypothesis...

  2. Inducible nitric oxide synthase is responsible for nitric oxide release from murine pituicytes

    DEFF Research Database (Denmark)

    Kjeldsen, T H; Rivier, C; Lee, S;

    2003-01-01

    This study investigated whether pituicytes were able to produce and release nitric oxide (NO), and which type of nitric oxide synthase (NOS) would be responsible for this phenomenon. Lipopolysaccharide (LPS) 1 micro g/ml was used as inflammatory mediator. Because pituicytes are known to secrete...

  3. Increased nitric oxide release and expression of endothelial and inducible nitric oxide synthases in mildly changed porcine mitral valve leaflets

    DEFF Research Database (Denmark)

    Moesgaard, Sophia Gry; Olsen, Lisbeth Høier; Viuff, Birgitte;

    2007-01-01

    Background and aim of the study: Little is known of the local role of nitric oxide (NO) in heart valves in relation to heart valve diseases. The study aim was to examine NO release and the expression of both endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (i...

  4. Synthesis of 1,2-allenic ketones through oxidation of homopropargyl alcohols with CrO3(cat.)/TBHP under MWI

    Institute of Scientific and Technical Information of China (English)

    Xin Ying Zhang; Ying Ying Qu; Yang Yang Wang; Xue Sen Fan

    2011-01-01

    A Cr3 catalyzed oxidation of homopropargyl alcohols with tert-butyl hydroperoxide under microwave irradiation was found to be an efficient and rapid alternative for the preparation of 1,2-allenic ketones. The advantages of this procedure include short reaction time, less adverse impact on the environment and reasonably high efficiency. (c) 2010 Published by Elsevier B.V. on behalf of Chinese Chemical Society.

  5. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Guang-Jin Yuan; Xiao-Rong Zhou; Zuo-Jiong Gong; Pin Zhang; Xiao-Mei Sun; Shi-Hua Zheng

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-KB (NF-кB) and tumor necrosis factor-α (TNF-α)expression in the liver.METHODS: Female Sprague-Dawley rats were given fish oil (0.5 mL) along with ethanol or isocaloric dextrose daily via gastrogavage for 4 or 6 wk. Liver injury was assessed using serum alanine aminotransferase (ALT)activity and pathological analysis. Liver malondialdehyde (MDA), nitric oxide contents, iNOS and eNOS activity were determined. NF-KB p65, iNOS, eNOS and TNF-αprotein or mRNA expression in the liver were detected by immunohistochemistry or reverse transcriptase-polymerase chain reaction (RT-PCR).RESULTS: Chronic ethanol gavage for 4 wk caused steatosis, inflammation and necrosis in the liver, and elevated serum ALT activity. Prolonged ethanol administration (6 wk) enhanced the liver damage. These responses were accompanied with increased lipid peroxidation, NO contents, iNOS activity and reduced eNOS activity. NF-кB p65, iNOS and TNF-α protein or mRNA expression were markedly induced after chronic ethanol gavage, whereas eNOS mRNA expression remained unchanged. The enhanced iNOS activity and expression were positively correlated with the liver damage, especially the necro-inflammation, activation of NF-кB, and TNF-α mRNA expression.CONCLUSION: iNOS expression and activity are induced in the liver after chronic ethanol exposure in rats, which are correlated with the liver damage, especially the necro-inflammation, activation of NF-KB and TNF-αexpression. eNOS activity is reduced, but its mRNA expression is not affected.

  6. Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Kao Ming-Ching

    2011-02-01

    Full Text Available Abstract Background Hyperbaric oxygen therapy (HBOT is a known adjuvant for treating ischemia-related inner ear diseases. Controversies still exist in the role of HBOT in cochlear diseases. Few studies to date have investigated the cellular changes that occur in inner ears after HBOT. Nitric oxide, which is synthesized by nitric oxide synthase (NOS, is an important signaling molecule in cochlear physiology and pathology. Here we investigated the effects of hyperbaric oxygen on eardrum morphology, cochlear function and expression of NOS isoforms in cochlear substructures after repetitive HBOT in guinea pigs. Results Minor changes in the eardrum were observed after repetitive HBOT, which did not result in a significant hearing threshold shift by tone burst auditory brainstem responses. A differential effect of HBOT on the expression of NOS isoforms was identified. Upregulation of constitutive NOS (nNOS and eNOS was found in the substructures of the cochlea after HBOT, but inducible NOS was not found in normal or HBOT animals, as shown by immunohistochemistry. There was no obvious DNA fragmentation present in this HBOT animal model. Conclusions The present evidence indicates that the customary HBOT protocol may increase constitutive NOS expression but such upregulation did not cause cell death in the treated cochlea. The cochlear morphology and auditory function are consequently not changed through the protocol.

  7. Nitric oxide synthase: non-canonical expression patterns

    Directory of Open Access Journals (Sweden)

    Mattila eJoshua

    2014-10-01

    Full Text Available Science can move ahead by questioning established or canonical views and, so it may be with the enzymes, nitric oxide synthases (NOS. Nitric oxide (NO is generated by NOS isoforms that are often described by their tissue-specific expression patterns. NOS1 (nNOS is abundant in neural tissue, NOS2 is upregulated in activated macrophages and known as inducible NOS (iNOS, and NOS3 (eNOS is abundant in endothelium where it regulates vascular tone. These isoforms are described as constitutive or inducible, but in this Perspective we question the broad application of these labels. Are there instances where ‘constitutive’ NOS (NOS1 and NOS3 are inducibly expressed; conversely, are there instances where NOS2 is constitutively expressed? NOS1 and NOS3 inducibility may be linked to post-translational regulation, making their actual patterns activity much more difficult to detect. Constitutive NOS2 expression has been observed several tissues, especially the human pulmonary epithelium where it may regulate airway tone. These data suggest expression of the three NOS enzymes may include non-established patterns. Such information should be useful in designing strategies to modulate these important enzymes in different disease states.

  8. Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase.

    Science.gov (United States)

    Iwakiri, Yasuko

    2015-12-01

    The inducible form of nitric oxide synthase (iNOS) is expressed in hepatic cells in pathological conditions. Its induction is involved in the development of liver fibrosis, and thus iNOS could be a therapeutic target for liver fibrosis. This review summarizes the role of iNOS in liver fibrosis, focusing on 1) iNOS biology, 2) iNOS-expressing liver cells, 3) iNOS-related therapeutic strategies, and 4) future directions.

  9. Adenovirus-mediated nitric oxide synthase gene transfer.

    Science.gov (United States)

    Raman, Kathleen G; Shapiro, Richard A; Tzeng, Edith; Kibbe, Melina R

    2004-01-01

    The varied biological effects of nitric oxide (NO) have led to intense research into its diverse physiologic and pathophysiologic roles in multiple disease processes. It has been implicated in the development of altered vasomotor tone, intimal hyperplasia, atherosclerosis, impotence, host defense, and wound healing. Using the modern technologies of recombinant DNA and gene transfer using adenoviral vectors, the effects of NO derived from various NO synthase (NOS) enzymes can be studied in a variety of tissues and the therapeutic applications of NOS is possible. Such uses of NOS gene transfer have been investigated extensively in the vasculature where NO is critical to regulating vascular homeostasis. NOS gene therapy has the theoretical advantage of allowing NO delivery to be localized, thereby limiting potential adverse effects of NO. The benefits of adenoviral vectors in gene transfer include relatively high transduction efficiencies, both replicating and nonreplicating cells may be infected, and the high titers of adenovirus that can be produced. The methods described in this chapter include the cloning of the iNOS cDNA into a recombinant adenoviral vector, large-scale production of that vector AdiNOS preparation, and the use of the vector to transduce tissue in vitro and in vivo.

  10. Human leucocytes in asthenozoospermic patients: endothelial nitric oxide synthase expression.

    Science.gov (United States)

    Buldreghini, E; Hamada, A; Macrì, M L; Amoroso, S; Boscaro, M; Lenzi, A; Agarwal, A; Balercia, G

    2014-12-01

    In a basic study at the Andrology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy, we evaluated the pattern of mRNA endothelial nitric oxide synthase (eNOS) expression in human blood leucocytes isolated from normozoospermic fertile and asthenozoospermic infertile men to elucidate any pathogenic involvement in sperm cell motility. Forty infertile men with idiopathic asthenozoospermia and 45 normozoospermic fertile donors, age-matched, were included. Semen parameters were evaluated, and expression analysis of mRNA was performed in human leucocytes using reverse transcription polymerase chain reaction. Sperm volume, count, motility and morphology were determined, and eNOS expression and Western blotting analyses were performed. A positive correlation was observed between the concentrations of NO and the percentage of immotile spermatozoa. The mRNA of eNOS was more expressed in peripheral blood leucocytes isolated from asthenozoospermic infertile men versus those of fertile normozoospermic men (7.46 ± 0.38 versus 7.06 ± 0.56, P = 0.0355). A significant up-regulation of eNOS gene in peripheral blood leucocytes was 1.52-fold higher than that of fertile donors. It is concluded that eNOS expression and activity are enhanced in blood leucocytes in men with idiopathic asthenozoospermia.

  11. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Stêfany Bruno De Assis Cau

    2012-06-01

    Full Text Available Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO bioavailability and altered vascular expression and activity of NO synthase (NOS enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS-derived NO, while increased inducible NOS (iNOS expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen, statins, resveratrol and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed.

  12. Inducible nitric oxide synthase is expressed in synovial fluid granulocytes.

    Science.gov (United States)

    Cedergren, J; Forslund, T; Sundqvist, T; Skogh, T

    2002-10-01

    The objective of the study was to evaluate the NO-producing potential of synovial fluid (SF) cells. SF from 15 patients with arthritis was compared with blood from the same individuals and with blood from 10 healthy controls. Cellular expression of inducible nitric oxide synthase (iNOS) was analysed by flow cytometry. High-performance liquid chromatography was used to measure l-arginine and l-citrulline. Nitrite and nitrate were measured colourimetrically utilizing the Griess' reaction. Compared to whole blood granulocytes in patients with chronic arthritis, a prominent iNOS expression was observed in SF granulocytes (P < 0.001). A slight, but statistically significant, increase in iNOS expression was also recorded in lymphocytes and monocytes from SF. l-arginine was elevated in SF compared to serum (257 +/- 78 versus 176 +/- 65 micro mol/l, P = 0.008), whereas a slight increase in l-citrulline (33 +/- 11 versus 26 +/- 9 micro mol/l), did not reach statistical significance. Great variations but no significant differences were observed comparing serum and SF levels of nitrite and nitrate, respectively, although the sum of nitrite and nitrate tended to be elevated in SF (19.2 +/- 20.7 versus 8.6 +/- 6.5 micro mol/l, P = 0.054). Synovial fluid leucocytes, in particular granulocytes, express iNOS and may thus contribute to intra-articular NO production in arthritis.

  13. Expression and regulation of endothelial nitric oxide synthase.

    Science.gov (United States)

    Sase, K; Michel, T

    1997-01-01

    Endothelium-derived nitric oxide (NO) is a key determinant of blood pressure homeostasis and platelet aggregation and is synthesized by the endothelial isoform of nitric oxide synthase (eNOS). In the vascular wall, eNOS is activated by diverse cell-surface receptors and by increases in blood flow, and the consequent generation of NO leads to vascular smooth-muscle relaxation. Endothelium-dependent vasorelaxation is deranged in a variety of disease states, including hypertension, diabetes, and atherosclerosis, but the roles of eNOS in endothelial dysfunction remain to be clearly defined. The past several years have witnessed important advances in understanding the molecular and cellular biology of eNOS regulation. In endothelial cells, eNOS undergoes a complex series of covalent modifications, including myristoylation, palmitoylation, and phosphorylation. Palmitoylation of eNOS dynamically targets the enzyme to distinct domains of the endothelial plasma membrane termed caveolae; caveolae may serve as sites for the sequestration of signal-transducing proteins and are themselves subject to dynamic regulation by ligands and lipids. Originally thought to be expressed only in endothelial cells, eNOS is now known to be expressed in a variety of tissues, including blood platelets, cardiac myocytes, and brain hippocampus. Paradigms established in endothelial cells for the molecular regulation and subcellular targeting of eNOS are being extended to the investigation of eNOS expressed in nonendothelial tissues. This review summarizes recent advances in understanding the molecular regulation of eNOS and the other NOS isoforms and identifies important parallels between eNOS and other cell-signaling molecules. © 1997, Elsevier Science Inc. (Trends Cardiovasc Med 1997;7:28-37).

  14. Effect of aging on expression of nitric oxide synthase I and activity of nitric oxide synthase in rat penis

    Institute of Scientific and Technical Information of China (English)

    Jun-PingSHI; Yong-MeiZHAO; Yu-TongSONG

    2003-01-01

    Aim: To investigate the effect of aging on the expression of nitric oxide synthase I (NOS I) and the activity of NOS in rat penis. Methods: Sixty male rats from 3 age groups (adult, old and senescent) were investigated.The expression of NOS I protein and mRNA in rat penis were detected by Western blot and RT-PCR respectively and the NOS activity, with ultraviolet spectrophotometry. Results: In the old and senescent group, NOS I protein expression was significantly decreased as compared with the adult. NOS I mRNA expression was well correlated with the protein expression. NOS activity was not statistically different between the adult and old groups, but it was significantly reduced in the senescent compared with the adult group (P<0.01). Conclusion: The aging-induced decreases in NOS I expression and NOS activity may be one of the main mechanisms leading to erectile dysfunctionin the senescent rats. ( Asian J Androl 2003 Jun; 5: 117-120)

  15. Role of Polymorphisms of Inducible Nitric Oxide Synthase and Endothelial Nitric Oxide Synthase in Idiopathic Environmental Intolerances

    Directory of Open Access Journals (Sweden)

    Chiara De Luca

    2015-01-01

    Full Text Available Oxidative stress and inflammation play a pathogenetic role in idiopathic environmental intolerances (IEI, namely, multiple chemical sensitivity (MCS, fibromyalgia (FM, and chronic fatigue syndrome (CFS. Given the reported association of nitric oxide synthase (NOS gene polymorphisms with inflammatory disorders, we aimed to investigate the distribution of NOS2A −2.5 kb (CCTTTn as well as Ser608Leu and NOS3 −786T>C variants and their correlation with nitrite/nitrate levels, in a study cohort including 170 MCS, 108 suspected MCS (SMCS, 89 FM/CFS, and 196 healthy subjects. Patients and controls had similar distributions of NOS2A Ser608Leu and NOS3 −786T>C polymorphisms. Interestingly, the NOS3 −786TT genotype was associated with increased nitrite/nitrate levels only in IEI patients. We also found that the NOS2A −2.5 kb (CCTTT11 allele represents a genetic determinant for FM/CFS, and the (CCTTT16 allele discriminates MCS from SMCS patients. Instead, the (CCTTT8 allele reduces by three-, six-, and tenfold, respectively, the risk for MCS, SMCS, and FM/CFS. Moreover, a short number of (CCTTT repeats is associated with higher concentrations of nitrites/nitrates. Here, we first demonstrate that NOS3 −786T>C variant affects nitrite/nitrate levels in IEI patients and that screening for NOS2A −2.5 kb (CCTTTn polymorphism may be useful for differential diagnosis of various IEI.

  16. Evidence that nitric oxide synthase is involved in progesterone-induced acrosomal exocytosis in mouse spermatozoa.

    Science.gov (United States)

    Herrero, M B; Viggiano, J M; Pérez Martínez, S; de Gimeno, M F

    1997-01-01

    In a recent work, we detected nitric oxide synthase (NO synthase) in the acrosome and tail of mouse and human spermatozoa by an immunofluorescence technique. Also, NO-synthase inhibitors added during sperm capacitation in vitro reduced the percentage of oocytes fertilized in vitro, suggesting a role for NO synthase in sperm function. Therefore, in the present study the effect of three NO-synthase inhibitors, NG-nitro-L-arginine methyl ester (L-NAME), NG-nitro-D-arginine methyl ester (D-NAME) and L-NG-nitro-arginine (NO2-arg), and of a nitric oxide donor, spermine-NONOate, on the progesterone-induced acrosome reaction of mouse sperm was examined. NO-synthase inhibitors were added at 0, 60 or 90 min during capacitation; at 120 min, mouse epididymal spermatozoa were exposed to 15 microM progesterone for another 15 min. In another set of experiments, different concentrations of spermine-NONOate were added to capacitated spermatozoa for 15 min; in these experiments, progesterone was not included. NO2-arg and L-NAME blocked progesterone-induced exocytosis regardless of the time at which these inhibitors were added. Moreover, D-NAME did not inhibit exocytosis. In contrast, spermine-NONOate stimulated the acrosomal exocytosis in vitro directly. These results provide evidence that mouse sperm NO synthase participates in the progesterone-induced acrosome reaction in vitro and that nitric oxide induces this event.

  17. Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves.

    Directory of Open Access Journals (Sweden)

    Yin Liu

    Full Text Available Nitric oxide synthase-3 (NOS3 has recently been shown to promote endothelial-to-mesenchymal transition (EndMT in the developing atrioventricular (AV canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT and NOS3(-/- mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3(-/- compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3(-/- mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1(+ cells in the AV cushion were decreased in NOS3(-/- compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ, bone morphogenetic protein (BMP2 and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3(-/- compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency.

  18. Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves.

    Science.gov (United States)

    Liu, Yin; Lu, Xiangru; Xiang, Fu-Li; Lu, Man; Feng, Qingping

    2013-01-01

    Nitric oxide synthase-3 (NOS3) has recently been shown to promote endothelial-to-mesenchymal transition (EndMT) in the developing atrioventricular (AV) canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT) and NOS3(-/-) mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3(-/-) compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3(-/-) mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1(+) cells in the AV cushion were decreased in NOS3(-/-) compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ), bone morphogenetic protein (BMP2) and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3(-/-) compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency.

  19. Inducible nitric oxide synthase haplotype associated with migraine and aura.

    Science.gov (United States)

    de O S Mansur, Thiago; Gonçalves, Flavia M; Martins-Oliveira, Alisson; Speciali, Jose G; Dach, Fabiola; Lacchini, Riccardo; Tanus-Santos, Jose E

    2012-05-01

    Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C(-1026)A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman(®) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C(-1026)A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.

  20. Dissecting structural and electronic effects in inducible nitric oxide synthase.

    Science.gov (United States)

    Hannibal, Luciana; Page, Richard C; Haque, Mohammad Mahfuzul; Bolisetty, Karthik; Yu, Zhihao; Misra, Saurav; Stuehr, Dennis J

    2015-04-01

    Nitric oxide synthases (NOSs) are haem-thiolate enzymes that catalyse the conversion of L-arginine (L-Arg) into NO and citrulline. Inducible NOS (iNOS) is responsible for delivery of NO in response to stressors during inflammation. The catalytic performance of iNOS is proposed to rely mainly on the haem midpoint potential and the ability of the substrate L-Arg to provide a hydrogen bond for oxygen activation (O-O scission). We present a study of native iNOS compared with iNOS-mesohaem, and investigate the formation of a low-spin ferric haem-aquo or -hydroxo species (P) in iNOS mutant W188H substituted with mesohaem. iNOS-mesohaem and W188H-mesohaem were stable and dimeric, and presented substrate-binding affinities comparable to those of their native counterparts. Single turnover reactions catalysed by iNOSoxy with L-Arg (first reaction step) or N-hydroxy-L-arginine (second reaction step) showed that mesohaem substitution triggered higher rates of Fe(II)O₂ conversion and altered other key kinetic parameters. We elucidated the first crystal structure of a NOS substituted with mesohaem and found essentially identical features compared with the structure of iNOS carrying native haem. This facilitated the dissection of structural and electronic effects. Mesohaem substitution substantially reduced the build-up of species P in W188H iNOS during catalysis, thus increasing its proficiency towards NO synthesis. The marked structural similarities of iNOSoxy containing native haem or mesohaem indicate that the kinetic behaviour observed in mesohaem-substituted iNOS is most heavily influenced by electronic effects rather than structural alterations.

  1. Effects of Nephritis No. 3 Recipe on Nitric Oxide, Nitric Oxide Synthase Secreted by Cultured Mesangial Cells in Rats and the Gene Expression of Inducible Nitric Oxide Synthase

    Institute of Scientific and Technical Information of China (English)

    陈志强; 黄怀鹏; 黄文政; 朱小棣; 林清棋

    2003-01-01

    Objective: To explore the effect of the Nephritis No. 3 (N-3) recipe on nitric oxide (NO),nitric oxide synthase (NOS) secreted by cultured mesangial cells (MC) and its gene expression of the inducible nitric oxide synthase (iNOS). Methods: The drug (nephritis No. 3)-containing serum was prepared with serum pharmacological technique, and then was applied to react on mesangial cells cultured in fetal calf serum (FCS) and cells cultured in FCS plus lipopolysaccharide. To observe the secretion of NO and NOS and the gene expression of iNOS by means of RT-PCR. Results: Under the two kinds of culture conditions, the content of NO and NOS in the groups with drug-containing serum were higher than those without drug-containing serum (P<0.05, P<0.01), and the expression of iNOS mRNA was up-regulated too. Conclusion: The N-3 could significantly promote the secretion of NO and NOS and the mRNA expression of iNOS in rats.

  2. HYPOTHALAMIC BLOOD-FLOW REMAINS UNALTERED FOLLOWING CHRONIC NITRIC-OXIDE SYNTHASE BLOCKADE IN RATS

    NARCIS (Netherlands)

    BENYO, Z; SZABO, C; STUIVER, BT; BOHUS, B; SANDOR, P

    1995-01-01

    The effect of the chronic oral application of N-G-nitro-L-arginine methyl eater (L-NAME), a potent inhibitor of nitric oxide (NO) production, was studied on hypothalamic blood flow (HBF) and hypothalamic nitric oxide synthase (NOS) activity in rats. L-NAME was dissolved in the drinking water, in a c

  3. Reaction of allene esters with Selectfluor/TMSX (X = I, Br, Cl and Selectfluor/NH4SCN: Competing oxidative/electrophilic dihalogenation and nucleophilic/conjugate addition

    Directory of Open Access Journals (Sweden)

    A. Srinivas Reddy

    2015-09-01

    Full Text Available Reaction of benzyl and ethyl allenoates with TMSX (X = I, Br, Cl and with NH4SCN were investigated in MeCN, DMF, and in imidazolium ionic liquids [BMIM][NTf2] and [BMIM][PF6] as solvent, in the presence and absence of Selectfluor. Comparative product analysis studies demonstrate that the ability of Selectflour to promote oxidative/electrophilic dihalogenation/dithiocyanation with TMSX/NH4SCN (as observed previously for 1-arylallenes is diminished in allenoates, most significantly in reactions with TMSCl, and essentially disappearing in reactions with NH4SCN, in favor of nucleophilic/conjugate addition. The study underscores the contrasting reactivity patterns in 1-arylallenes and allenoates toward electrophilic and nucleophilic additions in halofunctionalization with TMSX/Selectfluor and thiocyanation reactions with NH4SCN/Selectfluor. These competing pathways are influenced by the nature of the anion, allene structure, and the choice of solvent.

  4. Production of Nitric Oxide and Expression of Inducible Nitric Oxide Synthase in Ovarian Cystic Tumors

    Directory of Open Access Journals (Sweden)

    Rosekeila Simões Nomelini

    2008-01-01

    Full Text Available Tumor sections from nonneoplastic (n=15, benign (n=28, and malignant ovarian tumors (n=20 were obtained from 63 women. Immunohistochemistry of the tumor sections demonstrated that inducible nitric oxide synthase (iNOS expression was increased in ovarian cancer samples compared to nonneoplastic or benign tumor samples. Using the Griess method, nitric oxide (NO metabolite levels were also found to be elevated in malignant tumor samples compared to benign tumor samples (P80 μM were more frequent than NO levels <80 μM, and iNOS expression in well-differentiated carcinomas was greater than in moderately/poorly differentiated carcinomas (P<.05. These data suggest an important role for NO in ovarian carcinogenesis.

  5. Direct measurements of nitric oxide release in relation to expression of endothelial nitric oxide synthase in isolated porcine mitral valves

    DEFF Research Database (Denmark)

    Moesgaard, Sophia Gry; Olsen, Lisbeth Høier; Aasted, Bent;

    2007-01-01

    The aim of this study was to measure the direct release of nitric oxide (NO) from the porcine mitral valve using a NO microelectrode. Furthermore, the expression and localization of endothelial nitric oxide synthase (eNOS) in the mitral valve was studied using immunohistochemistry, Western blotting...

  6. Propolis attenuates oxidative injury in brain and lung of nitric oxide synthase inhibited rats

    Directory of Open Access Journals (Sweden)

    Zeliha Selamoglu-Talas

    2015-10-01

    Full Text Available Background: The blocking of nitric oxide synthase (NOS activity may reason vasoconstriction with formation of reactive oxygen species. Propolis has biological and pharmacological properties, such as antioxidant. The aim of this study was to examine the antioxidant effects of propolis which natural product on biochemical parameters in brain and lung tissues of acute nitric oxide synthase inhibited rats by Nω-nitro-L-arginine methyl ester (L-NAME.Methods: Rats have been received L-NAME (40 mg/kg, intraperitoneally, NOS inhibitor for 15 days to produce hypertension and propolis (200mg/kg, by gavage the lastest 5 of 15 days.Results: There  were  the  increase  (P<0.001  in  the  malondialdehyde  levels  in  the  L-NAME treatment groups when compared to control rats, but the decrease (P<0.001 in the catalase activities in both brain and lung tissues. There were statistically changes (P<0.001 in these parameters of L-NAME+propolis treated rats as compared with L-NAME-treated group.Conclusion: The application of L-NAME to the Wistar rats resulted in well developed oxidative stress. Also, propolis may influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of hypertensive diseases and oxidative stress.

  7. Neuronal nitric oxide synthase immunoreactivity in ependymal cells during early postnatal development.

    Science.gov (United States)

    Soygüder, Zafer; Karadağ, Hüseyin; Nazli, Mümtaz

    2004-03-01

    Neuronal nitric oxide synthase (nNOS) immunoreactivity was observed in ependymal cell layer of the central canal of spinal cord of neonatal rats (2-20 days old). Neuronal nitric oxide synthase immunoreactivity was present in postnatal day 2 and this immunoreactivity gradually disappeared by postnatal day 16. The progressive decrease in nNOS staining with the increasing postnatal age may suggest that nNOS staining paralleled the maturation of the central canal and may also suggest that nNOS activity plays a role in the development of the ependymal cells.

  8. Pressure-related activation of inducible nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A lot of reports suggested that inducible nitric oxide synthase (iNOS) has a very different nature from constitutive NOS including endothelial NOS (eNOS) and neural NOS (nNOS). When exposed to cytokines or bacterial products, iNOS could be greatly activated and produces hundreds or thousands fold more NO than it does usually. Whether iNOS activation is arterial pressure related is not clear. In the present experiment, we studied three groups(n=6) of Sprague Dawley (SD) rats with implanted aorta and venous catheters that were maintained on 1 mEq/d, 12.5 mEq/d and 25 mEq/d of sodium intake respectively. Pulsatile arterial pressure signals from the amplifier were sent to a digital computer and the urine samples were taken every other day for nitrate/nitrite excretion (UNOx) assay using Greiss Reaction. After 6 days infusion, the rats were euthanized with an overdose of sodium pentobarbital, and the renal medullas were rapidly removed and frozen on dry ice for iNOS activity assay. Morever separate groups of hypertensive rats including spontaneously hypertensive rat (SHR, n=6) and High NaCl-induced hypertensive rat (NaHR, n=6) were used to measure renal iNOS protein by Western Blotting. The results showed that the mean arterial pressure (MAP) were significantly increased with the increase intake of sodium, the MAP (mmHg) at day 6 were 99.6±3.5,116.65±4.2 and 125.43±4.5, and the iNOS activity (nmol*g-1 protein*min-1) were 122.3±23.4, 342.4±35.6 and 623.9±65.4 in 1 mEq/d, 12.5 mEq/d and 25 mEq/d of sodium intake-rats respectively. At the same time, UNOx at day 6 were also increased, in turn, to 5 865.6±343.0 (for 12.5 mEq/d intake-rats) and (9 642.8±1 045.3) (for 25 mEq/d sodium intake-rats) nmol/d from (3 834.9±234.8) nmol/d of 1 mEq/d sodium intake-rats respectively. Western blotting showed that the renal medullary iNOS protein in SHR and NaHR were increased by 178%±13% and 104%±9% of normal Wistar rats. The data indicates that elevated arterial pressure

  9. Distribution of nitric oxide synthase positive neurons in the substantia nigra of rats with liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND:Nitrogen monoxide plays an important role in the physiological activity and pathological process of striatum in substantia nigra, and the nitric oxide synthase in substantia nigra may have characteristic changes after liver cirrhosis.OBJECTIYE: To observe the distribution and forms of nitric oxide synthase (NOS) positive neurons and fibers in substantia nigra of rats with liver cirrhosis.DESIGN: A comparative observational experiment.SETTINGS: Beijing Friendship Hospital; Capital Medical University.MATERIALS: Twenty 4-month-old male Wistar rats (120 - 150 g) of clean grade, were maintained in a 12-hour light/dark cycle at a constant temperature with free access to standard diet and water. Cryostat microtome (LEICA, Germany); All the reagents were purchased from Sigma Company.METHODS: The experiment was carried out in the Department of Anatomy (key laboratory of Beijing city),Capital Medical University from July 2000 to March 2002. The rats were randomly divided into normal group (n=10) and liver fibrosis group (n=10). Rats in the liver fibrosis group were subcutaneously injected with 60% CCl4 oil at a dose of 5 mL/kg for the first time, and 3 mL/kg for the next 14 times, twice a week,totally 15 times. Liver fibrosis of grades 5 - 6 was taken as successful models. Whereas rats in the normal group were not given any treatment. Four months after CCl4 treatment, all the rats were anesthetized to remove brain, and frontal frozen serial sections were prepared. The expressions of nitric oxide synthase positive neurons in substantia nigra of rats were observed under inverted microscope. The number and gray scale of cell body of nitric oxide synthase positive neurons in substantia nigra were detected with NADPH-diaphorase staining.MAIN OUTCOME MEASURES: ①Number and gray scale of cell body of nitric oxide synthase positive neurons in substantia nigra; ②Expressions of nitric oxide synthase positive neurons in substantia nigra.RESULTS: All the 20 rats were

  10. Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Tran, E H; Hardin-Pouzet, H; Verge, G;

    1997-01-01

    Nitric oxide (NO), produced by inducible NO synthase (iNOS), may play a role in inflammatory demyelinating diseases of the central nervous system (CNS). We show upregulation of iNOS mRNA in CNS of SJL/J mice with experimental allergic encephalomyelitis (EAE). Using antibodies against mouse iNOS, ...

  11. Synthesis of novel methotrexate derivatives with inhibition activity of nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    Ming Sheng Feng; Ping Guo; Li Xun Jiang; Jing Bo Shi; Yu Ping Cao; Qi Zheng Yao

    2009-01-01

    Seventeen 4-alkylamino/arylamino-substituted methotrexate(MTX)derivatives 6a-14a were designed and synthesized.Their inhibition activities against inducible nitric oxide synthase(iNOS)were evaluated in vitro.The pharmacological results showed that most of the prepared compounds displayed the potent inhibitory effects on iNOS.

  12. β-Adrenergic-mediated vasodilation in young men and women: cyclooxygenase restrains nitric oxide synthase.

    Science.gov (United States)

    Limberg, Jacqueline K; Johansson, Rebecca E; Peltonen, Garrett L; Harrell, John W; Kellawan, J Mikhail; Eldridge, Marlowe W; Sebranek, Joshua J; Schrage, William G

    2016-03-15

    We tested the hypothesis that women exhibit greater vasodilator responses to β-adrenoceptor stimulation compared with men. We further hypothesized women exhibit a greater contribution of nitric oxide synthase and cyclooxygenase to β-adrenergic-mediated vasodilation compared with men. Forearm blood flow (Doppler ultrasound) was measured in young men (n = 29, 26 ± 1 yr) and women (n = 33, 25 ± 1 yr) during intra-arterial infusion of isoproterenol (β-adrenergic agonist). In subset of subjects, isoproterenol responses were examined before and after local inhibition of nitric oxide synthase [N(G)-monomethyl-l-arginine (l-NMMA); 6 male/10 female] and/or cyclooxygenase (ketorolac; 5 male/5 female). Vascular conductance (blood flow ÷ mean arterial pressure) was calculated to assess vasodilation. Vascular conductance increased with isoproterenol infusion (P 0.99) or women (P = 0.21). In contrast, ketorolac infusion markedly increased isoproterenol-mediated responses in both men (P vasodilation is not different between men and women and sex differences in the independent contribution of nitric oxide synthase and cyclooxygenase to β-mediated vasodilation are not present. However, these data are the first to demonstrate β-adrenoceptor activation of cyclooxygenase suppresses nitric oxide synthase signaling in human forearm microcirculation and may have important implications for neurovascular control in both health and disease.

  13. Constitutive expression of inducible nitric oxide synthase in the normal human colonic epithelium

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Normark, M;

    2002-01-01

    Inducible nitric oxide synthase (iNOS) in the human colon is considered expressed only in inflammatory states such as ulcerative or collagenous colitis. As subtle iNOS labelling was previously observed in some colonic mucosal biopsies from a heterogeneous group of controls with non-inflamed bowel...

  14. Investigation on oxidative stress of nitric oxide synthase interacting protein from Clonorchis sinensis.

    Science.gov (United States)

    Bian, Meng; Xu, Qingxia; Xu, Yanquan; Li, Shan; Wang, Xiaoyun; Sheng, Jiahe; Wu, Zhongdao; Huang, Yan; Yu, Xinbing

    2016-01-01

    Numerous evidences indicate that excretory-secretory products (ESPs) from liver flukes trigger the generation of free radicals that are associated with the initial pathophysiological responses in host cells. In this study, we first constructed a Clonorchis sinensis (C. sinensis, Cs)-infected BALB/c mouse model and examined relative results respectively at 3, 5, 7, and 9 weeks postinfection (p.i.). Quantitative reverse transcription (RT)-PCR indicated that the transcriptional level of both endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) gradually decreased with lastingness of infection, while the transcriptional level of inducible NOS (iNOS) significantly increased. The level of malondialdehyde (MDA) in sera of infected mouse significantly increased versus the healthy control group. These results showed that the liver of C. sinensis-infected mouse was in a state with elevated levels of oxidation stress. Previously, C. sinensis NOS interacting protein coding gene (named CsNOSIP) has been isolated and recombinant CsNOSIP (rCsNOSIP) has been expressed in Escherichia coli, which has been confirmed to be a component present in CsESPs and confirmed to play important roles in immune regulation of the host. In the present paper, we investigated the effects of rCsNOSIP on the lipopolysaccharide (LPS)-induced activated RAW264.7, a murine macrophage cell line. We found that endotoxin-free rCsNOSIP significantly promoted the levels of nitric oxide (NO) and reactive oxygen species (ROS) after pretreated with rCsNOSIP, while the level of SOD decreased. Furthermore, rCsNOSIP could also increase the level of lipid peroxidation MDA. Taken together, these results suggested that CsNOSIP was a key molecule which was involved in the production of nitric oxide (NO) and its reactive intermediates, and played an important role in oxidative stress during C. sinensis infection.

  15. Simulation of a hump structure in the optical scattering rate within a generalized Allen formalism and its application to copper oxide systems.

    Science.gov (United States)

    Hwang, Jungseek

    2013-07-24

    We propose a possible way to simulate a hump structure in the optical scattering rate. The optical scattering rate of correlated charge carriers can be defined within an extended Drude model formalism. When some electron- and hole-doped copper oxide systems are in spin density or charge density wave phases they show hump structures in their optical scattering rates. The hump structures have not yet been simulated or clearly understood. We are able to simulate the hump structure by using a peak followed by a dip feature in the normalized density of states within a generalized Allen formalism. We observe that reversing the order of the dip and peak gives completely different features in the optical scattering rate; a peak-dip (dip-peak) results in a hump (a valley) in the scattering rate. We also obtain the real parts of the optical conductivity and reflectance spectra from the simulated optical scattering rate and compare them with published experimental spectra. From these comparisons we conclude that the peak-dip order can give the hump structure that is observed experimentally in copper oxide systems. Finally we fit two published optical spectra with our new model and discuss our results and the possible origin of the dip or peak features in the normalized density of states.

  16. Nitric oxide production and nitric oxide synthase immunoreactivity in Naegleria fowleri.

    Science.gov (United States)

    Rojas-Hernández, Saúl; Rodríguez-Monroy, Marco A; Moreno-Fierros, Leticia; Jarillo-Luna, Adriana; Carrasco-Yepez, Marisela; Miliar-García, Angel; Campos-Rodríguez, Rafael

    2007-07-01

    Free-living ameba Naegleria fowleri produces an acute and fatal infectious disease called primary amebic meningoencephalitis (PAM), whose pathophysiological mechanism is largely unknown. The aim of this study was to investigate the role of nitric oxide (NO) in PAM. Although NO has a cytotoxic effect on various parasites, it is produced by others as part of the pathology, as is the case with Entamoeba histolytica. To test for the production of NO, we analyzed whether antibodies against mammalian NO synthase isoforms (neuronal, inducible, and endothelial) presented immunoreactivity to N. fowleri proteins. We found that the trophozoites produced NO in vitro. The Western blot results, which showed N. fowleri trophozoites, contained proteins that share epitopes with the three described mammalian NOS, but have relative molecular weights different than those described in the literature, suggesting that N. fowleri may contain undescribed NOS isoforms. Moreover, we found that trophozoites reacted to the NOS2 antibody, in amebic cultures as well as in the mouse brain infected with N. fowleri, suggesting that nitric oxide may participate in the pathogenesis of PAM. Further research aimed at determining whether N. fowleri contains active novel NOS isoforms could lead to the design of new therapies against this parasite.

  17. The evidence for nitric oxide synthase immunopositivity in the monosynaptic Ia-motoneuron pathway of the dog.

    Science.gov (United States)

    Marsala, Jozef; Lukácová, Nadezda; Sulla, Igor; Wohlfahrt, Peter; Marsala, Martin

    2005-09-01

    In this study, nitric oxide synthase immunohistochemistry supported by nicotinamide adenine dinucleotide phosphate diaphorase histochemistry was used to demonstrate the nitric oxide synthase immunoreactivity in the monosynaptic Ia-motoneuron pathway exemplified by structural components of the afferent limb of the soleus H-reflex in the dog. A noticeable number of medium-sized intensely nitric oxide synthase immunoreactive somata (1000-2000 microm(2) square area) and large intraganglionic nitric oxide synthase immunoreactive fibers, presumed to be Ia axons, was found in the L7 and S1 dorsal root ganglia. The existence of nitric oxide synthase immunoreactive fibers (6-8 microm in diameter, not counting the myelin sheath) was confirmed in L7 and S1 dorsal roots and in the medial bundle of both dorsal roots before entering the dorsal root entry zone. By virtue of the funicular organization of nitric oxide synthase immunoreactive fibers in the dorsal funiculus, the largest nitric oxide synthase immunoreactive fibers represent stem Ia axons located in the deep portion of the dorsal funiculus close to the dorsomedial margin of the dorsal horn. Upon entering the gray matter of L7 and S1 segments and passing through the medial half of the dorsal horn, tapered nitric oxide synthase immunoreactive collaterals of the stem Ia fibers pass through the deep layers of the dorsal horn and intermediate zone, and terminate in the group of homonymous motoneurons in L7 and S1 segments innervating the gastrocnemius-soleus muscles. Terminal fibers issued in the ventral horn intensely nitric oxide synthase immunoreactive terminals with long axis ranging from 0.7 to >or=15.1 microm presumed to be Ia bNOS-IR boutons. This finding is unique in that it focuses directly on nitric oxide synthase immunopositivity in the signalling transmitted by proprioceptive Ia fibers. Nitric oxide synthase immunoreactive boutons were found in the neuropil of Clarke's column of L4 segment, varying greatly in

  18. Mitochondrial ATP synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation.

    Science.gov (United States)

    Jimenez, Laure; Laporte, Damien; Duvezin-Caubet, Stephane; Courtout, Fabien; Sagot, Isabelle

    2014-02-15

    Mitochondria are double membrane-bounded organelles that form a dynamic tubular network. Mitochondria energetic functions depend on a complex internal architecture. Cristae, inner membrane invaginations that fold into the matrix space, are proposed to be the site of oxidative phosphorylation, reactions by which ATP synthase produces ATP. ATP synthase is also thought to have a role in crista morphogenesis. To date, the exploration of the processes regulating mitochondrial internal compartmentalization have been mostly limited to electron microscopy. Here, we describe ATP synthase localization in living yeast cells and show that it clusters as discrete inner membrane domains. These domains are dynamic within the mitochondrial network. They are impaired in mutants defective in crista morphology and partially overlap with the crista-associated MICOS-MINOS-MITOS complex. Finally, ATP synthase occupancy increases with the cellular demand for OXPHOS. Overall our data suggest that domains in which ATP synthases are clustered correspond to mitochondrial cristae. Being able to follow mitochondrial sub-compartments in living yeast cells opens new avenues to explore the mechanisms involved in inner membrane remodeling, an architectural feature crucial for mitochondrial activities.

  19. Inducible nitric oxide synthase mediates bone loss in ovariectomized mice.

    NARCIS (Netherlands)

    Cuzzocrea, S.; Mazzon, E.; Dugo, L.; Genovese, T.; Paola, R. Di; Ruggeri, Z.; Vegeto, E.; Caputi, A.P.; Loo, F.A.J. van de; Puzzolo, D.; Maggi, A.

    2003-01-01

    Several clinical studies have shown that bone loss may be attributed to osteoclast recruitment induced by mediators of inflammation. In different experimental paradigms we have recently demonstrated that estrogen exhibits antiinflammatory activity by preventing the induction of inducible nitric oxid

  20. Adhesion Development and the Expression of Endothelial Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    David M. Svinarich

    2001-01-01

    Full Text Available Objective: This study was conducted to determine whether nitric oxide (NO, a potent vasodilator and inhibitor of thrombus formation, is involved in the formation and maintenance of adhesions.

  1. Suppression of Allene Oxide Cyclase in Hairy Roots of Medicago truncatula Reduces Jasmonate Levels and the Degree of Mycorrhization with Glomus intraradices1[w

    Science.gov (United States)

    Isayenkov, Stanislav; Mrosk, Cornelia; Stenzel, Irene; Strack, Dieter; Hause, Bettina

    2005-01-01

    During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35S∷uidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis. PMID:16244141

  2. Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices.

    Science.gov (United States)

    Isayenkov, Stanislav; Mrosk, Cornelia; Stenzel, Irene; Strack, Dieter; Hause, Bettina

    2005-11-01

    During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35SuidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis.

  3. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Yuange Wang; Huaihua Liu; Qingguo Xin

    2015-01-01

    Allene oxide cyclase (AOC, E 5.3.99.6) is an essential enzyme in the jasmonic acid (JA) biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes (GhAOC1–GhAOC5) were cloned from upland cotton (Gossypium hirsutum L.), sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate (MeJA) and CuCl2 stresses. To investigate the role of GhAOC under copper stress, transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S (CaMV 35S) promoter were generated. Compared to untransformed plants, GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

  4. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Yuange Wang

    2015-08-01

    Full Text Available Allene oxide cyclase (AOC, E 5.3.99.6 is an essential enzyme in the jasmonic acid (JA biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes (GhAOC1–GhAOC5 were cloned from upland cotton (Gossypium hirsutum L., sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate (MeJA and CuCl2 stresses. To investigate the role of GhAOC under copper stress, transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S (CaMV 35S promoter were generated. Compared to untransformed plants, GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

  5. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene,GhA OC1, in upland cotton(Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Yuange; Wang; Huaihua; Liu; Qingguo; Xin

    2015-01-01

    Allene oxide cyclase(AOC, E 5.3.99.6) is an essential enzyme in the jasmonic acid(JA)biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes(Gh AOC1–Gh AOC5) were cloned from upland cotton(Gossypium hirsutum L.),sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of Gh AOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate(Me JA) and Cu Cl2 stresses. To investigate the role of Gh AOC under copper stress, transgenic Arabidopsis plants overexpressing cotton Gh AOC1 under control of the Cauliflower mosaic virus 35S(Ca MV 35S) promoter were generated. Compared to untransformed plants, Gh AOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress.This study provides the first evidence that Gh AOC1 plays an important role in copper stress tolerance.

  6. Oxidized extracellular DNA suppresses nitric oxide production by endothelial NO synthase (eNOS) in human endothelial cells (HUVEC).

    Science.gov (United States)

    Kostyuk, S V; Alekseeva, A Yu; Kon'kova, M S; Glebova, K V; Smirnova, T D; Kameneva, L V; Izhevskaya, V L; Veiko, N N

    2014-06-01

    Circulating DNA from patients with cardiovascular diseases reduce the synthesis of NO in endothelial cells, which is probably related to oxidative modification of DNA. To test this hypothesis, HUVEC cells were cultured in the presence of DNA containing ~1 (nonoxidized DNA), 700, or 2100 8-oxodG/10(6) nucleosides. Nonoxidized DNA stimulated the synthesis of NO, which was associated with an increase in the expression of endothelial NO synthase. Oxidized NO decreased the amount of mRNA and protein for endothelial NO synthase, but increased the relative content of its low active form. These changes were accompanied by reduction of NO production. These findings suggest that oxidative modification of circulating extracellular DNA contributes to endothelial dysfunction manifested in suppression of NO production.

  7. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases

    DEFF Research Database (Denmark)

    Reimers, J I; Bjerre, U; Mandrup-Poulsen, T

    1994-01-01

    , glucagon, corticosterone and leukocyte- and differential-counts in normal rats injected once daily for 5 days with interleukin 1 beta (IL-1 beta) (0.8 microgram/rat = 4.0 micrograms/kg). Inhibition of both the constitutive and the inducible forms of nitric oxide synthase prevented IL-1 beta-induced fever......Substantial in vitro evidence suggests that nitric oxide may be a major mediator of interleukin 1 (IL-1) induced pancreatic beta-cell inhibition and destruction in the initial events leading to insulin-dependent diabetes mellitus. Using NG-nitro-L-arginine methyl ester, an inhibitor of both......, hyperglycaemia, hypoinsulinemia, and hyperglucagonemia, and partially prevented lymphopenia and neutrophilia, but had no effect on IL-1 beta-induced anorexia and changes in plasma corticosterone. Preferential inhibition of the inducible form of nitric oxide synthase using two daily injections of 5 mg...

  8. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?

    Science.gov (United States)

    Rochette, Luc; Lorin, Julie; Zeller, Marianne; Guilland, Jean-Claude; Lorgis, Luc; Cottin, Yves; Vergely, Catherine

    2013-12-01

    Nitric oxide (NO) is synthetized enzymatically from l-arginine (l-Arg) by three NO synthase isoforms, iNOS, eNOS and nNOS. The synthesis of NO is selectively inhibited by guanidino-substituted analogs of l-Arg or methylarginines such as asymmetric dimethylarginine (ADMA), which results from protein degradation in cells. Many disease states, including cardiovascular diseases and diabetes, are associated with increased plasma levels of ADMA. The N-terminal catalytic domain of these NOS isoforms binds the heme prosthetic group as well as the redox cofactor, tetrahydrobiopterin (BH(4)) associated with a regulatory protein, calmodulin (CaM). The enzymatic activity of NOS depends on substrate and cofactor availability. The importance of BH(4) as a critical regulator of eNOS function suggests that BH(4) may be a rational therapeutic target in vascular disease states. BH(4) oxidation appears to be a major contributor to vascular dysfunction associated with hypertension, ischemia/reperfusion injury, diabetes and other cardiovascular diseases as it leads to the increased formation of oxygen-derived radicals due to NOS uncoupling rather than NO. Accordingly, abnormalities in vascular NO production and transport result in endothelial dysfunction leading to various cardiovascular disorders. However, some disorders including a wide range of functions in the neuronal, immune and cardiovascular system were associated with the over-production of NO. Inhibition of the enzyme should be a useful approach to treat these pathologies. Therefore, it appears that both a lack and excess of NO production in diseases can have various important pathological implications. In this context, NOS modulators (exogenous and endogenous) and their therapeutic effects are discussed.

  9. INDUCTION OF NITRIC OXIDE SYNTHASE AND ASSOCIATED TOXICITY IN LIVERS OF HARDHEAD CATFISH, ARIUS FELIS, FROM CONTROL AND EPIZOOTIC SITES

    Science.gov (United States)

    Earlier work with a live channel catfish (Ictalurus punctatus) pathogen, Edwardsiella ictaluri, demonstrated the induction of nitric oxide synthase (NOS) in the head kidney, paralleling enteric septicemia (Hawke et al. 1981; Schoor and Plumb 1994). However, another study exposing...

  10. Secologanin synthase which catalyzes the oxidative cleavage of loganin into secologanin is a cytochrome P450.

    Science.gov (United States)

    Yamamoto, H; Katano, N; Ooi, A; Inoue, K

    2000-01-01

    Secologanin synthase, an enzyme catalyzing the oxidative cleavage of the cyclopentane ring in loganin to form secologanin, was detected in microsomal preparations from cell suspension cultures of Lonicera japonica. The reaction required NADPH and molecular oxygen, and was blocked by carbon monoxide as well as by several other cytochrome P450 inhibitors, indicating that the reaction was mediated by cytochrome P450. Of the substrates examined, only specificity for loganin was demonstrated. A possible reaction mechanism is described.

  11. Nicotinic receptor mediates nitric oxide synthase expression in the rat gastric myenteric plexus.

    OpenAIRE

    1998-01-01

    The mechanism that regulates the synthesis of nitric oxide synthase (NOS), a key enzyme responsible for NO production in the myenteric plexus, remains unknown. We investigated the roles of the vagal nerve and nicotinic synapses in the mediation of NOS synthesis in the gastric myenteric plexus in rats. Truncal vagotomy and administration of hexamethonium significantly reduced nonadrenergic, noncholinergic relaxation, the catalytic activity of NOS, the number of NOS-immunoreactive cells, and th...

  12. Effects of icariin on erectile function and expression of nitric oxide synthase isoforms in castrated rats

    Institute of Scientific and Technical Information of China (English)

    Wu-Jiang Liu; Zhong-Cheng Xin; Hua Xin; Yi-Ming Yuan; Long Tian; Ying-Lu Guo

    2005-01-01

    Aim: To investigate the effect of icariin on erectile function and the expression of nitric oxide synthase (NOS)isoforms in castrated rats. Methods: Thirty-two adult male Wistar rats were randomly divided into one sham-operated group (A) and three castrated groups (B, C and D). One week after surgery, rats were treated with normal week after treatment, the erectile function of the rats was assessed by measuring intracavernosal pressure (ICP)during electrostimulation of the cavernosal nerve. The serum testosterone (ST) levels, the percent of smooth muscle (PSM) in trabecular tissue, and the expression of mRNA and proteins of neuronal nitric oxide synthase (nNOS),inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) and phosphodiesterase V (PDE5) in corpus cavernosum (CC) were also evaluated. Results: ICP, PSM, ST and the expression of nNOS, iNOS, eNOS and PDE5 were significantly decreased in group B compared with those in group A (P < 0.01). However, ICP, PSM and the expression of nNOS and iNOS were increased in groups C and D compared with those in group B (P < 0.05).Changes in ST and the expression of eNOS and PDE5 were not significant (P > 0.05) in groups C and D compared with those in group B. Conclusion: Oral treatment with icariin (> 98.6 % purity) for 4 weeks potentially improves erectile function. This effect is correlated with an increase in PSM and the expression of certain NOS in the CC of castrated rats. These results suggest that icariin may have a therapeutic effect on erectile dysfunction.

  13. Effects of intrathecal administration of nitric oxide synthase inhibitors on carrageenan-induced thermal hyperalgesia

    OpenAIRE

    Osborne, Michael G; Coderre, Terence J

    1999-01-01

    We examined the effects of various nitric oxide synthase (NOS) inhibitors on carrageenan-induced thermal hyperalgesia.First, we determined the time point at which a subcutaneous plantar injection of carrageenan into the rat hindpaw produced maximum thermal hyperalgesia. Subsequently, we demonstrated that intrathecal administration of the non-selective NOS inhibitor L-NG-nitro-arginine methyl ester (L-NAME) produces a dose-dependent reduction of carrageenan-induced thermal hyperalgesia.Four re...

  14. Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure.

    Science.gov (United States)

    Ito, Daisuke; Ito, Osamu; Mori, Nobuyoshi; Cao, Pengyu; Suda, Chihiro; Muroya, Yoshikazu; Hao, Kiyotaka; Shimokawa, Hiroaki; Kohzuki, Masahiro

    2013-09-01

    There is an interaction between heart and kidney diseases, which is a condition termed cardiorenal syndrome. Exercise training has cardioprotective effects, involving upregulation of endothelial (e) nitric oxide synthase (NOS) in the cardiovascular system. However, the effects of exercise training on NOS in the kidney with heart disease are unknown. The aim of the present study was to investigate whether exercise training upregulates NOS in the kidney, left ventricle and aorta of rats with chronic heart failure (CHF). Male Sprague-Dawley rats underwent left coronary artery ligation (LCAL) to induce CHF and were randomly assigned to sedentary or treadmill exercise groups 4 weeks after LCAL. Three days after exercising for 4 weeks, urine samples were collected for 24 h and blood samples were collected following decapitation. Nitric oxide synthase activity and protein expression were examined. Significant interactions between CHF and exercise training were observed on parameters of cardiac and renal function. Exercise training improved cardiac function, decreased plasma B-type natriuretic peptide levels, decreased urinary albumin excretion and increased creatinine clearance in CHF rats. Nitric oxide synthase activity, eNOS expression and neuronal (n) NOS expression were significantly decreased in the left ventricle and kidney of CHF rats. Exercise training significantly increased NOS activity and eNOS and nNOS expression. Upregulation of NOS in the kidney and left ventricle may contribute, in part, to the renal and cardiac protective effects of exercise training in cardiorenal syndrome in CHF rats.

  15. Synthesis of N-(Methoxycarbonylthienylmethylthioureas and Evaluation of Their Interaction with Inducible and Neuronal Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Michael D. Threadgill

    2010-04-01

    Full Text Available Two isomeric N-(methoxycarbonylthienylmethylthioureas were synthesised by a sequence of radical bromination of methylthiophenecarboxylic esters, substitution with trifluoroacetamide anion, deprotection, formation of the corresponding isothiocyanates and addition of ammonia. The interaction of these new thiophene-based thioureas with inducible and neuronal nitric oxide synthase was evaluauted. These novel thienylmethylthioureas stimulated the activity of inducible Nitric Oxide Synthase (iNOS.

  16. Uncoupling of Vascular Nitric Oxide Synthase Caused by Intermittent Hypoxia

    Directory of Open Access Journals (Sweden)

    Mohammad Badran

    2016-01-01

    Full Text Available Objective. Obstructive sleep apnea (OSA, characterized by chronic intermittent hypoxia (CIH, is often present in diabetic (DB patients. Both conditions are associated with endothelial dysfunction and cardiovascular disease. We hypothesized that diabetic endothelial dysfunction is further compromised by CIH. Methods. Adult male diabetic (BKS.Cg-Dock7m +/+ Leprdb/J (db/db mice (10 weeks old and their heterozygote littermates were subjected to CIH or intermittent air (IA for 8 weeks. Mice were separated into 4 groups: IA (intermittent air nondiabetic, IH (intermittent hypoxia nondiabetic, IADB (intermittent air diabetic, and IHDB (intermittent hypoxia diabetic groups. Endothelium-dependent and endothelium-independent relaxation and modulation by basal nitric oxide (NO were analyzed using wire myograph. Plasma 8-isoprostane, interleukin-6 (IL-6, and asymmetric dimethylarginine (ADMA were measured using ELISA. Uncoupling of eNOS was measured using dihydroethidium (DHE staining. Results. Endothelium-dependent vasodilation and basal NO production were significantly impaired in the IH and IADB group compared to IA group but was more pronounced in IHDB group. Levels of 8-isoprostane, IL-6, ADMA, and eNOS uncoupling were ≈2-fold higher in IH and IADB groups and were further increased in the IHDB group. Conclusion. Endothelial dysfunction is more pronounced in diabetic mice subjected to CIH compared to diabetic or CIH mice alone. Oxidative stress, ADMA, and eNOS uncoupling were exacerbated by CIH in diabetic mice.

  17. Endothelial nitric oxide synthase activation and nitric oxide function: new light through old windows.

    Science.gov (United States)

    Bird, Ian M

    2011-09-01

    The principle mechanisms operating at the level of endothelial nitric oxide synthase (eNOS) itself to control its activity are phosphorylation, the auto-regulatory properties of the protein itself, and Ca(2)(+)/calmodulin binding. It is now clear that activation of eNOS is greatest when phosphorylation of certain serine and threonine residues is accompanied by elevation of cytosolic [Ca2+](i). While eNOS also contains an autoinhibitory loop, Rafikov et al. (2011) present the evidence for a newly identified 'flexible arm' that operates in response to redox state. Boeldt et al. (2011) also review the evidence that changes in the nature of endothelial Ca(2)(+) signaling itself in different physiologic states can extend both the amplitude and duration of NO output, and a failure to change these responses in pregnancy is associated with preeclampsia. The change in Ca(2)(+) signaling is mediated through altering capacitative entry mechanisms inherent in the cell, and so many agonist responses using this mechanism are altered. The term 'adaptive cell signaling' is also introduced for the first time to describe this phenomenon. Finally NO is classically regarded as a regulator of vascular function, but NO has other actions. One proposed role is regulation of steroid biosynthesis but the physiologic relevance was unclear. Ducsay & Myers (2011) now present new evidence that NO may provide the adrenal with a mechanism to regulate cortisol output according to exposure to hypoxia. One thing all three of these reviews show is that even after several decades of study into NO biosynthesis and function, there are clearly still many things left to discover.

  18. Nasal nitric oxide and nitric oxide synthase expression in primary ciliary dyskinesia.

    Science.gov (United States)

    Pifferi, M; Bush, A; Maggi, F; Michelucci, A; Ricci, V; Conidi, M E; Cangiotti, A M; Bodini, A; Simi, P; Macchia, P; Boner, A L

    2011-03-01

    No study has evaluated the correlation between different expression of nitric oxide synthase (NOS) isoforms in nasal epithelial cells and nasal NO (nNO) level in primary ciliary dyskinesia (PCD). Gene expression of endothelial (NOS3) and inducible NOS (NOS2) and their correlation with nNO level, ciliary function and morphology were studied in patients with PCD or secondary ciliary dyskinesia (SCD). NOS3 gene polymorphisms were studied in blood leukocytes. A total of 212 subjects were studied (48 with PCD, 161 with SCD and three normal subjects). nNO level correlated with mean ciliary beat frequency (p = 0.044; r = 0.174). The lower the nNO level the higher was the percentage of immotile cilia (p<0.001; r = -0.375). A significant positive correlation between NOS2 gene expression and nNO levels was demonstrated in all children (p = 0.001; r = 0.428), and this correlation was confirmed in patients with PCD (p = 0.019; r = 0.484). NOS2 gene expression was lower in PCD than in SCD (p = 0.04). The NOS3 isoform correlated with missing central microtubules (p = 0.048; r = 0.447). nNO levels were higher in PCD subjects with the NOS3 thymidine 894 mutation, and this was associated with a higher ciliary beat frequency (p = 0.045). These results demonstrate a relationship between nNO level, NOS mRNA expression and ciliary beat frequency.

  19. Structural organization of the human neuronal nitric oxide synthase gene (NOS1).

    Science.gov (United States)

    Hall, A V; Antoniou, H; Wang, Y; Cheung, A H; Arbus, A M; Olson, S L; Lu, W C; Kau, C L; Marsden, P A

    1994-12-30

    Neuronal nitric oxide (NO) synthase, localized to human chromosome 12, uniquely participates in diverse biologic processes; neurotransmission, the regulation of body fluid homeostasis, neuroendocrine physiology, control of smooth muscle motility, sexual function, and myocyte/myoblast biology, among others. Restriction enzyme mapping, subcloning, and DNA sequence analysis of bacteriophage- and yeast artificial chromosome-derived human genomic DNA indicated that the mRNA for neuronal NO synthase is dispersed over a minimum of 160 kilobases of human genomic DNA. Analysis of intron-exon splice junctions predicted that the open reading frame is encoded by 28 exons, with translation initiation and termination in exon 2 and exon 29, respectively. Determination of transcription initiation sites in brain poly(A) RNA with primer extension analysis and RNase protection revealed a major start site 28 nucleotides downstream from a TATA box. Sequence inspection of 5'-flanking regions revealed potential cis-acting DNA elements: AP-2, TEF-1/MCBF, CREB/ATF/c-Fos, NRF-1, Ets, NF-1, and NF-kappa B-like sequences. Diversity appears to represent a major theme apparent upon analysis of human neuronal NO synthase mRNA transcripts. A microsatellite of the dinucleotide variety was detected within the 3'-untranslated region of exon 29. Multiple alleles were evident in normal individuals indicating the existence of allelic mRNA sequence variation. Characterization of variant human neuronal NO synthase cDNAs indicated the existence of casette exon 9/10 and exon 10 deletions as examples of structural mRNA diversity due to alternative splicing. The latter deletion of a 175-nucleotide exon introduces a frame-shift and premature stop codon indicating the potential existence of a novel NH2 terminus protein. In summary, analysis of the human neuronal NO synthase locus reveals a complex genomic organization and mRNA diversity that is both allelic and structural.

  20. Modulation of nitric oxide synthase isoenzymes inreperfused skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the modulation of nitric oxide synthnse (NOS) isoenzymes in skeletal muscle during 3 h ischemia/reperfusion (I/R, 3 h ischemia followed by 3 h reperfusion). Methods: The extensor digitorum longuses (EDLs)from 20 adult rats were divided into 4 groups: the normal,the sham operation, the ischemia (3 h), and the ischemia/reperfusion group. One normal EDL from each rat was used as the non-operated control, and the opposite ones are distributed into the 3 remaining groups. All the samples were studied with Western blotting technique and immumohistochemistry staining. Results: Three sizes of protein bands verified with the proteins of relative molecule to be of 155 000, 140 000and 135 000, were detected in the EDL homogenate by Western blotting, which were comparable with the positive controls for nNOS, eNOS and iNOS, respectively. Immunostaining demonstrated that nNOS was present in the muscle fiber, with a similar location of the muscle stria, eNOS was found apparently in microvascular endothelia,but not found in muscle fibers, and iNOS was found in the leukocytes around the muscle fiber and some endothelia cells. Immunostaining paralleled the Western blotting results. Conclusions: It suggests that the constitutive nNOS and eNOS protein can be regulated by I/R, and I/R results in a down regulation of nNOS and up-regulation of eNOS and iNOS in reperfused skeletal muscle. The fact that nNOS is present around stria suggests that nNOS may have a close relationship with muscle function. The localization of eNOS in endothelial cell indicates its role in regulating blood supply of the muscle. Based on these findings, it is possible that NO produced by distinct NOS may play a different role in I/R injury.

  1. Concentrations of Nitric Oxide in Rat Brain Tissues after Diffuse Brain Injury and Neuroprotection by the Selective Inducible Nitric Oxide Synthase Inhibitor Aminoguanidine

    Institute of Scientific and Technical Information of China (English)

    Yi-bao Wang; Shao-wu Ou; Guang-yu Li; Yun-hui Liu

    2005-01-01

    @@ To investigate the effects of nitric oxide (NO) and the selective inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (AG) on trauma, we explored the concentrations of nitric oxide in rat brain tissues at different time stamps after diffuse brain injury (DBI) with or without AG treatment.

  2. Effects of glucocorticoid dexamethasone on serum nitric oxide synthase activity and nitric oxide levels in a rat model of lung disease-induced brain injury

    Institute of Scientific and Technical Information of China (English)

    Huajun Li; Ligang Jiang; Meng Xia; Haiping Li; Fanhua Meng; Wei Li; Lifeng Liu; Zhaohui Wang

    2011-01-01

    In this study, we investigated the effects of dexamethasone, pertussis toxin (a Gi protein inhibitor), and actinomycin (a transcription inhibitor) on serum nitric oxide synthase activity and nitric oxide content in a rat model of lung disease-induced brain injury. High-dose dexamethasone (13 mg/kg) and dexamethasone + actinomycin reduced lung water content, increased serum nitric oxide synthase activity and nitric oxide content, diminished inflammatory cell infiltration in pulmonary alveolar interstitium, attenuated meningeal vascular hyperemia, reduced glial cell infiltration, and decreased cerebral edema. These results demonstrate that high-dose glucocorticoid treatment can reduce the severity of lung disease-induced brain injury by increasing nitric oxide synthase activity and nitric oxide levels.

  3. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase

    Science.gov (United States)

    Rajfer, R. A.; Kilic, A.; Neviaser, A. S.; Schulte, L. M.; Hlaing, S. M.; Landeros, J.; Ferrini, M. G.; Ebramzadeh, E.

    2017-01-01

    Objectives We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry. Results When compared with the control group, the COMB-4 group exhibited 46% higher maximum strength (t-test, p = 0.029) and 92% higher stiffness (t-test, p = 0.023), but no significant changes were observed in the tadalafil group. At days 14 and 42, there was no significant difference between the three groups with respect to callus volume, mineral content and bone density. Expression of iNOS at day 14 was significantly higher in the COMB-4 group which, as expected, had returned to baseline levels at day 42. Conclusion This study demonstrates an enhancement in fracture healing by an oral natural product known to augment iNOS expression. Cite this article: R. A. Rajfer, A. Kilic, A. S. Neviaser, L. M. Schulte, S. M. Hlaing, J. Landeros, M. G. Ferrini, E. Ebramzadeh, S-H. Park. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase. Bone Joint Res 2017:6:–97. DOI: 10.1302/2046-3758.62.BJR-2016-0164.R2. PMID:28188129

  4. Differential activation of nitric oxide synthase through muscarinic acetylcholine receptors in rat salivary glands.

    Science.gov (United States)

    Leirós, C P; Rosignoli, F; Genaro, A M; Sales, M E; Sterin-Borda, L; Santiago BordaE

    2000-03-15

    Muscarinic receptors play an important role in secretory and vasodilator responses in rat salivary glands. Nitric oxide synthase (NOS) appears to be one of the multiple effectors coupled to muscarinic receptors in both submandibular and sublingual glands although some differences have been found depending on the gland studied. First, submandibular glands had a lower basal activity of nitric oxide synthase than sublingual glands and the concentration-response curve for carbachol was bell-shaped in the former but not in sublingual glands. Second, cGMP levels displayed a similar profile to that observed for NOS activity in both glands. Third, protein kinase C also coupled to muscarinic receptor activation in the glands might have a regulatory effect on nitric oxide production since its activity was higher in basal conditions in submandibular than sublingual glands and it also increased in the presence of the agonist at a concentration that inhibited NOS activity in submandibular glands. The effects appear to be partly related to the expression of a minor population of M(1) receptors in submandibular glands absent in sublingual as determined in binding and signaling experiments with the muscarinic receptor antagonist pirenzepine.

  5. Neuronal Nitric Oxide Synthase Induction in the Antitumorigenic and Neurotoxic Effects of 2-Methoxyestradiol

    Directory of Open Access Journals (Sweden)

    Magdalena Gorska

    2014-08-01

    Full Text Available Objective: 2-Methoxyestradiol, one of the natural 17β-estradiol derivatives, is a novel, potent anticancer agent currently being evaluated in advanced phases of clinical trials. The main goal of the study was to investigate the anticancer activity of 2-methoxy-estradiol towards osteosarcoma cells and its possible neurodegenerative effects. We used an experimental model of neurotoxicity and anticancer activity of the physiological agent, 2-methoxyestradiol. Thus, we used highly metastatic osteosarcoma 143B and mouse immortalized hippocampal HT22 cell lines. The cells were treated with pharmacological (1 μM, 10 μM concentrations of 2-methoxyestradiol. Experimental: Neuronal nitric oxide synthase and 3-nitrotyrosine protein levels were determined by western blotting. Cell viability and induction of cell death were measured by MTT and PI/Annexin V staining and a DNA fragmentation ELISA kit, respectively. Intracellular levels of nitric oxide were determined by flow cytometry. Results: Here we demonstrated that the signaling pathways of neurodegenerative diseases and cancer may overlap. We presented evidence that 2-methoxyestradiol, in contrast to 17β-estradiol, specifically affects neuronal nitric oxide synthase and augments 3-nitrotyrosine level leading to osteosarcoma and immortalized hippocampal cell death. Conclusions: We report the dual facets of 2-methoxyestradiol, that causes cancer cell death, but on the other hand may play a key role as a neurotoxin.

  6. Regulation of prostaglandin generation in carrageenan-induced pleurisy by inducible nitric oxide synthase in knockout mice.

    NARCIS (Netherlands)

    Rossi, A.; Cuzzocrea, S.; Mazzon, E.; Serraino, I.; Sarro, A. de; Dugo, L.; Felice, M.R.; Loo, F.A.J. van de; Rosa, M. Di; Musci, G.; Caputi, A.P.; Sautebin, L.

    2003-01-01

    In the present study, by comparing the responses in wild-type mice (iNOSWT) and mice lacking (iNOSKO) the inducible (or type 2) nitric oxide synthase (iNOS), we investigated the correlation between endogenous nitric oxide (NO) and prostaglandin (PG) generation in carrageenan-induced pleurisy. The in

  7. Anti-inflammatory effects of tetrahydrobiopterin on early rejection in renal allografts : modulation of inducible nitric oxide synthase

    NARCIS (Netherlands)

    Huisman, A; Vos, [No Value; van Faassen, EE; Joles, JA; Grone, HJ; Martasek, P; van Zonneveld, AJ; Vanin, AF; Rabelink, TJ

    2002-01-01

    Oxidative stress contributes to the development of early transplant failure. As nitric oxide synthases (NOS) can act as sources of superoxide, we investigated the effect of the NOS cofactor tetrahydrobiopterin (BH4) on oxyradical production and early rejection in a rat kidney transplantation model.

  8. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Science.gov (United States)

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  9. Expression of nitric oxide synthase in human gastric carcinoma and its relation to p53, PCNA

    Institute of Scientific and Technical Information of China (English)

    Yong-Zhong Wang; You-Qing Cao; Jian-Nong Wu; Miao Chen; Xiao-Ying Cha

    2005-01-01

    AIM: To investigate the expression of NOS in gastric carcinoma, and to explore the relationship between the expression of nitric oxide synthases (NOS) and p53, PCNA,pathological features and clinical staging of gastric cancer.METHODS: The activity of NOS protein was investigated in 85 samples of human gastric carcinoma and 25 samples of normal gastric mucosal tissue by biochemical assay. We then examined the expression of NOS, p53, PCNA in 85 samples of human gastric cancer was examined by immunohistochemistry, and NOS mRNA expression in 85 gastric cancer tissue specimens by in situ hybridization.RESULTS: Biochemical assay showed that the activity of NOS was significantly higher in gastric carcinoma than in normal gastric mucosal tissues (t = 0.4161, P<0.01).Immunohistochemistry revealed that endothelial nitric oxide synthase (eNOS) expressed in all samples of normal gastric mucosa, but only 6 cases of 85 gastric cancer specimens showed weak positive immunohistochemical reactions to eNOS (20%). Inducible nitric oxide synthase (iNOS) was expressed strongly in human gastric carcinoma (81.2%). In situ hybridization analysis showed that iNOS mRNA expression was significantly stronger than eNOS mRNA expression in gastric cancer tissue (x2 = 10.23, P<0.01). The expression of iNOS in gastric cancer was associated with differentiation, clinical stages or lymph node metastases (r= 0.3426, P<0.05). However,iNOS expression did not correlate with histological classifications and morphological types. The expression of iNOS was significantly correlated with p53 or PCNA expression (r = 0.3612, P<0.05). The expression of neuronal nitric oxide synthase (nNOS) was not examined by immunohistochemistry and in situ hybridization in gastric cancer specimens and normal gastric mucosa.CONCLUSION: In human gastric cancer, there is an enhanced expression of iNOS, but not of eNOS. NOS promotes the proliferation of tumor cells and plays an important role in gastric cancer spread

  10. A connecting hinge represses the activity of endothelial nitric oxide synthase

    OpenAIRE

    Haque, Mohammad Mahfuzul; Panda, Koustubh; Tejero, Jesús; Aulak, Kulwant S.; Fadlalla, Mohammed Adam; Mustovich, Anthony T.; Stuehr, Dennis J

    2007-01-01

    In mammals, endothelial nitric oxide synthase (eNOS) has the weakest activity, being one-tenth and one-sixth as active as the inducible NOS (iNOS) and the neuronal NOS (nNOS), respectively. The basis for this weak activity is unclear. We hypothesized that a hinge element that connects the FMN module in the reductase domain but is shorter and of unique composition in eNOS may be involved. To test this hypothesis, we generated an eNOS chimera that contained the nNOS hinge and two mutants that e...

  11. RNA diversity has profound effects on the translation of neuronal nitric oxide synthase

    OpenAIRE

    Wang, Yang; Newton, Derek C.; Robb, G. Brett; Kau, Cheng-Lin; Miller, Tricia L.; Cheung, Anthony H.; Hall,Anne V.; VanDamme, Suzannah; Wilcox, Josiah N.; Marsden, Philip A.

    1999-01-01

    A comprehensive analysis of the structure of neuronal nitric oxide synthase (nNOS; EC 1.14.13.39) mRNA species revealed NOS1 to be the most structurally diverse human gene described to date in terms of promoter usage. Nine unique exon 1 variants are variously used for transcript initiation in diverse tissues, and each is expressed from a unique 5′-flanking region. The dependence on unique genomic regions to control transcription initiation in a cell-specific fashion burdens the transcripts wi...

  12. Nitric oxide synthase and nitric oxide alterations in chronically stressed rats: a model for nitric oxide in major depressive disorder.

    Science.gov (United States)

    Gao, Shang-Feng; Lu, Yun-Rong; Shi, Li-Gen; Wu, Xue-Yan; Sun, Bo; Fu, Xin-Yan; Luo, Jian-Hong; Bao, Ai-Min

    2014-09-01

    Nitric oxide (NO) and NO synthase-1 (NOS1) are involved in the stress response and in depression. We compared NOS-NO alterations in rats exposed to chronic unpredictable stress (CUS) with alterations in major depressive disorder (MDD) in humans. In the hypothalamus of male CUS rats we determined NOS activity, and in the paraventricular nucleus (PVN) we determined NOS1-immunoreactive (ir) cell densities and co-localization of NOS1 with stress-related neuropeptides corticotropin-releasing hormone (CRH), vasopressin (AVP) or oxytocin (OXT). We measured plasma NO levels and cortisol in male medicine-naïve MDD patients and plasma NO and corticosterone (CORT) in CUS rats. In the CUS rat total NOS activity in the hypothalamus (P=0.018) and NOS1-ir cell density in the PVN were both significantly decreased (P=0.018), while NOS1 staining was mainly expressed in OXT-ir neurons in this nucleus. Interestingly, plasma NO levels were significantly increased both in male CUS rats (P=0.001) and in male MDD patients (Pdepression.

  13. Role of Nitric Oxide and Nitric Oxide Synthases in Ischemia-reperfusion Injury in Rat Organotypic Hippocampus Slice

    Institute of Scientific and Technical Information of China (English)

    MENG Xianfang; SHI Jing; LIU Xiaochun; ZHANG Jing; SUN Ning

    2005-01-01

    To investigate the effects of ischemia-reperfusion on the levels of nitric oxide and nitric oxide synthase isoforms (nNOS and iNOS), rat organotypic hippocampus slice were cultured in vitro and subjected to ischemia by oxygen glucose deprivation (OGD) for 30 min and then placed in the normal culture condition. The ischemia-reperfusion produced a time-dependent increase in nitrite levels in the culture medium. Reverse transcriptional-polymerase chain reaction showed augmented levels of mRNA for both nNOS and iNOS when compared with control at 12 h and remained increase at 36 h after OGD (P<0.05). The protein levels of both nitric oxide synthase isoforms increased significantly as determined by Western Blot. OGD also caused neurotoxicity in this model as revealed by the elevated lactate dehydrogenase (LDH) efflux into the incubation solution. The results suggest that organotypic hippocampus slice is a useful model in studying ischemia-reperfusion brain injury. NO and NOS may play a critical role in the ischemia-reperfusion brain damage in vitro.

  14. Effect of diabetes and insulin treatment on nitric oxide synthase content in rat corpus cavemosum

    Institute of Scientific and Technical Information of China (English)

    Zhi-Shun XU; Qiang FU; Sheng-Tian ZHAO; Hai-Nan LIU

    2001-01-01

    Aim: To study the effect of diabetes mellitus and insulin treatment on rat penile nitric oxide synthase content.Methods: Male Wistar rats were divided at random into two groups: the Control ( n = 8) and the Diabetic ( n =17). Diabetes mellitus was induced by intraperitoneal injection of streptozotocin. The diabetic animals were then ran domly divided into two subgroups: diabetic rats without insulin treatment ( n = 7) and diabetic rats with insulin treat ment ( n = 10). The neuronal nitric oxide synthase (nNOS) in the penile corpus cavemosum were assayed by immrmo histochemical staining with specific antibody to nNOS and the nNOS-positive nerve fibers were counted semiquantita tively under a high power microscope. Results: The nNOS- positive nerve fibres in diabetic rats with treatment was higher than that in diabetic rats without treatment ( P < 0.05) and lower than that in the controls ( P < 0.01 ). The nNOS-positive nerve fibres in diabetic rat without treatment were also lower than that in the controls ( P < 0.01). Con clusion: In streptozotocin-induced diabetic rats, the nNOS content in the penile corpus cavernosum was significantly decre~ed. Insulin treatment at the dose level employed partially restores the penile nNOS content in these rats.

  15. Distinct influence of N-terminal elements on neuronal nitric-oxide synthase structure and catalysis.

    Science.gov (United States)

    Panda, Koustubh; Adak, Subrata; Aulak, Kulwant S; Santolini, Jerome; McDonald, John F; Stuehr, Dennis J

    2003-09-26

    Nitric oxide (NO) is a signal molecule produced in animals by three different NO synthases. Of these, only NOS I (neuronal nitric-oxide synthase; nNOS) is expressed as catalytically active N-terminally truncated forms that are missing either an N-terminal leader sequence required for protein-protein interactions or are missing the leader sequence plus three core structural motifs that in other NOS are required for dimer assembly and catalysis. To understand how the N-terminal elements impact nNOS structure-function, we generated, purified, and extensively characterized variants that were missing the N-terminal leader sequence (Delta296nNOS) or missing the leader sequence plus the three core motifs (Delta349nNOS). Eliminating the leader sequence had no impact on nNOS structure or catalysis. In contrast, additional removal of the core elements weakened but did not destroy the dimer interaction, slowed ferric heme reduction and reactivity of a hemedioxy intermediate, and caused a 10-fold poorer affinity toward substrate l-arginine. This created an nNOS variant with slower and less coupled NO synthesis that is predisposed to generate reactive oxygen species along with NO. Our findings help justify the existence of nNOS N-terminal splice variants and identify specific catalytic changes that create functional differences among them.

  16. Pulmonary expression of nitric oxide synthase isoforms in sheep with smoke inhalation and burn injury.

    Science.gov (United States)

    Cox, Robert A; Jacob, Sam; Oliveras, Gloria; Murakami, Kazunori; Enkhbaatar, Perenlei; Traber, Lillian; Schmalstieg, Frank C; Herndon, David N; Traber, Daniel L; Hawkins, Hal K

    2009-03-01

    Previous studies have indicated increased plasma levels of inducible nitric oxide synthase in lung. This study further examines the pulmonary expression of nitric oxide synthase (NOS) isoforms in an ovine model of acute lung injury induced by smoke inhalation and burn injury (S+B injury). Female range bred sheep (4 per group) were sacrificed at 4, 8, 12, 24, and 48 hours after injury and immunohistochemistry was performed in tissues for various NOS isoforms. The study indicates that in uninjured sheep lung, endothelial (eNOS) is constitutively expressed in the endothelial cells associated with the airways and parenchyma, and in macrophages. Similarly, neuronal (nNOS) is constitutively present in the mucous cells of the epithelium and in neurons of airway ganglia. In uninjured lung, inducible (iNOS) was present in bronchial secretory cells and macrophages. In tissue after S+B injury, new expression of iNOS was evident in bronchial ciliated cells, basal cells, and mucus gland cells. In the parenchyma, a slight increase in iNOS immunostaining was seen in type I cells at 12 and 24 hours after injury only. Virtually no change in eNOS or nNOS was seen after injury.

  17. Neuronal nitric oxide synthase contributes to pentylenetetrazole-kindling-induced hippocampal neurogenesis.

    Science.gov (United States)

    Zhu, Xinjian; Dong, Jingde; Shen, Kai; Bai, Ying; Chao, Jie; Yao, Honghong

    2016-03-01

    Neuronal nitric oxide synthase (nNOS), the major nitric oxide synthase isoform in the mammalian brain, is implicated in the pathophysiology of several neurological conditions, including epilepsy. Neurogenesis in hippocampal dentate gyrus (DG) persists throughout life in the adult brain. Alterations in this process occur in many neurological diseases, including epilepsy. Few studies, however, have addressed the role of nNOS in hippocampal DG neurogenesis in epileptic brain. The present study, therefore, investigated the role of nNOS in pentylenetetrazole (PTZ)-kindling-induced neurogenesis in hippocampal DG. Our results showed that nNOS expression and enzymatic activity were significantly increased in the hippocampus of PTZ-kindled mice. Meanwhile, these PTZ-kindled mice were characterized by significant enhancement of new born cells proliferation and survival in hippocampal DG, and these survived cells are co-labeled with NeuN and GFAP. Selective inhibition of nNOS by 7-NI, however, suppressed PTZ-kindling-induced hippocampal DG new born cells proliferation and survival, suggesting that nNOS contributes to PTZ-kindling-induced hippocampal neurogenesis.

  18. Inducible nitric oxide synthase and guinea-pig ileitis induced by adjuvant

    Directory of Open Access Journals (Sweden)

    N. D. Seago

    1995-01-01

    Full Text Available We sought to establish a model of inflammatory bowel disease by augmenting the activity of the local immune system with Freund's complete adjuvant, and to determine if inducible nitric oxide synthase (iNOS expression and peroxynitrite formation accompanied the inflammatory condition. In anaesthetized guinea-pigs, a loop of distal ileum received intraluminal 50% ethanol followed by Freund's complete adjuvant. Control animals were sham operated. When the animals were killed 7 or 14 days later, loop lavage fluid was examined for nitrite and PGE2 levels; mucosal levels of granulocyte and macrophages were estimated by myeloperoxidase (MPO and N-acetyl-D-glucosaminidase (NAG activity, respectively. Cellular localization if iNOS and peroxynitrite formation were determined by immunohistochemistry with polyclonal antibodies directed against peptide epitopes of mouse iNOS and nitrotyrosine, respectfully. Adjuvant administration resulted in a persistent ileitis, featuring gut thickening, crypt hyperplasia, villus tip swelling and disruption, and cellular infiltration. Lavage levels of PGE2 and nitrite were markedly elevated by adjuvant treatment. Immunoreactive iNOS and nitrotyrosine bordered on detectability in normal animals but were markedly evident with adjuvant treatment at day 7 and particularly day 14. Immunohistochemistry suggested that enteric neurons and epithelia were major sites of iNOS activity and peroxynitrite formation. We conclude that local administration of adjuvant establishes a chronic ileitis. Inducible nitric oxide synthase may contribute to the inflammatory process.

  19. Identification and molecular characterization of nitric oxide synthase (NOS) gene in the intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Jeong, Chang-Bum; Kang, Hye-Min; Seo, Jung Soo; Park, Heum Gi; Rhee, Jae-Sung; Lee, Jae-Seong

    2016-02-10

    In copepods, no information has been reported on the structure or molecular characterization of the nitric oxide synthase (NOS) gene. In the intertidal copepod Tigriopus japonicus, we identified a NOS gene that is involved in immune responses of vertebrates and invertebrates. In silico analyses revealed that nitric oxide (NO) synthase domains, such as the oxygenase and reductase domains, are highly conserved in the T. japonicus NOS gene. The T. japonicus NOS gene was highly transcribed in the nauplii stages, implying that it plays a role in protecting the host during the early developmental stages. To examine the involvement of the T. japonicus NOS gene in the innate immune response, the copepods were exposed to lipopolysaccharide (LPS) and two Vibrio sp. After exposure to different concentrations of LPS and Vibrio sp., T. japonicus NOS transcription was significantly increased over time in a dose-dependent manner, and the NO/nitrite concentration increased as well. Taken together, our findings suggest that T. japonicus NOS transcription is induced in response to an immune challenge as part of the conserved innate immunity.

  20. Pharmacology and clinical pharmacology of methylarginines used as inhibitors of nitric oxide synthases.

    Science.gov (United States)

    Kittel, Anja; Maas, Renke

    2014-01-01

    The methylarginines asymmetric dimethylarginine (ADMA) and monomethylarginine (L-NMMA) are endogenously formed inhibitors of nitric oxide synthases (NOS), which have extensively been investigated as risk markers and used as pharmacological tools to study the L-arginine-nitric oxide (NO) pathway in vitro and in vivo. It is the aim of the present review to summarize the clinical and experimental data on the pharmacological properties that are of relevance when planning and conducting experiments and clinical studies involving methylarginines. Key pharmacodynamic and pharmacokinetic data including IC50 values of ADMA and L-NMMA for NOS isoforms and transport proteins, as well as metabolism by dimethylarginine dimethylaminohydrolases (DDAH1 and DDAH2) and alanine-glyoxylate aminotransferase 2 (AGXT2) are discussed.

  1. Nitric oxide in prepubertal rat ovary contribution of the ganglionic nitric oxide synthase system via superior ovarian nerve.

    Science.gov (United States)

    Casais, Marilina; Delgado, Silvia Marcela; Vallcaneras, Sandra; Sosa, Zulema; Rastrilla, Ana María

    2007-02-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. Considering the existence of the nitric oxide/ nitric oxide synthase system in the peripheral neural system and in the ovary, the aim of this work was to analyze if the liberation of NO in the ovarian compartment of prepubertal rats is of ovarian and/or ganglionic origin. The analysis is carried out from a physiological point of view using the experimental coeliac ganglion--Superior Ovarian Nerve--ovary model with and without ganglionic cholinergic stimulus Acetylcholine (Ach) 10(-6) M. Non selective and selective inhibitors of the synthase nitric oxide enzyme were added to the ovarian and ganglionic compartment, and the liberation of nitrites (soluble metabolite of the nitric oxide) in the ovarian incubation liquid was measured. We found that the non-selective inhibitor L-nitro-arginina methyl ester (L-NAME) in the ovarian compartment decreased the liberation of nitrites, and that Aminoguanidine (AG) in two concentrations in a non-dose dependent form provoked the same effect. The addition of Ach in ganglion magnified the effect of the inhibitors of the NOS enzyme. The most relevant results after the addition of inhibitors in ganglion were obtained with AG 400 and 800 microM. The inhibition was made evident with and without the joint action of Ach in ganglion. These data suggest that the greatest production of NO in the ovarian compartment comes from the ovary, mainly the iNOS isoform, though the coeliac ganglion also contributes through the superior ovarian nerve but with less quantity.

  2. Synthesis, pharmacological study and modeling of 7-methoxyindazole and related substituted indazoles as neuronal nitric oxide synthase inhibitors.

    Science.gov (United States)

    Collot, Valérie; Sopkova-de Oliveira Santos, Jana; Schumann-Bard, Pascale; Colloc'h, Nathalie; Mackenzie, Eric T; Rault, Sylvain

    2003-04-01

    The synthesis, pharmacological evaluation and modelisation of 7-methoxyindazole (7-MI) and related alkoxyindazoles as novel inhibitors of neuronal nitric oxide synthase are presented. 7-MI remains the most active compound of this series in an in vitro enzymatic assay of neuronal nitric oxide synthase activity. Modeling studies of the interaction of 7-substituted indazole derivatives complexed with nNOS and the relationship with their respective biological activities suggest that a bulky substitution on position-7 is responsible for a steric hindrance effect which does not allow these compounds to interact with nNOS in the same way as 7-NI and 7-MI.

  3. T-786c Polymorphism in nitric oxide synthase 3 gene and Nitrit Oxide Level of Diabetic Retinopathy in Javanese Population

    Directory of Open Access Journals (Sweden)

    Putri Widelia Welkriana

    2015-11-01

    Full Text Available AbstractComplication of retinopathy in type 2 DM is caused of lower level of NO. Nitric oxide level is synthesizedfrom L-arginin in reaction that catalyze Nitric oxide synthase (NOS 3. The T-786C mutation in NOS 3 genedecreases the expression of nitric oxide synthase (NOS 3 so decreases NO synthesis. To investigate theassociation between T-786C polymorphism in NOS 3 gene with NO level of diabetic retinopathy patients. Thisstudy was a case control study, consist of 40 patient of type 2 diabetic with DR (case group and 40 patient oftype 2 diabetic without DR (control group of Javanese ethnic. The genotyping of T-786C polymorphism wasperformed by PCR-RLFP. Level of NO was measured by spectrophotometry. Chi square test and odd ratiowere used to analyze the association of the T-786C polymorphism in NOS 3 gene with DR. Differences ofNO level between TT and TC genotypes were analyzed using independent t test. The distribution of T-786Cpolymorphism in NOS 3 gene of DR subjects showed that frequency of TT genotype was 22.5% and TC genotypewas 77.5%. Non DR subjects showed the frequency of TT genotype was 50% and TC genotype was 50%, (p=0.011. Frequency of T allele in DR group was 61.25% and C allele was 38.75%, and frequency of T allele in nonDR group was 75% and C allele was 25%, (p= 0.62. Odd ratio of TC genotype was 3.444(CI; 95% : 0.964-3.735and C allele was 1.898 (CI; 95% : 1.310-9.058. The NO level of TC genotype was 1.43+0.126 and TT genotypewas 11.27+5.87 (p=0.000. Level of NO between RD and non RD showed not different significantly (p=0.160for retinopathy. The T-786C polymorphism of NOS 3 gene is risk factor for retinopathy in type 2 DiabetesMellitus. Individual with TC genotype of NOS 3 gene has lower level of NO than TT genotype.Keywords : Diabetic Retinopathy, Polymorphism, Nitric Oxide, Nitric Oxide Synthase.

  4. Protective effect of inducible nitric oxide synthase inhibitor on pancreas transplantation in rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the effect of inducible nitric oxide synthase inhibitor, aminoguanidine, on pancreas transplantation in rats.METHODS: A model of pancreas transplantation was established in rats. Streptozotocin-induced diabetic male Wistar rats were randomly assigned to sham-operation control group (n = 6), transplant control group (n=6), and aminoguanidine (AG) treatment group (n=18). In the AG group, aminoguanidine was added to intravascular infusion as the onset of reperfusion at the dose of 60 mg/kg, 80 mg/kg, 100 mg/kg body weight,respectively. Serum nitric oxide (NO) level, blood sugar and amylase activity were detected. Nitric oxide synthase (NOS) test kit was used to detect the pancreas cNOS and inducible NOS (iNOS) activity. Pancreas sections stained with HE and immunohistochemistry were evaluated under a light microscope.RESULTS: As compared with the transplant control group, the serum NO level and amylase activity decreased obviously and the evidence for pancreas injury was much less in the AG group. The AG (80 mg/kg body weight) group showed the most significant difference in NO and amylase (NO: 66.0 ± 16.6 vs 192.3 ± 60.0, P <0.01 and amylase: 1426 ± 177 vs 4477 ± 630, P<0.01).The expression and activity of tissue iNOS, and blood sugar in the AG (80 mg/kg body weight) group were much lower than those in the transplant control group (iNOS: 2.01 ± 0.23 vs 26.59 ± 5.78, P < 0.01 and blood sugar: 14.2 ± 0.9 vs 16.8 ± 1.1, P < 0.01).CONCLUSION: Selective iNOS inhibitor, aminoguanidine as a free radical, has a protective effect on pancreas transplantation in rats by inhibiting NO and reducing its toxicity.

  5. Changes of nitric oxide synthase and cyclic guanosine monophosphate in form deprivation myopia in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    WU Jie; LIU Qiong; YANG Xiao; YANG Hui; WANG Xin-mei; ZENG Jun-wen

    2007-01-01

    Background The form deprivation(FD)reduces spatial contrasts and induces myopia. Nitric oxide and cyclic guanosine monophosphate(cGMP)are involved in visual signal transmission.This study investigated changes in nitric oxide synthase(NOS)activity and cGMP concentration in ocular tissues in acute and chronic form deprivation myopia.Methods Guinea pigs had one eye covered by translucent glass for 7,14 or 21 days.Untreated litter mates were used as controls.NOS activity and cGMP concentrations in the retinal,choroidal and scleral tissues of FD eyes and controleyes were analyzed by radioimmunoassay after various durations of FD.The expression of NOS subtypes was identified by immunohistochemistry.Results Myopia was successfully induced in FD eyes after 14 days.Compared with control groups,the retinal NOS activity and cGMP concentrations in the FD eyes significantly increased after 14 and 21 days while the retinal NOS activity in the FD eyes was transiently suppressed by 7 days of FD.The NOS activity and cGMP concentrations of choroid and sclera in the FD eyes were higher than in the control groups at 21 days.The three isoenzymes of nitric oxide synthase were detected in the ocular tissues of guinea pigs.Conclusions The NOS activity and cGMP concentrations were upregulated after chronic FD and the retinal NOS activity was transiently suppressed at acute FD.The function of elevated NOS activity may be mediated by cGMP.

  6. Role of dietary fish oil on nitric oxide synthase activity and oxidative status in mice red blood cells.

    Science.gov (United States)

    Martins, Marcela A; Moss, Monique B; Mendes, Iara K S; Águila, Márcia B; Mandarim-de-Lacerda, Carlos Alberto; Brunini, Tatiana M C; Mendes-Ribeiro, Antônio Cláudio

    2014-12-01

    The consumption of n-3 polyunsaturated fatty acids (PUFAs) derived from fish oil concomitant with a reduced intake of saturated fats is associated with cardiovascular benefits, which may result from the participation of nitric oxide (NO). In contrast, PUFAs are vulnerable to peroxidation, which could affect the oxidative stability of the cell and reduce NO bioavailability. Therefore, we investigated the effects of high fat diets with increasing amounts of fish oil (0-40% of energy) in place of lard on the l-arginine-NO pathway, the arginase pathway and oxidative status in mice red blood cells (RBC). We found that l-arginine transport, as well as NO synthase (NOS) expression and activity, was enhanced by the highest doses of fish oil (30 and 40%). In contrast, diets rich in lard led to NOS expression and activity impairment. Arginase expression was not significantly affected by any of the dietary regimens. No significant difference in protein and lipid oxidative markers was observed among any of the fish-oil fed mice; only lard feeding induced protein damage in addition to a decreased superoxide dismutase activity. These data suggest that a substantial dose of fish oil, but not low doses, activates the RBC l-arginine-NO pathway without resulting in oxidative damage.

  7. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Elise R Hondorp

    2004-11-01

    Full Text Available In nature, Escherichia coli are exposed to harsh and non-ideal growth environments-nutrients may be limiting, and cells are often challenged by oxidative stress. For E. coli cells confronting these realities, there appears to be a link between oxidative stress, methionine availability, and the enzyme that catalyzes the final step of methionine biosynthesis, cobalamin-independent methionine synthase (MetE. We found that E. coli cells subjected to transient oxidative stress during growth in minimal medium develop a methionine auxotrophy, which can be traced to an effect on MetE. Further experiments demonstrated that the purified enzyme is inactivated by oxidized glutathione (GSSG at a rate that correlates with protein oxidation. The unique site of oxidation was identified by selectively cleaving N-terminally to each reduced cysteine and analyzing the results by liquid chromatography mass spectrometry. Stoichiometric glutathionylation of MetE by GSSG occurs at cysteine 645, which is strategically located at the entrance to the active site. Direct evidence of MetE oxidation in vivo was obtained from thiol-trapping experiments in two different E. coli strains that contain highly oxidizing cytoplasmic environments. Moreover, MetE is completely oxidized in wild-type E. coli treated with the thiol-oxidizing agent diamide; reduced enzyme reappears just prior to the cells resuming normal growth. We argue that for E. coli experiencing oxidizing conditions in minimal medium, MetE is readily inactivated, resulting in cellular methionine limitation. Glutathionylation of the protein provides a strategy to modulate in vivo activity of the enzyme while protecting the active site from further damage, in an easily reversible manner. While glutathionylation of proteins is a fairly common mode of redox regulation in eukaryotes, very few proteins in E. coli are known to be modified in this manner. Our results are complementary to the independent findings of Leichert

  8. Tyrosol attenuates ischemia-reperfusion-induced kidney injury via inhibition of inducible nitric oxide synthase.

    Science.gov (United States)

    Wang, Pengqi; Zhu, Qingjun; Wu, Nan; Siow, Yaw L; Aukema, Harold; O, Karmin

    2013-04-17

    Tyrosol is a natural phenolic antioxidant compound. Oxidative stress represents one of the important mechanisms underlying ischemia-reperfusion-induced kidney injury. The aim of this study was to investigate the effect of tyrosol against ischemia-reperfusion-induced acute kidney injury. The left kidney of Sprague-Dawley rats was subjected to 45 min of ischemia followed by reperfusion for 6 h. Ischemia-reperfusion caused an increase in peroxynitrite formation and lipid peroxidation. The level of nitric oxide (NO) metabolites and the mRNA of inducible nitric oxide synthase (iNOS) were elevated in ischemia-reperfused kidneys. Administration of tyrosol (100 mg/kg body weight) to rats prior to the induction of ischemia significantly reduced peroxynitrite formation, lipid peroxidation, and the level of NO metabolites. Tyrosol administration also attenuated ischemia-reperfusion-induced NF-κB activation and iNOS expression. Such a treatment improved kidney function. Results suggest that tyrosol may have a protective effect against acute kidney injury through inhibition of iNOS-mediated oxidative stress.

  9. A novel aphrodisiac compound from an orchid that activates nitric oxide synthases.

    Science.gov (United States)

    Subramoniam, A; Gangaprasad, A; Sureshkumar, P K; Radhika, J; Arun, K B; Arun, B K

    2013-01-01

    Nitric oxide (NO) is known to have roles in several crucial biological functions including vasodilation and penile erection. There are neuronal, endothelial and inducible NO synthases that influence the levels of NO in tissues and blood. NO activates guanylate cyclase and thereby increases the levels of cyclic GMP (cGMP). Viagra (sildenafil), a top selling drug in the world for erectile dysfunction, inhibits phosphodiesterase-5, which hydrolyses cGMP to GMP. Thus, it fosters an NO-mediated increase in the levels of cGMP, which mediates erectile function. Here, we show the aphrodisiac activity of a novel chemical isolate from the flowers of an epiphytic orchid, Vanda tessellata (Roxb.) ex Don, which activates neuronal and endothelial, but not inducible, NO synthases. The aphrodisiac activity is caused by an increase in the level of NO in corpus cavernosum. The drug increases blood levels of NO as early as 30 min after oral administration. The active compound was isolated by column chromatography. Based on the spectral data, the active compound is found to be a new compound, 2,7,7-tri methyl bicyclo [2.2.1] heptane. We anticipate that our findings could lead to the development of a commercially viable and valuable drug for erectile dysfunction.

  10. Expression of the inducible nitric oxide synthase gene in diaphragm and skeletal muscle.

    Science.gov (United States)

    Thompson, M; Becker, L; Bryant, D; Williams, G; Levin, D; Margraf, L; Giroir, B P

    1996-12-01

    Nitric oxide (NO) is a pluripotent molecule that can be secreted by skeletal muscle through the activity of the neuronal constitutive isoform of NO synthase. To determine whether skeletal muscle and diaphragm might also express the macrophage-inducible form of NO synthase (iNOS) during provocative states, we examined tissue from mice at serial times after intravenous administration of Escherichia coli endotoxin. In these studies, iNOS mRNA was strongly expressed in the diaphragm and skeletal muscle of mice 4 h after intravenous endotoxin and was significantly diminished by 8 h after challenge. Induction of iNOS mRNA was followed by expression of iNOS immunoreactive protein on Western immunoblots. Increased iNOS activity was demonstrated by conversion of arginine to citrulline. Immunochemical analysis of diaphragmatic explants exposed to endotoxin in vitro revealed specific iNOS staining in myocytes, in addition to macrophages and endothelium. These results may be important in understanding the pathogenesis of respiratory pump failure during septic shock, as well as skeletal muscle injury during inflammation or metabolic stress.

  11. Plasma levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, are elevated in sickle cell disease

    NARCIS (Netherlands)

    Schnog, JB; Teerlink, T; van der Dijs, FPL; Duits, AJ; Muskiet, FAJ

    2005-01-01

    In recent years an important role has been ascribed to a reduced nitric oxide (NO) availability in the pathophysiology of sickle cell disease (SCD). Endogenously produced inhibitors of NO synthase, in particular asymmetric dimethylarginine (ADMA), are currently considered of importance in various va

  12. The Regulation of Nitric Oxide Synthase Isoform Expression in Mouse and Human Fallopian Tubes: Potential Insights for Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Junting Hu

    2014-12-01

    Full Text Available Nitric oxide (NO is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS, which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS, inducible nitric oxide synthase (iNOS, and endothelial nitric oxide synthase (eNOS. NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS. Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.

  13. Macrophages in lung tissue from patients with pulmonary emphysema express both inducible and endothelial nitric oxide synthase

    NARCIS (Netherlands)

    van Straaten, JFM; Postma, DS; Coers, W; Noordhoek, JA; Kauffman, HF; Timens, W

    1998-01-01

    To provide information concerning a possible biologic role of nitric oxide (NO) in smoking-related emphysema, we performed immunohistochemical studies in lung tissue from control subjects and patients with mild and severe emphysema We studied the presence of inducible and endothelial NO synthases (i

  14. Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Saikumar, Jagannath H; Massey, Katherine J; Hong, Nancy J; Dominici, Fernando P; Carretero, Oscar A; Garvin, Jeffrey L

    2016-02-01

    Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate.

  15. Nitric Oxide Synthase Regulates Growth Coordination During Drosophila melanogaster Imaginal Disc Regeneration.

    Science.gov (United States)

    Jaszczak, Jacob S; Wolpe, Jacob B; Dao, Anh Q; Halme, Adrian

    2015-08-01

    Mechanisms that coordinate growth during development are essential for producing animals with proper organ proportion. Here we describe a pathway through which tissues communicate to coordinate growth. During Drosophila melanogaster larval development, damage to imaginal discs activates a regeneration checkpoint through expression of Dilp8. This both produces a delay in developmental timing and slows the growth of undamaged tissues, coordinating regeneration of the damaged tissue with developmental progression and overall growth. Here we demonstrate that Dilp8-dependent growth coordination between regenerating and undamaged tissues, but not developmental delay, requires the activity of nitric oxide synthase (NOS) in the prothoracic gland. NOS limits the growth of undamaged tissues by reducing ecdysone biosynthesis, a requirement for imaginal disc growth during both the regenerative checkpoint and normal development. Therefore, NOS activity in the prothoracic gland coordinates tissue growth through regulation of endocrine signals.

  16. Elevated neuronal nitric oxide synthase expression during ageing and mitochondrial energy production.

    Science.gov (United States)

    Lam, Philip Y; Yin, Fei; Hamilton, Ryan T; Boveris, Alberto; Cadenas, Enrique

    2009-05-01

    This study evaluated the effect of ageing on brain mitochondrial function mediated through protein post-translational modifications. Neuronal nitric oxide synthase increased with age and this led to a discreet pattern of nitration of mitochondrial proteins. LC/MS/MS analyses identified the nitrated mitochondrial proteins as succinyl-CoA-transferase and F1-ATPase; the latter was nitrated at Tyr269, suggesting deficient ADP binding to the active site. Activities of succinyl-CoA-transferase, F1-ATPase and cytochrome oxidase decreased with age. The decreased activity of the latter cannot be ascribed to protein modifications and is most likely due to a decreased expression and assembly of complex IV. Mitochondrial protein post-translational modifications were associated with a moderately impaired mitochondrial function, as indicated by the decreased respiratory control ratios as a function of age and by the release of mitochondrial cytochrome c to the cytosol, thus supporting the amplification of apoptotic cascades.

  17. Cortisol regulates nitric oxide synthase in freshwater and seawater acclimated rainbow trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Gerber, Lucie; Madsen, Steffen S; Jensen, Frank B

    2017-01-01

    Cortisol and nitric oxide (NO) are regulators of ion transport and metabolic functions in fish. In the gill, they show opposite effects on Na(+)/K(+)-ATPase (NKA) activity: cortisol stimulates NKA activity while NO inhibits NKA activity. We hypothesized that cortisol may impact NO production...... in osmoregulatory tissues by regulating NO synthase (NOS) expression. We evaluated the influence of cortisol treatment on mRNA expression of Nos1 and Nos2 in gill, kidney and middle intestine of both freshwater (FW) and seawater (SW) acclimated rainbow trout and found both tissue- and salinity-dependent effects....... Nos2 expression was down-regulated in the gill by cortisol injection in both FW and SW trout. This was substantiated by incubating gill tissue with cortisol ex vivo. Similarly, cortisol injection significantly down-regulated Nos2 expression in kidney of SW fish but not in FW fish. In the middle...

  18. Suppressive Role of PPARγ-Regulated Endothelial Nitric Oxide Synthase in Adipocyte Lipolysis.

    Directory of Open Access Journals (Sweden)

    Yoko Yamada

    Full Text Available Metabolic syndrome causes insulin resistance and is associated with risk factor clustering, thereby increasing the risk of atherosclerosis. Recently, endothelial nitric oxide synthase deficient (eNOS-/- mice have been reported to show metabolic disorders. Interestingly, eNOS has also been reported to be expressed in non-endothelial cells including adipocytes, but the functions of eNOS in adipocytes remain unclear.The eNOS expression was induced with adipocyte differentiation and inhibition of eNOS/NO enhanced lipolysis in vitro and in vivo. Furthermore, the administration of a high fat diet (HFD was able to induce non-alcoholic steatohepatitis (NASH in eNOS-/- mice but not in wild type mice. A PPARγ antagonist increased eNOS expression in adipocytes and suppressed HFD-induced fatty liver changes.eNOS-/- mice induce NASH development, and these findings provide new insights into the therapeutic approach for fatty liver disease and related disorders.

  19. Localization of nitric oxide synthase in the developing gonads of amphioxus Branchiostoma belcheri tsingtauense

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The localization of nitric oxide synthases (NOS) is dealed with in the developing gonads of amphioxus Branchiostoma belcheri tsingtauense. It was found by NADPH-diaphorase staining that (1) NOS activity was present in the nuclear membranes of germinal vesicles during the entire period of oocyte development; (2) NOS was localized in both the nuclear membranes and the perinuclear region of cytoplasm in the vitellogenetic oocytes; (3) NOS was relocated in the cortical layer in the mature egg; (4) NOS activity was present in spermatocytes, but not in the spermatogonia in the middle of October; (5) NOS was detected in both spermatozoa and spermatids as well as spermatocytes during the breeding season. This is the first report on the distribution pattern of NOS in the developing gonads in protochordates. These results suggest a role for NOS in the functioning of the nuclear membranes and yolk synthesis during oogenesis and in cell division and differentiation during spermatogenesis.

  20. Lack of association between endothelial nitric oxide synthase (NOS3 gene polymorphisms and suicide attempts

    Directory of Open Access Journals (Sweden)

    Bousoño Manuel

    2007-07-01

    Full Text Available Abstract Objective The aim of this study is to investigate the association between two polymorphisms of endothelial nitric oxide synthase (NOS3 and suicide attempts. Methods We genotyped 186 suicide attempters and 420 unrelated healthy controls. The following polymorphisms were analysed: T-786C and 27-bp repeat in intron 4. Results No significant differences were found in genotype or in allelic distribution of the aforesaid polymorphisms. There were also no differences in the genotype distribution or allelic frequencies when separately assessing males and females or impulsive and non-impulsive attempters and normal controls. Estimated haplotype frequencies were similar in both groups. Conclusion Our data do not support the hypothesis that genetically determined changes in the NOS3 gene confer increased susceptibility for suicidal behavior.

  1. RNA diversity has profound effects on the translation of neuronal nitric oxide synthase.

    Science.gov (United States)

    Wang, Y; Newton, D C; Robb, G B; Kau, C L; Miller, T L; Cheung, A H; Hall, A V; VanDamme, S; Wilcox, J N; Marsden, P A

    1999-10-12

    A comprehensive analysis of the structure of neuronal nitric oxide synthase (nNOS; EC 1.14.13.39) mRNA species revealed NOS1 to be the most structurally diverse human gene described to date in terms of promoter usage. Nine unique exon 1 variants are variously used for transcript initiation in diverse tissues, and each is expressed from a unique 5'-flanking region. The dependence on unique genomic regions to control transcription initiation in a cell-specific fashion burdens the transcripts with complex 5'-mRNA leader sequences. Elaborate splicing patterns that involve alternatively spliced leader exons and exon skipping have been superimposed on this diversity. Highly structured nNOS mRNA 5'-untranslated regions, which have profound effects on translation both in vitro and in cells, contain cis RNA elements that modulate translational efficiency in response to changes in cellular phenotype.

  2. Effects of niacin on nitric oxide synthase expression in rat lungs exposed to silica

    Institute of Scientific and Technical Information of China (English)

    WANG Shixin; DU Haike; ZHANG Xizhen; CAI Shaoxi; FAN Huaquan; WANG Chang'en

    2004-01-01

    The aim of this study was to evaluate the effects of niacin in diet on the expression of nitric oxide synthase (NOS) in rat lungs of the animal model of silicosis established by direct tracheal instillation of silica particles into rat lungs surgically. The niacin concentration in serum was analyzed by high performance liquid chromatography (HPLC). The expression of inducible nitric oxide synthase (iNOS) protein in paraffin-embedded lung sections was determined by streptavidin/peroxidase (SP) staining. Quantitative analysis by Image-Pro Plus was also performed on the expression of iNOS. The results showed that niacin concentration in serum of the niacin-treated rats was significantly higher than that in the control and silica-treated rats. After 7 days of silica instillation, iNOS integrated optical density (IOD) in rat lungs and total NOS and iNOS activities in bronchoalveolar lavage fluid (BALF) in silica-treated rats rose by 273420.75, 2.61 units/mL and 1.89 units/mL respectively, when compared with those in the control rats. Niacin treatment significantly reduced silica-induced iNOS IOD in rat lung tissues and total NOS and iNOS activities in BALF supernatant by 248292.35, 1.50 units/mL and 0.91 units/mL, respectively, as compared with those in silica-treated rats. Therefore, niacin can effectively attenuate the pathological expression of NOS in rat lung tissues induced by silica particles.

  3. Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Polak, Natasa; Read, Daniel S; Jurkschat, Kerstin; Matzke, Marianne; Kelly, Frank J; Spurgeon, David J; Stürzenbaum, Stephen R

    2014-03-01

    Zinc oxide nanoparticles (ZnONPs) are used in large quantities by the cosmetic, food and textile industries. Here we exposed Caenorhabditis elegans wild-type and a metal sensitive triple knockout mutant (mtl-1;mtl-2;pcs-1) to ZnONPs (0-50mg/L) to study strain and exposure specific effects on transcription, reactive oxygen species generation, the biomolecular phenotype (measured by Raman microspectroscopy) and key endpoints of the nematode life cycle (growth, reproduction and lifespan). A significant dissolution effect was observed, where dissolved ZnO constituted over 50% of total Zn within a two day exposure to the test medium, suggesting that the nominal exposure to pure ZnONPs represents in vivo, at best, a mixture exposure of ionic zinc and nanoparticles. Nevertheless, the analyses provided evidence that the metallothioneins (mtl-1 and mtl-2), the phytochelatin synthase (pcs-1) and an apoptotic marker (cep-1) were transcriptionally activated. In addition, the DCFH-DA assay provided in vitro evidence of the oxidative potential of ZnONPs in the metal exposure sensitive triple mutant. Raman spectroscopy highlighted that the biomolecular phenotype changes significantly in the mtl-1;mtl-2;pcs-1 triple knockout worm upon ZnONP exposure, suggesting that these metalloproteins are instrumental in the protection against cytotoxic damage. Finally, ZnONP exposure was shown to decrease growth and development, reproductive capacity and lifespan, effects which were amplified in the triple knockout. By combining diverse toxicological strategies, we identified that individuals (genotypes) housing mutations in key metalloproteins and phytochelatin synthase are more susceptible to ZnONP exposure, which underlines their importance to minimize ZnONP induced toxicity.

  4. Effect of nitric oxide synthase inhibitor on proteoglycan metabolism in repaired articular cartilage in rabbits

    Institute of Scientific and Technical Information of China (English)

    孙炜; 金大地; 王吉兴; 秦立赟; 刘晓霞

    2003-01-01

    Objective: To study the effect of nitric oxide synthase inhibitor, S-methyl thiocarbamate (SMT), on proteoglycan metabolism in repaired articular cartilage in rabbits. Methods: Twenty-four male New Zealand white rabbits, aged 8 months and weighing 2.5 kg±0.2 kg, were used in this study. Cartilage defects in full thickness were created on the intercondylar articular surface of bilateral femurs of all the rabbits. Then the rabbits were randomly divided into 3 groups (n=8 in each group). The defects in one group were filled with fibrin glue impregnated with recombinant human bone morphogenetic protein-2 (rhBMP-2, BMP group), in one group with fibrin glue impregnated with rhBMP-2 and hypodermic injection with SMT (SMT group) and in the other group with nothing (control group). All the animals were killed at one year postoperatively. The tissue sections were stained with safranine O-fast green and analyzed by Quantiment 500 system to determine the content of glycosaminoglycan through measuring the percentage of safranine O-stained area, the thickness of cartilages and the mean gray scale (average stain intensity). Radiolabelled sodium sulphate (Na235SO4) was used to assess the proteoglycan synthesis. Results: At one year postoperatively, the percentage of safranine O-stained area, the mean gray scale and the cartilage thickness of the repaired tissues in SMT group were significantly higher than those of BMP group (P<0.01) and the control group (P<0.05). Result of incorporation of Na235SO4 showed that the proteoglycan synthesis in SMT group was higher than those of BMP group and the control group (P<0.01). Conclusions: SMT, a nitric oxide synthase inhibitor, can significantly increase the content of glycosaminoglycan and proteoglycan synthesis, and computer-based image analysis is a reliable method for evaluating proteoglycan metabolism.

  5. Molecular cloning and expression pattern of oriental river prawn (Macrobrachium nipponense) nitric oxide synthase.

    Science.gov (United States)

    Rahman, N M A; Fu, H T; Sun, S M; Qiao, H; Jin, S; Bai, H K; Zhang, W Y; Liang, G X; Gong, Y S; Xiong, Y W; Wu, Y

    2016-08-29

    Nitric oxide synthase (NOS) produces nitric oxide (NO) by catalyzing the conversion of l-arginine to l-citrulline, with the concomitant oxidation of nicotinamide adenine dinucleotide phosphate. Recently, various studies have verified the importance of NOS invertebrates and invertebrates. However, the NOS gene family in the oriental river prawn Macrobrachium nipponense is poorly understood. In this study, we cloned the full-length NOS complementary DNA from M. nipponense (MnNOS) and characterized its expression pattern in different tissues and at different developmental stages. Real-time quantitative polymerase chain reaction (RT-qPCR) showed the MnNOS gene to be expressed in all investigated tissues, with the highest levels observed in the androgenic gland (P < 0.05). Our results revealed that the MnNOS gene may play a key role in M. nipponense male sexual differentiation. Moreover, RT-qPCR revealed that MnNOS mRNA expression was significantly increased in post-larvae 10 days after metamorphosis (P < 0.05). The expression of this gene in various tissues indicates that it may perform versatile biological functions in M. nipponense.

  6. The Oncogenic Properties Of The Redox Inflammatory Protein Inducible Nitric Oxide Synthase In ER(- Breast Cancer

    Directory of Open Access Journals (Sweden)

    David A. Wink

    2015-08-01

    Full Text Available Inflammation generates reactive chemical species that induce conditions of oxidative nitrosative stress as emerged as factor in poor outcome of many cancers. Our recent findings show that in the inflammatory protein inducible nitric oxide synthase (iNOS is a strong predictor of poor outcome in ER(- patients (Glynn et al. JCI 2010. Furthermore 46 genes, of which 23 were associated with basal like breast cancer, were elevated when iNOS high. In vitro studies using ER(- cell lines showed that fluxes of nitric oxide (NO delivered by NO donors surprising mimic this relationship in the patient cohort. Using this model, we show that NO at different specific concentrations stimulate pro-oncogenic mechanisms such as AKT, ERK, NFkB, AP-1, and HIF-1α that lead to increase of metastatic and cancer stem cells proteins. In addition, we show that tumor suppressor gene BRCA1 and PP2A are inhibited by these NO levels. Similarly other studies show that these concentrations of NO increase immunosuppressive proteins TGF-β and IL-10 in leukocytes to decrease efficacy of some anticancer therapies further contributing to pro-tumorigenic environment. Using this model we have identified several new compounds that have efficacy in xenographic models. These finding have provided a model that shows how NO can affect numerous mechanism that leads to a more aggressive phenotype.

  7. Protein engineering to develop a redox insensitive endothelial nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Ruslan Rafikov

    2014-01-01

    Full Text Available The zinc tetrathiolate (ZnS4 cluster is an important structural feature of endothelial nitric oxide synthase (eNOS. The cluster is located on the dimeric interface and four cysteine residues (C94 and C99 from two adjacent subunits form a cluster with a Zn ion in the center of a tetrahedral configuration. Due to its high sensitivity to oxidants this cluster is responsible for eNOS dimer destabilization during periods of redox stress. In this work we utilized site directed mutagenesis to replace the redox sensitive cysteine residues in the ZnS4 cluster with redox stable tetra-arginines. Our data indicate that this C94R/C99R eNOS mutant is active. In addition, this mutant protein is insensitive to dimer disruption and inhibition when challenged with hydrogen peroxide (H2O2. Further, the overexpression of the C94R/C99R mutant preserved the angiogenic response in endothelial cells challenged with H2O2. The over-expression of the C94R/C99R mutant preserved the ability of endothelial cells to migrate towards vascular endothelial growth factor (VEGF and preserved the endothelial monolayer in a scratch wound assay. We propose that this dimer stable eNOS mutant could be utilized in the treatment of diseases in which there is eNOS dysfunction due to high levels of oxidative stress.

  8. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents

    Directory of Open Access Journals (Sweden)

    Siqueira Francisco JWS

    2011-08-01

    Full Text Available Abstract Background Methotrexate treatment has been associated to intestinal epithelial damage. Studies have suggested an important role of nitric oxide in such injury. The aim of this study was to investigate the role of nitric oxide (NO, specifically iNOS on the pathogenesis of methotrexate (MTX-induced intestinal mucositis. Methods Intestinal mucositis was carried out by three subcutaneous MTX injections (2.5 mg/kg in Wistar rats and in inducible nitric oxide synthase knock-out (iNOS-/- and wild-type (iNOS+/+ mice. Rats were treated intraperitoneally with the NOS inhibitors aminoguanidine (AG; 10 mg/Kg or L-NAME (20 mg/Kg, one hour before MTX injection and daily until sacrifice, on the fifth day. The jejunum was harvested to investigate the expression of Ki67, iNOS and nitrotyrosine by immunohistochemistry and cell death by TUNEL. The neutrophil activity by myeloperoxidase (MPO assay was performed in the three small intestine segments. Results AG and L-NAME significantly reduced villus and crypt damages, inflammatory alterations, cell death, MPO activity, and nitrotyrosine immunostaining due to MTX challenge. The treatment with AG, but not L-NAME, prevented the inhibitory effect of MTX on cell proliferation. MTX induced increased expression of iNOS detected by immunohistochemistry. MTX did not cause significant inflammation in the iNOS-/- mice. Conclusion These results suggest an important role of NO, via activation of iNOS, in the pathogenesis of intestinal mucositis.

  9. Use of aminoguanidine, a selective inducible nitric oxide synthase inhibitor, to evaluate the role of nitric oxide in periapical inflammation.

    Science.gov (United States)

    Farhad, Ali R; Razavi, Seyedmohammad; Jahadi, Sanaz; Saatchi, Masoud

    2011-06-01

    The purpose of this study was to evaluate the effects of aminoguanidine (AG) as a selective inhibitor of inducible nitric oxide synthase (iNOS) on the degree of inflammatory response in periapical lesions in the canine teeth of cats. Root canals from 52 cat canine teeth were exposed to the oral cavity and sealed after 7 days. One day before pulp exposure, cats were administered either AG (experimental group) or normal saline (control group), which was continued on a daily basis until the day of sacrifice. Animals were sacrificed at 28 days after pulp exposure. Inflammatory response in the periapical zones was analyzed histologically. The degree of periapical inflammation in the AG group was significantly lower than that in the control group (P < 0.05). Selective iNOS inhibitors such as AG thus reduce the intensity of inflammatory responses in periapical lesions.

  10. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle.

    Science.gov (United States)

    Traaseth, Nathaniel; Elfering, Sarah; Solien, Joseph; Haynes, Virginia; Giulivi, Cecilia

    2004-07-23

    An apparent discrepancy arises about the role of calcium on the rates of oxygen consumption by mitochondria: mitochondrial calcium increases the rate of oxygen consumption because of the activation of calcium-activated dehydrogenases, and by activating mitochondrial nitric oxide synthase (mtNOS), decreases the rates of oxygen consumption because nitric oxide is a competitive inhibitor of cytochrome oxidase. To this end, the rates of oxygen consumption and nitric oxide production were followed in isolated rat liver mitochondria in the presence of either L-Arg (to sustain a mtNOS activity) or N(G)-monomethyl-L-Arg (NMMA, a competitive inhibitor of mtNOS) under State 3 conditions. In the presence of NMMA, the rates of State 3 oxygen consumption exhibited a K(0.5) of 0.16 microM intramitochondrial free calcium, agreeing with those required for the activation of the Krebs cycle. By plotting the difference between the rates of oxygen consumption in State 3 with L-Arg and with NMMA at various calcium concentrations, a K(0.5) of 1.2 microM intramitochondrial free calcium was obtained, similar to the K(0.5) (0.9 microM) of the dependence of the rate of nitric oxide production on calcium concentrations. The activation of dehydrogenases, followed by the activation of mtNOS, would lead to the modulation of the Krebs cycle activity by the modulation of nitric oxide on the respiratory rates. This would ensue in changes in the NADH/NAD and ATP/ADP ratios, which would influence the rate of the cycle and the oxygen diffusion.

  11. Inhibition of inducible Nitric Oxide Synthase by a mustard gas analog in murine macrophages

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2006-11-01

    Full Text Available Abstract Background 2-Chloroethyl ethyl sulphide (CEES is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD. Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing. Results We initially confirmed that in LPS stimulated RAW264.7 macrophages NO is exclusively generated by the iNOS form of nitric oxide synthase. CEES treatment inhibited the synthesis of NO (after 24 hours in viable LPS-stimulated RAW264.7 macrophages as measured by either nitrite secretion into the culture medium or the intracellular conversion of 4,5-diaminofluorescein diacetate (DAF-2DA or dichlorofluorescin diacetate (DCFH-DA. Western blots showed that CEES transiently decreased the expression of iNOS protein; however, treatment of active iNOS with CEES in vitro did not inhibit its enzymatic activity Conclusion CEES inhibits NO production in LPS stimulated macrophages by decreasing iNOS protein expression. Decreased iNOS expression is likely the result of CEES induced alteration in the nuclear factor kappa B (NF-κB signalling pathway. Since NO can act as an antioxidant, the CEES induced down-regulation of iNOS in LPS

  12. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang-feng; LIU Shuang; ZHOU Yu-jie; ZHU Guang-fa; Hussein. D Foda

    2010-01-01

    Background Exposure of adult mice to more than 95% O_2 produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS.Methods One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages >95% oxygen or room air for 24-72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24,48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues.Results OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85±0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31±0.92 in the WT group (P<0.05). iNOS mRNA (48 hours: 1.04±0.08 vs. 0.63±0.09, P<0.01; 72 hours: 0.89±0.08 vs. 0.72±0.09, P<0.05) and eNOS mRNA (48 hours: 0.62±0.08 vs. 0.43±0.09, P<0.05; 72 hours: 0.67±0.08 vs. 0.45±0.09, P<0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54±3.18 vs. 12.52±2.46, P <0.05) and eNOS (19.83±5.64 vs. 9.45±3.82, P <0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. Conclusion OPN can protect against hyperoxia-induced lung

  13. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  14. Neuronal and inducible nitric oxide synthase upregulation in the rat medial prefrontal cortex following acute restraint stress: A dataset

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2016-03-01

    Full Text Available This data article provides additional evidence on gene expression changes in the neuronal and inducible isoforms of nitric oxide synthase in the medial prefrontal cortex following acute stress. Male Wistar rats aged 6–8 weeks were exposed to control or restraint stress conditions for up to four hours in the dark cycle after which the brain was removed and the medial prefrontal cortex isolated by cryodissection. Following RNA extraction and cDNA synthesis, gene expression data were measured using quantitative real-time PCR. The mRNA levels of the neuronal and inducible nitric oxide synthase isoforms, and the inhibitory subunit of NF-κB, I kappa B alpha were determined using the ΔΔCT method relative to control animals. This data article presents complementary results related to the research article entitled ‘Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum’ [1].

  15. Protective vascular and cardiac effects of inducible nitric oxide synthase in mice with hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Sanjana Dayal

    Full Text Available Diet-induced hyperhomocysteinemia produces endothelial and cardiac dysfunction and promotes thrombosis through a mechanism proposed to involve oxidative stress. Inducible nitric oxide synthase (iNOS is upregulated in hyperhomocysteinemia and can generate superoxide. We therefore tested the hypothesis that iNOS mediates the adverse oxidative, vascular, thrombotic, and cardiac effects of hyperhomocysteinemia. Mice deficient in iNOS (Nos2-/- and their wild-type (Nos2+/+ littermates were fed a high methionine/low folate (HM/LF diet to induce mild hyperhomocysteinemia, with a 2-fold increase in plasma total homocysteine (P<0.001 vs. control diet. Hyperhomocysteinemic Nos2+/+ mice exhibited endothelial dysfunction in cerebral arterioles, with impaired dilatation to acetylcholine but not nitroprusside, and enhanced susceptibility to carotid artery thrombosis, with shortened times to occlusion following photochemical injury (P<0.05 vs. control diet. Nos2-/- mice had decreased rather than increased dilatation responses to acetylcholine (P<0.05 vs. Nos2+/+ mice. Nos2-/- mice fed control diet also exhibited shortened times to thrombotic occlusion (P<0.05 vs. Nos2+/+ mice, and iNOS deficiency failed to protect from endothelial dysfunction or accelerated thrombosis in mice with hyperhomocysteinemia. Deficiency of iNOS did not alter myocardial infarct size in mice fed the control diet but significantly increased infarct size and cardiac superoxide production in mice fed the HM/LF diet (P<0.05 vs. Nos2+/+ mice. These findings suggest that endogenous iNOS protects from, rather than exacerbates, endothelial dysfunction, thrombosis, and hyperhomocysteinemia-associated myocardial ischemia-reperfusion injury. In the setting of mild hyperhomocysteinemia, iNOS functions to blunt cardiac oxidative stress rather than functioning as a source of superoxide.

  16. Role of nitric oxide synthase and cyclooxygenase in hyperdynamic splanchnic circulation of por tal hyper tension

    Institute of Scientific and Technical Information of China (English)

    Jia Xu; Hui Cao; Hua Liu; Zhi-Yong Wu

    2008-01-01

    BACKGROUND:Nitric oxide (NO) and prostacyclin (PGI2) are both powerful vasoactive substances correlated with the hyperhemodynamics of portal hypertension (PHT), a common syndrome characterized by a pathological increase in portal venous pressure. The purpose of the present study was to evaluate the possible interaction between these two endothelial vasodilators, together with their respective roles in the hyperdynamic splanchnic circulation of PHT. METHODS:Ninety-six male Sprague-Dawley rats were randomly divided into three groups: intrahepatic portal hypertension (IHPH) induced by injection of CCl4 (n=31), prehepatic portal hypertension (PHPH) induced by partial stenosis of the portal vein (n=33), and sham-operated controls (SO) (n=32). Animals of each group received indomethacin (INDO), a cyclooxygenase (COX) inhibitor, either short-term (7 days) or long-term (15 days), with saline as control. Free portal pressure (FPP), together with the concentration of NO and PGI2 in serum were measured. The activity of constitutive nitric oxide synthase (cNOS) and inducible nitric oxide synthase (iNOS) in the abdominal aorta and small intestine were determined by spectrophotometry. RT-PCR was performed to measure the levels of cNOS and iNOS mRNA in the arteries and small intestines. RESULTS:Compared with SO rats, the concentrations of NO and PGI2 in PHT rats were elevated, which were consistent with the increased FPP (P0.05). Moreover, the changes of iNOS activity and mRNA expression were more marked than cNOS in PHT rats, and there was no difference in expression and activity of cNOS between PHT rats treated by short- and long-term INDO (P>0.05). CONCLUSIONS:iNOS plays an important role in the hemodynamic abnormalities of PHT induced by overproduction of NO. There is a possible interaction between PGI2 and NO in hyperhemodynamics of PHT, but PGI2 may not be a mediator in the formation and development of the hyperdynamic circulatory state in PHT rats.

  17. Contribution of nitric oxide synthase isoforms to cholinergic vasodilation in murine retinal arterioles.

    Science.gov (United States)

    Gericke, Adrian; Goloborodko, Evgeny; Sniatecki, Jan J; Steege, Andreas; Wojnowski, Leszek; Pfeiffer, Norbert

    2013-04-01

    Nitric oxide synthases (NOSs) are critically involved in regulation of ocular perfusion. However, the contribution of the individual NOS isoforms to vascular responses is unknown in the retina. Because some previous findings suggested an involvement of inducible nitric oxide synthase (iNOS) in the regulation of retinal vascular tone, a major goal of the present study was to examine the hypothesis that iNOS is involved in mediating cholinergic vasodilation responses of murine retinal arterioles. Another subject of this study was to test the contribution of the other two NOS isoforms, neuronal (nNOS) and endothelial NOS (eNOS), to cholinergic retinal arteriole responses. Expression of individual NOS isoforms was determined in murine retinal arterioles using real-time PCR. All three NOS isoforms were expressed in retinal arterioles. However, eNOS mRNA was found to be most, and iNOS mRNA least abundant. To examine the functional relevance of iNOS for mediating vascular responses, retinal vascular preparations from gene-targeted iNOS-deficient mice (iNOS-/-) and wild-type mice were studied in vitro. Changes in luminal vessel diameter in response to the thromboxane mimetic 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619), the endothelium-dependent vasodilator acetylcholine, and the nitric oxide donor nitroprusside were measured by video microscopy. To determine the contribution of individual NOS isoforms to cholinergic vasodilation responses, retinas from iNOS-/- and wild-type mice were incubated with Nω-nitro-l-arginine methyl ester (l-NAME), a non-isoform-selective inhibitor of NOS, 7-nitroindazole, a selective nNOS blocker and aminoguanidine, a selective iNOS inhibitor. U-46619 evoked concentration-dependent vasoconstriction that was similar in retinal arterioles from iNOS-/- and wild-type mice. In retinal arterioles preconstricted with U-46619, acetylcholine and nitroprusside produced dose-dependent dilation that did not differ between iNOS-/- and

  18. Associations between nitric oxide synthase genes and exhaled NO-related phenotypes according to asthma status.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Bouzigon

    Full Text Available BACKGROUND: The nitric oxide (NO pathway is involved in asthma, and eosinophils participate in the regulation of the NO pool in pulmonary tissues. We investigated associations between single nucleotide polymorphisms (SNPs of NO synthase genes (NOS and biological NO-related phenotypes measured in two compartments (exhaled breath condensate and plasma and blood eosinophil counts. METHODOLOGY: SNPs (N = 121 belonging to NOS1, NOS2 and NOS3 genes were genotyped in 1277 adults from the French Epidemiological study on the Genetics and Environment of Asthma (EGEA. Association analyses were conducted on four quantitative phenotypes: the exhaled fraction of NO (Fe(NO, plasma and exhaled breath condensate (EBC nitrite-nitrate levels (NO2-NO3 and blood eosinophils in asthmatics and non-asthmatics separately. Genetic heterogeneity of these phenotypes between asthmatics and non-asthmatics was also investigated. PRINCIPAL FINDINGS: In non-asthmatics, after correction for multiple comparisons, we found significant associations of Fe(NO levels with three SNPs in NOS3 and NOS2 (P ≤ 0.002, and of EBC NO2-NO3 level with NOS2 (P = 0.002. In asthmatics, a single significant association was detected between Fe(NO levels and one SNP in NOS3 (P = 0.004. Moreover, there was significant heterogeneity of NOS3 SNP effect on Fe(NO between asthmatics and non-asthmatics (P = 0.0002 to 0.005. No significant association was found between any SNP and NO2-NO3 plasma levels or blood eosinophil counts. CONCLUSIONS: Variants in NO synthase genes influence Fe(NO and EBC NO2-NO3 levels in adults. These genetic determinants differ according to asthma status. Significant associations were only detected for exhaled phenotypes, highlighting the critical relevance to have access to specific phenotypes measured in relevant biological fluid.

  19. Expression of nitric oxide synthase in the developing eye of Zebrafish Danio rerio

    Institute of Scientific and Technical Information of China (English)

    WANG Yongjun; ZHANG Shicui; M S. Sawant

    2004-01-01

    Expression of nitric oxide synthase (NOS) in the developing eye of zebrafish was studied by NADPH-diaphorase staining technique. NOS activity was first observed in the optic primordium and the lens placode at 5-somite stage, and remained basically unchanged up to the prim-5 stage. Upon hatching, NOS activity was nearly equally detected in the gangalion cell layer and the photoreceptor layer in the developing retina. However, it began declining in the inner plexiform layer and the inner nuclear layer at this stage. NOS activity disappeared in the lens although the anterior lens epithelium was strongly stained. Two days after hatching, NOS activity was still strong in the photoreceptor layer, but decreased markedly in the gangalion cell layer, the inner plexiform layer and the inner nuclear layer with the retinal patterning. These suggested that nitric oxide (NO), the product of NOS, is not only involved in the modulation of patterning and differentiation of the retinal cells but also in the regulation of proliferation, and differentiation of the lens fibrocytes.

  20. Linkage of the human inducible nitric oxide synthase gene to type 1 diabetes.

    Science.gov (United States)

    Johannesen, J; Pie, A; Pociot, F; Kristiansen, O P; Karlsen, A E; Nerup, J

    2001-06-01

    Exposure of human pancreatic islets to a mixture of cytokines induces expression of the inducible nitric oxide synthase (iNOS), impairs beta-cell function, and induces apoptosis. We performed a mutational scanning of all 27 exons of the human NOS2 gene and linkage transmission disequilibrium testing of identified NOS2 polymorphisms in a Danish nationwide type 1 diabetes mellitus (IDDM) family collection. Mutational screening was performed using PCR-amplified exons, followed by single stranded conformation polymorphism and verification of potential polymorphisms by sequencing. The transmission disequilibrium test was performed in an IDDM family material comprising 257 Danish families; 154 families were affected sibling pair families, and 103 families were simplex families. In total, 10 polymorphisms were identified in 8 exons, of which 4 were tested in the family material. A C/T single nucleotide polymorphism in exon 16 resulting in an amino acid substitution, Ser(608)Leu, showed linkage to IDDM in human leukocyte antigen DR3/4-positive affected offspring (P = 0.008; corrected P = 0.024). No other distorted transmission patterns were found for any other tested single nucleotide polymorphism or constructed haplotypes with the exception of those including data from exon 16. In conclusion, linkage of the human NOS2 gene to IDDM in a subset of patients supports a pathogenic role of nitric oxide in human IDDM.

  1. Nitric oxide synthase-dependent immune response against gram negative bacteria in a crustacean, Litopenaeus vannamei.

    Science.gov (United States)

    Rodríguez-Ramos, Tania; Carpio, Yamila; Bolívar, Jorge; Gómez, Leonardo; Estrada, Mario Pablo; Pendón, Carlos

    2016-03-01

    Nitric oxide (NO) is a short-lived radical generated by nitric oxide synthases (NOS). NO is involved in a variety of functions in invertebrates, including host defense. In previous studies, we isolated and sequenced for the first time the NOS gene from hemocytes of Panulirus argus, demonstrating the inducibility of this enzyme by lipopolysaccharide in vitro e in vivo. Hyperimmune serum was obtained from rabbits immunized with a P. argus -NOS fragment of 31 kDa produced in Escherichia coli, which specifically detected the recombinant polypeptide and the endogenous NOS from lobster hemocytes by western blotting and immunofluorescence. In the present work, we demonstrate that the hyperimmune serum obtained against P. argus NOS also recognizes Litopenaeus vannamei NOS in hemocytes by western blotting and immunofluorescence. Our data also show that while the hemolymph of L. vannamei has a strong antibacterial activity against the Gram negative bacteria Aeromonas hydrophila, the administration of the anti NOS serum reduce the natural bacterial clearance. These results strongly suggest that NOS is required for the shrimp immune defense toward Gram negative bacteria. Therefore, the monitoring of induction of NOS could be an important tool for testing immunity in shrimp farming.

  2. Compromised proteasome degradation elevates neuronal nitric oxide synthase levels and induces apoptotic cell death.

    Science.gov (United States)

    Lam, Philip Y; Cadenas, Enrique

    2008-10-15

    The significance of impairment of proteasome activity in PC12 cells was examined in connection with nitrative/nitrosative stress and apoptotic cell death. Treatment of differentiated PC12 cells with MG132, a proteasome inhibitor, elicited a dose- and time-dependent increase in neuronal nitric oxide synthase (nNOS) protein levels, decreased cell viability, and increased cytotoxicity. Viability and cytotoxicity were ameliorated by L-NAME (a broad NOS inhibitor). Nitric oxide/peroxynitrite formation was increased upon treatment of PC12 cells with MG132 and decreased upon treatment with the combination of MG132 and 7-NI (a specific inhibitor of nNOS). The decreases in cell viability appeared to be effected by an activation of JNK and its effect on mitochondrial Bcl-x(L) phosphorylation. These effects are strengthened by the activation of caspase-9 along with increased caspase-3 activity upon treatment of PC12 cells with MG132. These results suggest that impairment of proteasome activity and consequent increases in nNOS levels lead to a nitrative stress that involves the coordinated response of JNK cytosolic signaling and mitochondrion-driven apoptotic pathways.

  3. The relationships between neurons containing dopamine and nitric oxide synthase in the ventral tegmental area.

    Directory of Open Access Journals (Sweden)

    S Wójcik

    2004-07-01

    Full Text Available Ventral tegmental area (VTA is a heterogeneous group of dopaminergic cells which contains interfascicular (IF, parabrachial (PBP and rostral linear (RLi nuclei. Neurons of this area are involved in the regulation of motor and motivational aspects of behavior and reveal high neuronal plasticity. Among many various neurotransmitters and neuromodulators, nitric oxide (NO is localized in this region. In the present study, we investigated morphology and distribution of nitric oxide synthase (NOS-positive neurons in VTA and their colocalization with dopaminergic neurons. The study was performed on six adult Wistar rats. After perfusional fixation, the brains were cut, immunostained for tyrosine hydroxylase (TH and NOS and studied by confocal laser microscopy. In each of the three studied nuclei of VTA we investigated three different neuronal populations. Numerous TH-immunoreactive (TH-ir and NOS-immunoreactive (NOS-ir neurons are present in the studied region. Among them, a considerable number showed coexistence of both neurotransmitters. The populations of TH-ir and NOS-ir neurons interact with each other as manifested by the presence of NOS-ir endings on TH-ir neurons and vice versa. Taking the above into account, it may be suspected that NO is involved in the modulation of dopaminergic transmission.

  4. Inorganic polyphosphate suppresses lipopolysaccharide-induced inducible nitric oxide synthase (iNOS expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Kana Harada

    Full Text Available In response to infection, macrophages produce a series of inflammatory mediators, including nitric oxide (NO, to eliminate pathogens. The production of these molecules is tightly regulated via various mechanisms, as excessive responses are often detrimental to host tissues. Here, we report that inorganic polyphosphate [poly(P], a linear polymer of orthophosphate ubiquitously found in mammalian cells, suppresses inducible nitric oxide synthase (iNOS expression induced by lipopolysaccharide (LPS, a cell wall component of Gram-negative bacteria, in mouse peritoneal macrophages. Poly(P with longer chains is more potent than those with shorter chains in suppressing LPS-induced iNOS expression. In addition, poly(P decreased LPS-induced NO release. Moreover, poly(P suppressed iNOS mRNA expression induced by LPS stimulation, thereby indicating that poly(P reduces LPS-induced iNOS expression by down-regulation at the mRNA level. In contrast, poly(P did not affect the LPS-induced release of TNF, another inflammatory mediator. Poly(P may serve as a regulatory factor of innate immunity by modulating iNOS expression in macrophages.

  5. Role of inducible nitric oxide synthase in the pathogenesis of experimental leptospirosis.

    Science.gov (United States)

    Prêtre, Gabriela; Olivera, Noelia; Cédola, Maia; Haase, Santiago; Alberdi, Lucrecia; Brihuega, Bibiana; Gómez, Ricardo M

    2011-09-01

    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is a radical effector molecule of the innate immune system that can directly inhibit pathogen replication. In order to study subsequent iNOS kidney expression in experimental leptospirosis, Golden Syrian hamsters and C3H/HeJ mice were infected intraperitoneally with 10(2) or 10(7) virulent Leptospira interrogans serovar Copenhageni (LIC) strain Fiocruz L1-130. Results showed increased levels of iNOS mRNA and protein in kidneys of infected animals when compared to that in mock-infected animals. To get a deeper insight into the role of iNOS in experimental leptospirosis, both subject species were treated or not treated with 4-aminopyridine (4-AP, 0.3mg/kg), an iNOS inhibitor. Treatment of infected hamsters with 4-AP accelerated the mortality rate to 100% by one day and increased the mortality rate from 20 to 60% in mice at 14 days post-infection. In kidney tissues, 4-AP treatment increased the bacterial burden, as demonstrated through leptospiral DNA quantification by real-time PCR, and aggravated tubulointerstitial nephritis. In addition, iNOS inhibition reduced the specific humoral response against LIC when compared to that in untreated infected animals. According to these results, iNOS expression and the resulting NO have an important role in leptospirosis.

  6. A connecting hinge represses the activity of endothelial nitric oxide synthase.

    Science.gov (United States)

    Haque, Mohammad Mahfuzul; Panda, Koustubh; Tejero, Jesús; Aulak, Kulwant S; Fadlalla, Mohammed Adam; Mustovich, Anthony T; Stuehr, Dennis J

    2007-05-29

    In mammals, endothelial nitric oxide synthase (eNOS) has the weakest activity, being one-tenth and one-sixth as active as the inducible NOS (iNOS) and the neuronal NOS (nNOS), respectively. The basis for this weak activity is unclear. We hypothesized that a hinge element that connects the FMN module in the reductase domain but is shorter and of unique composition in eNOS may be involved. To test this hypothesis, we generated an eNOS chimera that contained the nNOS hinge and two mutants that either eliminated (P728IeNOS) or incorporated (I958PnNOS) a proline residue unique to the eNOS hinge. Incorporating the nNOS hinge into eNOS increased NO synthesis activity 4-fold, to an activity two-thirds that of nNOS. It also decreased uncoupled NADPH oxidation, increased the apparent K(m)O(2) for NO synthesis, and caused a faster heme reduction. Eliminating the hinge proline had similar, but lesser, effects. Our findings reveal that the hinge is an important regulator and show that differences in its composition restrict the activity of eNOS relative to other NOS enzymes.

  7. Endothelial nitric oxide synthase regulation is altered in pancreas from cirrhotic rats

    Institute of Scientific and Technical Information of China (English)

    Jean-Louis Frossard; Rafael Quadri; Antoine Hadengue; Philippe Morel; Catherine M Pastor

    2006-01-01

    AIM: To determine whether biliary cirrhosis could induce pancreatic dysfunction such as modifications in endothelial nitric oxide synthase(eNOS) expression and whether the regulation of eNOS could be altered by the regulatory proteins caveolin and heat shock protein 90 (Hsp90),as well as by the modifications of calmodulin binding to eNOS.METHODS: Immunoprecipitations and Western blotting analysis were performed in pancreas isolated from sham and cirrhotic rats.RESULTS: Pancreatic injury was minor in cirrhotic rats but eNOS expression importantly decreased with the length (and the severity) of the disease. Because coimmunoprecipitation of eNOS with both Hsp90 and caveolin similarly decreased in cirrhotic rats, eNOS activity was not modified by this mechanism. In contrast,cirrhosis decreased the calmodulin binding to eNOS with a concomitant decrease in eNOS activity.CONCLUSION: In biliary cirrhosis, pancreatic injury is minor but the pancreatic nitric oxide (NO) production is significantly decreased by two mechanisms: a decreased expression of the enzyme and a decreased binding of calmodulin to eNOS.

  8. Angiotensin II activates endothelial constitutive nitric oxide synthase via AT1 receptors.

    Science.gov (United States)

    Saito, S; Hirata, Y; Emori, T; Imai, T; Marumo, F

    1996-09-01

    To determine whether angiotensin (ANG) II, a vasoconstrictor hormone, activates constitutive nitric oxide synthase (cNOS) in endothelial cells (ECs), we investigated the cellular mechanism by which ANG II induces nitric oxide (NO) formation in cultured bovine ECs. ANG II rapidly (within 1 min) and dose-dependently (10(-9)-10(-6) M) increased nitrate/nitrite (NOx) production. This effect of ANG II was abolished by a NOS inhibitor, NG-monomethyl-L-arginine. An ANG II type 1 (AT1) receptor antagonist (DuP 753), but not an ANG II type 2 (AT2) receptor antagonist (PD 123177), dose-dependently inhibited ANG II-induced NOx production. A Ca(2+)-channel blocker (barnidipine) failed to affect ANG II-induced NOx production, whereas an intracellular Ca2+ chelator (BAPTA) and a calmodulin inhibitor (W-7) abolished NOx production induced by ANG II. A protein kinase C (PKC) inhibitor (H-7) and down-regulation of endogenous PKC after pretreatment with phorbol ester decreased NOx production stimulated by ANG II. ANG II transiently stimulated inositol 1,4,5-trisphosphate (IP3) formation, and increased cytosolic free Ca2+ concentrations; these effects were blocked by DuP 753. Our data demonstrate that ANG II stimulates NO release by activation of Ca2+/calmodulin-dependent cNOS via AT1 receptors in bovine ECs.

  9. Are superoxide dismutase 2 and nitric oxide synthase polymorphisms associated with idiopathic infertility?

    Science.gov (United States)

    Faure, Celine; Leveille, Pauline; Dupont, Charlotte; Julia, Chantal; Chavatte-Palmer, Pascale; Sutton, Angela; Levy, Rachel

    2014-08-01

    The aim of this study was to investigate in a case-control study the associations between idiopathic infertility and antioxidant gene polymorphisms. One hundred ten infertile subjects (58 women and 52 men) with a history of idiopathic infertility and 69 fertile subjects (35 women and 34 men) with no history of infertility were included by three hospital departments of reproductive biology in the NCT01093378 French government clinical trial. Genotyping was assessed by real-time polymerase chain reaction with TaqMan assay. We examined genetic polymorphisms affecting five antioxidant enzymes: manganese superoxide dismutase (MnSOD), myeloperoxidase (MPO), glutathione peroxidase 1 (GPx1), catalase (CAT), and endothelial nitric oxide synthase (eNOS). The presence of at least 1 Ala-MnSOD allele (rs4880) increased significantly the risk of infertility (odds ratio [OR] 2.94; 95% confidence interval [CI], 1.14, 7.60; p=0.03) in male subjects. Moreover, the presence of 2 G-eNOS allele (rs1799983) increased significantly the risk of infertility in both men and women (OR 1.91; 95% CI, 1.04, 3.54; p=0.04). Our observations lead to the hypothesis that the genetic susceptibility modulating oxidative stress may represent a risk factor for male idiopathic infertility.

  10. Expression of differential nitric oxide synthase isoforms in human gastric mucosa infected with Helicobacter pylori

    Institute of Scientific and Technical Information of China (English)

    屠振兴; 龚燕芳; 丁华; 许国铭; 李兆申; 满晓华

    2003-01-01

    Objective: To study the relationship between nitric oxide synthase (NOS) expression in human gastric mucosa and Helicobacter pylori (H.pylori) infection. Methods: Gastric mucosa samples were obtained from antrum of 33 patients received gastroendoscopy. H.pylori infection was confirmed by Giems staining and bacteria culture under microaerophilic conditions. Expression of iNOS, eNOS and nitrotyrosine were detected by immunohistochemistry. Results: (1) The positive rate of H. pylori infection was 66.7%(22/33). (2) iNOS positive staining in inflammatory cells was detected in 77.3%(17/22) of samples with H.pylori and 27.3%(3/11) without H.pylori infection (P0.05). (5) Moderate and severe infiltrations of inflammatory cells were found in 86.4%(19/22) of gastric biopsies with H. pylori and 9.1%(1/11) of samples without H. pylori infection (P<0.01). Conclusion: H.pylori infection might promote infiltration of mononuclear cells and macrophages in gastric mucosa and induce iNOS expression in these cells. The accumulated nitric oxide in local area may result in gastric mucosa damage.

  11. Distribution of nitric oxide synthase in stomach myenteric plexus of rats

    Institute of Scientific and Technical Information of China (English)

    Xi Peng; Jin-Bin Feng; Hong Yon; Yun Zhao; Shi-Liang Wang

    2001-01-01

    AIM: To study the distribution of nitric oxide synthase (NOS) in rat stomach myenteric plexus. METHODS: The distribution of NOS in gastric wall was studied in quantity and location by the NADPH-diaphorase (NDP) histochemical staining method and whole mount preparation technique. RESULTS: NOS was distributed in whole stomach wall, most of them were located in myenteric plexus, and distributed in submucosal plexus. The shape of NOS positive neurons was basically similar, most of them being round and oval in shape. But their density, size and staining intensity varied greatly in the different parts of stomach. The density was 62 -± 38 cells/mm2(antrum), 43 ± 32 cells/mm2(body), and 32 ± 28 cells/mm2 (fundus), respectively. The size and staining intensity of NOS positive neurons in the fundus were basically the same, the neurons being large and dark stained, while they were obviously different in antrum. In the body of the stomach, the NOS positive neurons were in an intermediate state from fundus to antrum. There were some beadlike structures which were strung together by NOS positive varicosities in nerve fibers, some were closely adherent to the outer walls of blood vessels. CONCLUSION: Nitric oxide might he involved in the modulation of motility, secretion and blood ciroulation of the stomach, and the significant difference of NOS positive neurons in different parts of stomach myenteric plexus may be related to the physiologic function of stomach.

  12. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms.

    Science.gov (United States)

    Oliveira-Paula, Gustavo H; Lacchini, Riccardo; Tanus-Santos, Jose E

    2016-01-10

    Nitric oxide (NO) is an important vasodilator with a well-established role in cardiovascular homeostasis. While mediator is synthesized from L-arginine by neuronal, endothelial, and inducible nitric oxide synthases (NOS1,NOS3 and NOS2 respectively), NOS3 is the most important isoform for NO formation in the cardiovascular system. NOS3 is a dimeric enzyme whose expression and activity are regulated at transcriptional, posttranscriptional,and posttranslational levels. The NOS3 gene, which encodes NOS3, exhibits a number of polymorphic sites including single nucleotide polymorphisms (SNPs), variable number of tandem repeats (VNTRs), microsatellites, and insertions/deletions. Some NOS3 polymorphisms show functional effects on NOS3 expression or activity, thereby affecting NO formation. Interestingly, many studies have evaluated the effects of functional NOS3 polymorphisms on disease susceptibility and drug responses. Moreover, some studies have investigated how NOS3 haplotypes may impact endogenous NO formation and disease susceptibility. In this article,we carried out a comprehensive review to provide a basic understanding of biochemical mechanisms involved in NOS3 regulation and how genetic variations in NOS3 may translate into relevant clinical and pharmacogenetic implications.

  13. Expression of the Inducible Nitric Oxide Synthase Isoform in Chorionic Villi in the Early Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the relationship between inducible nitric oxide synthase (iNOS) and the early spontaneous abortion. , in situ hybridization and immunohistochemistry were used to detect the expression of iNOS in trophoblasts in the early pregnancy with and without spontaneous abortion (group Ⅰ and group Ⅱ ). By light microscopy and computer color magic image analysis system (CMIAS), light density (D) and the positive cell number per statistic square (N/S) in situ hybridization were used to analyze the positive cell index, while total positive cells (N) and the positive unit (Pu) were used in immunohistochemistry. By in situ hybridization, D and N/S in trophoblasts were 0. 35±0. 028, 0. 07±0. 011 respectively in group Ⅰ and 0. 18±0. 016,0. 015±0. 003 in group Ⅱ . In terms of immunohistochemical staining, N and Pu were 0. 058±±0. 007, 11. 94±2. 01 in group Ⅰ and 0. 013±0. 009, 1. 08±0. 35 in group Ⅱ in trophoblasts. Significant differences existed between two groups. It is concluded that the higher nitric oxide produced by the higher expression of iNOS in trophoblasts might play an important role in the early spontaneous abortion.

  14. Inflammatory cytokines promote inducible nitric oxide synthase-mediated DNA damage in hamster gallbladder epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the link between chronic biliary inflammation and carcinogenesis using hamster gallbladder epithelial cells.METHODS: Gallbladder epithelial cells were isolated from hamsters and cultured with a mixture of inflammatory cytokines including interleukin-1β, interferon-γ, and tumor necrosis factor-α. Inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) generation, and DNA damage were evaluated.RESULTS: NO generation was increased significantly following cytokine stimulation, and suppressed by an iNOS inhibitor. iNOS mRNA expression was demonstrated in the gallbladder epithelial cells during exposure to inflammatory cytokines. Furthermore, NO-dependent DNA damage, estimated by the comet assay, was significantly increased by cytokines, and decreased to control levels by an iNOS inhibitor.CONCLUSION: Cytokine stimulation induced iNOS expression and NO generation in normal hamster gallbladder epithelial cells, which was sufficient to cause DNA damage. These results indicate that NO-mediated genotoxicity induced by inflammatory cytokines through activation of iNOS may be involved in the process of biliary carcinogenesis in response to chronic inflammation of the biliary tree.

  15. Expression of inducible nitric oxide synthase and effects of L-arginine on colonic nitric oxide production and fluid transport in patients with "minimal colitis"

    DEFF Research Database (Denmark)

    Perner, Anders; Andresen, Lars; Normark, Michel;

    2005-01-01

    Some patients with idiopathic, chronic diarrhoea have minimal, non-specific colonic inflammation. As nitric oxide (NO) acts as a secretagogue in the colon, we studied the expression of inducible NO synthase (iNOS) in mucosal biopsies and the effects of NOS stimulation on colonic transfer of fluid...

  16. Protective effect of nitric oxide synthase inhibition or antioxidants on brain oxidative damage caused by intracerebroventricular arginine administration.

    Science.gov (United States)

    Delwing, Débora; Delwing, Daniela; Bavaresco, Caren S; Wyse, Angela T S

    2008-02-08

    We have previously demonstrated that acute arginine administration induces oxidative stress and compromises energy metabolism in rat hippocampus. In the present study, we initially investigated the effect of intracerebroventricular infusion of arginine (0.1, 0.5 and 1.5 mM solution) on Na(+),K(+)-ATPase activity and on some parameters of oxidative stress, namely thiobarbituric acid-reactive substances (TBA-RS) and total radical-trapping antioxidant parameter (TRAP) in the hippocampus of rats. Results showed that 1.5 mM arginine solution significantly increases TBA-RS and reduces Na(+),K(+)-ATPase activity and TRAP in the rat hippocampus. We also evaluated the influence of the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), and antioxidants, namely alpha-tocopherol plus ascorbic acid, on the effects elicited by arginine on Na(+),K(+)-ATPase activity, TBA-RS and TRAP. Results showed that treatment with alpha-tocopherol plus ascorbic acid per se did not alter these parameters but prevented these effects. Furthermore, intracerebroventricular infusion of L-NAME prevented the inhibition caused by arginine on Na(+),K(+)-ATPase activity, as well as the increased of TBA-RS. Our findings indicate that intracerebroventricular infusion of arginine induces oxidative stress in rat hippocampus and that the inhibition of Na(+),K(+)-ATPase activity caused by this amino acid was probably mediated by NO and/or its derivatives ONOO(-) and/or other free radicals. Finally, we suggest that the administration of antioxidants should be considered as an adjuvant therapy to specific diets in hyperargininemia.

  17. Effect of Helicobacter pylori infection on gastric mucosal pathologic change and level of nitric oxide and nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    Yong-Fu Wang; Chun-Lin Guo; Li-Zhen Zhao; Guo-An Yang; Peng Chen; Hong-Kun Wang

    2005-01-01

    AIM: To investigate the level of nitric oxide (NO) and nitrous oxide synthase (NOS) enzyme and its effect on gastric mucosal pathologic change in patients infected with Helicobacter pylori (H pylori), and to study the pathogenic mechanism of H pylori.METHODS: The mucosal tissues of gastric antrum were taken by endoscopy, then their pathology, H pylori and anti-CagA-IgG were determined. Fifty H pyloripositive cases and 35 H pylori negative cases were randomly chosen.Serum level of NO and NOS was detected.RESULTS: One hundred and seven cases (71.33%) were anti-CagA-IgG positive in 150 H pyloripositive cases. The positive rate was higher especially in those with preneoplastic diseases, such as atrophy, intestinal metaplasia and dysplasia. The level of NO and NOS in positive group was higher than that in negative group, and apparently lower in active gastritis than in pre-neoplastic diseases such as atrophy, intestinal metaplasia and dysplasia.CONCLUSION: H pyloriis closely related with chronic gastric diseases, and type Ⅰ Hpylorimay be the real factor for Hpylori-related gastric diseases. Infection with H pylori can induce elevation of NOS, which produces NO.

  18. The red-vine-leaf extract AS195 increases nitric oxide synthase-dependent nitric oxide generation and decreases oxidative stress in endothelial and red blood cells.

    Science.gov (United States)

    Grau, Marijke; Bölck, Birgit; Bizjak, Daniel Alexander; Stabenow, Christina Julia Annika; Bloch, Wilhelm

    2016-02-01

    The red-vine-leaf extract AS195 improves cutaneous oxygen supply and the microcirculation in patients suffering from chronic venous insufficiency. Regulation of blood flow was associated to nitric oxide synthase (NOS)-dependent NO (nitric oxide) production, and endothelial and red blood cells (RBC) have been shown to possess respective NOS isoforms. It was hypothesized that AS195 positively affects NOS activation in human umbilical vein endothelial cells (HUVECs) and RBC. Because patients with microvascular disorders show increased oxidative stress which limits NO bioavailability, it was further hypothesized that AS195 increases NO bioavailability by decreasing the content of reactive oxygen species (ROS) and increasing antioxidant capacity. Cultured HUVECs and RBCs from healthy volunteers were incubated with AS195 (100 μmol/L), tert-butylhydroperoxide (TBHP, 1 mmol/L) to induce oxidative stress and with both AS195 and TBHP. Endothelial and red blood cell-nitric oxide synthase (RBC-NOS) activation significantly increased after AS195 incubation. Nitrite concentration, a marker for NO production, increased in HUVEC but decreased in RBC after AS195 application possibly due to nitrite scavenging potential of flavonoids. S-nitrosylation of RBC cytoskeletal spectrins and RBC deformability were increased after AS195 incubation. TBHP-induced ROS were decreased by AS195, and antioxidative capacity was significantly increased in AS195-treated cells. TBHP also reduced RBC deformability, but reduction was attenuated by parallel incubation with AS195. Adhesion of HUVEC was also reduced after AS195 treatment. Red-vine-leaf extract AS195 increases NOS activation and decreases oxidative stress. Both mechanisms increase NO bioavailability, improve cell function, and may thus account for enhanced microcirculation in both health and disease.

  19. Analysis of the Expression and Activity of Nitric Oxide Synthase from Marine Photosynthetic Microorganisms.

    Science.gov (United States)

    Foresi, Noelia; Correa-Aragunde, Natalia; Santolini, Jerome; Lamattina, Lorenzo

    2016-01-01

    Nitric oxide (NO) functions as a signaling molecule in many biological processes in species belonging to all kingdoms of life. In animal cells, NO is synthesized primarily by NO synthase (NOS), an enzyme that catalyze the NADPH-dependent oxidation of L-arginine to NO and L-citrulline. Three NOS isoforms have been identified, the constitutive neuronal NOS (nNOS) and endothelial NOS (eNOS) and one inducible (iNOS). Plant NO synthesis is complex and is a matter of ongoing investigation and debate. Despite evidence of an Arg-dependent pathway for NO synthesis in plants, no plant NOS homologs to animal forms have been identified to date. In plants, there is also evidence for a nitrate-dependent mechanism of NO synthesis, catalyzed by cytosolic nitrate reductase. The existence of a NOS enzyme in the plant kingdom, from the tiny single-celled green alga Ostreococcus tauri was reported in 2010. O. tauri shares a common ancestor with higher plants and is considered to be part of an early diverging class within the green plant lineage.In this chapter we describe detailed protocols to study the expression and characterization of the enzymatic activity of NOS from O. tauri. The most used methods for the characterization of a canonical NOS are the analysis of spectral properties of the oxyferrous complex in the heme domain, the oxyhemoglobin (oxyHb) and citrulline assays and the NADPH oxidation for in vitro analysis of its activity or the use of fluorescent probes and Griess assay for in vivo NO determination. We further discuss the advantages and drawbacks of each method. Finally, we remark factors associated to the measurement of NOS activity in photosynthetic organisms that can generate misunderstandings in the interpretation of results.

  20. Nitrosothiol formation and S-nitrosation signaling through nitric oxide synthases.

    Science.gov (United States)

    Wynia-Smith, Sarah L; Smith, Brian C

    2017-02-28

    Nitric oxide (NO) is a gaseous signaling molecule impacting many biological pathways. NO is produced in mammals by three nitric oxide synthase (NOS) isoforms: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). nNOS and eNOS produce low concentrations of NO for paracrine signaling; NO produced and released from one cell diffuses to a neighboring cell where it binds and activates soluble guanylyl cyclase (sGC). iNOS produces high concentrations of NO using NO toxicity to amplify the innate immune response. Recent work has also defined protein cysteine S-nitrosation as a pathway of sGC-independent NO signaling. Though many studies have shown that S-nitrosation regulates the activity of NOS isoforms and other proteins in vivo, many issues need to be resolved to establish S-nitrosation as a viable signaling mechanism. Several chemical mechanisms result in S-nitrosation including transition metal-catalyzed pathways, NO oxidation followed by thiolate reaction, and thiyl radical recombination with NO. Once formed, nitrosothiols can be transferred between cellular cysteine residues via transnitrosation reactions. However, it is largely unclear how these chemical processes result in selective S-nitrosation of specific cellular cysteine residues. S-nitrosation site selectivity may be imparted via direct interactions or colocalization with NOS isoforms that focus chemical or transnitrosation mechanisms of nitrosothiol formation or transfer. Here, we discuss chemical mechanisms of nitrosothiol formation, S-nitrosation of NOS isoforms, and potential S-nitrosation signaling cascades resulting from NOS S-nitrosation.

  1. Antioxidant and nitric oxide synthase activation properties of water soluble polysaccharides from Pleurotus florida

    Directory of Open Access Journals (Sweden)

    Subarna Saha

    2013-01-01

    Full Text Available Context: Cellular damage caused by reactive oxygen species has been implicated in several diseases, and, at the same time, nitric oxide is recognized as an important messenger molecule for several pathophysiological conditions. Hence, a novel antioxidant and nitric oxide synthase (NOS activator from natural sources have significant importance in human health. Aims: The present study was conducted to evaluate the free radical-scavenging activity and NOS activation properties of water-soluble crude polysaccharide (Floridan from Pleurotus florida. Materials and Methods: Crude polysaccharide was precipitated from hot water extract of P. florida, and their physicochemical parameters were determined. Then, α and β glucan were estimated using mushroom and yeast β glucan assay kit and Fourier transform infrared spectroscopy (FT-IR. Floridan was analyzed for their free radical scavenging activity in different test systems, namely hydroxyl and superoxide radical scavenging activity, ferrous ion chelating ability, determination of reducing power and inhibition of lipid peroxidation. Floridan was also tested for NOS activation using oxyhaemoglobin method. Statistical Analysis: The results were statistically analyzed using the Student′s t-test. Results: Results showed that Floridan was rich in water-soluble β glucan with very low amount of protein and phenols. The EC 50 for hydroxyl and superoxide radical-scavenging activity were 140 and 320 μg/ml, respectively, 450 μg/ml for chelating ability, 300 μg/ml for inhibition of lipid peroxidation and 2 mg/ml for reducing power. Floridan also increased nitric oxide production significantly. Conclusions: The present results revealed that this mushroom polysaccharide may be utilized as a promising dietary supplement to combat several killer diseases.

  2. Endothelial Nitric Oxide Synthase G894T Polymorphism Associates with Disease Severity in Puumala Hantavirus Infection.

    Directory of Open Access Journals (Sweden)

    Sirpa Koskela

    Full Text Available Hantavirus infections are characterized by both activation and dysfunction of the endothelial cells. The underlying mechanisms of the disease pathogenesis are not fully understood. Here we tested the hypothesis whether the polymorphisms of endothelial nitric oxide synthase, eNOS G894T, and inducible nitric oxide synthase, iNOS G2087A, are associated with the severity of acute Puumala hantavirus (PUUV infection.Hospitalized patients (n = 172 with serologically verified PUUV infection were examined. Clinical and laboratory variables reflecting disease severity were determined. The polymorphisms of eNOS G894T (Glu298Asp, rs1799983 and iNOS G2087A (Ser608Leu, rs2297518 were genotyped.The rare eNOS G894T genotype was associated with the severity of acute kidney injury (AKI. The non-carriers of G-allele (TT-homozygotes had higher maximum level of serum creatinine than the carriers of G-allele (GT-heterozygotes and GG-homozygotes; median 326, range 102-1041 vs. median 175, range 51-1499 μmol/l; p = 0.018, respectively. The length of hospital stay was longer in the non-carriers of G-allele than in G-allele carriers (median 8, range 3-14 vs. median 6, range 2-15 days; p = 0.032. The rare A-allele carriers (i.e. AA-homozygotes and GA-heterozygotes of iNOS G2087A had lower minimum systolic and diastolic blood pressure than the non-carriers of A-allele (median 110, range 74-170 vs.116, range 86-162 mmHg, p = 0.019, and median 68, range 40-90 vs. 72, range 48-100 mmHg; p = 0.003, respectively.Patients with the TT-homozygous genotype of eNOS G894T had more severe PUUV-induced AKI than the other genotypes. The eNOS G894T polymorphism may play role in the endothelial dysfunction observed during acute PUUV infection.

  3. Inhibition of nitric oxide synthase lowers fatty acid oxidation in preeclampsia-like mice at early gestational stage

    Institute of Scientific and Technical Information of China (English)

    MA Rui-qiong; SUN Min-na; YANG Zi

    2011-01-01

    Background Preeclampsia is one of hypertensive disorders in pregnancy. It is associated with abnormal lipid metabolism, including fatty acid oxidation metabolism. Long chain 3-hydroxyacyI-CoA dehydrogenase (LCHAD) plays an indispensable role in the oxidation of fatty acids. It has been reported that nitric oxide (NO) is one of the regulatory factors of the fatty acid oxidation pathway. The aim of this research was to investigate whether the nitric oxide synthase (NOS)inhibitor L-NAME may cause down-regulation of LCHAD in the pathogenesis of preeclampsia.Methods Pregnant wild-type (WT) mice were treated with L-NAME or normal saline (NS) during gestation days 7-18 (early group), days 11-18 (mid group) and days 16-18 (late group), and apoE-/- mice served as a control. Systolic blood pressure (SBP), urine protein, feto-placental outcome, plasma lipid levels and NO concentrations were measured, and the expression of mRNA and protein for LCHAD in placental tissue were determined by real-time polymerase chain reaction (RT-PCR) and Western blotting, respectively.Results In WT and apoE-/- mice, SBP and urinary protein increased following L-NAME injection. Fetal and placental weights and NO concentrations were reduced and total cholesterol, triglycerides and free fatty acid levels were increased in early and mid L-NAME groups in WT and apoE-/- mice, compared with the NS group. There was no significant difference between the late L-NAME group and NS group. RT-PCR and Western blotting analysis showed that the mRNA and protein levels of LCHAD expression were significantly down-regulated in the early and mid L-NAME groups but not in the late L-NAME group in the WT and apoE-/- mice compared with the corresponding NS groups.Conclusions Inhibition of NO in early and mid gestation in mice may cause hyperlipidemia and suppression of fatty acid oxidation, whereas preeclampsia-like conditions in late gestation may be a maternal vascular response to inhibition of NO.

  4. Expression of Neuronal and Inducible Nitric Oxide Synthase Isoforms and Generation of Protein Nitrotyrosine in Rat Brain Following Hypobaric Hypoxia

    Science.gov (United States)

    2001-06-01

    compilation report: ADPO11059 thru ADP011100 UNCLASSIFIED 38- 1 Expression of Neuronal and Inducible Nitric Oxide Synthase Isoforms and Generation of Protein...cloned, both from chondrocytes (Charles et al., 1993) and hepatocytes (Geller et al., 1993). The neurotoxic effects of NO is mediated by formation of...injection at multiple sites on the back. Four boosts of 1 /6 of the conjugate emulsified in Freund’s incomplete adjuvant were given by subcutaneous injection

  5. Clinical Significance of a Myeloperoxidase Gene Polymorphism and Inducible Nitric Oxide Synthase Expression in Cirrhotic Patients with Hepatopulmonary Syndrome

    Institute of Scientific and Technical Information of China (English)

    王燕颖; 王文多; 张艳霞; 赵欣; 杨东亮

    2010-01-01

    The clinical significance of a myeloperoxidase (MPO) gene polymorphism and inducible nitric oxide synthase (iNOS) expression in cirrhotic patients with hepatopulmonary syndrome (HPS) was explored. Enrolled subjects were divided into three groups according to their disease/health conditions: the HPS group (cirrhotic patients with HPS; n=63), the non-HPS group (cirrhotic patients without HPS; n=182), and the control group (healthy subjects without liver disease; n=35). The distribution of the MPO-463 G/A geno...

  6. L-arginine, the substrate of nitric oxide synthase,inhibits fertility of male rats

    Institute of Scientific and Technical Information of China (English)

    W. D. Ramasooriya; M. G. Dharmasiri

    2001-01-01

    Aim: To examine the effect of L-arginine, the substrate of nitric oxide (NO) synthase, on reproductive function of male rots. Methods: Male rats were gavaged with either L-arginine (100 or 200 mg@ kg- 1@ d-1), D-arginine (200 mg@ kg- 1@ d-1 ) or vehicle (0.9% NaCl) for seven consecutive days. Their sexual behaviour and fertility were evaluat ed using receptive females. Results: L-arginine (200 mg/kg) had no significant effect on sexual competence (in terms of sexual arousal, libido, sexual vigour and sexual performance). In mating experiments, the higher dose of L arginine effectively and reversibly inhibited fertility, whilst the lower dose and the inactive stereoisomer D-arginine had no significant effect. The antifertility effect caused by L-arginine was due to a profound elevation in the preimplantation loss mediated possibly by impairment in epididymal sperm maturation, hyperactivated sperm motility and sperm capaci ration. Conclusion: Elevated NO production may be detrimental to male fertility.

  7. Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom.

    Science.gov (United States)

    Jeandroz, Sylvain; Wipf, Daniel; Stuehr, Dennis J; Lamattina, Lorenzo; Melkonian, Michael; Tian, Zhijian; Zhu, Ying; Carpenter, Eric J; Wong, Gane Ka-Shu; Wendehenne, David

    2016-03-01

    Nitric oxide (NO) signaling regulates various physiological processes in both animals and plants. In animals, NO synthesis is mainly catalyzed by NO synthase (NOS) enzymes. Although NOS-like activities that are sensitive to mammalian NOS inhibitors have been detected in plant extracts, few bona fide plant NOS enzymes have been identified. We searched the data set produced by the 1000 Plants (1KP) international consortium for the presence of transcripts encoding NOS-like proteins in over 1000 species of land plants and algae. We also searched for genes encoding NOS-like enzymes in 24 publicly available algal genomes. We identified no typical NOS sequences in 1087 sequenced transcriptomes of land plants. In contrast, we identified NOS-like sequences in 15 of the 265 algal species analyzed. Even if the presence of NOS enzymes assembled from multipolypeptides in plants cannot be conclusively discarded, the emerging data suggest that, instead of generating NO with evolutionarily conserved NOS enzymes, land plants have evolved finely regulated nitrate assimilation and reduction processes to synthesize NO through a mechanism different than that in animals.

  8. Neuronal nitric oxide synthase is an endogenous negative regulator of glucocorticoid receptor in the hippocampus.

    Science.gov (United States)

    Liu, Meng-ying; Zhu, Li-Juan; Zhou, Qi-Gang

    2013-07-01

    The hippocampus is rich in both glucocorticoid receptor (GR) and neuronal nitric oxide synthase (nNOS). But the relationship between the two molecules under physiological states remains unrevealed. Here, we report that nNOS knockout mice display increased GR expression in the hippocampus. Both systemic administration of 7-Nitroindazole (7-NI), a selective nNOS activity inhibitor, and selective infusion of 7-NI into the hippocampus resulted in an increase in GR expression in the hippocampus. Moreover, KCl exposure, which can induce overexpression of nNOS, resulted in a decrease in GR protein level in cultured hippocampal neurons. Moreover, blockade of nNOS activity in the hippocampus leads to decreased corticosterone (CORT, glucocorticoids in rodents) concentration in the plasma and reduced corticotrophin-releasing factor expression in the hypothalamus. The results indicate that nNOS is an endogenous inhibitor of GR in the hippocampus and that nNOS in the hippocampus may participate in the modulation of Hypothalamic-Pituitary-Adrenal axis activity via GR.

  9. Prenatal Brain Damage in Preeclamptic Animal Model Induced by Gestational Nitric Oxide Synthase Inhibition

    Directory of Open Access Journals (Sweden)

    Begoña Pellicer

    2011-01-01

    Full Text Available Cerebral palsy is a major neonatal handicap with unknown aetiology. There is evidence that prenatal brain injury is the leading cause of CP. Severe placental pathology accounts for a high percentage of cases. Several factors predispose to prenatal brain damage but when and how they act is unclear. The aim of this paper was to determine if hypoxia during pregnancy leads to damage in fetal brain and to evaluate the localization of this injury. An animal model of chronic hypoxia produced by chronic administration of a nitric oxide synthase inhibitor (L-NAME was used to evaluate apoptotic activity in fetal brains and to localize the most sensitive areas. L-NAME reproduces a preeclamptic-like condition with increased blood pressure, proteinuria, growth restriction and intrauterine mortality. Apoptotic activity was increased in L-NAME brains and the most sensitive areas were the subventricular and pallidum zone. These results may explain the clinical features of CP. Further studies are needed.

  10. Neuronal nitric oxide synthase immunoreactivity in the respiratory tract of the frog, Rana temporaria.

    Science.gov (United States)

    Bodegas, M E; Villaro, A C; Montuenga, L M; Moncada, S; Riveros-Moreno, V; Sesma, P

    1995-10-01

    Physiological and histochemical studies have recently supported the notion that nitric oxide (NO) is the transduction signal responsible for the non-adrenergic, non-cholinergic relaxation of the vasculature as well as the airways of the mammalian lung. We report the presence of immunoreactivity to NO synthase (NOS) in nerve cell bodies and nerve fibres in the neural plexus of the buccal cavity and lungs of the frog, Rana temporaria, using the indirect immunocytochemical technique of avidin-biotin and the NADPH-diaphorase technique. The neural ganglia located next to the muscle layer and within the connective tissue of the buccal cavity were partially immunoreactive for NOS. In the lungs, NOS immunoreactivity occurred in nerve cell bodies, as well as in both myelinated and unmyelinated nerve fibres. Fine nerve fibres immunoreactive to NOS were observed within the muscle fibre bundles and next to the respiratory epithelium. Both the presence of NOS immunoreactivity and the positive histochemical reaction for NADPH-diaphorase in the neural plexus of amphibian respiratory tract suggests a broad evolutionary role for NO as a peripheral neurotransmitter.

  11. Nicotinic receptor mediates nitric oxide synthase expression in the rat gastric myenteric plexus.

    Science.gov (United States)

    Nakamura, K; Takahashi, T; Taniuchi, M; Hsu, C X; Owyang, C

    1998-04-01

    The mechanism that regulates the synthesis of nitric oxide synthase (NOS), a key enzyme responsible for NO production in the myenteric plexus, remains unknown. We investigated the roles of the vagal nerve and nicotinic synapses in the mediation of NOS synthesis in the gastric myenteric plexus in rats. Truncal vagotomy and administration of hexamethonium significantly reduced nonadrenergic, noncholinergic relaxation, the catalytic activity of NOS, the number of NOS-immunoreactive cells, and the density of NOS-immunoreactive bands and NOS mRNA bands obtained from gastric tissue. These results suggest that NOS expression in the gastric myenteric plexus is controlled by the vagal nerve and nicotinic synapses. We also investigated if stimulation of the nicotinic receptor increases neuronal NOS (nNOS) expression in cultured gastric myenteric ganglia. Incubation of cultured gastric myenteric ganglia with the nicotinic receptor agonist, 1,1-dimethyl-4-phenylpiperizinium (DMPP, 10(-10)-10(-7) M), for 24 h significantly increased the number of nNOS-immunoreactive cells and the density of immunoreactive nNOS bands and nNOS mRNA bands. nNOS mRNA expression stimulated by DMPP was antagonized by a protein kinase C antagonist, a phospholipase C inhibitor, and an intracellular Ca2+ chelator. We concluded that activation of the nicotinic receptor stimulates a Ca2+-dependent protein kinase C pathway, which in turn, upregulates nNOS mRNA expression and nNOS synthesis in the gastric myenteric plexus.

  12. Gene expression of two kinds of constitutive nitric oxide synthase in injured spinal cord tissue

    Institute of Scientific and Technical Information of China (English)

    刘成龙; 靳安民; 周初松; 闵少雄

    2002-01-01

    Objective: To investigate the gene expression of two kinds of constitutive nitric oxide synthase (cNOS): neuronal NOS (nNOS) and endothelial NOS (eNOS) in injured spinal cord tissue.   Methods: Thirty-six adult Sprague-Dawley rats were divided randomly into six groups: the normal group and the injury groups (2, 6, 12, 24, 48 h after injury, respectively). A compression injury model of the spinal cord was made and gene expression of nNOS and eNOS were examined by reverse transcription polymerase chain reaction (RT-PCR).   Results: The gene expression of nNOS and eNOS was detected in the normal group and they were up-regulated quickly after injury, reaching the maximum at 6 h. There was no difference between gene expression of nNOS and eNOS in the normal group, but in each injury group the gene expression of eNOS was much higher than that of nNOS.   Conclusions: Expression of constitutive NOS (cNOS) in spinal cord tissue was up-regulated after injury mainly in the early stage. cNOS as a whole offers protection in spinal cord injury, but different cNOS may play different roles.

  13. Gene expression of inducible nitric oxide synthase in injured spinal cord tissue

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate gene expression of inducible nitric oxide synthase (iNOS) in injured spinal cord tissue of rats.Methods: Thirty-six adult Sprague-Dawley rats were divided randomly into six groups: a normal group and five injury groups, six animals in each group. Animals in the injury groups were killed at 2, 6, 12, 24, 48 hours after injury, respectively. A compression injury model of spinal cord was established according to Nystrom B et al, and gene expression of iNOS in spinal cord tissue was examined by means of reverse transcription polymerase chain reaction (RT-PCR).Results: Gene expression of iNOS was not detectable in normal spinal cord tissue but was seen in the injury groups. The expression was gradually up-regulated, reaching the maximum at 24 hours. The expression at 48hours began to decrease but was still significantly higher than that at 2 hours.Conclusions: iNOS is not involved in the normal physiological activities of spinal cord. Expression of iNOS is up-regulated in spinal cord tissue in response to injury and the up-regulation exists mainly in the late stage after injury. Over-expression of iNOS may contribute to the late injury of spinal cord.

  14. Association of Nitric Oxide Synthase and Matrix Metalloprotease Single Nucleotide Polymorphisms with Preeclampsia and Its Complications.

    Directory of Open Access Journals (Sweden)

    Daniela P Leonardo

    Full Text Available Preeclampsia is one of the leading causes of maternal and neonatal morbidity and mortality in the world, but its appearance is still unpredictable and its pathophysiology has not been entirely elucidated. Genetic studies have associated single nucleotide polymorphisms in genes encoding nitric oxide synthase and matrix metalloproteases with preeclampsia, but the results are largely inconclusive across different populations.To investigate the association of single nucleotide polymorphisms (SNPs in NOS3 (G894T, T-786C, and a variable number of tandem repetitions VNTR in intron 4, MMP2 (C-1306T, and MMP9 (C-1562T genes with preeclampsia in patients from Southeastern Brazil.This prospective case-control study enrolled 77 women with preeclampsia and 266 control pregnant women. Clinical data were collected to assess risk factors and the presence of severe complications, such as eclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelets syndrome.We found a significant association between the single nucleotide polymorphism NOS3 T-786C and preeclampsia, independently from age, height, weight, or the other SNPs studied, and no association was found with the other polymorphisms. Age and history of preeclampsia were also identified as risk factors. The presence of at least one polymorphic allele for NOS3 T-786C was also associated with the occurrence of eclampsia or HELLP syndrome among preeclamptic women.Our data support that the NOS3 T-786C SNP is associated with preeclampsia and the severity of its complications.

  15. Differential expression of apoptosis related proteins and nitric oxide synthases in Epstein Barr associated gastric carcinomas

    Institute of Scientific and Technical Information of China (English)

    Maria D Begnami; Andre L Montagnini; Andre L Vettore; Sueli Nonogaki; Mariana Brait; Alex Y Simoes-Sato; Andrea Q A Seixas; Fernando A Soares

    2006-01-01

    AIM: To determine the incidence of Epstein Barr virus associated gastric carcinoma (GC) in Brazil and compare the expressions of apoptosis related proteins and nitric oxide synthases between EBV positive and negative gastric carcinoma.METHODS: In situ hybridization of EBV-encoded small RNA-1 (EBER-1) and PCR was performed to identify the presence of EBV in GCs. Immunohistochemistry was used to identify expressions of bcl-2, bcl-xl, bak,bax, p53, NOS-1, NOS-2, and NOS-3 proteins in 25 EBV positive GCs and in 103 EBV negative GCS.RESULTS: 12% of the cases of GC (25/208) showed EBER-1 and EBNA-1 expression. The cases were preferentially of diffuse type with intense lymphoid infiltrate in the stroma. EBV associated GCs showed higher expression of bcl-2 protein and lower expression of bak protein than in EBV negative GCs. Indeed,expressions of NOS-1 and NOS-3 were frequently observed in EBV associated GCs.CONCLUSION: Our data suggest that EBV infection may protect tumor cells from apoptosis, giving them the capacity for permanent cell cycling and proliferation.In addition, EBV positive GCs show high expression of constitutive NOS that could influence tumor progression and aggressiveness.

  16. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer.

    Science.gov (United States)

    Uotila, P; Valve, E; Martikainen, P; Nevalainen, M; Nurmi, M; Härkönen, P

    2001-02-01

    Cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase-2 (NOS-2) each have an important role in angiogenesis. The expression of these genes was investigated in human prostate cancer by immunohistochemistry, the expression of COX-1 and COX-2 being confirmed by mRNA analysis. Prostate cancer specimens from 12 patients were compared to control prostates from 13 patients operated on for bladder carcinoma. The intensity of COX-2 and NOS-2 immunostaining was significantly stronger in prostate cancer cells than in the non-malignant glandular epithelium of the control prostates. COX-2 and NOS-2 were clearly also expressed in the lesions of prostatic intraepithelial neoplasia (PIN) in control prostates. COX-2 was detected in the muscle fibres of the hyperplastic stroma of some control prostates. No significant difference was detected in COX-1 expression between control and cancer prostates. These results indicate that the expression of COX-2 and NOS-2 is elevated in prostatic adenocarcinoma and in PIN.

  17. Activation of hypothalamic neuronal nitric oxide synthase in lithium-induced diabetes insipidus rats.

    Science.gov (United States)

    Anai, H; Ueta, Y; Serino, R; Nomura, M; Nakashima, Y; Yamashita, H

    2001-02-01

    The expression of the neuronal nitric oxide synthase (nNOS) gene in the paraventricular (PVN) and supraoptic nuclei (SON) in rats with lithium (Li)-induced polyuria was examined by using in situ hybridization histochemistry. The state of the thyroid axis in these rats was also examined by in situ hybridization histochemistry for thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH) mRNAs and radioimmunoassay for circulating thyroid hormones. Adult male Wistar rats consuming a diet that contained LiCl (60 mmol/kg) for 4 weeks developed remarkable polyuria. The urine in the Li-treated rats was hypotonic and had a large volume and low ionic concentration. The nNOS mRNA in the PVN and SON was significantly increased in the Li-treated rats in comparison with that in control. The increased levels of the nNOS mRNA in the PVN and SON were confirmed by NADPH-diaphorase histochemical staining. There were no differences of TRH mRNA in the PVN, TSH mRNA in the anterior pituitary and plasma concentrations of free T3 and free T4 between Li-treated rats and control rats. These results suggest that Li-induced diabetes insipidus may activate nNOS in the PVN and SON without change of the thyroid axis.

  18. Nicotinamide increases thyroid radiosensitivity by stimulating nitric oxide synthase expression and the generation of organic peroxides.

    Science.gov (United States)

    Agote Robertson, M; Finochietto, P; Gamba, C A; Dagrosa, M A; Viaggi, M E; Franco, M C; Poderoso, J J; Juvenal, G J; Pisarev, M A

    2006-01-01

    Differentiated thyroid cancer and hyperthyroidism are treated with radioiodine. However, when the radioisotope dose exceeds certain limits, the patient must be hospitalized to avoid contact with people that would otherwise be exposed to radiation. It would be desirable to obtain a similar therapeutic effect using lower radioiodine doses. Radiosensitizers can be utilized for this purpose. Nicotinamide (NA) increases thyroid radiosensitivity to 131I in both normal and goitrous glands. NA causes a significant increase in thyroid blood flow, which would increase tissue oxygenation and tissue damage via free radicals. Wistar rats were treated with either nicotinamide (NA), 131I or both. The expression of the three isoforms of nitric oxide synthase (NOS) in the thyroid (Western blot) and the activities of SOD, GPx, catalase and organic peroxides were determined. Treatment with NA or 131I increased the expression of eNOS and the generation of organic peroxides. When administered jointly, they showed a synergistic effect. No changes were observed in the other NOS isoforms or in the activities of catalase, glutathione peroxidase and superoxide dismutase. NA potentiates the effect of 131I by increasing eNOS, which would in turn stimulate NO production, increasing thyroid blood flow and tissue damage via organic peroxides.

  19. Inducible nitric oxide synthase (NOS II) is constitutive in human neutrophils.

    Science.gov (United States)

    Cedergren, Jan; Follin, Per; Forslund, Tony; Lindmark, Maria; Sundqvist, Tommy; Skogh, Thomas

    2003-10-01

    The objective was to study the expression of inducible nitric oxide synthase (NOS II) in and NO production by human blood neutrophils and in in vivo exudated neutrophils. Cellular expression of NOS II was evaluated by flow cytometry in whole blood, in isolated blood neutrophils, and in neutrophils obtained by exudation in vivo into skin chambers. Neutrophil NOS II was also demonstrated by Western blotting. Uptake of 3H-labelled L-arginine was studied in vitro and NOS activity measured in a whole cell assay by the conversion of 3H-arginine to 3H-citrulline. In contrast to unseparated blood cells, NOS II was demonstrable both in isolated blood neutrophils and exudated cells. The failure to detect NOS II by flow cytometry in whole blood cells thus proved to be due to the quenching effect of hemoglobin. Western blotting revealed a 130 kD band corresponding to NOS II in isolated blood neutrophils, but detection was dependent on diisopropylfluorophosphate for proteinase inhibition. L-arginine was taken up by neutrophils, but enzymatic activity could not be demonstrated. We conclude that human neutrophils constitutively express NOS II, but that its demonstration by FITC-labelling is inhibited by hemoglobin-mediated quenching in whole blood samples.

  20. Subcellular distribution of nitric oxide synthase isoforms in the rat duodenum

    Institute of Scientific and Technical Information of China (English)

    Petra Talapka; Nikolett Bódi; Izabella Battonyai; (E)va Fekete; Mária Bagyánszki

    2011-01-01

    AIM:To study the cell-type specific subcellular distribution of the three isoforms of nitric oxide synthase (NOS) in the rat duodenum. METHODS:Postembedding immunoelectronmicroscopy was performed,in which primary antibodies for neuronal NOS (nNOS),endothelial NOS (eNOS),and inducible NOS (iNOS),were visualized with protein A-gold-conjugated secondary antibodies.Stained ultrathin sections were examined and photographed with a Philips CM10 electron microscope equipped with a MEGAVIEW II camera.The specificity of the immunoreaction in all cases was assessed by omitting the primary antibodies in the labeling protocol and incubating the sections only in the protein A-gold conjugated secondary antibodies. RESULTS:Postembedding immunoelectronmicroscopy revealed the presence of nNOS,eNOS,and iNOS immunoreactivity in the myenteric neurons,the enteric smooth muscle cells,and the endothelium of capillaries running in the vicinity of the myenteric plexus of the rat duodenum.The cell type-specific distributions of the immunogold particles labeling the three different NOS isozymes were revealed.In the control experiments,in which the primary antiserum was omitted,virtually no postembedding gold particles were observed. CONCLUSION:This postembedding immunoelectronmicroscopic study provided the first evidence of celltype- specific differences in the subcellular distributions of NOS isoforms.

  1. Nitric oxide synthase inhibition ameliorates nicotine-induced sperm function decline in male rats

    Institute of Scientific and Technical Information of China (English)

    IP Oyeyipo; Y Raji; AdeyomboF Bolarinwa

    2015-01-01

    Objective:To evaluate the effects of inhibiting nitric oxide synthase as a means of intervention in nicotine-induced infertility in male rats.Methods:Forty-eight male and thirty female Wistar rats (180-200 g) were randomly assigned to six groups and treated orally for 30 days with saline (control), nicotine (0.5 mg/kg, 1.0 mg/kg) with or without NG Nitro-L-Arginine Methyl Ester (L- NAME, 50 mg/kg). Treated male rats were cohabited with untreated females in ratio 1:2 for fertility studies. Sperm analysis was done by microscopy. Results:There was a significant decrease in the epididymal sperm motility and count after nicotine treatment. However, the percentage of abnormality significantly increased in nicotine treatment groups. Fertility studies revealed that nicotine reduced libido in male rats and decreased litter weight and number delivered by the untreated female during the experiments. Co-treatment with L-NAME effectively reversed the nicotine-mediated alterations in the sperm functional parameters, fertility indexes and hormone when compared to nicotine only.Conclusion: Taken together, the present data indicate the abilities of L-NAME to ameliorate nicotine-induced spermatotoxic effects in male rats via a mechanism dependent on the circulating testosterone level.

  2. Proinflammatory role of inducible nitric oxide synthase in acute hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Kupatt Christian

    2004-09-01

    Full Text Available Abstract Background Hyperoxic exposures are often found in clinical settings of respiratory insufficient patients, although oxygen therapy (>50% O2 can result in the development of acute hyperoxic lung injury within a few days. Upon hyperoxic exposure, the inducible nitric oxide synthase (iNOS is activated by a variety of proinflammatory cytokines both in vitro and in vivo. In the present study, we used a murine hyperoxic model to evaluate the effects of iNOS deficiency on the inflammatory response. Methods Wild-type and iNOS-deficient mice were exposed to normoxia, 60% O2 or >95% O2 for 72 h. Results Exposure to >95% O2 resulted in an increased iNOS mRNA and protein expression in the lungs from wild-type mice. No significant effects of iNOS deficiency on cell differential in bronchoalveolar lavage fluid were observed. However, hyperoxia induced a significant increase in total cell count, protein concentration, LDH activity, lipid peroxidation, and TNF-α concentration in the bronchoalveolar lavage fluid compared to iNOS knockout mice. Moreover, binding activity of NF-κB and AP-1 appeared to be higher in wild-type than in iNOS-deficient mice. Conclusion Taken together, our results provide evidence to suggest that iNOS plays a proinflammatory role in acute hyperoxic lung injury.

  3. Endothelial nitric oxide synthase gene polymorphism and elite endurance athlete status: the Genathlete study.

    Science.gov (United States)

    Wolfarth, B; Rankinen, T; Mühlbauer, S; Ducke, M; Rauramaa, R; Boulay, M R; Pérusse, L; Bouchard, C

    2008-08-01

    In the Genathlete study, we examined the contribution of three polymorphisms in the endothelial nitric oxide synthase (NOS3) gene to discriminate elite endurance athletes (EEA) from sedentary controls (SC). The EEA group included a total of 316 Caucasian males with a VO2max >75 mL/kg. The SC group comprised 299 unrelated sedentary Caucasian males who had VO2max values below 50 mL/kg. The polymerase chain reaction technique was used to amplify a microsatellite (CA)(n) repeat in intron 13, a 27 bp repeat in intron 4 and a third fragment in exon 7 containing the Glu298Asp SNP. No difference was found between the EEA and SC groups for the 27 bp repeat and the Glu298Asp polymorphism. Chi-square analysis of the overall allelic distribution of the (CA)(n) repeat revealed no significant difference between the two groups (P=0.135). However, comparing carriers and non-carriers for the most common (CA)(n) repeat alleles, we found significant differences between SC and EEA, with more EEA subjects carrying the 164 bp allele (P=0.007). In summary, we found suggestive evidence that the 164 bp allele of the (CA)(n) repeat in intron 13 is associated with EEA status and may account for some of the differences between EEA and SC.

  4. Expression of nitric oxide synthase and guanylate cyclase in the human ciliary body and trabecular meshwork

    Institute of Scientific and Technical Information of China (English)

    WU Ren-yi; MA Ning

    2012-01-01

    Background The role played by the nitric oxide (NO) signaling pathway in the aqueous humor dynamics is still unclear.This study was designed to investigate the expression and distribution of NO synthase (NOS) isoforms and guanylate cyclase (GC) in human ciliary body,trabecular meshwork and the Schlemm's canal.Methods Twelve eyes after corneal transplantation were used.Expression of three NOS isoforms (i.e.neuronal NOS (nNOS),inducible NOS (iNOS) and endothelial NOS (eNOS)) and GC were assessed in 10 eyes by immunohistochemical staining using monoclonal or polyclonal antibody of NOS and GC.Ciliary bodies were dissected free and the total proteins were extracted.Western blotting was performed to confirm the protein expression of 3 NOS isoforms and GC.Results Expression of 3 NOS isoforms and GC were observed in the ciliary epithelium,ciliary muscle,trabecular meshwork and the endothelium of the Schlemm's canal.Immunoreactivity of nNOS was detected mainly along the apical cytoplasmic junction of the non-pigmented epithelium (NPE) and pigmented epithelial (PE) cells.Protein expressions of 3 NOS isoforms and GC were confirmed in isolated human ciliary body by Western blotting.Conclusions The expression of NOS isoforms and GC in human ciliary body suggest the possible involvement of NO and cyclic guanosine monophosphate (cyclic GMP,cGMP) signaling pathway in the ciliary body,and may play a role in both processes of aqueous humor formation and drainage.

  5. Sidiming attenuates morphine withdrawal syndrome and nitric oxide (synthase) levels in morphine-dependent rats and rhesus monkeys

    Institute of Scientific and Technical Information of China (English)

    Zheng Yang; Renbin Huang; Jianchun Huang; Shijun Zhang; Xing Lin; Yang Jiao; Weizhe Jiang

    2011-01-01

    The present study analyzed the effects of Sidiming, a Chinese herbal compound, on withdrawal syndrome, body weight loss, and serum levels of nitric oxide and its synthase in morphine- dependent rats and rhesus monkeys. These effects were compared with clonidine, an active control drug used for clinical treatment. Results showed that 4 and 8 g/kg Sidiming, respectively, significantly suppressed morphine withdrawal syndrome and reduced body mass loss in morphine-dependent rats. In addition, 2.4 and 4.8 g/kg Sidiming, respectively, significantly attenuated withdrawal syndrome in rhesus monkeys. High-dose Sidiming (8 g/kg in rats and 4.8 g/kg in rhesus monkeys) led to significantly inhibited serum levels of nitric oxide and its synthase in morphine-dependent rats and rhesus monkeys, which were greater than clonidine. These findings suggested that Sidiming treatment attenuated withdrawal syndrome in morphine-dependent rats and rhesus monkeys by inhibiting serum nitric oxide and its synthase.

  6. Expression of inducible nitric oxide synthase (iNOS) in microglia of the developing quail retina.

    Science.gov (United States)

    Sierra, Ana; Navascués, Julio; Cuadros, Miguel A; Calvente, Ruth; Martín-Oliva, David; Ferrer-Martín, Rosa M; Martín-Estebané, María; Carrasco, María-Carmen; Marín-Teva, José L

    2014-01-01

    Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid

  7. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages

    Directory of Open Access Journals (Sweden)

    Meera eRath

    2014-10-01

    Full Text Available Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase (NOS, which metabolizes arginine to nitric oxide (NO and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline-NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and antiinflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions and cancer.

  8. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  9. Temporal expression of hepatic inducible nitric oxide synthase in liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Chang-Li Wei; Wei-Min Hon; Kang-Hoe Lee; Hoon-Eng Khoo

    2005-01-01

    AIM: Nitric oxide (NO) has been implicated in the pathogenesis of liver cirrhosis. We have found inducible nitric oxide synthase (iNOS) can be induced in hepatocytes of cirrhotic liver. This study further investigated the temporal expression and activity of hepatic iNOS in cirrhosis development.METHODS: Cirrhosis was induced in rats by chronic bile duct ligation (BDL). At different time points after the operation,samples were collected to examine NO concentration, liver function, and morphological changes. Hepatocytes were isolated for determination of iNOS mRNA, protein and enzymatic activity.RESULTS: Histological examination showed early cirrhosis 1-2 wk after BDL, with advanced cirrhosis at 3-4 wk.Bilirubin increased dramatically 3 d after BDL, but decreased by 47% on d 14. Three weeks after BDL, it elevated again. Systemic NO concentration did not increase significantly until 4 wk after BDL, when ascites developed.Hepatocyte iNOS mRNA expression was identified 3 d after BDL, and enhanced with time to 3 wk, but reduced thereafter. iNOS protein showed a similar pattern to mRNA expression. iNOS activity decreased from d 3 to d 7, but increased again thereafter till d 21.CONCLUSION: Hepatic iNOS can be induced in the early stage, which increases with time as cirrhosis develops. Its enzymatic activity is significantly correlated with protein expression and histological alterations of the liver, but not with systemic NO levels, nor with absolute values of liver function markers.

  10. Expression of Apoptosis and Inducible Nitric Oxide Synthase in Trophoblastic Cells in Early Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    夏革清; 孙永玉

    2001-01-01

    Objective To investigate the effect of apoptosis and inducible nitric oxide (Inos) on the early spontaneous abortion Methods TUNEL method was used to detect the apoptosis in trophoblast cells in early pregnancy with and without spontaneous abortion (the experiment group and the control group), while Inos was detected by both in situ hybridization and immunohis tochemistry. By computer color magic image analysis system (CMIAS), positive cell indexes were represented by D (density) and N/S (number/square) in both apoptosis and in situ hybridization, in immunohistochemistry were N/S and PU (positive unit).Results Positive cell indexes of apoptosis D and N/S were significntly higher in the experiment group (0. 48± 0. 004, 0. 045±0. 002) than that in the control group( 0. 35 +0. 06, 0. 031±0. 003. P<0. 001). D and N/S of inducible nitric oxide synthase in situ hybridization were 0. 33± 0. 028, 0. 074± 0. 001 respectively in the experiment group and 0. 13± 0. 015, 0. 019± 0. 004 respectively in the control group. N/S and PU were significantly higher in the experiment group( 0. 058± 0. 007, 11. 94± 2. 01)than that in the control group (0. 007± 0. 001, 1. 18± 0. 35, P<0. 01). There existed a positive correlation between Inos and apoptosis too.Conclution Apoptosis and Inos in trophoblasts might play an important role in early spontaneous abortion and there was a positive correlation between apoptosis and Inos.

  11. Effect of Nitric Oxide on the Interaction Between Mitochondrial Malate Dehydrogenase and Citrate Synthase

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-chen; WANG Juan; SU Pei-ying; MA Chun-mei; ZHU Shu-hua

    2014-01-01

    Mitochondrial malate dehydrogenase (mMDH) and citrate synthase (CS) are sequential enzymes in Krebs cycle. mMDH, CS and the complex between mMDH and CS (mMDH+CS) were treated with nitric oxide solution. The roles of notric oxide (NO) on the secondary structures and the interactions between mMDH and CS were studied using circular diehroism (CD) and Fourier transform surface plasmon resonance (FT-SPR), respectivley. The effects of NO on the activities of mMDH, CS and mMDH+CS were also studied. And the regulations by NO on mMDH and CS were simulated by PyMOL software. The results of SPR conifrmed that strong interaction between mMDH and CS existed and NO could signiifcantly regulate the interaction between the two enzymes. NO reduced the mass percents ofα-helix and increased that of random in mMDH, CS and mMDH+CS. NO increased the activities of CS and mMDH+CS, and inhibited the activity of mMDH. Graphic simulation indicated that covalent bond was formed between NO and Asn242 in active site of CS. However, there was no direct bond between NO and mMDH. The increase in activity of mMDH+CS complex depended mostly on the interaction between NO and CS. All the results suggested that the regulations by NO on the activity and interaction between mMDH and CS were accord with the changes in mMDH, CS and mMDH+CS caused by NO.

  12. Gomisin J from Schisandra chinensis induces vascular relaxation via activation of endothelial nitric oxide synthase.

    Science.gov (United States)

    Park, Ji Young; Choi, Young Whan; Yun, Jung Wook; Bae, Jin Ung; Seo, Kyo Won; Lee, Seung Jin; Park, So Youn; Kim, Chi Dae

    2012-01-01

    Gomisin J (GJ) is a lignan contained in Schisandra chinensis (SC) which is a well-known medicinal herb for improvement of cardiovascular symptoms in Korean. Thus, the present study examined the vascular effects of GJ, and also determined the mechanisms involved. Exposure of rat thoracic aorta to GJ (1-30μg/ml) resulted in a concentration-dependent vasorelaxation, which was more prominent in the endothelium (ED)-intact aorta. ED-dependent relaxation induced by GJ was markedly attenuated by pretreatment with L-NAME, a nitric oxide synthase (NOS) inhibitor. In the intact endothelial cells of rat thoracic aorta, GJ also enhanced nitric oxide (NO) production. In studies using human coronary artery endothelial cells, GJ enhanced phosphorylation of endothelial NOS (eNOS) at Ser(1177) with increased cytosolic translocation of eNOS, and subsequently increased NO production. These effects of GJ were attenuated not only by calcium chelators including EGTA and BAPTA-AM, but also by LY294002, a PI3K/Akt inhibitor, indicating calcium- and PI3K/Akt-dependent activation of eNOS by GJ. Moreover, the levels of intracellular calcium were increased immediately after GJ administration, but Akt phosphorylation was started to increase at 20min of GJ treatment. Based on these results with the facts that ED-dependent relaxation occurred rapidly after GJ treatment, it was suggested that the ED-dependent vasorelaxant effects of GJ were mediated mainly by calcium-dependent activation of eNOS with subsequent production of endothelial NO.

  13. Effects of Baicalin on Expression of Inducible Nitric Oxide Synthase in Cultured Fibroblasts Stimulated by Cytokines

    Institute of Scientific and Technical Information of China (English)

    毕新岭; 顾军; 聂本勇; 李泉; 刘辉; 米庆胜

    2004-01-01

    Objective: To investigate the effects of baicalin on expression of inducible nitric oxide synthase (iNOS) in fibroblasts and its mechanisms in treating psoriasis. Methods: Fibroblasts cultured in vitro were stimulated with tumor necrosis factor-α(TNF-α), interferon-γ (IFN-γ), interleukin-8 (IL-S) in different groups. iNOS was detected by western blot and immunocytochemistry assay, and in addition, the effects of baicalin on its expression were investigated. Results: Fibroblasts did not express iNOS without cytokine stimulation. When treated for 24 h with 1. 0× 106 U/L TNF-α, 0.2× 106U/L IFN-γ, 0.2× 106 pg/L IL-8 alone or in combinations indicated, fibroblasts produced iNOS when stimulated by TNF-α alone while neither IFN-γ nor IL-8 could induce the production of iNOS. The combination of TNF-α and IL-8 induced a strong expression of iNOS, the combined exposure of three kinds of cytokines showed an even stronger effects. The strongly stained area was in the cytoplasm near the nuclei. Expression of iNOS induced by TNF-α and IL-8 was inhibited by 50 μg/ mi of baicalin. Conclusion: Fibroblasts might express iNOS when stimulated by certain cytokines. Baicalin decreased production of nitric oxide through inhibiting the expression of iNOS, furthermore it reduced inflammation, which might be part of its mechanisms in treating psoriasis.

  14. Effects of Balcalin on Expression of Inducible Nitric Oxide Synthase In Cultured Fibroblasts Stimulated by Cytokines

    Institute of Scientific and Technical Information of China (English)

    毕新岭; 顾军; 聂本勇; 李泉; 刘辉; 米庆胜

    2004-01-01

    Objective: To investigate the effects of baicalin on expression of inducible nitric oxide synthase (iNOS) in fibroblasts and its mechanisms in treating psoriasis. Methods: Fibroblasts cultured in vitro were stimulated with tumor necrosis factor-α((TNF-α), interferon-γ(IFN-γ), interleukin-8 (IL-8) in different groups, iNOS was detected by western blot and immunocytochemistry assay, and in addition, the effects of baicalin on its expression were investigated. Results. Fibroblasts did not express iNOS without cytokine stimulation. When treated for 24 h with 1.0×106 U/L TNF-α, 0.2×106U/L IFN-γ, 0.2×106 pg/L IL-8 alone or in combinations indicated, fibroblasts produced iNOS when stimulated by TNF-α alone while neither IFN-γ nor IL-8 could induce the production of iNOS. The combination of TNF-α and IL-8 induced a strong expression of iNOS, the combined exposure of three kinds of cytokines showed an even stronger effects. The strongly stained area was in the cytoplasm near the nuclei. Expression of iNOS induced by TNF-α and IL-8 was inhibited by 50μg/ ml of baicalin. Conclusion. Fibroblasts might express iNOS when stimulated by certain cytokines. Baicalin decreased production of nitric oxide through inhibiting the expression of iNOS, furthermore it reduced inflammation, which might be part of its mechanisms in treating psoriasis.

  15. Endothelial nitric oxide synthase gene polymorphism is associated with sickle cell disease patients in India.

    Science.gov (United States)

    Nishank, Sudhansu Sekhar; Singh, Mendi Prema Shyam Sunder; Yadav, Rajiv; Gupta, Rasik Bihari; Gadge, Vijay Sadashiv; Gwal, Anil

    2013-12-01

    Patients with sickle cell disease (SCD) produce significantly low levels of plasma nitric oxide (NO) during acute vaso-occlusive crisis. In transgenic sickle cell mice, NO synthesized by endothelial nitric oxide synthase (eNOS) enzyme of vascular endothelial cells has been found to protect the mice from vaso-occlusive events. Therefore, the present study aims to explore possible association of eNOS gene polymorphism as a potential genetic modifier in SCD patients. A case control study involving 150 SCD patients and age- and ethnicity-matched 150 healthy controls were genotyped by PCR-restriction fragment length polymorphism techniques for three important eNOS gene polymorphisms-eNOS 4a/b, eNOS 894G>T and eNOS -786T>C. It was observed that SCD patients had significantly higher frequencies of mutant alleles besides heterozygous and homozygous mutant genotypes of these three eNOS gene polymorphisms and low levels of plasma nitrite (NO2) as compared with control groups. The SCD severe group had significantly lower levels of plasma NO2 and higher frequencies of mutant alleles of these three SNPs of eNOS gene in contrast to the SCD mild group of patients. Haplotype analysis revealed that frequencies of one mutant haplotype '4a-T-C' (alleles in order of eNOS 4a/b, eNOS 894G>T and eNOS -786T>C) were significantly high in the severe SCD patients (Phaplotype '4b-G-T' was found to be significantly high (P<0.0001) in the SCD mild patients, which indicates that eNOS gene polymorphisms are associated with SCD patients in India and may act as a genetic modifier of the phenotypic variation of SCD patients.

  16. Repetitive prenatal glucocorticoids increase lung endothelial nitric oxide synthase expression in ovine fetuses delivered at term.

    Science.gov (United States)

    Grover, T R; Ackerman, K G; Le Cras, T D; Jobe, A H; Abman, S H

    2000-07-01

    Antenatal administration of glucocorticoids has been shown to improve postnatal lung function after preterm birth in the ovine fetus. Mechanisms of steroid-induced lung maturation include increased surfactant production and altered parenchymal lung structure. Whether steroid treatment also affects lung vascular function is unclear. Because nitric oxide contributes to the fall in pulmonary vascular resistance at birth, we hypothesized that the improvement of postnatal lung function of preterm lambs after treatment with prenatal glucocorticoids may be in part caused by an increase in endothelial nitric oxide synthase (eNOS) activity. To determine whether glucocorticoid treatment increases lung eNOS expression, we measured eNOS protein content by Western blot analysis of distal lung homogenates and immunostaining of formalin-fixed lungs from ovine fetuses delivered at preterm and term gestation after prenatal administration of glucocorticoids. Treatment protocols were followed in which ewes were treated with intramuscular betamethasone (0.5 mg/kg) at single or multiple doses at weekly intervals, and fetuses were delivered at 125, 135, or 145 d gestation. All groups were compared with saline-treated controls. Western blot analysis of whole lung homogenates demonstrated a 4-fold increase in eNOS protein content in lambs treated with repetitive doses of glucocorticoids and delivery at term (145 d; p preterm ages (125 and 135 d). Immunostaining showed eNOS predominantly in the vascular endothelium in all vessel sizes. Pattern of staining was not altered by treatment with antenatal glucocorticoids. We conclude that maternal treatment with glucocorticoids increases lung eNOS content after multiple doses and delivery at term gestation. We speculate that antenatal glucocorticoids may up-regulate eNOS but that the timing and duration of steroid administration appears to be critical to this response.

  17. Effects of endothelial nitric oxide synthase uncoupling on pulmonary endothelial dysfunction in rats with decompression sickness

    Institute of Scientific and Technical Information of China (English)

    Hai-Shan Lin; Min Ou; Yi-Qun Fang

    2015-01-01

    Background:To investigate the effects of unsafe decompression on rat pulmonary endothelial function and its relevant mechanisms. Methods: Sixty male Sprague-Dawley (SD) rats were randomly divided into a control group (n=30) and a decompression sickness (DCS) group (n=30). The DCS model was established by placing the rats in the DCS group in a pressurized cabin where they were exposed to a 600 kPa compressed air environment for 60 min, and the pressure was then reduced by 100 kPa/min until it reached atmospheric pressure. After the surviving rats in the DCS group and the rats in the control group were anesthetized, their pulmonary arteries were stripped to test the in vitro pulmonary artery endothelium-dependent vasodilation capacity. Western blotting was used to measure the expression and dissociation of endothelial nitric oxide synthase (eNOS) in pulmonary artery tissues and all protein nitration levels in pulmonary artery tissues; reactive oxygen species (ROS) formation was measured via in vitro pulmonary artery superoxide anion probe dihydroethidium (DHE) staining. Results: After experiencing unsafe decompression, 10 of the 30 rats in the DCS group died. The pulmonary artery endothelium-dependent vasodilation capacity in the surviving rats decreased significantly (P0.05), but the ratio of eNOS monomer/dimer in the DCS group was significantly higher than that in the control group (P Conclusion: Unsafe decompression during a simulated submarine escape process can lead to eNOS dimer uncoupling in the pulmonary artery endothelium. The dissociated eNOS monomer cannot synthesize nitric oxide (NO) and thus affect the endothelium-dependent vasodilation capacity. The eNOS monomer can promote peroxynitrite (ONOO–) synthesis, leading to an increase in protein tyrosine nitration levels in pulmonary artery tissues and causing disorder in cell cycle regulation. The eNOS monomer can also cause an increase in the formation of ROS and thus mediate peroxidation damage.

  18. Nitric oxide synthase and heme oxygenase expressions in human liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Beatrice J Goh; Bee Tee Tan; Wei Min Hon; Kang Hoe Lee; Hoon Eng Khoo

    2006-01-01

    AIM: Portal hypertension is a common complication of liver cirrhosis. Intrahepatic pressure can be elevated in several ways. Abnormal architecture affecting the vasculature, an increase in vasoconstrictors and increased circulation from the splanchnic viscera into the portal system may all contribute. It follows that endogenous vasodilators may be able to alleviate the hypertension. We therefore aimed to investigate the levels of endogenous vasodilators, nitric oxide (NO) and carbon monoxide (CO) through the expression of nitric oxide synthase (NOS) and heme oxygenase (HO).METHOD: Cirrhotic (n= 20) and non-cirrhotic (n = 20) livers were obtained from patients who had undergone surgery. The mRNA and protein expressions of the various isoforms of NOS and HO were examined using competitive PCR, Western Blot and immunohistochemistry.RESULTS: There was no significant change in either inducible NOS (iNOS) or neuronal NOS (nNOS) expressions while endothelial NOS (eNOS) was upregulated in cirrhotic livers. Concomitantly, caveolin-1, an established down-regulator of eNOS, was up-regulated.Inducible HO-1 and constitutive HO-2 were found to show increased expression in cirrhotic livers albeit in different localizations.CONCLUSION: The differences of NOS expression might be due to their differing roles in maintaining liver homeostasis and/or involvement in the pathology of cirrhosis. Sheer stress within the hypertensive liver may induce increased expression of eNOS. In turn, caveolin-1 is also increased. Whether this serves as a defense mechanism against further cirrhosis or is a consequence of cirrhosis, is yet unknown. The elevated expression of HO-1 and HO-2 suggest that CO may compensate in its role as a vasodilator albeit weakly. It is possible that CO and NO have parallel or coordinated functions within the liver and may work antagonistically in the pathophysiology of portal hypertension.

  19. Impact of nutrient excess and endothelial nitric oxide synthase on the plasma metabolite profile in mice

    Directory of Open Access Journals (Sweden)

    Brian E Sansbury

    2014-11-01

    Full Text Available An increase in calorie consumption is associated with the recent rise in obesity prevalence. However, our current understanding of the effects of nutrient excess on major metabolic pathways appears insufficient to develop safe and effective metabolic interventions to prevent obesity. Hence, we sought to identify systemic metabolic changes caused by nutrient excess and to determine how endothelial nitric oxide synthase (eNOS—which has anti-obesogenic properties—affects systemic metabolism by measuring plasma metabolites. Wild-type (WT and eNOS transgenic (eNOS-TG mice were placed on low fat or high fat diets for six weeks, and plasma metabolites were measured using an unbiased metabolomic approach. High fat feeding in WT mice led to significant increases in fat mass, which was associated with significantly lower plasma levels of 1,5-anhydroglucitol, lysophospholipids, 3-dehydrocarnitine, and bile acids, as well as branched chain amino acids (BCAAs and their metabolites. Plasma levels of several lipids including sphingomyelins, stearoylcarnitine, dihomo-linoleate and metabolites associated with oxidative stress were increased by high fat diet. In comparison with low fat-fed WT mice, eNOS-TG mice showed lower levels of several free fatty acids, but in contrast, the levels of bile acids, amino acids, and BCAA catabolites were increased. When placed on a high fat diet, eNOS overexpressing mice showed remarkably higher levels of plasma bile acids and elevated levels of plasma BCAAs and their catabolites compared with WT mice. Treatment with GW4064, an inhibitor of bile acid synthesis, decreased plasma bile acid levels but was not sufficient to reverse the anti-obesogenic effects of eNOS overexpression. These findings reveal unique metabolic changes in response to high fat diet and eNOS overexpression and suggest that the anti-obesity effects of eNOS are likely independent of changes in the bile acid pool.

  20. Regulation of the expression of nitric oxide synthase by Leishmania mexicana amastigotes in murine dendritic cells.

    Science.gov (United States)

    Wilkins-Rodríguez, Arturo A; Escalona-Montaño, Alma Reyna; Aguirre-García, Magdalena; Becker, Ingeborg; Gutiérrez-Kobeh, Laila

    2010-11-01

    In mammalian hosts, Leishmania parasites are obligatory intracellular organisms that invade macrophages (M phi) and dendritic cells (DC). In M phi, the production of nitric oxide (NO) catalyzed by the inducible nitric oxide synthase (iNOS) has been implicated as a major defense against Leishmania infection. The modulation of this microbicidal mechanism by different species of Leishmania has been well studied in M phi. Although DC are permissive for infection with Leishmania both in vivo and in vitro, the effect of this parasite in the expression of iNOS and NO production in these cells has not been established. To address this issue, we analyzed the regulation of iNOS by Leishmania mexicana amastigotes in murine bone marrow-derived dendritic cells (BMDC) stimulated with LPS and IFN-gamma. We show that the infection of BMDC with amastigotes down regulated NO production and diminished iNOS protein levels in cells stimulated with LPS alone or in combination with IFN-gamma. The reduction in iNOS protein levels and NO production did not correlate with a decrease in iNOS mRNA expression, suggesting that the parasite affects post-transcriptional events of NO synthesis. Although amastigotes were able to reduce NO production in BMDC, the interference with this cytotoxic mechanism was not sufficient to permit the survival of L. mexicana. At 48 h post-infection, BMDC stimulated with LPS+IFN-gamma were able to eliminate the parasites. These results are the first to identify the regulation of iNOS by L. mexicana amastigotes in DC.

  1. Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders

    Directory of Open Access Journals (Sweden)

    R.M.W. Oliveira

    2008-04-01

    Full Text Available Hippocampal output is increased in affective disorders and is mediated by increased glutamatergic input via N-methyl-D-aspartate (NMDA receptor and moderated by antidepressant treatment. Activation of NMDA receptors by glutamate evokes the release of nitric oxide (NO by the activation of neuronal nitric oxide synthase (nNOS. The human hippocampus contains a high density of NMDA receptors and nNOS-expressing neurons suggesting the existence of an NMDA-NO transduction pathway which can be involved in the pathogenesis of affective disorders. We tested the hypothesis that nNOS expression is increased in the human hippocampus from affectively ill patients. Immunocytochemistry was used to demonstrate nNOS-expressing neurons in sections obtained from the Stanley Consortium postmortem brain collection from patients with major depression (MD, N = 15, bipolar disorder (BD, N = 15, and schizophrenia (N = 15 and from controls (N = 15. nNOS-immunoreactive (nNOS-IR and Nissl-stained neurons were counted in entorhinal cortex, hippocampal CA1, CA2, CA3, and CA4 subfields, and subiculum. The numbers of Nissl-stained neurons were very similar in different diagnostic groups and correlated significantly with the number of nNOS-IR neurons. Both the MD and the BD groups had greater number of nNOS-IR neurons/400 µm² in CA1 (mean ± SEM: MD = 9.2 ± 0.6 and BD = 8.4 ± 0.6 and subiculum (BD = 6.7 ± 0.4 when compared to control group (6.6 ± 0.5 and this was significantly more marked in samples from the right hemisphere. These changes were specific to affective disorders since no changes were seen in the schizophrenic group (6.7 ± 0.8. The results support the current view of the NMDA-NO pathway as a target for the pathophysiology of affective disorders and antidepressant drug development.

  2. Up-regulation of cardiac nitric oxide synthase 1-derived nitric oxide after myocardial infarction in senescent rats.

    Science.gov (United States)

    Damy, Thibaud; Ratajczak, Philippe; Robidel, Estelle; Bendall, Jennifer K; Oliviéro, Patricia; Boczkowski, Jorge; Ebrahimian, Talin; Marotte, Françoise; Samuel, Jane-Lise; Heymes, Christophe

    2003-10-01

    Nitric oxide (NO) has been implicated in the development of heart failure, although the source, significance, and functional role of the different NO synthase (NOS) isoforms in this pathology are controversial. The presence of a neuronal-type NOS isoform (NOS1) in the cardiac sarcoplasmic reticulum has been recently discovered, leading to the hypothesis that NOS1-derived NO may notably alter myocardial inotropy. However, the regulation and role(s) of NOS1 in cardiac diseases remain to be determined. Using an experimental model of myocardial infarction (MI) in senescent rats, we demonstrated a significant increase in cardiac NOS1 expression and activity in MI, coupled with the translocation of this enzyme to the sarcolemma through interactions with caveolin-3. The enhanced NOS1 activity counteracts the decrease in cardiac NOS3 expression and activity observed in heart failure. We demonstrated an increased interaction between NOS1 and its regulatory protein HSP90 in post-MI hearts, a potential mechanism for the higher NOS1 activity in this setting. Finally, preferential in vivo inhibition of NOS1 activity enhanced basal post-MI left ventricular dysfunction in senescent rats. These results provide the first evidence that increased NOS1-derived NO production may play a significant role in the autocrine regulation of myocardial contractility after MI in aging rats.

  3. Is endothelial-nitric-oxide-synthase-derived nitric oxide involved in cardiac hypoxia/reoxygenation-related damage?

    Indian Academy of Sciences (India)

    A Rus; Ma Peinado; S Blanco; Ml Del Moral

    2011-03-01

    Nitric oxide (NO) has been reported to act both as a destructive and a protective agent in the pathogenesis of the injuries that occur during hypoxia/reoxygenation (H/R). It has been suggested that this dual role of NO depends directly on the isoform of NO synthase (NOS) involved. In this work, we investigate the role that NO derived from endothelial NOS (eNOS) plays in cardiac H/R-induced injury.Wistar rats were submitted to H/R (hypoxia for 30 min; reoxygenation of 0 h, 12 h and 5 days), with or without prior treatment using the selective eNOS inhibitor L-NIO (20 mg/kg). Lipid peroxidation, apoptosis and protein nitration, as well as NO production (NOx), were analysed. The results showed that L-NIO administration lowered NOx levels in all the experimental groups. However, no change was found in the lipid peroxidation level, the percentage of apoptotic cells or nitrated protein expression, implying that eNOS-derived NO may not be involved in the injuries occurring during H/R in the heart. We conclude that L-NIO would not be useful in alleviating the adverse effects of cardiac H/R.

  4. Synthesis of furan from allenic sulfide derivatives

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we report the synthesis of furan derivatives from allenic sulfides. By the reaction with NaH, β-Hydroxyl allenic sulfides were found to generate furan products in excellent yields with the removal of phenylthio group. β-Aldehyde allenic sulfides were found to give similar furan products with one more substituent when treated with additional nucleophilic reagents. β-ketone allenic sulfides can also cyclize to give furan derivatives with the promotion of P2O5.

  5. Synthesis of furan from allenic sulfide derivatives

    Institute of Scientific and Technical Information of China (English)

    PENG LingLing; ZHANG Xiu; MA Jie; ZHONG ZhenZhen; ZHANG Zhe; ZHANG Yan; WANG JianBo

    2009-01-01

    In this paper, we report the synthesis of furan derivatives from allenic sulfides. By the reaction with NaH.,β-Hydroxyl allenic sulfides were found to generate furan products in excellent yields with the removal of phenylthio group.β-Aldehyde allenic sulfides were found to give similar furan products with one more substituent when treated with additional nucleophilic reagents. β-ketone allenic sulfides can also cyclize to give furan derivatives with the promotion of P2O5.

  6. Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages.

    Science.gov (United States)

    Herencia, F; Ferrándiz, M L; Ubeda, A; Guillén, I; Dominguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    1999-06-18

    In a previous work, we tested a series of chalcone derivatives as possible anti-inflammatory compounds. We now investigate the effects of three of those compounds, CHI, CH8 and CH12, on nitric oxide and prostanoid generation in mouse peritoneal macrophages stimulated with lipopolysaccharide and in the mouse air pouch injected with zymosan, where they showed a dose-dependent inhibition with inhibitory concentration 50% values in the microM range. This effect was not the consequence of a direct inhibitory action on enzyme activities. Our results demonstrated that chalcone derivatives inhibited de novo inducible nitric oxide synthase and cyclooxygenase-2 synthesis, being a novel therapeutic approach for inflammatory diseases.

  7. Macrophages expressing arginase 1 and nitric oxide synthase 2 accumulate in the small intestine during Giardia lamblia infection.

    Science.gov (United States)

    Maloney, Jenny; Keselman, Aleksander; Li, Erqiu; Singer, Steven M

    2015-06-01

    Nitric oxide (NO) has been shown to inhibit Giardia lamblia in vitro and in vivo. This study sought to determine if Giardia infection induces arginase 1 (ARG1) expression in host macrophages to reduce NO production. Stimulations of RAW 264.7 macrophage-like cells with Giardia extract induced arginase activity. Real-time PCR and immunohistochemistry showed increased ARG1 and nitric oxide synthase 2 (NOS2) expression in mouse intestine following infection. Flow cytometry demonstrated increased numbers of macrophages positive for both ARG1 and NOS2 in lamina propria following infection, but there was no evidence of increased expression of ARG1 in these cells.

  8. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin

    OpenAIRE

    Kumar-Roine, Shilpa; Matsui, Mariko,; Chinain, M.; Laurent, Dominique; Pauillac, S.

    2008-01-01

    To investigate the possible involvement of the nitric oxide radical (NO) in ciguatera fish poisoning (CFP), the in vitro effects of the main Pacific ciguatoxin (P-CTX-1B) and bacterial lipopolysaccharide (LPS) were comparatively studied on neuroblastoma Neuro-2a and on macrophage RAW 264.7 cell lines. NO accumulation was quantified by measuring nitrite levels in cellular supernatant using Griess reagent while the up-regulation of inducible nitric oxide synthase (iNOS) at the mRNA level was qu...

  9. Role of nitric oxide and inducible nitric oxide synthase in human abdominal aortic aneurysms: a preliminary study

    Institute of Scientific and Technical Information of China (English)

    LIAO Ming-fang; LI Xiao-yan; JING Zai-ping; BAO Jun-min; ZHAO Zhi-qing; MEI Zhi-jun; LU Qing-shen; Feng Xiang; FENG Rui; ZHANG Su-zen

    2006-01-01

    Background Nitric oxide (NO) is an important mediator in the pathophysiology of many vascular diseases. However, the definite role of NO in human abdominal aortic aneurysm (AAA) formation is unclear. The aim of this study was to investigate production of NO and expression of inducible nitric oxide synthase (iNOS), and their possible role in AAA.Methods A total of 28 patients with AAA, 10 healthy controls, and 8 patients with arterial occlusive disease were enrolled into this study. Standard colorimetric assay was used to examine NO concentration in plasma from patients with AAA and normal controls, and in cultured smooth muscle cells (SMCs). Expression of iNOS in aortas and cultured SMCs were detected by immunochemistry. The correlation of iNOS expression with age of the patient, size of aneurysm, and degree of inflammation was also investigated by Cochran-Mantel-Haenszelχ2 test and Kendall' Tau correlation.Results Expression of iNOS increased significantly in the wall of aneurism in the patients with AAA compared to the healthy controls (P<0.05) and the patients with occlusive arteries (P<0.05). iNOS protein and media NOx (nitrite+nitrate) also increased in cultured SMCs from human AAA (n=4, P<0.05), while plasma NOx decreased in patients with AAA (n=25) compared to the healthy controls (n=20). There was a positive correlation between iNOS protein and degree of inflammation in aneurismal wall (Kendall coefficient=0.5032, P=0.0029)Conclusions SMCs and inflammatory cells were main cellular sources of increased iNOS in AAA, and NO may play a part in pathogenesis in AAA through inflammation.

  10. Nitric oxide synthase inhibition attenuates cutaneous vasodilation during the post-menopausal hot flash

    Science.gov (United States)

    Hubing, Kimberly A.; Wingo, Jonathan E.; Brothers, R. Matthew; Coso, Juan Del; Low, David A.; Crandall, Craig G.

    2010-01-01

    Objective The purpose of this study was to test the hypothesis that local inhibition of nitric oxide and prostaglandin synthesis attenuates cutaneous vasodilator responses during post-menopausal hot flashes. Methods Four microdialysis membranes were inserted into forearm skin (dorsal surface) of 8 post-menopausal women (mean ± SD, 51±7 y). Ringers solution (control), 10mM Ketorolac (Keto) to inhibit prostaglandin synthesis, 10mM NG-L-arginine methyl ester (L-NAME) to inhibit nitric oxide synthase, and a combination of 10mM Keto + 10mM L-NAME were each infused at the separate sites. Skin blood flow at each site was indexed using laser-Doppler flowmetry. Cutaneous vascular conductance (CVC) was calculated as laser-Doppler flux/mean arterial blood pressure and was expressed as a percentage of the maximal calculated CVC (CVCmax) obtained following infusion of 50mM sodium nitropruside at all sites at the end of the study. Data from 13 hot flashes were analyzed. Results At the control site, the mean ± SD peak increase in CVC was 15.5±6% CVCmax units. This value was not different relative to the peak increase in CVC at the Keto site (13.0±5 % CVCmax units, P = 0.09). However, the peak increase in CVC during the flash was attenuated at the L-NAME and L-NAME + Keto sites (7.4±4 % CVCmax units and 8.7±7 % CVCmax units, respectively) relative to both the control and the Keto sites (P<0.05 for both comparisons). There were no significant differences in the peak increases in sweat rate between any of the sites (P = 0.24). Conclusions These data demonstrate that cutaneous vasodilation during a hot flash has a nitric oxide component. Increases in CVC despite the inhibition of prostaglandin synthesis suggest prostaglandins do not contribute to cutaneous vasodilation during a hot flash. PMID:20505548

  11. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    Science.gov (United States)

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  12. Molecular docking analysis of selected Clinacanthus nutans constituents as xanthine oxidase, nitric oxide synthase, human neutrophil elastase, matrix metalloproteinase 2, matrix metalloproteinase 9 and squalene synthase inhibitors

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Narayanaswamy

    2016-01-01

    Full Text Available Background: Clinacanthus nutans (Burm. f. Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO, nitric oxide synthase (NOS, human neutrophil elastase (HNE, matrix metalloproteinase (MMP 2 and 9, and squalene synthase (SQS using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET, and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0 toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS.

  13. Effect of acute nitric oxide synthase inhibition in the modulation of heart rate in rats

    Directory of Open Access Journals (Sweden)

    A.L. Fellet

    2003-05-01

    Full Text Available Acute nitric oxide synthase inhibition with N G-nitro-L-arginine methyl ester (L-NAME on chronotropic and pressor responses was studied in anesthetized intact rats and rats submitted to partial and complete autonomic blockade. Blood pressure and heart rate were monitored intra-arterially. Intravenous L-NAME injection (7.5 mg/kg elicited the same hypertensive response in intact rats and in rats with partial (ganglionic and parasympathetic blockade and complete autonomic blockade (38 ± 3, 55 ± 6, 54 ± 5, 45 ± 5 mmHg, respectively; N = 9, P = NS. L-NAME-induced bradycardia at the time when blood pressure reached the peak plateau was similar in intact rats and in rats with partial autonomic blockade (43 ± 8, 38 ± 5, 46 ± 6 bpm, respectively; N = 9, P = NS. Rats with combined autonomic blockade showed a tachycardic response to L-NAME (10 ± 3 bpm, P<0.05 vs intact animals, N = 9. Increasing doses of L-NAME (5.0, 7.5 and 10 mg/kg, N = 9 caused a similar increase in blood pressure (45 ± 5, 38 ± 3, 44 ± 9 mmHg, respectively; P = NS and heart rate (31 ± 4, 34 ± 3, 35 ± 4 bpm, respectively; P = NS. Addition of L-NAME (500 µM to isolated atria from rats killed by cervical dislocation and rats previously subjected to complete autonomic blockade did not affect spontaneous beating or contractile strength (N = 9. In vivo results showed that L-NAME promoted a tachycardic response in rats with complete autonomic blockade, whereas the in vitro experiments showed no effect on intrinsic heart rate, suggesting that humoral mechanisms may be involved in the L-NAME-induced cardiac response.

  14. Expression of nitric oxide synthase in the colon of diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Rong Zhou; Lin Lin; Yingchun Li; Yingbin Ge

    2005-01-01

    Objective: To investigate the different expression of three isozymes of nitric oxide synthase (NOS) in diabetic rat colons and the contribution to the colonic dysfunction. Methods: Sprague-Dawley (SD) rats were used in this experiment and diabetes were induced by streptozotocin (65 mg/kg, i.v. ). Three isozymes of NOS (nNOS, iNOS and eNOS) expression in proximal and distal colon were measured in two weeks after diabetes induction using the methods of immunocytochemistry and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Results: Positive immunoreactivity for nNOS was found in intermuscular and submucous plexus neuronal cells, neither eNOS nor iNOS had been found in any layers of colon in the two groups. The expression of nNOS mRNA was significantly increased in diabetic colon than that in control rats as determined by RT-PCR. The eNOS mRNA level of diabetic colon was lower compared to thecontrol rats, while no expression of iNOS mRNA was found in the normal or diabetic rats. Conclusion: This report has demonstrated that nNOS increased and eNOS decreased in rat colon in the early stages of diabetes. NO production by the nNOS might play a key role in colonic dysfunction, as supported by raised nNOS mRNA and enzyme expression in the diabetic colon. Reduced eNOS activity might also contribute to colonic dysfunction in experimental diabetes.

  15. Structural Studies of a Complex Between Endothelial Nitric Oxide Synthase and Calmodulin at Physiological Calcium Concentration.

    Science.gov (United States)

    Piazza, Michael; Dieckmann, Thorsten; Guillemette, Joseph Guy

    2016-10-04

    The small acidic protein Calmodulin (CaM) serves as a Ca(2+) sensor and control element for many enzymes including nitric oxide synthase (NOS) enzymes that play major roles in key physiological and pathological processes. CaM binding causes a conformational change in NOS to allow for the electron transfer between the reductase and oxygenase domains through a process that is thought to be highly dynamic. In this report, NMR spectroscopy was used to determine the solution structure of the endothelial NOS (eNOS) peptide in complex with CaM at the lowest Ca(2+) concentration (225 nM) required for CaM to bind to eNOS and corresponds to a physiological elevated Ca2+ level found in mammalian cells. Under these conditions, the CaM-eNOS complex has a Ca(2+)-replete C-terminal lobe bound the eNOS peptide and a Ca(2+) free N-terminal lobe loosely associated to the eNOS peptide. With increasing Ca(2+) concentration, the binding of Ca(2+) by the N-lobe of CaM results in a stronger interaction with the C-terminal region of the eNOS peptide and increased α-helical structure of the peptide that may be part of the mechanism resulting in electron transfer from the FMN to the heme in the oxygenase domain of the enzyme. SPR studies performed under the same conditions show Ca(2+) concentration dependent binding kinetics were consistent with the NMR structural results. This investigation shows that structural studies performed under more physiological relevant conditions provide information on subtle changes in structure that may not be apparent when experiments are performed in excess Ca(2+) concentrations.

  16. Polymorphism of Nitric Oxide Synthase 1 Affects the Clinical Phenotypes of Ischemic Stroke in Korean Population

    Science.gov (United States)

    Yoo, Seung Don; Yun, Dong Hwan; Kim, Hee-Sang; Kim, Su Kang; Kim, Dong Hwan; Chon, Jinmann; Je, Goun; Kim, Yoon-Seong; Chung, Joo-Ho; Chung, Seung Joon; Yeo, Jin Ah

    2016-01-01

    Objective To investigate whether four single nucleotide polymorphisms (SNPs) rs2293054 [Ile734Ile], rs1047735 [His902His], rs2293044 [Val1353Val], rs2682826 (3'UTR) of nitric oxide synthase 1 (NOS1) are associated with the development and clinical phenotypes of ischemic stroke. Methods We enrolled 120 ischemic stroke patients and 314 control subjects. Ischemic stroke patients were divided into subgroups according to the scores of the National Institutes of Health Stroke Survey (NIHSS, <6 and ≥6) and Modified Barthel Index (MBI, <60 and ≥60). SNPStats, SNPAnalyzer, and HelixTree programs were used to calculate odds ratios (ORs), 95% confidence intervals (CIs), and p-values. Multiple logistic regression models were performed to analyze genetic data. Results No SNPs of the NOS1 gene were found to be associated with ischemic stroke. However, in an analysis of clinical phenotypes, we found that rs2293054 was associated with the NIHSS scores of ischemic stroke patients in codominant (p=0.019), dominant (p=0.007), overdominant (p=0.033), and log-additive (p=0.0048) models. Also, rs2682826 revealed a significant association in the recessive model (p=0.034). In allele frequency analysis, we also found that the T alleles of rs2293054 were associated with lower NIHSS scores (p=0.007). Respectively, rs2293054 had a significant association in the MBI scores of ischemic stroke in codominant (p=0.038), dominant (p=0.031), overdominant (p=0.045), and log-additive (p=0.04) models. Conclusion These results suggest that NOS1 may be related to the clinical phenotypes of ischemic stroke in Korean population. PMID:26949676

  17. Participation of neuronal nitric oxide synthase in experimental neuropathic pain induced by sciatic nerve transection

    Directory of Open Access Journals (Sweden)

    M. Chacur

    2010-04-01

    Full Text Available Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO. In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT. Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test and allodynia (von Frey hair test. Control animals did not present any alteration (sham-animals. The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL, blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30 in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%. Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%, reaching the greatest increase (60% 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.

  18. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice.

    Science.gov (United States)

    Hong, Yet Hoi; Frugier, Tony; Zhang, Xinmei; Murphy, Robyn M; Lynch, Gordon S; Betik, Andrew C; Rattigan, Stephen; McConell, Glenn K

    2015-05-01

    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.

  19. Nitric oxide synthase activity and inhibition after neonatal hypoxia ischemia in the mouse brain.

    Science.gov (United States)

    Muramatsu, K; Sheldon, R A; Black, S M; Täuber, M; Ferriero, D M

    2000-10-28

    Despite the emergence of therapies for hypoxic-ischemic injury to the mature nervous system, there have been no proven efficacious therapies for the developing nervous system. Recent studies have shown that pharmacological blockade of neuronal nitric oxide synthase (nNOS) activity can ameliorate damage after ischemia in the mature rodent. We have previously shown that elimination of nNOS neurons, either by targeted disruption of the gene or by pharmacological depletion with intraparenchymal quisqualate, can decrease injury after hypoxia-ischemia. Using a simpler pharmacological approach, we studied the efficacy of a systemically administered NOS inhibitor, 7-nitroindazole, a relatively selective inhibitor of nNOS activity. Using multiple doses and concentrations administered after the insult, we found that there was only a trend for protection with higher doses of the drug. A significant decrease in NOS activity was seen at 18 h and 5 days in the cortex, and at 2 h and 18 h in the hippocampus after the hypoxia-ischemia. nNOS expression decreased and remained depressed for at least 18 h after the insult. When nNOS expression was normalized to MAP2 expression, a decrease was seen at 18 h in the cortex and at 2 and 18 h in the hippocampus. These data suggest that further inhibition of NOS activity at early timepoints may not provide substantial benefit. At 5 days after the insult, however, NOS activity and normalized nNOS expression returned to baseline or higher in the hippocampus, the region showing the most damage. These data suggest that delayed administration of nNOS inhibitor after hypoxic-ischemic injury might be beneficial.

  20. Expression of Endothelial Nitric Oxide Synthase Traffic Inducer in the Placenta of Pregnancy Induced Hypertension

    Institute of Scientific and Technical Information of China (English)

    XIANG Wenpei; CHEN Hanping; GUO Yuzhen; SHEN Hongling

    2006-01-01

    The expression of endothelial nitric oxide synthase traffic inducer (NOSTRIN) in the placenta of the patients with pregnancy induced hypertension (PIH) was detected and its role in the pathogenesis of PIH was studied. The pathological changes in placental vessels were observed by HE staining. NO2-/NO3- , the stable metabolic end products of NO, was measured with nitrate reductase. The eNOS activity in placental tissues was assayed by spectrophotometry. Western blot analysis was applied to detect NOSTRIN expression. The incidence of thickening and fibronoid necrosis of placental vessels was significantly higher in women with PIH than in the normal group (P<0.01). The levels of placental NO2-/NO3- in PIH patients (27.53±7.48 μmol/mg) were significantly lower than in normal group (54.27±9.53 μmol/mg, P<0.01). The activity of eNOS was significantly decreased in PIH group (12. 826±3.61 U/mg) as compared with that in normal group (21. 72±3.83 U/mg, P<0.01). Western blot analysis revealed that both groups expressed 58 kD NOSTRIN, but the protein level was significantly higher in women with PIH than in the normal group (P<0.01). A significant negative correlation existed between the expression of NOSTRIN protein and the activity of eNOS in placental tissue of women with PIH (r=-0. 57, P<0. 01). It was concluded that the level of NOSTRIN expression in placenta of women with PIH was increased, which may play an important role in the pathogenesis of PIH.

  1. Acute nitric oxide synthase inhibition and endothelin-1-dependent arterial pressure elevation

    Directory of Open Access Journals (Sweden)

    Robert eRapoport

    2014-04-01

    Full Text Available Key evidence that endogenous nitric oxide (NO inhibits the continuous, endothelin (ET-1-mediated drive to elevate arterial pressure includes demonstrations that ET-1 mediates a significant component of the pressure elevated by acute exposure to NO synthase (NOS inhibitors. This review examines the characteristics of this pressure elevation in order to elucidate potential mechanisms associated with the negative regulation of ET-1 by NO and, thereby, provide potential insight into the vascular pathophysiology underlying NO dysregulation. We surmise that the magnitude of the ET-1-dependent component of the NOS inhibitor-elevated pressure is 1 independent of underlying arterial pressure and other pressor pathways activated by the NOS inhibitors and 2 dependent on relatively higher NOS inhibitor dose, release of stored and de novo synthesized ET-1, and ETA receptor-mediated increased vascular resistance. Major implications of these conclusions include: 1 the marked variation of the ET-1-dependent component, i.e., from 0-100% of the pressure elevation, reflects the NO-ET-1 regulatory pathway. Thus, NOS inhibitor-mediated, ET-1-dependent pressure elevation in vascular pathophysiologies is an indicator of the level of compromised/enhanced function of this pathway; 2 NO is a more potent inhibitor of ET-1-mediated elevated arterial pressure than other pressor pathways, due in part to inhibition of intravascular pressure-independent release of ET-1. Thus, the ET-1-dependent component of pressure elevation in vascular pathophysiologies associated with NO dysregulation is of greater magnitude at higher levels of compromised NO.

  2. Capsaicin and nitric oxide synthase inhibitor interact to evoke a hypothermic synergy.

    Science.gov (United States)

    Ding, Zhe; Cowan, Alan; Tallarida, Ronald; Rawls, Scott M

    2006-11-27

    The present study investigated the effect of a drug combination of capsaicin and L-NAME on hypothermia in rats. Capsaicin administration (0.1, 0.25, 0.5, 1 and 2mg/kg, i.m.) caused a significant hypothermia. L-NAME (50mg/kg, i.p.), a nonspecific nitric oxide synthase (NOS) inhibitor, was ineffective. For combined administration, progressively increasing doses of capsaicin (0.1, 0.25, 0.5, 1 and 2mg/kg, i.p.) were given with a non-hypothermic dose of L-NAME (50mg/kg, i.p.). Experiments revealed that L-NAME (50mg/kg, i.p.) enhanced the hypothermic response to capsaicin (0.25, 0.5, 1, and 2mg/kg, i.m.). Comparison of the graded dose-effect curves for capsaicin alone and capsaicin plus L-NAME revealed a significant difference (P<0.05), thus indicating synergy for the drug interaction. To determine if L-NAME acted centrally, a fixed dose of L-NAME (1mg/rat, i.c.v.) was given with graded doses of capsaicin (0.25, 0.5, 1, and 2mg/kg, i.m.). L-NAME (1mg/rat, i.c.v.) only enhanced the hypothermia at a single dose of capsaicin (0.5mg/kg, i.m.). The super-additive hypothermia produced by the concurrent administration of capsaicin and L-NAME (50mg/kg, i.p.) is the first evidence of synergy for a drug combination of capsaicin and a NOS inhibitor. The synergy is apparent only when L-NAME is given systemically, thus indicating that the inhibition of peripheral NO production enhances the hypothermic response to capsaicin.

  3. Endothelial nitric oxide synthase tagSNPs influence the effects of enalapril in essential hypertension.

    Science.gov (United States)

    Oliveira-Paula, Gustavo H; Lacchini, Riccardo; Luizon, Marcelo R; Fontana, Vanessa; Silva, Pamela S; Biagi, Celso; Tanus-Santos, Jose E

    2016-05-01

    The antihypertensive effects of angiotensin-converting enzyme inhibitors (ACEi) are associated with up-regulation of endothelial nitric oxide synthase (NOS3) activity. This mechanism may explain how polymorphisms in NOS3 gene affect the antihypertensive responses to ACEi. While clinically relevant NOS3 polymorphisms were previously shown to affect the antihypertensive responses to enalapril, no study has tested the hypothesis that NOS3 tagSNPs influence the antihypertensive effects of this drug. We examined whether the NOS3 tagSNPs rs3918226, rs3918188, and rs743506, and their haplotypes, affect the antihypertensive responses to enalapril in 101 patients with essential hypertension. Subjects were prospectively treated only with enalapril for 8 weeks. Genotypes were determined by Taqman(®) allele discrimination assay and real-time polymerase chain reaction (PCR) and haplotype frequencies were estimated. We compared the effects of NOS3 tagSNPs on changes in blood pressure after enalapril treatment. To confirm our findings, multiple linear regression analysis was performed adjusting for age, gender, ethnicity, and alcohol consumption. We found that hypertensive patients carrying the AA genotype for the tagSNP rs3918188 showed lower decreases in blood pressure in response to enalapril. Moreover, the TCA haplotype was associated with improved decreases in blood pressure in response to enalapril compared with the CAG haplotype. Adjustment for covariates in multiple linear regression analysis did not change these effects. In addition, when patients were stratified according to the dose of enalapril used, we found that the carries of the T allele for the functional tagSNP rs3918226 showed more intense decreases in blood pressure in response to enalapril 20 mg/day. Our findings suggest that NOS3 tagSNPs influence the effects of enalapril in essential hypertension.

  4. Packed red blood cells are an abundant and proximate potential source of nitric oxide synthase inhibition.

    Directory of Open Access Journals (Sweden)

    Charles F Zwemer

    Full Text Available We determined, for packed red blood cells (PRBC and fresh frozen plasma, the maximum content, and ability to release the endogenous nitric oxide synthase (NOS inhibitors asymmetric dimethylarginine (ADMA and monomethylarginine (LNMMA.ADMA and LNMMA are near equipotent NOS inhibitors forming blood's total NOS inhibitory content. The balance between removal from, and addition to plasma determines their free concentrations. Removal from plasma is by well-characterized specific hydrolases while formation is restricted to posttranslational protein methylation. When released into plasma they can readily enter endothelial cells and inhibit NOS. Fresh rat and human whole blood contain substantial protein incorporated ADMA however; the maximum content of ADMA and LNMMA in PRBC and fresh frozen plasma has not been determined.We measured total (free and protein incorporated ADMA and LNMMA content in PRBCs and fresh frozen plasma, as well as their incubation induced release, using HPLC with fluorescence detection. We tested the hypothesis that PRBC and fresh frozen plasma contain substantial inhibitory methylarginines that can be released chemically by complete in vitro acid hydrolysis or physiologically at 37°C by enzymatic blood proteolysis.In vitro strong-acid-hydrolysis revealed a large PRBC reservoir of ADMA (54.5 ± 9.7 µM and LNMMA (58.9 ± 28.9 μM that persisted over 42-d at 6° or -80°C. In vitro 5h incubation at 37°C nearly doubled free ADMA and LNMMNA concentration from PRBCs while no change was detected in fresh frozen plasma.The compelling physiological ramifications are that regardless of storage age, 1 PRBCs can rapidly release pathologically relevant quantities of ADMA and LNMMA when incubated and 2 PRBCs have a protein-incorporated inhibitory methylarginines reservoir 100 times that of normal free inhibitory methylarginines in blood and thus could represent a clinically relevant and proximate risk for iatrogenic NOS inhibition upon

  5. Endothelial nitric oxide synthase single nucleotide polymorphism and left ventricular function in early chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Sourabh Chand

    Full Text Available Chronic kidney disease (CKD is associated with accelerated cardiovascular disease and heart failure. Endothelial nitric oxide synthase (eNOS Glu298Asp single nucleotide polymorphism (SNP genotype has been associated with a worse phenotype amongst patients with established heart failure and in patients with progression of their renal disease. The association of a cardiac functional difference in non-dialysis CKD patients with no known previous heart failure, and eNOS gene variant is investigated.140 non-dialysis CKD patients, who had cardiac magnetic resonance (CMR imaging and tissue doppler echocardiography as part of two clinical trials, were genotyped for eNOS Glu298Asp SNP retrospectively.The median estimated glomerular filtration rate (eGFR was 50 mls/min and left ventricular ejection fraction (LVEF was 74% with no overt diastolic dysfunction in this cohort. There were significant differences in LVEF across eNOS genotypes with GG genotype being associated with a worse LVEF compared to other genotypes (LVEF: GG 71%, TG 76%, TT 73%, p = 0.006. After multivariate analysis, (adjusting for age, eGFR, baseline mean arterial pressure, contemporary CMR heart rate, total cholesterol, high sensitive C-reactive protein, body mass index and gender GG genotype was associated with a worse LVEF, and increased LV end-diastolic and systolic index (p = 0.004, 0.049 and 0.009 respectively.eNOS Glu298Asp rs1799983 polymorphism in CKD patients is associated with relevant sub-clinical cardiac remodelling as detected by CMR. This gene variant may therefore represent an important genetic biomarker, and possibly highlight pathways for intervention, in these patients who are at particular risk of worsening cardiac disease as their renal dysfunction progresses.

  6. Role for neuronal nitric-oxide synthase in cannabinoid-induced neurogenesis.

    Science.gov (United States)

    Kim, Sun Hee; Won, Seok Joon; Mao, Xiao Ou; Ledent, Catherine; Jin, Kunlin; Greenberg, David A

    2006-10-01

    Cannabinoids, acting through the CB1 cannabinoid receptor (CB1R), protect the brain against ischemia and related forms of injury. This may involve inhibiting the neurotoxicity of endogenous excitatory amino acids and downstream effectors, such as nitric oxide (NO). Cannabinoids also stimulate neurogenesis in the adult brain through activation of CB1R. Because NO has been implicated in neurogenesis, we investigated whether cannabinoid-induced neurogenesis, like cannabinoid neuroprotection, might be mediated through alterations in NO production. Accordingly, we measured neurogenesis in dentate gyrus (DG) and subventricular zone (SVZ) of CB1R-knockout (KO) and wild-type mice, some of whom were treated with the cannabinoid agonist R(+)-Win 55212-2 [(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone] or the NO synthase (NOS) inhibitor 7-nitroindazole (7-NI). NOS activity was increased by approximately 25%, whereas bromodeoxyuridine (BrdU) labeling of newborn cells in DG and SVZ was reduced by approximately 50% in CB1R-KO compared with wild-type mice. 7-NI increased BrdU labeling in both DG and SVZ and to a greater extent in CB1R-KO than in wild-type mice. In addition, R(+)-Win 55212-2 and 7-NI enhanced BrdU incorporation into neuron-enriched cerebral cortical cultures to a similar maximal extent and in nonadditive fashion, consistent with a shared mechanism of action. Double-label confocal microscopy showed coexpression of BrdU and the neuronal lineage marker doublecortin (Dcx) in DG and SVZ of untreated and 7-NI-treated CB1R-KO mice, and 7-NI increased the number of Dcx- and BrdU/Dcx-immunoreactive cells in SVZ and DG. Thus, cannabinoids appear to stimulate adult neurogenesis by opposing the antineurogenic effect of NO.

  7. Serine 1179 Phosphorylation of Endothelial Nitric Oxide Synthase Increases Superoxide Generation and Alters Cofactor Regulation.

    Science.gov (United States)

    Peng, Hu; Zhuang, Yugang; Harbeck, Mark C; He, Donghong; Xie, Lishi; Chen, Weiguo

    2015-01-01

    Endothelial nitric oxide synthase (eNOS) is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2-.) in the absence of the cofactor tetrahydrobiopterin (BH4). Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human) phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D) to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM). S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS). The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (Psuperoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity.

  8. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry

    Science.gov (United States)

    McMillan, Kirk; Adler, Marc; Auld, Douglas S.; Baldwin, John J.; Blasko, Eric; Browne, Leslie J.; Chelsky, Daniel; Davey, David; Dolle, Ronald E.; Eagen, Keith A.; Erickson, Shawn; Feldman, Richard I.; Glaser, Charles B.; Mallari, Cornell; Morrissey, Michael M.; Ohlmeyer, Michael H. J.; Pan, Gonghua; Parkinson, John F.; Phillips, Gary B.; Polokoff, Mark A.; Sigal, Nolan H.; Vergona, Ronald; Whitlow, Marc; Young, Tish A.; Devlin, James J.

    2000-01-01

    Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC 1.14.13.39) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC50 values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-l-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (Kd ≈ 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cell-based assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor–heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein–protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED50 values of <2 mg/kg in a rat model of endotoxin-induced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies. PMID:10677491

  9. Response of cardiac endothelial nitric oxide synthase to plasma viscosity modulation in acute isovolemic hemodilution

    Directory of Open Access Journals (Sweden)

    Kanyanatt Kanokwiroon

    2014-01-01

    Full Text Available Background: Endothelial nitric oxide synthase (eNOS is generally expressed in endocardial cells, vascular endothelial cells and ventricular myocytes. However, there is no experimental study elucidating the relationship between cardiac eNOS expression and elevated plasma viscosity in low oxygen delivery pathological conditions such as hemorrhagic shock-resuscitation and hemodilution. This study tested the hypothesis that elevated plasma viscosity increases cardiac eNOS expression in a hemodilution model, leading to positive effects on cardiac performance. Materials and Methods: Two groups of golden Syrian hamster underwent an acute isovolemic hemodilution where 40% of blood volume was exchanged with 2% (low-viscogenic plasma expander [LVPE] or 6% (high-viscogenic plasma expander [HVPE] of dextran 2000 kDa. In control group, experiment was performed without hemodilution. All groups were performed in awake condition. Experimental parameters, i.e., mean arterial blood pressure (MAP, heart rate, hematocrit, blood gas content and viscosity, were measured. The eNOS expression was evaluated by eNOS Western blot analysis. Results: After hemodilution, MAP decreased to 72% and 93% of baseline in the LVPE and HVPE, respectively. Furthermore, pO 2 in the LVPE group increased highest among the groups. Plasma viscosity in the HVPE group was significantly higher than that in control and LVPE groups. The expression of eNOS in the HVPE group showed higher intensity compared to other groups, especially compared with the control group. Conclusion: Our results demonstrated that cardiac eNOS has responded to plasma viscosity modulation with HVPE and LVPE. This particularly supports the previous studies that revealed the positive effects on cardiac function in animals hemodiluted with HVPE.

  10. Expression of nitric oxide synthases and effects of L-arginine and L-NMMA on nitric oxide production and fluid transport in collagenous colitis

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Normark, M;

    2001-01-01

    Luminal nitric oxide (NO) is greatly increased in the colon of patients with collagenous and ulcerative colitis. To define the source and consequence of enhanced NO production we have studied expression of NO synthase (NOS) isoforms and nitrotyrosine in mucosal biopsies from these patients....... In addition, effects on colonic fluid transfer caused by manipulating the substrate of NOS were studied in patients with collagenous colitis....

  11. Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome.

    Science.gov (United States)

    Marchesi, Chiara; Ebrahimian, Talin; Angulo, Orlando; Paradis, Pierre; Schiffrin, Ernesto L

    2009-12-01

    The metabolic syndrome represents a constellation of cardiovascular risk factors that promote the development of cardiovascular disease. Oxidative stress is a mediator of endothelial dysfunction and vascular remodeling. We investigated vascular dysfunction in the metabolic syndrome and the oxidant mechanisms involved. New Zealand obese (NZO) mice with metabolic syndrome and New Zealand black control mice were studied. NZO mice showed insulin resistance and increased visceral fat and blood pressure compared with New Zealand black mice. Mesenteric resistance arteries from NZO mice exhibited increased media:lumen ratio and media cross-sectional area, demonstrating hypertrophic vascular remodeling. Endothelium-dependent relaxation to acetylcholine, assessed by pressurized myography, was impaired in NZO mice, not affected by N(G)-nitro-l-arginine methyl ester, inhibitor of endothelial NO synthase, and improved by the antioxidant Tempol, suggesting reduced NO bioavailability and increased oxidative stress. Dimer:monomer ratio of endothelial NO synthase was decreased in NZO mice compared with New Zealand black mice, suggesting endothelial NO synthase uncoupling. Furthermore, vascular superoxide and peroxynitrite production was increased, as well as adhesion molecule expression. Perivascular adipose tissue of NZO mice showed increased superoxide production and NADPH oxidase activity, as well as adipocyte hypertrophy, associated with inflammatory Mac-3-positive cell infiltration. Vasoconstriction to norepinephrine decreased in the presence of perivascular adipose tissue in New Zealand black mice but was unaffected by perivascular adipose tissue in NZO mice, suggesting loss of perivascular adipose tissue anticontractile properties. Our data suggest that this rodent model of metabolic syndrome is associated with perivascular adipose inflammation and oxidative stress, hypertrophic resistance artery remodeling, and endothelial dysfunction, the latter a result of decreased NO

  12. Inducible nitric oxide synthase contributes to intermittent hypoxia against ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hai-lei DING; Hai-feng ZHU; Jian-wen DONG; Wei-zhong ZHU; Wei-wei YANG; Huang-tian YANG; Zhao-nian ZHOU

    2005-01-01

    Aim: To investigate the role of inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) in the cardioprotection of intermittent hypoxia (IH) against ischemia/reperfusion (I/R) injury. Methods: Langendorff-perfused isolated rat hearts were used to measure variables of left ventricular function during baseline perfusion, ischemia, and reperfusion period. Nitrate plus nitrite (NOx) content in myocardium was measured using a biochemical method, iNOS mRNA and protein expression in rat left ventricles were detected using reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. Results: Myocardial function recovered better in IH rat hearts than in normoxic control hearts.The iNOS-selective inhibitor aminoguanidine (AG) (100 μmol/L) significantly inhibited the protective effects of IH, but had no influence on normoxic rat hearts.The baseline content of NOx in IH hearts was higher than that in normoxic hearts.After 30 min ischemia, the NOx level in normoxic hearts increased compared to the corresponding baseline level, whereas there was no significant change in IH hearts. However, the NOx level in IH hearts was still higher than that of normoxic hearts during ischemia and reperfusion period. AG 100 μmol/L significantly diminished the NOx content in IH and normoxic hearts during ischemia and reperfusion period. The baseline levels of iNOS mRNA and protein in IH hearts were higher than those of normoxic hearts. Compared to the corresponding baseline level,iNOS mRNA and protein levels in normoxic rat hearts increased and those in IH rat hearts decreased after reperfusion. The addition of AG 100 μmol/L significantly decreased iNOS mRNA and protein expression in IH rat hearts after I/R.Conclusion: IH upregulated the baseline level of iNOS mRNA and protein expression leading to an increase in NO production, which may play an important role in the cardiac protection of IH against I/R injury.

  13. Monocyte-induced downregulation of nitric oxide synthase in cultured aortic endothelial cells.

    Science.gov (United States)

    Marczin, N; Antonov, A; Papapetropoulos, A; Munn, D H; Virmani, R; Kolodgie, F D; Gerrity, R; Catravas, J D

    1996-09-01

    Since endothelium-dependent vasodilation is altered in atherosclerosis and enhanced monocyte/endothelial interactions are implicated in early atherosclerosis, we evaluated the effects of monocytes on the endothelial nitric oxide (NO) pathway by estimating release of biologically active NO from cultured endothelial cells and levels of constitutive NO synthase (ecNOS). NO release was estimated in a short-term bioassay using endothelial cell-induced cGMP accumulation in vascular smooth muscle (SM) cells. Exposure of SM cells to porcine aortic endothelial cells (PAECs) and human aortic endothelial cells (HAECs) produced large increases in SM cGMP content; this increase was prevented by NG-nitro-L-arginine methyl ester, the inhibitor of endothelial NOS. Confluent monolayers of PAECs and HAECs cocultured with monocytes also stimulated SM cGMP formation; however, NO release from these cultures was attenuated in a coculture time (2 to 48 hours)- and monocyte concentration (20 to 200 x 10(3) per well)-dependent manner. This effect of monocyte adhesion appeared to be selective for NO release since other biochemical pathways, such as atriopeptin-and isoproterenol-induced cyclic nucleotide accumulation within the endothelial cells, were not altered by monocytes. The effects of adherent monocytes on NO release were mimicked by monocyte-derived cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 alpha. Furthermore, the conditioned medium of monocytes contained significant quantities of these cytokines. Conditioned medium, as well as monocytes physically separated from the endothelial cells, attenuated NO release, suggesting that soluble factors may mediate the effects of monocytes. An IL-1 beta neutralizing antibody fully prevented the NO dysfunction in response to directly adherent monocytes. Superoxide dismutase, catalase, 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron), and exogenous L-arginine failed to improve NO release, suggesting that oxidant stress

  14. Spinal motoneuron synaptic plasticity after axotomy in the absence of inducible nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Zanon Renata G

    2010-05-01

    Full Text Available Abstract Background Astrocytes play a major role in preserving and restoring structural and physiological integrity following injury to the nervous system. After peripheral axotomy, reactive gliosis propagates within adjacent spinal segments, influenced by the local synthesis of nitric oxide (NO. The present work investigated the importance of inducible nitric oxide synthase (iNOS activity in acute and late glial responses after injury and in major histocompatibility complex class I (MHC I expression and synaptic plasticity of inputs to lesioned alpha motoneurons. Methods In vivo analyses were carried out using C57BL/6J-iNOS knockout (iNOS-/- and C57BL/6J mice. Glial response after axotomy, glial MHC I expression, and the effects of axotomy on synaptic contacts were measured using immunohistochemistry and transmission electron microscopy. For this purpose, 2-month-old animals were sacrificed and fixed one or two weeks after unilateral sciatic nerve transection, and spinal cord sections were incubated with antibodies against classical MHC I, GFAP (glial fibrillary acidic protein - an astroglial marker, Iba-1 (an ionized calcium binding adaptor protein and a microglial marker or synaptophysin (a presynaptic terminal marker. Western blotting analysis of MHC I and nNOS expression one week after lesion were also performed. The data were analyzed using a two-tailed Student's t test for parametric data or a two-tailed Mann-Whitney U test for nonparametric data. Results A statistical difference was shown with respect to astrogliosis between strains at the different time points studied. Also, MHC I expression by iNOS-/- microglial cells did not increase at one or two weeks after unilateral axotomy. There was a difference in synaptophysin expression reflecting synaptic elimination, in which iNOS-/- mice displayed a decreased number of the inputs to alpha motoneurons, in comparison to that of C57BL/6J. Conclusion The findings herein indicate that i

  15. Protein kinase D interacts with neuronal nitric oxide synthase and phosphorylates the activatory residue serine 1412.

    Directory of Open Access Journals (Sweden)

    Lucía Sánchez-Ruiloba

    Full Text Available Neuronal Nitric Oxide Synthase (nNOS is the biosynthetic enzyme responsible for nitric oxide (·NO production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2 constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser 916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser 1412, and that this phosphorylation increases nNOS activity and ·NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ·NO, a mediator involved in physiological neuronal signaling or neurotoxicity under

  16. A novel, testis-specific mRNA transcript encoding an NH2-terminal truncated nitric-oxide synthase.

    Science.gov (United States)

    Wang, Y; Goligorsky, M S; Lin, M; Wilcox, J N; Marsden, P A

    1997-04-25

    mRNA diversity represents a major theme of neuronal nitric-oxide synthase (nNOS) gene expression in somatic cells/tissues. Given that gonads often express unique and biologically informative variants of complex genes, we determined whether unique variants of nNOS are expressed in the testis. Analysis of cDNA clones isolated from human testis identified a novel, testis-specific nNOS (TnNOS) mRNA transcript. A predicted 3294-base pair open reading frame encodes an NH2-terminal truncated protein of 1098 amino acids. Measurement of calcium-activated L-[14C]citrulline formation and nitric oxide release in CHO-K1 cells stably transfected with the TnNOS cDNA indicates that this protein is a calcium-dependent nitric-oxide synthase with catalytic activity comparable to that of full-length nNOS. TnNOS transcripts exhibit novel 5' mRNA sequences encoded by two unique exons spliced to exon 4 of the full-length nNOS. Characterization of the genomic structure indicates that exonic regions used by the novel TnNOS are expressed from intron 3 of the NOS1 gene. Although lacking canonical TATA and CAAT boxes, the 5'-flanking region of the TnNOS exon 1 contains multiple putative cis-regulatory elements including those implicated in testis-specific gene expression. The downstream promoter of the human nNOS gene, which directs testis-specific expression of a novel NH2-terminal truncated nitric-oxide synthase, represents the first reported example in the NOS gene family of transcriptional diversity producing a variant NOS protein.

  17. Inhaled nitric oxide decreases pulmonary endothelial nitric oxide synthase expression and activity in normal newborn rat lungs

    Directory of Open Access Journals (Sweden)

    Thông Hua-Huy

    2016-02-01

    Full Text Available Inhaled nitric oxide (iNO is commonly used in the treatment of very ill pre-term newborns. Previous studies showed that exogenous NO could affect endothelial NO synthase (eNOS activity and expression in vascular endothelial cell cultures or adult rat models, but this has never been fully described in newborn rat lungs. We therefore aimed to assess the effects of iNO on eNOS expression and activity in newborn rats. Rat pups, post-natal day (P 0 to P7, and their dams were placed in a chamber containing NO at 5 ppm (iNO-5 ppm group or 20 ppm (iNO-20 ppm group, or in room air (control group. Rat pups were sacrificed at P7 and P14 for evaluation of lung eNOS expression and activity. At P7, eNOS protein expression in total lung lysates, in bronchial and arterial sections, was significantly decreased in the iNO-20 ppm versus control group. At P14, eNOS expression was comparable among all three groups. The amounts of eNOS mRNA significantly differed at P7 between the iNO-20 ppm and control groups. NOS activity decreased in the iNO-20 ppm group at P7 and returned to normal levels at P14. There was an imbalance between superoxide dismutase and NOS activities in the iNO-20 ppm group at P7. Inhalation of NO at 20 ppm early after birth decreases eNOS gene transcription, protein expression and enzyme activity. This decrease might account for the rebound phenomenon observed in patients treated with iNO.

  18. Hyperlipidemia affects neuronal nitric oxide synthase expression in brains of focal cerebral ischemia rat model

    Institute of Scientific and Technical Information of China (English)

    Jianji Pei; Liqiang Liu; Jinping Pang; Xiaohong Tian

    2008-01-01

    BACKGROUND: Hyperlipidemia, a risk factor for ischemic cerebrovascular disease, may mediate production of neuronal nitric oxide synthase (nNOS) to induce increased nitric oxide levels, resulting in brain neuronal injury. OBJECTIVE: To investigate effects of hyperlipidemia on brain nNOS expression, and to verify changes in infarct volume and pathology during reperfusion, as well as neuronal injury following ischemia/reperfusion in a rat model of focal cerebral ischemia. DESIGN, TIME AND SETTING: Complete, randomized grouping experiment was performed at the Laboratory of Physiology, Shanxi Medical University from March 2005 to March 2006. MATERIALS: A total of 144 eight-week-old, male, Wistar rats, weighing 160-180 g, were selected. A rat model of middle cerebral artery occlusion was established by suture method after 4 weeks of formulated diet. Nitric oxide kit and rabbit anti-rat nNOS kit were respectively purchased from Nanjing Jiancheng Bioengineering Institute, China and Wuhan Boster Biological Technology, Ltd., China. METHODS: The rats were equally and randomly divided into high-fat diet and a normal diet groups. Rats in the high-fat diet group were fed a high-fat diet, consisting of 10% egg yolk powder, 5% pork fat, and 0.5% pig bile salt combined with standard chow to create hyperlipidemia. Rats in the normal diet group were fed a standard rat chow. A total of 72 rats in both groups were randomly divided into 6 subgroups: sham-operated, 4-hour ischemia, 4-hour ischemia/2-hour reperfusion, 4-hour ischemia/4-hour reperfusion, 4-hour ischemia/6-hour reperfusion, and 4-hour ischemia/12-hour reperfusion, with 12 rats in each subgroup. MAIN OUTCOME MEASURES: nNOS expression was measured by immunohistochemistry, and pathomorphology changes were detected by hematoxylin-eosin staining. Infarct volume and nitric oxide levels were respectively measured using 2, 3, 5-triphenyltetrazolium chloride (TTC) and immunohistochemistry. RESULTS: In the ischemic region, pathology

  19. The Expression of Type-1 and Type-2 Nitric Oxide Synthase in Selected Tissues of the Gastrointestinal Tract during Mixed Mycotoxicosis

    Directory of Open Access Journals (Sweden)

    Magdalena Gajęcka

    2013-11-01

    Full Text Available The aim of the study was to verify the hypothesis that intoxication with low doses of mycotoxins leads to changes in the mRNA expression levels of nitric oxide synthase-1 and nitric oxide synthase-2 genes in tissues of the gastrointestinal tract and the liver. The experiment involved four groups of immature gilts (with body weight of up to 25 kg which were orally administered zearalenone in a daily dose of 40 μg/kg BW (group Z, n = 18, deoxynivalenol at 12 μg/kg BW (group D, n = 18, zearalenone and deoxynivalenol (group M, n = 18 or placebo (group C, n = 21 over a period of 42 days. The lowest mRNA expression levels of nitric oxide synthase-1 and nitric oxide synthase-2 genes were noted in the sixth week of the study, in particular in group M. Our results suggest that the presence of low mycotoxin doses in feed slows down the mRNA expression of both nitric oxide synthase isomers, which probably lowers the concentrations of nitric oxide, a common precursor of inflammation.

  20. Quiescent interplay between inducible nitric oxide synthase and tumor necrosis factor-alpha: influence on transplant graft vasculopathy in renal allograft dysfunction.

    Science.gov (United States)

    Elahi, Maqsood M; Matata, Bashir M; Hakim, Nadey S

    2006-06-01

    A healthy endothelium is essential for vascular homeostasis, and preservation of endothelial cell function is critical for maintaining transplant allograft function. Damage to the microvascular endothelial cells is now regarded as a characteristic feature of acute vascular rejection, an important predictor of graft loss. It is also linked with transplant vasculopathy, often associated with chronic allograft nephropathy. Large bursts of nitric oxide in infiltrating monocytes/macrophages modulated by inducible nitric oxide synthase are considered pivotal in driving this mechanism. Indeed, it has been shown recently that increased circulating levels of tumor necrosis factor-alpha in the rejecting kidneys are largely responsible for triggering inducible nitric oxide synthase expression. This in turn suggests that several structural and functional features of graft rejection could be mediated by tumor necrosis factor-alpha. Despite the large body of evidence that supports immunologic involvement, knowledge concerning the cellular and biochemical mechanisms for nephritic cell dysfunction and death is incomplete. The role of tumor necrosis factor-alpha in mediating pathophysiological activity of inducible nitric oxide synthase during transplant vasculopathy remains contentious. Here, we discuss the effect of inducible nitric oxide synthase and tumor necrosis factor-alpha interaction on progressive damage to glomerular and vascular structures during renal allograft rejection. Selective inhibition of inducible nitrous oxide synthase and tumor necrosis factor-alpha as a potential therapy for ameliorating endothelial dysfunction and transplant graft vasculopathy is also discussed.

  1. Sequential changes in redox status and nitric oxide synthases expression in the liver after bile duct ligation.

    Science.gov (United States)

    Vázquez-Gil, M José; Mesonero, M José; Flores, Olga; Criado, Manuela; Hidalgo, Froilán; Arévalo, Miguel A; Sánchez-Rodríguez, Angel; Tuñón, M Jesús; López-Novoa, José M; Esteller, A

    2004-06-25

    Bile duct ligation (BDL) in rats induces portal fibrosis. This process has been linked to changes in the oxidative state of the hepatic cells and in the production of nitric oxide. Our objective was to find possible temporal connections between hepatic redox state, NO synthesis and liver injury. In this work we have characterized hepatic lesions 17 and 31 days after BDL and determined changes in hepatic function, oxidative state, and NO production. We have also analyzed the expression and localization of inducible NO synthase (NOS2) and constitutive NO synthase (NOS3). After 17 and 31 days from ligature, lipid peroxidation is increased and both plasma concentration and biliary excretion of nitrite+nitrate are rised. 17 days after BDL both NOS2 and NOS3 are expressed intensely and in the same regions. 31 days after BDL, the expression of NOS2 remains elevated and is localized mostly in preserved hepatocytes in portal areas and in neighborhoods of centrolobulillar vein. NOS3 is localized in vascular regions of portal spaces and centrolobulillar veins and in preserved sinusoids and although its expression is greater than in control animals (34%), it is clearly lower (50%) than 17 days after BDL. The time after BDL is crucial in the study of NO production, intrahepatic localization of NOS isoforms expression, and cell type involved, since all these parameters change with time. BDL-induced, peroxidation and fibrosis are not ligated by a cause-effect relationship, but rather they both seem to be the consequence of common inductors.

  2. Temperature-dependent spin crossover in neuronal nitric oxide synthase bound with the heme-coordinating thioether inhibitors.

    Science.gov (United States)

    Doukov, Tzanko; Li, Huiying; Sharma, Ajay; Martell, Jeffrey D; Soltis, S Michael; Silverman, Richard B; Poulos, Thomas L

    2011-06-01

    A series of L-arginine analogue nitric oxide synthase inhibitors with a thioether tail have been shown to form an Fe-S thioether interaction as evidenced by continuous electron density between the Fe and S atoms. Even so, the Fe-S thioether interaction was found to be far less important for inhibitor binding than the hydrophobic interactions between the alkyl group in the thioether tail and surrounding protein (Martell et al. J. Am. Chem. Soc. 2010 , 132 , 798). However, among the few thioether inhibitors that showed Fe-S thioether interaction in crystal structures, variations in spin state (high-spin or low-spin) were observed dependent upon the heme iron oxidation state and temperature. Since modern synchrotron X-ray data collection is typically carried out at cryogenic temperatures, we reasoned that some of the discrepancies between cryo-crystal structures and room-temperature UV-visible spectroscopy could be the result of temperature-dependent spin-state changes. We, therefore, have characterized some of these neuronal nitric oxide synthase (nNOS)-thioether inhibitor complexes in both crystal and solution using EPR and UV-visible absorption spectrometry as a function of temperature and the heme iron redox state. We found that some thioether inhibitors switch from high to low spin at lower temperatures similar to the "spin crossover" phenomenon observed in many transition metal complexes.

  3. Short-term effect of the HMG-CoA reductase inhibitor rosuvastatin on erythrocyte nitric oxide synthase activity

    Directory of Open Access Journals (Sweden)

    Barbara Ludolph

    2008-01-01

    Full Text Available Barbara Ludolph1, Wilhelm Bloch2, Malte Kelm1, Rainer Schulz3, Petra Kleinbongard11Department of Medicine, Medical Clinic I, University Hospital RTWH Aachen, Germany; 2Department of Molecular and Cellular Sport Medicine, Sport University Cologne, Germany; 3Institute of Pathophysiology, Medical School, University of Essen, GermanyAbstract: Prevention and treatment of cardiovascular disorders by HMG-CoA reductase inhibitors (or statins, beyond their lipid-lowering properties, have been demonstrated including activation of the endothelial nitric oxide synthase (eNOS. Beside endothelial cells, red blood cells (RBCs possess NOS and produce nitric oxide (NO, which contributes to RBC deformability. The present study tested the capacity of statins to activate NOS in RBCs and subsequently to modulate RBC deformability in vitro. Blood samples of healthy young volunteers were incubated with or without rosuvastatin. Afterwards RBC-NOS activity and RBC deformability were determined. Rosuvastatin incubation significantly increased NOS phosphorylation, NOS dependent NO-formation, and RBC deformability. The NOS inhibitor NG- monomethyl-L-arginine reversed the stimulatory effect of rosuvastatin on RBC-NOS activity. This NO dependent effect of rosuvastatin might have an important influence on microcirculation and may offer new perspectives for the therapeutic use of statins.Keywords: red blood cell, nitric oxide synthase, red blood cell deformability, statin

  4. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri;

    2014-01-01

    Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP...

  5. Temperature dependent spin crossover in neuronal nitric oxide synthase bound with the heme-coordinating thioether inhibitors

    OpenAIRE

    Doukov, Tzanko; Li, Huiying; Sharma, Ajay; Martell, Jeffrey D.; Soltis, Michael; Silverman, Richard B.; Poulos, Thomas L.

    2011-01-01

    A series of L-arginine analogue nitric oxide synthase inhibitors with a thioether tail have been shown to form an Fe-S thioether interaction as evidenced by continuous electron density between the Fe and S atoms. Even so, the Fe-S thioether interaction was found to be far less important for inhibitor binding than the hydrophobic interactions between the alkyl group in the thioether tail and surrounding protein (Martell et al., (2010) J. Am. Chem. Soc. 132, 798). However, among the few thioeth...

  6. Fetal origins of adult vascular dysfunction in mice lacking endothelial nitric oxide synthase.

    Science.gov (United States)

    Longo, Monica; Jain, Venu; Vedernikov, Yuri P; Bukowski, Radek; Garfield, Robert E; Hankins, Gary D; Anderson, Garland D; Saade, George R

    2005-05-01

    Epidemiological studies have shown increased incidence of hypertension and coronary artery disease in growth-restricted fetuses during their adult life. A novel animal model was used to test the hypothesis regarding the role of an abnormal uterine environment in fetal programming of adult vascular dysfunction. Mice lacking a functional endothelial nitric oxide synthase (NOS3-/-KO, where KO is knockout) and wild-type (WT) mice (NOS3+/+WT) were crossbred to produce homozygous NOS3-/-KO, maternally derived heterozygous (NOS3+/-mat, mother with NOS3 deficiency), paternally derived heterozygous (NOS3+/-pat, normal mother), and NOS3+/+WT litters. Number of fetuses per litter was smaller in NOS3-/-KO and NOS3+/-mat compared with NOS3+/-pat and NOS3+/+WT mice. Adult female mice from these litters (7-8 wk old) were killed, and ring preparations of carotid and mesenteric arteries were mounted in a wire myograph to evaluate the passive and reactive vascular characteristics. Slope of the length-tension plot (a measure of vascular compliance) was increased, and optimal diameter (as calculated by Laplace equation) was decreased in NOS3-/-KO and NOS3+/-mat compared with NOS3+/-pat and NOS3+/+WT mice. Acetylcholine caused vasorelaxation in NOS3+/-pat and NOS3+/+WT and contraction in NOS3-/-KO and NOS3+/-mat mice. Responses to phenylephrine and Ca2+ were increased in NOS3-/-KO and NOS3+/-mat compared with NOS3+/-pat and NOS3+/+WT mice. Relaxation to isoproterenol was decreased in NOS3-/-KO and NOS3+/-mat vs. NOS3+/-pat and NOS3+/+WT mice. Abnormalities in the passive and reactive in vitro vascular properties seen in NOS+/-mat that developed in a NOS3-deficient maternal/uterine environment compared with the genetically identical NOS3+/-pat mice that developed in a normal environment are the first direct evidence in support of a role for uterine environment in determining vascular function in later life.

  7. Relationship between inducible nitric oxide synthase expression and angiogenesis in primary gallbladder carcinoma tissue

    Institute of Scientific and Technical Information of China (English)

    Xin-Jie Niu; Zuo-Ren Wang; Sheng-Li Wu; Zhi-Min Geng; Yun-Feng Zhang; Xing-Lei Qing

    2004-01-01

    AIM: To explore the relationship between angiogenesis and biological behaviors of primary gallbladder carcinoma (PGBC),the relationship between the expression of inducible nitric oxide synthase (iNOS) and biological behaviors of PGBC and its relationship with the expression of iNOS and angiogenesis of PGBC.METHODS: The expression of iNOS and micro-vessel density (MVD) were assessed by immunohistochemical method and image analysis system in 40 specimens of PGBC and in 8 specimens of normal gallbladder. The immunostaining results and related clinicopathologic materials were analyzed by statistical methods.RESULTS: MVD in PGBC was significantly higher than that in normal gallbladder tissue (46±14 vS 14±6, P<0.05), and was not related with age, gender, tumor size and histological type. MVD of poorly and undifferentiated tumor tissues was higher than that of moderately-differentiated and welldifferentiated tumor tissues (52±9 vs43±9 vs33±6, P<0.01).MVD of Nevin IV and V stages was higher than that of Nevin I, II and III stages (52±8 Vs37±13, P<0.01). MVD of cases with lymphatic or liver metastasis was significantly higher than that without liver metastasis (55±6 vS42±10, P<0.05)or lymphatic metastasis (53±8 vs38±8, P<0.01). The positive level index (PLI) of iNOS in PGBC was 0.435±0.134, and was not related with age, gender, tumor size, histological type,differentiation and clinical stage of PGBC. The PLI of iNOS in cases with lymphatic metastasis was higher than that without lymphatic metastasis (0.573±0.078 vs0.367±0.064,P<0.01). The PLI of iNOS in cases with liver metastasis was higher than that without liver metastasis (0.533±0.067 vS 0.424±0.084, P<0.05). There was a significant correlation between PLI of iNOS and MVD in PGBC (P<0.05).CONCLUSION: Angiogenesis of PGBC is significantly related to the biological behaviors of PGBC. The expression of iNOS is related to the biological behaviors of PGBC. The detection of MVD and the

  8. Changes of macrovascular endothelial ultrastructure and gene expression of endothelial nitric oxide synthase in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    陆颖理; 胡申江; 沈周俊; 邵一川

    2004-01-01

    Background The most intimidatory pathological changes in patients with DM are cardiovascular illnesses, which are the major causes of death in diabetic patients and are far more prevalent than in nondiabetics because of accelerated atherosclerosis. In this study, we tried to clarify the changes in macrovascular endothelial ultrastructure and in the gene expression of endothelial nitric oxide synthase (eNOS)mRNA in diabetic rats. Methods The study was conducted on 52 of 10-week old Sprague Dawley (SD) rats with body weight of (320±42) g. SD rats were divided into: experimental group treated with a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg), (male, n=20, diabetes mellitus (DMM)); female, n=12, diabetes mellitus female (DMF)) and control group (male, n=10, diabetes mellitus male control (DMMC); female, n=10, diabetes mellitus female control (DMFC)). Four weeks after treatment, half of the rats were sacrificed; the remainders were sacrificed ten weeks after treatment. One part of the abdominal aortic sample was stored under glutaraldehyde (volume fraction ψB = 2.5 %). After the process of chemical fixation, chemical dehydration, drying and conductivity enhancement, all samples were observed and photographed using scanning electron microscopy (Leica-Stereoscan 260, England). The other part of the abdominal aortic sample was treated with liquid nitrogen and the expression of eNOSmRNA was assessed by semi-quantitative RT-PCR. Results The aortic lumen of both experimental groups adsorbed much more debris than that of either control group. The endothelial surfaces of diabetic rats were coarse, wrinkled and protuberant like fingers or villi. The vascular endothelial lesions of diabetic male rats were very distinct after 4 weeks, and as obvious as those at 10 weeks. The vascular endothelial lesions of diabetic female rats were not severe at 4 weeks and only became marked after 10 weeks. In both males and females, the abdominal aortic eNOSmRNA content

  9. Neuronal nitric oxide synthase: its role and regulation in macula densa cells.

    Science.gov (United States)

    Kovács, Gergely; Komlósi, Péter; Fuson, Amanda; Peti-Peterdi, János; Rosivall, László; Bell, P Darwin

    2003-10-01

    Macula densa (MD) cells detect changes in distal tubular sodium chloride concentration ([NaCl](L)), at least in part, through an apical Na:2Cl:K co-transporter. This co-transporter may be a site for regulation of tubuloglomerular feedback (TGF), and recently angiotensin II (Ang II) was shown to regulate the MD Na:2Cl:K co-transporter. In addition, nitric oxide (NO) produced via neuronal NO synthase (nNOS) in MD cells attenuates MD-TGF signaling. This study investigated [NaCl](L)-dependent MD-NO production, the regulation of co-transporter activity by NO, and the possible interaction of NO with Ang II. MD cell Na(+) concentration ([Na(+)](i)) and NO production were measured using sodium-binding benzofuran isophthalate and 4-amino-5-methylamino-2',7'-difluorescein diacetate, respectively, using fluorescence microscopy. Na:2Cl:K co-transport activity was assessed as the initial rate of increase in [Na(+)](i) when [NaCl](L) was elevated from 25 to 150 mM. 10(-4) M 7-nitroindazole, a specific nNOS blocker, significantly increased by twofold the initial rate of rise in [Na(+)](i) when [NaCl](L) was increased from 25 to 150 mM, indicating co-transporter stimulation. There was no evidence for an interaction between the stimulatory effect of Ang II and the inhibitory effect of NO on co-transport activity, and, furthermore, Ang II failed to alter MD-NO production. NO production was sensitive to [NaCl](L) but increased only when [NaCl](L) was elevated from 60 to 150 mM. These studies indicate that MD-NO directly inhibits Na:2Cl:K co-transport and that NO and Ang II independently alter co-transporter activity. In addition, generation of MD-NO seems to occur only at markedly elevated [NaCl](L), suggesting that NO may serve as a buffer against high rates of MD cell transport and excessive TGF-mediated vasoconstriction.

  10. Inducible nitric oxide synthase expression is upregulated in oral submucous fibrosis

    Directory of Open Access Journals (Sweden)

    Rajendran R

    2007-01-01

    Full Text Available Objective: We tested the hypothesis that inducible nitric oxide synthase (iNOS modulates angiogenesis in human models and this information could be extrapolated in elucidating the pathophysiology of oral submucous fibrosis (OSF. A hypothesis which looks inadequate, but is deep rooted in literature is the epithelial alteration ("atrophy" seen in OSF and the events that lead to its causation. This aspect was tried to be addressed and an alternative pathogenetic pathway for the disease is proposed. Materials and Methods: This immunohistochemical study sought to investigate the expression of iNOS in OSF samples (n= 30 a using monospecific antibody (SC- 2050, Santa Cruz Biotechnology, Inc to the protein and also to correlate it with different grades of epithelial dysplasia associated with the disease. Twenty (20 healthy adults acted as controls. Results: iNOS staining was not demonstrated in normal oral epithelium. In oral epithelial dysplasia, staining was seen in all cases (100% in the basal layers of the epithelium and in 30% of cases it extended into the parabasal compartments as well. iNOS staining was uniformly positive in moderate dysplasia with an increase in intensity and distribution noted as the severity of dysplasia progressed. There were highly significant differences in overall positivity for iNOS in epithelium between cases and controls (Mann-Whitney U = 11.000, Wilcoxon W = 221.00, P = 0.000. Significant comparisons were made of mild Vs moderate dysplasia (Mann-Whitney U = 48.000, P = 0.014 Conclusions: This study supports our earlier morphological assessment (image analysis of the nature of vascularity in OSF mucosa. The significant vasodilation noticed in these cases argues against the concept of ischemic atrophy of the epithelium. This observation of vascularity and iNOS expression helped to explain the vasodilation noticed (sinusoids in this disease; NO being a net vasodilator. The mechanism of activation of iNOS in dysplasia is

  11. Influence of nitric oxide synthase inhibitor on gerbil behavior after hyperbaric oxygen-induced convulsion

    Institute of Scientific and Technical Information of China (English)

    Jianguang Zhou; Changyun Liu; Yiqun Fang; Yingqi Zhou; Erli Xu; Jingchang Liu

    2008-01-01

    BACKGROUND: Studies have reported that nitric oxide synthase (NOS) inhibitor can prolong the latency of hyperbaric oxygen-induced convulsion (HBOC). However, there are very few reports addressing the influence of NOS inhibitor on mental behavior.OBJECTIVE: To investigate behavioral changes after HBOC in gerbils, as well as the influence of NOS inhibitor.DESIGN, TIME AND SETTING: Randomized experiments were performed in the Laboratory of Hyperbaric Pressure and Diving Physiology, Naval Medical Research Institute of Chinese PLA (Shanghai,China) from March 2005 to June 2007.MATERIALS: Forty male gerbils were randomly divided into five groups: HBOC, saline control, NOS inhibitor, pressure control, and normal control. Each group contained eight animals.METHODS: In the HBOC group, once depression induction ended, animals were removed from the chamber five minutes after the first appearance of generalized convulsion induced by 0.5 MPa hyperbaric oxygen. Ten minutes before entering the chamber, saline control and NOS inhibitor animals were intraperitoneally injected with 1 mL saline and 20 mg/kg NG-nitro-L-arginine, respectively. The pressure control group was only exposed to 0.5 MPa. The remaining procedures in these three groups were identical to the HBOC group. The normal control group received no intervention.MAIN OUTCOME MEASURES: Open field test scores in gerbils prior to HBOC, as well as immediately,24 hours, and 72 hours after decompression ended.RESULTS: HBOC was not detected in either the normal control or the pressure control group, and there were no significant differences in opcn field test scores prior to and after HBOC (P > 0.05). HBOC occurred in the HBOC, saline control, and NOS inhibitor groups, with significant differences in open field test scores after decompression ended compared to normal control and pressure control groups (P < 0.05-0.01).Compared to the HBOC and saline control groups, the NOS inhibitor group exhibited a significantly lower score in

  12. Relationships between endothelial nitric oxide synthase gene polymorphisms and osteoporosis in postmenopausal women

    Institute of Scientific and Technical Information of China (English)

    Shun-zhi LIU; Hong YAN; Wei-kun HOU; Peng XU; Juan TUN; Li-fang TIAN; Bo-feng ZHU; Jie MA; She-min LU

    2009-01-01

    Objective: To investigate the relationships between endothelial nitric oxide synthases (eNOS) G894T and 27 bp-variable number tandem repeat (VNTR) gene polymorphisms and osteoporosis in the postmenopausal women of Chinese Han nationality. Methods: In the present study, 281 postmenopausal women from Xi'an urban area in West China were recruited, and divided into osteoporosis, osteopenia, and normal groups according to the diagnostic criteria of osteoporosis proposed by World Health Organization (WHO). The bone mineral density (BMD) values of lumbar vertebrae and left hips were determined by QDR-2000 dual energy X-ray absorptiometry. Blood samples were tested for plasma biochemical indicators including testosterone, estradiol, calcitonin, osteocalcin, and procollagen type I amino-terminal propeptide by enzyme-linked immunosorbent assay (ELISA), tartrate-resistant acid phosphatase by spectrophotometric method, and the content of nitric oxide by Griess method. Genome DNA was extracted from whole blood, and G894T polymorphism of eNOS gene was analyzed by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and 27 bp-VNTR polymorphism of eNOS gene was genotyped by PCR method. Then the relationships between genotypes and biochemical indicators, genotypes and osteoporosis, and haplotypes and osteoporosis were analyzed. Results: The average BMD values of the femoral neck, ward's triangle and lumbar vertebrae 1~4 (L1~L4) in the subjects with T/T genotype in eNOS G894T locus were significantly higher than those in the subjects with G/T and G/G genotypes (P<0.05). The average BMD of the femoral neck in the subjects with a/a genotype of eNOS 27 bp-VNTR locus was evidently higher than that in the subjects with b/b genotype (P<0.05). The plasma testosterone and osteocalcin concentrations in the subjects of eNOS G894T G/T genotype were evidently higher than those in the subjects of other genotypes (P<0.05); the plasma estradiol

  13. CuCl-catalyzed aerobic oxidation of 2,3-allenols to 1,2-allenic ketones with 1:1 combination of phenanthroline and bipyridine as ligands

    Directory of Open Access Journals (Sweden)

    Shengming Ma

    2011-04-01

    Full Text Available A protocol has been developed to prepare 1,2-allenyl ketones using molecular oxygen in air or pure oxygen as the oxidant from 2,3-allenylic alcohols with moderate to good yields under mild conditions. In this reaction CuCl (20 mol % with 1,10-phenanthroline (10 mol % and bipyridine (10 mol % was used as the catalyst. It is interesting to observe that the use of the mixed ligands is important for the higher yields of this transformation: With the monoligand approach developed by Markó et al., the yields are relatively lower.

  14. Endothelial Nitric Oxide Synthase Gene Polymorphism (G894T and Diabetes Mellitus (Type II among South Indians

    Directory of Open Access Journals (Sweden)

    T. Angeline

    2011-01-01

    Full Text Available The objective of the study is to find out whether the endothelial nitric oxide synthase (eNOS G894T single-nucleotide polymorphism is associated with type 2 diabetes mellitus in South Indian (Tamil population. A total number of 260 subjects comprising 100 type 2 diabetic mellitus patients and 160 healthy individuals with no documented history of diabetes were included for the study. DNA was isolated, and eNOS G894T genotyping was performed using the polymerase chain reaction followed by restriction enzyme analysis using Ban II. The genotype distribution in patients and controls were compatible with the Hardy-Weinberg expectations (P>0.05. Odds ratio indicates that the occurrence of mutant genotype (GT/TT was 7.2 times (95% CI = 4.09–12.71 more frequent in the cases than in controls. Thus, the present study demonstrates that there is an association of endothelial nitric oxide synthase gene (G894T polymorphism with diabetes mellitus among South Indians.

  15. NITRIC OXIDE SYNTHASE AND VASCULAR ENDOTHELIAL GROWTH FACTOR EXPRESSION IN HEPATOCELLULAR CARCINOMA AND THE CORRELATION WITH ANGIOGENESIS

    Institute of Scientific and Technical Information of China (English)

    王鲁; 汤钊猷; 孙惠川; 叶胜龙; 纪元; 陆洪芬; 施达仁

    2001-01-01

    Objective: To analyze the expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) in hepatocellular carcinoma (HCC) and its relation to angiogenesis. Methods: Tissue sections from 71 HCC patients were examined immunohistochemically for protein expression of iNOS, eNOS, and VEGF. Microvessal density (MVD) was counted by endothelial cells immunostained by anti-CD34 antibody. Results: Positive immunostaining for iNOS, eNOS was detected in 83.1% and 85.9% of HCC respectively. INOS and eNOS were not detected in normal hepatic tissue. MVD was 34.3±1.5/HP and 38.6±1.6/HP in HCC with positive staining for iNOS and VEGF while it was 31.2± 2.8/HP, and 22.4± 2.0/HP in HCC with negative staining for iNOS and VEGF (P<0.01). A correlation between NOS expression and VEGF in HCC was not observed. Conclusion: iNOS and eNOS may play a role in malignant transformation f post-hepatic cirrhosis. The expression of iNOS and VEGF favors angiogenesis of HCC.

  16. Lanthanum Chloride Inhibiting Expression of Inducible Nitric Oxide Synthase in RAW264.7 Macrophages Induced by Lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    Guo Fei; Lou Yuanlei; Wang Yang; Xie An; Li Guohui

    2007-01-01

    Nitric oxide (NO) and its reaction products were key players in the pathophysiology of sepsis and shock. The present study was designed to explore the effects of lanthanum chloride (LaCl3) on inducible nitric oxide synthase (iNOS) expression, at both gene and protein levels, in RAW264.7 macrophages induced by Lipopolysaccharide (LPS). Reverse transcription polymerase chain reaction (RT-PCR), immunofluorescence, and western blot were employed to measure iNOS gene expression, localization, and protein expression respectively. NO production in culture supernatants was detected by the nitrate reductase method. The results showed that LaCl3 significantly attenuated the iNOS gene and protein expression, as well as NO production in RAW264.7cells induced by LPS.

  17. Triptan-induced enhancement of neuronal nitric oxide synthase in trigeminal ganglion dural afferents underlies increased responsiveness to potential migraine triggers.

    Science.gov (United States)

    De Felice, Milena; Ossipov, Michael H; Wang, Ruizhong; Dussor, Gregory; Lai, Josephine; Meng, Ian D; Chichorro, Juliana; Andrews, John S; Rakhit, Suman; Maddaford, Shawn; Dodick, David; Porreca, Frank

    2010-08-01

    Migraine is a common neurological disorder often treated with triptans. Triptan overuse can lead to increased frequency of headache in some patients, a phenomenon termed medication overuse headache. Previous preclinical studies have demonstrated that repeated or sustained triptan administration for several days can elicit persistent neural adaptations in trigeminal ganglion cells innervating the dura, prominently characterized by increased labelling of neuronal profiles for calcitonin gene related peptide. Additionally, triptan administration elicited a behavioural syndrome of enhanced sensitivity to surrogate triggers of migraine that was maintained for weeks following discontinuation of drug, a phenomenon termed 'triptan-induced latent sensitization'. Here, we demonstrate that triptan administration elicits a long-lasting increase in identified rat trigeminal dural afferents labelled for neuronal nitric oxide synthase in the trigeminal ganglion. Cutaneous allodynia observed during the period of triptan administration was reversed by NXN-323, a selective inhibitor of neuronal nitric oxide synthase. Additionally, neuronal nitric oxide synthase inhibition prevented environmental stress-induced hypersensitivity in the post-triptan administration period. Co-administration of NXN-323 with sumatriptan over several days prevented the expression of allodynia and enhanced sensitivity to stress observed following latent sensitization, but not the triptan-induced increased labelling of neuronal nitric oxide synthase in dural afferents. Triptan administration thus promotes increased expression of neuronal nitric oxide synthase in dural afferents, which is critical for enhanced sensitivity to environmental stress. These data provide a biological basis for increased frequency of headache following triptans and highlight the potential clinical utility of neuronal nitric oxide synthase inhibition in preventing or treating medication overuse headache.

  18. Interventional effect of magnesium sulfate on nitric oxide synthase activity after acute craniocerebral injury

    Institute of Scientific and Technical Information of China (English)

    Ximin Yang; Jiangong Zhu; Zongchun Tang

    2007-01-01

    BACKGROUND: Abnormal changes in magnesium ion are closely related to cerebral injury. At present,some evidence indicates that magnesium reagent can improve nerve function and prognosis of patients with cerebral injury.OBJECTIVE: To observe the effect of magnesium sulfate on changes in nitric oxide synthase (NOS)activity in brain tissue of rats with acute craniocerebral injury.DESIGN: Completely randomized grouping design and randomly controlled study.SETTING: Laboratory of Neurosurgery, the Third Hospital of Chinese PLA.MATERIALS: Fifty-four male SD rats of clean grade and weighing 220 - 250 g were randomly divided into normal control group (n =6), cerebral injury group (n =24) and magnesium sulfate group (n =24). Especially,rats in cerebral injury group and magnesium sulfate group were equally divided into four subgroups and observed at 0.5, 2, 6 and 24 hours after model establishment. A solution of 125 g/L of magnesium sulfate was provided by the Seventh Pharmaceutical Factory of Wuxi and the NOS assay kit by Nanjing Jiancheng Bioengineering Institute.METHODS: The experiment was carried out in the Institute of Neurosurgery, the Third Hospital of Chinese PLA from August 2000 to August 2002. ① Rats in the cerebral injury group and magnesium sulfate group were anesthetized to establish cerebral injury models based on modified Feeney technique; magnesium sulfate group were intraperitoneally injected 600 mg/kg magnesium sulfate (125 g/L), but rats in the normal control group remained untreated. ② At 0.5, 2, 6 and 24 hours after cerebral injury, rats in cerebral injury group and magnesium sulfate group were decapitated and brains were dissected. Cerebral cortex of rats in cerebral injury group was selected for NOS assay; in addition, at 0.5 hour after cerebral injury, a portion of the parietal lobe was selected from the brains of rats in the normal control group. Brain samples were homogenized, the homogenated centrifuged and the supernatants were used to measure

  19. Effects of Naoxintong on atherosclerosis and inducible nitric oxide synthase expression in atherosclerotic rabbit

    Institute of Scientific and Technical Information of China (English)

    ZHONG Xiao-nan; WANG Hong-hao; LU Zheng-qi; DAI Yong-qiang; HUANG Jian-hua; QIU Wei; SHU Ya-qing

    2013-01-01

    Background High levels of nitric oxide (NO) produced by inducible NO synthase (iNOS) have been associated with atherosclerosis processes.Naoxintong is a traditional Chinese medicine for treatment of cerebrovascular and cardiovascular disease.The aim of the present study was to detect and quantify changes of iNOS mRNA and NO levels in the vessel wall after the administration of Naoxintong in an atherosclerotic rabbit model.Methods Forty New Zealand white rabbits were randomly divided into five groups (n=8).Rabbits were fed a standard diet (group A),an atherogenic diet consisting of 79% standard feed+1% cholesterol+5% lard+15% egg yolk powder (group B),an atherogenic diet with Naoxintong 0.25 mg·kg-1·d-1 (group C),an atherogenic diet with Naoxintong 0.5mg·kg-1·d-1 (group D),or atherogenic diet with Naoxintong 1.0 mg·kg-1·d-1 (group E) for 12 weeks.Results Supplemented administration of Naoxintong led to a down-regulation of cholesterol (CHOL) (P <0.001) and low-density lipoprotein (LDL) (P <0.001).The trend became more notable as the dose of Naoxintong increased; group Cvs.group B (CHOL,P=0.568; LDL-cholesterol (LDL-C),P=0.119),group D vs.group B (CHOL,P=0.264; LDL-C,P=0.027),group E vs.group B (CHOL,P=0.028; LDL-C,P=0.002).Atherosclerotic lesions in aorta were reduced in Naoxintong groups (groups C,D,E) compared to group B.Group B had higher iNOS mRNA (P=0.001) and NO level (P<0.001) than group A.Compared with the atherogenic diet fed-rabbits,Naoxintong supplements decreased the expression of iNOS mRNA (P <0.001) and the NO level (P <0.001) in the vessel wall.Groups given a higher Naoxintong dose exhibited greater benefits.iNOS mRNA and NO levels seemed to be reduced in group C,although the difference did not quite reach statistical significance (iNOS mRNA,P=0.130; NO,P=0.038).iNOS mRNA and NO levels significantly decreased in group D (iNOS mRNA,P=0.019; NO,P=0.018) and group E (iNOS mRNA,P=0.004; NO,P<0.001).Conclusion Naoxintong has

  20. The Van Allen Probes mission

    CERN Document Server

    Burch, James

    2014-01-01

    This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions.
 This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the up...

  1. Nitric oxide synthase inhibitors containing the carboxamidine group or its isosteres

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, Sergei Ya; Konoplyannikov, Anatoly G; Skvortzov, Valery G [Medical Radiological Research Centre, Russian Academy of Medical Sciences (Russian Federation); Mandrugin, Andrey A; Fedoseev, Vladimir M [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2005-09-30

    The review summarises structures, activities and selectivity of NO-synthase (NOS) inhibitors belonging to various classes of chemical compounds. Linear, cyclic and heterocyclic structures containing guanidine, amidine and/or isothiourea fragments are considered. The structure-activity relationships for these inhibitors were analysed in relation to their action on the inducible NOS isoform. This analysis can provide the basis for the synthesis of new more efficient compounds.

  2. Association of Variable Number of Tandem Repeats in Endothelial Nitric Oxide Synthase Gene with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    S Salimi

    2006-08-01

    Full Text Available Endo-derived nitric oxide (NO is synthesized from L-arginine by endothelium nitric oxide synthase (eNOS. Since reduced NO synthesis has been implicated in the development of coronary atherosclerosis; we hypothesized that polymorphisms of NOS gene might be associated with increased susceptibility to this disorder and coronary artery disease (CAD. We studied the 27 base pair tandem repeat polymorphism in intron4 of the endothelial nitric oxide synthase (eNOS gene in 141 unrelated CAD patients with positive coronary angiograms in Shahid Rajaee Heart Hospital and 159 age matched control subjects without a history of symptomatic CAD. The study protocol was approved by the Iran University of Medical Sciences Ethics Committee. The eNOS gene intron4a/b VNTR polymorphism was analyzed by polymerase chain reaction. The plasma lipids levels and other risk factors were also determined. The genotype frequencies for eNOS4b/b, eNOS4a/b and eNOS4a/a were 68.8, 29.1 and 2.1% in CAD subjects, and 81, 18.4 and 0.6 % in control subjects, respectively. The genotype frequencies differed significantly between the two groups (χ²= 6.38 P= 0.041. The frequency of the allele was 16.7% in CAD subjects and 9.8% in control subjects and was significantly higher in the patients (χ²= 6.18 P= 0.013, odds ratio=1.84. Plasma lipids, except HDL-C were also remarkablely increased in CAD group.

  3. DOWN-REGULATION OF INDUCIBLE NITRIC OXIDE SYNTHASE EXPRESSION BY INOSITOL HEXAPHOSPHATE IN HUMAN COLON CANCER CELLS.

    Science.gov (United States)

    Kapral, Małgorzata; Wawszczyk, Joanna; Sośnicki, Stanisław; Węglarz, Ludmiła

    2015-01-01

    Inflammatory bowel disease (IBD) is chronic inflammatory condition associated with increased risk of developing colorectal cancer. A number of mediators of inflammation, such as pro-inflammatory cytokines, prostaglandins and nitric oxide have been involved in carcinogenesis, especially in the promotion and progression stages. NO is synthesized from L-arginine by constitutively expressed endothelial and neuronal nitric oxide synthases (eNOS and nNOS, respectively) and an inducible NOS (iNOS) isoform expressed under inflammatory conditions. A selective inhibitors of iNOS could be, therefore, considered to be good candidates as chemopreventive agents against colon cancer. In this study, the effect of inositol hexaphosphate (IP6), dietary phytochemical, on the mRNA expression of iNOS stimulated with bacterial lipopolysaccharides (Escherichia coli and Salmonella typhimurium) and IL-1β in intestinal cells Caco-2 for 6 and 12 h was investigated. A transcription level of iNOS with the use real time QRT-PCR technique was determined in cells treated with 1 and 2.5 mM IP6. Stimulation of Caco-2 with pro-inflammatory factors (LPS and IL-1β) resulted in an up-expression of iNOS mRNA at 6 and 12 h. Cells exposed to IP6 only revealed significant reduction in iNOS gene transcription after 12 h. A decrease in iNOS transcription by IP6 following the gene induction by proinflammatory agents in 6 and 12 h lasting cultures was also determined. The findings of this study suggest that one of the anti-cancer and anti-inflammatory abilities of IP6 can be realized by suppressing the expression of gene encoding inducible nitric oxide synthase isoform at the transcriptional level.

  4. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats.

    Science.gov (United States)

    Zhang, Cheng-Xi; Pan, Si-Nian; Meng, Rong-Sen; Peng, Chao-Quan; Xiong, Zhao-Jun; Chen, Bao-Lin; Chen, Guang-Qin; Yao, Feng-Juan; Chen, Yi-Li; Ma, Yue-Dong; Dong, Yu-Gang

    2011-01-01

    1. Metformin is an activator of AMP-activated protein kinase (AMPK). Recent studies suggest that pharmacological activation of AMPK inhibits cardiac hypertrophy. In the present study, we examined whether long-term treatment with metformin could attenuate ventricular hypertrophy in a rat model. The potential involvement of nitric oxide (NO) in the effects of metformin was also investigated. 2. Ventricular hypertrophy was established in rats by transaortic constriction (TAC). Starting 1 week after the TAC procedure, rats were treated with metformin (300 mg/kg per day, p.o.), N(G)-nitro-L-arginine methyl ester (L-NAME; 50 mg/kg per day, p.o.) or both for 8 weeks prior to the assessment of haemodynamic function and cardiac hypertrophy. 3. Cultured cardiomyocytes were used to examine the effects of metformin on the AMPK-endothelial NO synthase (eNOS) pathway. Cells were exposed to angiotensin (Ang) II (10⁻⁶ mol/L) for 24 h under serum-free conditions in the presence or absence of metformin (10⁻³ mol/L), compound C (10⁻⁶ mol/L), L-NAME (10⁻⁶ mol/L) or their combination. The rate of incorporation of [³H]-leucine was determined, western blotting analyses of AMPK-eNOS, neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) were undertaken and the concentration of NO in culture media was determined. 4. Transaortic constriction resulted in significant haemodynamic dysfunction and ventricular hypertrophy. Myocardial fibrosis was also evident. Treatment with metformin improved haemodynamic function and significantly attenuated ventricular hypertrophy. Most of the effects of metformin were abolished by concomitant L-NAME treatment. L-NAME on its own had no effect on haemodynamic function and ventricular hypertrophy in TAC rats. 5. In cardiomyocytes, metformin inhibited AngII-induced protein synthesis, an effect that was suppressed by the AMPK inhibitor compound C or the eNOS inhibitor L-NAME. The improvement in cardiac structure and

  5. Cuminum cyminum, a dietary spice, attenuates hypertension via endothelial nitric oxide synthase and NO pathway in renovascular hypertensive rats.

    Science.gov (United States)

    Kalaivani, Periyathambi; Saranya, Ramesh Babu; Ramakrishnan, Ganapathy; Ranju, Vijayan; Sathiya, Sekar; Gayathri, Veeraraghavan; Thiyagarajan, Lakshmi Kantham; Venkhatesh, Jayakothanda Ramaswamy; Babu, Chidambaram Saravana; Thanikachalam, Sadagopan

    2013-01-01

    Cuminum cyminum (CC) is a commonly used spice in South Indian foods. It has been traditionally used for the treatment and management of sleep disorders, indigestion, and hypertension. The present study was carried out to scientifically evaluate the anti-hypertensive potential of standardized aqueous extract of CC seeds and its role in arterial endothelial nitric oxide synthase expression, inflammation, and oxidative stress in renal hypertensive rats. Renal hypertension was induced by the two-kidney one-clip (2K/1C) method in rats. Systolic blood pressure (SBP), plasma nitrate/nitrite, carotid-eNOS, renal-TNF-α, IL-6, Bax, Bcl-2, thioredoxin 1 (TRX1), and thioredoxin reductase 1 (TRXR1) mRNA expressions were studied to demonstrate the anti-hypertensive action of CC. Cuminum cyminum was administered orally (200 mg/kg b.wt) for a period of 9 weeks; it improved plasma nitric oxide and decreased the systolic blood pressure in hypertensive rats. It also up-regulated the gene expression of eNOS, Bcl-2, TRX1, and TRXR1; and down-regulated Bax, TNF-α, and IL-6. These data reveal that CC seeds augment endothelial functions and ameliorate inflammatory and oxidative stress in hypertensive rats. The present report is the first of its kind to demonstrate the mechanism of anti-hypertensive action of CC seeds in an animal model of renovascular hypertension.

  6. Expression of nitric oxide synthase in T-cell-dependent liver injury initiated by ConA in Kunming mice

    Institute of Scientific and Technical Information of China (English)

    张修礼; 曲建慧; 万谟彬; 权启镇; 孙自勤; 王要军; 江学良; 李文波

    2004-01-01

    Objective: To investigate whether nitric oxide synthase (NOS) is expressed in T-cell-dependent liver injury initiated by concanavalin A (ConA) in Kunming mice and study the possible effect of nitric oxide(NO) on liver injury models. Methods: Liver injury in Kunming mice was induced by administration of ConA through tail vein. Expression of NOS in the liver was detected by NADPH diaphorase staining method. The possible effect of NO on liver injury models was obtained by L-NAME injection to suppress synthesis of NO. Results: NOS has a strong expression in hepatocytes after ConA injection, especially in those close to the central vein, while only a weak expression was found in the epithelial cells in control group. Liver injury became more serious when NO synthesis was inhibited by L-NAME, accompanied by great malondialdehyde(MDA) increase in serum and severe intrahepatic vascular thrombosis. Conclusion: NOS markedly expressed in ConAinduced liver injury, which may subsequently promote nitric oxide synthesis. Increasement of nitric oxide has a protective effect on ConA-induced liver injury.

  7. Role of nitric oxide in the regulation of mechanosensitive ionic channels in cardiomyocytes: contribution of NO-synthases.

    Science.gov (United States)

    Kazanski, V E; Kamkin, A G; Makarenko, E Yu; Lysenko, N N; Sutiagin, P V; Kiseleva, I S

    2010-12-01

    The role of NO in the regulation of currents passing through ion channels activated by cell stretching (mechanically gated channels, MGC), particularly through cation-selective K(+)-channels TRPC6, TREK1 (K(2P)2.1), and TREK2 (K(2P)10.1), was studied on isolated mouse, rat, and guinea pig cardiomyocytes using whole-cell patch-clamp technique. In non-deformed cells, binding of endogenous NO with PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-1-oxy-3-oxide) irreversibly shifted the diastolic membrane potential towards negative values, modulates K(ir)-channels by reducing I(K1), and blocks MGC. Perfusion of stretched cells with PTIO solution completely blocked MG-currents. NO-synthase inhibitors L-NAME and L-NMMA completely blocked MGC. Stretching of cardiomyocytes isolated from wild type mice and from NOS1(-/-)- and NOS2(-/-)- knockout mice led to the appearance in MG-currents typical for the specified magnitude of stretching, while stretching of cardiomyocytes from NOS3(-/-)- knockout mice did not produce in MG-current. These findings suggest that NO plays a role in the regulation of MGC activity and that endothelial NO-synthase predominates as NO source in cardiomyocyte response to stretching.

  8. Effects of calcium channel antagonists on the induction of nitric oxide synthase in cultured cells by immunostimulants.

    Science.gov (United States)

    Hattori, Y; Kasai, K; So, S; Hattori, S; Banba, N; Shimoda, S

    1995-01-01

    We investigated whether calcium channel antagonists would alter the induction of nitric oxide (NO) synthesis by bacterial lipopolysaccharide (LPS) alone or in combination with interferon-gamma (IFN gamma) in cultured J774 macrophages, rat vascular smooth muscle cells, rat renal mesangial cells, and rat cardiac myocytes. The induction of NO synthesis was determined by measuring nitrite, the stable end-product. The dihydropyridine calcium channel antagonists, nifedipine, manidipine, nitrendipine, benidipine, barnidipine, perdipine, and nilvadipine all reduced the LPS-induced nitrite production in a dose-dependent manner, each with a differing half-maximal inhibitory concentration, in cultured J774 macrophages. Nifedipine also inhibited nitrite production in vascular smooth muscle cells, mesangial cells, and cardiac myocytes. The half-maximal inhibitory concentrations of nifedipine were ranked as follows: smooth muscle cells < mesangial cells < cardiac myocytes. Diltiazem, at nontoxic concentrations, had no effect on the nitrite formation in the three cell types. Verapamil markedly increased the formation of nitrite in cardiac myocytes in response to LPS and IFN gamma, but not in vascular smooth muscle or mesangial cells. Exposure of cardiac myocytes to LPS and IFN gamma caused the expression of NO synthase mRNA that was significantly increased by verapamil. Thus, certain calcium channel antagonists modulate NO synthesis by altering the induction of NO synthase.

  9. Zinc thiolate reactivity toward nitrogen oxides: insights into the interaction of Zn2+ with S-nitrosothiols and implications for nitric oxide synthase.

    Science.gov (United States)

    Kozhukh, Julia; Lippard, Stephen J

    2012-07-02

    Zinc thiolate complexes containing N(2)S tridentate ligands were prepared to investigate their reactivity toward reactive nitrogen species, chemistry proposed to occur at the zinc tetracysteine thiolate site of nitric oxide synthase (NOS). The complexes are unreactive toward nitric oxide (NO) in the absence of dioxygen, strongly indicating that NO cannot be the species directly responsible for S-nitrosothiol formation and loss of Zn(2+) at the NOS dimer interface in vivo. S-Nitrosothiol formation does occur upon exposure of zinc thiolate solutions to NO in the presence of air, however, or to NO(2) or NOBF(4), indicating that these reactive nitrogen/oxygen species are capable of liberating zinc from the enzyme, possibly through generation of the S-nitrosothiol. Interaction between simple Zn(2+) salts and preformed S-nitrosothiols leads to decomposition of the -SNO moiety, resulting in release of gaseous NO and N(2)O. The potential biological relevance of this chemistry is discussed.

  10. Studies on the Compounds of d4T Combined with Nitric Oxide Donors and Nitric Oxide Synthase Inhibitors and their Anti-HIV and AIDS Activity

    Institute of Scientific and Technical Information of China (English)

    KWALE MOLIME GUITREMBI Blaise(Central African); YAO Qi-zheng

    2004-01-01

    Stavudine, a potent anti-HIV and AiDS-related complex, is one of the Nucleoside Analogue Reverse Transcriptase Inhibitors (NARTIs). It is phosphorylated intracellularly and then inhibits the viral reverse transcriptase by acting as a false substrate. Modifications made on the hydrogen labile at the 5'-position on the sugar is an interesting template for the elaboration of new potent anti-HIV and AIDS drugs. The expected advantages of the modified stavudine prodrugs can be multiple: synergistic drug activities, enhancement of stavudine intracellular uptake, increase of stavudine brain delivery, and bypass of the first stavudine phosphorylation step into the cells. Nitric oxide synthase inhibitors of stavudine and nitric oxide donors of stavudine may hold significant promise for the treatment of HIV and AIDS.

  11. Plasma concentrations of asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor, are elevated in sickle cell patients but do not increase further during painful crisis

    NARCIS (Netherlands)

    Landburg, Precious P; Teerlink, Tom; Muskiet, Frits A J; Duits, Ashley J; Schnog, John-John B

    2008-01-01

    Plasma concentrations of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, are elevated in the clinically asymptomatic state of sickle cell disease (SCD). However, the role of ADMA during vaso-occlusive complications has not been defined. ADMA concentrations were det

  12. Atorvastatin prevents hypoxia-induced inhibition of endothelial nitric oxide synthase expression but does not affect heme oxygenase-1 in human microvascular endothelial cells

    NARCIS (Netherlands)

    Loboda, Agnieszka; Jazwa, Agnieszka; Jozkowicz, Alicj A.; Dorosz, Jerzy; Balla, Jozsef; Molema, Grietje; Dulak, Jozef

    2006-01-01

    Beneficial cardiovascular effects of statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are particularly assigned to the modulation of inflammation. Endothelial nitric oxide synthase (eNOS) and heme oxygenase-1 (HO-1) are listed among the crucial protective, anti-i

  13. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  14. Endothelial Nitric Oxide Synthase Phosphorylation at Threonine 495 and Mitochondrial Reactive Oxygen Species Formation in Response to a High H2O2 Concentration

    DEFF Research Database (Denmark)

    Guterbaum, Thomas Jeremy; Braunstein, Thomas Hartig; Fossum, A;

    2013-01-01

    Hydrogen peroxide (H₂O₂) is produced in vessels during ischemia/reperfusion and during inflammation, both leading to vascular dysfunction. We investigated cellular pathways involved in endothelial nitric oxide synthase (eNOS) phosphorylation at Threonine 495 (Thr(495)) in human umbilical vein end...... endothelial cells (HUVECs) exposed to H₂O₂....

  15. Hypercapnic vasodilatation in isolated rat basilar arteries is exerted via low pH and does not involve nitric oxide synthase stimulation or cyclic GMP production

    DEFF Research Database (Denmark)

    You, J P; Wang, Qian; Zhang, W;

    1994-01-01

    The relaxant effect of hypercapnia (15% CO2) was studied in isolated circular segments of rat basilar arteries with intact endothelium. The nitric oxide synthase inhibitor nitro-L-arginine (L-NOARG) and the cytosolic guanylate cyclase inhibitor methylene blue (MB), significantly reduced...

  16. Effect of Magnesium on Nitric Oxide Synthase of Neurons in Cortex during Early Period of Cerebral Ischemia

    Institute of Scientific and Technical Information of China (English)

    SUN Xiu; MEI Yuanwu; TONG E'tang

    2000-01-01

    To investigate the effect of magnesium on nitric oxide synthase (NOS) of neurons in cortex during early cerebral ischemic period, a rat model of middle cerebral artery occlusion (MCAO) was established. The results showed that the NOS activity of neurons in cortex was increased significantly at 15 min after MCAO, reached its peak at 30 min after MCAO and returned to normal levels at 60 min after MCAO. The NOS activity of neurons in the magnesium-treated group was decreased significantly as compared with that in the ischemic group at 15 min and 30min after MCAO respectively. The results suggested that magnesium could inhibit the elevated NOS activity of neurons in cortex induced by cerebral ischemia.

  17. The endothelial nitric oxide synthase gene and risk of diabetic nephropathy and development of cardiovascular disease in type 1 diabetes

    DEFF Research Database (Denmark)

    Möllsten, Anna; Lajer, Maria Stenkil; Jorsal, Anders

    2009-01-01

    Nitric oxide (NO) is important in the maintenance of vascular tone and regulation of blood pressure. NO may also play a role in the development of both nephropathy and cardiovascular disease (CVD) in patients with diabetes. The susceptibility to nephropathy and CVD depends to some extent on genetic...... factors, therefore polymorphisms in the gene coding for endothelial NO-synthase, NOS3, can affect the risk of developing these diseases. Type 1 diabetes patients attending the Steno Diabetes Center, Denmark, between 1993 and 2001 were enrolled in this study. A total of 458 cases with diabetic nephropathy...... (albumin excretion >300 mg/24h) and 319 controls with persistent normoalbuminuria ( or =20 years of diabetes duration at follow-up were identified. Patients were followed until death or end of the study. Associations between seven NOS3-gene polymorphisms and nephropathy, progression...

  18. Synthesis and enzymatic evaluation of 2- and 4-aminothiazole-based inhibitors of neuronal nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Graham R. Lawton

    2009-06-01

    Full Text Available Highly potent and selective inhibitors of neuronal nitric oxide synthase (nNOS possessing a 2-aminopyridine group were recently designed and synthesized in our laboratory and were shown to have significant in vivo efficacy. In this work, analogs of our lead compound possessing 2- and 4-aminothiazole rings in place of the aminopyridine were synthesized. The less basic aminothiazole rings will be less protonated at physiological pH than the aminopyridine ring, and so the molecule will carry a lower net charge. This could lead to an increased ability to cross the blood-brain barrier thereby increasing the in vivo potency of these compounds. The 2-aminothiazole-based compound was less potent than the 2-aminopyridine-based analogue. 4-Aminothiazoles were unstable in water, undergoing tautomerization and hydrolysis to give inactive thiazolones.

  19. Neuronal nitric oxide synthase is dislocated in type I fibers of myalgic muscle but can recover with physical exercise training

    DEFF Research Database (Denmark)

    Jensen, L; Andersen, L L; Schrøder, H D

    2015-01-01

    Trapezius myalgia is the most common type of chronic neck pain. While physical exercise reduces pain and improves muscle function, the underlying mechanisms remain unclear. Nitric oxide (NO) signaling is important in modulating cellular function, and a dysfunctional neuronal NO synthase (nNOS) may...... contribute to an ineffective muscle function. This study investigated nNOS expression and localization in chronically painful muscle. Forty-one women clinically diagnosed with trapezius myalgia (MYA) and 18 healthy controls (CON) were included in the case-control study. Subsequently, MYA were randomly...... assigned to either 10 weeks of specific strength training (SST, n = 18), general fitness training (GFT, n = 15), or health information (REF, n = 8). Distribution of fiber type, cross-sectional area, and sarcolemmal nNOS expression did not differ between MYA and CON. However, MYA showed increased...

  20. Expression of nitric oxide synthase in the spinal cord after selective brachial plexus injury

    Institute of Scientific and Technical Information of China (English)

    Na Liu; Feng Li; Longju Chen; Wutian Wu

    2006-01-01

    BACKGROUND: Some researches showed that motoneurons in spinal cord anterior horn wound die following brachial plexus injury, but the concrete mechanism of motoneurons death remains unclear.OBJECTIVE: To observe the expression of nitric oxide synthase (NOS) and survival of C7 motoneurons in spinal cord of rats after selective brachial plexus injury.DESIGN: A randomized controlled animal experiment.SETTING: Department of Anatomy, Sun Yet-sen Medical College, Sun Yet-sen University.MATERIALS: Totally 35 adult healthy male Sprague-Dawley rats with the body mass of 200-300 g were provided by Experimental Animal Center, Sun Yet-sen Medical College, Sun Yat-sen University. The rats were divided into control group (n =5) and experimental group (n=30) by random number table method, and the experimental group was divided into three injury subgroups: anterior root avulsion group, dorsal root transection group and spinal cord hemisection group, 10 rats in each group. There were horse anti-neuronal NOS (Nnos) polycolonal antibody (Sigma company) and nicotina mideadeninedinucleotide phosphate (NADPH-d) (SigmaCompany).METHODS: The experiment was performed at Department of Anatomy, Sun Yet-sen Medical College, Sun Yet-sen University between September 2004 and April 2005. ①After anesthetizing the rats, the spinous process of second thoracic vertebra as a marker, the vertebra was exposed from C5 to T1 and the lamina of vertebra was unclenched, and spinal dura mater was carved to expose the spinal nerve dorsal roots of C5-T1.The right ventral root of C7 was avulsed, and the residual root was removed in anterior root avulsion group. The right ventral root of C7 was avulsed and the right dorsal roots of brachial plexus (C5-T1) were cut off in dorsal root transection group. In spinal cord hemisection group, the hemisection between the C5 and C6 spinal segment on right side and avulsion of right ventral root of C7 were made. In the control group, the vertebra from C5 to T1 was

  1. Bioinformatics analysis and prediction for structure and function of nitric oxide synthase and similar proteins from Plasmodium berghei

    Institute of Scientific and Technical Information of China (English)

    Zhigang Fan; Gang Lv; Lingmin Zhang; Xiufeng Gan; Qiang Wu; Saifeng Zhong; Guogang Yan; Guifen Lin

    2011-01-01

    Objective: To search and analyze nitric oxide synthase (NOS) and similar proteins fromPlasmodium berghei(Pb). Methods: The structure and function of nitric oxide synthase and similar proteins from Plasmodium berghei were analyzed and predicted by bioinformatics. Results: PbNOS were not available, but nicotinamide adenine dinucleotide 2’-phosphate reduced tetrasodium (NADPH)-cytochrome p450 reductase(CPR) were gained. PbCPR was in the nucleus of Plasmodium berghei, while 134aa-229aa domain was localize in nucleolar organizer. The amino acids sequence of PbCPR had the closest genetic relationship with Plasmodium vivax showing a 73% homology. The tertiary structure of PbCPR displayed the forcep-shape with wings, but no wings existed in the tertiary structure of its’ host, Mus musculus(Mm). 137aa-200aa, 201aa-218aa, 220aa-230aa, 232aa-248, 269aa-323aa, 478aa-501aa and 592aa-606aa domains of PbCPR showed no homology with MmCPRs’, and all domains were exposed on the surface of the protein. Conclusions: NOS can’t be found in Plasmodium berghei and other Plasmodium species. PbCPR may be a possible resistance site of antimalarial drug, and the targets of antimalarial drug and vaccine. It may be also one of the mechanisms of immune evasion. This study on Plasmodium berghei may be more suitable to Plasmodium vivax. And137aa-200aa, 201aa-218aa, 220aa-230aa, 232aa-248, 269aa-323aa, 478aa-501aa and 592aa-606aa domains ofPb CPR are more ideal targets of antimalarial drug and vaccine.

  2. Ginkgo biloba leaf extract effects on inducible nitric oxide synthase, Bcl-2, and Bax expression in rat models of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Jiejun Jiao; Bin Du

    2008-01-01

    BACKGROUND: Ginkgo biloba leaf extract exhibits neuroprotective effects in spinal cord injury. However,the mechanisms of action remain unclear.OBJECTIVE: To investigate inducible nitric oxide synthase (iNOS) and Bcl-2/Bax expression in the injured spinal cord, and to explore the neuroprotective mechanisms of ginkgo biloba leaf extract in rats with spinal cord injury.DESIGN, TIME AND SETTING: The randomized, controlled, cell molecular biology experiment was performed at Soochow University, China from March 2007 to March 2008.MATERIALS: A total of 120 healthy, adult Sprague Dawley rats were selected for this study. Rat models of moderate acute thoracic (T9) spinal cord injury were established using the modified Allen method.Shuxuening injection was obtained from Zhenbaodao Pharmaceutical Co., Ltd., China. Methylprednisolone was purchased from North China Pharmaceutical Co., Ltd.METHODS: All rats were equally and randomly divided into four groups. Only the spinal cord was exposed in the sham operation group rats. In the trauma group, rats were not treated with drugs following spinal cord injury. Rats in the hormone group were intraperitoneally injected with 30 mg/kg methylprcdnisolone following spinal cord injury. Rats in the ginkgo biloba leaf extract group were intraperitoneally infused with a 1.0 mL/kg Shuxuening injection per day.MAIN OUTCOME MEASURES: At l hour, as well as 1, 3, 5, 7, and 14 days after spinal cord injury,iNOS- and Bcl-2/Bax-positive cells were quantified with immunohistochemistry. Pathological changes were detected using hematoxylin-eosin staining under an optical microscope.RESULTS: Spinal cord injury in the ginkgo biloba leaf extract and hormone groups was milder compared with the trauma group. Demyelination was significantly ameliorated and the necrotic cavity was obviously reduced in the injured spinal cord of rats in the ginkgo biloba leaf extract and hormone groups at each time point, iNOS expression was increased in the injured spinal cord

  3. 线粒体一氧化氮合酶的研究进展%Progress in mitochondrial nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    孙晓四; 谭敦勇; 王华东; 颜亮

    2003-01-01

    Nitric oxide (NO) is an intra - and intercellular messenger with a broad spectrum of activities in the central nervous system, cardiovascular and immune systems. Mitochondrial nitric oxide synthase(mtNOS), which might be a new form of NOS in mitochondria, has been discovered to be active in the regulation of mitochondrial respiration, energy metabolism and manypathophysiological processes. In this review, the location, properties, physiological and pathophysiological significance of mtNOS were summarized.

  4. Safranal of Crocus sativus L. inhibits inducible nitric oxide synthase and attenuates asthma in a mouse model of asthma.

    Science.gov (United States)

    Bukhari, Syed Imran; Pattnaik, Bijay; Rayees, Sheikh; Kaul, Sanjana; Dhar, Manoj K

    2015-04-01

    The present study involves evaluation of antioxidant potential of Crocus sativus and its main constituents, safranal (SFN) and crocin (CRO), in bronchial epithelial cells, followed antiinflammatory potential of the active constituent safranal, in a murine model of asthma. To investigate the antioxidizing potential of Crocus sativus and its main constituents in bronchial epithelial cells, the stress was induced in these cells by a combination of different cytokines that resulted in an increase in nitric oxide production (NO), induced nitric oxide synthase (iNOS) levels, peroxynitrite ion generation, and cytochrome c release. Treatment with saffron and its constituents safranal and crocin resulted in a decrease of NO, iNOS levels, peroxynitrite ion generation, and prevented cytochrome c release. However, safranal significantly reduced oxidative stress in bronchial epithelial cells via iNOS reduction besides preventing apoptosis in these cells. In the murine model of asthma study, antiinflammatory role of safranal was characterized by increased airway hyper-responsiveness, airway cellular infiltration, and epithelial cell injury. Safranal pretreatment to these allergically inflamed mice lead to a significant decrease in airway hyper-responsiveness and airway cellular infiltration to the lungs. It also reduced iNOS production, bronchial epithelial cell apoptosis, and Th2 type cytokine production in the lungs.

  5. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    Science.gov (United States)

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity.

  6. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  7. Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome.

    Science.gov (United States)

    Wu, Kay L H; Chao, Yung-Mei; Tsay, Shiow-Jen; Chen, Chen Hsiu; Chan, Samuel H H; Dovinova, Ima; Chan, Julie Y H

    2014-10-01

    Metabolic syndrome (MetS), which is rapidly becoming prevalent worldwide, is long known to be associated with hypertension and recently with oxidative stress. Of note is that oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, contributes to sympathoexcitation and hypertension. This study sought to identify the source of tissue oxidative stress in RVLM and their roles in neural mechanism of hypertension associated with MetS. Adult normotensive rats subjected to a high-fructose diet for 8 weeks developed metabolic traits of MetS, alongside increases in sympathetic vasomotor activity and blood pressure. In RVLM of these MetS rats, the tissue level of reactive oxygen species was increased, nitric oxide (NO) was decreased, and mitochondrial electron transport capacity was reduced. Whereas the protein expression of neuronal NO synthase (nNOS) or protein inhibitor of nNOS was increased, the ratio of nNOS dimer/monomer was significantly decreased. Oral intake of pioglitazone or intracisternal infusion of tempol or coenzyme Q10 significantly abrogated all those molecular events in high-fructose diet-fed rats and ameliorated sympathoexcitation and hypertension. Gene silencing of protein inhibitor of nNOS mRNA in RVLM using lentivirus carrying small hairpin RNA inhibited protein inhibitor of nNOS expression, increased the ratio of nNOS dimer/monomer, restored NO content, and alleviated oxidative stress in RVLM of high-fructose diet-fed rats, alongside significantly reduced sympathoexcitation and hypertension. These results suggest that redox-sensitive and protein inhibitor of nNOS-mediated nNOS uncoupling is engaged in a vicious cycle that sustains the production of reactive oxygen species in RVLM, resulting in sympathoexcitation and hypertension associated with MetS.

  8. Polymorphisms In The Nitric-Oxide Synthase 2 Gene And Prostate Cancer Pathogenesis

    Directory of Open Access Journals (Sweden)

    Charlotta Ryk

    2015-08-01

    Conclusions: Nitric oxide can induce proliferation as well as apoptosis depending on cellular context. Our results suggest that NOS2 polymorphisms may influence the risk of aggressive prostate cancer and that these polymorphisms could have an impact on disease pathogenesis, possibly by affecting intracellular nitric oxide levels.

  9. Electrochemically driven biocatalysis of the oxygenase domain of neuronal nitric oxide synthase in indium tin oxide nanoparticles/polyvinyl alcohol nanocomposite.

    Science.gov (United States)

    Xu, Xuan; Wollenberger, Ulla; Qian, Jing; Lettau, Katrin; Jung, Christiane; Liu, Songqin

    2013-12-01

    Nitric oxide synthase (NOS) plays a critical role in a number of key physiological and pathological processes. Investigation of electron-transfer reactions in NOS would contribute to a better understanding of the nitric oxide (NO) synthesis mechanism. Herein, we describe an electrochemically driven catalytic strategy, using a nanocomposite that consisted of the oxygenase domain of neuronal NOS (D290nNOSoxy), indium tin oxide (ITO) nanoparticles and polyvinyl alcohol (PVA). Fast direct electron transfer between electrodes and D290nNOSoxy was observed with the heterogeneous electron transfer rate constant (ket) of 154.8 ± 0.1s(-1) at the scan rate of 5 Vs(-1). Moreover, the substrate N(ω)-hydroxy-L-arginine (NHA) was used to prove the concept of electrochemically driven biocatalysis of D290nNOSoxy. In the presence of the oxygen cosubstrate and tetrahydrobiopterin (BH4) cofactor, the addition of NHA caused the decreases of both oxidation current at +0.1 V and reduction current at potentials ranging from -0.149 V to -0.549 V vs Ag/AgCl. Thereafter, a series of control experiments such as in the absence of BH4 or D290nNOSoxy were performed. All the results demonstrated that D290nNOSoxy biocatalysis was successfully driven by electrodes in the presence of BH4 and oxygen. This novel bioelectronic system showed potential for further investigation of NOS and biosensor applications.

  10. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  11. Van Allen Discovery Most Important

    Science.gov (United States)

    Jastrow, R.

    1959-01-01

    The first step toward the exploration of space occurred approximately 22 months ago as a part of the International Geophysical Year. In the short interval since October, 1957, the new tools of research, the satellite and the space rocket, have produced two unexpected results of fundamental scientific importance. First, instruments placed in the Explorer satellites by James A. Van Allen have revealed the existence of layers of energetic particles in the outer atmosphere. This discovery constitutes the most significant research achievement of the IGY satellite program. The layers may provide the explanation for the aurora and other geophysical phenomena, and they will also influence the design of vehicles for manned space flight, whose occupants must be shielded against their harmful biological effects. Second, the shape of the earth has been determined very accurately with the aid of data from the first Vanguard. As a result of this investigation, we have found that our planet tends toward the shape of a pear, with its stem at the North Pole. This discovery may produce major changes in our ideas on the interior structure of the earth.

  12. Niacinamide therapy for osteoarthritis--does it inhibit nitric oxide synthase induction by interleukin 1 in chondrocytes?

    Science.gov (United States)

    McCarty, M F; Russell, A L

    1999-10-01

    Fifty years ago, Kaufman reported that high-dose niacinamide was beneficial in osteoarthritis (OA) and rheumatoid arthritis. A recent double-blind study confirms the efficacy of niacinamide in OA. It may be feasible to interpret this finding in the context of evidence that synovium-generated interleukin-1 (IL-1), by inducing nitric oxide (NO) synthase and thereby inhibiting chondrocyte synthesis of aggrecan and type II collagen, is crucial to the pathogenesis of OA. Niacinamide and other inhibitors of ADP-ribosylation have been shown to suppress cytokine-mediated induction of NO synthase in a number of types of cells; it is therefore reasonable to speculate that niacinamide will have a comparable effect in IL-1-exposed chondrocytes, blunting the anti-anabolic impact of IL-1. The chondroprotective antibiotic doxycycline may have a similar mechanism of action. Other nutrients reported to be useful in OA may likewise intervene in the activity or synthesis of IL-1. Supplemental glucosamine can be expected to stimulate synovial synthesis of hyaluronic acid; hyaluronic acid suppresses the anti-catabolic effect of IL-1 in chondrocyte cell cultures, and has documented therapeutic efficacy when injected intra-articularly. S-adenosylmethionine (SAM), another proven therapy for OA, upregulates the proteoglycan synthesis of chondrocytes, perhaps because it functions physiologically as a signal of sulfur availability. IL-1 is likely to decrease SAM levels in chondrocytes; supplemental SAM may compensate for this deficit. Adequate selenium nutrition may down-regulate cytokine signaling, and ample intakes of fish oil can be expected to decrease synovial IL-1 production; these nutrients should receive further evaluation in OA. These considerations suggest that non-toxic nutritional regimens, by intervening at multiple points in the signal transduction pathways that promote the synthesis and mediate the activity of IL-1, may provide a substantially superior alternative to NSAIDs

  13. Rosiglitazone Affects Nitric Oxide Synthases and Improves Renal Outcome in a Rat Model of Severe Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Boris Betz

    2012-01-01

    Full Text Available Background. Nitric oxide (NO-signal transduction plays an important role in renal ischemia/reperfusion (I/R injury. NO produced by endothelial NO-synthase (eNOS has protective functions whereas NO from inducible NO-synthase (iNOS induces impairment. Rosiglitazone (RGZ, a peroxisome proliferator-activated receptor (PPAR-γ agonist exerted beneficial effects after renal I/R injury, so we investigated whether this might be causally linked with NOS imbalance. Methods. RGZ (5 mg/kg was administered i.p. to SD-rats (f subjected to bilateral renal ischemia (60 min. Following 24 h of reperfusion, inulin- and PAH-clearance as well as PAH-net secretion were determined. Morphological alterations were graded by histopathological scoring. Plasma NOx-production was measured. eNOS and iNOS expression was analyzed by qPCR. Cleaved caspase 3 (CC3 was determined as an apoptosis indicator and ED1 as a marker of macrophage infiltration in renal tissue. Results. RGZ improves renal function after renal I/R injury (PAH-/inulin-clearance, PAH-net secretion and reduces histomorphological injury. Additionally, RGZ reduces NOx plasma levels, ED-1 positive cell infiltration and CC3 expression. iNOS-mRNA is reduced whereas eNOS-mRNA is increased by RGZ. Conclusion. RGZ has protective properties after severe renal I/R injury. Alterations of the NO pathway regarding eNOS and iNOS could be an explanation of the underlying mechanism of RGZ protection in renal I/R injury.

  14. Prolonged uterine artery nitric oxide synthase inhibition modestly alters basal uteroplacental vasodilation in the last third of ovine pregnancy.

    Science.gov (United States)

    Rosenfeld, Charles R; Roy, Timothy

    2014-10-15

    Mechanisms regulating uteroplacental blood flow (UPBF) in pregnancy remain unclear, but they likely involve several integrated signaling systems. Endothelium-derived nitric oxide (NO) is considered an important contributor, but the extent of its involvement is unclear. Bolus intra-arterial infusions of nitro-l-arginine methyl ester (l-NAME) modestly decrease ovine basal UPBF; however, the doses and duration of infusion may have been insufficient. We, therefore, examined prolonged uterine artery (UA) NO synthase inhibition with l-NAME throughout the last third of ovine pregnancy by performing either continuous 30-min UA infusion dose responses (n = 4) or 72-h UA infusions (0.01 mg/ml) at 104-108, 118-125, and 131-137 days of gestation (n = 7) while monitoring mean arterial pressure (MAP), heart rate (HR), and UPBF. Uteroplacental vascular resistance (UPVR) was calculated, and uterine cGMP synthesis was measured. Thirty-minute UA l-NAME infusions did not dose dependently decrease UPBF, increase UPVR, or decrease uterine cGMP synthesis (P > 0.1); however, MAP rose and HR fell modestly. Prolonged continuous 72-h UA l-NAME infusions decreased UPBF ∼32%, increased UPVR ∼68% (P ≤ 0.001), and decreased uterine cGMP synthesis 70% at 54-72 h (P ≤ 0.004); the noninfused uterine horn was unaffected. These findings were associated with ∼10% increases in MAP and decreases in HR that were greater at 104-108 than 118-125 and 131-137 days of gestation (P = 0.006). Although uterine and UA NO and cGMP synthesis increase severalfold during ovine pregnancy, they contribute modestly to the maintenance and rise in UPBF in the last third of gestation. Thus, local UA NO may primarily modulate vasoconstrictor responses. Notably, the systemic vasculature appears more sensitive than the uterine vasculature to NO synthase inhibition.

  15. Expression of inducible nitric oxide synthase and cyclooxygenase-2 in pancreatic adenocarcinoma:Correlation with microvessel density

    Institute of Scientific and Technical Information of China (English)

    Hans U. Kasper; Hella Wolf; Uta Drebber; Helmut K. Wolf; Michael A. Kern

    2004-01-01

    AIM: Cyclooxygenases (COX) are key enzymes for conversion of arachidonic acid to prostaglandins. Nitric oxide synthase (NOS) is the enzyme responsible for formation of nitric oxide.Both have constitutive and inducible isoforms. The inducible isoforms (iNOS and COX-2) are of great interest as regulators of tumor angiogenesis, tumorigenesis and inflammatory processes. This study was to clarify their role in pancreatic adenocarcinomas.METHODS: We investigated the immunohistochemical iNOS and COX-2 expression in 40 pancreatic ducal adenocarcinomas of different grade and stage. The results were compared with microvessel density and clinicopathological data.RESULTS: Twenty-one (52.5%) of the cases showed iNOS expression, 15 (37.5%) of the cases were positive for COX-2.The immunoreaction was heterogeneously distributed within the tumors. Staining intensity was different between the tumors. No correlation between iNOS and COX-2 expression was seen. There was no relationship with microvessel density.However, iNOS positive tumors developed more often distant metastases and the more malignant tumors showed a higher COX-2 expression. There was no correlation with other clinicopathological data.CONCLUSION: Approximately half of the cases expressed iNOS and COX-2. These two enzymes do not seem to be the key step in angiogenesis or carcinogenesis of pancreatic adenocarcinomas. Due to a low prevalence of COX-2expression, chemoprevention of pancreatic carcinomas by COX-2 inhibitors can only achieve a limited success.

  16. Hippocampal neuronal nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by downregulating glucocorticoid receptor.

    Science.gov (United States)

    Zhou, Qi-Gang; Zhu, Li-Juan; Chen, Chen; Wu, Hai-Yin; Luo, Chun-Xia; Chang, Lei; Zhu, Dong-Ya

    2011-05-25

    The molecular mechanisms underlying the behavioral effects of glucocorticoids are poorly understood. We report here that hippocampal neuronal nitric oxide synthase (nNOS) is a crucial mediator. Chronic mild stress and glucocorticoids exposures caused hippocampal nNOS overexpression via activating mineralocorticoid receptor. In turn, hippocampal nNOS-derived nitric oxide (NO) significantly downregulated local glucocorticoid receptor expression through both soluble guanylate cyclase (sGC)/cGMP and peroxynitrite (ONOO(-))/extracellular signal-regulated kinase signal pathways, and therefore elevated hypothalamic corticotrophin-releasing factor, a peptide that governs the hypothalamic-pituitary-adrenal axis. More importantly, nNOS deletion or intrahippocampal nNOS inhibition and NO-cGMP signaling blockade (using NO scavenger or sGC inhibitor) prevented the corticosterone-induced behavioral modifications, suggesting that hippocampal nNOS is necessary for the role of glucocorticoids in mediating depressive behaviors. In addition, directly delivering ONOO(-) donor into hippocampus caused depressive-like behaviors. Our findings reveal a role of hippocampal nNOS in regulating the behavioral effects of glucocorticoids.

  17. Phenotype commitment in vascular smooth muscle cells derived from coronary atherosclerotic plaques: differential gene expression of endothelial Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    ML Rossi

    2009-06-01

    Full Text Available Unstable angina and myocardial infarction are the clinical manifestations of the abrupt thrombotic occlusion of an epicardial coronary artery as a result of spontaneous atherosclerotic plaque rupture or fissuring, and the exposure of highly thrombogenic material to blood. It has been demonstrated that the proliferation of vascular smooth muscle cells (VSMCs and impaired bioavailabilty of nitric oxide (NO are among the most important mechanisms involved in the progression of atherosclerosis. It has also been suggested that a NO imbalance in coronary arteries may be involved in myocardial ischemia as a result of vasomotor dysfunction triggering plaque rupture and the thrombotic response. We used 5’ nuclease assays (TaqMan™ PCRs to study gene expression in coronary plaques collected by means of therapeutic directional coronary atherectomy from 15 patients with stable angina (SA and 15 with acute coronary syndromes (ACS without ST elevation. Total RNA was extracted from the 30 plaques and the cDNA was amplified in order to determine endothelial nitric oxide synthase (eNOS gene expression. Analysis of the results showed that the expression of eNOS was significantly higher (p<0.001 in the plaques from the ACS patients. Furthermore, isolated VSMCs from ACS and SA plaques confirmed the above pattern even after 25 plating passages. In situ RT-PCR was also carried out to co-localize the eNOS messengers and the VSMC phenotype.

  18. Triterpenoic Acids from Apple Pomace Enhance the Activity of the Endothelial Nitric Oxide Synthase (eNOS).

    Science.gov (United States)

    Waldbauer, Katharina; Seiringer, Günter; Nguyen, Dieu Linh; Winkler, Johannes; Blaschke, Michael; McKinnon, Ruxandra; Urban, Ernst; Ladurner, Angela; Dirsch, Verena M; Zehl, Martin; Kopp, Brigitte

    2016-01-13

    Pomace is an easy-accessible raw material for the isolation of fruit-derived compounds. Fruit consumption is associated with health-promoting effects, such as the prevention of cardiovascular disease. Increased vascular nitric oxide (NO) bioavailability, for example, due to an enhanced endothelial nitric oxide synthase (eNOS) activity, could be one molecular mechanism mediating this effect. To identify compounds from apple (Malus domestica Borkh.) pomace that have the potential to amplify NO bioavailability via eNOS activation, a bioassay-guided fractionation of the methanol/water (70:30) extract has been performed using the (14)C-L-arginine to (14)C-L-citrulline conversion assay (ACCA) in the human endothelium-derived cell line EA.hy926. Phytochemical characterization of the active fractions was performed using the spectrophotometric assessment of the total phenolic content, as well as TLC, HPLC-DAD-ELSD, and HPLC-MS analyses. Eleven triterpenoic acids, of which one is a newly discovered compound, were identified as the main constituents in the most active fraction, accompanied by only minor contents of phenolic compounds. When tested individually, none of the tested compounds exhibited significant eNOS activation. Nevertheless, cell stimulation with the reconstituted compound mixture restored eNOS activation, validating the potential of apple pomace as a source of bioactive components.

  19. Low-dose ribavirin treatments attenuate neuroinflammatory activation of BV-2 Cells by interfering with inducible nitric oxide synthase.

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Jovanovic, Marija; Bjelobaba, Ivana; Laketa, Danijela; Nedeljkovic, Nadezda; Stojiljkovic, Mirjana; Pekovic, Sanja; Lavrnja, Irena

    2015-01-01

    Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM) modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM) to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS) stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation.

  20. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Iva Bozic

    2015-01-01

    Full Text Available Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation.

  1. Phosphine catalysis of allenes with electrophiles.

    Science.gov (United States)

    Wang, Zhiming; Xu, Xingzhu; Kwon, Ohyun

    2014-05-07

    Nucleophilic phosphine catalysis of allenes with electrophiles is one of the most powerful and straightforward synthetic strategies for the generation of highly functionalized carbocycle or heterocycle structural motifs, which are present in a wide range of bioactive natural products and medicinally important substances. The reaction topologies can be controlled through a judicious choice of the phosphine catalyst and the structural variations of starting materials. This Tutorial Review presents selected examples of nucleophilic phosphine catalysis using allenes and electrophiles.

  2. Expression of nitric oxide synthases and effects of L-arginine and L-NMMA on nitric oxide production and fluid transport in collagenous colitis

    DEFF Research Database (Denmark)

    Perner, A; Andresen, L; Normark, M;

    2001-01-01

    BACKGROUND AND AIMS: Luminal nitric oxide (NO) is greatly increased in the colon of patients with collagenous and ulcerative colitis. To define the source and consequence of enhanced NO production we have studied expression of NO synthase (NOS) isoforms and nitrotyrosine in mucosal biopsies from...... these patients. In addition, effects on colonic fluid transfer caused by manipulating the substrate of NOS were studied in patients with collagenous colitis. PATIENTS: Eight patients with collagenous colitis, nine with active ulcerative colitis, and 10 with uninflamed bowel were included. METHODS: Expression....../nitrate (NOx) was measured by Griess' reaction. RESULTS: Both in collagenous and ulcerative colitis, expression of iNOS was 10(2)-10(3) higher (p

  3. Calcium/calmodulin dependence of nitric oxide synthase from Viviparus ater

    Directory of Open Access Journals (Sweden)

    D Tagliazucchi

    2005-04-01

    Full Text Available The calcium ion dependence of soluble and particulate nitric oxyde synthase (NOS activity fromViviparus ater immunocytes was investigated. At a calcium ion concentration of 2 nM, the NOS activitymeasured by citrulline formation was 27.1 ± 2.2 and 9.3 ± 0.8 pmol/min/106cell for soluble andparticulate NOS, respectively. The increase in free calcium ion concentration to 300 nM increasesenzyme activity to 57.5 ± 4.1 and 23.5 ± 1.2 pmol/min/106cell, respectively. The 50 % activation of thecalcium-dependent activity is 91 and 97 nM Ca2+ for soluble and particulate enzymes. Trifluoperazine,an inhibitor of the calmodulin-dependent enzyme, partially inhibits both activities. Soluble NOS is fivetimes more sensitive than particulate NOS. The behaviour of both activities with three NOS inhibitors(7-nitroindazole, S-methylisothiourea sulphate, diphenyleneiodonium is very similar, with IC50 valuesthat are not significantly different. The calcium ion dependence of NOS activities, in a range of freecalcium ion variations, which are transiently observed in receptor-stimulated cells, suggests that nitricoxyde in V. ater immunocytes not only has a defensive role but also signalling relevance in crosstalkingbetween immunocytes and other cells.

  4. Cyclic Stretch Induces Inducible Nitric Oxide Synthase and Soluble Guanylate Cyclase in Pulmonary Artery Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Kathryn N. Farrow

    2013-02-01

    Full Text Available In the pulmonary vasculature, mechanical forces such as cyclic stretch induce changes in vascular signaling, tone and remodeling. Nitric oxide is a potent regulator of soluble guanylate cyclase (sGC, which drives cGMP production, causing vasorelaxation. Pulmonary artery smooth muscle cells (PASMCs express inducible nitric oxide synthase (iNOS, and while iNOS expression increases during late gestation, little is known about how cyclic stretch impacts this pathway. In this study, PASMC were subjected to cyclic stretch of 20% amplitude and frequency of 1 Hz for 24 h and compared to control cells maintained under static conditions. Cyclic stretch significantly increased cytosolic oxidative stress as compared to static cells (62.9 ± 5.9% vs. 33.3 ± 5.7% maximal oxidation, as measured by the intracellular redox sensor roGFP. Cyclic stretch also increased sGCβ protein expression (2.5 ± 0.9-fold, sGC activity (1.5 ± 0.2-fold and cGMP levels (1.8 ± 0.2-fold, as well as iNOS mRNA and protein expression (3.0 ± 0.9 and 2.6 ± 0.7-fold, respectively relative to control cells. An antioxidant, recombinant human superoxide dismutase (rhSOD, significantly decreased stretch-induced cytosolic oxidative stress, but did not block stretch-induced sGC activity. Inhibition of iNOS with 1400 W or an iNOS-specific siRNA inhibited stretch-induced sGC activity by 30% and 68% respectively vs. static controls. In conclusion, cyclic stretch increases sGC expression and activity in an iNOS-dependent manner in PASMC from fetal lambs. The mechanism that produces iNOS and sGC upregulation is not yet known, but we speculate these effects represent an early compensatory mechanism to counteract the effects of stretch-induced oxidative stress. A better understanding of the interplay between these two distinct pathways could provide key insights into future avenues to treat infants with pulmonary hypertension.

  5. Influence of heme-thiolate in shaping the catalytic properties of a bacterial nitric-oxide synthase.

    Science.gov (United States)

    Hannibal, Luciana; Somasundaram, Ramasamy; Tejero, Jesús; Wilson, Adjele; Stuehr, Dennis J

    2011-11-11

    Nitric-oxide synthases (NOS) are heme-thiolate enzymes that generate nitric oxide (NO) from L-arginine. Mammalian and bacterial NOSs contain a conserved tryptophan (Trp) that hydrogen bonds with the heme-thiolate ligand. We mutated Trp(66) to His and Phe (W66H, W66F) in B. subtilis NOS to investigate how heme-thiolate electronic properties control enzyme catalysis. The mutations had opposite effects on heme midpoint potential (-302, -361, and -427 mV for W66H, wild-type (WT), and W66F, respectively). These changes were associated with rank order (W66H < WT < W66F) changes in the rates of oxygen activation and product formation in Arg hydroxylation and N-hydroxyarginine (NOHA) oxidation single turnover reactions, and in the O(2) reactivity of the ferrous heme-NO product complex. However, enzyme ferrous heme-O(2) autoxidation showed an opposite rank order. Tetrahydrofolate supported NO synthesis by WT and the mutant NOS. All three proteins showed similar extents of product formation (L-Arg → NOHA or NOHA → citrulline) in single turnover studies, but the W66F mutant showed a 2.5 times lower activity when the reactions were supported by flavoproteins and NADPH. We conclude that Trp(66) controls several catalytic parameters by tuning the electron density of the heme-thiolate bond. A greater electron density (as in W66F) improves oxygen activation and reactivity toward substrate, but decreases heme-dioxy stability and lowers the driving force for heme reduction. In the WT enzyme the Trp(66) residue balances these opposing effects for optimal catalysis.

  6. Skeletal muscle nitric oxide (NO) synthases and NO-signaling in "diabesity"--what about the relevance of exercise training interventions?

    Science.gov (United States)

    Eghbalzadeh, Kaveh; Brixius, Klara; Bloch, Wilhelm; Brinkmann, Christian

    2014-02-15

    Type 2 diabetes mellitus associated with obesity, or "diabesity", coincides with an altered nitric oxide (NO) metabolism in skeletal muscle. Three isoforms of nitric oxide synthase (NOS) exist in human skeletal muscle tissue. Both neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) are constitutively expressed under physiological conditions, producing low levels of NO, while the inducible nitric oxide synthase (iNOS) is strongly up-regulated only under pathophysiological conditions, excessively increasing NO concentrations. Due to chronic inflammation, overweight/obese type 2 diabetic patients exhibit up-regulated protein contents of iNOS and concomitant elevated amounts of NO in skeletal muscle. Low muscular NO levels are important for attaining an adequate cellular redox state--thereby maintaining metabolic integrity--while high NO levels are believed to destroy cellular components and to disturb metabolic processes, e.g., through strongly augmented posttranslational protein S-nitrosylation. Physical training with submaximal intensity has been shown to attenuate inflammatory profiles and iNOS protein contents in the long term. The present review summarizes signaling pathways which induce iNOS up-regulation under pathophysiological conditions and describes molecular mechanisms by which high NO concentrations are likely to contribute to triggering skeletal muscle insulin resistance and to reducing mitochondrial capacity during the development and progression of type 2 diabetes. Based on this information, it discusses the beneficial effects of regular physical exercise on the altered NO metabolism in the skeletal muscle of overweight/obese type 2 diabetic subjects, thus unearthing new perspectives on training strategies for this particular patient group.

  7. Endogenous nitric oxide synthase inhibitors, arterial hemodynamics, and subclinical vascular disease: the PREVENCION Study.

    Science.gov (United States)

    Chirinos, Julio A; David, Robert; Bralley, J Alexander; Zea-Díaz, Humberto; Muñoz-Atahualpa, Edgar; Corrales-Medina, Fernando; Cuba-Bustinza, Carolina; Chirinos-Pacheco, Julio; Medina-Lezama, Josefina

    2008-12-01

    Endogenous NO synthase inhibitors (end-NOSIs) have been associated with cardiovascular risk factors and atherosclerosis. In addition, end-NOSIs may directly cause hypertension through hemodynamic effects. We aimed to examine the association between end-NOSI asymmetrical dimethylarginine (ADMA) and N-guanidino-monomethyl-arginine (NMMA), subclinical atherosclerosis, and arterial hemodynamics. We studied 922 adults participating in a population-based study (PREVENCION Study) and examined the correlation between end-NOSI/L-arginine and arterial hemodynamics, carotid-femoral pulse wave velocity, and carotid intima-media thickness using linear regression. ADMA, NMMA, and L-arginine were found to be differentially associated with various classic cardiovascular risk factors. ADMA and NMMA (but not L-arginine) were significant predictors of carotid intima-media thickness, even after adjustment for cardiovascular risk factors, C-reactive protein, and renal function. In contrast, ADMA and NMMA did not predict carotid-femoral pulse wave velocity, blood pressure, or hemodynamic abnormalities. Higher L-arginine independently predicted systolic hypertension, higher central pulse pressure, incident wave amplitude, central augmented pressure, and lower total arterial compliance but not systemic vascular resistance or cardiac output. We conclude that ADMA and NMMA are differentially associated with cardiovascular risk factors, but both end-NOSIs are independent predictors of carotid atherosclerosis. In contrast, they are not associated with large artery stiffness, hypertension, or hemodynamic abnormalities. Our findings are consistent with a role for asymmetrical arginine methylation in atherosclerosis but not in large artery stiffening, hypertension, or long-term hemodynamic regulation. L-arginine is independently associated with abnormal pulsatile (but not resistive) arterial hemodynamic indices, which may reflect abnormal L-arginine transport, leading to decreased intracellular

  8. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Li DING; Jin ZHANG

    2012-01-01

    To investigate the effects of glucagon-like peptide-1 (GLP-1) on endothelial NO synthase (eNOS) in human umbilical vein endothelial cells (HUVECs),and elucidate whether GLP-1 receptor (GLP-1R) and GLP-1(9-36) are involved in these effects.Methods:HUVECs were used.The activity of eNOS was measured with NOS assay kit.Phosphorylated and total eNOS proteins were detected using Western blot analysis.The level of eNOS mRNA was quantified with real-time RT-PCR.Results:Incubation of HUVECs with GLP-1 (50-5000 pmol/L) for 30 min significantly increased the activity of eNOS.Incubation of HUVECs with GLP-1 (500-5000 pmol/L) for 5 or 10 min increased eNOS phosphorylated at ser-1177.Incubation with GLP-1 (5000 pmol/L) for 48 h elevated the level of eNOS protein,did not affect the level of eNOS mRNA.GLP-1R agonists exenatide and GLP-1(9-36) at the concentration of 5000 pmol/L increased the activity,phosphorylation and protein level of eNOS.GLP-1R antagonist exendin(9-39) or DPP-4 inhibitor sitagliptin,which abolished GLP-1(9-36) formation,at the concentration of 5000 pmol/L partially blocked the effects of GLP-1 on eNOS.Conclusion:GLP-1 upregulated the activity and protein expression of eNOS in HUVECs through the GLP-1R-dependent and GLP-1(9-36)-related pathways.GLP-1 may prevent or delay the formation of atherosclerosis in diabetes mellitus by improving the function of eNOS.

  9. Effects of nitric oxide synthase inhibition on glutamine action in a bacterial translocation model.

    Science.gov (United States)

    Santos, Rosana G C; Quirino, Iara E P; Viana, Mirelle L; Generoso, Simone V; Nicoli, Jacques R; Martins, Flaviano S; Nogueira-Machado, José A; Arantes, Rosa M E; Correia, Maria I T D; Cardoso, Valbert N

    2014-01-14

    Glutamine may be a precursor for NO synthesis, which may play a crucial role in bacterial translocation (BT). The goal of the present study was to investigate the potential effects of glutamine on BT and the immunological response in an experimental model of NO synthase inhibition by NG-nitro-L-arginine methyl ester (l-NAME). Mice were randomly assigned to four groups: sham; intestinal obstruction (IO); IO+500 mg/kg per d glutamine (GLN); IO+GLN plus 10 mg/kg per d l-NAME (GLN/LN). The groups were pretreated for 7 d. BT was induced by ileal ligation and was assessed 18 h later by measuring the radioactivity of 99mTc-Escherichia coli in the blood and organs. Mucosal damage was determined using a histological analysis. Intestinal permeability (IP) was assessed by measuring the levels of 99mTc-diethylenetriaminepentaacetic acid in the blood at 4, 8 and 18 h after surgery. IgA and cytokine concentrations were determined by ELISA in the intestinal fluid and plasma, respectively. BT was increased in the GLN/LN and IO groups than in the GLN and sham groups. IP and intestinal mucosa structure of the sham, GLN and GLN/LN groups were similar. The GLN group had the highest levels of interferon-γ, while IL-10 and secretory IgA levels were higher than those of the IO group but similar to those of the GLN/LN group. The present results suggest that effects of the glutamine pathway on BT were mediated by NO. The latter also interferes with the pro-inflammatory systemic immunological response. On the other hand, IP integrity preserved by the use of glutamine is independent of NO.

  10. Impaired neuronal nitric oxide synthase-mediated vasodilator responses to mental stress in essential hypertension.

    Science.gov (United States)

    Khan, Sitara G; Geer, Amber; Fok, Henry W; Shabeeh, Husain; Brett, Sally E; Shah, Ajay M; Chowienczyk, Philip J

    2015-04-01

    Neuronal NO synthase (nNOS) regulates blood flow in resistance vasculature at rest and during mental stress. To investigate whether nNOS signaling is dysfunctional in essential hypertension, forearm blood flow responses to mental stress were examined in 88 subjects: 48 with essential hypertension (42±14 years; blood pressure, 141±17/85±15 mm Hg; mean±SD) and 40 normotensive controls (38±14 years; 117±13/74±9 mm Hg). A subsample of 34 subjects (17 hypertensive) participated in a single blind 2-phase crossover study, in which placebo or sildenafil 50 mg PO was administered before an intrabrachial artery infusion of the selective nNOS inhibitor S-methyl-l-thiocitrulline (SMTC, 0.05, 0.1, and 0.2 μmol/min) at rest and during mental stress. In a further subsample (n=21) with an impaired blood flow response to mental stress, responses were measured in the presence and absence of the α-adrenergic antagonist phentolamine. The blood flow response to mental stress was impaired in hypertensive compared with normotensive subjects (37±7% versus 70±8% increase over baseline; Phypertensive subjects (reduction of 40±11% versus 3.0±14%, respectively, P=0.01, between groups). Sildenafil reduced the blood flow response to stress in normotensive subjects from 89±14% to 43±14% (Phypertensive subjects. Phentolamine augmented impaired blood flow responses to mental stress from 39±8% to 67±13% (Phypertension is associated with impaired mental stress-induced nNOS-mediated vasodilator responses; this may relate to increased sympathetic outflow in hypertension. nNOS dysfunction may impair vascular homeostasis in essential hypertension and contribute to stress-induced cardiovascular events.

  11. Depression of the inotropic action of isoprenaline by nitric oxide synthase induction in rat isolated hearts

    NARCIS (Netherlands)

    Wei, S; Szabo, C; Dusting, GJ

    1997-01-01

    The mechanisms involved in myocardial dysfunction during septic shock are not well understood. We have investigated the effects of endotoxin and the role of nitric oxide (NO) in the P-adrenoceptor responsiveness of rat isolated, ejecting hearts perfused at 60 mmHg of head pressure. In vivo pretreatm

  12. Study of expression of neuropathic nitric oxide synthase, endothelial nitric oxide synthase and inducible nitric oxide synthase in penile tissue of erectile dysfunction rat models with prolactinoma%泌乳素瘤性阴茎勃起功能障碍大鼠阴茎各亚型一氧化氮合酶表达的变化

    Institute of Scientific and Technical Information of China (English)

    翁博文; 祝海; 侯四川; 徐珞; 栾晓; 綦海燕; 刘之俊; 王伟民; 刘伟

    2015-01-01

    目的 探讨泌乳素瘤性勃起功能障碍的发病机制.方法 雄性Wistar大鼠腹腔内注射乙烯雌酚(DES)建立泌乳素瘤模型.8周通过阿扑吗啡(APO)实验筛选,建立泌乳素瘤性阴茎勃起功能障碍(P-ED)模型,应用免疫组织化学方法测定大鼠阴茎组织神经型一氧化氮合酶(nNOS)、内皮型一氧化氮合酶(eNOS)和诱导型一氧化氮合酶(iNOS)表达水平的变化.结果 DES注射8周后,垂体泌乳素瘤成模率为100%,P-ED成模率为75%.与对照组比较,注射DES 8周时大鼠垂体质量明显增加;血清泌乳素(PRL)水平升高而游离睾酮(FT)水平降低;阴茎勃起次数显著减少.阴茎组织nNOS、eNOS表达降低而iNOS表达增加.结论 P-ED大鼠模型阴茎组织nNOS、eNOS表达减少而iNOS表达增加.%Objective To investigate the mechanism of erectile dysfunction of prolactinoma.Methods Male Wistar rats were treated with diethylstilbestrol (DES) by peritoneal injection to establish the rat model of prolactinoma.After 8 weeks,the model rats were injected with apomorphine to screening ED rats models with DES-induced prolactinoma (P-ED).The changes of expression of neuropathic nitric oxide synthase (nNOS),endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) in penis were detected with immunohistochemistry.Results By 8 weeks,100% pituitary glands of DES group developed prolactinomas and 75% DES-induced prolactinoma rats developed ED models.The weight of pituitary gland was dramatic increased.The Prolactin (PRL) level of P-ED group was significantly higher and FT level was lower than the control group.Erectile rate of DES group was significant lower than the control group after 8 weeks of DES injection.The expression of nNOS and eNOS in penis of P-ED group was significantly lower than the control group.However,the expression of iNOS in penis of P-ED group was significantly higher than the control group.Conclusion The expression of nNOS and e

  13. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase.

    Science.gov (United States)

    Berka, Vladimir; Yeh, Hui-Chun; Gao, De; Kiran, Farheen; Tsai, Ah-Lim

    2004-10-19

    Tetrahydrobiopterin (BH(4)), not dihydrobiopterin or biopterin, is a critical element required for NO formation by nitric oxide synthase (NOS). To elucidate how BH(4) affects eNOS activity, we have investigated BH(4) redox functions in the endothelial NOS (eNOS). Redox-state changes of BH(4) in eNOS were examined by chemical quench/HPLC analysis during the autoinactivation of eNOS using oxyhemoglobin oxidation assay for NO formation at room temperature. Loss of NO formation activity linearly correlated with BH(4) oxidation, and was recovered by overnight incubation with fresh BH(4). Thus, thiol reagents commonly added to NOS enzyme preparations, such as dithiothreitol and beta-mercaptoethanol, probably preserve enzyme activity by preventing BH(4) oxidation. It has been shown that conversion of L-arginine to N-hydroxy-L-arginine in the first step of NOS catalysis requires two reducing equivalents. The first electron that reduces ferric to the ferrous heme is derived from flavin oxidation. The issue of whether BH(4) supplies the second reducing equivalent in the monooxygenation of eNOS was investigated by rapid-scan stopped-flow and rapid-freeze-quench EPR kinetic measurements. In the presence of L-arginine, oxygen binding kinetics to ferrous eNOS or to the ferrous eNOS oxygenase domain (eNOS(ox)) followed a sequential mechanism: Fe(II) Fe(II)O(2) --> Fe(III) + O(2)(-). Without L-arginine, little accumulation of the Fe(II)O(2) intermediate occurred and essentially a direct optical transition from the Fe(II) form to the Fe(III) form was observed. Stabilization of the Fe(II)O(2) intermediate by L-arginine has been established convincingly. On the other hand, BH(4) did not have significant effects on the oxygen binding and decay of the oxyferrous intermediate of the eNOS or eNOS oxygenase domain. Rapid-freeze-quench EPR kinetic measurements in the presence of L-arginine showed a direct correlation between BH(4) radical formation and decay of the Fe(II)O(2) intermediate

  14. Isoeugenin, a Novel Nitric Oxide Synthase Inhibitor Isolated from the Rhizomes of Imperata cylindrica

    OpenAIRE

    Hyo-Jin An; Agung Nugroho; Byong-Min Song; Hee-Juhn Park

    2015-01-01

    Phytochemical studies on the constituents of the rhizomes of Imperata cylindrica (Gramineae) were performed using high-performance liquid chromatography (HPLC). We also aimed to search for any biologically active substance capable of inhibiting nitric oxide (NO) formation in lipopolysaccharide (LPS)-activated macrophage 264.7 cells, by testing four compounds isolated from this plant. Four compounds, including a new chromone, isoeugenin, along with ferulic acid, p-coumaric acid, and caffeic ac...

  15. Activation of Phosphotyrosine Phosphatase Activity Attenuates Mitogen-Activated Protein Kinase Signaling and Inhibits c-FOS and Nitric Oxide Synthase Expression in Macrophages Infected with Leishmania donovani

    OpenAIRE

    Nandan, Devki; Lo, Raymond; Reiner, Neil E

    1999-01-01

    Intracellular protozoan parasites of the genus Leishmania antagonize host defense mechanisms by interfering with cell signaling in macrophages. In this report, the impact of Leishmania donovani on mitogen-activated protein (MAP) kinases and nitric oxide synthase (NOS) expression in the macrophage cell line RAW 264 was investigated. Overnight infection of cells with leishmania led to a significant decrease in phorbol-12-myristate-13-acetate (PMA)-stimulated MAP kinase activity and inhibited PM...

  16. Distribution of nitric oxide synthase, nerve growth factor receptor and interstitial cells of Cajal in hirschsprung s disease and its significance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To investigate the distribution of nitric oxide synthase (NOS), nerve growth factor receptor (NGFR) and interstitial cells of Cajal (ICCs) in Hirschsprung's disease (HD). Methods The distribution of NOS, NGFR and ICCs was studied by using NADPH diaphorase histochemistry, immunohistochemistry with a monoclonal antibody to human NGFR and the specific polyclonal antibody against c-kit in 8 normal controls and 10 cases of HD. Results NOS and NGFR were abundantly present in the myenteric plexus and in ...

  17. Endothelial Nitric Oxide Synthase Traffic Inducer in the Umbilical Vessels of the Patients with Pre-eclampsia

    Institute of Scientific and Technical Information of China (English)

    Wenpei XIANG; Hanping CHEN; Lian HU; Xiaoyan XU

    2009-01-01

    The expression of endothelial nitric oxide synthase traffic inducer (NOSTRIN) was examined in the umbilical vessels of the patients with pre-eclampsia (PE) to explore its possible role in the pathogenesis of PE.The NOSTRIN mRNA in umbilical tissues was determined by RT-PCR.The eNOS activity in umbilical vessels was spectrophotometrically detected.NO2-/NO3-,the stable metabolic end products of NO,was measured by using nitrate reductase.RT-PCR showed that the expression level of NOSTRIN was significantly higher in women with PE than in the normal group (P<0.01).The activity of eNOS was significantly decreased in PE group [(12.83±3.61) U/mg] than in normal group [(21.72±3.83) U/mg] (P<0.01).The level of NO2-/NO3- in PE patients (27.53± 7.48) μmol/mg was significantly lower than that of normal group (54.27±9.53) μmol/mg (P<0.01).The significant negative correlation existed between the expression of NOSTRIN and the activity of eNOS in umbilical vessels of women with PE (r=-0.58,P<0.01).It was concluded that the level of NOSTRIN expression was increased in umbilical vessel of women with PE,indicating that it may be involved in the pathogenesis of PE.

  18. Nitric oxide synthase inhibitor, aminoguanidine reduces intracerebroventricular colchicine induced neurodegeneration, memory impairments and changes of systemic immune responses in rats.

    Science.gov (United States)

    Sil, Susmita; Ghosh, Tusharkanti; Ghosh, Rupsa; Gupta, Pritha

    2017-02-15

    Intracerebroventricular (i.c.v.) injection of colchicine induces neurodegeneration, memory impairments and changes of some systemic immune responses in rats. Though the role of cox 2 in these colchicine induced changes have been evaluated, the influence of nitric oxide synthase (NOS) remains to be studied. The present study was designed to assess the role of NOS on the i.c.v. colchicine induced neurodegeneration, memory impairments and changes of some systemic immune responses by inhibiting its activity with aminoguanidine. In the present study the impairments of working and reference memories, neurodegeneration (chromatolysis and plaque formation) and changes of neuroinflammatory markers in the hippocampus (increased TNF α, IL 1β, ROS and nitrite) along with changes of serum inflammatory markers (TNF α, IL 1β, ROS and nitrite) and alteration of systemic immune responses (higher phagocytic activity of blood WBC and splenic PMN, higher cytotoxicity and lower leukocyte adhesion inhibition index of splenic MNC) were measured in the intracerebroventricular colchicine injected rats (ICIR). Administration of aminoguanidine (p.o. 30/50mg/kg body weight) to ICIR resulted in recovery of neuroinflammation and partial prevention of neurodegeneration which could be corroborated with the partial recovery of memory impairments in this model. The recovery of serum inflammatory markers and the systemic immune responses in ICIR was also observed after administration of aminoguanidine. Therefore, the present study shows that aminoguanidine can protect the colchicine induced neurodegeneration, memory impairments, and changes of systemic immune systemic responses in ICIR by inhibiting the iNOS.

  19. The Endothelial Nitric Oxide Synthase Gene T-786C Polymorphism Increases Myocardial Infarction Risk: A Meta-Analysis

    Science.gov (United States)

    Kong, Xiang-Zhen; Zhang, Zheng-Yi; Wei, Lian-Hua; Li, Rui; Yu, Jing

    2017-01-01

    Background Polymorphisms of the endothelial nitric oxide synthase (eNOS) gene are reportedly associated with myocardial infarction (MI) risk. However, definitive evidence of this association is lacking. In this study, we investigated the potential association of eNOS gene polymorphisms with MI risk by conducting a meta-analysis of studies evaluating this association. Material/Methods PubMed, Web of Knowledge, ScienceDirect, China National Knowledge Infrastructure (CNKI), WanFang, and Database of Chinese Scientific and Technical Periodicals (VIP) were searched for relevant studies. Pooled odds ratios (OR) with 95% confidence interval (CI) were calculated to evaluate the association of eNOS gene T-786C and 4b4a polymorphisms with MI risk. Results Fifteen studies with 8,067 controls and 4,923 MI cases were included in the final meta-analysis. In the overall analysis, T-786C (rs2070744) polymorphism was associated with MI risk (pmeta-analysis, T-786C polymorphism of the eNOS gene was associated with the risk of MI, especially in the Asian populations. PMID:28188309

  20. Gene therapy via inducible nitric oxide synthase: a tool for the treatment of a diverse range of pathological conditions.

    Science.gov (United States)

    McCarthy, Helen O; Coulter, Jonathan A; Robson, Tracy; Hirst, David G

    2008-08-01

    Nitric oxide (NO(.)) is a reactive nitrogen radical produced by the NO synthase (NOS) enzymes; it affects a plethora of downstream physiological and pathological processes. The past two decades have seen an explosion in the understanding of the role of NO(.) biology, highlighting various protective and damaging modes of action. Much of the controversy surrounding the role of NO(.) relates to the differing concentrations generated by the three isoforms of NOS. Both calcium-dependent isoforms of the enzyme (endothelial and neuronal NOS) generate low-nanomolar/picomolar concentrations of NO(.). By contrast, the calcium-independent isoform (inducible NOS (iNOS)) generates high concentrations of NO(.), 2-3 orders of magnitude greater. This review summarizes the current literature in relation to iNOS gene therapy for the therapeutic benefit of various pathological conditions, including various states of vascular disease, wound healing, erectile dysfunction, renal dysfunction and oncology. The available data provide convincing evidence that manipulation of endogenous NO(.) using iNOS gene therapy can provide the basis for future clinical trials.

  1. Caloric restriction increases internal iliac artery and penil nitric oxide synthase expression in rat: Comparison of aged and adult rats

    Directory of Open Access Journals (Sweden)

    Emin Ozbek

    2013-09-01

    Full Text Available Because of the positive corelation between healthy cardiovascular system and sexual life we aimed to evaluate the effect of caloric restriction (CR on endothelial and neuronal nitric oxide synthase (eNOS, nNOS expression in cavernousal tissues and eNOS expression in the internal iliac artery in young and aged rats. Young (3 mo, n = 7 and aged (24 mo, n = 7 male Sprague-Dawley rats were subjected to 40% CR and were allowed free access to water for 3 months. Control rats (n = 14 fed ad libitum had free access to food and water at all times. On day 90, rats were sacrified and internal iliac arteries and penis were removed and parafinized, eNOS and nNOS expression evaluated with immunohistochemistry. Results were evaluated semiquantitatively. eNOS and nNOS expression in cavernousal tis- sue in CR rats were more strong than in control group in both young and old rats. eNOS expression was also higher in the internal iliac arteries of CR rats than in control in young and old rats. As a result of our study we can say that there is a positive link between CR and neurotransmitter of erection in cavernousal tissues and internal iliac arteries. CR has beneficial effect to prevent sexual dysfunction in young and old animals and possible humans.

  2. Distinctive expression patterns of hypoxia-inducible factor-1α and endothelial nitric oxide synthase following hypergravity exposure

    Science.gov (United States)

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-01-01

    This study was designed to examine the expression of hypoxia-inducible factor-1α (HIF-1α) and the level and activity of endothelial nitric oxide synthase (eNOS) in the hearts and livers of mice exposed to hypergravity. Hypergravity-induced hypoxia and the subsequent post-exposure reoxygenation significantly increased cardiac HIF-1α levels. Furthermore, the levels and activity of cardiac eNOS also showed significant increase immediately following hypergravity exposure and during the reoxygenation period. In contrast, the expression of phosphorylated Akt (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) showed significant elevation only during the reoxygenation period. These data raise the possibility that the increase in cardiac HIF-1α expression induced by reoxygenation involves a cascade of signaling events, including activation of the Akt and ERK pathways. In the liver, HIF-1α expression was significantly increased immediately after hypergravity exposure, indicating that hypergravity exposure to causes hepatocellular hypoxia. The hypergravity-exposed livers showed significantly higher eNOS immunoreactivity than did those of control mice. Consistent with these results, significant increases in eNOS activity and nitrate/nitrite levels were also observed. These findings suggest that hypergravity-induced hypoxia plays a significant role in the upregulation of hepatic eNOS. PMID:27191892

  3. Association of a functional variant of the nitric oxide synthase 1 gene with personality, anxiety, and depressiveness.

    Science.gov (United States)

    Kurrikoff, Triin; Lesch, Klaus-Peter; Kiive, Evelyn; Konstabel, Kenn; Herterich, Sabine; Veidebaum, Toomas; Reif, Andreas; Harro, Jaanus

    2012-11-01

    A functional promoter polymorphism of the nitric oxide synthase 1 gene first exon 1f variable number tandem repeat (NOS1 ex1f-VNTR) is associated with impulsivity and related psychopathology. Facets of impulsivity are strongly associated with personality traits; maladaptive impulsivity with neuroticism; and adaptive impulsivity with extraversion. Both high neuroticism and low extraversion predict anxiety and depressive symptoms. The aim of the present study was to evaluate the effect of the NOS1 ex1f-VNTR genotype and possible interaction with environmental factors on personality, anxiety, and depressiveness in a population-representative sample. Short allele carriers had higher neuroticism and anxiety than individuals with the long/long (l/l) genotype. Male short/short homozygotes also had higher extraversion. In the face of environmental adversity, females with a short allele had higher scores of neuroticism, anxiety, and depressiveness compared to the l/l genotype. Males were more sensitive to environmental conditions when they had the l/l genotype and low extraversion. In conclusion, the NOS1 ex1f-VNTR influences personality and emotional regulation dependent on gender and environment. Together with previous findings on the effect of the NOS1 genotype on impulse control, these data suggest that NOS1 should be considered another plasticity gene, because its variants are associated with different coping strategies.

  4. Epigenetic regulation of nitric oxide synthase 2, inducible (Nos2) by NLRC4 inflammasomes involves PARP1 cleavage

    Science.gov (United States)

    Buzzo, Carina de Lima; Medina, Tiago; Branco, Laura M.; Lage, Silvia L.; Ferreira, Luís Carlos de Souza; Amarante-Mendes, Gustavo P.; Hottiger, Michael O.; De Carvalho, Daniel D.; Bortoluci, Karina R.

    2017-01-01

    Nitric oxide synthase 2, inducible (Nos2) expression is necessary for the microbicidal activity of macrophages. However, NOS2 over-activation causes multiple inflammatory disorders, suggesting a tight gene regulation is necessary. Using cytosolic flagellin as a model for inflammasome-dependent NOS2 activation, we discovered a surprising new role for NLRC4/caspase-1 axis in regulating chromatin accessibility of the Nos2 promoter. We found that activation of two independent mechanisms is necessary for NOS2 expression by cytosolic flagellin: caspase-1 and NF-κB activation. NF-κB activation was necessary, but not sufficient, for NOS2 expression. Conversely, caspase-1 was necessary for NOS2 expression, but dispensable for NF-κB activation, indicating that this protease acts downstream NF-κB activation. We demonstrated that epigenetic regulation of Nos2 by caspase-1 involves cleavage of the chromatin regulator PARP1 (also known as ARTD1) and chromatin accessibility of the NF-κB binding sites located at the Nos2 promoter. Remarkably, caspase-1-mediated Nos2 transcription and NO production contribute to the resistance of macrophages to Salmonella typhimurium infection. Our results uncover the molecular mechanism behind the constricted regulation of Nos2 expression and open new therapeutic opportunities based on epigenetic activities of caspase-1 against infectious and inflammatory diseases. PMID:28150715

  5. Neuronal Nitric Oxide Synthase Is Dislocated in Type I Fibers of Myalgic Muscle but Can Recover with Physical Exercise Training

    Directory of Open Access Journals (Sweden)

    L. Jensen

    2015-01-01

    Full Text Available Trapezius myalgia is the most common type of chronic neck pain. While physical exercise reduces pain and improves muscle function, the underlying mechanisms remain unclear. Nitric oxide (NO signaling is important in modulating cellular function, and a dysfunctional neuronal NO synthase (nNOS may contribute to an ineffective muscle function. This study investigated nNOS expression and localization in chronically painful muscle. Forty-one women clinically diagnosed with trapezius myalgia (MYA and 18 healthy controls (CON were included in the case-control study. Subsequently, MYA were randomly assigned to either 10 weeks of specific strength training (SST, n=18, general fitness training (GFT, n=15, or health information (REF, n=8. Distribution of fiber type, cross-sectional area, and sarcolemmal nNOS expression did not differ between MYA and CON. However, MYA showed increased sarcoplasmic nNOS localization (18.8 ± 12 versus 12.8 ± 8%, P=0.049 compared with CON. SST resulted in a decrease of sarcoplasm-localized nNOS following training (before 18.1 ± 12 versus after 12.0 ± 12%; P=0,027. We demonstrate that myalgic muscle displays altered nNOS localization and that 10 weeks of strength training normalize these disruptions, which supports previous findings of impaired muscle oxygenation during work tasks and reduced pain following exercise.

  6. AVE 3085, a novel endothelial nitric oxide synthase enhancer, attenuates cardiac remodeling in mice through the Smad signaling pathway.

    Science.gov (United States)

    Chen, Yili; Chen, Cong; Feng, Cong; Tang, Anli; Ma, Yuedong; He, Xin; Li, Yanhui; He, Jiangui; Dong, Yugang

    2015-03-15

    AVE 3085 is a novel endothelial nitric oxide synthase enhancer. Although AVE 3085 treatment has been shown to be effective in spontaneously restoring endothelial function in hypertensive rats, little is known about the effects and mechanisms of AVE 3085 with respect to cardiac remodeling. The present study was designed to examine the effects of AVE 3085 on cardiac remodeling and the mechanisms underlying the effects of this compound. Mice were subjected to aortic banding to induce cardiac remodeling and were then administered AVE 3085 (10 mg kg day(-1), orally) for 4 weeks. At the end of the treatment, the aortic banding-treated mice exhibited significant elevations in cardiac remodeling, characterized by an increase in left ventricular weight relative to body weight, an increase in the area of collagen deposition, an increase in the mean myocyte diameter, and increases in the gene expressions of the hypertrophic markers atrial natriuretic peptide (ANP) and β-MHC. These indexes were significantly decreased in the AVE 3085-treated mice. Furthermore, AVE 3085 treatment reduced the expression and activation of the Smad signaling pathway in the aortic banding-treated mice. Our data showed that AVE 3085 attenuated cardiac remodeling, and this effect was possibly mediated through the inhibition of Smad signaling.

  7. The nitric oxide synthase 3 G894T polymorphism associated with Alzheimer’s disease risk: a meta-analysis

    Science.gov (United States)

    Liu, Shengyuan; Zeng, Fangfang; Wang, Changyi; Chen, Zhongwei; Zhao, Bin; Li, Keshen

    2015-01-01

    The association between the G894T polymorphism (Glu298Asp) of nitric oxide synthase 3 (NOS3) and risk of Alzheimer’s disease (AD) was explored by performing a meta-analysis of case-control studies. Bibliographical searches were conducted in the MEDLINE, EMBASE, and China National Knowledge Infrastructure (CNKI) databases without any language limitations. Two investigators independently assessed abstracts for relevant studies, and reviewed all eligible studies. We adopted regrouping in accordance with the most probably appropriate genetic model. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of this association. We performed a meta-analysis including 21 published articles with 23 case-control studies (5,670 cases and 5,046 controls). In the analyses, we found significant association between G894T polymorphism and AD risk under a complete overdominant model (GG + TT vs. GT) (OR = 1.18; 95%CI, 1.04–1.35; P = 0.010). When stratified by time of AD onset, we found the association between this polymorphism and AD susceptibility to be more substantial among late onset patients than among early onset patients (OR for late vs. early onset: 1.33 vs. 1.02, P interaction = 0.049). The meta-analysis showed that the polymorphism G894T of NOS3 was associated with risk of AD. PMID:26337484

  8. Changes of Nitric Oxide Synthase Activity in Penumbral and Core Area during Focal Cerebral Ischemia and Reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    GUZhen; ZHOUJian-ping; WUWen-zhong; ZHANGYong-jie; HANQun-ying; WANGHe-ming

    2004-01-01

    Objecivee: To study the changes of nitric oxide synthase (NOS) activity in penumbral and core area during focal cerebral ischemia and reperfusion, and to explore the therapeutic window of focal cerebral ischemia. Methods:The middle cerebral artery of rats was occluded for 15, 30,60,90 and 120 min by an inraluminal filament respectively,and recirculation was instituted for 24 h. The changes of NOS activity in ischemic core area(parietal cortex and caudoputamen) and penumbral area ( frontal cortex)were examined after focal cerebral ischemla and reperfusion using NADPH-d histochemistry, technique. Results. The NOS activity of the ischemic penumbral area peaked at 60 min while the ischemic core area peaked at 30 min then declined at 90-120 rain sharply. Conclusion: NOS takes part in cerebral ischemic damage during focal cerebral ischemia and reperfusion. The NOS activity of the ischemic penmnbral area is different from the ischemic core area. The peak time of the penumbral area is delayed comparing with the core area. The data suggest that the best time to apply NOS inhibitor is within 30 min in ischemic core area, and 60 rain in penumbral area.

  9. Plasmodium Infection Is Associated with Impaired Hepatic Dimethylarginine Dimethylaminohydrolase Activity and Disruption of Nitric Oxide Synthase Inhibitor/Substrate Homeostasis.

    Directory of Open Access Journals (Sweden)

    Jessica H Chertow

    2015-09-01

    Full Text Available Inhibition of nitric oxide (NO signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA, an endogenous NO synthase (NOS inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison. To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis.

  10. Translational regulation of human neuronal nitric-oxide synthase by an alternatively spliced 5'-untranslated region leader exon.

    Science.gov (United States)

    Newton, Derek C; Bevan, Sian C; Choi, Stephen; Robb, G Brett; Millar, Adam; Wang, Yang; Marsden, Philip A

    2003-01-03

    Expression of the neuronal nitric-oxide synthase (nNOS) mRNA is subject to complex cell-specific transcriptional regulation, which is mediated by alternative promoters. Unexpectedly, we identified a 89-nucleotide alternatively spliced exon located in the 5'-untranslated region between exon 1 variants and a common exon 2 that contains the translational initiation codon. Alternative splicing events that do not affect the open reading frame are distinctly uncommon in mammals; therefore, we assessed its functional relevance. Transient transfection of reporter RNAs performed in a variety of cell types revealed that this alternatively spliced exon acts as a potent translational repressor. Stably transfected cell lines confirmed that the alternatively spliced exon inhibited translation of the native nNOS open reading frame. Reverse transcription-PCR and RNase protection assays indicated that nNOS mRNAs containing this exon are common and expressed in both a promoter-specific and tissue-restricted fashion. Mutational analysis identified the functional cis-element within this novel exon, and a secondary structure prediction revealed that it forms a putative stem-loop. RNA electrophoretic mobility shift assay techniques revealed that a specific cytoplasmic RNA-binding complex interacts with this motif. Hence, a unique splicing event within a 5'-untranslated region is demonstrated to introduce a translational control element. This represents a newer model for the translational control of a mammalian mRNA.

  11. Triptolide Inhibits Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression in Human Colon Cancer and Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    Xiangmin TONG; Shui ZHENG; Jie JIN; Lifen ZHU; Yinjun LOU; Hangping YAO

    2007-01-01

    Triptolide (TP), a traditional Chinese medicine, has been reported to be effective in the treatment of autoimmune diseases and exerting antineoplastic activity in several human tumor cell lines. This study investigates the antitumor effect of TP in human colon cancer cells (SW114) and myelocytic leukemia (K562), and elucidates the possible molecular mechanism involved. SW114 and K562 cells were treated with different doses of TP (0, 5, 10, 20, or 50 ng/ml). The cell viability was assessed by 3-[4,5-dimethylthiazol2-yl]-2,5-diphenyltetrazolium bromide (MTT). Results demonstrated that TP inhibited the proliferation of both tumor cell lines in a dose-dependent manner. To further investigate its mechanisms, the products prostaglandin E2 (PGE2) and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay (ELISA). Our data showed that TP strongly inhibited the production of NO and PGE2. Consistent with these results, the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was up-regulated both at the mRNA level and the protein expression level, as shown by real-time RT-PCR and Western blotting. These results indicated that the inhibition of the inflammatory factor COX-2 and iNOS activity could be involved in the antitumor mechanisms of TP.

  12. Relationship of endothelial nitric oxide synthase gene polymorphism with blood pressure,lipid profile and blood glucose level

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To study the relationship of the polymorphism of endothelial nitric oxide synthase(eNOS)gene and blood pressure,lipid profiles and blood glucose level.By using PCR-RFLP,the eNOS Glu298Asp gene polymorphism was detected in 184 patients with essential hypertension and 196 matched healthy individuals with normal blood pressure.Taking into account eNOS Glu298Asp polymorphisms,the relationship of blood pressure with triglycerides(TG),total cholesterol(TC),high density lipoprotein(HDL),low density lipoprotein(LDL)and blood glucose level was analyzed.The distribution of eNOS Glu298Asp polymorphism had no significant difference between different blood pressure groups and gender groups,but there was a significant difference between different age groups,diastolic blood pressure groups or BMI groups(P<0.05).Asp/Asp genotype significantly increased the risk of hypertension in individuals with serum TC above 5.4 mmol/L(P=0.03,OR=2.65).eNOSGlu298Asp polymorphism and serum lipid could synergistically modulate the blood pressure,eNOS Asp/Asp genotype could significantly increase the risk of hypertension in individuals with serum TC over 5.4 mmol/L,eNOS Glu298Asp in combination with serum TC could be used to predict the risk of hypertension.

  13. Fo Shou San, an ancient Chinese herbal decoction, protects endothelial function through increasing endothelial nitric oxide synthase activity.

    Directory of Open Access Journals (Sweden)

    Cathy W C Bi

    Full Text Available Fo Shou San (FSS is an ancient herbal decoction comprised of Chuanxiong Rhizoma (CR; Chuanxiong and Angelicae Sinensis Radix (ASR; Danggui in a ratio of 2:3. Previous studies indicate that FSS promotes blood circulation and dissipates blood stasis, thus which is being used widely to treat vascular diseases. Here, we aim to determine the cellular mechanism for the vascular benefit of FSS. The treatment of FSS reversed homocysteine-induced impairment of acetylcholine (ACh-evoked endothelium-dependent relaxation in aortic rings, isolated from rats. Like radical oxygen species (ROS scavenger tempol, FSS attenuated homocysteine-stimulated ROS generation in cultured human umbilical vein endothelial cells (HUVECs, and it also stimulated the production of nitric oxide (NO as measured by fluorescence dye and biochemical assay. In addition, the phosphorylation levels of both Akt kinase and endothelial NO synthases (eNOS were markedly increased by FSS treatment, which was abolished by an Akt inhibitor triciribine. Likewise, triciribine reversed FSS-induced NO production in HUVECs. Finally, FSS elevated intracellular Ca(2+ levels in HUVECs, and the Ca(2+ chelator BAPTA-AM inhibited the FSS-stimulated eNOS phosphorylation. The present results show that this ancient herbal decoction benefits endothelial function through increased activity of Akt kinase and eNOS; this effect is causally via a rise of intracellular Ca(2+ and a reduction of ROS.

  14. Appetite suppressive effects of yeast hydrolysate on nitric oxide synthase (NOS) expression and vasoactive intestinal peptide (VIP) immunoreactivity in hypothalamus.

    Science.gov (United States)

    Jung, E Y; Suh, H J; Kim, S Y; Hong, Y S; Kim, M J; Chang, U J

    2008-11-01

    To investigate the effects of yeast hydrolysate on appetite regulation mechanisms in the central nervous system, nitric oxide synthase (NOS) expression and vasoactive intestinal peptide (VIP) immunoreactivity in the paraventricular nucleus (PVN) and ventromedial hypothalamic nucleus (VMH) of the hypothalamus were examined. Male Sprague-Dawley (SD) rats were assigned to five groups: control (normal diet), BY-1 and BY-2 (normal diet with oral administration of 0.1 g and 1.0 g of yeast hydrolysate yeast hydrolysate 10-30 kDa/kg body weight, respectively). The body weight gain in the BY groups was less than that in the control. In particular, the weight gain of the BY-2 group (133.0 +/- 5.1 g) was significantly lower (p yeast hydrolysate of <10 kDa reduced the body weight gain and body fat in normal diet-fed rats and increased the lipid energy metabolism by altering the expression of NOS and VIP in neurons.

  15. Regulation of red blood cell deformability is independent of red blood cell-nitric oxide synthase under hypoxia.

    Science.gov (United States)

    Grau, Marijke; Lauten, Alexander; Hoeppener, Steffen; Goebel, Bjoern; Brenig, Julian; Jung, Christian; Bloch, Wilhelm; Suhr, Frank

    2016-09-12

    The aim was to study impacts of mild to severe hypoxia on human red blood cell (RBC)-nitric oxide synthase (NOS)-dependent NO production, protein S-nitrosylation and deformability.Ambient air oxygen concentration of 12 healthy subjects was step-wisely reduced from 20.95% to 16.21%, 12.35%, 10% and back to 20.95%. Additional in vitro experiments involved purging of blood (±sodium nitrite) with gas mixtures corresponding to in vivo intervention.Vital and hypoxia-associated parameters showed physiological adaptation to changing demands. Activation of RBC-NOS decreased with increasing hypoxia. RBC deformability, which is influenced by RBC-NOS activation, decreased under mild hypoxia, but surprisingly increased at severe hypoxia in vivo and in vitro. This was causatively induced by nitrite reduction to NO which increased S-nitrosylation of RBC α- and β-spectrins -a critical step to improve RBC deformability. The addition of sodium nitrite prevented decreases of RBC deformability under hypoxia by sustaining S-nitrosylation of spectrins suggesting compensatory mechanisms of non-RBC-NOS-produced NO.The results first time indicate a direct link between maintenance of RBC deformability under severe hypoxia by non-enzymatic NO production because RBC-NOS activation is reduced. These data improve our understanding of physiological mechanisms supporting adequate blood and, thus, oxygen supply to different tissues under severe hypoxia.

  16. Nitric oxide synthase-dependent NADPH-diaphorase activity in the optic lobes of male and female Ceratitis capitata mutants

    Directory of Open Access Journals (Sweden)

    E Roda

    2009-06-01

    Full Text Available Nitric oxide (NO is acknowledged as a messenger molecule in the nervous system with a pivotal role in the modulation of the chemosensory information. It has been shown to be present in the optic lobes of several insect species. In the present study, we used males and females from four different strains of the medfly Ceratitis capitata (Diptera, Tephritidae: or; or,wp (both orange eyed; w,M360 and w,Heraklion (both white eyed, as models to further clarify the involvement of NO in the mutants’ visual system and differences in its activity and localization in the sexes. Comparison of the localization pattern of NO synthase (NOS, through NADPH-diaphorase (NADPHd staining, in the optic lobes of the four strains, revealed a stronger reaction intensity in the retina and in the neuropile region lamina than in medulla and lobula. Interestingly, the intensity of NADPHd staining differs, at least in some strains, in the optic lobes of the two sexes; all the areas are generally strongly labelled in the males of the or and w,M360 strains, whereas the w,Heraklion and or,wp mutants do not show evident sexdependent NADPHd staining. Taken as a whole, our data point to NO as a likely transmitter candidate in the visual information processes in insects, with a possible correlation among NOS distribution, eye pigmentation and visual function in C. capitata males. Moreover, NO could influence behavioural differences linked to vision in the two sexes.

  17. Effects of L-arginine on serum nitric oxide, nitric oxide synthase and mucosal Na+-K+-A TPase and nitric oxide synthase activity in segmental small-bowel autotransplantation model

    Institute of Scientific and Technical Information of China (English)

    Ting-Liang Fu; Wen-Tong Zhang; Qiang-Pu Chen; Yong Gao; Yu-Hong Hu; Dian-Liang Zhang

    2005-01-01

    AIM: To explore a simple method to create intestinal autotransplantation in rats and growing pigs and to investigate the effect of L-arginine supplementation on serum nitric oxide (NO), nitric oxide synthase (NOS) and intestinal mucosal NOS and Na+-K+-ATPase activity during cold ischemia-reperfusion (IR) in growing pigs.METHODS: In adult Wistar rat models of small bowel autotransplantation, a fine tube was inserted into mesenteric artery via the abdominal aorta. The superior mesenteric artery and vein were occluded. Isolated terminal ileum segment was irrigated with Ringer'ssolution at 4 ℃ and preserved in the same solution at 0-4 ℃ for 60 min. Then, the tube was removed and reperfusion was established. In growing pig models, a terminal ileum segment, 50 cm in length, was isolated and its mesenteric artery was irrigated via a needle with lactated Ringer's solution at 4 ℃. The method and period of cold preservation and reperfusion were described above. Ten white outbred pigs were randomly divided into control group and experimental group. L-arginine (150 mg/kg) was continuously infused for 15 min before reperfusion and for 30 min after reperfusion in the experimental group. One, 24, 48, and 72 h after reperfusion, peripheral vein blood was respectively collected for NO and NOS determination. At the same time point, intestinal mucosae were also obtained for NOS and Na+-K+-ATPase activity measurement.RESULTS: In adult rat models, 16 of 20 rats sustained the procedure, three died of hemorrhage shock and one of deep anesthesia. In growing pig models, the viability of small bowel graft remained for 72 h after cold IR in eight of 10 pigs. In experimental group, serum NO level at 1 and 24 h after reperfusion increased significantly when compared with control group at the same time point (152.2±61.4 μmol/L vs60.8±31.6 μmol/L, t= 2.802,P = 0.02<0.05; 82.2±24.0 μmol/L vs 54.0±24.3 μmol/L, t = 2.490, P = 0.04<0.05). Serum NO level increased significantly at 1

  18. Macrophage inducible nitric oxide synthase gene expression is blocked by a benzothiophene derivative with anti-HIV properties.

    Science.gov (United States)

    Carballo, M; Conde, M; Tejedo, J; Gualberto, A; Jimenez, J; Monteseirín, J; Santa María, C; Bedoya, F J; Hunt, S W; Pintado, E; Baldwin, A S; Sobrino, F

    2002-04-01

    Nitric oxide (NO) has been shown to mediate multiple physiological and toxicological functions. The inducible nitric oxide synthase (iNOS) is responsible for the high output generation of NO by macrophages following their stimulation by cytokines or bacterial antigens. The inhibition of TNF alpha-stimulated HIV expression and the anti-inflammatory property of PD144795, a new benzothiophene derivative, have been recently described. We have now analyzed whether some of these properties could be mediated by an effect of PD144795 on NO-dependent inflammatory events. We show that PD144795 suppresses the lipopolysaccharide-elicited production of nitrite (NO(-)(2)) by primary peritoneal mouse macrophages and by a macrophage-derived cell line, RAW 264.7. This effect was dependent on the dose and timing of addition of PD144795 to the cells. Suppression of NO(-)(2) production was associated with a decrease in the amount of iNOS protein, iNOS enzyme activity and mRNA expression. The effect of PD144795 was partially abolished by coincubation of the cells with LPS and IFN gamma. However, the inhibitory effect of PD144795 was not abrogated by the simultaneous addition of LPS and TNF alpha, which indirectly suggests that the effect of PD144795 was not due to the inhibition of TNF alpha synthesis. Additionally, PD144795 did not block NF-kappa B nuclear translocation induced by LPS. Inhibition of iNOS gene expression represents a novel mechanism of PD144795 action that underlines the anti-inflammatory effects of this immunosuppressive drug.

  19. Effect of magnesium supplementation on blood pressure and vascular reactivity in nitric oxide synthase inhibition-induced hypertension model.

    Science.gov (United States)

    Basralı, Filiz; Koçer, Günnur; Ülker Karadamar, Pınar; Nasırcılar Ülker, Seher; Satı, Leyla; Özen, Nur; Özyurt, Dilek; Şentürk, Ümit Kemal

    2015-01-01

    The aim of this study was to assess the effect of oral magnesium supplementation (Mg-supp) on blood pressure (BP) and possible mechanism in nitric oxide synthase (NOS) inhibition-induced hypertension model. Hypertension and/or Mg-supp were created by N-nitro-l-arginine methyl ester (25 mg/kg/day by drinking water) and magnesium-oxide (0.8% by diet) for 6 weeks. Systolic BP was measured weekly by tail-cuff method. The effects of hypertension and/or Mg-supp in thoracic aorta and third branch of mesenteric artery constriction and relaxation responses were evaluated. NOS-inhibition produced a gradually developing hypertension and the magnitude of the BP was significantly attenuated after five weeks of Mg-supp. The increased phenylephrine-induced contractile and decreased acetylcholine (ACh)-induced dilation responses were found in both artery segments of hypertensive groups. Mg-supp was restored ACh-relaxation response in both arterial segments and also Phe-constriction response in thoracic aorta but not in mesenteric arteries. The contributions of NO, prostaglandins and K(+) channels to the dilator response of ACh were similar in the aorta of all the groups. The contribution of the NO to the ACh-mediated relaxation response of mesenteric arteries was suppressed in hypertensive rats, whereas this was corrected by Mg-supp. The flow-mediated dilation response of mesenteric arteries in hypertensive rats failed and could not be corrected by Mg-supp. Whereas, vascular eNOS protein and magnesium levels were not changed and plasma nitrite levels were reduced in hypertensive rats. The results of this study showed that Mg-supp lowered the arterial BP in NOS-inhibition induced hypertension model by restoring the agonist-induced relaxation response of the arteries.

  20. H2S regulates endothelial nitric oxide synthase protein stability by promoting microRNA-455-3p expression

    Science.gov (United States)

    Li, Xing-Hui; Xue, Wen-Long; Wang, Ming-Jie; Zhou, Yu; Zhang, Cai-Cai; Sun, Chen; Zhu, Lei; Liang, Kun; Chen, Ying; Tao, Bei-Bei; Tan, Bo; Yu, Bo; Zhu, Yi-Chun

    2017-01-01

    The aims of the present study are to determine whether hydrogen sulfide (H2S) is involved in the expression of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production, and to identify the role of microRNA-455-3p (miR-455-3p) during those processes. In cultured human umbilical vein endothelial cells (HUVECs), the expression of miR-455-3p, eNOS protein and the NO production was detected after administration with 50 μM NaHS. The results indicated that H2S could augment the expression of miR-455-3p and eNOS protein, leading to the increase of NO level. We also found that overexpression of miR-455-3p in HUVECs increased the protein levels of eNOS whereas inhibition of miR-455-3p decreased it. Moreover, H2S and miR-455-3p could no longer increase the protein level of eNOS in the presence of proteasome inhibitor, MG-132. In vivo, miR-455-3p and eNOS expression were considerably increased in C57BL/6 mouse aorta, muscle and heart after administration with 50 μmol/kg/day NaHS for 7 days. We also identified that H2S levels and miR-455-3p expression increased in human atherosclerosis plaque while H2S levels decreased in plasma of atherosclerosis patients. Our data suggest that the stability of eNOS protein and the NO production could be regulated by H2S through miR-455-3p. PMID:28322298

  1. Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death.

    Science.gov (United States)

    Rameau, Gerald A; Tukey, David S; Garcin-Hosfield, Elsa D; Titcombe, Roseann F; Misra, Charu; Khatri, Latika; Getzoff, Elizabeth D; Ziff, Edward B

    2007-03-28

    Postsynaptic nitric oxide (NO) production affects synaptic plasticity and neuronal cell death. Ca2+ fluxes through the NMDA receptor (NMDAR) stimulate the production of NO by neuronal nitric oxide synthase (nNOS). However, the mechanisms by which nNOS activity is regulated are poorly understood. We evaluated the effect of neuronal stimulation with glutamate on the phosphorylation of nNOS. We show that, in cortical neurons, a low glutamate concentration (30 microM) induces rapid and transient NMDAR-dependent phosphorylation of S1412 by Akt, followed by sustained phosphorylation of S847 by CaMKII (calcium-calmodulin-dependent kinase II). We demonstrate that phosphorylation of S1412 by Akt is necessary for activation of nNOS by the NMDAR. nNOS mutagenesis confirms that these phosphorylations respectively activate and inhibit nNOS and, thus, transiently activate NO production. A constitutively active (S1412D), but not a constitutively repressed (S847D) nNOS mutant elevated surface glutamate receptor 2 levels, demonstrating that these phosphorylations can control AMPA receptor trafficking via NO. Notably, an excitotoxic stimulus (150 microM glutamate) induced S1412, but not S847 phosphorylation, leading to deregulated nNOS activation. S1412D did not kill neurons; however, it enhanced the excitotoxicity of a concomitant glutamate stimulus. We propose a swinging domain model for the regulation of nNOS: S1412 phosphorylation facilitates electron flow within the reductase module of nNOS, increasing nNOS sensitivity to Ca2+-calmodulin. These findings suggest a critical role for a kinetically complex and novel series of regulatory nNOS phosphorylations induced by the NMDA receptor for the in vivo control of nNOS.

  2. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr [Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya (Turkey); Basaranlar, Goksun [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Unal, Mustafa [Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Ciftcioglu, Akif [Department of Pathology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Derin, Narin [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Mutus, Bulent [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario (Canada)

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  3. Recombinant arginine deiminase reduces inducible nitric oxide synthase iNOS-mediated neurotoxicity in a coculture of neurons and microglia.

    Science.gov (United States)

    Yu, Hao-Hsin; Wu, Fe-Lin Lin; Lin, Shan-Erh; Shen, Li-Jiuan

    2008-10-01

    Modulation of nitric oxide (NO) production is considered a promising approach to therapy of diseases involving excessive inducible nitric oxide synthase (iNOS) expression, such as certain neuronal diseases. Recombinant arginine deiminase (rADI, EC3.5.3.6) catalyzes the conversion of L-arginine (L-arg), the sole substrate of NOS for NO production, to L-citrulline (L-cit) and ammonia. To understand the effect of the depletion of L-arg by rADI on NO concentration and neuroprotection, a direct coculture of neuron SHSY5Y cells and microglia BV2 cells treated with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) was used as a model of iNOS induction. The results showed that rADI preserved cell viability (4-fold higher compared with the cells treated with LPS/IFN-gamma only) by the MTT assay, corresponding with the results of neuronal viability by neuron-specific immunostaining assay. NO production (mean +/- SD) decreased from 67.0 +/- 1.3 to 19.5 +/- 5.5 microM after a 2-day treatment of rADI by the Griess assay; meanwhile, induction of iNOS protein expression by rADI was observed. In addition, rADI substantially preserved the neuronal function of dopamine uptake in the coculture. The replenishment of L-arg in the coculture eliminated the neuroprotective and NO-suppressive effects of rADI in the coculture, indicating that L-arg played a crucial role in the effects of rADI. These results highlight the important role of L-arg in the neuron-microglia coculture in excessive induction of iNOS. Regulation of L-arg by ADI demonstrated that rADI has a potentially therapeutic role in iNOS-related neuronal diseases.

  4. Elucidation of the order of oxidations and identification of an intermediate in the multistep clavaminate synthase reaction

    Energy Technology Data Exchange (ETDEWEB)

    Salowe, S.P.; Krol, W.J.; Iwata-Reuyl, D.; Townsend, C.A. (Johns Hopkins Univ., Baltimore, MD (United States))

    1991-02-26

    The enzyme clavaminate synthase (CS) catalyzes the formation of the first bicyclic intermediate in the biosynthetic pathway to the potent {beta}-lactamase inhibitor clavulanic acid. Previous work has led to the proposal that the cyclization/desaturation of the substrate proclavaminate proceeds in two oxidative steps, each coupled to a decarboxylation of {alpha}-ketoglutarate and a reduction of dioxygen to water. The authors have now employed kinetic isotope effect studies to determine the order of oxidations for CS purified from Streptomyces clavuligerus. Using (4{prime}RS)-(4{prime}-{sup 3}H,1-{sup 14}C)-rac-proclavaminate, a primary {sup T}(V/K) = 8.3 {plus minus} 0.2 was measured from ({sup 3}H)water release data, while an {alpha}-secondary {sup T}(V/K) = 1.06 {plus minus} 0.01 was determined from the changing {sup 3}H/{sup 14}C ratio of the product clavaminate. Values for the primary and {alpha}-secondary effects of 11.9 {plus minus} 1.7 and 1.12 {plus minus} 0.07, respectively, were obtained from the changing {sup 3}H/{sup 14}C ratio of the residual proclavaminate by using new equations derived for a racemic substrate bearing isotopic label at both primary and {alpha}-secondary positions. On the basis of the body of information available and the similarities to {alpha}-ketoglutarate-dependent dioxygenases, a comprehensive mechanistic scheme for CS is proposed to account for this unusual enzymatic transformation.

  5. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin.

    Science.gov (United States)

    Kumar-Roiné, Shilpa; Matsui, Mariko; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2008-08-01

    To investigate the possible involvement of the nitric oxide radical (NO) in ciguatera fish poisoning (CFP), the in vitro effects of the main Pacific ciguatoxin (P-CTX-1B) and bacterial lipopolysaccharide (LPS) were comparatively studied on neuroblastoma Neuro-2a and on macrophage RAW 264.7 cell lines. NO accumulation was quantified by measuring nitrite levels in cellular supernatant using Griess reagent while the up-regulation of inducible nitric oxide synthase (iNOS) at the mRNA level was quantified via Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR). P-CTX-1B caused a concentration- and time-dependent induction of iNOS in RAW 264.7 cells but not in Neuro-2a cells. NO production was evidenced by increased nitrite levels in the 10 microM range after 48 h of RAW 264.7 cells exposure to LPS and P-CTX-1B (0.05 microg/ml and 6 nM, respectively). The expression of iNOS mRNA peaked at 8h for LPS then gradually decreased to low level at 48 h. In contrast, a sustained level was recorded with P-CTX-1B in the 8-48 h time interval. The addition of N(omega)-nitro-L-arginine methyl ester (L-NAME), a stereoselective NOS inhibitor, strongly diminished NO formation but had no effect on iNOS mRNA synthesis. The implication of NO in CFP paves the way for new therapies for both western and traditional medicines.

  6. Ligands of Peroxisome Proliferator-activated Receptor Inhibit Homocysteineinduced DNA Methylation of Inducible Nitric Oxide Synthase Gene

    Institute of Scientific and Technical Information of China (English)

    Yideng JIANG; Jianzhong ZHANG; Jiantuan XIONG; Jun CAO; Guizhong LI; Shuren WANG

    2007-01-01

    Homocysteine (Hcy) is a risk factor for atherosclerosis. It is generally accepted that inducible nitric oxide synthase (iNOS) is a key enzyme in the regulation of vascular disease. The aim of the present study is to investigate the effects of peroxisome proliferator-activated receptor ligands on iNOS in the presence of Hcy in human monocytes. Foam cells, induced by oxidize low density lipoprotein (ox-LDL) and phorbol myristate acetate (PMA) in the presence of different concentrations of Hcy, clofibrate and pioglitazone in human monocytes for 4 d, were examined by oil red O staining. The activity of iNOS was detected by real-time quantitative reverse transcription-polymerase chain reaction and Western blot analysis. The capability of DNA methylation was measured by assaying endogenous C5 DNA methyltransferase (C5MTase)activity, and the iNOS promoter methylation level was determined by quantitative MethyLight assays. The results indicated that Hcy increased the activity of C5MTase and the level of iNOS gene DNA methylation,resulting in a decrease of iNOS expression. Clofibrate and pioglitazone could antagonize the Hcy effect on iNOS expression through DNA methylation, resulting in attenuation of iNOS transcription. These findings suggested that Hcy decreased the expression of iNOS by elevating iNOS DNA methylation levels, which can repress the transcription of some genes. Peroxisome proliferator-activated receptor α/γ ligands can down-regulate iNOS DNA methylation, and could be useful for preventing Hcy-induced atherosclerosis by repressing iNOS expression.

  7. Association of the endothelial nitric oxide synthase gene G894T polymorphism with the risk of diabetic nephropathy in Qassim region, Saudi Arabia—A pilot study

    Science.gov (United States)

    Mackawy, Amal Mohammed Husein; Khan, Amjad Ali; Badawy, Mohammed El-Sayed

    2014-01-01

    Background Diabetic nephropathy (DN) is a chronic microangiopathic complication of type 2 diabetes mellitus (DM).Vascular endothelial dysfunction resulting from impaired nitric oxide synthase (NOS) activity in the vascular endothelial cells has been suggested as playing an important role in the pathogenesis of diabetic nephropathy (DN). Endothelial nitric oxide synthase (E-NOS) gene G894T polymorphism has been reported to be associated with endothelial dysfunction leading to DN. Our objective was to evaluate the association of G894T polymorphism of eNOS gene with the risk of DN among type 2 diabetic Saudi patients. Methods One hundred and twenty subjects were included in this study. They were divided into three groups. Group I, 40 controls. Group II, 40 type 2 diabetic patients without nephropathy. Group III, 40 type2 diabetic patients with nephropathy. Endothelial nitric oxide synthase (eNOS) G894Tpolymorphism was detected by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). Plasma nitric oxide (NO) levels were estimated. Results E-NOS genotype frequency showed non-significant differences among the all studied groups (p > 0.05). Both diabetic groups had significantly higher plasma nitrate levels than in controls with a significant increase in group III than in group II patients (all p diabetic Saudi patients. The higher plasma levels of nitrates as a marker of oxidative stress in diabetic patients with nephropathy suggest the possible role of oxidative stress but not e-NOS gene SNP in pathogenesis of the DN. PMID:25606424

  8. Effect of simvastatin on endothelium-dependent vasorelaxation and endogenous nitric oxide synthase inhibitor

    Institute of Scientific and Technical Information of China (English)

    Jun-lin JIANG; De-jian JIANG; Yu-hai TANG; Nian-sheng LI; Han-wu DENG; Yuan-jian LI

    2004-01-01

    AIM: To investigate the effect of simvastatin on endothelium-dependent vasorelaxation and endogenous nitric oxide synthesis inhibitor asymmetric dimethylarginine (ADMA) in rats and cultured ECV304 cells. METHODS: Endothelial injury was induced by a single injection of low density lipoprotein (LDL) (4 mg/kg, 48 h) in rats or incubation with LDL (300 mg/L) or oxidative-modified LDL (100 mg/L) in cultured ECV304 cells, and vasodilator responses to acetylcholine (ACh) in the aortic rings and the level of ADMA, nitrite/nitrate (NO) and tumor necrosis factoralpha (TNF-α) in the serum or cultured medium were determined. And the adhesion of the monocytes to endothelial cells and the activity of dimethylarginine dimethylaminohydrolase (DDAH) in the cultured ECV304 cells were measured. RESULTS: A single injection of LDL decreased endothelium-dependent relaxation to ACh, markedly increased the serum level of endogenous ADMA and TNF-α, and reduced serum level of NO. Pretreatment with simvastatin (30 or 60 mg/kg) markedly attenuated inhibition of vasodilator responses to ACh, the increased level of TNF-α and the decreased level of NO by LDL, but no effect on serum concentration of endogenous ADMA. In cultured ECV304 cells, LDL or ox-LDL markedly increased the level of ADMA and TNF-α and potentiated the adhesion of monocytes to endothelial cells, concomitantly with a significantly decrease in the activity of DDAH and serum level of NO. Pretreatment with simvastatin (0.1, 0.5, or 2.5 μmol/L) markedly decreased the level of TNFo and the adhesion of monocytes to endothelial cells, but did not affect the concentration of endogenous ADMA and the activity of DDAH. CONCLUSION: Simvastatin protect the vascular endothelium against the damages induced by LDL or ox-LDL in rats or cultured ECV304 cells, and the beneficial effects of simvastatin may be related to the reduction of inflammatory cytokine TNF-o level.

  9. Nitric oxide production and inducible nitric oxide synthase protein expression in human abdominal aortic aneurysms and cultured aneurismal smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    LIAO Ming-fang; JING Zai-ping; BAO Jun-min; ZHAO Zhi-qing; MEI Zhi-jun; LU Qing-sheng; CUI Jia-sen; QU Le-feng; ZHANG Su-zhen

    2006-01-01

    Objective:To investigate the production of nitric oxide(NO) and the expression of inducible nitric oxide synthase (iNOS), and their possible role in abdominal aortic aneurysm (AAA). Methods: A total of 28 patients with AAA, 10 healthy controls, and 8 patients with arterial occlusive disease were enrolled into this study. Standard colorimetric assay was used to examine NO concentration in plasma from patients with AAA and normal controls, and in cultured smooth muscle cells (SMCs). Expression of iNOS in aortas and cultured SMCs were detected by immunochemistry. The correlation of iNOS expression with age of the patient, size of aneurysm, and degree of inflammation was also investigated by CochranMantel-Haenszel x2 test and Kendall correlation. Results: Expression of iNOS increased significantly in the wall of aneurism in the patients with AAA compared to the healthy controls (P<0.05) and the patients with occlusive arteries (P<0. 05). iNOS protein and media NOx (nitrite+nitrate) also increased in cultured SMCs from human AAA (n=4, P<0.05), while plasma NOx decreased in patients with AAA (n=25) compared to the healthy controls (n= 20). There was a positive correlation between iNOS protein and the degree of inflammation in aneurismal wall (Kendall coefficient = 0. 5032, P = 0. 0029). Conclusion:SMCs and inflammatory cells are main cellular sources of increased iNOS in AAA, and NO may play a part in pathogenesis in AAA through inflammation, SMCs and oxidative stress.

  10. The effect of anandamide on uterine nitric oxide synthase activity depends on the presence of the blastocyst.

    Directory of Open Access Journals (Sweden)

    Micaela S Sordelli

    Full Text Available Nitric oxide production, catalyzed by nitric oxide synthase (NOS, should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot(-1 h(-1 compared to days 4 (0.34±0.03 and 5 (0.35±0.02 of pregnancy and to day 6 implantation sites (0.33±0.01. This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA, an endocannabinoid, binds to cannabinoid receptors type 1 (CB1 and type 2 (CB2, and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04 and URB-597 (1.08±0.09 vs 0.83±0.06 inhibited NOS activity in the absence of a blastocyst (pseudopregnancy through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05. While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02, a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01. Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These

  11. Cucumber (Cucumis sativus L.) Nitric Oxide Synthase Associated Gene1 (CsNOA1) Plays a Role in Chilling Stress

    Science.gov (United States)

    Liu, Xingwang; Liu, Bin; Xue, Shudan; Cai, Yanlinq; Qi, Wenzhu; Jian, Chen; Xu, Shuo; Wang, Ting; Ren, Huazhong

    2016-01-01

    Nitric oxide (NO) is a gaseous signaling molecule in plants, transducing information as a result of exposure to low temperatures. However, the underlying molecular mechanism linking NO with chilling stress is not well understood. Here, we functionally characterized the cucumber (Cucumis sativus L.) nitric oxide synthase-associated gene, NITRIC OXIDE ASSOCIATED 1 (CsNOA1). Expression analysis of CsNOA1, using quantitative real-time PCR, in situ hybridization, and a promoter::β-glucuronidase (GUS) reporter assay, revealed that it is expressed mainly in the root and shoot apical meristem (SAM), and that expression is up-regulated by low temperatures. A CsNOA1-GFP fusion protein was found to be localized in the mitochondria, and ectopic expression of CsNOA1 in the A. thaliana noa1 mutant partially rescued the normal phenotype. When overexpressing CsNOA1 in the Atnoa1 mutant under normal condition, no obvious phenotypic differences was observed between its wild type and transgenic plants. However, the leaves from mutant plant grown under chilling conditions showed hydrophanous spots and wilting. Physiology tolerance markers, chlorophyll fluorescence parameter (Fv/Fm), and electrolyte leakage, were observed to dramatically change, compared mutant to overexpressing lines. Transgenic cucumber plants revealed that the gene is required by seedlings to tolerate chilling stress: constitutive over-expression of CsNOA1 led to a greater accumulation of soluble sugars, starch, and an up-regulation of Cold-regulatory C-repeat binding factor3 (CBF3) expression as well as a lower chilling damage index (CI). Conversely, suppression of CsNOA1 expression resulted in the opposite phenotype and a reduced NO content compared to wild type plants. Those results suggest that CsNOA1 regulates cucumber seedlings chilling tolerance. Additionally, under normal condition, we took several classic inhibitors to perform, and detect endogenous NO levels in wild type cucumber seedling. The results

  12. TIPE2 negatively regulates inflammation by switching arginine metabolism from nitric oxide synthase to arginase.

    Directory of Open Access Journals (Sweden)

    Yunwei Lou

    Full Text Available TIPE2, the tumor necrosis factor (TNF-alpha-induced protein 8-like 2 (TNFAIP8L2, plays an essential role in maintaining immune homeostasis. It is highly expressed in macrophages and negatively regulates inflammation through inhibiting Toll-like receptor signaling. In this paper, we utilized RAW264.7 cells stably transfected with a TIPE2 expression plasmid, as well as TIPE2-deficient macrophages to study the roles of TIPE2 in LPS-induced nitric oxide (NO and urea production. The results showed that TIPE2-deficiency significantly upregulated the levels of iNOS expression and NO production in LPS-stimulated macrophages, but decreased mRNA levels of arginase I and urea production. However, TIPE2 overexpression in macrophages was capable of downregulating protein levels of LPS-induced iNOS and NO, but generated greater levels of arginase I and urea production. Furthermore, TIPE2-/- mice had higher iNOS protein levels in lung and liver and higher plasma NO concentrations, but lower levels of liver arginase I compared to LPS-treated WT controls. Interestingly, significant increases in IκB degradation and phosphorylation of JNK, p38, and IκB were observed in TIPE2-deficient macrophages following LPS challenge. These results strongly suggest that TIPE2 plays an important role in shifting L-arginase metabolism from production of NO to urea, during host inflammatory response.

  13. Effects of capsaicin on nitric oxide synthase isoforms in prepubertal rat ovary.

    Science.gov (United States)

    Zik, B; Altunbas, K; Tutuncu, S; Ozden, O; Ozguden Akkoc, C G; Peker, S; Sevimli, A

    2012-04-01

    Nitric oxide (NO) has emerged as an important intra-ovarian regulatory factor. We investigated effects of low dose capsaicin (CAP) treatment on the different NOS isoforms in prepubertal rat ovaries. Fifteen 21-day-old female Sprague-Dawley rats were divided randomly into three groups. The first group received no treatment, the second group received 0.5 mg/kg/day CAP dissolved in the vehicle, and the third group was treated with the vehicle only. The animals were euthanized by ether inhalation after 15 days and their ovaries were excised. Ovaries were fixed in 10% neutral buffered formalin and embedded in paraffin. Sections were processed for standard immunohistochemistry using the labeled streptavidin-biotin technique for expression of nNOS, eNOS and iNOS. We demonstrated that CAP induced expression of NOS isotypes including eNOS, iNOS and nNOS in prepubertal rat ovaries. CAP may lead to release of NO either directly from nerves or indirectly by evoking release from other cells via the action of neuropeptides that are released from afferent terminals and are involved in regulating female reproductive function.

  14. Nociceptin effect on intestinal motility depends on opioidreceptor like-1 receptors and nitric oxide synthase colocalization

    Institute of Scientific and Technical Information of China (English)

    Andrei; Sibaev; Jakub; Fichna; Dieter; Saur; Birol; Yuece; Jean-Pierre; Timmermans; Martin; Storr

    2015-01-01

    AIM: To study the effect of the opioid-receptor like-1(ORL1) agonist nociceptin on gastrointestinal(GI)myenteric neurotransmission and motility. METHODS: Reverse transcriptase- polymerase chain reaction and immunohistochemistry were used to localize nociceptin and ORL1 in mouse tissues. Intracellular electrophysiological recordings of excitatory and inhibitory junction potentials(EJP, IJP) were made in a chambered organ bath. Intestinal motility was measured in vivo. RESULTS: Nociceptin accelerated whole and upper GI transit, but slowed colonic expulsion in vivo in an ORL1-dependent manner, as shown using [Nphe1]NOC and AS ODN pretreatment. ORL1 and nociceptin immunoreactivity were found on enteric neurons. Nociceptin reduced the EJP and the nitric oxide-sensitive slow IJP in an ORL1-dependent manner, whereas the fast IJP was unchanged. Nociceptin further reduced the spatial spreading of the EJP up to 2 cm. CONCLUSION: Compounds acting at ORL1 are good candidates for the future treatment of disorders associated with increased colonic transit, such as diarrhea or diarrhea-predominant irritable bowel syndrome.

  15. Nitric oxide stress in sporadic inclusion body myositis muscle fibres: inhibition of inducible nitric oxide synthase prevents interleukin-1β-induced accumulation of β-amyloid and cell death.

    Science.gov (United States)

    Schmidt, Jens; Barthel, Konstanze; Zschüntzsch, Jana; Muth, Ingrid E; Swindle, Emily J; Hombach, Anja; Sehmisch, Stephan; Wrede, Arne; Lühder, Fred; Gold, Ralf; Dalakas, Marinos C

    2012-04-01

    Sporadic inclusion body myositis is a severely disabling myopathy. The design of effective treatment strategies is hampered by insufficient understanding of the complex disease pathology. Particularly, the nature of interrelationships between inflammatory and degenerative pathomechanisms in sporadic inclusion body myositis has remained elusive. In Alzheimer's dementia, accumulation of β-amyloid has been shown to be associated with upregulation of nitric oxide. Using quantitative polymerase chain reaction, an overexpression of inducible nitric oxide synthase was observed in five out of ten patients with sporadic inclusion body myositis, two of eleven with dermatomyositis, three of eight with polymyositis, two of nine with muscular dystrophy and two of ten non-myopathic controls. Immunohistochemistry confirmed protein expression of inducible nitric oxide synthase and demonstrated intracellular nitration of tyrosine, an indicator for intra-fibre production of nitric oxide, in sporadic inclusion body myositis muscle samples, but much less in dermatomyositis or polymyositis, hardly in dystrophic muscle and not in non-myopathic controls. Using fluorescent double-labelling immunohistochemistry, a significant co-localization was observed in sporadic inclusion body myositis muscle between β-amyloid, thioflavine-S and nitrotyrosine. In primary cultures of human myotubes and in myoblasts, exposure to interleukin-1β in combination with interferon-γ induced a robust upregulation of inducible nitric oxide synthase messenger RNA. Using fluorescent detectors of reactive oxygen species and nitric oxide, dichlorofluorescein and diaminofluorescein, respectively, flow cytometry revealed that interleukin-1β combined with interferon-γ induced intracellular production of nitric oxide, which was associated with necrotic cell death in muscle cells. Intracellular nitration of tyrosine was noted, which partly co-localized with amyloid precursor protein, but not with desmin

  16. Effect of inducible nitric oxide synthase binding with peroxisomes on early infection of macrophages by Salmonella typhimurium

    Directory of Open Access Journals (Sweden)

    Xin PAN

    2011-10-01

    Full Text Available Objective To investigation on the early carrying inducible nitric oxide synthase for peroxisomes to Salmonella typhimurium during the bacteria infection mouse macrophages.Methods RAW264.7 macrophages were transfected with pTassC-GFP plasmids to analysis the existence form of green fluorescent protein labeled target for Salmonella secreted protein SpiC(TassCprotein in the cell.The interaction between the fusion protein TassC-GFP and peroxisomes were analyzed by co-transfection of pTassC-GFP and pDsRed2-Perxi(labels peroxisomes red plasmids to RAW264.7 macrophages,the positive transfected cells named RAW-DT.RAW-D cells were named by transfecting RAW264.7 with pDsRed2-Perxi plasmids.S.typhimurium was detected with mono-antibody and visualized with Alexa Fluor 350 conjugated donkey anti-mouse antibodies.Inducible nitric oxide synthase(iNOS or NOS2 was detected with iNOS-antibody and visualized with Alexa Fluor 488 conjugated goat anti-rabbit antibodies.S.typhimurium were used to infect the RAW-DT cells to analyze the interaction among bacteria,TassC-GFPs and peroxisomes.The RAW-D cells were infected with S.typhimurium 1h to analyze the interaction among bacteria,iNOS and peroxisomes.Results TassC vesicles co-localized with peroxisomes when RAW264.7 macrophages were co-transfected with pTassC-GFP and pDsRed2-Perxi plasmids.It was determined by a three-dimensional(xyz fluorescence microscopy that the recruitment or overlapping of TassC-GFP and pemxiomes to the Salmonella-containing vacuoles(SCV after infection of RAW-DT macrophages with S.typhimurium for 1h.The SCVs also could co-localized with peroxisomes and iNOS after infection of RAW-D cells with S.typhimurium for 1h.Upon entry of Salmonella,peroxisomes were recruited to the Salmonella-containing vesicles and remain aggregated around the SCV for the duration of the 60 minutes observation time.Conclusion These findings indicated that,wild type S.typhimurium could induce iNOS production in RAW264

  17. Influence of hCG on inducible nitric oxide synthase gene expression in ram testicular arteries

    Directory of Open Access Journals (Sweden)

    Maria Matteo

    2014-09-01

    Full Text Available Background. Experimental evidence suggests a relationship between the vasodilatory effect of hCG and the NOS system in the testis. The influence of hCG administration on testicular vascular NOS gene expression has not been fully investigated. Objective: This study aimed to evaluate the presence of the nitric oxide syntheses gene in ram testicular arteries and the influence of hCG administration on its expression. Materials and methods: Both testicular arteries of sixteen rams were extracted before and after i.v. administration of 5000 IU of hCG or placebo. The expression of the iNOS gene was investigated by real time PCR. Data were analyzed by means of Wilcoxon and Mann-Whitney tests. A p value of < 0.05 was considered statistically significant. Results: PCR revealed the presence of iNOS mRNA in all basal samples but the expression of the iNOS gene was significantly reduced in all arteries obtained 24 h after the administration of either hCG or placebo. A significant reduction in the expression of iNOS gene was observed in the testicular arteries extracted after 24 h in both treated and placebo groups. On the other hand hCG stimulation did not significantly influence iNOS expression following its administration compared to a placebo. Conclusion: Ram testicular arteries express the iNOS gene but hCG stimulation did not significantly influence iNOS expression. A significant reduction in the expression of this gene was observed in the testicular arteries extracted after 24 h in both treated and placebo groups, suggesting that iNOS expression on the testicular artery could be influenced by the spermatic vessel ligation of the controlateral testis.

  18. Reduced 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy)-initiated oxidative DNA damage and neurodegeneration in prostaglandin H synthase-1 knockout mice.

    Science.gov (United States)

    Jeng, Winnie; Wells, Peter G

    2010-05-19

    The neurodegenerative potential of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and underlying mechanisms are under debate. Here, we show that MDMA is a substrate for CNS prostaglandin H synthase (PHS)-catalyzed bioactivation to a free radical intermediate that causes reactive oxygen species (ROS) formation and neurodegenerative oxidative DNA damage. In vitro PHS-1-catalyzed bioactivation of MDMA stereoselectively produced free radical intermediate formation and oxidative DNA damage that was blocked by the PHS inhibitor eicosatetraynoic acid. In vivo, MDMA stereoselectively caused gender-independent DNA oxidation and dopaminergic nerve terminal degeneration in several brain regions, dependent on regional PHS-1 levels. Conversely, MDMA-initiated striatal DNA oxidation, nerve terminal degeneration, and motor coordination deficits were reduced in PHS-1 +/- and -/- knockout mice in a gene dose-dependent fashion. These results confirm the neurodegenerative potential of MDMA and provide the first direct evidence for a novel molecular mechanism involving PHS-catalyzed formation of a neurotoxic MDMA free radical intermediate.

  19. Inducible nitric oxide synthase expression is related to angiogenesis, bcl-2 and cell proliferation in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    彭佳萍; 郑树; 孝作祥; 张苏展

    2003-01-01

    In this study, we examined the expression of inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF) by immunohistochemical staining in 76 tissue sections collected from hepatocellular carcinoma (HCC) patients undergoing hepatectomy. Microvascular density (MVD) was determined by counting endothelial cells immunostained using anti-CD34 antibody. We performed DNA-flow cytometric analyses to elucidate the impact of iNOS and VEGF expression on the cell cycle of HCC. Most of the HCC cells that invaded stroma were markedly immunostained by iNOS antibody. The iNOS stain intensity of the liver tissue close to the tumor edge was stronger than that of HCC tissue, and the strongest was the hepatocytes closer to the tumor tissue. However, iNOS expression in 10 normal hepatic samples was undetectable. VEGF positive expression ratio was 84.8% in iNOS positive expression cases, and the ratio was 35.3% in negative cases. There was significant correlation (P=0.000) between iNOS and VEGF expression. Moreover, iNOS expression was significantly associated with bcl-2 and MVD, but without p53 expression. DNA-flow cytometric analyses showed that combined expression of iNOS and VEGF had significant impact on the cell cycle in HCC. PI (Proliferating Index) and SPF (S-phase fraction) in the combined positive expression of iNOS and VEGF group was significantly higher than that in the combined negative group. The present findings suggested that iNOS expression was significantly associated with angiogenesis, bcl-2 and cell proliferation of HCC.

  20. Endothelial Nitric Oxide Synthase Gene Intron 4, 27 bp Repeat Polymorphism and Essential Hypertension in the Kazakh Chinese Population

    Institute of Scientific and Technical Information of China (English)

    Fengmei DENG; Huimin ZHANG; Juan ZHAO; Hua ZHONG; Ling HE; Jun LI; Le ZHANG; Shuren WANG; Qinghua HU; Bin TANG; Fang HE; Shuxia GUO; Jiang CHEN; Feng LI; Xuehua WU; Jun ZHANG

    2007-01-01

    To investigate the relationship between 27 bp repeat polymorphism in intron 4 in the endothelial nitric oxide synthase (eNOS4) gene and essential hypertension in the Kazakh Chinese population, 151 patients with essential hypertension and 138 healthy people were selected from the Boertonggu countryside of Shawan region in the Xinjiang Uygur Autonomous Region of China in 2006. The polymorphism of eNOS in the two groups was detected with polymerase chain reaction assays and the genotype frequencies in each group were calculated following the Hardy-Weinberg law. Four and five tandem 27 bp repeats were designated as "a" and "b", respectively. It was found that the frequencies of b/b, b/a and a/a genotypes of the eNOS4 gene were 84.06%, 15.22% and 0.72% in the control group, and 81.46%, 15.89% and 2.65% in the hypertension group, respectively. The frequencies of gene "b" and "a" were 91.67% and 8.33% in the control group and 89.40% and 10.60% in the hypertension group, respectively. It was found that plasma eNOS activity was not associated with genotypes and alleles of eNOS gene. Plasma eNOS activity in the hypertension group was significantly decreased compared with the control group (P<0.01). The results suggest that eNOS4 gene polymorphisms are unlikely to be the major genetic susceptibility factors for essential hypertension in the Xinjiang Kazakh population. However, a positive association between plasma eNOS activity and essential hypertension has been revealed.

  1. Association of endothelial nitric oxide synthase gene polymorphisms with coronary artery disease: an updated meta-analysis and systematic review.

    Directory of Open Access Journals (Sweden)

    Himanshu Rai

    Full Text Available Several association studies of endothelial nitric oxide synthase (NOS3 gene polymorphisms with respect to coronary artery disease (CAD have been published in the past two decades. However, their association with the disease, especially among different ethnic subgroups, still remains controversial. This prompted us to conduct a systematic review and an updated structured meta-analysis, which is the largest so far (89 articles, 132 separate studies, and a sample size of 69,235, examining association of three polymorphic forms of the NOS3 gene (i.e. Glu298Asp, T786-C and 27 bp VNTR b/a with CAD. In a subgroup analysis, we tested their association separately among published studies originating predominantly from European, Middle Eastern, Asian, Asian-Indian and African ancestries. The pooled analysis confirmed the association of all the three selected SNP with CAD in three different genetic models transcending all ancestries worldwide. The Glu298Asp polymorphism showed strongest association (OR range = 1.28-1.52, and P<0.00001 for all comparisons, followed by T786-C (OR range = 1.34-1.42, and P<0.00001 for all comparisons and 4b/a, (OR range = 1.19-1.41, and P ≤ 0.002 for all comparisons in our pooled analysis. Subgroup analysis revealed that Glu298Asp (OR range = 1.54-1.87, and P<0.004 for all comparisons and 4b/a (OR range = 1.71-3.02, and P<0.00001 for all comparisons have highest degree of association amongst the Middle Easterners. On the other hand, T786-C and its minor allele seem to carry a highest risk for CAD among subjects of Asian ancestry (OR range = 1.61-1.90, and P ≤ 0.01 for all comparisons.

  2. Inducible nitric oxide synthase polymorphism is associated with the increased risk of differentiated gastric cancer in a Japanese population

    Institute of Scientific and Technical Information of China (English)

    Yasuyuki Goto; Takafumi Ando; Mariko Naito; Hidemi Goto; Nobuyuki Hamajima

    2006-01-01

    AIM: To examine the association of inducible nitric oxide synthase (iNOS) C150T polymorphism with gastric cancer, as well as with gastric atrophy and H pylori seropositivity.METHODS: A single nucleotide polymorphism of iNOS C150T was examined for 454 Japanese health checkup examinees (126 males and 328 females) aged 35 to 85 years without a history of cancer and 202 gastric cancer patients (134 males and 68 females) aged 33 to 94 years with pathologically confirmed diagnosis of gastric adenocarcinoma.RESULTS: The iNOS C150T polymorphism was not associated with gastric atrophy or with H pylori seropositivity. The odds ratio (OR) of the C/T +T/T for gastric cancer was increased without statistical significance (OR=1.19, 95% confidence interval (CI):0.68-2.08). In the differentiated subgroup (n = 113),however, the OR of the C/T genotype for gastric cancer was significant (OR = 2.02, 95% CI: 1.04-3.92) relative to the C/C genotype. In addition, considering the location of gastric cancer (n = 105), there were significant differences between the controls and non-cardia group with the OR of 2.13 (95% CI: 1.08-4.18) for C/T and 1.94(95% CI: 1.00-3.78) for C/T + T/T.CONCLUSION: The iNOS C150T polymorphism is associated with the risk of H pylori-related gastric cancer in a Japanese population. This polymorphism may play an important role in increasing the risk of gastric cancer in Asian countires with the highest rates of gastric cancer.

  3. Expression of Nitric Oxide Synthase Isoenzyme in Lung Tissue of Smokers with and without Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Wen-Ting Jiang

    2015-01-01

    Full Text Available Background: It has been demonstrated that only 10%-20% cigarette smokers finally suffer chronic obstructive pulmonary disease (COPD. The underlying mechanism of development remains uncertain so far. Nitric oxide (NO has been found to be closely associated with the pathogenesis of COPD, the alteration of NO synthase (NOS expression need to be revealed. The study aimed to investigate the alterations of NOS isoforms expressions between smokers with and without COPD, which might be helpful for identifying the susceptibility of smokers developing into COPD. Methods: Peripheral lung tissues were obtained from 10 nonsmoker control subjects, 15 non-COPD smokers, and 15 smokers with COPD. Neuronal NOS (nNOS, inducible NOS (iNOS, and endothelial NOS (eNOS mRNA and protein levels were measured in each sample by using real-time polymerase chain reaction and Western blotting. Results: INOS mRNA was significantly increased in patients with COPD compared with nonsmokers and smokers with normal lung function (P < 0.001, P = 0.001, respectively. iNOS protein was also higher in COPD patients than nonsmokers and smokers with normal lung function (P < 0.01 and P = 0.01, respectively. However, expressions of nNOS and eNOS did not differ among nonsmokers, smokers with and without COPD. Furthermore, there was a negative correlation between iNOS protein level and lung function parameters forced expiratory volume in 1 s (FEV 1 (% predicted (r = −0.549, P = 0.001 and FEV 1 /forced vital capacity (%, r = −0.535, P = 0.001. Conclusions: The expression of iNOS significantly increased in smokers with COPD compared with that in nonsmokers or smokers without COPD. The results suggest that iNOS might be involved in the pathogenesis of COPD, and may be a potential marker to identify the smokers who have more liability to suffer COPD.

  4. Facilitated cellular uptake and suppression of inducible nitric oxide synthase by a metabolite of maritime pine bark extract (Pycnogenol).

    Science.gov (United States)

    Uhlenhut, Klaus; Högger, Petra

    2012-07-15

    Many natural products exhibit anti-inflammatory activity by suppressing excessive nitric oxide (NO) production by inducible NO synthase (iNOS). The maritime pine bark extract Pycnogenol has been formerly shown to decrease nitrite generation, taken as an index for NO, but so far it was not clear which constituent of the complex flavonoid mixture mediated this effect. The purpose of this study was to elucidate whether the in vivo generated Pycnogenol metabolite M1 (δ-(3,4-dihydroxyphenyl)-γ-valerolactone) displayed any activity in the context of induction of iNOS expression and excessive NO production. For the first time we show that M1 inhibited nitrite production (IC(50) 1.3 μg/ml, 95% CI 0.96-1.70) and iNOS expression (IC(50) 3.8 μg/ml, 95% CI 0.99-14.35) in a concentration-dependent fashion. This exemplifies bioactivation by metabolism because the M1 precursor molecule catechin is only weakly active. However, these effects required application of M1 in the low-micromolar range, which was not consistent with concentrations previously detected in human plasma samples after ingestion of maritime pine bark extract. Thus, we investigated a possible accumulation of M1 in cells and indeed observed high-capacity binding of this flavonoid metabolite to macrophages, monocytes, and endothelial cells. This binding was distinctly decreased in the presence of the influx inhibitor phloretin, suggesting the contribution of a facilitated M1 transport into cells. In fact, intracellular accumulation of M1 could explain why in vivo bioactivity can be observed with nanomolar plasma concentrations that typically fail to exhibit measurable activity in vitro.

  5. Crucial role for neuronal nitric oxide synthase in early microcirculatory derangement and recipient survival following murine pancreas transplantation.

    Directory of Open Access Journals (Sweden)

    Benno Cardini

    Full Text Available Aim of this study was to identify the nitric oxide synthase (NOS isoform involved in early microcirculatory derangements following solid organ transplantation.Tetrahydrobiopterin donor treatment has been shown to specifically attenuate these derangements following pancreas transplantation, and tetrahydrobiopterin-mediated protective effects to rely on its NOS-cofactor activity, rather than on its antioxidant capacity. However, the NOS-isoform mainly involved in this process has still to be defined.Using a murine pancreas transplantation model, grafts lacking one of the three NOS-isoforms were compared to grafts from wild-type controls. Donors were treated with either tetrahydrobiopterin or remained untreated. All grafts were subjected to 16 h cold ischemia time and transplanted into wild-type recipients. Following 4 h graft reperfusion, microcirculation was analysed by confocal intravital fluorescence microscopy. Recipient survival was monitored for 50 days.Transplantation of the pancreas from untreated wild-type donor mice resulted in microcirculatory damage of the transplanted graft and no recipient survived more than 72 h. Transplanting grafts from untreated donor mice lacking either endothelial or inducible NOS led to similar outcomes. In contrast, donor treatment with tetrahydrobiopterin prevented microcirculatory breakdown enabling long-term survival. Sole exception was transplantation of grafts from untreated donor mice lacking neuronal NOS. It resulted in intact microvascular structure and long-term recipient survival, either if donor mice were untreated or treated with tetrahydrobiopterin.We demonstrate for the first time the crucial involvement of neuronal NOS in early microcirculatory derangements following solid organ transplantation. In this model, protective effects of tetrahydrobiopterin are mediated by targeting this isoform.

  6. Crucial Role for Neuronal Nitric Oxide Synthase in Early Microcirculatory Derangement and Recipient Survival following Murine Pancreas Transplantation

    Science.gov (United States)

    Cardini, Benno; Watschinger, Katrin; Hermann, Martin; Obrist, Peter; Oberhuber, Rupert; Brandacher, Gerald; Chuaiphichai, Surawee; Channon, Keith M.; Pratschke, Johann; Maglione, Manuel; Werner, Ernst R.

    2014-01-01

    Objective Aim of this study was to identify the nitric oxide synthase (NOS) isoform involved in early microcirculatory derangements following solid organ transplantation. Background Tetrahydrobiopterin donor treatment has been shown to specifically attenuate these derangements following pancreas transplantation, and tetrahydrobiopterin-mediated protective effects to rely on its NOS-cofactor activity, rather than on its antioxidant capacity. However, the NOS-isoform mainly involved in this process has still to be defined. Methods Using a murine pancreas transplantation model, grafts lacking one of the three NOS-isoforms were compared to grafts from wild-type controls. Donors were treated with either tetrahydrobiopterin or remained untreated. All grafts were subjected to 16 h cold ischemia time and transplanted into wild-type recipients. Following 4 h graft reperfusion, microcirculation was analysed by confocal intravital fluorescence microscopy. Recipient survival was monitored for 50 days. Results Transplantation of the pancreas from untreated wild-type donor mice resulted in microcirculatory damage of the transplanted graft and no recipient survived more than 72 h. Transplanting grafts from untreated donor mice lacking either endothelial or inducible NOS led to similar outcomes. In contrast, donor treatment with tetrahydrobiopterin prevented microcirculatory breakdown enabling long-term survival. Sole exception was transplantation of grafts from untreated donor mice lacking neuronal NOS. It resulted in intact microvascular structure and long-term recipient survival, either if donor mice were untreated or treated with tetrahydrobiopterin. Conclusion We demonstrate for the first time the crucial involvement of neuronal NOS in early microcirculatory derangements following solid organ transplantation. In this model, protective effects of tetrahydrobiopterin are mediated by targeting this isoform. PMID:25389974

  7. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase.

    Science.gov (United States)

    Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L; Smith, Darcey L H; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E

    2015-11-15

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression.

  8. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets.

    Science.gov (United States)

    Fleming, Ingrid; Schulz, Christian; Fichtlscherer, Birgit; Kemp, Bruce E; Fisslthaler, Beate; Busse, Rudi

    2003-11-01

    Little is known about the signaling cascades that eventually regulate the activity of the endothelial nitric oxide synthase (eNOS) in platelets. Here, we investigated the effects of insulin on the phosphorylation and activation of eNOS in washed human platelets and in endothelial cells. Insulin activated the protein kinase Akt in cultured endothelial cells and increased the phosphorylation of eNOS on Ser(1177) but failed to increase endothelial cyclic GMP levels or to elicit the relaxation of endothelium-intact porcine coronary arteries. In platelets, insulin also elicited the activation of Akt as well as the phosphorylation of eNOS and initiated NO production which was associated with increased cyclic GMP levels and the inhibition of thrombin-induced aggregation. The insulin-induced inhibition of aggregation was accompanied by a decreased Ca(2+) response to thrombin and was also prevented by N(omega) nitro-L-arginine. In platelets, but not in endothelial cells, insulin induced the activation of the AMP-activated protein kinase (AMPK), a metabolic stress-sensing kinase which was sensitive to the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the AMPK inhibitor iodotubercidin. Moreover, the insulin-mediated inhibition of thrombin-induced aggregation was prevented by iodotubercidin. Insulin-independent activation of the AMPK using 5-aminoimidazole-4-carboxamide ribonucleoside, increased platelet eNOS phosphorylation, increased cyclic GMP levels and attenuated platelet aggregation. These results highlight the differences in the signal transduction cascade activated by insulin in endothelial cells and platelets, and demonstrate that insulin stimulates the formation of NO in human platelets, in the absence of an increase in Ca(2+), by acti-vating PI3-K and AMPK which phosphorylates eNOS on Ser(1177).

  9. Attenuation by creatine of myocardial metabolic stress in Brattleboro rats caused by chronic inhibition of nitric oxide synthase.

    Science.gov (United States)

    Constantin-Teodosiu, D; Greenhaff, P L; Gardiner, S M; Randall, M D; March, J E; Bennett, T

    1995-12-01

    1. The present experiment was undertaken to investigate: (a) the effect of nitric oxide synthase (NOS) inhibition, mediated by oral supplementation of the NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), on measures of myocardial energy metabolism and function: (b) the effect of oral creatine supplementation on these variables, in the absence and presence of L-NAME. 2. In one series of experiments, 4 weeks oral administration of L-NAME (0.05 mg ml-1 day-1 in the drinking water) to Brattleboro rats caused significant reductions in myocardial ATP, creatine, and total creatine concentrations and an accumulation of tissue lactate when compared with control animals. Administration of creatine (0.63 mg ml-1 day-1 in the drinking water) for 4 weeks elevated myocardial creatine and total creatine concentrations and reduced lactate accumulation, but did not significantly affect ATP or phosphocreatine (PCr). Concurrent treatment with creatine and L-NAME prevented the reduction in creatine and total creatine concentrations, and significantly attenuated the accumulation of lactate and the reduction in ATP seen with L-NAME alone. 3. In a second series of experiments, 4 weeks treatment with L-NAME and creatine plus L-NAME increased mean arterial blood pressure in conscious Brattleboro rats. Hearts isolated from these animals showed decreased coronary flow and left ventricular developed pressure (LVDP), and total mechanical performance. Treatment with creatine alone had no measurable effect on either mean arterial blood pressure or coronary flow in isolated hearts. However, there was an increase in LVDP, but not in total mechanical performance, because there was a bradycardia. 4. These results indicate that creatine supplementation can attenuate the metabolic stress associated with L-NAME administration and that this effect occurs as a consequence of the action of creatine on myocardial energy metabolism.

  10. Endothelial nitric oxide synthase regulates white matter changes via the BDNF/TrkB pathway after stroke in mice.

    Science.gov (United States)

    Cui, Xu; Chopp, Michael; Zacharek, Alex; Ning, Ruizhuo; Ding, Xiaoshuang; Roberts, Cynthia; Chen, Jieli

    2013-01-01

    Stroke induced white matter (WM) damage is associated with neurological functional deficits, but the underlying mechanisms are not well understood. In this study, we investigate whether endothelial nitric oxide synthase (eNOS) affects WM-damage post-stroke. Adult male wild-type (WT) and eNOS knockout (eNOS(-/-)) mice were subjected to middle cerebral artery occlusion. Functional evaluation, infarct volume measurement, immunostaining and primary cortical cell culture were performed. To obtain insight into the mechanisms underlying the effects of eNOS(-/-) on WM-damage, measurement of eNOS, brain-derived neurotrophic factor (BDNF) and its receptor TrkB in vivo and in vitro were also performed. No significant differences were detected in the infarction volume, myelin density in the ipsilateral striatal WM-bundles and myelin-based protein expression in the cerebral ischemic border between WT and eNOS(-/-) mice. However, eNOS(-/-) mice showed significantly: 1) decreased functional outcome, concurrent with decreases of total axon density and phosphorylated high-molecular weight neurofilament density in the ipsilateral striatal WM-bundles. Correlation analysis showed that axon density is significantly positive correlated with neurological functional outcome; 2) decreased numbers of oligodendrocytes / oligodendrocyte progenitor cells in the ipsilateral striatum; 3) decreased synaptophysin, BDNF and TrkB expression in the ischemic border compared with WT mice after stroke (n = 12/group, pBDNF/TrkB (n = 6/group, pstroke, and eNOS(-/-)-induced decreases in the BDNF/TrkB pathway may contribute to increased WM-damage, and thereby decrease functional outcome.

  11. Rosuvastatin reduces rat intestinal ischemia-reperfusion injury associated with the preservation of endothelial nitric oxide synthase protein

    Institute of Scientific and Technical Information of China (English)

    Yuji Naito; Toshikazu Yoshikawa; Kazuhiro Katada; Tomohisa Takagi; Hisato Tsuboi; Masaaki Kuroda; Osamu Handa; Satoshi Kokura; Norimasa Yoshida; Hiroshi Ichikawa

    2006-01-01

    AIM: To investigate the protective effect of rosuvastatin on ischemia-reperfusion (I-R)-induced small intestinal injury and inflammation in rats, and to determine the effect of this agent on the expression of endothelial nitric oxide synthase (eNOS) protein.METHODS: Intestinal damage was induced in male Sprague-Dawley rats by clamping both the superior mesenteric artery and the celiac trunk for 30 min, followed by reperfusion for 60 min. Rosuvastatin dissolved in physiological saline was administered intraperitoneally 60min before ischemia. The severity of the intestinal mucosal injury and inflammation were evaluated by several biochemical markers, as well as by histological findings.The protein levels of eNOS were determined by Western blot.RESULTS: The levels of both intraluminal hemoglobin and protein, as indices of mucosal damage, were significantly increased in the I-R group compared with those in the sham-operated group. These increases, however,were significantly inhibited by treatment with rosuvastatin in a dose-dependent manner. The protective effects of rosuvastatin were also confirmed by histological findings. Exposure of the small intestine to I-R resulted in mucosal inflammation characterized by significant increases in thiobarbituric acid-reactive substances, tissueassociated myeloperoxidase activity, and the mucosal contents of rat cytokine-induced neutrophil chemoattractant-1 (CINC-1) and tumor necrosis factor-α (TNF-α).These increases in inflammatory parameters after I-R were significantly inhibited by pretreatment with rosuvastatin at a dose of 10 mg/kg. Furthermore, mRNA expression of CINC-1 and TNF-α was increased after t-R, and this increase was also inhibited by rosuvastatin. The mucosal protein levels of eNOS decreased during I-R,but were preserved in rats treated with rosuvastatin.CONCLUSION: Rosuvastatin inhibits rat intestinal injury and inflammation induced by I-R, and its protection is associated with the preservation of eNOS protein.

  12. Distribution, chemical coding and origin of nitric oxide synthase-containing nerve fibres in the guinea pig nasal mucosa.

    Science.gov (United States)

    Kondo, T; Inokuchi, T; Ohta, K; Annoh, H; Chang, J

    2000-04-12

    The distribution, chemical coding and origin of nitric oxide synthase (NOS)-containing nerve fibres in the respiratory mucosa of the nasal septum of the guinea pig were examined using nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and immunohistochemistry. A rich supply of NADPH-d-positive nerve fibres was observed around blood vessels and in nasal glands where nerve fibres frequently penetrated into the epithelia of acini and intralobular ducts. NADPH-d reactivity was also found in the nerve fibres located under or within the respiratory epithelium. Combined immunofluorescence and histochemical staining of the same preparation demonstrated virtually complete overlapping of NOS immunoreactivity and NADPH-d reactivity in nerve fibres, indicating that NADPH-d can be used as a marker for NOS-containing neurons. Double-labelling using antibodies to vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) revealed that NADPH-d-positive nerve fibres frequently contained VIP or NPY, but not CGRP. Pterygopalatine ganglionectomy significantly reduced the number of NADPH-d-positive nerve fibres innervating the respiratory epithelium as well as blood vessels and nasal glands. Neither superior cervical ganglionectomy nor sensory denervation by capsaicin treatment affected the distribution of NADPH-d-positive fibres. These results indicate that NOS-containing nerve fibres innervating the respiratory epithelium as well as blood vessels and nasal glands in the guinea pig originate mainly from the pterygopalatine ganglion, and suggest that NO may play a significant role as a neurotransmitter and/or neuromodulator in the control of the respiratory epithelium as well as vasculature and nasal glands.

  13. Endothelial nitric oxide synthase regulates white matter changes via the BDNF/TrkB pathway after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Xu Cui

    Full Text Available Stroke induced white matter (WM damage is associated with neurological functional deficits, but the underlying mechanisms are not well understood. In this study, we investigate whether endothelial nitric oxide synthase (eNOS affects WM-damage post-stroke. Adult male wild-type (WT and eNOS knockout (eNOS(-/- mice were subjected to middle cerebral artery occlusion. Functional evaluation, infarct volume measurement, immunostaining and primary cortical cell culture were performed. To obtain insight into the mechanisms underlying the effects of eNOS(-/- on WM-damage, measurement of eNOS, brain-derived neurotrophic factor (BDNF and its receptor TrkB in vivo and in vitro were also performed. No significant differences were detected in the infarction volume, myelin density in the ipsilateral striatal WM-bundles and myelin-based protein expression in the cerebral ischemic border between WT and eNOS(-/- mice. However, eNOS(-/- mice showed significantly: 1 decreased functional outcome, concurrent with decreases of total axon density and phosphorylated high-molecular weight neurofilament density in the ipsilateral striatal WM-bundles. Correlation analysis showed that axon density is significantly positive correlated with neurological functional outcome; 2 decreased numbers of oligodendrocytes / oligodendrocyte progenitor cells in the ipsilateral striatum; 3 decreased synaptophysin, BDNF and TrkB expression in the ischemic border compared with WT mice after stroke (n = 12/group, p<0.05. Primary cortical cell culture confirmed that the decrease of neuronal neurite outgrowth in the neurons derived from eNOS(-/- mice is mediated by the reduction of BDNF/TrkB (n = 6/group, p<0.05. Our data show that eNOS plays a critical role in WM-damage after stroke, and eNOS(-/--induced decreases in the BDNF/TrkB pathway may contribute to increased WM-damage, and thereby decrease functional outcome.

  14. The Endothelial Nitric Oxide Synthase Gene T-786C Polymorphism Increases Myocardial Infarction Risk: A Meta-Analysis.

    Science.gov (United States)

    Kong, Xiang-Zhen; Zhang, Zheng-Yi; Wei, Lian-Hua; Li, Rui; Yu, Jing

    2017-02-11

    BACKGROUND Polymorphisms of the endothelial nitric oxide synthase (eNOS) gene are reportedly associated with myocardial infarction (MI) risk. However, definitive evidence of this association is lacking. In this study, we investigated the potential association of eNOS gene polymorphisms with MI risk by conducting a meta-analysis of studies evaluating this association. MATERIAL AND METHODS PubMed, Web of Knowledge, ScienceDirect, China National Knowledge Infrastructure (CNKI), WanFang, and Database of Chinese Scientific and Technical Periodicals (VIP) were searched for relevant studies. Pooled odds ratios (OR) with 95% confidence interval (CI) were calculated to evaluate the association of eNOS gene T-786C and 4b4a polymorphisms with MI risk. RESULTS Fifteen studies with 8,067 controls and 4,923 MI cases were included in the final meta-analysis. In the overall analysis, T-786C (rs2070744) polymorphism was associated with MI risk (p<0.05, OR=1.69, 95% CI: 1.53-1.86 for T vs. C; p<0.05, OR=2.76, 95% CI: 2.03-3.75 for TT vs. CC; p<0.05, OR=1.74, 95% CI 1.56-1.95 for TT vs. (CT + CC); p<0.05, OR=2.43, 95% CI: 1.79-3.30 for (CT + TT) vs. CC). In addition, a significant association between 4b4a VNTR polymorphism and MI risk was observed. On sub-group analyses by ethnicity, a significant increase in MI risk was observed separately for Asian and Caucasian populations for T-786C polymorphism, but not for the 4b4a polymorphism. CONCLUSIONS In this meta-analysis, T-786C polymorphism of the eNOS gene was associated with the risk of MI, especially in the Asian populations.

  15. Inducible nitric oxide synthase, Nos2, does not mediate optic neuropathy and retinopathy in the DBA/2J glaucoma model

    Directory of Open Access Journals (Sweden)

    Savinova Olga V

    2007-12-01

    Full Text Available Abstract Background Nitric oxide synthase 2 (NOS2 contributes to neural death in some settings, but its role in glaucoma remains controversial. NOS2 is implicated in retinal ganglion cell degeneration in a rat glaucoma model in which intraocular pressure (IOP is experimentally elevated by blood vessel cauterization, but not in a rat glaucoma model where IOP was elevated by injection of hypertonic saline. To test the importance of NOS2 for an inherited glaucoma, in this study we both genetically and pharmacologically decreased NOS2 activity in the DBA/2J mouse glaucoma model. Methods The expression of Nos2 in the optic nerve head was analyzed at both the RNA and protein levels at different stages of disease pathogenesis. To test the involvement of Nos2 in glaucomatous neurodegeneration, a null allele of Nos2 was backcrossed into DBA/2J mice and the incidence and severity of glaucoma was assessed in mice of each Nos2 genotype. Additionally, DBA/2J mice were treated with the NOS2 inhibitor aminoguanidine and the disease compared to untreated mice. Results Optic nerve head Nos2 RNA levels varied and increased during moderate but decreased at early and severe stages of disease. Despite the presence of a few NOS2 positive cells in the optic nerve head, NOS2 protein was not substantially increased during the glaucoma. Genetic deficiency of Nos2 or aminoguanidine treatment did not alter the IOP profile of DBA/2J mice. Additionally, neither Nos2 deficiency nor aminoguanidine had any detectable affect on the glaucomatous optic nerve damage. Conclusion Glaucomatous neurodegeneration in DBA/2J mice does not require NOS2 activity. Further experiments involving various models are needed to assess the general importance of Nos2 in glaucoma.

  16. Morphometric evaluation of nitric oxide synthase isoforms and their cytokine regulators predict pulmonary dysfunction and survival in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    E.R. Parra

    2013-01-01

    Full Text Available Because histopathological changes in the lungs of patients with systemic sclerosis (SSc are consistent with alveolar and vessel cell damage, we presume that this interaction can be characterized by analyzing the expression of proteins regulating nitric oxide (NO and plasminogen activator inhibitor-1 (PAI-1 synthesis. To validate the importance of alveolar-vascular interactions and to explore the quantitative relationship between these factors and other clinical data, we studied these markers in 23 cases of SSc nonspecific interstitial pneumonia (SSc-NSIP. We used immunohistochemistry and morphometry to evaluate the amount of cells in alveolar septa and vessels staining for NO synthase (NOS and PAI-1, and the outcomes of our study were cellular and fibrotic NSIP, pulmonary function tests, and survival time until death. General linear model analysis demonstrated that staining for septal inducible NOS (iNOS related significantly to staining of septal cells for interleukin (IL-4 and to septal IL-13. In univariate analysis, higher levels of septal and vascular cells staining for iNOS were associated with a smaller percentage of septal and vascular cells expressing fibroblast growth factor and myofibroblast proliferation, respectively. Multivariate Cox model analysis demonstrated that, after controlling for SSc-NSIP histological patterns, just three variables were significantly associated with survival time: septal iNOS (P=0.04, septal IL-13 (P=0.03, and septal basic fibroblast growth factor (bFGF; P=0.02. Augmented NOS, IL-13, and bFGF in SSc-NSIP histological patterns suggest a possible functional role for iNOS in SSc. In addition, the extent of iNOS, PAI-1, and IL-4 staining in alveolar septa and vessels provides a possible independent diagnostic measure for the degree of pulmonary dysfunction and fibrosis with an impact on the survival of patients with SSc.

  17. Role of nitric oxide synthases in early blood-brain barrier disruption following transient focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Zheng Jiang

    Full Text Available The role of nitric oxide synthases (NOSs in early blood-brain barrier (BBB disruption was determined using a new mouse model of transient focal cerebral ischemia. Ischemia was induced by ligating the middle cerebral artery (MCA at its M2 segment and reperfusion was induced by releasing the ligation. The diameter alteration of the MCA, arterial anastomoses and collateral arteries were imaged and measured in real time. BBB disruption was assessed by Evans Blue (EB and sodium fluorescein (Na-F extravasation at 3 hours of reperfusion. The reperfusion produced an extensive vasodilation and a sustained hyperemia. Although expression of NOSs was not altered at 3 hours of reperfusion, L-NAME (a non-specific NOS inhibitor abolished reperfusion-induced vasodilation/hyperemia and significantly reduced EB and Na-F extravasation. L-NIO (an endothelial NOS (eNOS inhibitor significantly attenuated cerebral vasodilation but not BBB disruption, whereas L-NPA and 7-NI (neuronal NOS (nNOS inhibitors significantly reduced BBB disruption but not cerebral vasodilation. In contrast, aminoguanidine (AG (an inducible NOS (iNOS inhibitor had less effect on either cerebral vasodilation or BBB disruption. On the other hand, papaverine (PV not only increased the vasodilation/hyperemia but also significantly reduced BBB disruption. Combined treatment with L-NAME and PV preserved the vasodilation/hyperemia and significantly reduced BBB disruption. Our findings suggest that nNOS may play a major role in early BBB disruption following transient focal cerebral ischemia via a hyperemia-independent mechanism.

  18. Endothelin-1 but not Endothelial Nitric Oxide Synthase Gene Polymorphism is Associated with Sickle Cell Disease in Africa.

    Science.gov (United States)

    Thakur, Tanya J; Guindo, Aldiouma; Cullifer, Londyn R; Li, Yi; Imumorin, Ikhide G; Diallo, Dapa A; Thomas, Bolaji N

    2014-01-01

    Sickle cell disease shows marked variability in severity and pathophysiology among individuals, probably linked to differential expression of various adhesion molecules. In this study, we investigated the differential distribution, genomic diversity and haplotype frequency of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) polymorphisms, recently implicated as important in modification of disease severity. One hundred and forty five sickle cell disease patients (HbSS) and 244 adult and pediatric controls, without sickle cell disease (HbAA), were recruited from Mali. Genotypic analysis of the functionally significant eNOS variants (T786C, G894T and intron 4) and endothelin-1 (G5665T) was carried out with a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. Our results show that the wild type alleles are the most frequent for all eNOS variants between cases and controls. Allelic and genotypic frequencies of eNOS polymorphic groups are not significantly different between cases and controls (P > 0.05). In addition, there is no association between eNOS variants and sickle cell disease, contrary to published reports. On the other hand, we report that endothelin-1 (G5665T) mutant variant had the lowest allelic frequency, and is significantly associated with sickle cell disease in Africa (P haplotype frequencies were the same between cases and controls, except for the haplotype combining all mutant variants (T, C, 4a; P = 0.01). eNOS polymorphic variants are less frequent, with no significance with sickle cell disease in Africa. On the other hand, endothelin-1 is associated with sickle cell disease, and has the capacity to redefine pathophysiology and possibly serve as modulator of disease phenotype.

  19. Effects of aspirin on number,activity and inducible nitric oxide synthase of endothelial progenitor cells from peripheral blood

    Institute of Scientific and Technical Information of China (English)

    Tu-gang CHEN; Jun-zhu CHEN; Xu-dong XIE

    2006-01-01

    Aim:To investigate whether aspirin has an influence on endothelial progenitor cells (EPC).Methods:Total mononuclear cells (MNC) were isolated from peripheral blood by Ficoll density gradient centrifugation,then cells were plated on fibronectin-coated culture dishes.After 7 d of culture,attached cells were stimulated with aspirin (to achieve final concentrations of 1,2,5,and 10 mmol/L) for 3,6,12,and 24 h.EPC were characterized as adherent cells that were double positive for 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine low density lipoprotein (DiLDL) uptake and lectin binding by direct fluorescent staining.EPC proliferation and migration were assayed using a 3- (4,5-dimethyl-2 thiazoyl) -2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and a modified Boyden chamber assay.respectively.An EPC adhesion assay was performed by replating the EPC on fibronectin-coated dishes,and then adherent cells were counted.In vitro vasculogenesis activity was assayed by using an in vitro vasculogenesis kit. Inducible nitric oxide synthase (iNOS) was assayed by Westem blotting.Results:Incubation of isolated human MNC with aspirin decreased the number of EPC.Aspirin also decreased the proliferative,migratory,adhesive,and in vitro Vasculogenesis capacity of EPC,and also their iNOS levels in a concentration-and time-dependent manner.Conclusion:Aspirin decreases (1) the number of EPC; (2) the proliferative,migratory,adhesive and in vitro vasculogenesis capacities of EPC;and (3) iNOS levels in EPC.

  20. A novel genetic polymorphism of inducible nitric oxide synthase is associated with an increased risk of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Jing Shen; Run-Tian Wang; Li-Wei Wang; Yao-Chu Xu; Xin-Ru Wang

    2004-01-01

    AIM: Inducible nitric oxide synthase (iNOS) plays a central role in the pathway of reactive oxygen and nitrogen species metabolism when Helicobacter pylori ( H pylori) infection occurs in humans. iNOS Ser608 Leu allele, a novel genetic polymorphism (C/T) occurring within exon 16 of the iNOS reductase domain, may have a dramatic effect on the enzymatic activity. The aim of this study was to determine whether iNOS C/T polymorphism was associated with increased susceptibility to gastric cancer.METHODS: We conducted a population based case-control study in a high gastric cancer incidence area, Yangzhong,China. Questionnaires from 93 patients with intestinal type gastric cancer (IGC), 50 with gastric cardia cancer (GCC)and 246 healthy controls were obtained between 1997 and1998, and iNOS genotyping was carried out. Odds ratios(ORs), interaction index (γ), and 95% confidence intervals for the combined effects of iNOS genotype and H pylori infection, cigarette smoking or alcohol drinking were estimated.RESULTS: The frequency of (CT+TT) genotypes was higher in cases than in control group (24.48% vs23.17%), but the difference was not statistically significant. After adjusting for age and gender, past cigarette smokers with (CT+TT)genotypes had a significantly increased risk of IGC (OR = 3.62,95% CI: 1.23-10.64), while past alcohol drinkers with(CT+TT) genotypes had a significantly increased risk of GCC (OR = 3.33, 95% CI: 1.14-9.67).H pylori CagA negative subjects with (CT+TT) genotypes had a significantly increased risk of both IGC and GCC (OR = 2.19 and 3.52, respectively).CONCLUSION: iNOS Ser608Leu allele may be a potential determinant of susceptibility to cigarette -alcohol induced gastric cancer, but larger studies are needed to confirm the observations.

  1. Exercise protects against chronic β-adrenergic remodeling of the heart by activation of endothelial nitric oxide synthase.

    Directory of Open Access Journals (Sweden)

    Liang Yang

    Full Text Available Extensive data have shown that exercise training can provide cardio-protection against pathological cardiac hypertrophy. However, how long the heart can retain cardio-protective phenotype after the cessation of exercise is currently unknown. In this study, we investigated the time course of the loss of cardio-protection after cessation of exercise and the signaling molecules that are responsible for the possible sustained protection. Mice were made to run on a treadmill six times a week for 4 weeks and then rested for a period of 0, 1, 2 and 4 weeks followed by isoproterenol injection for 8 days. Morphological, echocardiographic and hemodynamic changes were measured, gene reactivation was determined by real-time PCR, and the expression and phosphorylation status of several cardio-protective signaling molecules were analyzed by Western-blot. HW/BW, HW/TL and LW/BW decreased significantly in exercise training (ER mice. The less necrosis and lower fetal gene reactivation induced by isoproterenol injection were also found in ER mice. The echocardiographic and hemodynamic changes induced by β-adrenergic overload were also attenuated in ER mice. The protective effects can be sustained for at least 2 weeks after the cessation of the training. Western-blot analysis showed that the alterations in the phosphorylation status of endothelial nitric oxide synthase (eNOS (increase in serine 1177 and decrease in threonine 495 continued for 2 weeks after the cessation of the training whereas increases of the phosphorylation of Akt and mTOR disappeared. Further study showed that L-NG-Nitroarginine methyl ester (L-NAME treatment abolished the cardio-protective effects of ER. Our findings demonstrate that stimulation of eNOS in mice through exercise training provides acute and sustained cardioprotection against cardiac hypertrophy.

  2. Impact of Trans-Resveratrol-Sulfates and -Glucuronides on Endothelial Nitric Oxide Synthase Activity, Nitric Oxide Release and Intracellular Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Angela Ladurner

    2014-10-01

    Full Text Available Resveratrol (3,5,4'-trihydroxy-trans-stilbene is a polyphenolic natural product mainly present in grape skin, berries and peanuts. In the vasculature resveratrol is thought to boost endothelial function by increasing endothelial nitric oxide synthase (eNOS expression, by enhancing eNOS activity, and by reduction of reactive oxygen species (ROS levels. Recent studies show that dietary resveratrol is metabolized in the liver and intestine into resveratrol-sulfate and -glucuronide derivatives questioning the relevance of multiple reported mechanistic in vitro data on resveratrol. In this study, we compare side by side different physiologically relevant resveratrol metabolites (resveratrol sulfates- and -glucuronides and their parent compound in their influence on eNOS enzyme activity, endothelial NO release, and intracellular ROS levels. In contrast to resveratrol, none of the tested resveratrol metabolites elevated eNOS enzyme activity and endothelial NO release or affected intracellular ROS levels, leaving the possibility that not tested metabolites are active and able to explain in vivo findings.

  3. Propofol improves cardiac functional recovery after ischemia-reperfusion by upregulating nitric oxide synthase activity in the isolated rat hearts

    Institute of Scientific and Technical Information of China (English)

    SUN Hai-yan; XUE Fu-shan; XU Ya-chao; LI Cheng-wen; XIONG Jun; LIAO Xu; ZHANG Yan-ming

    2009-01-01

    Background There are few studies to assess whether propofol attenuates myocardial ischemia-reperfusion injury via a mechanism related to nitric oxide (NO) route, so we designed this randomized blinded experiment to observe the changes of NO contents, nitric oxide synthase (NOS) activity, NOS contents in the myocardium, and cardiac function in ischemic reperfused isolated rat hearts, and to assess the relation between myocardial NO system and cardioprotection of propofol.Methods The hearts of 30 Sprague-Dawley male rats were removed, mounted on a Langendorff apparatus, and randomly assigned to one of three groups (n=10 each group) to be treated with the following treatments in a blinded manner: Group 1, control group, after perfusion with pure Krebs Henseleit bicarbonate (K-HBB) buffer solution for 15 minutes, hearts were subjected to 20 minutes global ischemia followed by 60 minutes reperfusion with pure K-HBB buffer; Group 2, after perfusion with K-HBB buffer solution containing propofol (10 μg/ml) for 15 minutes, the hearts underwent 20 minutes global ischemia followed by 60 minutes reperfusion with the same K-HBB buffer solution; Group 3, after perfusion with K-HBB buffer solution containing propofol (10 μg/ml) and L-NAME (100 μmol/L) for 15 minutes, the hearts underwent 20 minutes global ischemia followed by 60 minutes reperfusion with the same K-HBB buffer solution. The cardiac function was continuously monitored throughout the experiment.The coronary flow was also measured. An ISO-NO electrode was placed into the right atrium close to the coronary sinus to continuously measure NO concentration in the coronary effluent. The tissue samples from apex of hearts in Groups 1 and 2 were obtained to measure the NOS activity by spectrophotometry and the NOS contents by immunohistochemistry, respectively.Results The cardiac function was significantly inhibited after ischemia and then gradually improved with reperfusion in all three groups. As compared with Group 1

  4. Molecular characterization of glutathione S-transferase, endothelial nitric oxide synthase and Vitamin D receptor genes in breast cancer cases

    Directory of Open Access Journals (Sweden)

    Rizk El-Baz(1; Azza Ismail(2 ; Maher Amer(2; Mai Elshahat(3; Amira Kazamel(2; Ahmad Settin

    2012-10-01

    Full Text Available Background: Enzymes of the Glutathione S-transferase system (GST modulate the effects of exposure to several cytotoxic and genotoxic agents. Nitric oxide (NO is constitutively synthesized in the endothelium by endothelial nitric oxide synthase (eNOS and acts as a pleiotropic regulator involved in carcinogenesis. Vitamin D levels may influence breast cancer development. The vitamin D receptor (VDR is a crucial mediator for the cellular effects of vitamin D and additionally interacts with other cell-signaling pathways that influence cancer development. Objectives: To check for the association of polymorphisms of GST, eNOS3 and VDR genes with the susceptibility and severity of breast cancer in Egyptian cases. Subjects: This work included 100 cases with breast cancer and 100 healthy individuals. The mean age of cases was 48.31±11.40 years. They included 100 females.Methods: DNA was amplified using PCR-RFLP for detection of polymorphisms related to eNOS3 and VDR , also DNA was amplified using PCR-SSP for detection of polymorphisms related to GST and calculating the odds ratios and their 95% confidence intervals.Results: Total cases showed high significant frequency of eNOS3-786 CC (P<0.05, OR=18.58 genotypes, GSTT1(null (OR = 2.68; CI 95%=1.51-4.75; p=0.001. These were considered risk genotypes for disease susceptibility. On the other hand, total cases showed low significant frequency with homozygosity for eNOS3-786 TT (P=0.01 and the GSTT1 gene was present in 42.0% of the cancers and in 66.0% of controls (OR = 0.37; CI 95%= 0.21-0.66; p=0.001. These may be considered low risk genotypes. No significant difference in frequencies of null and present genotypes of GSTM1 and VDR FOKI in total cases compared to controls. Conclusions: Polymorphisms related to eNOS3-786, GSTT1 and VDR FOKI genes may be considered genetic markers for BC among Egyptian cases. This may have potential impact on family counselling as well as future management plans.

  5. The role of nitric-oxide-synthase-derived nitric oxide in multicellular traits of Bacillus subtilis 3610: biofilm formation, swarming, and dispersal

    Directory of Open Access Journals (Sweden)

    Lamprecht-Grandio María

    2011-05-01

    Full Text Available Abstract Background Bacillus subtilis 3610 displays multicellular traits as it forms structurally complex biofilms and swarms on solid surfaces. In addition, B. subtilis encodes and expresses nitric oxide synthase (NOS, an enzyme that is known to enable NO-mediated intercellular signalling in multicellular eukaryotes. In this study, we tested the hypothesis that NOS-derived NO is involved in the coordination of multicellularity in B. subtilis 3610. Results We show that B. subtilis 3610 produces intracellular NO via NOS activity by combining Confocal Laser Scanning Microscopy with the NO sensitive dye copper fluorescein (CuFL. We further investigated the influence of NOS-derived NO and exogenously supplied NO on the formation of biofilms, swarming motility and biofilm dispersal. These experiments showed that neither the suppression of NO formation with specific NOS inhibitors, NO scavengers or deletion of the nos gene, nor the exogenous addition of NO with NO donors affected (i biofilm development, (ii mature biofilm structure, and (iii swarming motility in a qualitative and quantitative manner. In contrast, the nos knock-out and wild-type cells with inhibited NOS displayed strongly enhanced biofilm dispersal. Conclusion The results suggest that biofilm formation and swarming motility in B. subtilis represent complex multicellular processes that do not employ NO signalling and are remarkably robust against interference of NO. Rather, the function of NOS-derived NO in B. subtilis might be specific for cytoprotection against oxidative stress as has been proposed earlier. The influence of NOS-derived NO on dispersal of B. subtilis from biofilms might be associated to its well-known function in coordinating the transition from oxic to anoxic conditions. Here, NOS-derived NO might be involved in fine-tuning the cellular decision-making between adaptation of the metabolism to (anoxic conditions in the biofilm or dispersal from the biofilm.

  6. Thermodynamic and kinetic analysis of the isolated FAD domain of rat neuronal nitric oxide synthase altered in the region of the FAD shielding residue Phe1395.

    Science.gov (United States)

    Dunford, Adrian J; Marshall, Ker R; Munro, Andrew W; Scrutton, Nigel S

    2004-06-01

    In rat neuronal nitric oxide synthase, Phe1395 is positioned over the FAD isoalloxazine ring. This is replaced by Trp676 in human cytochrome P450 reductase, a tryptophan in related diflavin reductases (e.g. methionine synthase reductase and novel reductase 1), and tyrosine in plant ferredoxin-NADP(+) reductase. Trp676 in human cytochrome P450 reductase is conformationally mobile, and plays a key role in enzyme reduction. Mutagenesis of Trp676 to alanine results in a functional NADH-dependent reductase. Herein, we describe studies of rat neuronal nitric oxide synthase FAD domains, in which the aromatic shielding residue Phe1395 is replaced by tryptophan, alanine and serine. In steady-state assays the F1395A and F1395S domains have a greater preference for NADH compared with F1395W and wild-type. Stopped-flow studies indicate flavin reduction by NADH is significantly faster with F1395S and F1395A domains, suggesting that this contributes to altered preference in coenzyme specificity. Unlike cytochrome P450 reductase, the switch in coenzyme specificity is not attributed to differential binding of NADPH and NADH, but probably results from improved geometry for hydride transfer in the F1395S- and F1395A-NADH complexes. Potentiometry indicates that the substitutions do not significantly perturb thermodynamic properties of the FAD, although considerable changes in electronic absorption properties are observed in oxidized F1395A and F1395S, consistent with changes in hydrophobicity of the flavin environment. In wild-type and F1395W FAD domains, prolonged incubation with NADPH results in development of the neutral blue semiquinone FAD species. This reaction is suppressed in the mutant FAD domains lacking the shielding aromatic residue.

  7. Protective effects of total fraction of avocado/soybean unsaponifiables on the structural changes in experimental dog osteoarthritis: inhibition of nitric oxide synthase and matrix metalloproteinase-13

    Science.gov (United States)

    Boileau, Christelle; Martel-Pelletier, Johanne; Caron, Judith; Msika, Philippe; Guillou, Georges B; Baudouin, Caroline; Pelletier, Jean-Pierre

    2009-01-01

    Introduction The aims of this study were, first, to investigate the in vivo effects of treatment with avocado/soybean unsaponifiables on the development of osteoarthritic structural changes in the anterior cruciate ligament dog model and, second, to explore their mode of action. Methods Osteoarthritis was induced by anterior cruciate ligament transection of the right knee in crossbred dogs. There were two treatment groups (n = 8 dogs/group), in which the animals received either placebo or avocado/soybean unsaponifiables (10 mg/kg per day), which were given orally for the entire duration of the study (8 weeks). We conducted macroscopic and histomorphological analyses of cartilage and subchondral bone of the femoral condyles and/or tibial plateaus. We also conducted immunohistochemical analyses in cartilage for the following antigens: inducible nitric oxide synthase, matrix metalloproteinase (MMP)-1, MMP-13, a disintegrin and metalloproteinase domain with thrombospondin motifs (ADAMTS)4 and ADAMTS5. Results The size of macroscopic lesions on the tibial plateaus was decreased (P = 0.04) in dogs treated with the avocado/soybean unsaponifiables. Histologically, in these animals the severity of cartilage lesions on both tibial plateaus and femoral condyles, and the cellular infiltration in synovium were significantly decreased (P = 0.0002 and P = 0.04, respectively). Treatment with avocado/soybean unsaponifiables also reduced loss of subchondral bone volume (P avocado/soybean unsaponifiables significantly reduced the level of inducible nitric oxide synthase (P avocado/soybean unsaponifiables can reduce the development of early osteoarthritic cartilage and subchondral bone lesions in the anterior cruciate ligament dog model of osteoarthritis. This effect appears to be mediated through the inhibition of inducible nitric oxide synthase and MMP-13, which are key mediators of the structural changes that take place in osteoarthritis. PMID:19291317

  8. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Mahua G. [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India); Saha, Nirmalendu, E-mail: nsaha@nehu.ac.in [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). Black-Right-Pointing-Pointer Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. Black-Right-Pointing-Pointer Activation of NF{kappa}B that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly

  9. Secretion of immunomodulating neuropeptides (VIP, SP) and nitric oxide synthase in porcine small intestine during postnatal development.

    Science.gov (United States)

    Kovsca Janjatovic, A; Valpotic, H; Kezic, D; Lacković, G; Gregorovic, G; Sladoljev, S; Mršić, G; Popovic, M; Valpotic, I

    2012-09-13

    Immunohistological identification/localization of immunomodulating neuropeptides [vasoactive intestinal polypeptide (VIP) and substance P (SP)] and enzyme nitric oxide synthase (NOS) as well as histomorphometric analyses of kinetics of their release and development of respective nerve fibers density during postnatal ontogenesis of porcine intestinal mucosal immune system (IMIS), were performed in order to assess the role of these molecules involved in maturation of the IMIS. The kinetcs of reactions to VIP, SP and NOS were demonstrated in the samples of jejunum and ileum from conventionally reared pigs. The samples were obtained at 0, 7, 14, 21, 28, 35, 42 and 49 days of age and processed for immunohistological staining. The VIP+ reaction was prevalently visible in the epithelial layer, lamina propria and Lieberkühn crypts (Lc) but also in the submucosa and lamina muscularis along blood and lymphatic vessels. The SP+ fibers were regularily distributed along enteric neurons in the muscular layer. The reaction to NOS was demonstrated in both mucosa and submucosa of ileum and jejunum and in the ileal Peyer's patches (PP). Intensity of the reaction was more pronounced in the epithelial layer and numerous NOS+ cells were observed around the Lc and inside the follicles of the PP. Also, we have noticed NOS+ blood vessels, particular neurons and nerve fibers in the submucosa and muscular layer of the small intestine. By analyzing quantitative patterns of SP+, VIP+ fibers and release of NOS we have concluded that intensity of their reactions gradually increases with age, except a short period of stagnation after weaning (at age of 28 days), reaching the highest values in the pigs aged between 42 and 49 days. The values obtained by Sperman rank order correlation test (rs) between days of age of pigs and intensity of the reactions in their jejunum/ileum to VIP (rs=0.97/0.95), SP (rs=0.97/0.97) and NOS (rs=0.98/0.95), respectively, showed positive correlations (Psecretion of

  10. Characterization of endothelial nitric-oxide synthase and its reaction with ligand by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Tsai, A L; Berka, V; Chen, P F; Palmer, G

    1996-12-20

    Electron paramagnetic resonance was used to characterize the heme structure of resting endothelial nitric-oxide synthase (eNOS), eNOS devoid of its myristoylation site (G2A mutant), and their heme complexes formed with 16 different ligands. Resting eNOS and the G2A mutant have a mixture of low spin and high spin P450-heme with widely different relaxation behavior and a stable flavin semiquinone radical identified by EPR as a neutral radical. This flavin radical showed efficient electron spin relaxation as a consequence of dipolar interaction with the heme center; P1/2 is independent of Ca2+-calmodulin and tetrahydrobiopterin. Seven of the 16 ligands led to the formation of low spin heme complexes. In order of increasing rhombicity they are pyrimidine, pyridine, thiazole, L-lysine, cyanide, imidazole, and 4-methylimidazole. These seven low spin eNOS complexes fell in a region between the P and O zones on the "truth diagram" originally derived by Blumberg and Peisach (Blumberg, W. E., and Peisach, J. (1971) in Probes and Structure and Function of Macromolecules and Membranes (Chance, B., Yonetani, T., and Mildvan, A. S., eds) Vol. 2, pp. 215-229, Academic Press, New York) and had significant overlap with complexes of chloroperoxidase. A re-definition of the P and O zones is proposed. As eNOS and chloroperoxidase lie closer than do eNOS and P450cam on the truth diagram, it implies that the distal heme environment in eNOS resembles chloroperoxidase more than P450cam. In contrast, 4-ethylpyridine, 4-methylpyrimidine, acetylguanidine, ethylguanidine, 2-aminothiazole, 2amino-4,5-dimethylthiazole, L-histidine, and 7-nitroindazole resulted in high spin heme complexes of eNOS, similar to that observed with L-arginine. This contrasting EPR behavior caused by families of ligands such as imidazole/L-histidine or thiazole/2-aminothiazole confirms the conclusion derived from parallel optical and kinetic studies. The ligands resulting in the low spin complexes bind directly to the

  11. Deletion of inducible nitric-oxide synthase in leptin-deficient mice improves brown adipose tissue function.

    Directory of Open Access Journals (Sweden)

    Sara Becerril

    Full Text Available BACKGROUND: Leptin and nitric oxide (NO on their own participate in the control of non-shivering thermogenesis. However, the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present study was to analyze the impact of the absence of the inducible NO synthase (iNOS gene in the regulation of energy balance in ob/ob mice. METHODS AND FINDINGS: Double knockout (DBKO mice simultaneously lacking the ob and iNOS genes were generated, and the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (p<0.05, decreased amounts of total fat pads (p<0.05, lower food efficiency rates (p<0.05 and higher rectal temperature (p<0.05 than ob/ob mice. Ablation of iNOS also improved the carbohydrate and lipid metabolism of ob/ob mice. DBKO showed a marked reduction in the size of brown adipocytes compared to ob/ob mutants. In this sense, in comparison to ob/ob mice, DBKO rodents showed an increase in the expression of PR domain containing 16 (Prdm16, a transcriptional regulator of brown adipogenesis. Moreover, iNOS deletion enhanced the expression of mitochondria-related proteins, such as peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc-1alpha, sirtuin-1 (Sirt-1 and sirtuin-3 (Sirt-3. Accordingly, mitochondrial uncoupling proteins 1 and 3 (Ucp-1 and Ucp-3 were upregulated in brown adipose tissue (BAT of DBKO mice as compared to ob/ob rodents. CONCLUSION: Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell function improvement.

  12. Effect of IBD sera on expression of inducible and endothelial nitric oxide synthase in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Károly Palatka; István Altorjay; Zoltán Serf(o)z(o); Zoltán Veréb; Róbert Bátori; Beáta Lontay; Zoltán Hargitay; Zoltán Nemes; Miklós Udvardy; Ferenc Erd(o)di

    2006-01-01

    AIM: To study the expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS) and their role in inflammatory bowel disease (IBD).METHODS: We examined the effect of sera obtained from patients with active Crohn's disease (CD) and ulcerative colitis (UC) on the function and viability of human umbilical vein endothelial cells (HUVEC). HUVECs were cultured for 0-48 h in the presence of a medium containing pooled serum of healthy controls, or serum from patients with active CD or UC. Expression of eNOS and iNOS was visualized by immunofluorescence,and quantified by the densitometry of Western blots.Proliferation activity was assessed by computerized image analyses of Ki-67 immunoreactive cells, and also tested in the presence of the NOS inhibitor, 10-4 mol/L L-NAME. Apoptosis and necrosis was examined by the annexin-Ⅴ-biotin method and by propidium iodide staining, respectively.RESULTS: In HUVEC immediately after exposure to UC,serum eNOS was markedly induced, reaching a peak at 12 h. In contrast, a decrease in eNOS was observed after incubation with CD sera and the eNOS level was minimal at 20 h compared to control (18% ± 16% vs 23% ± 15% P<0.01). UC or CD serum caused a significant increase in iNOS compared to control (UC: 300%±21%; CD:275%±27% vs 108%± 14%, P<0.01). Apoptosis/necrosis characteristics did not differ significantly in either experiment. Increased proliferation activity was detected in the presence of CD serum or after treatment with L-NAME. Cultures showed tube-like formations after 24 h treatment with CD serum.CONCLUSION: IBD sera evoked changes in the ratio of eNOS/iNOS, whereas did not influence the viability of HUVEC. These involved down-regulation of eNOS and up-regulation of iNOS simultaneously, leading to increased proliferation activity and possibly a reduced antiinflammatory protection of endothelial cells.

  13. Aging-related expression of inducible nitric oxide synthase and markers of tissue damage in the rat penis.

    Science.gov (United States)

    Ferrini, M; Magee, T R; Vernet, D; Rajfer, J; González-Cadavid, N F

    2001-03-01

    Erectile dysfunction in the aging male results in part from the loss of compliance of the corpora cavernosal smooth muscle due to the progressive replacement of smooth muscle cells by collagen fibers. We have examined the hypothesis that a spontaneous local induction of inducible nitric oxide synthase (iNOS) expression and the subsequent peroxynitrite formation occurs in the penis during aging and that this process is accompanied by a stimulation of smooth muscle apoptosis and collagen deposition. The penile shaft and crura were excised from young (3-5 mo old) and old (24-30 mo old) rats, with or without perfusion with 4% formalin. Fresh tissue was used for iNOS and proteasome 2C mRNA determinations by reverse transcription polymerase chain reaction assay, ubiquitin mRNA by Northern blot, and iNOS protein by Western blot. Penile sections from perfused animals were embedded in paraffin and immunostained with antibodies against iNOS and nitrotyrosine, submitted to the TUNEL assay for apoptosis, or stained for collagen, followed by image analysis quantitation. A 4.1-fold increase in iNOS mRNA was observed in the old versus young tissues, paralleled by a 4.9-fold increase in iNOS protein. The proteolysis marker, ubiquitin, was increased 1.9-fold, whereas a related gene, proteasome 2c, was not significantly affected. iNOS immunostaining was increased 3.6-fold in the penile smooth muscle of the old rats as compared with the young rats. The peroxynitrite indicator nitrotyrosine was increased by 1.6-fold, accompanied by a 3.6-fold increase in apoptotic cells and a 2.0-fold increase in collagen fibers in the old penis. In conclusion, aging in the penis is accompanied by an induction of iNOS and peroxynitrite formation that may lead to the observed increase in apoptosis and proteolysis and may counteract a higher rate of collagen deposition in the old penis.

  14. Cyclooxygenase 2,pS2,inducible nitric oxide synthase and transforming growth factor alpha in gastric adaptation to stress

    Institute of Scientific and Technical Information of China (English)

    Shi-Nan Nie; Hai-Chen Sun; Xue-Hao Wu; Xiao-Ming Qian

    2004-01-01

    AIM: To determine the role of mucosal gene expression of cyclooxygenase 2 (COX-2), pS2 (belongs to trefoil peptides),inducible nitric oxide synthase (iNOS) and transforming growth factor alpha (TGFα) in gastric adaptation to water immersion and restraint stress (WRS) in rats.METHODS: Wistar rats were exposed to single or repeated WRS for 4 h every other day for up to 6 d. Gastric mucosal blood flow (GMBF) was measured by laser Doppler fiowmeter3. The extent of gastric mucosal lesions were evaluated grossly and histologically and expressions of COX-2, pS2,iNOS and TGFα were determined by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot.RESULTS: The damage to the surface of gastric epithelium with focal areas of deep haemorrhagic necrosis was induced by repeated WRS.The adaptative cytoprotection against stress was developed with activation of cell proliferation in the neck regions of gastric glands. The ulcer index (UI) in groups Ⅱ, Ⅲ and Ⅳ was markedly reduced as compared with group Ⅰ (Ⅰ: 47.23±1.20; Ⅳ: 10.39±1.18,P<0.01). GMBF significantly decreased after first exposure to WRS with an adaptive increasement of GMBF in experimental groups after repetitive challenges with WRS. After the 4th WRS,the value of GMBF almost restored to normal level (Ⅰ:321.87±8.85; Ⅳ: 455.95±11.81,P<0.01). First WRS significantly decreased the expression of pS2 and significantly increased the expressions of COX-2, iNOS and TGFα. After repeated WRS, pS2 and TGFα expressions gradually increased (pS2: Ⅰ: 0.37±0.02; Ⅳ: 0.77±0.01; TGFα: Ⅰ:0.86±0.01; Ⅳ: 0.93±0.03, P<0.05) with a decrease in the expressions of COX-2 and iNOS (COX-2: Ⅰ: 0.45±0.02; Ⅳ:0.22±0.01; iNOS: Ⅰ: 0.93±0.01; Ⅳ: 0.56±0.01, P<0.01).Expressions of pS2, COX-2, iNOS and TGFα showed regular changes with a good relationship among them.CONCLUSION: Gastric adaptation to WRS injury involves enhanced cell proliferation, increased expression of pS2 and

  15. Secretion of immunomodulating neuropeptides (VIP, SP and nitric oxide synthase in porcine small intestine during postnatal development

    Directory of Open Access Journals (Sweden)

    A. Kovsca Janjatovic

    2012-09-01

    Full Text Available Immunohistological identification/localization of immunomodulating neuropeptides [vasoactive intestinal polypeptide (VIP and substance P (SP] and enzyme nitric oxide synthase (NOS as well as histomorphometric analyses of kinetics of their release and development of respective nerve fibers density during postnatal ontogenesis of porcine intestinal mucosal immune system (IMIS, were performed in order to assess the role of these molecules involved in maturation of the IMIS. The kinetcs of reactions to VIP, SP and NOS were demonstrated in the samples of jejunum and ileum from conventionally reared pigs. The samples were obtained at 0, 7, 14, 21, 28, 35, 42 and 49 days of age and processed for immunohistological staining. The VIP+ reaction was prevalently visible in the epithelial layer, lamina propria and Lieberkühn crypts (Lc but also in the submucosa and lamina muscularis along blood and lymphatic vessels. The SP+ fibers were regularily distributed along enteric neurons in the muscular layer. The reaction to NOS was demonstrated in both mucosa and submucosa of ileum and jejunum and in the ileal Peyer's patches (PP. Intensity of the reaction was more pronounced in the epithelial layer and numerous NOS+ cells were observed around the Lc and inside the follicles of the PP. Also, we have noticed NOS+ blood vessels, particular neurons and nerve fibers in the submucosa and muscular layer of the small intestine. By analyzing quantitative patterns of SP+, VIP+ fibers and release of NOS we have concluded that intensity of their reactions gradually increases with age, except a short period of stagnation after weaning (at age of 28 days, reaching the highest values in the pigs aged between 42 and 49 days. The values obtained by Sperman rank order correlation test (rs between days of age of pigs and intensity of the reactions in their jejunum/ileum to VIP (rs=0.97/0.95, SP (rs=0.97/0.97 and NOS (rs=0.98/0.95, respectively, showed positive correlations (P<0

  16. Decreased hippocampal homoarginine and increased nitric oxide and nitric oxide synthase levels in rats parallel training in a radial arm maze.

    Science.gov (United States)

    Sase, Ajinkya; Nawaratna, Gayan; Hu, Shengdi; Wu, Guoyao; Lubec, Gert

    2016-09-01

    L-homoarginine (hArg) is derived from enzymatic guanidination of lysine. It was demonstrated that hArg is a substrate for nitric oxide (NO) synthesis, blocks lysine transport and inhibits the uptake of arginine into synaptosomes and modulates GABA responses ex vivo. As there is limited information on its physiological roles in the brain, the aim of the study was to show whether hippocampal or frontal lobe (FL) hArg is paralleling training in the radial arm maze (RAM) or NO formation. Hippocampi and FL of male Sprague-Dawley rats were taken from trained or yoked in a RAM. Then hArg and metabolites, NO and NO synthase (NOS) were determined by standard methods. The animals learned the task in the RAM showing significant reduction of working memory errors. hArg showed decreased levels in both brain regions of trained animals as compared to yoked animals. Nitrate plus nitrite (NOx) concentrations and NOS activity were significantly increased in hippocampi, F(1,36) = 170.5; P ≤ 0.0001 and FL, F(1,36) = 74.67; P ≤ 0.0001 of trained animals as compared to yoked animals. Levels of hArg were negatively correlated with NOx in hippocampus (r = -0.6355; P = 0.0483) but not in FL and with lysine in the FL (r = -0.6650; P = 0.0358). NOx levels were positively correlated with NOS in both the hippocampus (r = 0.7474; P = 0.0129) and FL (r = 0.9563; P ≤  0.0001). These novel findings indicate that hArg is linked to NO formation in hippocampus but not in FL and is paralleling spatial memory in the RAM.

  17. Anti-inflammatory effect of Mentha longifolia in lipopolysaccharide-stimulated macrophages: reduction of nitric oxide production through inhibition of inducible nitric oxide synthase.

    Science.gov (United States)

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2013-01-01

    Mentha longifolia is an aromatic plant used in flavoring and preserving foods and as an anti-inflammatory folk medicine remedy. The present study assessed the effects of M. longifolia extracts, including essential oil and crude methanol extract and its fractions (ethyl acetate, butanol and hexane), on nitric oxide (NO) production and inducible NO synthase (iNOS) mRNA expression in lipopolysaccharide (LPS)-stimulated J774A.1 cells using real-time polymerase chain reaction (PCR). The cytotoxic effects of the extracts on the cells were examined and non-cytotoxic concentrations (<0.2 mg/ml) were used to examine their effects on NO production and iNOS mRNA expression. Only the hexane fraction that contained high levels of phenolic and flavonoid compounds at concentrations from 0.05-0.20 mg/ml significantly reduced NO production in LPS-stimulated cells (p < 0.001). Real-time PCR analysis indicated the ability of this fraction at the same concentrations to significantly decrease iNOS as well as TNFα mRNA expression in the cells (p < 0.001). All extracts were able to scavenge NO radicals in a concentration-dependent manner. At concentrations greater than 0.2 mg/ml, total radicals were 100% scavenged. In conclusion, M. longifolia possibly reduces NO secretion in macrophages by scavenging NO and inhibiting iNOS mRNA expression, and also decreases TNFα pro-inflammatory cytokine expression, thus showing its usefulness in the inflammatory disease process.

  18. Growth hormone regulates intestinal ion transport through a modulation of the constitutive nitric oxide synthase-nitric oxide-cAMP pathway

    Institute of Scientific and Technical Information of China (English)

    Roberto Berni Canani; Pla Cirillo; Giuseppe Mallardo; Vittoria Buccigrossi; Annalisa Passariello; Serena Ruotolo; Giulio De Marco; Francesco Porcaro; Alfredo Guarino

    2006-01-01

    AIM: Growth hormone (GH) directly interacts with the enterocyte stimulating ion absorption and reducing ion secretion induced by agonists of cAMP.Since nitric oxide (NO) is involved in the regulation of transepithelial ion transport and acts as a second messenger for GH hemodynamic effects, we tested the hypothesis that NO may be involved in the resulting effects of GH on intestinal ion transport.METHODS: Electrical parameters reflecting transepithelial ion transport were measured in Caco-2 cell monolayers mounted in Ussing chambers and exposed to GH and cholera toxin (CT) alone or in combination,in the presence or absence of the NO synthase (NOS) inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME).Similar experiments were conducted to determine cAMP and nitrite/nitrate concentrations. NOS expression was assayed by Western blot analysis.RESULTS: L-NAME causes total abrogation of absorptive and anti-secretory effects by GH on intestinal ion transport. In addition, L-NAME was able to inhibit the GH-effects on intracellular cAMP concentration under basal conditions and in response to CT. GH induced a Ca2+-dependent increase of nitrites/nitrates production,indicating the involvement of the constitutive rather than the inducible NOS isoform, which was directly confirmed by Western blot analysis.CONCLUSION: These results suggest that the GH effects on intestinal ion transport, either under basal conditions or in the presence of cAMP-stimulated ion secretion, are mediated at an intracellular level by the activity of cMOS.

  19. Inhibition of muscle glycogen synthase activity and non-oxidative glucose disposal during hypoglycaemia in normal man

    DEFF Research Database (Denmark)

    Ørskov, Lotte; Bak, Jens Friis; Abildgaard, Ulrik

    1996-01-01

    The purpose of the present study was to evaluate the role of muscle glycogen synthase activity in the reduction of glucose uptake during hypoglycaemia. Six healthy young men were examined twice; during 120 min of hyperinsulinaemic (1.5 mU.kg-1. min-1) euglycaemia followed by: 1)240 min of graded ...

  20. Inducible Nitric Oxide Synthase Promoter Haplotypes and Residential Traffic-Related Air Pollution Jointly Influence Exhaled Nitric Oxide Level in Children.

    Directory of Open Access Journals (Sweden)

    Muhammad T Salam

    Full Text Available Exhaled nitric oxide (FeNO, a biomarker of airway inflammation, predicts asthma risk in children. We previously found that the promoter haplotypes in inducible nitric oxide synthase (NOS2 and exposure to residential traffic independently influence FeNO level. Because NOS2 is inducible by environmental exposures such as traffic-related exposure, we tested the hypothesis that common NOS2 promoter haplotypes modulate the relationship between residential traffic-related exposure and FeNO level in children.In a cross-sectional population-based study, subjects (N = 2,457; 7-11 year-old were Hispanic and non-Hispanic white children who participated in the Southern California Children's Health Study and had FeNO measurements. For residential traffic, lengths of local roads within circular buffers (50m, 100m and 200m radii around homes around the subjects' homes were estimated using geographic information system (GIS methods. We interrogated the two most common NOS2 promoter haplotypes that were found to affect FeNO level.The relationship between local road lengths within 100m and 200m circular buffers and FeNO level varied significantly by one of the NOS2 promoter haplotypes (P-values for interaction between road length and NOS2 promoter haplotype = 0.02 and 0.03, respectively. In children who had ≤250m of local road lengths within 100m buffer around their homes, those with two copies of the haplotype had significantly lower FeNO (adjusted geometric mean = 11.74ppb; 95% confidence intervals (CI: 9.99 to 13.80 than those with no copies (adjusted geometric mean = 15.28ppb; 95% CI: 14.04 to 16.63 with statistically significant trend of lower FeNO level with increasing number of haplotype copy (P-value for trend = 0.002. In contrast, among children who had >250m of local road lengths within 100m buffer, FeNO level did not significantly differ by the haplotype copy-number (P-value for trend = 0.34. Similar interactive effects of this haplotype and local

  1. Inhibition of inducible nitric oxide synthase expression and nitric oxide production in plateau pika (Ochotona curzoniae) at high altitude on Qinghai-Tibet Plateau.

    Science.gov (United States)

    Xie, Ling; Zhang, Xuze; Qi, Delin; Guo, Xinyi; Pang, Bo; Du, Yurong; Zou, Xiaoyan; Guo, Songchang; Zhao, Xinquan

    2014-04-30

    Nitric oxide (NO), a potent vasodilator, plays an important role in preventing hypoxia induced pulmonary hypertension. Endogenous NO is synthesized by nitric oxide synthases (NOSs) from l-arginine. In mammals, three different NOSs have been identified, including neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS). Plateau pika (Ochotona curzoniae) is a typical hypoxia tolerant mammal that lives at 3000-5000 m above sea level on the Qinghai-Tibet Plateau. The aim of this study was to investigate whether NOS expression and NO production are regulated by chronic hypoxia in plateau pika. Quantitative real-time PCR and western blot analyses were conducted to quantify relative abundances of iNOS and eNOS transcripts and proteins in the lung tissues of plateau pikas at different altitudes (4550, 3950 and 3200 m). Plasma NO metabolites, nitrite/nitrate (NO(x)⁻) levels were also examined by Ion chromatography to determine the correlation between NO production and altitude level. The results revealed that iNOS transcript levels were significantly lower in animals at high altitudes (decreased by 53% and 57% at altitude of 3950 and 4550 m compared with that at 3200 m). Similar trends in iNOS protein abundances were observed (26% and 41% at 3950 and 4550 m comparing with at 3200 m). There were no significant differences in eNOS mRNA and protein levels in the pika lungs among different altitudes. The plasma NO(x)⁻ levels of the plateau pikas at high altitudes significantly decreased (1.65±0.19 μg/mL at 3200 m to 0.44±0.03 μg/mL at 3950 m and 0.24±0.01 μg/mL at 4550 m). This is the first evidence describing the effects of chronic hypoxia on NOS expression and NO levels in the plateau pika in high altitude adaptation. We conclude that iNOS expression and NO production are suppressed at high altitudes, and the lower NO concentration at high altitudes may serve crucial roles for helping the plateau pika to survive at hypoxic environment.

  2. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  3. Grape Consumption Increases Anti-Inflammatory Markers and Upregulates Peripheral Nitric Oxide Synthase in the Absence of Dyslipidemias in Men with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Jiyoung Lee

    2012-12-01

    Full Text Available We evaluated the effects of grape consumption on inflammation and oxidation in the presence or absence of dyslipidemias in metabolic syndrome (MetS. Men with MetS (n = 24, 11 with high triglycerides and low HDL and 13 with no dyslipidemia were recruited and randomly allocated to consume daily either 46 g of lyophilized grape powder (GRAPE, equivalent to 252 g fresh grapes, or placebo with an identical macronutrient composition and caloric value as GRAPE for four weeks. After a three-week washout, participants followed the alternate treatment. We measured changes between placebo and GRAPE periods in inflammatory and oxidative stress markers both in circulation and in gene expression. Changes in plasma adiponectin (p < 0.05, interleukin (IL-10 (p < 0.005 and in mRNA expression of the inducible isoform of nitric oxide synthase (iNOS (p < 0.25 were increased in the GRAPE compared to the placebo period only in those individuals without dyslipidemia. Additionally, plasma IL-10 was negatively correlated with NOX2 expression, a marker of oxidative stress (r = −0.55, p < 0.01, while iNOS expression was positively correlated with the expression of superoxide dismutase 2 (r = 0.642, p < 0.01, a key anti-oxidative enzyme. Grape consumption displayed anti-oxidative and increased anti-inflammatory markers in the absence of the inflammatory milieu associated with dyslipidemias.

  4. Changes of learning and memory ability associated with neuronal nitric oxide synthase in brain tissues of rats with acute alcoholism

    Institute of Scientific and Technical Information of China (English)

    Shuang Li; Chunyang Xu; Dongliang Li; Xinjuan Li; Linyu Wei; Yuan Cheng

    2006-01-01

    BACKGROUD: Ethanol can influence neural development and the ability of learning and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is proved to play an important role in the formation of synaptic plasticity, transference of neuronal information and the neural development, but excessive nitro oxide can result in neurotoxicity.OBJECTIVE: To observe the effects of acute alcoholism on the learning and memory ability and the content of neuronal nitric oxide synthase (nNOS) in brain tissue of rats.DESIGN: A randomized controlled animal experiment.SETTING: Department of Physiology, Xinxiang Medical College.MATERIALS; Eighteen male clean-degree SD rats of 18-22 weeks were raised adaptively for 2 days, and then randomly divided into control group (n = 8) and experimental group (n = 10). The nNOS immunohistochemical reagent was provided by Beijing Zhongshan Golden Bridge Biotechnology Co.,Ltd. Y-maze was produced by Suixi Zhenghua Apparatus Plant.METHODS: The experiment was carried out in the laboratory of the Department of Physiology, Xinxiang Medical College from June to October in 2005. ① Rats in the experimental group were intraperitoneally injected with ethanol (2.5 g/kg) which was dissolved in normal saline (20%). The loss of righting reflex and ataxia within 5 minutes indicated the successful model. Whereas rats in the control group were given saline of the same volume. ② Examinations of learning and memory ability: The Y-maze tests for learning and memory ability were performed at 6 hours after the models establishment. The rats were put into the Y-maze separately. The test was performed in a quiet and dark room. There was a lamp at the end of each of three pathways in Y-maze and the base of maze had electric net. All the lamps of the three pathways were turned on for 3 minutes and then turned off. One lamp was turned on randomly, and the other two delayed automatically. In 5 seconds

  5. Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells

    Directory of Open Access Journals (Sweden)

    Bronislaw L. Slomiany

    2010-01-01

    Full Text Available Oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis, and its key virulence factor, LPS, are characterized by a massive rise in epithelial cell apoptosis and the disturbances in NO signaling pathways. Here, we report that the LPS-induced enhancement in rat sublingual salivary gland acinar cell apoptosis and NO generation was associated with the suppression in constitutive nitric oxide synthase (cNOS activity and a marked increase in the activity of inducible nitric oxide synthase (iNOS. We demonstrate that the detrimental effect of the LPS on cNOS was manifested by the enzyme protein S-nitrosylation, that was susceptible to inhibition by iNOS inhibitor, 1400 W. Further, we show that a peptide hormone, ghrelin, countered the LPS-induced changes in apoptosis and cNOS activity. This effect of ghrelin was reflected in the decrease in cNOS S-nitrosylation and the increase in phosphorylation. Our findings imply that P. gingivalis-induced disturbances in the acinar cell NO signaling pathways result from upregulation in iNOS-derived NO that causes cNOS S-nitrosylation that interferes with its activation through phosphorylation. We also show that ghrelin protection against P. gingivalis-induced disturbances involves cNOS activation associated with a decrease in its S-nitrosylation and the increase in phosphorylation.

  6. Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells.

    Science.gov (United States)

    Slomiany, Bronislaw L; Slomiany, Amalia

    2010-01-01

    Oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis, and its key virulence factor, LPS, are characterized by a massive rise in epithelial cell apoptosis and the disturbances in NO signaling pathways. Here, we report that the LPS-induced enhancement in rat sublingual salivary gland acinar cell apoptosis and NO generation was associated with the suppression in constitutive nitric oxide synthase (cNOS) activity and a marked increase in the activity of inducible nitric oxide synthase (iNOS). We demonstrate that the detrimental effect of the LPS on cNOS was manifested by the enzyme protein S-nitrosylation, that was susceptible to inhibition by iNOS inhibitor, 1400 W. Further, we show that a peptide hormone, ghrelin, countered the LPS-induced changes in apoptosis and cNOS activity. This effect of ghrelin was reflected in the decrease in cNOS S-nitrosylation and the increase in phosphorylation. Our findings imply that P. gingivalis-induced disturbances in the acinar cell NO signaling pathways result from upregulation in iNOS-derived NO that causes cNOS S-nitrosylation that interferes with its activation through phosphorylation. We also show that ghrelin protection against P. gingivalis-induced disturbances involves cNOS activation associated with a decrease in its S-nitrosylation and the increase in phosphorylation.

  7. Patterns of osteocytic endothelial nitric oxide synthase expression in the femoral neck cortex: differences between cases of intracapsular hip fracture and controls.

    Science.gov (United States)

    Loveridge, N; Fletcher, S; Power, J; Caballero-Alías, A M; Das-Gupta, V; Rushton, N; Parker, M; Reeve, J; Pitsillides, A A

    2002-06-01

    Evidence indicates that extensive amalgamation of adjacent resorbing osteons is responsible for destroying the microstructural integrity of the femoral neck's inferior cortex in osteoporotic hip fracture. Such osteonal amalgamation is likely to involve a failure to limit excessive resorption, but its mechanistic basis remains enigmatic. Nitric oxide (NO) inhibits osteoclastic bone destruction, and in normal bone cells its generation by endothelial nitric oxide synthase (eNOS, the predominant bone isoform) is enhanced by mechanical stimuli and estrogen, which both protect against fracture. To determine whether eNOS expression in osteocytes reflects their proposed role in regulating remodeling, we have examined patterns of osteocyte eNOS immunolabeling in the femoral neck cortex of seven cases of hip fracture and seven controls (females aged 68-96 years). The density of eNOS+ cells (mm(-2)) was 53% lower in the inferior cortex of the fracture cases (p bone.

  8. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology

    DEFF Research Database (Denmark)

    Bartholdy, C; Nansen, A; Christensen, Jeanette Erbo;

    1999-01-01

    -mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic......By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell....... This might suggest a role of NO in regulating vascular reactivity in the context of T cell-mediated inflammation. In conclusion, these findings indicate a minimal role for iNOS/NO in the host response to LCMV. Except for a reduced local oedema in the knockout mice, iNOS/NO seems to be redundant...

  9. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    Science.gov (United States)

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies.

  10. Role of brain-derived neurotrophic factor and neuronal nitric oxide synthase in stress-induced depression

    Institute of Scientific and Technical Information of China (English)

    Dan Wang; Shucheng An

    2008-01-01

    BACKGROUND: Accumulated evidence indicates an important role for hippocampal dendrite atrophy in development of depression, while brain-derived neurotrophic factor (BDNF) participates in hippocampal dendrite growth. OBJECTIVE: To discuss the role of BDNF and neuronal nitric oxide synthase (nNOS) in chronic and unpredictable stress-induced depression and the pathogenesis of depression.DESIGN, TIME AND SETTING: Randomized, controlled animal experiment. The experiment was carried out from October 2006 to May 2007 at the Department of Animal Physiology, College of Life Science, Shaanxi Normal University.MATERIALS: Thirty-seven male Sprague-Dawley rats weighing 250-300 g at the beginning of the experiment were obtained from Shaanxi Provincial Institute of Traditional Chinese Medicine (Xi'an, China). BDNF antibody and nNOS antibody were provided by Santa Cruz (USA). K252a (BDNF inhibitor) and 7-NI (nNOS inhibitor) were provided by Sigma (USA). METHODS: Animals were randomly divided into five groups: Control group, chronic unpredicted mild stress (CUMS) group, K252a group, K252a+7-NI group and 7-NI+CUMS group. While the Control, K252a and K252a+7-NI groups of rats not subjected to stress had free access to food and water, other groups of rats were subjected to nine stressors randomly applied for 21 days, with each stressor applied 2-3 times. On days 1, 7, 14 and 21 during CUMS, rats received microinjection of 1 μL of physiological saline in the Control and CUMS groups, 1 μL of K252a in the K252a group, 1 μL of K252a and 7-NI in the K252a+7-NI group, and 1 μL of 7-NI in the 7-NI+CUMS group. We observed a variety of alterations in sucrose preference, body weight change, open field test and forced swimming test, and observed the expression of BDNF and nNOS in rat hippocampus by immunohistochemistry;RESULTS: Compared with the Control group, the behavior of the CUMS rats was significantly depressed, the expression of BDNF decreased (P < 0.01) but the expression of n

  11. Prostaglandin H synthase-catalyzed bioactivation of amphetamines to free radical intermediates that cause CNS regional DNA oxidation and nerve terminal degeneration.

    Science.gov (United States)

    Jeng, Winnie; Ramkissoon, Annmarie; Parman, Toufan; Wells, Peter G

    2006-04-01

    Reactive oxygen species (ROS) are implicated in amphetamine-initiated neurodegeneration, but the mechanism is unclear. Here, we show that amphetamines are bioactivated by CNS prostaglandin H synthase (PHS) to free radical intermediates that cause ROS formation and neurodegenerative oxidative DNA damage. In vitro incubations of purified PHS-1 with 3,4-methylenedioxyamphetamine (MDA) and methamphetamine (METH) demonstrated PHS-catalyzed time- and concentration-dependent formation of an amphetamine carbon- and/or nitrogen-centered free radical intermediate, and stereoselective oxidative DNA damage, evidenced by 8-oxo-2'-deoxyguanosine (8-oxo-dG) formation. Similarly in vivo, MDA and METH caused dose- and time-dependent DNA oxidation in multiple brain regions, remarkably dependent on the regional PHS levels, including the striatum and substantia nigra, wherein neurodegeneration of dopaminergic nerve terminals was evidenced by decreased immunohistochemical staining of tyrosine hydroxylase. Motor impairment using the rotarod test was evident within 3 wk after the last drug dose, and persisted for at least 6 months. Pretreatment with the PHS inhibitor acetylsalicylic acid blocked MDA-initiated DNA oxidation and protected against functional motor impairment for at least 1.5 months after drug treatment. This is the first direct evidence for PHS-catalyzed bioactivation of amphetamines causing temporal and regional differences in CNS oxidative DNA damage directly related to structural and functional neurodegenerative consequences.

  12. Effects of melatonin on learning abilities, cholinergic fibers and nitric oxide synthase expression in rat cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Bin Xu; Junpao Chen; Hailing Zhao

    2006-01-01

    BACKGROUND: Melatonin is a kind of hormones derived from pineal gland. Recent researches demonstrate that melatonin is characterized by anti-oxidation, anti-senility and destroying free radicals. While, effect and pathogenesis of pineal gland on learning ability should be further studied.OBJ ECTIVE: To investigate the effects of pinealectomy on learning abiliy, distribution of cholinesterase and expression of neuronal nitric oxide synthase (nNOS) in cerebral cortex of rats and probe into the effect of melatonin on learning ability, central cholinergic system and nNOS expression.DESIGN: Randomized grouping design and animal study.SETTING: Department of Neurology, the 187 Hospital of Chinese PLA.MATERIALS: A total of 12 male SD rats, of normal learning ability testing with Y-tape maze, of clean grade,weighing 190-210 g, aged 6 weeks, were selected in this study.METHODS: The experiment was carried out in the Department of Neurology, Zhujiang Hospital from July 1997to June 2000. All SD rats were divided into experimental group (n =6,pinealectomy) and control group (n =6, sham operation). Seven days later, rats in both two groups were continuously fed for 33 days. ①Learning ability test: The learning ability of rats was tested by trisection Y-type maze and figured as attempting times. ②Expression of acetylcholinesterase (AchE) was detected by enzyme histochemistry and nNOS was measured by SABC method. ③ Quantitative analysis of AchE fibers: AchE fibers density in unit area (surface density)was surveyed with Leica Diaplan microscope and Leica Quantimet 500+ image analytic apparatus and quantitative parameter was set up for AchE fibers covering density (μm2) per 374 693.656 μm2, moreover, the AchE fibers density was measured in Ⅱ -Ⅳ layers of motor and somatosensory cortex (showing three layers per field of vision at one time), in radiative, lacunaria and molecular layers of CA1, CA2 and CA3 areas, and in lamina multiforms of dentate gyrus. Three tissue slices

  13. Allenes and computational chemistry: from bonding situations to reaction mechanisms.

    Science.gov (United States)

    Soriano, Elena; Fernández, Israel

    2014-05-07

    The present review is focused on the application of computational/theoretical methods to the wide and rich chemistry of allenes. Special emphasis is made on the interplay and synergy between experimental and computational methodologies, rather than on recent developments in methods and algorithms. Therefore, this review covers the state-of-the-art applications of computational chemistry to understand and rationalize the bonding situation and vast reactivity of allenes. Thus, the contents of this review span from the most fundamental studies on the equilibrium structure and chirality of allenes to recent advances in the study of complex reaction mechanisms involving allene derivatives in organic and organometallic chemistry.

  14. Woody Allen, serial schlemiel ?

    Directory of Open Access Journals (Sweden)

    Frédérique Brisset

    2011-04-01

    Full Text Available Woody Allen a développé au fil des années une persona cinématographique de schlemiel new-yorkais aisément reconnaissable par le spectateur. Elle marque nombre de ses films, qu’il y apparaisse en tant qu’acteur ou y dirige des substituts comédiens comme déclinaisons de lui-même. Si cette figure prototypique est le fondement de la sérialité dans sa filmographie, il est des traits stylistiques qui en portent trace tout au long de son œuvre : la récurrence annuelle de ses réalisations, la signature formelle symbolisée par ses génériques à la typographie singulière, le rythme de ses dialogues ponctués d’interjections et l’usage de l’autocitation sont autant de procédés qui marquent son cinéma d’un sceau très personnel. Ils fonctionnent comme des clins d’œil au spectateur qui reçoit dès lors LE Woody Allen millésimé comme une invitation à retrouver son microcosme. Ainsi la sérialité se pose comme à la fois initiale et conséquentielle de son système filmique, processus de création unique dans le cinéma américain.Woody Allen has long constructed a cinematographic persona of schlemiel New- Yorker that the audience can easily identify. It impacts most of his films, whether he stars in them or directs “substitute” actors to impersonate his character. If this prototypical figure is the basis of seriality in his cinematography, serial stylistic features can also be found all along his career: the annual recurrence of his productions, the formal signature symbolised by the typography of his singular credit titles, his rhythmical interjection-punctuated dialogues and the use of self-quotation imprint a very personal seal upon his movies. They all work as a recognition signals for the audience who thus receive THE Woody Allen vintage as an invitation to re-enter his microcosm. Seriality is then both initial and consequential to his cinematographic system, a unique creative process in American film history.

  15. Pseudouridine synthases.

    Science.gov (United States)

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  16. Neuroanatomical localization of nitric oxide synthase (nNOS) in the central nervous system of carp, Labeo rohita during post-embryonic development.

    Science.gov (United States)

    Biswas, Saikat P; Jadhao, Arun G; Bhoyar, Rahul C; Palande, Nikhil V; Sinh, Dharmendra P

    2015-11-01

    Nitric oxide (NO) is a chemically diffusible molecular messenger playing various roles in both vertebrates and invertebrates. Nitric oxide synthase (NOS) is the key enzyme in synthesis of NO. The neuroanatomical distribution pattern of neuronal nitric oxide synthase (nNOS) was studied and developing stages of Labeo rohita such as hatchlings (10-15mm), frys (15-35mm), semi-fingerlings (35-65mm), fingerlings (65-100mm) and adults (350-370mm) were used. In the telencephalon, nitrergic cells were observed in both pallial and subpallial regions along with entopeduncular nucleus suggesting the involvement of NO in the control of sensory functions throughout the development. In the diencephalon, nNOS positive neurons were localized in the nucleus preopticus periventricularis and preopticus parvocellularis throughout development while nucleus preopticus magnocellularis was found immunopositive only in adult specimens who suggest the involvement of NO in the hormonal regulation. nNOS immunoreaction was also noted in suprachaismatic nucleus, habenula, lateral tuberal nucleus, paraventricular organ and anterior division of preglomerular nucleus throughout development. In the mesencephalic region, nNOS immunoreactivity was seen in the optic tectum, torus longitudinalis, nucleus of median longitudinal fascicle and occulomotor nucleus indicate the role of NO in integration of visual inputs and modulates motor control of the eyes and movements. Caudally, in the rhombencephalon, the cerebellum, the nucleus reticularis, the octaval nucleus and the motor nucleus of vagal nerve were nNOS positive during development. nNOS reactive cells and fibers were noted in the spinal motor column, thus suggesting a role of NO in gestation and startle response from early development.

  17. Effects and Mechanism of Action of Inducible Nitric Oxide Synthase on Apoptosis in a Rat Model of Cerebral Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Zheng, Li; Ding, Junli; Wang, Jianwei; Zhou, Changman; Zhang, Weiguang

    2016-02-01

    Inducible nitric oxide synthase (iNOS) is a key enzyme in regulating nitric oxide (NO) synthesis under stress, and NO has varying ability to regulate apoptosis. The aim of this study was to investigate the effects and possible mechanism of action of iNOS on neuronal apoptosis in a rat model of cerebral focal ischemia and reperfusion injury in rats treated with S-methylisothiourea sulfate (SMT), a high-selective inhibitor of iNOS. Seventy-two male Sprague-Dawley (SD) rats were randomly divided into three groups: the sham, middle cerebral artery occlusion (MCAO) + vehicle, and MCAO + SMT groups. Neurobehavioral deficits, infarct zone size, and cortical neuron morphology were evaluated through the modified Garcia scores, 2,3,5-triphenyltetrazolium chloride (TTC), and Nissl staining, respectively. Brain tissues and serum samples were collected at 72 hr post-reperfusion for immunohistochemical analysis, Western blotting, Terminal deoxynucleotidyl transferase-mediated dUTP-biotin Nick End Labeling assay (TUNEL) staining, and enzyme assays. The study found that inhibition of iNOS significantly attenuated the severity of the pathological changes observed as a result of ischemia-reperfusion injury: SMT reduced NO content as well as total nitric oxide synthase (tNOS) and iNOS activities in both ischemic cerebral hemisphere and serum, improved neurobehavioral scores, reduced mortality, reduced the infarct volume ratio, attenuated morphological changes in cortical neurons, decreased the rate of apoptosis (TUNEL and caspase-3-positive), and increased phospho (p)-AKT expression in ischemic penumbra. These results suggested that inhibition of iNOS might reduce the severity of ischemia-reperfusion injury by inhibiting neuronal apoptosis via maintaining p-AKT activity.

  18. Platelet content of nitric oxide synthase 3 phosphorylated at Serine 1177 is associated with the functional response of platelets to aspirin.

    Directory of Open Access Journals (Sweden)

    Javier Modrego

    Full Text Available OBJECTIVE: To analyse if platelet responsiveness to aspirin (ASA may be associated with a different ability of platelets to generate nitric oxide (NO. PATIENTS/METHODS: Platelets were obtained from 50 patients with stable coronary ischemia and were divided into ASA-sensitive (n = 26 and ASA-resistant (n = 24 using a platelet functionality test (PFA-100. RESULTS: ASA-sensitive platelets tended to release more NO (determined as nitrite + nitrate than ASA-resistant platelets but it did not reach statistical significance. Protein expression of nitric oxide synthase 3 (NOS3 was higher in ASA-sensitive than in ASA-resistant platelets but there were no differences in the platelet expression of nitric oxide synthase 2 (NOS2 isoform. The highest NOS3 expression in ASA-sensitive platelets was independent of the presence of T-to-C mutation at nucleotide position -786 (T(-786 → C in the NOS3-coding gene. However, platelet content of phosphorylated NOS3 at Serine (Ser(1177, an active form of NOS3, was higher in ASA-sensitive than in ASA-resistant platelets. The level of platelet NOS3 Ser(1177 phosphorylation was positively associated with the closure time in the PFA-100 test. In vitro, collagen failed to stimulate the aggregation of ASA-sensitive platelets, determined by lumiaggregometry, and it was associated with a significant increase (p = 0.018 of NOS3 phosphorylation at Ser(1177. On the contrary, collagen stimulated the aggregation of ASA-resistant platelets but did not significantly modify the platelet content of phosphorylated NOS3 Ser(1177. During collagen stimulation the release of NO from ASA-sensitive platelets was significantly enhanced but it was not modified in ASA-resistant platelets. CONCLUSIONS: Functional platelet responsiveness to ASA was associated with the platelet content of phosphorylated NOS3 at Ser(1177.

  19. Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+-induced oxidative stress.

    Science.gov (United States)

    Lahaie-Collins, Vicky; Bournival, Julie; Plouffe, Marilyn; Carange, Julie; Martinoli, Maria-Grazia

    2008-01-01

    Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson's disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP(+)) ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP(+)-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP(+)-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP(+) stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP(+)-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.

  20. Sesamin Modulates Tyrosine Hydroxylase, Superoxide Dismutase, Catalase, Inducible No Synthase and Interleukin-6 Expression in Dopaminergic Cells Under Mpp+-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Vicky Lahaie-Collins

    2008-01-01

    Full Text Available Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson's disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP+ ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP+-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP+-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP+ stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP+-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.

  1. Activation of nuclear factor Κb and induction of inducible nitric oxide synthase by lipid-associated membrane proteins isolated from Mycoplasma penetrans

    Institute of Scientific and Technical Information of China (English)

    曾焱华; 吴移谋; 张文波; 余敏君; 朱翠明; 谭立志

    2004-01-01

    Background This study was designed to investigate the potential pathogenicity of Mycoplasma penetrans (M. penetrans) and its molecular mechanisms responsible for the induction of iNOS gene expression in mouse macrophages stimulated by lipid-associated membrane proteins (LAMPs) prepared from M. penetrans.Methods Mouse macrophages were stimulated with M. penetrans LAMPs to assay the production of nitric oxide (NO). The expression of inducible nitric oxide synthase (iNOS) was detected by RT-PCR and Western blotting. The activity of nuclear factor κB (NF-κB) and the effects of pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB, on the production of nitric oxide and the expression of iNOS were also assessed in mouse macrophages treated with M. penetrans LAMPs by indirect immunofluorescence and Western blotting.Results M. penetrans LAMPs stimulated mouse macrophages to produce nitric oxide in a dose- and time-dependent manner. The mRNA and protein levels of iNOS were also upregulated in response to LAMP stimulation and inhibited by PDTC treatment. M. penetrans LAMPs were found to trigger NF-κB activation, a possible mechanism for the induction of iNOS expression.Conclusion This study demonstrated that M. penetrans may be an important etiological factor of certain diseases due to the ability of M. penetrans LAMPs to stimulate the expression of iNOS, which is probably mediated through the activation of NF-κB.

  2. Transforming growth factor beta 1 prevents cytokine-mediated inhibitory effects and induction of nitric oxide synthase in the RINm5F insulin-containing beta-cell line.

    Science.gov (United States)

    Mabley, J G; Cunningham, J M; John, N; Di Matteo, M A; Green, I C

    1997-12-01

    The aim of this study was to examine if the growth factor, transforming growth factor beta 1 (TGF beta 1), could prevent induction of nitric oxide synthase and cytokine-mediated inhibitory effects in the insulin-containing, clonal beta cell line RINm5F. Treatment of RINm5F cells for 24 h with interleukin-1 beta (IL-1 beta) (100 pM) induced expression of nitric oxide synthase and inhibited glyceraldehyde-stimulated insulin secretion. Combinations of IL-1 beta (100 pM), tumour necrosis factor-alpha (100 pM) and interferon-gamma (100 pM) reduced RINm5F cell viability (determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium (MTT) reduction assay) and de novo protein synthesis, as measured by incorporation of radiolabelled amino acids into perchloric acid-precipitable protein. Pretreatment of RINm5F cells with TGF beta 1 (10 pM) for 18 or 24 h, prior to the addition of either IL-1 beta or combined cytokines, prevented cytokine-induced inhibition of insulin secretion, protein synthesis and the loss of cell viability. TGF beta 1 pretreatment inhibited cytokine-induced expression and activity of nitric oxide synthase in RINm5F cells as determined by Western blotting and by cytosolic conversion of radiolabelled arginine into labelled citrulline and nitric oxide. Chemically generated superoxide also induced expression of nitric oxide synthase possibly due to direct activation of the nuclear transcription factor NF kappa B, an effect prevented by both an antioxidant and TGF beta 1 pretreatment. In conclusion, the mechanism of action of TGF beta 1 in blocking cytokine inhibitory effects was by preventing induction of nitric oxide synthase.

  3. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis.

    Science.gov (United States)

    Choudhury, Mahua G; Saha, Nirmalendu

    2016-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in

  4. Bone marrow mesenchymal stromal cells induce nitric oxide synthase-dependent differentiation of CD11b+ cells that expedite hematopoietic recovery.

    Science.gov (United States)

    Trento, Cristina; Marigo, Ilaria; Pievani, Alice; Galleu, Antonio; Dolcetti, Luigi; Wang, Chun-Yin; Serafini, Marta; Bronte, Vincenzo; Dazzi, Francesco

    2017-02-09

    Bone marrow microenvironment is fundamental for hematopoietic homeostasis. Numerous efforts have been made to reproduce or manipulate its activity to facilitate engraftment after hematopoietic stem cell transplantation but clinical results remain unconvincing. This probably reflects the complexity of the hematopoietic niche. Recent data have demonstrated the fundamental role of stromal and myeloid cells in regulating hematopoietic stem cell self-renewal and mobilization in the bone marrow. In this study we unveil a novel interaction by which bone marrow mesenchymal stromal cells induce the rapid differentiation of CD11b+ myeloid cells from bone marrow progenitors. Such an activity requires the expression of nitric oxide synthase-2. Importantly, the administration of these mesenchymal stromal cells-educated CD11b+ cells accelerates hematopoietic reconstitution in bone marrow transplant recipients. We conclude that the liaison between mesenchymal stromal cells and myeloid cells is fundamental in hematopoietic homeostasis and suggests that it can be harnessed in clinical transplantation.

  5. Expression of Endothelial Nitric Oxide Synthase and Endothelin-1 in Skin Tissue from Amputated Limbs of Patients with Complex Regional Pain Syndrome

    Directory of Open Access Journals (Sweden)

    J. George Groeneweg

    2008-01-01

    Full Text Available Background and Objectives. Impaired microcirculation during the chronic stage of complex regional pain syndrome (CRPS is related to increased vasoconstriction, tissue hypoxia, and metabolic tissue acidosis in the affected limb. Endothelial dysfunction is suggested to be the main cause of diminished blood flow. The aim of this study was to examine the distribution of endothelial nitric oxide synthase (eNOS and endothelin-1(ET-1 relative to vascular density represented by the endothelial marker CD31-immunoreactivity in the skin tissue of patients with chronic CRPS. Methods. We performed immunohistochemical staining on sections of skin specimens obtained from the amputated limbs (one arm and one leg of two patients with CRPS. Results. In comparison to proximal specimens we found an increased number of migrated endothelial cells as well as an increase of eNOS activity in distal dermis specimens. Conclusions. We found indications that endothelial dysfunction plays a role in chronic CRPS.

  6. Constitutive nitric oxide synthase-mediated caspase-3 S-nitrosylation in ghrelin protection against Porphyromonas gingivalis-induced salivary gland acinar cell apoptosis.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2010-06-01

    Recent advances in identifying the salivary constituents capable of influencing the oral mucosal inflammatory responses have brought to focus the importance of a peptide hormone, ghrelin. Here, we report on the involvement of ghrelin in controlling the apoptotic processes induced in sublingual salivary gland acinar cells by the lipopolysaccharide (LPS) of a periodontopathic bacterium, Porphyromonas gingivalis. We show that the countering effect of ghrelin on the LPS-induced acinar cell apoptosis was associated with the increase in constitutive nitric oxide synthase (cNOS) activity, and the reduction in caspase-3 and inducible nitric oxide synthase (iNOS). The loss in countering effect of ghrelin on the LPS-induced changes in apoptosis and caspase-3 activity was attained with Src kinase inhibitor, PP2, as well as Akt inhibitor, SH-5, and cNOS inhibitor, L-NAME, but not the iNOS inhibitor, 1400W. The effect of ghrelin on the LPS-induced changes in cNOS activity, moreover, was reflected in the increased cNOS phosphorylation that was sensitive to PP2 as well as SH-5. Furthermore, the ghrelin-induced up-regulation in cNOS activity was associated with the increase in caspase-3 S-nitrosylation that was susceptible to the blockage by SH-5 and L-NAME. The findings point to the involvement of ghrelin in Src/Akt kinase-mediated cNOS activation and the apoptogenic signal inhibition through the NO-induced caspase-3 S-nitrosylation.

  7. Leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of prostaglandin and constitutive nitric oxide synthase pathways.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2008-04-01

    Leptin, a pleiotropic cytokine secreted by adipocytes but also identified in salivary glands and saliva, is recognized as an important element of oral mucosal defense. Here, we report that in sublingual salivary glands leptin protects the acinar cells of against ethanol cytotoxicity. We show that ethanol- induced cytotoxicity, characterized by a marked drop in the acinar cell capacity for NO production, arachidonic acid release and prostaglandin generation, was subject to suppression by leptin. The loss in countering capacity of leptin on the ethanol-induced cytotoxicity was attained with cyclooxygenase inhibitor, indomethacin and nitric oxide synthase (cNOS) inhibitor, L-NAME, as well as PP2, an inhibitor of Src kinase. Indomethacin, while not affecting leptin-induced arachidonic acid release, caused the inhibition in PGE2 generation, pretreatment with L-NAME led to the inhibition in NO production, whereas PP2 exerted the inhibitory effect on leptin-induced changes in NO, arachidonic acid, and PGE2. The leptin-induced changes in arachidonic acid release and PGE2 generation were blocked by ERK inhibitor, PD98059, but not by PI3K inhibitor, wortmannin. Further, leptin suppression of ethanol cytotoxicity was reflected in the increased Akt and cNOS phosphorylation that was sensitive to PP2. Moreover, the stimulatory effect of leptin on the acinar cell cNOS activity was inhibited not only by PP2, but also by Akt inhibitor, SH-5, while wortmannin had no effect. Our findings demonstrate that leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of MAPK/ERK and Akt that result in up-regulation of the respective prostaglandin and nitric oxide synthase pathways.

  8. Research progress of inducible nitric oxide synthase inhibitors%诱导型一氧化氮合酶抑制剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    张浩; 昝金行; 刘培勋

    2013-01-01

    人体内NO由L-精氨酸在一氧化氮合酶(NOS)催化下产生,其中由诱导型一氧化氮合酶(iNOS)产生的NO与炎症关系密不可分,是炎症作用机制中重要的细胞内信使和分子标志物.与此同时NO又是重要的细胞内和细胞间的信号调节分子,维系着人体多种生理功能.因此安全有效的iNOS选择性抑制剂的研究开发备受关注.随着药物设计技术的发展,新型iNOS抑制剂不断涌现,现对近年来iNOS抑制剂的研究进展作一综述.%Nitric oxide synthase (NOS) generates cytotoxic agent NO via oxidation of L-arginine, and the subsequent NO production by correspondent synthase ( iNOS) is an important cellular answer to proinflammatory signals and bio-marker in inflammatory processes. Meanwhile, NO maintains a variety of physiological functions as an important intracellular and intercellular signaling regulatory molecule in a living body. Therefore, potent and safe iNOS selective inhibitors are the focus of current study. With the development of drug design techniques, new iNOS inhibitors are emerging. This article surveys the advances in study of iNOS inhibitors in recent years.

  9. 33 CFR 80.1440 - Port Allen, Kauai, HI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Port Allen, Kauai, HI. 80.1440 Section 80.1440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1440 Port Allen, Kauai, HI. A line drawn...

  10. Endothelium-dependent relaxation of rat aorta to a histamine H3 agonist is reduced by inhibitors of nitric oxide synthase, guanylate cyclase and Na+,K+-ATPase

    Directory of Open Access Journals (Sweden)

    D. M. Djuric

    1996-01-01

    Full Text Available The possible involvement of different effector systems (nitric oxide synthase, guanylate cyclase, β-adrenergic and muscarinic cholinergic receptors, cyclooxygenase and lipoxygenase, and Na+,K+-ATPase was evaluated in a histamine H3 receptor agonist-induced ((Rα-methylhistamine, (Rα-MeHA endothelium-dependent rat aorta relaxation assay. (Rα-MeHA (0.1 nM – 0.01 mM relaxed endothelium-dependent rat aorta, with a pD2 value of 8.22 ± 0.06, compared with a pD2 value of 7.98 ± 0.02 caused by histamine (50% and 70% relaxation, respectively. The effect of (Rα-MeHA (0.1 nM – 0.01 mM was competitively antagonized by thioperamide (1, 10 and 30 nM (pA2 = 9.21 ± 0.40; slope = 1.03 ± 0.35 but it was unaffected by pyrilamine (100 nM, cimetidine (1 μM, atropine (10 μM, propranolol (1 μM, indomethacin (10 μM or nordthydroguaiaretic acid (0.1 mM. Inhibitors of nitric oxide synthase, L-NG-monomethylarginine (L-NMMA, 10 μM and NG-nitro-L-arginine methylester (L-NOARG, 10 μM inhibited the relaxation effect of (Rα-MeHA, by approximately 52% and 70%, respectively. This inhibitory effect of L-NMMA was partially reversed by L-arginine (10 μM. Methylene blue (10 μM and ouabain (10 μM inhibited relaxation (Rα-MeHA-induced by approximately 50% and 90%, respectively. The products of cyclooxygenase and lipoxygenase are not involved in (Rα-MeHA-induced endothelium-dependent rat aorta relaxation nor are the muscarinic cholinergic and β-adrenergic receptors. The results also suggest the involvement of NO synthase, guanylate cyclase and Na+,K+-ATPase in (Rα-MeHA-induced endothelium-dependent rat aorta relaxation.

  11. Mutation of Glu-361 in Human Endothelial Nitric-oxide Synthase Selectively Abolishes L-Arginine Binding without Perturbing the Behavior of Heme and Other Redox Centers

    Science.gov (United States)

    Chen, Pei-Feng; Tsai, Ah-Lim; Berka, Vladimir; Wu, Kenneth K.

    2010-01-01

    Nitric oxide (NO) and L-citrulline are formed from the oxidation of L-arginine by three different isoforms of NO synthase (NOS). Defining amino acid residues responsible for L-arginine binding and oxidation is a primary step toward a detailed understanding of the NOS reaction mechanisms and designing strategies for the selective inhibition of the individual isoform. We have altered Glu-361 in human endothelial NOS to Gln or Leu by site-directed mutagenesis and found that these mutations resulted in a complete loss of L-citrulline formation without disruption of the cytochrome c reductase and NADPH oxidase activities. Optical and EPR spectroscopic studies demonstrated that the Glu-361 mutants had similar spectra either in resting state or reduced CO-complex as the wild type. The heme ligand, imidazole, could induce a low spin state in both wild-type and Glu-361 mutants. However, unlike the wild-type enzyme, the low spin imidazole complex of Glu-361 mutants was not reversed to a high spin state by addition of either L-arginine, acetylguanidine, or 2-aminothiazole. Direct L-arginine binding could not be detected in the mutants either. These results strongly indicate that Glu-361 in human endothelial NOS is specifically involved in the interaction with L-arginine. Mutation of this residue abolished the L-arginine binding without disruption of other functional characteristics. PMID:9045621

  12. Endothelial Nitric Oxide Synthase (−786T>C) and Endothelin-1 (5665G>T) Gene Polymorphisms as Vascular Dysfunction Risk Factors in Sickle Cell Anemia

    Science.gov (United States)

    Vilas-Boas, Wendell; Figueiredo, Camylla V. B.; Pitanga, Thassila N.; Carvalho, Magda O. S.; Santiago, Rayra P.; Santana, Sânzio S.; Guarda, Caroline C.; Zanette, Angela M. D.; Cerqueira, Bruno A. V.; Gonçalves, Marilda S.

    2016-01-01

    Sickle cell anemia (SCA) patients have vascular complications, and polymorphisms in endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) genes were associated with ET-1 and nitric oxide disturbance. We investigate the association of ET-1 5665G>T and eNOS −786T>C polymorphisms with soluble adhesion molecules (sVCAM-1 and sICAM-1), biochemical markers, and medical history. We studied 101 SCA patients; carriers of eNOS minor allele (C) had the highest levels of sVCAM-1, and carriers of ET-1 minor allele had more occurrence of acute chest syndrome (ACS). The multivariate analysis suggested the influence of the ET-1 gene on ACS outcome and an association of the eNOS gene with upper respiratory tract infection. We suggest that eNOS and ET-1 gene polymorphisms can influence SCA pathophysiology and that eNOS variant in SCA patients might be important to nitric oxide activity and vascular alteration. We found an association of the ET-1 minor allele in ACS, showing the importance of genetic screening in SCA. PMID:27486304

  13. EFFECT OF TNF-( AND IFN-( ON THE EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE AND PROLIFERATION INHIBITION OF HUMAN COLON CANCER CELL LINE

    Institute of Scientific and Technical Information of China (English)

    庞希宁; 王芸庆; 宋今丹

    2002-01-01

    Objective: To study the expression of the inducible nitric oxide synthase (iNOS) gene and the effects of tumor necrosis factor-α(TNF-α) and interferon-γ(IFN-γ)on proliferation of the continuous cultured human colon cancer cell line CCL229. Methods: Using the molecular and biochemical techniques and electron microscopy to analyze the expression of iNOS, production of NO and growth characteristics of human colon cancer cells. Results: cytokine treatment can induce expression of the iNOS gene and production of nitric oxide was significantly higher after treatment of CCL229 cells with TNF-αor IFN-γ. Treatment with either cytokine or a combination of both significantly increased levels of Malondialdehyde (MDA) over control. Furthermore, cytokine treatment increased the proliferation inhibition rate as assessed in vitro and decreased the cell proliferation index on flow cytometry. Electron microscopy showed that cells treated with cytokines had fewer pseudopodia or cell processes than control cells and that cytokine treated cells had dilatation of the mitochondria and endoplasmic reticulum and dilated vesicular or tubular cisternae. Conclusion: Our findings indicate that TNF-α and IFN-γ induce the expression of iNOS gene in CCL229 cells, which increases the production of nitric oxide, inhibits proliferation, causes lipid peroxidation, and results in ultrastructural changes. 

  14. Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted allenes

    Science.gov (United States)

    Hashimoto, Takuya; Sakata, Kazuki; Tamakuni, Fumiko; Dutton, Mark J.; Maruoka, Keiji

    2013-03-01

    Allenes are molecules based on three carbons connected by two cumulated carbon-carbon double bonds. Given their axially chiral nature and unique reactivity, substituted allenes have a variety of applications in organic chemistry as key synthetic intermediates and directly as part of biologically active compounds. Although the demands for these motivated many endeavours to make axially chiral, substituted allenes by exercising asymmetric catalysis, the catalytic asymmetric synthesis of fully substituted ones (tetrasubstituted allenes) remained largely an unsolved issue. The fundamental obstacle to solving this conundrum is the lack of a simple synthetic transformation that provides tetrasubstituted allenes in the action of catalysis. We report herein a strategy to overcome this issue by the use of a phase-transfer-catalysed asymmetric functionalization of 1-alkylallene-1,3-dicarboxylates with N-arylsulfonyl imines and benzylic and allylic bromides.

  15. Tyrosol Attenuates High Fat Diet-Induced Hepatic Oxidative Stress: Potential Involvement of Cystathionine β-Synthase and Cystathionine γ-Lyase.

    Science.gov (United States)

    Sarna, Lindsei K; Sid, Victoria; Wang, Pengqi; Siow, Yaw L; House, James D; O, Karmin

    2016-05-01

    The Mediterranean diet is known for its cardioprotective effects. Recently, its protective qualities have also been reported in patients with non-alcoholic fatty liver disease (NAFLD). Oxidative stress is one of the important factors responsible for the development and progression of NAFLD. Hydrogen sulfide (H2S), a multifaceted gasotransmitter, has emerged as a potential therapeutic target in NAFLD. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are major enzymes responsible for endogenous H2S synthesis. Since oxidative stress contributes to NAFLD pathogenesis, the objective of this study was to investigate the effect of tyrosol, a major compound in olive oil and white wine, on high fat diet-induced hepatic oxidative stress and the mechanisms involved. Mice (C57BL/6) were fed for 5 weeks with a control diet (10 % kcal fat), a high fat diet (60 % kcal fat, HFD) or a HFD supplemented with tyrosol. High fat diet feeding induced hepatic oxidative stress, as indicated by the significant increase in lipid peroxidation and NADPH oxidase activity. Tyrosol supplementation significantly increased hepatic CBS and CSE expression and H2S synthesis in high fat diet-fed mice. Such effects were associated with the attenuation of high fat diet-induced hepatic lipid peroxidation and the restoration of the redox equilibrium of the antioxidant glutathione. Tyrosol also inhibited palmitic acid-induced oxidative stress in hepatocytes (HepG2 cells). These results suggest that the antioxidant properties of tyrosol may be mediated through functional changes in CBS and CSE activity, which might contribute to the hepatoprotective effect of the Mediterranean diet.

  16. The Allen Telescope Array Commensal Observing System

    CERN Document Server

    Williams, Peter K G

    2012-01-01

    This memo describes the system used to conduct commensal correlator and beamformer observations at the Allen Telescope Array (ATA). This system was deployed for ~2 years until the ATA hibernation in 2011 and was responsible for collecting >5 TB of data during thousands of hours of observations. The general system design is presented and the implementation is discussed in detail. I emphasize the rationale for various design decisions and attempt to document a few aspects of ATA operations that might not be obvious to non-insiders. I close with some recommendations from my experience developing the software infrastructure and managing the correlator observations. These include: reuse existing systems; solve, don't avoid, tensions between projects, and share infrastructure; plan to make standalone observations to complement the commensal ones; and be considerate of observatory staff when deploying new and unusual observing modes. The structure of the software codebase is documented.

  17. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  18. Infantile Refsum disease: deficiency of catalase-containing particles (peroxisomes), alkyldihydroxyacetone phosphate synthase and peroxisomal beta-oxidation enzyme proteins.

    Science.gov (United States)

    Wanders, R J; Schutgens, R B; Schrakamp, G; van den Bosch, H; Tager, J M; Schram, A W; Hashimoto, T; Poll-Thé, B T; Saudubrau, J M

    1986-08-01

    In recent years a number of biochemical abnormalities have been described in patients with the infantile form of Refsum disease, including the accumulation of very long chain fatty acids, trihydroxycoprostanoic acid and pipecolic acid. In this paper we show that catalase-containing particles (peroxisomes), alkyl dihydroxyacetone phosphate synthase and acyl-CoA oxidase protein are deficient in patients with infantile Refsum disease. These findings suggest that in the infantile form of Refsum disease, as in the cerebro-hepato-renal (Zellweger) syndrome the multiplicity of biochemical abnormalities is due to a deficiency of peroxisomes and hence to a generalized loss of peroxisomal functions. As a consequence the infantile form of Refsum disease can be diagnosed biochemically by methods already available for the prenatal and postnatal diagnosis of the cerebro-hepato-renal (Zellweger) syndrome.

  19. Methemoglobinemia caused by 8-aminoquinoline drugs: DFT calculations suggest an analogy to H4B's role in nitric oxide synthase

    Science.gov (United States)

    We suggest a possible mechanism of how 8-aminoquinolines (8-AQ's) cause hemotoxicity by oxidizing hemoglobin to methemoglobin. In our DFT calculations, we found that 5-hydroxyprimaquine is able to donate an electron to O2 to facilitate its conversion to H2O2. Meanwhile, Fe(II) is oxidized to Fe(III)...

  20. Structure and Reactivity of a Thermostable Prokaryotic Nitric-oxide Synthase That Forms a Long-lived Oxy-Heme Complex

    Energy Technology Data Exchange (ETDEWEB)

    Sudhamsu,J.; Crane, B.

    2006-01-01

    In an effort to generate more stable reaction intermediates involved in substrate oxidation by nitric-oxide synthases (NOSs), we have cloned, expressed, and characterized a thermostable NOS homolog from the thermophilic bacterium Geobacillus stearothermophilus (gsNOS). As expected, gsNOS forms nitric oxide (NO) from L-arginine via the stable intermediate N-hydroxy L-arginine (NOHA). The addition of oxygen to ferrous gsNOS results in long-lived heme-oxy complexes in the presence (Soret peak 427 nm) and absence (Soret peak 413 nm) of substrates L-arginine and NOHA. The substrate-induced red shift correlates with hydrogen bonding between substrate and heme-bound oxygen resulting in conversion to a ferric heme-superoxy species. In single turnover experiments with NOHA, NO forms only in the presence of H4B. The crystal structure of gsNOS at 3.2 A Angstroms of resolution reveals great similarity to other known bacterial NOS structures, with the exception of differences in the distal heme pocket, close to the oxygen binding site. In particular, a Lys-356 (Bacillus subtilis NOS) to Arg-365 (gsNOS) substitution alters the conformation of a conserved Asp carboxylate, resulting in movement of an Ile residue toward the heme. Thus, a more constrained heme pocket may slow ligand dissociation and increase the lifetime of heme-bound oxygen to seconds at 4 degC. Similarly, the ferric-heme NO complex is also stabilized in gsNOS. The slow kinetics of gsNOS offer promise for studying downstream intermediates involved in substrate oxidation.

  1. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+)LAT2 transporter.

    Science.gov (United States)

    Zielińska, Magdalena; Milewski, Krzysztof; Skowrońska, Marta; Gajos, Anna; Ziemińska, Elżbieta; Beręsewicz, Andrzej; Albrecht, Jan

    2015-12-01

    One of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+)L amino acid transport system, by activation of its member, a heteromeric y(+)LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+)LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration. Treatment of rat cortical astrocytes for 48 with 5 mM ammonium chloride ('ammonia') (i) increased the y(+)L-mediated Arg uptake, (ii) raised the expression of iNOS and endothelial NOS (eNOS), (iii) stimulated NO production, as manifested by increased nitrite+nitrate (Griess) and/or nitrite alone (chemiluminescence), and consequently, (iv) evoked nitration of tyrosine residues of proteins in astrocytes. Except for the increase of eNOS, all the above described effects of ammonia were abrogated by pre-treatment of astrocytes with either siRNA silencing of the Slc7a6 gene coding for y(+)LAT2 protein, or antibody to y(+)LAT2, indicating their strict coupling to y(+)LAT2 activity. Moreover, induction of y(+)LAT2 expression by ammonia was sensitive to Nf-κB inhibitor, BAY 11-7085, linking y(+)LAT2 upregulation to the Nf-κB activation in this experimental setting as reported earlier and here confirmed. Importantly, ammonia did not affect y(+)LAT2 expression nor y(+)L-mediated Arg uptake activity in the cultured cerebellar neurons, suggesting astroglia-specificity of the above described mechanism. The described coupling of up-regulation of y(+)LAT2 transporter with iNOS in ammonia-exposed astrocytes may be considered as a mechanism to ensure NO supply for protein nitration. Ammonia (NH4(+)) increases the expression and activity of the L-arginine (Arg) transporter (Arg/neutral amino acids [NAA] exchanger) y(+)LAT2 in cultured rat cortical astrocytes by a mechanism

  2. Role of nitric oxide synthase, cytochrome P-450, and cyclooxygenase in the inotropic and lusitropic cardiac response to increased coronary perfusion.

    Science.gov (United States)

    Beaucage, Pierre; Massicotte, Julie; Jasmin, Gaëtan; Dumont, Louis

    2002-07-01

    Although studies have reported that increase in coronary perfusion (CP) results in positive inotropic effects, the underlying mechanisms of these actions and possible alterations in myocardial diastolic function are not well defined. Hypothesis was that nitric oxide (NO) and derivatives of cytochrome (CYT) P-450 or cyclooxygenase (COX) might contribute to interplay between coronary and myocardial compartments in these conditions. Using isovolumically contracting, isolated perfused hamster heart model, coronary flow (CF) was increased mechanically, stepwise in the physiologic range (+2 to +10 ml/min), before and after inhibition of NO synthase by NG-nitro-l-arginine methyl ester (l-NAME) (30 microM), CYT P-450 by SKF525A (1 microM), or COX by indomethacin (10 microM). CP pressure, left ventricular systolic pressure (VSP) and ventricular diastolic pressure (VDP), and heart rate (HR) were monitored continuously during the experiments. Mechanical increases in CF resulted in gradual change in CP pressure (+20% to +100%), left VSP (+5% to +40%) and VDP (+2% to +25%), whereas HR was not affected. In presence of l-NAME, the positive inotropic response and negative lusitropic effect of CF changes were similar. Exposure to SKF525A did not modify cardiac response to mechanical increases in CF. In presence of COX inhibitor indomethacin, left VSP rose to a level similar to that observed in control conditions, whereas VDP deteriorated further. These results suggest that mediators originating from NO synthase, CYT P-450, or COX do not contribute to positive inotropic response elicited by increased CP. However, COX derivatives seem to attenuate impairment of myocardial relaxation observed in these conditions. Such findings may have implications in development of therapeutics for patients with myocardial diastolic dysfunction.

  3. Blunted flow-mediated responses and diminished nitric oxide synthase expression in lymphatic thoracic ducts of a rat model of metabolic syndrome.

    Science.gov (United States)

    Zawieja, Scott D; Gasheva, Olga; Zawieja, David C; Muthuchamy, Mariappan

    2016-02-01

    Shear-dependent inhibition of lymphatic thoracic duct (TD) contractility is principally mediated by nitric oxide (NO). Endothelial dysfunction and poor NO bioavailability are hallmarks of vasculature dysfunction in states of insulin resistance and metabolic syndrome (MetSyn). We tested the hypothesis that flow-dependent regulation of lymphatic contractility is impaired under conditions of MetSyn. We utilized a 7-wk high-fructose-fed male Sprague-Dawley rat model of MetSyn and determined the stretch- and flow-dependent contractile responses in an isobaric ex vivo TD preparation. TD diameters were tracked and contractile parameters were determined in response to different transmural pressures, imposed flow, exogenous NO stimulation by S-nitro-N-acetylpenicillamine (SNAP), and inhibition of NO synthase (NOS) by l-nitro-arginine methyl ester (l-NAME) and the reactive oxygen species (ROS) scavenging molecule 4-hydroxy-tempo (tempol). Expression of endothelial NO synthase (eNOS) in TD was determined using Western blot. Approximately 25% of the normal flow-mediated inhibition of contraction frequency was lost in TDs isolated from MetSyn rats despite a comparable SNAP response. Inhibition of NOS with l-NAME abolished the differences in the shear-dependent contraction frequency regulation between control and MetSyn TDs, whereas tempol did not restore the flow responses in MetSyn TDs. We found a significant reduction in eNOS expression in MetSyn TDs suggesting that diminished NO production is partially responsible for impaired flow response. Thus our data provide the first evidence that MetSyn conditions diminish eNOS expression in TD endothelium, thereby affecting the flow-mediated changes in TD lymphatic function.

  4. Endothelial nitric oxide synthase gene intron 4 variable number tandem repeat polymorphism in β-thalassemia major: relation to cardiovascular complications.

    Science.gov (United States)

    Tantawy, Azza A G; Adly, Amira A M; Ismail, Eman A; Aly, Shereen H

    2015-06-01

    Endothelial nitric oxide synthase (eNOS), an enzyme that generates nitric oxide, is a major determinant of endothelial function. Several eNOS gene polymorphisms have been reported as 'susceptibility genes' in various human diseases states, including cardiovascular, pulmonary and renal diseases. We studied the 27-base pair tandem repeat polymorphism in intron 4 of eNOS gene in 60 β-thalassemia major (β-TM) patients compared with 60 healthy controls and assessed its role in subclinical atherosclerosis and vascular complications. Patients were evaluated stressing on transfusion history, splenectomy, thrombotic events, echocardiography and carotid intima-media thickness (CIMT). Analysis of eNOS intron 4 gene polymorphism was performed by PCR. No significant difference was found between β-TM patients and controls with regard to the distribution of eNOS4 alleles or genotypes. The frequency of eNOS4a allele (aa and ab genotypes) was significantly higher in β-TM patients with pulmonary hypertension or cardiomyopathy. Logistic regression analysis revealed that eNOS4a allele was an independent risk factor for pulmonary hypertension in β-TM patients [odds ratio (OR) 2.2, 95% confidence interval (95% CI) 1.19-5.6; P < 0.001]. We suggest that eNOS intron 4 gene polymorphism is related to endothelial dysfunction and subclinical atherosclerosis and could be a possible genetic marker for prediction of increased susceptibility to cardiovascular complications.

  5. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro.

    Science.gov (United States)

    Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-06-01

    Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.

  6. Production of reactive oxygen species and expression of inducible nitric oxide synthase in rat isolated Kupffer cells stimulated by Leptospira interrogans and Borrelia burgdorferi

    Institute of Scientific and Technical Information of China (English)

    Antonella Marangoni; Silvia Accardo; Rita Aldini; Massimo Guardigli; Francesca Cavrini; Vittorio Sambri; Marco Montagnani; Aldo Roda; Roberto Cevenini

    2006-01-01

    AIM: To evaluate the production of reactive oxygen species (ROS) and the expression of indudble nitric oxide synthase (iNOS) in rat isolated Kupffer cells (KCs) stimulated by Leptospira interrogans and Borrelia burgdorferi.METHODS: Rat Kupffer cells were separated by perfusion of the liver with 0.05% collagenase, and purified by Percoll gradients. Purified Kupffer cells were tested in vitro with alive L.interogans and B. burgdorferi preparations. The production of ROS was determined by chemiluminescence, whereas iNOS protein expression was evaluated by Western blot assay using anti-iNOS antibodies.RESULTS: B. burgdorferi and to a less extent L. interrogans induced ROS production with a peak 35 min after infection. The chemiluminescence signal progressively diminished and was undetectable by 180 min of incubation. Leptospirae and borreliae induced an increased iNOS expression in Kupffer cells that peaked at 6 hours and was still evident 22 h after infection.CONCLUSION: Both genera of spirochetes induced ROS and iNOS production in rat Kupffer cells. Since the cause of liver damage both in leptospiral as well as in borrelial infections are still unknown, we suggest that leptospira and borrelia damage of the liver can be initially mediated by oxygen radicals, and is then maintained at least in part by nitric oxide.

  7. Ameliorating of Memory Impairment and Apoptosis in Amyloid β-Injected Rats Via Inhibition of Nitric Oxide Synthase: Possible Participation of Autophagy

    Science.gov (United States)

    Shariatpanahi, Marjan; Khodagholi, Fariba; Ashabi, Ghorbangol; Aghazadeh Khasraghi, Azar; Azimi, Leila; Abdollahi, Mohammad; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Noorbakhsh, Farshid; Sharifzadeh, Mohammad

    2015-01-01

    It has been proposed that appearance of amyloid beta (Aβ) in hippocampus is one of the characteristic features of Alzheimer’s disease (AD). The role of Nitric oxide (NO) in neurodegenerative disorders is controversy in different contexts. Here, we examined the effect of NO on spatial memory. For this purpose, we compared the effects of three different concentrations of L-NG-Nitroarginine Methyl Ester (L-NAME) as a nitric oxide synthase (NOS) inhibitor. We used Morris water maze (MWM) for evaluation of behavioral alterations. We also assessed the apoptosis and autophagy markers as two possible interfering pathways with NO signaling by western blot method. We found that in Aβ pretreated rats, intra-hippocampal injection of 1or 2 (μg/side) of L-NAME caused a significant reduction in escape latency and traveled distance comparing to Aβ-treatment group. Our molecular findings revealed that L-NAME could induce autophagy and attenuate apoptosis dose dependently. The protective role of autophagy and the deteriorative role of apoptosis is the hypothesis that can vindicate our findings. Thus using NOS inhibitors at low concentrations can be one of the therapeutic approaches in the future studies. PMID:26330869

  8. NOISE-INDUCED TOUGHENING EFFECT IN WISTAR RATS: ENHANCED AUDITORY BRAINSTEM RESPONSES ARE RELATED TO CALRETININ AND NITRIC OXIDE SYNTHASE UPREGULATION.

    Directory of Open Access Journals (Sweden)

    Juan Carlos eAlvarado

    2016-03-01

    Full Text Available An appropriate conditioning noise exposure may reduce a subsequent noise-induced threshold shift. Although this toughening effect helps to protect the auditory system from a subsequent traumatic noise exposure, the mechanisms that regulate this protective process are not fully understood yet. Accordingly, the goal of the present study was to characterize physiological processes associated with ‘toughening’ and to determine their relationship to metabolic changes in the cochlea and cochlear nucleus (CN. Auditory brainstem responses (ABR were evaluated in Wistar rats before and after exposures to a sound conditioning protocol consisting of a broad-band white noise of 118 dB SPL for 1h every 72h, 4 times. After the last ABR evaluation, animals were perfused and their cochleae and brains removed and processed for the activity markers calretinin (CR and neuronal nitric oxide synthase (nNOS. Toughening was demonstrated by a progressively faster recovery of the threshold shift, as well as wave amplitudes and latencies over time. Immunostaining revealed an increase in CR and nNOS levels in the spiral ganglion, spiral ligament and CN in noise-conditioned rats. Overall, these results suggest that the protective mechanisms of the auditory toughening effect initiate in the cochlea and extend to the central auditory system. Such phenomenon might be in part related to an interplay between CR and nitric oxide signalling pathways, and involve an increased cytosolic calcium buffering capacity induced by the noise conditioning protocol.

  9. Activation of neuronal nitric oxide synthase (nNOS) signaling pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced neurotoxicity.

    Science.gov (United States)

    Jiang, Junkang; Duan, Zhiqing; Nie, Xiaoke; Xi, Hanqing; Li, Aihong; Guo, Aisong; Wu, Qiyun; Jiang, Shengyang; Zhao, Jianya; Chen, Gang

    2014-07-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been reported to cause alterations in cognitive and motor behavior during both development and adulthood. In this study, the neuronal nitric oxide synthase (nNOS) signaling pathway was investigated in differentiated pheochromocytoma (PC12) cells to better understand the mechanisms of TCDD-induced neurotoxicity. TCDD exposure induced a time- and dose-dependent increase in nNOS expression. High levels of nitric oxide (NO) production by nNOS activation induced mitochondrial cytochrome c (Cyt-c) release and down-regulation of Bcl-2. Additionally, TCDD increased the expression of active caspase-3 and significantly led to apoptosis in PC12 cells. However, these effects above could be effectively inhibited by the addition of 7-nitroindazole (7-NI), a highly selective nNOS inhibitor. Moreover, in the brain cortex of Sprague-Dawley (SD) rats, nNOS was also found to have certain relationship with TCDD-induced neuronal apoptosis. Together, our findings establish a role for nNOS as an enhancer of TCDD-induced apoptosis in PC12 cells.

  10. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  11. Is Endothelial Nitric Oxide Synthase a Moonlighting Protein Whose Day Job is Cholesterol Sulfate Synthesis? Implications for Cholesterol Transport, Diabetes and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Stephanie Seneff

    2012-12-01

    Full Text Available Theoretical inferences, based on biophysical, biochemical, and biosemiotic considerations, are related here to the pathogenesis of cardiovascular disease, diabetes, and other degenerative conditions. We suggest that the “daytime” job of endothelial nitric oxide synthase (eNOS, when sunlight is available, is to catalyze sulfate production. There is a striking alignment between cell types that produce either cholesterol sulfate or sulfated polysaccharides and those that contain eNOS. The signaling gas, nitric oxide, a well-known product of eNOS, produces pathological effects not shared by hydrogen sulfide, a sulfur-based signaling gas. We propose that sulfate plays an essential role in HDL-A1 cholesterol trafficking and in sulfation of heparan sulfate proteoglycans (HSPGs, both critical to lysosomal recycling (or disposal of cellular debris. HSPGs are also crucial in glucose metabolism, protecting against diabetes, and in maintaining blood colloidal suspension and capillary flow, through systems dependent on water-structuring properties of sulfate, an anionic kosmotrope. When sunlight exposure is insufficient, lipids accumulate in the atheroma in order to supply cholesterol and sulfate to the heart, using a process that depends upon inflammation. The inevitable conclusion is that dietary sulfur and adequate sunlight can help prevent heart disease, diabetes, and other disease conditions.

  12. James Van Allen The First Eight Billion Miles

    CERN Document Server

    Foerstner, Abigail

    2009-01-01

    Astrophysicist and space pioneer James Van Allen (1914-2006), for whom the Van Allen radiation belts were named, was among the principal scientific investigators for twenty-four space missions, including Explorer I in 1958, the first successful U.S. satellite; Mariner 2's 1962 flyby of Venus, the first successful mission to another planet; and the 1970's Pioneer 10 and Pioneer 11, missions that surveyed Jupiter and Saturn. Abigail Foerstner blends space science, drama, military agenda's, cold war politics, and the events of Van Allen's lengthy career to create the first biography of this highl

  13. Fatty acid synthase/oxidized low-density lipoprotein as metabolic oncogenes linking obesity to colon cancer via NF-kappa B in Egyptians.

    Science.gov (United States)

    Keshk, Walaa Arafa; Zineldeen, Doaa Hussein; Wasfy, Rania E L-sayed; El-Khadrawy, Osama Helmy

    2014-10-01

    Obesity is a major health problem which heightens the risk of several chronic illnesses including cancer development particularly colon cancer. The underlying pathophysiology of obesity associated colon cancer remains to be elucidated. The purpose of this current study was to determine fatty acid synthase (FASN) activity/expression, oxidized low-density lipoprotein (ox-LDL) level and redox status under the context of anthropometric measurements and lipid profile to find their potential role as interacting biomarkers relating obesity to colon cancer initiation and progression via nuclear factor kappa-B (NF-κB) signaling. This study was conducted upon Egyptian individuals; 30 obese subjects with colon cancer, 11 nonobese and 11 obese subjects without colon cancer. FASN gene expression, NF-κB immunoreactivity, and serum ox-LDL level were estimated by real-time PCR, immunohistochemistry and immunoassay, respectively. FASN activity, glycemic status, obesity, and oxidative stress indices were also assessed. It was found that FASN expression and activity were statistically increased in obese with colon cancer (P=0.021 and 0.018, respectively), with statistically significant increase in patients with advanced grading. Moreover, NF-κB immunoreactivity and serum ox-LDL level were significantly increased in obese colon cancer patients with significantly higher levels in those with advanced grading (all Pcancer. These results revealed that FASN and ox-LDL as well as oxidative stress may increase the risk of obesity related colon cancer, particularly via NF-κB signaling and could be used as potential predictive and prognostic biomarkers for obesity complicated with colon cancer.

  14. Chiral allylic and allenic metal reagents for organic synthesis.

    Science.gov (United States)

    Marshall, James A

    2007-10-26

    This account traces the evolution of our work on the synthesis of chiral allylic and allenic organometal compounds of tin, silicon, zinc, and indium and their application to natural product synthesis over the past quarter century.

  15. The Trail Inventory of Private John Allen NFH [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Private John Allen National Fish Hatchery. Trails in this inventory are...

  16. The Trail Inventory of Private John Allen NFH [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Private John Allen National Fish Hatchery. Trails in this inventory are...

  17. Substituent effects on dynamics at conical intersections: Allene and methyl allenes

    Energy Technology Data Exchange (ETDEWEB)

    Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Wang, Yanmei [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Boguslavskiy, Andrey E.; Stolow, Albert, E-mail: albert.stolow@nrc-cnrc.gc.ca [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa ON K1N 6N5 (Canada); Schuurman, Michael S., E-mail: michael.schuurman@nrc-cnrc.gc.ca [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada)

    2016-01-07

    We report a joint experimental and theoretical study on the ultrafast excited state dynamics of allene and a series of its methylated analogues (1,2-butadiene, 1,1-dimethylallene, and tetramethylallene) in order to elucidate the conical intersection mediated dynamics that give rise to ultrafast relaxation to the ground electronic state. We use femtosecond time-resolved photoelectron spectroscopy (TRPES) to probe the coupled electronic-vibrational dynamics following UV excitation at 200 nm (6.2 eV). Ab initio multiple spawning (AIMS) simulations are employed to determine the mechanistic details of two competing dynamical pathways to the ground electronic state. In all molecules, these pathways are found to involve as follows: (i) twisting about the central allenic C–C–C axis followed by pyramidalization at one of the terminal carbon atoms and (ii) bending of allene moiety. Importantly, the AIMS trajectory data were used for ab initio simulations of the TRPES, permitting direct comparison with experiment. For each molecule, the decay of the TRPES signal is characterized by short (30 fs, 52 fs, 23 fs) and long (1.8 ps, 3.5 ps, [306 fs, 18 ps]) time constants for 1,2-butadiene, 1,1-dimethylallene, and tetramethylallene, respectively. However, AIMS simulations show that these time constants are only loosely related to the evolution of electronic character and actually more closely correlate to large amplitude motions on the electronic excited state, modulating the instantaneous vertical ionization potentials. Furthermore, the fully substituted tetramethylallene is observed to undergo qualitatively different dynamics, as displacements involving the relatively massive methyl groups im