WorldWideScience

Sample records for allelochemicals

  1. Allelochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Waller, G.R.

    1987-01-01

    This book contains 51 selections. Some of the titles are: Allelopathy: A potential cause of forest regeneration failure; Allelopathic effects on mycorrhizae: Influence on structure and dynamics of forest ecosystems; Allelopathic interference with regeneration of the allegheny hardwood forest; and Studies on the fulvic and humic acids of Minnesota peat.

  2. Mechanism and active variety of allelochemicals

    Science.gov (United States)

    Peng, S.-L.; Wen, J.; Guo, Q.-F.

    2004-01-01

    This article summarizes allelochemicals' active variety, its potential causes and function mechanisms. Allelochemicals' activity varies with temperature, photoperiod, water and soils during natural processes, with its initial concentration, compound structure and mixed degree during functional processes, with plant accessions, tissues and maturity within-species, and with research techniques and operation processes. The prospective developmental aspects of allelopathy studies in the future are discussed. Future research should focus on: (1) to identify and purify allelochemicals more effectively, especially for agriculture, (2) the functions of allelopathy at the molecular structure level, (3) using allelopathy to explain plant species interactions, (4) allelopathy as a driving force of succession, and (5) the significance of allelopathy in the evolutionary processes.

  3. Allelochemical potential of Callicarpa acuminata.

    Science.gov (United States)

    Anaya, Ana Luisa; Mata, Rachel; Sims, James J; González-Coloma, Azucena; Cruz-Ortega, Rocio; Guadaño, Ana; Hernández-Bautista, Blanca E; Midland, Sharon L; Ríos, Riselda; Gómez-Pompa, Arturo

    2003-12-01

    The allelochemical potential of Callicarpa acuminata (Verbenaceae) was investigated by using a biodirected fractionation study as part of a long-term project to search for bioactive compounds among the rich biodiversity of plant communities in the Ecological Reserve El Eden, Quintana Roo, Mexico. Aqueous leachate, chloroform-methanol extract, and chromatographic fractions of the leaves of C. acuminata inhibited the root growth of test plants (23-70%). Some of these treatments caused a moderate inhibition of the radial growth of two phytopathogenic fungi, Helminthosporium longirostratum and Alternaria solani (18-31%). The chloroform-methanol (1:1) extract prepared from the leaves rendered five compounds: isopimaric acid (1), a mixture of two diterpenols [sandaracopimaradien-19-ol (3) and akhdarenol (4)], alpha-amyrin (5), and the flavone salvigenin (6)]. The phytotoxicity exhibited by several fractions and the full extract almost disappeared when pure compounds were evaluated on the test plants, suggesting a synergistic or additive effect. Compounds (4), (5), and the semisynthetic derivative isopimaric acid methyl ether (2) had antifeedant effects on Leptinotarsa decemlineata. Compound 5 was most toxic to this insect, followed by (2), (4), and (6) with moderate to low toxicity. No correlation was found between antifeedant and toxic effects on this insect, suggesting that different modes of action were involved. All the test compounds were cytotoxic to insect Sf9 cells while (6), (4), and (1) also affected mammalian Chinese Hamster Ovary (CHO) cells. Compound 5 showed the strongest selectivity against insect cells. This study contributes to the knowledge of the defensive chemistry and added value of C. acuminata.

  4. Autotoxicity in Pogostemon cablin and their allelochemicals

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available Abstract The effects of allelochemicals and aqueous extracts from different Pogostemon cablin (Blanco Benth., Lamiaceae, parts and rhizosphere soil on growth parameters, leaf membrane peroxidation and leaf antioxidant enzymes were investigated in patchouli. P. cablin seedlings were incubated in solutions containing allelochemicals and aqueous extracts from different patchouli parts and its rhizosphere soil at several concentrations. Firstly, the growth parameters were significantly reduced by the highest concentration of leaves, roots and stems extracts (p < 0.05. As compared to the control, plant height was reduced by 99.8% in the treatment with leaves extracts (1:10. The malondialdehyde content increased greatly when patchouli seedlings were subject to different concentrations of leaves, roots and stems extracts; meanwhile, the superoxide dismutase and peroxidase activities showed an increase trend at the low concentration, followed by a decline phase at the high concentration of roots and leaves extracts (1:10. What's more, leaves and roots extracts had a more negative effect on patchouli growth than stems extracts at the same concentrations. Secondly, the total fresh mass, root length and plant height were greatly reduced by the highest strength of soil extracts. Their decrements were 22.7, 74.9, and 33.1%, respectively. Thirdly, growth parameters and enzymatic activities varied considerably with the kinds of allelochemicals and with the different concentrations. Plant height, root length and total fresh weight of patchouli were greatly reduced by p-hydroxybenzoic acid (200 μM, and their decrements were 77.0, 42.0 and 70.0%, respectively. Finally, three useful measures on reducing the autotoxicity during the sustainable patchouli production were proposed.

  5. Benzoxazinoid allelochemicals are absorbed and metabolized in mammals

    DEFF Research Database (Denmark)

    B. Adhikari, Khem; Laursen, Bente Birgitte; Lærke, Helle Nygaard

    2014-01-01

    Benzoxazinoids are a group of naturally occurring bioactive allelochemicals mostly found in cereal plants. In addition to their allelopathic effects, benzoxazinoids contain a range of health-protecting effects and pharmacological properties. The presence of these chemicals in mature cereal grains...

  6. Effects of Allelochemicals of Some Eucalyptus Species on ...

    African Journals Online (AJOL)

    A laboratory experiment was conducted to assess the effects of allelochemicals of Eucalyptus camaldulensis, Eucalyptus citriodora and Eucalyptus globules on germination and root elongation using leguminous crop ground nut (Arachis hypogea) as bioassay material. The experiments were conducted in sterilized ...

  7. Functional Characterization and Expression of Molluscan Detoxification Enzymes and Transporters Involved in Dietary Allelochemical Resistance

    National Research Council Canada - National Science Library

    Whalen, Kristen E

    2008-01-01

    .... Inhibition of Cyphoma GST activity by gorgonian extracts and selected allelochemicals (i.e., prostaglandins) indicated that gorgonian diets contain substrates for molluscan detoxification enzymes...

  8. Benzoxazinoid allelochemicals are absorbed and metabolized in mammals

    DEFF Research Database (Denmark)

    B. Adhikari, Khem; Laursen, Bente Birgitte; Lærke, Helle Nygaard

    2014-01-01

    in mammals. We fed a benzoxazinoid-containing rye bread-based diet to pigs (n=6), rats (n=6), and humans (n=19) and analyzed the content of benzoxazinoids and their potential metabolites in plasma, urine, bile and faeces by LC-MS/MS using electrospray ionization and multiple reaction monitoring mode......Benzoxazinoids are a group of naturally occurring bioactive allelochemicals mostly found in cereal plants. In addition to their allelopathic effects, benzoxazinoids contain a range of health-protecting effects and pharmacological properties. The presence of these chemicals in mature cereal grains...

  9. Allelochemical, Eudesmane-Type Sesquiterpenoids from Inula falconeri

    Directory of Open Access Journals (Sweden)

    Kazuo N. Watanabe

    2010-03-01

    Full Text Available We have identified through bioassay guided isolation an allelochemical, eudesmane-type sesquiterpeniod, 3β-caffeoxyl-β1,8α-dihydroxyeudesm-4(15-ene(1,from an endemic plant species growing in the Himalayas. In our search for the bioactive subfraction, the hexane one was highly significant, showing 100% inhibition of lettuce seed growth at 100 ppm while other subfractions (chloroform, ethyl acetate, butanol and water exhibited inhibitory to stimulatory allelopathic effects. The bioactive hexane subfraction was subjected to chromatographic techniques, using lettuce seeds (Lactuca sativa as indicator species to reveal the bioactive allelopathic fraction. This resulted in the isolation of compound 1, whose structure was elucidated through NMR techniques. The compound presented 92.34% inhibitory effect on the growth of lettuce at 500 ppm. Further field level experiments may help develop an environmentally friendly herbicide from this lead.

  10. Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore.

    NARCIS (Netherlands)

    Takabayashi, J.; Dicke, M.; Posthumus, M.A.

    1991-01-01

    During foraging, natural enemies of herbivores may employ volatile allelochemicals that originate from an interaction of the herbivore and its host plant. The composition of allelochemical blends emitted by herbivore-infested plants is known to be affected by both the herbivore and the plant. Our

  11. Ecotoxicological effects of benzoxazinone allelochemicals and their metabolites on aquatic nontarget organisms.

    Science.gov (United States)

    Fritz, Jona Ines; Braun, Rudolf

    2006-02-22

    Before natural plant allelochemicals can be exploited as biological pesticides against weeds and for disease control, more than the effect on target organisms needs to be known. This study presents results of aquatic biotests using four organisms, namely, a water flea, a freshwater alga, a soil alga, and a luminescent bacterium. The tested substances were 10 benzoxazinone derivatives, 3 of them known to be wheat allelochemicals, benzoxazolin-2(3H)-one (BOA), 6-methoxybenzoxazolin-2(3H)-one (MBOA), and 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one (DIMBOA), and 7 identified degradation intermediates and metabolites. For comparison, two commercial pesticide formulations (BAS, Betanal) were tested by applying the same set of biotests. The data set produced could be seen as an ecotoxicological evaluation for effects of allelochemicals against nontarget organisms and as a base for further risk assessment.

  12. Cytochrome P450 diversity and induction by gorgonian allelochemicals in the marine gastropod Cyphoma gibbosum

    Directory of Open Access Journals (Sweden)

    Nelson David R

    2010-12-01

    Full Text Available Abstract Background Intense consumer pressure strongly affects the structural organization and function of marine ecosystems, while also having a profound effect on the phenotype of both predator and prey. Allelochemicals produced by prey often render their tissues unpalatable or toxic to a majority of potential consumers, yet some marine consumers have evolved resistance to host chemical defenses. A key challenge facing marine ecologists seeking to explain the vast differences in consumer tolerance of dietary allelochemicals is understanding the biochemical and molecular mechanisms underlying diet choice. The ability of marine consumers to tolerate toxin-laden prey may involve the cooperative action of biotransformation enzymes, including the inducible cytochrome P450s (CYPs, which have received little attention in marine invertebrates despite the importance of allelochemicals in their evolution. Results Here, we investigated the diversity, transcriptional response, and enzymatic activity of CYPs possibly involved in allelochemical detoxification in the generalist gastropod Cyphoma gibbosum, which feeds exclusively on chemically defended gorgonians. Twelve new genes in CYP family 4 were identified from the digestive gland of C. gibbosum. Laboratory-based feeding studies demonstrated a 2.7- to 5.1-fold induction of Cyphoma CYP4BK and CYP4BL transcripts following dietary exposure to the gorgonian Plexaura homomalla, which contains high concentrations of anti-predatory prostaglandins. Phylogenetic analysis revealed that C. gibbosum CYP4BK and CYP4BL were most closely related to vertebrate CYP4A and CYP4F, which metabolize pathophysiologically important fatty acids, including prostaglandins. Experiments involving heterologous expression of selected allelochemically-responsive C. gibbosum CYP4s indicated a possible role of one or more CYP4BL forms in eicosanoid metabolism. Sequence analysis further demonstrated that Cyphoma CYP4BK/4BL and vertebrate

  13. Mimosine, the Allelochemical from the Leguminous Tree Leucaena leucocephala, Selectively Enhances Cell Proliferation in Dinoflagellates

    Science.gov (United States)

    Yeung, Patrick K. K.; Wong, Francis T. W.; Wong, Joseph T. Y.

    2002-01-01

    Mimosine, the allelochemical from the leguminous tree Leucaena leucocephala, is toxic to most terrestrial animals and plants. We report here that while mimosine inhibits major phytoplankton groups, it enhances cell proliferation in dinoflagellates. On addition to coastal seawater samples, mimosine is able to confer a growth advantage to dinoflagellates. The use of mimosine will promote the isolation and culture of this group of phytoplankton. PMID:12324368

  14. Cyanobacterial Toxins as Allelochemicals with Potential Applications as Algaecides, Herbicides and Insecticides

    Directory of Open Access Journals (Sweden)

    Fernando G. Noriega

    2008-05-01

    Full Text Available Cyanobacteria (“blue-green algae” from marine and freshwater habitats are known to produce a diverse array of toxic or otherwise bioactive metabolites. However, the functional role of the vast majority of these compounds, particularly in terms of the physiology and ecology of the cyanobacteria that produce them, remains largely unknown. A limited number of studies have suggested that some of the compounds may have ecological roles as allelochemicals, specifically including compounds that may inhibit competing sympatric macrophytes, algae and microbes. These allelochemicals may also play a role in defense against potential predators and grazers, particularly aquatic invertebrates and their larvae. This review will discuss the existing evidence for the allelochemical roles of cyanobacterial toxins, as well as the potential for development and application of these compounds as algaecides, herbicides and insecticides, and specifically present relevant results from investigations into toxins of cyanobacteria from the Florida Everglades and associated waterways.

  15. Effect of allelochemical tricin and its related benzothiazine derivative on photosynthetic performance of herbicide-resistant barnyardgrass.

    Science.gov (United States)

    Yang, Xue-Fang; Lei, Kang; Kong, Chui-Hua; Xu, Xiao-Hua

    2017-11-01

    Despite increasing knowledge of allelochemicals as leads for new herbicides, relatively little is known about the mode of action of allelochemical-based herbicides on herbicide-resistant weeds. In this study, herbicidal activities of a series of allelochemical tricin-derived compounds were evaluated. Subsequently, a benzothiazine derivative 3-(2-chloro-4-methanesulfonyl)-benzoyl-hydroxy-2-methyl-2H-1,2-benzothiazine-1,1-dioxide with 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibiting activity was identified as a target compound on photosynthetic performance of penoxsulam-resistant versus -susceptible barnyardgrass (Echinochloa crus-galli). Regardless of barnyardgrass biotype, the benzothiazine derivative greatly affected chlorophyll fluorescence parameters (Fv/Fm, ETR 1min and NPQ 1min ), reduced the chloroplast fluorescence levels and expression of HPPD gene. In particular, the benzothiazine derivative interfered with photosynthetic performance of resistant barnyardgrass more effectively than the allelochemical tricin itself. These results showed that the benzothiazine derivative effectively inhibited the growth of resistant barnyardgrass and its mode of action on photosynthesis system was similar to HPPD-inhibiting sulcotrione, making it an ideal lead compound for further development of allelochemical-based herbicide discovery. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Herbicidal Activities of Some Allelochemicals and Their Synergistic Behaviors toward Amaranthus tricolor L.

    Directory of Open Access Journals (Sweden)

    Nawasit Chotsaeng

    2017-10-01

    Full Text Available Seven allelochemicals, namely R-(+-limonene (A, vanillin (B, xanthoxyline (C, vanillic acid (D, linoleic acid (E, methyl linoleate (F, and (±-odorine (G, were investigated for their herbicidal activities on Chinese amaranth (Amaranthus tricolor L.. At 400 μM, xanthoxyline (C showed the greatest inhibitory activity on seed germination and seedling growth of the tested plant. Both vanillic acid (D and (±-odorine (G inhibited shoot growth, however, apart from xanthoxyline (C, only vanillic acid (D could inhibit root growth. Interestingly, R-(+-limonene (A lightly promoted root length. Other substances had no allelopathic effect on seed germination and seedling growth of the tested plant. To better understand and optimize the inhibitory effects of these natural herbicides, 21 samples of binary mixtures of these seven compounds were tested at 400 μM using 0.25% (v/v Tween® 80 as a control treatment. The results showed that binary mixtures of R-(+-limonene:xanthoxyline (A:C, vanillin:xanthoxyline (B:C, and xanthoxyline:linoleic acid (C:E exhibited strong allelopathic activities on germination and seedling growth of the tested plant, and the level of inhibition was close to the effect of xanthoxyline (C at 400 µM and was better than the effect of xanthoxyline (C at 200 µM. The inhibition was hypothesized to be from a synergistic interaction of each pair of alleochemicals. Mole ratios of each pair of allelochemicals ((A:C, (B:C, and (C:E were then evaluated, and the best ratios of the binary mixtures A:C, B:C and C:E were found to be 2:8, 2:8, and 4:6 respectively. These binary mixtures significantly inhibited germination and shoot and root growth of Chinese amaranth at low concentrations. The results reported here highlight a synergistic behavior of some allelochemicals which could be applied in the development of potential herbicides.

  17. Inhibition of Orobanche crenata seed germination and radicle growth by allelochemicals identified in cereals.

    Science.gov (United States)

    Fernández-Aparicio, Mónica; Cimmino, Alessio; Evidente, Antonio; Rubiales, Diego

    2013-10-16

    Orobanche crenata is a parasitic weed that causes severe yield losses in important grain and forage legume crops. Cereals have been reported to inhibit O. crenata parasitism when grown intercropped with susceptible legumes, but the responsible metabolites have not been identified. A number of metabolites have been reported in cereals that have allelopathic properties against weeds, pests, and pathogens. We tested the effect of several allelochemicals identified in cereals on O. crenata seed germination and radicle development. We found that 2-benzoxazolinone, its derivative 6-chloroacetyl-2-benzoxazolinone, and scopoletin significantly inhibited O. crenata seed germination. Benzoxazolinones, l-tryptophan, and coumalic acid caused the stronger inhibition of radicle growth. Also, other metabolites reduced radicle length, this inhibition being dose-dependent. Only scopoletin caused cell necrotic-like darkening in the young radicles. Prospects for their application to parasitic weed management are discussed.

  18. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.

    Science.gov (United States)

    Ciniglia, Claudia; Mastrobuoni, Francesco; Scortichini, Marco; Petriccione, Milena

    2015-05-01

    The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.

  19. [Inhibitory effect on Microcystis aeruginosa as well as separation and identification of the allelochemicals of welsh onion].

    Science.gov (United States)

    Zhou, Yang; Li, Yuan; Li, Cheng; Liu, Lu; Zhang, Tingting

    2013-11-01

    To study the inhibition of welsh onion on Microcystis aeruginosa, and separat and identify of the allelochemicals from welsh onion. METHEDS: The inhibitory effect of different concentrations of fistular onion stalk and fistular onion leaf water extracts on M. aeruginosa were studied; besides, separation and identification of the allelochemicals of welsh onion were also studied. Both fistular onion stalk and fistular onion leaf water extracts had, to different degree, inhibitory effect on the growth of M. aeruginosat. Compared with the control group, the fluorescence intensity of fistular onion stalk and fistular onion leaf were lower than the control group in the same period, and the inhibitory effect were more obvious with the increase of the water extract concentrations, to the fifth day, M. aeruginosa almost completely dead of the highest concentration(50 ml/L) of fistular onion stalk water extract treated group, the EC50 of water extract from fistular onion stalk to M. aeruginosa was 12.7 ml/L, equivalent to fresh weight 1.27 g/L. Main allelochemicals in fistular onion stalk includes allyl mercaptan, cyclopentyl mercaptan, and so on. The inhibiting assay on M. aeruginosa showed that the EC50 of allyl mercaptan and cyclopentyl mercaptan respectively were 0.03 and 0.02 g/L. The fistular onion stalk water extracts has very good algicidal effect, allelopathic algal inhibiting substances primarily are sulfocompound, which have the potential to develop into biological algicide.

  20. [Mechanism of the inhibitory action of allelochemical dibutyl phthalate on algae Gymnodinium breve].

    Science.gov (United States)

    Bie, Cong-Cong; Li, Feng-Min; Wang, Yi-Fei; Wang, Hao-Yun; Zhao, Ya-Han; Zhao, Wei; Wang, Zhen-Yu

    2012-01-01

    The aim of this study was to investigate the mechanism of inhibitory action of dibutyl phthalate (DBP) on red tide algae Gymnodinium breve. The effects of DBP on malonaldehyde, subcellular structure and superoxide dismutase (SOD) isoforms were investigated. The results showed that MDA accumulated in the algae cell under DBP exposure, and for the 3 mg x L(-1) DBP treated algae culture a peak value of 0.34 micromol x (10(9) cells) (-1) occurred at 72 h, which was about 2. 3 times than that of the control. TEM pictures showed the disruption of DBP on the subcellular structure of G. breve. A morphological phenomenon appeared that the algae cell was commonly found small tubules or apical parts around the cell membrane, and almost all normal cell organelles were indistinguishable finally. The activity of CuZn-SOD (main cytoplast located isoform with little in cloroplast) under DBP exposure was higher than that of the control, and no significant difference was observed on Fe-SOD (chloroplast located isoform) activity, but for the Mn-SOD (mitochondrial isoform), the activity was significantly inhibited. These results indicated that DBP might inhibit the algae growth from the plasma membrane and the mitochondria, resulting in oxidative damage in algae cell and a final death. This paper will give a theoretical support to the practical usage of the allelochemical on red tide algae.

  1. [Effects of allelochemical dibutyl phthalate on Gymnodinium breve reactive oxygen species].

    Science.gov (United States)

    Bie, Cong-Cong; Li, Feng-Min; Li, Yuan-Yuan; Wang, Zhen-Yu

    2012-02-01

    The purpose of this study was to investigate the mechanism of inhibitory action of dibutyl phthalate (DBP) on red tide algae Gymnodinium breve. Reactive oxygen species (ROS) level, contents of *OH and H2O2, and O2*(-) production rate were investigated, and also for the effects of electron transfer inhibitors on the ROS induction of DBP. The results showed that DBP triggered the synthesis of reactive oxygen species ROS, and with the increase of concentration of DBP, *OH and H2O2 contents in cells accumulated, as for the 3 mg x L(-1) DBP treated algae cultures, OH showed a peak of 33 U x mL(-1) at 48 h, which was about 2. 4 times higher than that in the controlled, and H2O2 contents was about 250 nmol x (10(7) cells)(-1) at 72 h, which was about 5 times higher and also was the highest during the whole culture. Rotenone (an inhibitor of complex I in the mitochondria electron transport chain) decreased the DBP induced ROS production, and dicumarol (an inhibitor of the redox enzyme system in the plasma membrane) stimulated the DBP induced ROS production. Taken all together, the results demonstrated DBP induced over production of reactive oxygen species in G. breve, which is the main inhibitory mechanism, and mitochondria and plasma membrane seem to be the main target site of DBP. These conclusions were of scientific meaning on uncovering the inhibitory mechanism of allelochemical on algae.

  2. Fate of benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts.

    Science.gov (United States)

    Krogh, Stine S; Mensz, Susanne J M; Nielsen, Susan T; Mortensen, Anne G; Christophersen, Carsten; Fomsgaard, Inge S

    2006-02-22

    Growing cereals (especially rye), which are incorporated into the soil to increase soil fertility or organic matter content, is a common practice in crop rotation. The additional sanitizing effect of this incorporation has often been appreciated and is said to be due to leaching of benzoxazinones and subsequent formation of benzoxazolinones. In this study wheat (Stakado) and rye (Hacada) sprouts were incorporated into soil in amounts that simulated agricultural practice. By extraction and subsequent LC-MS analysis the disappearance and appearance of benzoxazinones, benzoxazolinones, and phenoxazinones in soil were followed. In the wheat experiments 6-methoxybenzoxazolin-2-one (MBOA) was detected as the main compound. 2-Hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA) and 2-hydroxy-1,4-benzoxazin-3-one (HBOA) were detected as well. No phenoxazinones were detected. For the rye experiment the picture was more complex. In the first 2 days of incubation MBOA and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) were detected as the main allelochemicals along with HBOA, HMBOA, and benzoxazolin-2-one (BOA), in decreasing order. Later in the incubation period some 2-amino-3H-phenoxazin-3-one (APO) was detected and the amount of HBOA increased considerably and decreased again. The profiling of the benzoxazinone metabolites and their derivates in soil was dynamic and time-dependent. The highest concentrations of most of the compounds were seen at day 1 after incorporation. A maximum concentration was reached at day 4 for a few of the compounds. This study is the first of its kind that shows the dynamic pattern of biologically active benzoxazinone derivates in soil after incorporation of wheat and rye sprouts. Methods for organic synthesis of HBOA and HMBOA were developed as part of the study.

  3. Peroxidase and phenylalanine ammonia-lyase activities, phenolic acid contents, and allelochemicals-inhibited root growth of soybean

    Directory of Open Access Journals (Sweden)

    VANESSA HERRIG

    2002-01-01

    Full Text Available The influence of the allelochemicals ferulic (FA and vanillic (VA acids on peroxidase (POD, EC 1.11.1.7 and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5 activities and their relationships with phenolic acid (PhAs contents and root growth of soybean (Glycine max (L. Merr. were examined. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.1 to 1 mM for 48 h. Both compounds (at 0.5 and 1 mM decreased root length (RL, fresh weight (FW and dry weight (DW and increased PhAs contents. At 0.5 and 1 mM, FA increased soluble POD activity (18% and 47%, respectively and cell wall (CW-bound POD activity (61% and 34%, while VA increased soluble POD activity (33% and 17% but did not affect CW-bound POD activity. At 1 mM, FA increased (82% while VA reduced (32% PAL activities. The results are discussed on the basis of the role of these compounds on phenylpropanoid metabolism and root growth and suggest that the effects caused on POD and PAL activities are some of the many mechanisms by which allelochemicals influence plant growth

  4. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification

    Science.gov (United States)

    Cytochrome P450 monooxygenases (P450) play a prominent role in the adaptation of insects to host plant chemical defenses. To investigate the potential role of P450s in adaptation of the lepidopteran pest Spodoptera litura to host plant allelochemicals, an expressed sequence data set derived from 6th...

  5. Dissolved Organic Matter (DOM) From Different Composts: Comparative Study Of Properties And Allelochemical Effects On Horticultural Plants

    Science.gov (United States)

    Traversa, A.; Loffredo, E.; Gattullo, C. E.; Senesi, N.

    2009-04-01

    Dissolved organic matter (DOM) from compost has a major role in numerous chemical and biological processes occurring in the bulk substrate or compost amended soil, and can exert allelochemical effects on plant germination and growth. The objectives of this study were: (i) to investigate comparatively the main properties of three DOM fractions isolated from a green compost (DOMGC), a mixed compost (DOMMC) and a green coffee compost (DOMGCC), and (ii) to evaluate their allelochemical effects on the germination and early growth of two horticultural plants of worldwide interest such as tomato and lettuce. The DOM was extracted from each compost with distilled water (1/10 w/v) under mechanical shaking for 15 min. The suspension was then centrifuged at 6000 rpm for 15 min and filtered sequentially through filters with decreasing particle size retention (from 11 to 0.45 μm). Each DOM sample was characterized by means of pH, electrical conductivity, total organic carbon (TOC), E4/E6 ratio, fluorescence and FT IR spectroscopies and HPLC analysis. Comparative evaluation of the three DOM samples indicated the occurrence of significant differences among them. In particular, the pH value was similar and close to neutrality for DOMMC and DOMGC, whereas it resulted alkaline (pH 8.3) for DOMGCC. The EC values were also similar (about 3.2 mS/cm) for DOMMC and DOMGC and almost half value for DOMGCC. The TOC content, the E4/E6 ratio, the ɛ280 value and the humification index followed the same order: DOMGCC>DOMMC>DOMGC. The fluorescence analysis of the three DOM samples showed the presence of a common fluorophore unit associated to simple aromatic units such as phenolic-like, hydroxy-substituted benzoic and cinnamic acid derivatives. The peak wavelengths observed in the fluorescence emission, excitation and synchronous scan spectra of DOMGCC were generally higher than those of the two other DOM samples, which can be ascribed to a more extended aromatic system of the former. The FT

  6. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    Directory of Open Access Journals (Sweden)

    Bodil K Ehlers

    Full Text Available Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms.To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms or not (soil microorganisms present in soil. The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene.The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  7. Soil Microorganisms Alleviate the Allelochemical Effects of a Thyme Monoterpene on the Performance of an Associated Grass Species

    Science.gov (United States)

    Ehlers, Bodil K.

    2011-01-01

    Background Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. Methodology/Principal findings To explore if the allelopathic effects on a grass by the common thyme monoterpene “carvacrol” are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. Conclusions/Significance The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions. PMID:22125596

  8. Identification and Characterization of CYP9A40 from the Tobacco Cutworm Moth (Spodoptera litura), a Cytochrome P450 Gene Induced by Plant Allelochemicals and Insecticides

    Science.gov (United States)

    Wang, Rui-Long; Staehelin, Christian; Xia, Qing-Qing; Su, Yi-Juan; Zeng, Ren-Sen

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) of insects play crucial roles in the metabolism of endogenous and dietary compounds. Tobacco cutworm moth (Spodoptera litura), an important agricultural pest, causes severe yield losses in many crops. In this study, we identified CYP9A40, a novel P450 gene of S. litura, and investigated its expression profile and potential role in detoxification of plant allelochemicals and insecticides. The cDNA contains an open reading frame encoding 529 amino acid residues. CYP9A40 transcripts were found to be accumulated during various development stages of S. litura and were highest in fifth and sixth instar larvae. CYP9A40 was mainly expressed in the midgut and fat body. Larval consumption of xenobiotics, namely plant allelochemicals (quercetin and cinnamic acid) and insecticides (deltamethrin and methoxyfenozide) induced accumulation of CYP9A40 transcripts in the midgut and fat body. Injection of dsCYP9A40 (silencing of CYP9A40 by RNA interference) significantly increased the susceptibility of S. litura larvae to the tested plant allelochemicals and insecticides. These results indicate that CYP9A40 expression in S. litura is related to consumption of xenobiotics and suggest that CYP9A40 is involved in detoxification of these compounds. PMID:26393579

  9. The Use of Bio-Guided Fractionation to Explore the Use of Leftover Biomass in Dutch Flower Bulb Production as Allelochemicals against Weeds

    Directory of Open Access Journals (Sweden)

    Rob Verpoorte

    2013-04-01

    Full Text Available A major problem in flower bulb cultivation is weed control. Synthetic herbicides are mainly used, although they cause a range of problems, and integrated weed control through application of naturally occurring allelochemicals would be highly desirable. Flower bulb production creates large amounts of leftover biomass. Utilizing this source for weed control may provide new applications of the bulb crops. We therefore screened 33 flower bulb extracts for allelochemical activity against weeds. Several methanol and chloroform extracts were observed to inhibit germination and growth of Senecio vulgaris L. and Lolium perenne L., as representatives of di- and mono-cotyledonous weeds, respectively. Narciclasine was identified as the bioactive compound in Narcissus. The extract of Amaryllis belladonna L. was equally active, but did not contain any narciclasine. Bioassay-guided fractionation of the A. belladonna extract resulted in the identification of lycorine as the bio-active compound. The IC50 measured for radicle growth inhibition was 0.10 µM for narciclasine and 0.93 µM for lycorine, compared to 0.11 mM of chlorpropham, a synthetic herbicide. Therefore, the leftover biomass from the spring bulb industry represents an interesting potential source for promising allelochemicals for further studies on weed growth inhibition.

  10. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression.

    Science.gov (United States)

    Cheng, Fang; Cheng, Zhihui; Meng, Huanwen; Tang, Xiangwei

    2016-01-01

    Diallyl disulfide (DADS) is a volatile organosulfur compound derived from garlic (Allium sativum L.), and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L.) seed germination, root growth, mitotic index, and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs), auxin transport genes (SlPINs), and expansin genes (EXPs) in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01-0.62 mM) of DADS significantly promoted root growth, whereas higher levels (6.20-20.67 mM) showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM). This result suggests that tomato root growth may be

  11. Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession.

    Science.gov (United States)

    Fernandez, Catherine; Santonja, Mathieu; Gros, Raphael; Monnier, Yogan; Chomel, Mathilde; Baldy, Virginie; Bousquet-Mélou, Anne

    2013-02-01

    The Mediterranean region is recognized as a global biodiversity hotspot. However, over the last 50 years or so, the cessation of traditional farming has given way to strong afforestation at the expense of open habitats. Pinus halepensis Miller, known to synthesize a wide range of secondary metabolites, is a pioneer expansionist species colonizing abandoned agricultural land that present high species richness. Here, laboratory bioassays were used to study the potential impact of P. halepensis on plant diversity through allelopathy, and the role of microorganisms in these interactions. Germination and growth of 12 target species naturally present in fallow farmlands were tested according to concentration of aqueous extracts obtained from shoots of young pines (aged about 5 years), with or without the presence of soil microorganisms (autoclaved or natural soil). Under the highest concentrations and autoclaved soil, more than 80 % of target species were germination and/or growth-inhibited, and only two species were non-sensitive. Under more natural conditions (lower extracts concentrations and natural soil with microorganisms), only 50 % of species were still inhibited, one was non-sensitive, and five were stimulated. Thus, microorganisms alter the expression of allelochemicals released into the ecosystem, which highlights their key role in chemical plant-plant interactions. The results of allelopathic experiments conducted in the lab are consistent with the community patterns observed in the field. These findings suggest that allelopathy is likely to shape vegetation composition and participate to the control of biodiversity in Mediterranean open mosaic habitats.

  12. Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba.

    Science.gov (United States)

    Macías-Rubalcava, Martha L; Hernández-Bautista, Blanca E; Oropeza, Fabiola; Duarte, Georgina; González, María C; Glenn, Anthony E; Hanlin, Richard T; Anaya, Ana Luisa

    2010-10-01

    Muscodor yucatanensis, an endophytic fungus, was isolated from the leaves of Bursera simaruba (Burseraceae) in a dry, semideciduous tropical forest in the Ecological Reserve El Eden, Quintana Roo, Mexico. We tested the mixture of volatile organic compounds (VOCs) produced by M. yucatanensis for allelochemical effects against other endophytic fungi, phytopathogenic fungi and fungoids, and plants. VOCs were lethal to Guignardia mangifera, Colletotrichum sp., Phomopsis sp., Alternaria solani, Rhizoctonia sp., Phytophthora capsici, and P. parasitica, but had no effect on Fusarium oxysporum, Xylaria sp., the endophytic isolate 120, or M. yucatanensis. VOCs inhibited root elongation in amaranth, tomato, and barnyard grass, particularly those produced during the first 15 days of fungal growth. VOCs were identified by gas chromatography/mass spectrometry and included compounds not previously reported from other Muscodor species and the previously reported compounds octane, 2-methyl butyl acetate, 2-pentyl furan, caryophyllene, and aromadendrene. We also evaluated organic extracts from the culture medium and mycelium of M. yucatanensis on the same endophytes, phytopathogens, and plants. In general, extracts inhibited plants more than endophytic or phytopathogens fungi. G. mangifera was the only organism that was significantly stimulated by both extracts regardless of concentration. Compounds in both organic extracts were identified by gas chromatography/mass spectrometry. We discuss the possible allelopathic role that metabolites of M. yucatanensis play in its ecological interactions with its host plant and other organisms.

  13. Colony induction and growth inhibition in Desmodesmus quadrispina (Chlorococcales) by allelochemicals released from the filamentous alga Uronema confervicolum (Ulotrichales).

    Science.gov (United States)

    Leflaive, Joséphine; Lacroix, Gérard; Nicaise, Yvan; Ten-Hage, Loïc

    2008-06-01

    In biofilms, the competition between microorganisms for light, nutrients and space is extreme. Moreover, planktonic algae can be considered as competitors insofar as they decrease the available light for the benthic algae. One of the strategies employed by microorganisms to eliminate competitors is the release of inhibiting compounds, a process known as allelopathy. Here we demonstrate that a benthic/epiphytic alga, Uronema confervicolum, produces allelopathic compounds that induce oxidative stress and growth inhibition in the planktonic Desmodesmus quadrispina. Some of these compounds can also trigger the formation of colony in D. quadrispina. As colonies have higher sedimentation rates than unicells, their induction by U. confervicolum might decrease shading. This study is the first report of colony induction in the context of alga-alga interaction. Our results also suggest the implication of mitogen-activated protein (MAP) kinases in the transduction of the signal leading to the formation of reactive oxygen species in the cells. A comparison with allelochemicals from another planktonic green alga, Monoraphidium aff. dybowski, emphasizes the specificity of colony induction by U. confervicolum, in contrast with oxidative stress which is induced by several compounds. The reciprocal production of inhibiting compounds by D. quadrispina makes this interaction an interesting example of co-evolution between two microorganisms belonging to different compartments of the ecosystem.

  14. Isolation and Identification of Potential Allelochemicals from Aerial Parts of Avena fatua L. and Their Allelopathic Effect on Wheat.

    Science.gov (United States)

    Liu, Xingang; Tian, Fajun; Tian, Yingying; Wu, Yanbing; Dong, Fengshou; Xu, Jun; Zheng, Yongquan

    2016-05-11

    Five compounds (syringic acid, tricin, acacetin, syringoside, and diosmetin) were isolated from the aerial parts of wild oats (Avena fatua L.) using chromatography columns of silica gel and Sephadex LH-20. Their chemical structures were identified by means of electrospray ionization and high-resolution mass spectrometry as well as (1)H and (13)C nuclear magnetic resonance spectroscopic analyses. Bioassays showed that the five compounds had significant allelopathic effects on the germination and seedling growth of wheat (Triticum aestivum L.). The five compounds inhibited fresh wheat as well as the shoot and root growth of wheat by approximately 50% at a concentration of 100 mg/kg, except for tricin and syringoside for shoot growth. The results of activity testing indicated that the aerial parts of wild oats had strong allelopathic potential and could cause different degrees of influence on surrounding plants. Moreover, these compounds could be key allelochemicals in wild-oat-infested wheat fields and interfere with wheat growth via allelopathy.

  15. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry.

    Science.gov (United States)

    Wang, Rui; Hua, Ming; Yu, Yang; Zhang, Min; Xian, Qi-Ming; Yin, Da-Qiang

    2016-03-01

    We investigated the effects of allelochemical ferulic acid (FA) on a series of physiological and biochemical processes of blue-green algae Microcystis aeruginosa, in order to find sensitive diagnostic variables for allelopathic effects. Algal cell density was significantly suppressed by FA (0.31-5.17 mM) only after 48 h exposure. Inhibitions of photosynthetic parameters (F(v)/F(m) and F(v)'/F(m)') occurred more rapidly than cell growth, and the stimulation of non-photochemical quenching was observed as a feed-back mechanisms induced by photosystem II blockage, determining by PAM fluorometry. Inhibitions on esterase activity, membrane potential and integrity, as well as disturbance on cell size, were all detected by flow cytometry with specific fluorescent markers, although exhibiting varied sensitivities. Membrane potential and esterase activity were identified as the most sensitive parameters (with relatively lower EC50 values), and responded more rapidly (significantly inhibited only after 8 h exposure) than photosynthetic parameters and cell growth, thus may be the primary responses of cyanobacteria to FA exposure. The use of PAM fluorometry and flow cytometry for rapid assessment of those sensitive variables may contribute to future mechanistic studies of allolepathic effects on phytoplankton. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Potassium, not lepidimoide, is the principal 'allelochemical' of cress-seed exudate that promotes amaranth hypocotyl elongation.

    Science.gov (United States)

    Fry, Stephen C

    2017-10-17

    Imbibed cress ( Lepidium sativum L.) seeds exude 'allelochemicals' that promote excessive hypocotyl elongation and inhibit root growth in neighbouring competitors, e.g. amaranth ( Amaranthus caudatus L.) seedlings. The major hypocotyl promoter has recently been shown not to be the previously suggested acidic disaccharide, lepidimoic acid (LMA), a fragment of the pectic polysaccharide domain rhamnogalacturonan-I. The nature of the hypocotyl promoter has now been re-assessed. Low-molecular weight cress-seed exudate (LCSE) was fractionated by high-voltage electrophoresis, and components with different charge:mass ratios were tested for effects on dark-grown amaranth seedlings. Further samples of LCSE were size-fractionated by gel permeation chromatography, and active fractions were analysed electrophoretically. The LCSE strongly promoted amaranth hypocotyl elongation. The active principle was hydrophilic and, unlike LMA, stable to hot acid. After electrophoresis at pH 6·5, the only fractions that strongly promoted hypocotyl elongation were those with a very high positive charge:mass ratio, migrating towards the cathode 3-4 times faster than glucosamine. Among numerous naturally occurring cations tested, the only one with such a high mobility was potassium. K + was present in LCSE at approx. 4 m m , and pure KCl (1-10 m m ) strongly promoted amaranth hypocotyl elongation. No other cation tested (including Na + , spermidine and putrescine) had this effect. The peak of bioactivity from a gel permeation chromatography column exactly coincided with the peak of K + . The major 'allelopathic' substance present in cress-seed exudate that stimulates hypocotyl elongation in neighbouring seedlings is the inorganic cation, K + , not the oligosaccharin LMA. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  17. Nepenthes insignis uses a C2-portion of the carbon skeleton of L-alanine acquired via its carnivorous organs, to build up the allelochemical plumbagin.

    Science.gov (United States)

    Rischer, Heiko; Hamm, Andreas; Bringmann, Gerhard

    2002-03-01

    Tropical pitcher plants (Nepenthes) catch animals in their specialized cup-shaped leaves, digest the prey by secreting enzymes, and actively take up the resulting compounds. The benefit of this behaviour is the ability to grow and compete in nutrient-poor habitats. Our present in vitro study shows that not only the nitrogen of alanine fed to the carnivorous organs is used by the plant but that in addition intact C2-units derived from C-2 and C-3 of stable isotope labelled L-alanine serve as building blocks, here exemplarily for the synthesis of the secondary metabolite plumbagin, a potent allelochemical. This result adds a new facet to the benefit of carnivory for plants. The availability of plumbagin by a de novo synthesis probably enhances the plants' fitness in their defence against phytophagous and pathogenic organisms. A missing specific uptake or CoA activation mechanism might be the reason that acetate fed to the pitchers was not incorporated into the naphthoquinone plumbagin. The dihydronaphthoquinone glucosides rossoliside and plumbaside A, here isolated for the first time from Nepenthes, by contrast, showed no incorporation after feeding of any of the two precursors, suggesting these compounds to be storage forms with probably very low turnover rates.

  18. Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide.

    Science.gov (United States)

    Ohsawa, N; Ogata, Y; Okada, N; Itoh, N

    2001-11-01

    The physiological function of vanadium-bromoperoxidase (BPO) in the marine red alga, Corallina pilulifera, has been characterized from the viewpoint of allelochemical formation. The algae emit bromoform (CHBr3) depending on the enzyme activity level in vivo (Itoh, N., Shinya, M., 1994. Seasonal evolution of bromomethanes from coralline algae and its effect on atmospheric ozone. Marine Chemistry 45, 95-103). We demonstrated that bromoform produced by C. pilulifera played an important role in eliminating epiphytic organisms, especially microalgae on the surface. Such data suggest a strong relationship between the coralline algae and the coralline flat (deforested area in the marine environment: called isoyake in Japanese). Lithophyllum yessoense, the main inhabitant of coralline flats in Japan, produced a lower level of CHBr3 than C. pilulifera, and showed BPO activity. On the other hand, the seasonal change of BPO activity in C. pilulifera in vivo was in proportion to superoxide dismutase (SOD) activity and in inverse proportion to catalase activity. The phenomenon implies that BPO could be a potential substitute for catalase, because the enzyme catalyzes an efficient Br(-)-dependent catalase reaction.

  19. Concurrently inhibitory and allelopathic effects of allelochemicals secreted by Myriophyllum spicatum on growth of blue-green algae; Hozakinofusamo ga hoshutsushita areropashi busshitsu no aisorui ni taisuru fukugo sayo oyobi areropashi koka no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, S.; Inoue, Y.; Hosomi, M.; Murakami, A. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan)

    1998-10-10

    This paper describes effects of allelochemicals secreted by Myriophyllum spicatum on growth of blue-green algae. In order to propose an effective growth inhibitory method of blue-green algae with less impact on the ecosystem, biological interaction (allelopathy) between large aquatic plants and algae was investigated. Pyrogallic acid, gallic acid, catechin and ellagic acid secreted by M. spicatum provided growth inhibitory effects of blue-green algae (Microcyctis aeruginosa), individually. Complex interaction and allelopathic contribution of these four polyphenols were evaluated. By comparing the actual effects with the expected values, synergetic growth inhibitory effects were recognized by adding four polyphenols at the same time. Furthermore, growth inhibitory effects were evaluated for actual culture solution of M. spicatum and simulated culture solution made by four polyphenols. As a result, it was found that these four polyphenols relate to allelopathy of M. spicatum. 25 refs., 6 figs., 4 tabs.

  20. Physiological conjunction of allelochemicals and desert plants.

    Science.gov (United States)

    Yosef Friedjung, Avital; Choudhary, Sikander Pal; Dudai, Nativ; Rachmilevitch, Shimon

    2013-01-01

    Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds) were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  1. Physiological conjunction of allelochemicals and desert plants.

    Directory of Open Access Journals (Sweden)

    Avital Yosef Friedjung

    Full Text Available Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  2. Identification of Allelochemicals from Terminalia Chebula

    African Journals Online (AJOL)

    Nekky Umera

    allochemicals than the bark and were more inhibitory to seeding ... water (1:1) 5 times. The aqueous solution was saved and it was extracted with equal volume of ethanol: ethyl acetate (1:1) for 5 times. The resulting ethanol: ethyl acetate solution was ... The inhibitory effect on the seed germination by leaf aqueous extracts.

  3. Proposta metodológica para análise da ocorrência de sinergismo e efeitos potencializadores entre aleloquímicos Methodological proposal for analysis of synergism and potentializing effects among allelochemicals

    Directory of Open Access Journals (Sweden)

    A.P.S. Souza Filho

    2006-09-01

    Full Text Available Os procedimentos envolvendo a análise de sinergismo entre aleloquímicos têm envolvido, basicamente, a utilização de concentrações fixas. Neste trabalho, propõe-se um modelo teórico envolvendo quatro possibilidades de respostas: uma que demonstra a existência de sinergismo (possibilidade A do modelo; outra que revela a inexistência de sinergismo (possibilidade B do modelo; e duas que revelam que uma substância potencializa o efeito de outra (possibilidades C e D do modelo. Para efeito de teste do modelo, utilizaram-se duas substâncias químicas (ácido 3,4,5-trimetoxibenzóico [S1] e ácido verátrico [S2] isoladas das folhas de Parkia pendula, com atividade alelopática já comprovada, nas seguintes proporções: S1 pura, S2 pura e combinações de S1 e S2, nas seguintes proporções: 3:1, 1:1 e 1:3. Como plantas indicadoras foram utilizadas as plantas daninhas malícia (Mimosa pudica e mata-pasto (Senna obtusifolia. Os resultados, analisados em relação às quatro possibilidades estabelecidas no modelo teórico, permitiram inferir a inexistência de efeitos sinérgicos entre as duas substâncias testadas. As variações entre os resultados obtidos e a possibilidade B do modelo podem ser atribuídas ao potencial inibitório da substância e à sensibilidade das espécies receptoras às substâncias testadas.The procedures involving the analysis of synergism between allelochemicals have basically involved the use of fixed concentrations. This work deals with theoretical model involving four possibilities of response: one demonstraing the existence of synergism (possibility A of the model; one demonstraing the absence of synergism (possibility B of the model and two showing that a substance potentializes the effect of another (possibilities C and D of the model. Two isolated chemical substances (3,4,5-trimetoxybenzoic acid [S1] and 3,4-dimetoxybenzoic acid [S2] were used to test the model, isolated from Parkia pendula leaves with

  4. Resistance of tomato strains to the moth Tuta absoluta imparted by allelochemicals and trichome density Resistência de linhagens de tomateiro à traça Tuta absoluta, relacionada a aleloquímicos e à densidade de tricomas

    Directory of Open Access Journals (Sweden)

    Celso Mattes de Oliveira

    2012-02-01

    Full Text Available We examined the resistance of improved tomato strains rich in 2-tridecanone (2-TD, zingiberene (ZGB and acyl sugars (AA to the tomato moth, Tuta absoluta. We also studied whether selection for strains with higher densities of glandular trichomes, and thus presumably strains with higher concentrations of 2-tridecanone, was effective in promoting greater resistance to the moth. The TOM-584 and TOM-679 strains were used as susceptible controls, which have normal concentrations of the three allelochemicals. The improved strain TOM-687, which has a high AA content, has a widely documented resistance and was used as a standard resistant strain. The wild strain PI134417, which is resistant by means of its high 2-TD content, was also used as a standard resistant strain. The experiment was installed in a greenhouse with a completely randomized design. The wild strain PI 134417 was confirmed as being highly resistant. TOM-622 (rich in 2-TD, ZGB-703 (rich in ZGB, and TOM-687 (rich in AA showed significant reductions in the oviposition rate of the tomato moth, damage to the plants, injury to the leaflets, and the percentage of leaflets attacked in comparison with the control strains (TOM-584 and TOM-679. The levels of resistance to the moth for the TOM-622, ZGB-703, and TOM-687 strains were similar. In general, the genotypes with higher densities of glandular trichomes had greater resistance than the susceptible controls, with the strain BPX-367D-238-02 being particularly notable in its resistance.Comparou-se a efetividade de linhagens melhoradas de tomateiro, ricas em 2-tridecanona (2-TD, zingibereno (ZGB e acilaçúcares (AA, em relação aos níveis de resistência à traça-do-tomateiro Tuta absoluta. Verificaram-se, também, se linhagens selecionadas para maiores densidades de tricomas glandulares, presumivelmente com maiores níveis de 2-tridecanona, são efetivas em promover maior resistência à traça. Como testemunhas suscetíveis foram utilizadas

  5. The allelochemical MDCA inhibits lignification and affects auxin homeostasis

    Czech Academy of Sciences Publication Activity Database

    Steenackers, W.; Cesarino, I.; Klíma, Petr; Quareshy, M.; Vanholme, R.; Corneillie, S.; Kumpf, R. P.; Van De Wouwer, D.; Ljung, K.; Goeminne, G.; Novák, Ondřej; Zažímalová, Eva; Napier, R.; Boerjan, W.; Vanholme, B.

    2016-01-01

    Roč. 172, č. 2 (2016), s. 874-888 ISSN 0032-0889 R&D Projects: GA ČR(CZ) GA16-10948S; GA MŠk(CZ) LO1204 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : auxin biosynthesis * lignification * Asparagus officinalis Subject RIV: ED - Physiology Impact factor: 6.456, year: 2016

  6. Angelicin as the principal allelochemical in Heracleum sosnowskyi fruit.

    Science.gov (United States)

    Mishyna, Maryia; Laman, Nikolai; Prokhorov, Valery; Fujii, Yoshiharu

    2015-05-01

    Distribution patterns of furocoumarins in fruits of the invasive species Heracleum sosnowskyi Manden. (Sosnowskyi's hogweed) during a cold stratification period were investigated. Angelicin, bergapten, methoxalen and imperatorin were mainly localized in the fruit coats and their content varied depending on the fruit source. Cold stratification treatment (90 days, 2-3 degrees C) reduced the content of furocoumarins in the fruit coats by more than two times, compared with those before stratification. The specific activity of the detected furocoumarins and total activity of crude extracts were evaluated using Lactuca sativa, as acceptor plant. Crude extracts obtained from fruit coats and seeds of H. sosnowskyi suppressed 50% of radicle and hypocotyl growth of lettuce seedlings at the concentration range of 1.0-1.7 mg/mL. The inhibitory activity of angelicin was proved to be the highest compared with the other tested furocoumarins, and the inhibitory activity of crude extracts could be explained mainly by the presence of angelicin. Both, monocots (Lolium multiflorum, Phleum pratensis, Festuca pratesis, Lolium perenne) and dicots (Tripholium repens, Trifolium pretense) were found to be sensitive to the exudates of whole H. sosnowskyi fruits. Thus, we assume, that high inhibitory potential of furocoumarins, especially angelicin, at high seed productivity of H. sosnowskyi might have an ecological significance in plant-plant interaction.

  7. Allelochemicals Effect of Aqueous Leachate from Oudneya Africana R

    African Journals Online (AJOL)

    nesrine

    2014-03-05

    Mar 5, 2014 ... Phytochemistry, 32:851-857. Swaminathan C, Vinayrai RS, Suresh KK (1989). Allelopathicproctivities of Acacia nilotica. J. Trop. Forest Sci. 2:56-60. Torres A, Oliva RM; Castellano D, Cross P (1996). First world congress on allelopathy. A science of the future. SAI (University of Cadiz). Spain. p. 278.

  8. Allelochemical Control of Non-Indigenous Invasive Plant Species Affecting Military Testing and Training Activities

    Science.gov (United States)

    2010-10-01

    crude root exudates and water phase were applied directly to the liquid media in which the plants were growing . The chloroform and ethyl acetate... plant neighbors in the introduced range. We partially tested this hypothesis by growing seven competing native European plant species either with... bamboo ) in natural Indian soil in a single pulse, but soil concentrations at the time of planting seeds were either undetectable or very low

  9. Metabolomics differentiation of canola genotypes: towards an understanding of canola allelochemicals

    Directory of Open Access Journals (Sweden)

    Md eAsaduzzaman

    2015-01-01

    Full Text Available Allelopathy is one crop attribute that could be incorporated in an integrated weed management system as a supplement to synthetic herbicides. However, the underlying principles of crop allelopathy and secondary metabolite production are still poorly understood including in canola. In this study, an allelopathic bioassay and a metabolomic analysis were conducted to compare three non-allelopathic and three allelopathic canola genotypes. Results from the laboratory bioassay showed that there were significant differences among canola genotypes in their ability to inhibit root and shoot growth of the receiver annual ryegrass; impacts ranged from 14% (cv. Atr-409 to 76% (cv. Pak85388-502 and 0% (cv. Atr-409 to 45% (cv. Pak85388-502 inhibition respectively. The root length of canola also differed significantly between genotypes, there being a non-significant negative interaction (r = -0.71; y=0.303x+21.33 between the root length of donor canola and of receiver annual ryegrass. Variation in chemical composition was detected between organs (root extracts, shoot extracts and root exudates and also between canola genotypes. Root extracts contained more secondary metabolites than shoot extracts while fewer compounds were recorded in the root exudates. Individual compound assessments identified a total of 14 secondary metabolites which were identified from the six tested genotypes. However, only Pak85388-502 and Av-opal exuded sinapyl alcohol, p-hydroxybenzoic acid and 3,5,6,7,8-pentahydroxy flavones in agar growth medium, suggesting that the synergistic effect of these compounds playing a role for canola allelopathy against annual ryegrass in vitro.

  10. A semiempirical study on hydroxamic acids: formohydroxamic acid and derivatives of the allelochemical dimboa

    OpenAIRE

    Sant'Anna, Carlos Mauricio R.; Souza, Vivian Passos de

    2001-01-01

    Open chain hydroxamic acid (Hx) can exist as Z and E diastereomers of two tautomers, hydroxamic acid and hydroximic acid. The conformational stability of the formohydroxamic acid isomers evaluated by PM3 compared better to ab initio results from the literature than AM1 results. Structural data of the cyclic Hx 2,4-dihydroxy-7-metoxy-2H-1,4-benzoxazin-3(4 H)-one (DIMBOA) obtained by both semiempirical methods compared well to ab initio results. pKa data from the literature for derivatives of t...

  11. Functional Characterization and Expression of Molluscan Detoxification Enzymes and Transporters Involved in Dietary Allelochemical Resistance

    Science.gov (United States)

    2008-06-01

    Corbiculafluminea after heavy metals exposure. Aquatic Toxicology 67:347-357 Aherne GW, Hardcastle A, Valenti M, Bryant A, Rogers P, Pettit GR...resistance as a cellular defense mechanism in aquatic organisms. Aquatic Toxicology 48:357-389 Bayer FM (1961) The Shallow-Water Octocorallia of the West...and vertebrate (rainbow trout, Oncorhynchus mykiss). Aquatic Toxicology 69:81-93 Cheung CC, Zheng GJ, Li AM, Richardson BJ, Lam PK (2001) Relationships

  12. QSAR models for Daphnia magna toxicity prediction of benzoxazinone allelochemicals and their transformation products.

    Science.gov (United States)

    Lo Piparo, Elena; Fratev, Filip; Lemke, Frank; Mazzatorta, Paolo; Smiesko, Martin; Fritz, Jona Ines; Benfenati, Emilio

    2006-02-22

    The overall objective of this study is the ecotoxicological characterization of the benzoxazinone 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), the benzoxazolinones benzoxazolin-2-one (BOA) and 6-methoxybenzoxazolin-2-one (MBOA), and their transformation products: phenoxazinones 2-acetylamino-7-methoxy-3H-phenoxazin-3-one (AAMPO), 2-acetylamino-3H-phenoxazin-3-one (AAPO), 2-amino-7-methoxy-3H-phenoxazin-3-one (AMPO), and 2-amino-3H-phenoxazin-3-one (APO); aminophenol 2-aminophenol AP); acetamide N-(2-hydroxyphenyl)acetamide (HPAA); and malonamic acid amide N-(2-hydroxyphenyl)malonamic acid (HPMA). A comparison between empirical results and theoretical ones using rules-based prediction of toxicity was done, and it can be concluded that only the degradation metabolites exhibited significant ecotoxic effect. Using synthetic pesticides knowledge, several QSAR models were trained with various approaches and descriptors. The models generated exhibited good internal predictive ability (R(cv)2 > 0.6) and were used to predict the toxicity of the natural compounds studied.

  13. Coexistence via coevolution driven by reduced allelochemical effects and increased tolerance to competition between invasive and native plants.

    Science.gov (United States)

    Huang, Fangfang; Lankau, Richard; Peng, Shaolin

    2018-04-01

    Coevolution can promote long-term coexistence of two competing species if selection acts to reduce the fitness inequality between competitors and/or strengthen negative frequency dependence within each population. However, clear coevolution between plant competitors has been rarely documented. Plant invasions offer opportunities to capture the process of coevolution. Here we investigated how the developing relationship between an invasive forb, Alliaria petiolata, and a native competitor, Pilea pumila, may affect their long-term coexistence, by testing the competitive effects of populations of varying lengths of co-occurrence on each other across a chronosequence of invasion history. Alliaria petiolata and P. pumila tended to develop greater tolerance to competition over invasion history. Their coexistence was promoted more by increases in stabilizing relative to equalizing processes. These changes likely stem in part from reductions in allelopathic traits in the invader and evolution of tolerance in the native. These results suggested that some native species can evolve tolerance against the competitive effects of strong invaders, which likely promoted their persistence in invaded communities. However, the potential for coevolutionary rescue of competing populations is likely to vary across native species, and evolutionary processes should not be expected to compensate for the ecological consequences of exotic invasions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Evidence for inhibition of bacterial luminescence by allelochemicals from Fibrocapsa japonica (Raphidophyceae), and the role of light and microalgal growth rate

    NARCIS (Netherlands)

    van Rijssel, Marion; de Boer, M. Karin; Tyl, Monika R.; Gieskes, Winfried W. C.

    The marine microalga Fibrocapsa japonica Toriumi and Takano (Raphidophyceae) produces haemolysins, neurotoxins and reactive oxygen species (ROS). To quantify potential effects of such bioactive compounds on surrounding organisms the marine bacterium Vibrio fischeri was exposed to F. japonica culture

  15. Aleloquímico produzido pela gramínea forrageira Brachiaria humidicola Allelochemical produced by the forage grass Brachiaria humidicola

    Directory of Open Access Journals (Sweden)

    A.P.S. Souza Filho

    2005-03-01

    Full Text Available Os métodos usuais de controle de plantas daninhas não atendem mais as atuais e futuras exigências da sociedade em relação à preservação dos recursos naturais e da qualidade de vida. Uma alternativa para essa questão seriam os metabólitos secundários produzidos pelas plantas, que apresentam pouco risco para o ambiente e para os interesses da sociedade. Os objetivos deste trabalho foram isolar, identificar e caracterizar a atividade alelopática de substâncias químicas produzidas pela gramínea forrageira Brachiaria humidicola. Analisaram-se os efeitos alelopáticos dos extratos, frações e substâncias isoladas sobre a germinação e o desenvolvimento da radícula das invasoras malícia, fedegoso e mata-pasto, em bioensaios monitorados em períodos de 10 dias, em condições de 25 ºC e fotoperíodo de 12 horas, para a germinação, e 24 horas, para o desenvolvimento da radícula. A partir do extrato hidrometanólico, foi isolado e identificado o ácido p-cumárico. Os efeitos alelopáticos estiveram positivamente relacionados à concentração do ácido, à espécie de planta daninha e à característica da espécie analisada. Comparativamente, fedegoso e malícia se mostraram mais sensíveis aos efeitos alelopáticos. A germinação e o desenvolvimento da radícula do mata-pasto não foram afetados pelo ácido p-cumárico nas concentrações de 1,0 a 8,0 mg L¹. O alongamento da radícula se mostrou mais sensível aos efeitos alelopáticos do ácido pcumárico do que a germinação das sementes.The traditional methods of weed control in cultivated pasture do not meet society's present and future needs of protecting natural resources and life quality. An alternative to this problem could be the use of secondary metabolites produced by plants. These products present few risks to the environment and meet society interests. Therefore, this research was carried out to isolate, identify and characterize the allelopathic activity of chemical compounds produced by the forage grass Brachiaria humidicola. The allelopathic effects of the extracts, fractions and compound were tested on seed germination and root elongation of the weeds Mimosa pudica, Senna obtusifolia and Senna occidentalis. Germination bioassays were developed under 25 ºC and a photoperiod of 12 hours. For root elongation, the bioassay conditions were 25 ºC and photoperiod of 24 hours. Hydromethanolic extract was used as a source for isolating and identifying p-coumaric acid. The allelopathic effects were positively related to p-coumaric acid concentration, weed species and the evaluated parameter. Comparatively, S. occidentalis and M. pudica showed the greatest sensitivity to the allelopathic effects. For S. obtusifolia no allelopathic effects promoted by p-coumaric acid on seed germination or on root elongation could be detected under the concentration of 1.0 and 8.0 mg L-1. Root elongation was more sensitive to p-coumaric acid allelophatic effects than seed germination.

  16. Phytotoxicity and benzoxazinone concentration in field grown cereal rye (Secale cereale L.)

    Science.gov (United States)

    Rye (Secale cereale L.) synthesizes benxoxazinone allelochemicals that contribute to its ability to suppress weeds. The developmental stages and physiological conditions under which rye plants synthesizes maximal levels of allelochemicals are not well defined. Knowledge of the conditions under whi...

  17. Glucosinolate-Containing Seed Meal as a Soil Amendment to Control Plant Pests: 2000-2002

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.; Morra, M. J.

    2005-07-01

    Plants may produce compounds that directly or indirectly affect their biological environment. These compounds fall within a broad category of compounds called allelochemicals, and are exclusive of food that influences growth, health, or behavior of other organisms (Whittaker and Feeney 1971). One reason for interest in allelochemicals is their potential for use in alternative pest management systems. Using plant-produced allelochemicals in agricultural and horticultural practices could minimize synthetic pesticide use, reduce the associated potential for environmental contamination, and contribute to a more sustainable agricultural system.

  18. Efeito de aleloquímicos em tricomas foliares de tomateiro na repelência a ácaro (Tetranychus urticae Koch. em genótipos com teores contrastantes de 2-tridecanona Effect of allelochemicals in tomato leaf trichomes on mite (Tetranychus urticae Koch. repellency in genotypes with different levels of 2-tridecanone

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Aragão

    2002-01-01

    Full Text Available Com o objetivo de avaliar a ação de repelência a ácaro Tetranychus urticae Koch. em folíolos de tomateiro com altos teores do aleloquímico 2-tridecanona (2-TD associado a tricomas glandulares, utilizaram-se linhagens avançadas 'TOM 600' e 'TOM 601' (altos teores de 2-TD 'TOM 584' (padrão com baixo teor de 2-TD e seus parentais 'PI 134417' Lycopersicon hirsutum Dunal var. glabratum Mill. (alto teor de 2-TD e 'TOM 556' Lycopersicon esculentum Mill. (baixo teor de 2-TD. O experimento foi realizado em câmara com temperatura de 16 ºC e 68% de umidade. A metodologia usada consistiu em se colocar um folíolo de cada genótipo sobre uma folha de papel tipo ofício, a qual foi fixada sobre uma folha de isopor. O folíolo foi fixado com uma tachinha metálica no centro do mesmo, sendo então colocados 10 ácaros fêmeas sobre a tachinha para que fossem medidas as distâncias percorridas pelos artrópodes em tempos diferenciados. De maneira geral, a distância percorrida pelos ácaros aumentou de acordo com maiores tempos de ensaio. Obteve-se em 'PI 134417', juntamente com 'TOM 600' e 'TOM 601', menores médias de distâncias percorridas pelos ácaros nos tempos avaliados em comparação ao 'TOM 556' e 'TOM 584' em razão da repelência exercida que se associa a maiores teores de 2-tridecanona.For the evaluation of the mites (Tetranychus urticae Koch. repellency in tomato leaflets with high levels of 2-tridecanone (2-TD associated to glandular trichomes, we used the advanced lines, 'TOM 600' and 'TOM 601' (high 2-TD levels 'TOM 584' (control, low 2-TD levels and the parents 'PI 134417' Lycopersicon hirsutum Dunal var. glabratum (high 2-TD levels and 'TOM 556' Lycopersicon esculentum Mill. (low 2-TD levels. The experiment was carried out at 16ºC and 68% relative moisture. Leaflets of each genotype were placed on a sheet of paper, set on a Styrofoam sheet. Ten female mites were placed on a metallic thumbtack at the center of the leaflets, and the distances the mites moved after 20, 40 and 60 minutes were measured. In general, the distance the mites moved increased according to the time they were left on the thumbtack. The access 'PI 134417', along with the lines 'TOM 600' and 'TOM 601', showed lower distance averages then 'TOM 556' and 'TOM 584'. Those genotypes showed higher repellency, whitch is associated with higher levels of 2-TD.

  19. A stable-isotope mass spectrometry-based metabolic footprinting approach to analyze exudates from phytoplankton

    DEFF Research Database (Denmark)

    Weber, Ralf J. M.; Selander, Erik; Sommer, Ulf

    2013-01-01

    Phytoplankton exudates play an important role in pelagic ecology and biogeochemical cycles of elements. Exuded compounds fuel the microbial food web and often encompass bioactive secondary metabolites like sex pheromones, allelochemicals, antibiotics, or feeding attractants that mediate biologica...

  20. Novel anthelmintic compounds and molluscicides from medicinal plants.

    Science.gov (United States)

    Whitfield, P J

    1996-01-01

    This review assesses the role that can be played by allelochemicals (bioactive secondary compounds) from medicinal and other plants in the control of human helminthic diseases. In the search for new anthelmintics among plant allelochemicals, 3 practical issues have considerable significance. They are the range and capacity of anthelmintic bioassays utilised in preclinical studies in vitro on plant extracts, the phenomenon of coexistent allelochemicals with overlapping activity spectra within single plants, and the problem of non-specific cytotoxins among plant allelochemicals. These topics are discussed in the context of the present absence of any clinically useful plant anthelmintics. In the search for new plant molluscicides for schistosomiasis control, the characteristics of a range of molluscicidal plants are measured against those of the synthetic molluscicide of choice, niclosamide, and against the postulated attributes of practically useful plant molluscicides.

  1. Long-term allelopathic control of phytoplankton by the submerged macrophyte Elodea nuttallii

    NARCIS (Netherlands)

    Vanderstukken, M.; Declerck, S.A.J.; Decaestecker, E.; Muylaert, K.

    2014-01-01

    Keywords: allelochemicals; chemical ecology; competition; nutrient limitation; shallow lakes Summary 1.It is well known that submerged macrophytes can suppress phytoplankton blooms in lakes and thus promote water quality and biodiversity. One of the possible mechanisms through which submerged

  2. Slide 24

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. The similar chemical nature of the oils both in the tree as well as in the soil proves that oil allelochemicals in the soil come from tree. The similar chemical nature of the oils both in the tree as well as in the soil proves that oil allelochemicals in the soil come from tree. Release of ...

  3. 59 - 62 lawan paid

    African Journals Online (AJOL)

    DR. AMIN

    Accepted: May, 2011. ISSN 2006 - 6996. EFFECTS OF ALLELOCHEMICALS OF SOME EUCALYPTUS SPECIES ON. GERMINATION AND RADICLE GROWTH OF ..... Oyun, M. B. (2006): Allelopathic potentialities of Gliricidia sepium and Acacia auriculiformis on the germination and seedling vigour of maize (Zea mays L.).

  4. Antifungal activity of rice straw extract on some phytopathogenic fungi

    African Journals Online (AJOL)

    user

    2012-09-04

    Sep 4, 2012 ... Key words: Rice straw, allelochemicals, antifungal, Aspergillus flavus, Alternaria alternata, Botrytis cinerea, amylase, protease ..... Identification and quantification of compounds in a series of allelopathic and non- allelopathic rice root exudates. J. Chem. Ecol. 30:1647-1662. Timmer LW, Peever TL, Solel Z, ...

  5. Standardization of DNA extraction from invasive alien weed ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    DNA isolation from the weed, Parthenium hysterophorus is complicated due to the presence of high amount of allelochemicals in the form of secondary metabolites that causes hindrance in extraction and enzymatic reactions. A modified and efficient DNA extraction from P. hysterophorus leaf has been developed.

  6. Experience-based behavioral and chemosensory changes in the generalist insect herbivore Helicoverpa armigera exposed to two deterrent plant chemicals

    NARCIS (Netherlands)

    Zhou, D.; Loon, van J.J.A.; Wang, C.Z.

    2010-01-01

    Behavioral and electrophysiological responses of larvae of the polyphagous moth species Helicoverpa armigera to two plant-derived allelochemicals were studied, both in larvae that had been reared on a diet devoid of these compounds and in larvae previously exposed to these compounds. In dual-choice

  7. Antifungal activity of rice straw extract on some phytopathogenic fungi

    African Journals Online (AJOL)

    The antifungal activity of allelochemicals extracted from rice straw on the radial growth rate and the activity of some hydrolyzing enzymes of Aspergillus flavus, Alternaria alternata and Botrytis cinerea were studied in vitro. Five different concentrations (2, 4, 6, 8 and 10%, w/v) of water, methanol and acetone extracts of rice ...

  8. Impact of crop residues on seed germination of native desert plants ...

    African Journals Online (AJOL)

    Crop residues produce allelochemicals that may inhibit seed germination of many weeds. In this study, I assessed the effect of aqueous extracts of three crop residues (radish, rocket and rhodes) on final germination percentage and germination rate of four desert plants recorded as weeds in the United Arab Emirates farms ...

  9. Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L.

    NARCIS (Netherlands)

    De Deyn, G.B.; Biere, A.; Van der Putten, W.H.; Wagenaar, R.; Klironomos, J.N.

    2009-01-01

    Allelochemicals defend plants against herbivore and pathogen attack aboveground and belowground. Whether such plant defenses incur ecological costs by reducing benefits from plant mutualistic symbionts is largely unknown. We explored a potential trade-off between inherent plant chemical defense and

  10. Quantification of alkaloids, phenols and flavonoids in sunflower ...

    African Journals Online (AJOL)

    Allelochemicals in leaves, stems and roots of sunflower (cv Hysun 38) were determined using thin layer chromatography (TLC) for alkaloids and spectrophotometry for phenols and flavonoids. In the TLC, the highest Rf value was recorded in leaves, followed by roots and stems, a sequence that held true also for the quantity ...

  11. Effects of benzoic acid and cadmium toxicity on wheat seedlings

    Directory of Open Access Journals (Sweden)

    Kavita Yadav

    2013-06-01

    Full Text Available Benzoic acid (BA and Cd exhibit cumulative effects on plants due to their accumulation in the soil. The present study reports the effects of BA an allelochemical, Cd and their combinations on seed germination, seedling growth, biochemical parameters, and response of antioxidant enzymes in Triticum aestivum L. The experiment was conducted in sand supplemented with Hoagland nutrient solution. Benzoic acid was applied at concentrations of 0.5, 1.0, and 1.5 mM with or without Cd (7 mg L-1 to observe effects of allelochemical and Cd alone and in combination on wheat. Both stresses exhibited inhibitory effect on growth and metabolism of wheat seedlings. The allelochemical in single and combined treatments with Cd decreased seedling growth as compared to Cd stress. The two stresses significantly enhanced malondialdehyde content of wheat seedlings. The activity of other antioxidant enzymes, viz. superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and guaiacol peroxidase (POX were also recorded. SOD increased in seedlings under the two stresses. CAT more prominently ameliorates the toxic effects of H2O2 as compared with APX and POX and protected wheat seedlings from oxidative stress. Allelochemical buttressed the toxic effect of Cd on wheat seedlings.

  12. Collection and identification of algal species

    African Journals Online (AJOL)

    Mohabi

    2012-04-24

    Apr 24, 2012 ... each type was dissolved in 10 ml distilled water and then added in the form of 100 IU crystalline penicillin and 100 µg ..... nitrogen and total reducing sugars that might be implicated as allelochemical agents. Extra ..... Simple methods of estimating fifty percent end points. Am. J. Hyg. 27: 493-497. Saffan SE ...

  13. Antioxidant enzymes in Spodoptera littoralis (Boisduval): Are they enhanced to protect gut tissues during oxidative stress?

    Czech Academy of Sciences Publication Activity Database

    Krishnan, Natraj; Kodrík, Dalibor

    2006-01-01

    Roč. 52, č. 1 (2006), s. 11-20 ISSN 0022-1910 R&D Projects: GA ČR(CZ) GA522/05/0151 Institutional research plan: CEZ:AV0Z50070508 Keywords : antioxidant enzyme * oxidative stress * allelochemicals Subject RIV: CE - Biochemistry Impact factor: 2.019, year: 2006

  14. Allelopathic effect of aqueous extract of fresh leaf castor beans ...

    African Journals Online (AJOL)

    Allelopathy defines the production of specific biomolecules (allelochemical) by a plant that can induce positive or negative impacts on another culture. The crop of castor beans (Ricinus communis L.) is being economically valued and receiving attention, mainly by the biodiesel production, castor oil and animal feeding.

  15. Allelopathic effect of aqueous extract of fresh leaf castor beans ...

    African Journals Online (AJOL)

    Rukevwe S. Abraka

    2016-12-07

    Dec 7, 2016 ... Allelopathy defines the production of specific biomolecules (allelochemical) by a plant that can induce positive or negative impacts on another culture. The crop of castor beans (Ricinus communis L.) is being economically valued and receiving attention, mainly by the biodiesel production, castor oil and.

  16. Allelopathic appraisal effects of straw extract wheat varieties on the ...

    African Journals Online (AJOL)

    Allelopathy is a process in which secondary metabolites produced by plants, micro-organisms, viruses and fungi control growth and development of other biological systems. Some plants may beneficially or antagonistically affect other plants through allelochemical compounds which may be released directly or indirectly ...

  17. Effects of sunflower ( Helianthus annuus L .) extracts on wheat ...

    African Journals Online (AJOL)

    Commonly observed effects of allelochemicals were (a) decreased production of indole-3-acetic acid and gibberellic acid and lower values of electrical conductivity, moisture content, weed density, and fresh and dry weight of weeds, and (b) increased production of abscisic acid and higher values of pH, Mn, Fe, Mg, Ca, K, ...

  18. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings

    Science.gov (United States)

    Iqbal, Amjad; Fry, Stephen C.

    2012-01-01

    Many plants exude allelochemicals – compounds that affect the growth of neighbouring plants. This study reports further studies of the reported effect of cress (Lepidium sativum) seed(ling) exudates on seedling growth in Amaranthus caudatus and Lactuca sativa. In the presence of live cress seedlings, both species grew longer hypocotyls and shorter roots than cress-free controls. The effects of cress seedlings were allelopathic and not due to competition for resources. Amaranthus seedlings grown in the presence of cress allelochemical(s) had longer, thinner hypocotyls and shorter, thicker roots – effects previously attributed to lepidimoide. The active principle was more abundant in cress seed exudate than in seedling (root) exudates. It was present in non-imbibed seeds and releasable from heat-killed seeds. Release from live seeds was biphasic, starting rapidly but then continuing gradually for 24 h. The active principle was generated by aseptic cress tissue and was not a microbial digestion product or seed-treatment chemical. Crude seed exudate affected hypocotyl and root growth at ∼25 and ∼450 μg ml−1 respectively. The exudate slightly (28%) increased epidermal cell number along the length of the Amaranthus hypocotyl but increased total hypocotyl elongation by 129%; it resulted in a 26% smaller hypocotyl circumference but a 55% greater epidermal cell number counted round the circumference. Therefore, the effect of the allelochemical(s) on organ morphology was imposed primarily by regulation of cell expansion, not cell division. It is concluded that cress seeds exude endogenous substances, probably including lepidimoide, that principally regulate cell expansion in receiver plants. PMID:22268144

  19. Phytotoxic studies of medicinal plant species of Pakistan

    International Nuclear Information System (INIS)

    Gilani, S.A.; Adnan, M.; Kikuchi, A.; Fujii, Y.; Shinwari, Z.K.; Kazuo, N.; Watanabe, K.N.

    2010-01-01

    Allelopathic screening of 81 medicinal plant species, collected from North West Frontier Province (NWFP) Pakistan, was carried out to identify significantly higher allelopathic species for future phyto chemical analyses. For this purpose, sandwich method was used to test allelopathic potentials of leaf leachates of these plant species against lettuce seeds (Lactuca sativa L.). Two different concentrations of 10 mg and 50 mg of leaf leachates were used in the study. The radicle and hypocotyl growths were measured and compared with control treatments. It was observed that an endemic species Seriphidium kurramense, Andrachne cordifolia and Rhazya stricta were the stronger phyto toxic plants as compared to the other test species. Based on the current screening, three potential medicinal plants are recommended for future bioassay guided isolation of allelochemicals and for genetic diversity studies. It would also be interesting to see correlation between genetic markers and isolated allelochemicals. (author)

  20. Allelopathic Potential of Jasminum Officinale on Weed Species

    Directory of Open Access Journals (Sweden)

    Steliana RODINO

    2017-05-01

    Full Text Available Allelopathy is generally defined as any direct or indirect harmful or beneficial effect of one plant on another mediated by the production allelochemicals. The scope of this study was the evaluation of the potential allelopathic effect of Jasminum officinale against some weed species.  The effects of extracts obtained from root, stem and leaves of J. officinale, were evaluated against ragweed (Ambrosia artemisiifolia, ryegrass (Lolium perenne, and Johnsonn grass (Sorghum halepense. The aqueous leachates of jasmine demonstrated promising allelopathic potential by inhibiting seed germination and radicle elongation of all tested species. The more profound research in the field of allelopathy will eventually lead to the development of bioproducts designed for pest or weed control using allelochemicals.

  1. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    OpenAIRE

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review d...

  2. Methods of collection of plant root exudates in relation to plant metabolism and purpose: A review

    Czech Academy of Sciences Publication Activity Database

    Vránová, V.; Rejšek, K.; Skene, K. R.; Janouš, Dalibor; Formanek, P.

    2013-01-01

    Roč. 176, č. 2 (2013), s. 175-199 ISSN 1436-8730 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LM2010007 Institutional support: RVO:67179843 Keywords : allelochemical / CAM / C3 * C4 metabolism * retrieval * rhizodeposition * rhizosphere Subject RIV: EH - Ecology, Behaviour Impact factor: 1.663, year: 2013

  3. Allelopathic activity of micropropagated Hyssopus officinalis L., Lamiaceae, water infusions

    OpenAIRE

    Dragoeva, Asya P.; Nanova, Zheni D.; Kalcheva, Vanya P.

    2010-01-01

    The natural habitats of Hyssopus officinalis L. (Lamiaceae) in Bulgaria are not sufficient to satisfy the needs of this herb. Micropropagation might be used for obtaining plants with desirable traits. Hyssopus is a medicinal aromatic plant that has not been studied very much. Recently aromatic plants were investigated as potent allelopathic plants. Determining the modes of action of allelochemicals is one of the challenging aspects in allelopathic studies. The objective of this study was to d...

  4. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress?

    Science.gov (United States)

    Krishnan, Natraj; Kodrík, Dalibor

    2006-01-01

    The Egyptian armyworm Spodoptera littoralis is a polyphagous insect attacking a number of plant species including those belonging to the Solanaceae and Cruciferaceae families. Its digestive physiology must therefore adapt to the food plant to ensure maximum extraction of nutrients with minimum trade-off in terms of growth retardation by pro-oxidant allelochemicals. To investigate this, the caterpillars of S. littoralis were fed on a semi-artificial diet (Manduca Premix-Heliothis Premix) and for 24 h on potato plants (Solanum tuberosum), respectively, at the mature 6th instar, and the levels of oxidative radicals and antioxidant enzymes in their guts were compared. The gut pH, standard redox potential (Eh) and electron availability (pe) revealed that oxidizing conditions prevail which promote oxidation of pro-oxidant allelochemicals in foliage. Oxidative stress in the foregut and midgut tissue and the gut contents was assessed from the generation of superoxide radical, total peroxide content and protein carbonyl content. Antioxidant defense was measured by the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX) and glutathione S-transferase peroxidase (GSTpx). A significant (p enzymes SOD (in midgut tissues), CAT (in foregut, midgut tissue and contents), APOX (in foregut contents, midgut tissue and contents) and GSTpx (in foregut tissues) was recorded on the plant diet in comparison to the semi-artificial diet. The pro-oxidant allelochemicals in the plant diet are thus eliminated by the insect at the expense of up-regulation of antioxidative enzymes in response to increased oxidative stress from oxidizable allelochemicals. The results are consistent with the hypothesis that increased concentrations of antioxidants form an important component of the defense of herbivorous insects against both exogenous and endogenous oxidative radicals.

  5. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    Directory of Open Access Journals (Sweden)

    Rogério Barbosa Lima

    Full Text Available Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H, guaiacyl (G and syringyl (S monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway in a growth chamber for 24 h. In general, the results showed that 1 cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2 cinnamic and p-coumaric acids increased p-hydroxyphenyl (H monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G content, and sinapic acid increased sinapyl (S content; 3 when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H, cinnamic acid reduced H, G and S contents; and 4 when applied in conjunction with 3,4-(methylenedioxycinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL, p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  6. Allelopathic Potential of Jasminum Officinale on Weed Species

    OpenAIRE

    Steliana RODINO; Marian BUTU; Alina BUTU

    2017-01-01

    Allelopathy is generally defined as any direct or indirect harmful or beneficial effect of one plant on another mediated by the production allelochemicals. The scope of this study was the evaluation of the potential allelopathic effect of Jasminum officinale against some weed species.  The effects of extracts obtained from root, stem and leaves of J. officinale, were evaluated against ragweed (Ambrosia artemisiifolia), ryegrass (Lolium perenne), and Johnsonn grass (Sorghum halepense). The aq...

  7. Significance of investigating allelopathic interactions of marine organisms in the discovery and development of cytotoxic compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, A.; Thakur, N.L.

    ]. In well illuminated regions, the sponge Verongia arrophoha which contained symbiotic cyanobacteria showed a higher growth rate and production of allelochemical as compared that in darker areas where it lacked the ability of producing...-mediated interactions are well documented in literature [9-11] whereas chemically-mediated interactions have not received enough attention. These chemically-mediated interactions are the source of novel bioactive metabolites [12]. A wide range of natural products...

  8. Chemical Characterization and Release Efficiency of Defatted Mustard Meals: 2000-2002

    Energy Technology Data Exchange (ETDEWEB)

    Morra, M. J.

    2005-07-01

    Glucosinolates, compounds that occur in agronomically important crops, may represent a viable source of allelochemic control for various soil-borne plant pests. Toxicity is not attributed to intact glucosinolates, but instead to biologically active products such as isothiocyanates (ITCs), organic cyanides, oxazolidinethiones, and ionic thiocyanate (SCN-) released upon enzymatic degradation by myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1) in the presence of water.

  9. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy

    Directory of Open Access Journals (Sweden)

    Fang eCheng

    2015-11-01

    Full Text Available Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment or negative effects (e.g., autotoxicity, soil sickness, or biological invasion. To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory / inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1 Description of management practices related to allelopathy and allelochemicals in agriculture. (2 Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3 Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4 Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on

  10. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A

    Czech Academy of Sciences Publication Activity Database

    Voegele, A.; Graeber, K.; Oracz, K.; Tarkowská, Danuše; Jacquemoud, D.; Turečková, Veronika; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, G.

    2012-01-01

    Roč. 63, č. 14 (2012), s. 5337-5350 ISSN 0022-0957 R&D Projects: GA ČR GD522/08/H003; GA AV ČR KAN200380801 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Allelochemical * apoplastic superoxide * embryo growth Subject RIV: CE - Biochemistry Impact factor: 5.242, year: 2012

  11. Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on the growth of the red tide microalga Prorocentrum donghaiense under laboratory conditions

    Science.gov (United States)

    Wang, Renjun; Xiao, Hui; Wang, You; Zhou, Wenli; Tang, Xuexi

    2007-10-01

    Allelopathic effects of several concentrations of fresh tissue and dry powder of three macroalgae, Ulva linza, Corallina pilulifera and Sargassum thunbergii, on the red tide microalga Prorocentrum donghaiense were evaluated in microcosms. Preliminary studies on the algicidal effects of one aqueous and four organic solvent extracts from the macroalgae on the microalga were carried out to confirm the existence of allelochemicals in the tissues of the macroalgae. The effects of macroalgal culture medium filtrate on P. donghaiense were investigated using initial or semi-continuous filtrate addition. Furthermore, the potential effects of the microalga on these three macroalgae were also tested. The results of the microcosm assay showed that the growth of P. donghaiense was strongly inhibited by using fresh tissues and dry powder of the three macroalgae. Both aqueous and methanol extracts of the macroalgae had strong growth inhibitory effects on P. donghaiense, while the other three organic solvent extracts (acetone, ether and chloroform) had no apparent effect on its growth; this suggested that the allelochemicals from these three macroalga had relatively high polarities. The three macroalgal culture medium filtrates exhibited apparent growth inhibitory effect on the microalgae under initial or semi-continuous addition, which suggested that the cells of P. donghaiense are sensitive to the allelochemicals. In contrast, P. donghaiense had no apparent effect on the growth of the macroalgae in coexistence experiment.

  12. Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds.

    Science.gov (United States)

    Mishra, Sandhya; Upadhyay, Ram Sanmukh; Nautiyal, Chandra Shekhar

    2013-07-01

    The field of allelopathy is one of the most fascinating but controversial processes in plant ecology that offers an exciting, interdisciplinary, complex, and challenging study. In spite of the established role of soil microbes in plant health, their role has also been consolidated in studies of allelopathy. Moreover, allelopathy can be better understood by incorporating soil microbial ecology that determines the relevance of allelopathy phenomenon. Therefore, while discussing the role of allelochemicals in plant-plant interactions, the dynamic nature of soil microbes should not be overlooked. The occurrence and toxicity of allelochemicals in soil depend on various factors, but the type of microflora in the surroundings plays a crucial role because it can interfere with its allelopathic nature. Such microbes could be of prime importance for biological control management of weeds reducing the cost and ill effects of chemical herbicides. Among microbes, our main focus is on bacteria--as they are dominant among other microbes and are being used for enhancing crop production for decades--and fungi. Hence, to refer to both bacteria and fungi, we have used the term microbes. This review discusses the beneficial role of microbes in reducing the allelopathic effects of weeds. The review is mainly focused on various functions of bacteria in (1) reducing allelopathic inhibition caused by weeds to reduce crop yield loss, (2) building inherent defense capacity in plants against allelopathic weed, and (3) deciphering beneficial rhizospheric process such as chemotaxis/biofilm, degradation of toxic allelochemicals, and induced gene expression.

  13. Gut microbes may facilitate insect herbivory of chemically defended plants.

    Science.gov (United States)

    Hammer, Tobin J; Bowers, M Deane

    2015-09-01

    The majority of insect species consume plants, many of which produce chemical toxins that defend their tissues from attack. How then are herbivorous insects able to develop on a potentially poisonous diet? While numerous studies have focused on the biochemical counter-adaptations to plant toxins rooted in the insect genome, a separate body of research has recently emphasized the role of microbial symbionts, particularly those inhabiting the gut, in plant-insect interactions. Here we outline the "gut microbial facilitation hypothesis," which proposes that variation among herbivores in their ability to consume chemically defended plants can be due, in part, to variation in their associated microbial communities. More specifically, different microbes may be differentially able to detoxify compounds toxic to the insect, or be differentially resistant to the potential antimicrobial effects of some compounds. Studies directly addressing this hypothesis are relatively few, but microbe-plant allelochemical interactions have been frequently documented from non-insect systems-such as soil and the human gut-and thus illustrate their potential importance for insect herbivory. We discuss the implications of this hypothesis for insect diversification and coevolution with plants; for example, evolutionary transitions to host plant groups with novel allelochemicals could be initiated by heritable changes to the insect microbiome. Furthermore, the ecological implications extend beyond the plant and insect herbivore to higher trophic levels. Although the hidden nature of microbes and plant allelochemicals make their interactions difficult to detect, recent molecular and experimental techniques should enable research on this neglected, but likely important, aspect of insect-plant biology.

  14. The effect of water extracts from leaves of Festuca rubra, F. ovina and F. Arundinacea on the initial growth and development of other grass species

    Directory of Open Access Journals (Sweden)

    Halina Lipińska

    2013-07-01

    Full Text Available The allelopathic effect of plants is one of the least known factors determining the stability of lawn swards. Leaves are a rich source of allelopathic substances. Washed out by rain or dew drops, or released during biomass decomposition, these substances can impact plants. In practice, cut sward is often left on the lawn surface and can have an allelopathic effect on regrowing plants. The effect of released allelochemicals depends on many factors, including their concentration. Hence, in order to maintain the high functional properties of the lawn, information is needed on the critical concentrations of allelochemicals inhibiting plant growth and development. Laboratory research was thus undertaken (on Petri dishes to evaluate the effect of various water extracts of leaves of selected lawn grass cultivars. The following cultivars were the donors: 'Areta', 'Nimba', 'Olivia' (Festuca rubra; 'Espro', 'Pintor' (F. ovina,and 'Asterix' (F. arundinacea, while the acceptors were: 'Niwa' (Agrostis capillaris, 'Asterix' (Festuca arundinacea, 'Espro' (F. ovina, 'Areta' (F. rubra, 'Stadion' (Lolium perenne, and 'Bila' (Poa pratensis – the species frequently sown in lawns. In the control treatments, distilled water was applied to the substrate. The experiment revealed that the effect of water extracts of leaves varied depending on their concentration and donor variety as well as the sensitivity of the acceptor (the test plant. In comparison with the control treatments, the strongest negative impact was caused by the cultivars 'Olivia' (F. rubraand 'Pintor' (F. ovina, followed by 'Asterix' (F. arundinacea. Among the acceptors, the greatest sensitivity to the presence of allelochemicals was shown by A. capillaris, and the smallest by F. arundinacea. .

  15. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    Science.gov (United States)

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review demonstrates the ecological significance of such plant secondary metabolites in the highly diverse interactions between insects and plants.

  16. Regulation of Fatty Acid Production and Release in Benthic Algae: Could Parallel Allelopathy Be Explained with Plant Defence Theories?

    Science.gov (United States)

    Allen, Joey L; Ten-Hage, Loïc; Leflaive, Joséphine

    2018-04-01

    Many organisms produce chemical compounds, generally referred as secondary metabolites, to defend against predators and competitors (allelopathic compounds). Several hypotheses have been proposed to explain the interaction between environmental factors and secondary metabolites production. However, microalgae commonly use simple metabolites having a role in primary metabolism as allelopathic compounds. The aim of this study was to determine whether classical theories of plant chemical defences could be applied to microalgae producing allelochemicals derived from the primary metabolism. Our study was designed to investigate how growth phase, algal population density, nutrient limitation and carbon assimilation affect the production and release of allelopathic free fatty acids (FFAs) among other FFAs. The model species used was Uronema confervicolum, a benthic filamentous green alga that produces two allelopathic FFAs (linoleic and α-linolenic acids) inhibiting diatom growth. FFAs have been quantified in algal biomass and in culture medium. Our results were analysed according to two classical plant defence theories: the growth-differentiation balance hypothesis (GDBH) and the optimal defence theory (ODT), based on the metabolic capacities for defence production and on the need for defence, respectively. While a higher production of allelopathic compounds under increased light conditions supports the use of GDBH with this microalga, the observation of a negative feedback mechanism mostly supports ODT. Therefore, both theories were insufficient to explain all the observed effects of environmental factors on the production of these allelochemicals. This highlights the needs of new theories and models to better describe chemical interactions of microalgae.

  17. Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense.

    Science.gov (United States)

    Wang, Renjun; Xiao, Hui; Zhang, Peiyu; Qu, Liang; Cai, Hengjiang; Tang, Xuexi

    2007-04-01

    The allelopathic effects of fresh tissue, dry powder and aqueous extracts of three macroalgae, Ulva pertusa, Corallina pilulifera and Sargassum thunbergii, on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense were evaluated using coexistence culture systems in which concentrations of the three macroalga were varied. The results of the coexistence assay showed that the growth of the two microalgae was strongly inhibited by using fresh tissue, dry powder and aqueous extracts of the three macroalga; the allelochemicals were lethal to H. akashiwo at relatively higher concentrations of the three macroalga. The macroalgae showing the most allelopathic effect on H. akashiwo and A. tamarense using fresh tissue were U. pertusa and S. thunbergii, using dry powder were S. thunbergii and U. pertusa, and using aqueous extracts were U. pertusa and C. pilulifera. We also examined the potential allelopathic effect on the two microalgae of culture filtrate of the three macroalga; culture medium filtrate initially exhibited no inhibitory effects when first added but inhibitory effects became apparent under semi-continuous addition, which suggested that continuous release of small quantities of rapidly degradable allelochemicals from the fresh macroalgal tissue were essential to effectively inhibit the growth of the two microalgae.

  18. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy.

    Science.gov (United States)

    Goga, Michal; Antreich, Sebastian J; Bačkor, Martin; Weckwerth, Wolfram; Lang, Ingeborg

    2017-05-01

    Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.

  19. Dual purpose secondary compounds: phytotoxin of Centaurea diffusa also facilitates nutrient uptake.

    Science.gov (United States)

    Tharayil, Nishanth; Bhowmik, Prasanta; Alpert, Peter; Walker, Elsbeth; Amarasiriwardena, Dulasiri; Xing, Baoshan

    2009-01-01

    Traits that allow more efficient foraging for a deficient resource could increase the competitiveness of a species in resource-poor habitats. Considering the metal-nutrient mobilization ability of many allelochemicals, it is hypothesized that, along with the reported toxic effect on the neighbors, these compounds could be directly involved in resource acquisition by the allelopathic plant. Using nutrient manipulation treatments in hydroponic culture, this hypothesis was tested using Centaurea diffusa, an invasive species that produces the putative phytotoxin 8-hydroxyquinoline (8HQ). The exudation of 8HQ by C. diffusa was very limited and transient. It was further shown that: C. diffusa utilizes 8HQ for its own acquisition of iron, a nutrient deficient in many of its alkaline, invaded habitats; there possibly exists a unique mechanism for the uptake of the 8HQ-complexed iron (Fe) in C. diffusa, which is novel to the nongraminaceous species; although phytotoxic at very low concentrations, the toxic effect of 8HQ showed a conditional response in the presence of metals, and was significantly reduced when 8HQ was complexed with copper (Cu) and Fe. This study, in addition to elucidating one of the possible adaptive mechanisms conferring competitive advantage to C. diffusa, also outlines measures to negate the phytotoxicity of its putative allelochemical. The results indicate that the exudation of 8HQ by C. diffusa could be primarily for nutrient acquisition.

  20. Allelopathy: Potential Role to Achieve New Milestones in Rice Cultivation

    Directory of Open Access Journals (Sweden)

    M.K. Amb

    2016-07-01

    Full Text Available Rice fields are ecosystems with many types of plants, microbes, invertebrates, birds and animals. The rice farming protects the biodiversity of the region and maintains the ecosystem for the benefit of environment. Some rice varieties release biocidal allelochemicals which might affect major weeds, microbial and pathogenic diversity around rice plants, even soil characteristics. A large number of compounds such as phenolic acids, fatty acids, indoles and terpenes have been identified in rice root exudates and decomposing rice residues, as putative allelochemicals which can interact with surrounding environment. Since these allelopathic interactions may be positive, they can be used as effective contributor for sustainable and eco-friendly agro-production system. Genetic modification of crop plants to improve their allelopathic properties and enhancement of desirable traits has been suggested. Development of crops with enhanced allelopathic traits by genetic modification should be done cautiously, keeping in view of the ecological risk assessment (non-toxic and safe for humans and ecosystem, crop productivity, ratio of benefit and cost, etc..

  1. Plant and herbivore ontogeny interact to shape the preference, performance and chemical defense of a specialist herbivore.

    Science.gov (United States)

    Quintero, Carolina; Bowers, M Deane

    2018-01-30

    The amount of damage that herbivorous insects impose on plants varies as a function of plant ontogenetic trajectories in tissue quality and defenses, and the herbivores' own developmental trajectories in body size, mandible shape and detoxification enzymes, among others. However, little is known about how host plant and herbivore ontogeny interact. Using four ontogenetic stages of Plantago lanceolata (Plantaginaceae) and three to five larval stages of the specialist caterpillar Junonia coenia (Nymphalidae), we evaluated how ontogenies in both of these trophic levels shape: (i) caterpillar feeding choice, (ii) performance, and (iii) sequestration of plant allelochemicals. Plant physical (leaf toughness) and chemical (iridoid glycosides) defenses increased, while nutritional quality (water and nitrogen content) decreased, as plants aged. These plant ontogenetic trajectories strongly altered the behavior and physiology of this specialist herbivore, but the magnitude of the response varied with larval stage. In feeding experiments, while first instar larvae showed little preference among plant stages, older larvae significantly preferred juvenile over reproductive stages. In turn, larval consumption increased and digestive efficiency decreased, potentially explaining their decrease in relative growth rate, as larvae and host plant aged, but differences were greater for younger than older caterpillars. Finally, sequestration of plant allelochemicals increased through plant and larval development; however, the major differences due to diet occurred earlier during larval development. Our results highlight that changes in plant ontogeny most strongly influence early herbivore instars, emphasizing the need to consider the developmental stage of both trophic levels to better understand temporal variation in herbivore damage.

  2. Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris).

    Science.gov (United States)

    Barney, Jacob N; Hay, Anthony G; Weston, Leslie A

    2005-02-01

    Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, alpha-pinene, and beta-pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.

  3. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates.

    Science.gov (United States)

    Ben Gharbia, Hela; Kéfi-Daly Yahia, Ons; Cecchi, Philippe; Masseret, Estelle; Amzil, Zouher; Herve, Fabienne; Rovillon, Georges; Nouri, Habiba; M'Rabet, Charaf; Couet, Douglas; Zmerli Triki, Habiba; Laabir, Mohamed

    2017-01-01

    Macrophytes are known to release allelochemicals that have the ability to inhibit the proliferation of their competitors. Here, we investigated the effects of the fresh leaves of two magnoliophytes (Zostera noltei and Cymodocea nodosa) and thalli of the macroalgae Ulva rigida on three HAB-forming benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis). The effects of C. nodosa and U. rigida were also tested against the neurotoxic planktonic dinoflagellate Alexandrium pacificum Litaker sp. nov (former Alexandrium catenella). Co-culture experiments were conducted under controlled laboratory conditions and potential allelopathic effects of the macrophytes on the growth, photosynthesis and toxin production of the targeted dinoflagellates were evaluated. Results showed that U. rigida had the strongest algicidal effect and that the planktonic A. pacificum was the most vulnerable species. Benthic dinoflagellates seemed more tolerant to potential allelochemicals produced by macrophytes. Depending on the dinoflagellate/macrophyte pairs and the weight of leaves/thalli tested, the studied physiological processes were moderately to heavily altered. Our results suggest that the allelopathic activity of the macrophytes could influence the development of HAB species.

  4. A generalist herbivore in a specialist mode Metabolic, sequestrative, and defensive consequences.

    Science.gov (United States)

    Blum, M S; Severson, R F; Arrendale, R F; Whitman, D W; Escoubas, P; Adeyeye, O; Jones, C G

    1990-01-01

    Adults of a generalist herbivore, the lubber grasshopper,Romalea guttata, can be converted to functional specialists by feeding them exclusively on catnip,Nepeta cataria. No obvious adverse effects on adult development resulted from this enforced monophagy. Notwithstanding the fact thatR. guttata has had no coevolutionary relationship with this Eurasian mint, it readily sequesters compounds that are identical to or derived from the terpenoid lactones that are characteristic ofN. cataria. R. guttata appears to both biomagnify minor allelochemicals and to sequester metabolites of theNepeta terpenes in its paired defensive glands. The levels of autogenously produced phenolics are not affected by feeding onN. cataria and the defensive secretions of catnip-fed grasshoppers are more repellent to ants than those of wild-fed acridids. Metabolites of theN. cataria monoterpenes are sequestered in the defensive glands when catnip is added to the natural diet ofR. guttata. The ability of a generalist,R. guttata, to facilely bioaccumulate a potpourri of foreign allelochemicals when feeding in a specialist mode is analyzed in terms of its biochemical, physiological, and functional significance. Sequestration is examined as a response to the enteric effronteries represented by the phytochemicals that can be characteristic of the "overload" in a monophagous diet.

  5. Phytotoxic effects of Cerbera manghas L. leaf extracts on seedling elongation of four monocot and four dicot test species

    Directory of Open Access Journals (Sweden)

    Ichsan Nurul Bari

    2017-09-01

    Full Text Available Exploration of allelochemicals with phytotoxic effects is intended to minimize a current dependency on synthetic herbicides in weed management. Several allelochemicals from the tropical tree Cerbera manghas (sea mango have been reported as termiticides and bactericides. The present study investigated possible phytotoxic effects of C. manghas leaf extracts under laboratory conditions. Four monocots: barnyard grass (Echinochloa crus-galli, foxtail fescue (Vulpia myuros, Italian ryegrass (Lolium multiflorum, and timothy (Phleum pratense and four dicots: alfalfa (Medicago sativa, garden cress (Lepidium sativum, lettuce (Lactuca sativa, and rapeseed (Brassica napus were used as test species. Elongation of both shoots and roots of seedlings was measured to assess any phytotoxic effects. The results showed that the sensitivities of shoots and roots were different between the test species, and the inhibition of seedling elongation significantly increased with increasing concentration of leaf extracts of C. manghas for all the test species. The IC50 (50% inhibitory concentration values showed that 8.50–32.30 and 4.26–34.67 mg dry weight equivalent extract mL−1 of C. manghas inhibited seedling elongation by 50%, for shoots and roots respectively. Isolation and identification of the phytotoxic substances from C. manghas are suggested for future investigation.

  6. Humic substances can modulate the allelopathic potential of caffeic, ferulic, and salicylic acids for seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Loffredo, Elisabetta; Monaci, Linda; Senesi, Nicola

    2005-11-30

    The capacity of a leonardite humic acid (LHA), a soil humic acid (SHA), and a soil fulvic acid (SFA) in modulating the allelopathic potential of caffeic acid (CA), ferulic acid (FA), and salicylic acid (SA) on seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) was investigated. Lettuce showed a sensitivity greater than that of tomato to CA, FA, and SA phytotoxicity, which was significantly reduced or even suppressed in the presence of SHA or SFA, especially at the highest dose, but not LHA. In general, SFA was slightly more active than SHA, and the efficiency of the action depended on their concentration, the plant species and the organ examined, and the allelochemical. The daily measured residual concentration of CA and FA decreased drastically and that of SA slightly in the presence of germinating seeds of lettuce, which were thus able to absorb and/or enhance the degradation of CA and FA. The adsorption capacity of SHA for the three allelochemicals was small and decreased in the order FA > CA > SA, thus suggesting that adsorption could be a relevant mechanism, but not the only one, involved in the "antiallelopathic" action.

  7. Identification and effects of interaction phytotoxic compounds from exudate of Cistus ladanifer leaves.

    Science.gov (United States)

    Chaves, N; Sosa, T; Alías, J C; Escudero, J C

    2001-03-01

    Eleven allelochemicals (ferulic acid, cinnamic acid, 4-hydroxybenzoic acid, hydroxycinnamic acid, methyl propionate, oxalic acid, methylmalonic acid, p-anisic acid, butyric acid, 3-hydroxybutyric acid, and azulene) were identified in the exudate of Cistus ladanifer L. We studied the effect of each on germination, cotyledon emergence, root length, and cotyledon length of Rumex crispus. Three groups were distinguished with respect to phytotoxic activity: compounds with low activity (ferulic acid, 4-hydroxybenzoic acid, oxalic acid, methylmalonic acid, p-anisic acid, hydroxybutyric acid, and azulene), with intermediate activity (cinnamic acid and hydroxycinnamic acid), and with high activity (methyl propionate and butyric acid). The effect of the interaction of the compounds was studied. When acting conjointly, all combinations tested produced a more negative effect on both germination and seedling growth than when acting alone. The interaction affected cotyledon emergence and root length more negatively than germination and cotyledon length. When hydroxycinnamic acid and cinnamic acid were added to these mixtures there was an enhancement in the phytotoxic activity, accentuating the effect of the other allelochemicals.

  8. BOA detoxification of four summer weeds during germination and seedling growth.

    Science.gov (United States)

    Schulz, Margot; Marocco, Adriano; Tabaglio, Vincenzo

    2012-07-01

    A recent greenhouse study revealed a significant reduction of germination and growth of redroot pigweed (Amaranthus retroflexus) and common purslane (Portulaca oleracea) by rye mulch, whereas velvetleaf (Abutilon theophrasti) and common lambsquarters (Chenopodium album) were not suppressed. Since BOA detoxification by metabolic alteration may influence the relation between the benzoxazinoid content of the soil mulch and weed suppression, we tested the dynamics in BOA detoxification in different plant organs of three and 10-day-old seedlings of four warm season weeds incubated with five BOA concentrations (4, 20, 40, 80, and 200 μmol g(-1) fresh weight). In addition, germination and length of 3-day-old seedlings were measured after exposure to 0, 0.3, 1.5, 3, 6, and 15 μmol BOA. Finally, we tested the influence of the MDR translocator inhibitors verapamil, nifedipine, and the GST inhibitor ethycrynic acid on BOA accumulation and detoxification activity. Due to BOA-detoxification, all weeds were able to grow in environments with low BOA contents. At higher contents, Abutilon theophrasti and Chenopodium album had a better chance to survive because of highly active mechanisms that avoided the uptake of BOA (A. theophrasti) and of efficient detoxification activities in youngest seedlings (C. album). The interpretation of all of the data gave the following sequence of increasing sensitivity: A. theophrasti detoxification of BOA influences the survival of certain weeds in environments enriched with this allelochemical. Therefore, detoxification processes affect the potential for weed suppression by soil allelochemicals in sustainable weed management.

  9. [Allelopathic effects of aqueous extracts from Panax notoginseng on three maize varieties (Zea mays)].

    Science.gov (United States)

    Zhang, Zi-Long; Hou, Jun-Ling; Wang, Wen-Quan; Zhang, Zhi-Xin; Zhang, Shi-Xiu

    2014-02-01

    It has been showed that there were obvious obstacle effects of Panax notoginseng replanting. Crop rotation was the main effective technique to overcome the obstacle. To find a reasonable crop rotation system for P. notoginseng, aqueous extracts from root, stem and leaf of P. notoginseng were analyzed for allelopathic effect on three maize varieties (which are often grown in regions where P. notoginseng grown). The main results were as follows: (1) Allelopathic effect of P. notoginseng stem and leaf extracts on the three other tested plants was stronger than that of root extracts; (2) Corn was more vulnerable to the effects of allelochemicals at seedling stage than at germination stage, and the corn root was more sensitive than aerial part to allelochemicals; (3) Lusan No. 3 and Yunrui No. 1 showed resistance to P. notoginseng allelopathy, with respective comprehensive sensitivity indexes (M3) of - 0.089 3 and -0.159 2, while Bainuo No. 1 is sensitive at M3 = -0.261 0. It then can be concluded that Lusan No. 3 and Yunrui No. 1 may be an alternative rotation plants for overcoming P. notoginseng continuous cropping obstacle.

  10. Phenolics and Plant Allelopathy

    Directory of Open Access Journals (Sweden)

    De-An Jiang

    2010-12-01

    Full Text Available Phenolic compounds arise from the shikimic and acetic acid (polyketide metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.

  11. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates.

    Directory of Open Access Journals (Sweden)

    Hela Ben Gharbia

    Full Text Available Macrophytes are known to release allelochemicals that have the ability to inhibit the proliferation of their competitors. Here, we investigated the effects of the fresh leaves of two magnoliophytes (Zostera noltei and Cymodocea nodosa and thalli of the macroalgae Ulva rigida on three HAB-forming benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis. The effects of C. nodosa and U. rigida were also tested against the neurotoxic planktonic dinoflagellate Alexandrium pacificum Litaker sp. nov (former Alexandrium catenella. Co-culture experiments were conducted under controlled laboratory conditions and potential allelopathic effects of the macrophytes on the growth, photosynthesis and toxin production of the targeted dinoflagellates were evaluated. Results showed that U. rigida had the strongest algicidal effect and that the planktonic A. pacificum was the most vulnerable species. Benthic dinoflagellates seemed more tolerant to potential allelochemicals produced by macrophytes. Depending on the dinoflagellate/macrophyte pairs and the weight of leaves/thalli tested, the studied physiological processes were moderately to heavily altered. Our results suggest that the allelopathic activity of the macrophytes could influence the development of HAB species.

  12. A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions.

    Science.gov (United States)

    Xia, Zhi-Chao; Kong, Chui-Hua; Chen, Long-Chi; Wang, Peng; Wang, Si-Long

    2016-09-01

    Plants may affect the performance of neighboring plants either positively or negatively through interspecific and intraspecific interactions. Productivity of mixed-species systems is ultimately the net result of positive and negative interactions among the component species. Despite increasing knowledge of positive interactions occurring in mixed-species tree systems, relatively little is known about the mechanisms underlying such interactions. Based on data from 25-year-old experimental stands in situ and a series of controlled experiments, we test the hypothesis that a broadleaf, non-N fixing species, Michelia macclurei, facilitates the performance of an autotoxic conifer Chinese fir (Cunninghamia lanceolata) through belowground chemical interactions. Chinese fir roots released the allelochemical cyclic dipeptide (6-hydroxy-1,3-dimethyl-8-nonadecyl-[1,4]-diazocane- 2,5-diketone) into the soil environment, resulting in self-growth inhibition, and deterioration of soil microorganisms that improve P availability. However, when grown with M. macclurei the growth of Chinese fir was consistently enhanced. In particular, Chinese fir enhanced root growth and distribution in deep soil layers. When compared with monocultures of Chinese fir, the presence of M. macclurei reduced release and increased degradation of cyclic dipeptide in the soil, resulting in a shift from self-inhibition to chemical facilitation. This association also improved the soil microbial community by increasing arbuscular mycorrhizal fungi, and induced the production of Chinese fir roots. We conclude that interspecific interactions are less negative than intraspecific ones between non-N fixing broadleaf and autotoxic conifer species. The impacts are generated by reducing allelochemical levels, enhancing belowground mutualisms, improving soil properties, and changing root distributions as well as the net effects of all the processes within the soil. In particular, allelochemical context alters the

  13. Sequential diets, metabolic costs, and growth of Spodoptera eridania (Lepidoptera: Noctuidae) feeding upon dill, lima bean, and cabbage.

    Science.gov (United States)

    Scriber, J Mark

    1981-01-01

    This study illustrates the diversity of feeding responses of individually polyphagous southern armyworms, Spodoptera eridania, to plants with differing allelochemics. In spite of the near optimal leaf water and nitrogen contents of the young foliage, it is apparent that vastly different larval growth performance results from dill, lima bean, and cabbage. Cabbage is the poorest food (as measured by larval growth rates and metabolic costs of processing the plant biomass). Unlike the case with certain other plant species or cultivars that are costly to process, with cabbage, S. eridania does not compensate for low efficiencies (E.C.D.'s) with increased consumption rates (R.C.R.'s). Biochemical or physiological reasons for this inability are unknown.A sequence of foods (changed each 18-24 h) apparently did not add sufficient stress upon the MFO system to be detected in the respiratory expenditures of S. eridania larvae, in spite of the fact that dill is known to contain insecticidal and synergistic chemicals (Lichtenstein et al. 1974). The larval growth performances and metabolic expenditures in these sequences were intermediate between the best food (dill) and the worse (cabbage). Significant differences were observed however between the sequential switching sequences, perhaps indicating that particular periods during the instar are especially more sensitive to certain allelochemics. Actual respiratory costs of the lima bean-cabbage-dill (i.e. B-C-D) sequence were 40-50% higher than observed for the other two sequences and more than 50% higher than the theoretical metabolic costs based on the proportions actually eaten and known costs associated with each food.This study and a related one (Scriber 1981a) illustrate how consumption rates, feeding efficiences, and larval growth of Spodoptera eridania are not species, population, or even individual characteristics, (cf. Fox and Morrow 1981), but instead depend largely upon variations in plant allelochemics and plant

  14. Current Research Status of Allelopathy

    Directory of Open Access Journals (Sweden)

    AHMAD JUNAEDI

    2006-06-01

    Full Text Available The term of allelopathy refers to chemical interactions (inhibitory or stimulatory between plants, between plants and microorganisms, and between microorganisms. The wealth of information on the processes, procedures, and practices of allelopathy has contributed to understanding this field of science. Recently, researches of allelopathy have been conducted in laboratory, greenhouse, and field with multifaceted standpoint in some concerning area: (i allelochemicals identifications and screening test; (ii ecological and physiological aspects of allelopathy; (iii genetic studies and the possibilities of using plant breeding or genetic manipulation to enhance allelopathic varieties; (iv the use of allelopathic potential in the biological control, including as natural pesticide, of weeds and plant diseases as eco-friendly approach for sustainable agriculture scheme.

  15. Progress in Understanding Harmful Algal Blooms: Paradigm Shifts and New Technologies for Research, Monitoring, and Management

    Science.gov (United States)

    Anderson, Donald M.; Cembella, Allan D.; Hallegraeff, Gustaaf M.

    2012-01-01

    The public health, tourism, fisheries, and ecosystem impacts from harmful algal blooms (HABs) have all increased over the past few decades. This has led to heightened scientific and regulatory attention, and the development of many new technologies and approaches for research and management. This, in turn, is leading to significant paradigm shifts with regard to, e.g., our interpretation of the phytoplankton species concept (strain variation), the dogma of their apparent cosmopolitanism, the role of bacteria and zooplankton grazing in HABs, and our approaches to investigating the ecological and genetic basis for the production of toxins and allelochemicals. Increasingly, eutrophication and climate change are viewed and managed as multifactorial environmental stressors that will further challenge managers of coastal resources and those responsible for protecting human health. Here we review HAB science with an eye toward new concepts and approaches, emphasizing, where possible, the unexpected yet promising new directions that research has taken in this diverse field.

  16. [Allelopathic effects of Corallina pilulifera on red tide microalgae Heterosigma akashiwo].

    Science.gov (United States)

    Wang, Ren-Jun; Tang, Xue-Xi; Sun, Jun-Hua

    2008-10-01

    Different concentration methanol-, acetone-, ether-, and chloroform extracts of Corallina pilulifera were used to study their growth inhibitory effects on red tide microalgae Heterosigma akashiwo. The results showed that methanol extract at relatively higher concentrations had the highest growth inhibitory activity and killed all H. akashiwo cells, while the other three kinds of organic solvent extracts had no apparent inhibitory effects, suggesting that the growth inhibitory substances in C. pilulifera had relatively high polarity. The methanol extract was partitioned to petroleum ether phase, ethyl acetate phase, butanol phase, and distilled water phase by liquid-liquid fractionation, and the bioassays on the activity of each fraction were carried out on H. akashiwo. It was found that petroleum ether phase and ethyl acetate phase had strong algicidal effects on H. akashiwo, suggesting that the fatty acids in C. pilulifera tissues might be one of the main allelochemicals.

  17. Allelopathic interactions between the red-tide causative dinoflagellate Prorocentrum donghaiense and the diatom Phaeodactylum tricornutum* This study was supported by the Natural Science Foundation of China-Guangdong Province Joint Key Project (U1133003 Science Technology Planning Project of Guangdong Province (2012B020307009 Open Fund from Key Laboratory of Aquatic Eutrophication Control of Harmful Algal Blooms of Guangdong Higher Education Institutes Open Fund from Key Laboratory of Microbial Resources Collection Preservation Ministry of Agriculture.

    Directory of Open Access Journals (Sweden)

    Zhuoping Cai

    2014-06-01

    Full Text Available The interactions between the red-tide causing dinoflagellate Prorocentrum donghaiense and the marine diatom Phaeodactylum tricornutum were investigated using a co-culture experiment and an enriched culture filtrate experiment. The results showed that when the two microalgae were cultured together with different initial cell densities, the growth of one species was basically suppressed by the other one. In addition, the enriched culture filtrates of one species had generally inhibitory effects on the other one. Our result inferred that P. donghaiense and P. tricornutum would interfere with each other mainly by releasing allelochemicals into the culture medium, and that the degree of allelopathic effects was dependent on the initial cell densities and growth phases. The allelopathic interactions between microalgal species may contribute to the formation and succession of red tides.

  18. Patch colonization by Trirhabda canadensis (Coleoptera: Chrysomelidae): effects of plant species composition and wind.

    Science.gov (United States)

    Morrow, P A; Tonkyn, D W; Goldburg, R J

    1989-10-01

    The goldenrod leaf beetle, Trirhabda canadensis, is known to respond to odors of host and non-host species in the laboratory. Here we report movements of T. canadensis in the field in response to volatile odors from monocultures and polycultures of host plants. Overall, beetles preferentially colonized plots with a higher density of host plants and lower diversity of allelochemicals, but under some wind conditions there were marked exceptions. At high windspeeds, they colonized whichever plot(s) was upwind. At low windspeeds, beetles colonized preferred plots even when they were not upwind. The data suggest that odor dispersion varies in a complex way with windspeed: at low windspeeds beetles received information from a wide are of vegetation and made choices while at high windspeeds information was available only from upwind plot(s).

  19. Multiorganismal insects: diversity and function of resident microorganisms.

    Science.gov (United States)

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  20. [Progress in improvement of continuous monoculture cropping problem in Panax ginseng by controlling soil-borne disease management].

    Science.gov (United States)

    Wang, Rui; Dong, Lin-Lin; Xu, Jiang; Chen, Jun-Wen; Li, Xi-Wen; Chen, Shi-Lin

    2016-11-01

    The continuous monoculture cropping problem severely has hindered the land resource of Panax ginseng cultivation and threatened the sustainable development of ginseng industry. There are comprehensive factors causing the continuous monoculture cropping problem, such as deterioration of soil physical and chemical properties, accumulation of allelochemical, increase of pesticide residue and heavy metal, imbalance of rhizospheric micro-ecosystem, and increase of soil-borne diseases. Among soil-borne disease was one of the key factors. More than 40 soil-borne diseases have been reported in the ginseng cultivation, especially, the diseases were more serious in the ginseng replanting land. Here main soil-borne diseases and their prevention way have been summarized, and we try to provide the effective improvement strategy of continuous monoculture cropping problem focusing on the disease control and offer reference for overcoming the ginseng continuous monoculture cropping problem. Copyright© by the Chinese Pharmaceutical Association.

  1. Mathematical modeling of plant allelopathic hormesis based on ecological-limiting-factor models.

    Science.gov (United States)

    Liu, Yinghu; Chen, Xiaoqiu; Duan, Shunshan; Feng, Yuanjiao; An, Min

    2010-05-28

    Allelopathy arises from the release of chemicals by one plant species that affect other species in its vicinity, usually to their detriment. Allelopathic effects have been demonstrated to be limiting factors for species distributions and ecological processes in some natural or agricultural communities. Based on the biphasic hormetic responses of plants to allelochemicals, ecological-limiting-factor models were introduced into the An-Johnson-Lovett hormesis model to improve modelling the phenomenon of allelopathic hormesis and to better reflect the nature of allelopathy as a limiting factor in ecological processes. Outcomes of the models have been compared for several sets of experimental data from the literature and good agreement between the models and data was observed, which indicates that the new models give some insight into the ecological mechanisms involved and may provide more options for modelling the allelopathic phenomenon as well as platforms for further research on plant allelopathic hormesis.

  2. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings.

    Science.gov (United States)

    Yan, Zhi-Qiang; Wang, Dan-Dan; Ding, Lan; Cui, Hai-Yan; Jin, Hui; Yang, Xiao-Yan; Yang, Jian-She; Qin, Bo

    2015-03-01

    Artemisinin has been recognized as an allelochemical that inhibits growth of several plant species. However, its mode of action is not well clarified. In this study, the mechanism of artemisinin phytotoxicity on lettuce seedlings was investigated. Root and shoot elongation of lettuce seedlings were inhibited by artemisinin in a concentration-dependent manner. The compound effectively arrested cell division and caused loss of cell viability in root tips of lettuce. Overproduction of reactive oxygen species (ROS) was induced by artemisinin. Lipid peroxidation, proline overproduction and reduction of chlorophyll content in lettuce seedlings were found after treatments. These results suggested that artemisinin could induce ROS overproduction, which caused membrane lipids peroxidation and cell death, and impacted mitosis and physiological processes, resulting in growth inhibition of receptor plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Evolution of substrate recognition sites (SRSs) in cytochromes P450 from Apiaceae exemplified by the CYP71AJ subfamily

    DEFF Research Database (Denmark)

    Dueholm, Bjørn; Krieger, Celia; Drew, Damian

    2015-01-01

    Background: Large proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as 'blooms', providing genetic material for the genesis and evolution of biosynthetic pathways. Furanocoumarins are allelochemicals produced by many of the species in Apiaceaous plants...... belonging to the Apioideae subfamily of Apiaceae and have been described as being involved in the defence reaction against phytophageous insects. Results: A bloom in the cytochromes P450 CYP71AJ subfamily has been identified, showing at least 2 clades and 6 subclades within the CYP71AJ subfamily. Two...... and four other subclades were identified and shown to be part of two distinct clades within the CYP71AJ subfamily. The subclades show significant variability within their substrate recognition sites between the clades, suggesting different biochemical functions and providing insights into the evolution...

  4. Antimicrobial compounds from seaweeds-associated bacteria and fungi.

    Science.gov (United States)

    Singh, Ravindra Pal; Kumari, Puja; Reddy, C R K

    2015-02-01

    In recent decade, seaweeds-associated microbial communities have been significantly evaluated for functional and chemical analyses. Such analyses let to conclude that seaweeds-associated microbial communities are highly diverse and rich sources of bioactive compounds of exceptional molecular structure. Extracting bioactive compounds from seaweed-associated microbial communities have been recently increased due to their broad-spectrum antimicrobial activities including antibacterial, antifungal, antiviral, anti-settlement, antiprotozoan, antiparasitic, and antitumor. These allelochemicals not only provide protection to host from other surrounding pelagic microorganisms, but also ensure their association with the host. Antimicrobial compounds from marine sources are promising and priority targets of biotechnological and pharmaceutical applications. This review describes the bioactive metabolites reported from seaweed-associated bacterial and fungal communities and illustrates their bioactivities. Biotechnological application of metagenomic approach for identifying novel bioactive metabolites is also dealt, in view of their future development as a strong tool to discover novel drug targets from seaweed-associated microbial communities.

  5. Bioactivity effect of two macrophyte extracts on growth performance of two bloom-forming cyanophytes

    Directory of Open Access Journals (Sweden)

    M.G. Ghobrial

    2015-01-01

    Full Text Available Allelopathy is a biological phenomenon by which an organism produces one or more biochemicals that influence the growth, survival, and reproduction of other organisms. These biochemicals are known as allelochemicals and can have beneficial (positive allelopathy or detrimental (negative allelopathy effects on the target organisms. The current research aims at using selected brackish water adapted submerged aquatic macrophytes allelopathy to combat bloom-forming cyanophytes, in laboratory bioassay experiments. Dry matters of macrophytes were extracted in solvents and the initial cyanophytes inoculum, derived from unialgal culture media, was used. Therefore, aqueous extracts with 50% and 100% acetone and ethanol solvents of two freshwater macrophytes; Potamogeton pectinatus and Ceratophyllum demersum were used to test their growth performance exhibited on two bloom-forming cyanophytes, Microcystis aeruginosa and Oscillatoria tenuis. The results revealed insignificant difference between the overall total average growth performance at treatment with 50% and 100% Ceratophyllum acetone extracts expressed by optical density (OD as well as chlorophyll a (chl a. Results showed, also, stimulation of M. aeruginosa growth. The highest growth increase in 100 μl/100 ml treatment with 50% acetone extract had a percentage rate (R of 94.66. On the contrary, treatment with ethanol extract recorded the highest inhibitory effect, thus in 1.5 μl/100 ml treatment with 50% Ceratophyllum ethanol extract R recorded −87.54, sustaining LC50 value of 1.12 μl/100 ml. The highest stimulating effect in 105 μl/100 ml treatment with 50% Ceratophyllum acetone extracts against O. tenuis was; R, 169.4. The highest inhibition in 1500 μl/100 ml treatment with 50% Ceratophyllum ethanol extracts against O. tenuis was; R −74.32, with LC50 0.830 μl/100 ml. While, the highest inhibition by 50% and 100% Potamogeton acetone or ethanol extracts against M. aeruginosa was

  6. Autoallelopathic Potential of Leaflets and Seeds on Seedling Growth of Date Palm (Phoenix dactylifera L.

    Directory of Open Access Journals (Sweden)

    M.O.A. Warrag

    2000-01-01

    Full Text Available The autoalle1opathic effects of date palm leaflets and seed aqueous extracts, with -0.05, -0.1 and -0.2 mPa osmotic potentials, on seed germination and early seedling growth were investigated. Final seed germination percentage, seed germination rate, the time of radicle appearance, and plumule length were not affected. In contrast, the cotyledonary sheath and radicle lengths were significantly retarded, whereas the time of plumule appearance was significantly increased by most of the extracts in comparison with the distilled water control. Mannitol solutions, with the same osmotic potential and pH as the extracts, resulted in significantly longer cotyledonary sheaths and radicles and an earlier plumule appearance than their corresponding extracts. Thus, it could be deduced that date palm leaflets and seeds contain water-soluble allelochemicals that could substantially retard early seedling growth of the same species.

  7. Main alkaloids of Peganum harmala L. and their different effects on dicot and monocot crops.

    Science.gov (United States)

    Shao, Hua; Huang, Xiaoli; Zhang, Yuanming; Zhang, Chi

    2013-02-27

    Alkaloids with allelopathic activity are not as well-known as other allelochemicals. Our study revealed that total alkaloids from seeds of the medicinal plant Peganum harmala L. possessed significant growth inhibitory effect on four treated plants, with dicot plants (lettuce and amaranth) being more sensitive than the tested monocot plants (wheat and ryegrass). Further investigation led to the isolation of harmaline and harmine as the main active ingredients in the total alkaloids of P. harmala seeds. Harmaline exerted potent inhibitory effects on seedling growth of treated plants, especially dicots, inhibiting root elongation of lettuce and amaranth by 31% and 47% at a very low concentration (5 µg/mL), whereas harmine exhibited much weaker non-selective inhibitory effect on the plants. Considering the high yield and poor utilization of P. harmala in China, we anticipate that this plant could be exploited as an alternative weed management tool in the future.

  8. Augmented multivariate image analysis applied to quantitative structure-activity relationship modeling of the phytotoxicities of benzoxazinone herbicides and related compounds on problematic weeds.

    Science.gov (United States)

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2013-09-11

    Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier structure-activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other two usual molecular descriptors. On the other hand, a quantitative structure-activity relationship (QSAR) analysis based on molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum Gaud.

  9. Testing the adaptive plasticity of gypsy moth digestive enzymes in response to tannic acid using phenotypic selection analysis

    Directory of Open Access Journals (Sweden)

    Mrdaković Marija

    2014-01-01

    Full Text Available The adaptive significance of plasticity of digestive enzyme responses to allelochemical stress was tested on 32 full-sib gypsy moth families from an oak forest (the Quercus population and 26 families from a locust-tree forest (the Robinia population, reared on control or tannic acid-supplemented diets. By using the relative growth rate as a fitness measure in phenotypic selection analyses, we revealed that higher specific activity of leucine aminopeptidase in Quercus larvae and lower specific activity of trypsin in Robinia larvae were adaptive in the control environment. In Quercus larvae, elevated specific activities of leucine aminopeptidase and lipase were adaptive in the stressful environment. There were no plasticity costs for the enzyme activities in either experimental group. The obtained results suggest that adaptive plasticity of digestive enzyme activity in gypsy moth larvae contributes to optimal growth rate under various environmental conditions. [Projekat Ministarstva nauke Republike Srbije, br. 173027

  10. Gene expression patterns of the coral Acropora millepora in response to contact with macroalgae

    Science.gov (United States)

    Shearer, T. L.; Rasher, D. B.; Snell, T. W.; Hay, M. E.

    2012-12-01

    Contact with macroalgae often causes coral mortality, but the roles of abrasion versus shading versus allelopathy in these interactions are rarely clear, and effects on gene expression are unknown. Identification of gene expression changes within corals in response to contact with macroalgae can provide insight into the mode of action of allelochemicals, as well as reveal transcriptional strategies of the coral that mitigate damage from this competitive interaction, enabling the coral to survive. Gene expression responses of the coral Acropora millepora after long-term (20 days) direct contact with macroalgae ( Chlorodesmis fastigiata, Dictyota bartayresiana, Galaxaura filamentosa, and Turbinaria conoides) and short-term (1 and 24 h) exposure to C. fastigiata thalli and their hydrophobic extract were assessed. After 20 days of exposure, T. conoides thalli elicited no significant change in visual bleaching or zooxanthellae PSII quantum yield within A. millepora nubbins, but stimulated the greatest alteration in gene expression of all treatments. Chlorodesmis fastigiata, D. bartayresiana, and G. filamentosa caused significant visual bleaching of coral nubbins and reduced the PSII quantum yield of associated zooxanthellae after 20 days, but elicited fewer changes in gene expression relative to T. conoides at day 20. To evaluate initial molecular processes leading to reduction of zooxanthella PSII quantum yield, visual bleaching, and coral death, short-term exposures to C. fastigiata thalli and hydrophobic extracts were conducted; these interactions revealed protein degradation and significant changes in catalytic and metabolic activity within 24 h of contact. These molecular responses are consistent with the hypothesis that allelopathic interactions lead to alteration of signal transduction and an imbalance between reactive oxidant species production and antioxidant capabilities within the coral holobiont. This oxidative imbalance results in rapid protein degradation

  11. Evaluation of allelopathic potential of safflower genotypes (Carthamus tinctorius L.

    Directory of Open Access Journals (Sweden)

    Motamedi Marzieh

    2016-12-01

    Full Text Available Forty safflower genotypes were grown under normal irrigation and drought stress. In the first experiment, the allelopathic potential of shoot residues was evaluated using the sandwich method. Each genotype residue (0.4 g was placed in a sterile Petri dish and two layers of agar were poured on that. Radish seeds were placed on agar medium. The radish seeds were cultivated without safflower residues as the controls. The length of the radicle, hypocotyl, and fresh biomass weight and seed germination percentages were measured. A pot experiment was also done on two genotypes with the highest and two with the lowest allelopathic activity selected after screening genotypes in the first experiment. Before entering the reproductive phase, irrigation treatments (normal irrigation and drought stress were applied. Shoots were harvested, dried, milled and mixed with the topsoil of new pots and then radish seeds were sown. The pots with safflower genotypes were used to evaluate the effect of root residue allelopathy. The shoot length, fresh biomass weight, and germination percentage were measured. Different safflower genotypes showed varied allelopathic potential. The results of the first experiment showed that Egypt and Iran-Khorasan genotypes caused maximum inhibitory responses and Australia and Iran-Kerman genotypes resulted in minimum inhibitory responses on radish seedling growth. Fresh biomass weight had the most sensitivity to safflower residues. The results of the pot experiment were consistent with the results of in vitro experiments. Residues produced under drought stress had more inhibitory effects on the measured traits. Safflower root residue may have a higher level of allelochemicals or different allelochemicals than shoot residue.

  12. Biochemical warfare on the reef: the role of glutathione transferases in consumer tolerance of dietary prostaglandins.

    Directory of Open Access Journals (Sweden)

    Kristen E Whalen

    Full Text Available BACKGROUND: Despite the profound variation among marine consumers in tolerance for allelochemically-rich foods, few studies have examined the biochemical adaptations underlying diet choice. Here we examine the role of glutathione S-transferases (GSTs in the detoxification of dietary allelochemicals in the digestive gland of the predatory gastropod Cyphoma gibbosum, a generalist consumer of gorgonian corals. Controlled laboratory feeding experiments were used to investigate the influence of gorgonian diet on Cyphoma GST activity and isoform expression. Gorgonian extracts and semi-purified fractions were also screened to identify inhibitors and possible substrates of Cyphoma GSTs. In addition, we investigated the inhibitory properties of prostaglandins (PGs structurally similar to antipredatory PGs found in high concentrations in the Caribbean gorgonian Plexaura homomalla. PRINCIPAL FINDINGS: Cyphoma GST subunit composition was invariant and activity was constitutively high regardless of gorgonian diet. Bioassay-guided fractionation of gorgonian extracts revealed that moderately hydrophobic fractions from all eight gorgonian species examined contained putative GST substrates/inhibitors. LC-MS and NMR spectral analysis of the most inhibitory fraction from P. homomalla subsequently identified prostaglandin A(2 (PGA(2 as the dominant component. A similar screening of commercially available prostaglandins in series A, E, and F revealed that those prostaglandins most abundant in gorgonian tissues (e.g., PGA(2 were also the most potent inhibitors. In vivo estimates of PGA(2 concentration in digestive gland tissues calculated from snail grazing rates revealed that Cyphoma GSTs would be saturated with respect to PGA(2 and operating at or near physiological capacity. SIGNIFICANCE: The high, constitutive activity of Cyphoma GSTs is likely necessitated by the ubiquitous presence of GST substrates and/or inhibitors in this consumer's gorgonian diet. This

  13. Insecticide Resistance Mechanisms in the Green Peach Aphid Myzus persicae (Hemiptera: Aphididae) II: Costs and Benefits

    Science.gov (United States)

    Silva, Andrea X.; Bacigalupe, Leonardo D.; Luna-Rudloff, Manuela; Figueroa, Christian C.

    2012-01-01

    Background Among herbivorous insects that have exploited agro-ecosystems, the peach-potato aphid, Myzus persicae, is recognized as one of the most important agricultural pests worldwide. Uses over 400 plant species and has evolved different insecticides resistance mechanisms. As M. persicae feeds upon a huge diversity of hosts, it has been exposed to a wide variety of plant allelochemicals, which probably have promoted a wide range of detoxification systems. Methodology/Principal Findings In this work we (i) evaluated whether insecticide resistance mutations (IRM) in M. persicae can give an advantage in terms of reproductive fitness when aphids face two hosts, pepper (Capsicum annuum) a suitable host and radish (Raphanus sativus) the unfavorable host and (ii) examined the transcriptional expression of six genes that are known to be up-regulated in response to insecticides. Our results show a significant interaction between host and IRM on the intrinsic rate of increase (rm). Susceptible genotypes (not carrying insensitivity mutations) had a higher rm on pepper, and the transcriptional levels of five genes increased on radish. The rm relationship was reversed on the unfavorable host; genotypes with multiple IRM exhibited higher rm, without altering the transcriptional levels of the studied genes. Genotypes with one IRM kept a similar rm on both hosts, but they increased the transcriptional levels of two genes. Conclusions/Significance Although we have studied only nine genotypes, overall our results are in agreement with the general idea that allelochemical detoxification systems could constitute a pre-adaptation for the development of insecticide resistance. Genotypes carrying IRM exhibited a higher rm than susceptible genotypes on radish, the more unfavorable host. Susceptible genotypes should be able to tolerate the defended host by up-regulating some metabolic genes that are also responding to insecticides. Hence, our results suggest that the trade-off among

  14. Evaluation of the allelopathic potential of water-soluble compounds of barley (Hordeum vulgare L. subsp.vulgare and great brome (Bromus diandrus Roth. using a modified bioassay

    Directory of Open Access Journals (Sweden)

    Bouhaouel, I.

    2016-01-01

    Full Text Available Description of the subject. The present study focuses on the description of the allelopathic interactions between wild and crop species that may occur in a given ecosystem. Objectives. The objective is the evaluation of the allo- and autoinhibition activity of root exudates of barley (Hordeum vulgare L. subsp. vulgare and great brome (Bromus diandrus Roth. seedlings by water-soluble allelochemicals. Method. The allelopathic activities of five Tunisian barley genotypes (modern varieties and landraces, one Saudi Arabian barley landrace and great brome were assessed using a modified laboratory bioassay named "seedling-after-seedling agar method". Results. The barley or the great brome reduced, to a greater extent, the root growth compared to the shoot growth of receiver species. The response of the root system architecture of the great brome towards barley root exudates was studied in detail. All the measured root traits were highly sensitive to the presence of barley. In our conditions, the allelopathic activity of barley root exudates had no apparent relationship with the size of the root and a prominent action of genetic determinants in the allelopathic potential between genotypes is proposed. The alloinhibitory activity of barley or great brome root exudates deferred between the receiver species but was always higher than the autoinhibition potential. The autoinhibition in barley proved to depend on whether the genotypes used as donor and receiver are identical or different, suggesting a specific interaction of allelochemicals with the receiver plant. These molecules seem to be the main actors in the allelopathic barley potential as external factors such variations of pH have no evident relevance in the inhibition process. Conclusions. Barley and great brome exude molecules in their surroundings. This affects the growth of the receiver plants, suggesting that these compounds might contribute to the plant community dynamics.

  15. Interference of allelopathic rice with paddy weeds at the root level.

    Science.gov (United States)

    Yang, X-F; Kong, C-H

    2017-07-01

    Despite increasing knowledge of the involvement of allelopathy in negative interactions among plants, relatively little is known about its action at the root level. This study aims to enhance understanding of interactions of roots between a crop and associated weeds via allelopathy. Based on a series of experiments with window rhizoboxes and root segregation methods, we examined root placement patterns and root interactions between allelopathic rice and major paddy weeds Cyperus difformis, Echinochloa crus-galli, Eclipta prostrata, Leptochloa chinensis and Oryza sativa (weedy rice). Allelopathic rice inhibited growth of paddy weed roots more than shoots regardless of species. Furthermore, allelopathic rice significantly reduced total root length, total root area, maximum root width and maximum root depth of paddy weeds, while the weeds adjusted horizontal and vertical placement of their roots in response to the presence of allelopathic rice. With the exception of O. sativa (weedy rice), root growth of weeds avoided expanding towards allelopathic rice. Compared with root contact, root segregation significantly increased inhibition of E. crus-galli, E. prostrata and L. chinensis through an increase in rice allelochemicals. In particular, their root exudates induced production of rice allelochemicals. However, similar results were not observed in C. difformis and O. sativa (weedy rice) with either root segregation or root exudate application. The results demonstrate that allelopathic rice interferes with paddy weeds by altering root placement patterns and root interactions. This is the first case of a root behavioural strategy in crop-weed allelopathic interaction. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni.

    Science.gov (United States)

    Herde, Marco; Howe, Gregg A

    2014-07-01

    Species diversity in terrestrial ecosystems is influenced by plant defense compounds that alter the behavior, physiology, and host preference of insect herbivores. Although it is established that insects evolved the ability to detoxify specific allelochemicals, the mechanisms by which polyphagous insects cope with toxic compounds in diverse host plants are not well understood. Here, we used defended and non-defended plant genotypes to study how variation in chemical defense affects midgut responses of the lepidopteran herbivore Trichoplusia ni, which is a pest of a wide variety of native and cultivated plants. The genome-wide midgut transcriptional response of T. ni larvae to glucosinolate-based defenses in the crucifer Arabidopsis thaliana was characterized by strong induction of genes encoding Phase I and II detoxification enzymes. In contrast, the response of T. ni to proteinase inhibitors and other jasmonate-regulated defenses in tomato (Solanum lycopersicum) was dominated by changes in the expression of digestive enzymes and, strikingly, concomitant repression of transcripts encoding detoxification enzymes. Unbiased proteomic analyses of T. ni feces demonstrated that tomato defenses remodel the complement of T.ni digestive enzymes, which was associated with increased amounts of serine proteases and decreased lipase protein abundance upon encountering tomato defense chemistry. These collective results indicate that T. ni adjusts its gut physiology to the presence of host plant-specific chemical defenses, and further suggest that plants may exploit this digestive flexibility as a defensive strategy to suppress the production of enzymes that detoxify allelochemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Joint action of benzoxazinone derivatives and phenolic acids.

    Science.gov (United States)

    Jia, Chunhong; Jia, Chunghong; Kudsk, Per; Mathiassen, Solvejg K

    2006-02-22

    The joint action of binary and ternary mixtures of benzoxazinone derivatives and phenolic acids was studied using the additive dose model (ADM) as reference model. The activity of fixed-ratio mixtures of phenolic acids [ferulic acid (FA), p-coumaric acid (CA), vanillic acid (VA), and p-hydroxybenzoic acid (HBA)] and benzoxazinone derivatives [2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 6-methoxybenzoxazolin-2-one (MBOA), benzoxazolin-2-one (BOA), 2-aminophenol (AP), and N-(2-hydroxyphenyl)acetamide (HPAA)] on Lolium perenne and Myosotis arvensis root growth was assessed in Petri dishes. Root length was recorded 6 days after seeding, and EC(50) and EC(90) values were estimated using nonlinear regression analyses. The benzoxazinone derivatives were found to be more phytotoxic than the phenolic acids, particularly on M. arvensis. Binary mixtures of phenolic acids responded predominantly additively on both plant species. Deviations from additivity were species-specific with antagonistic responses on L. perenne and synergistic responses on M. arvensis. Similarly, binary mixtures of benzoxazinone derivatives also followed the ADM, although synergistic responses were observed for BOA + AP and BOA + HPAA. Binary and ternary mixtures of benzoxazinone derivatives and phenolic acids responded primarily antagonistically; however, a significant synergistic performance was observed with DIMBOA + FA and DIMBOA + VA on L. perenne. These results do not support the assumption that allelopathic effects of wheat can be attributed to synergistic effects of otherwise weakly active allelopathic compounds, and it is suggested that future research be directed toward identifying and studying the effects of other potential allelochemicals including the degradation products of the most abundant wheat allelochemicals.

  18. Sementes como fonte alternativa de substâncias químicas com atividade alelopática Seeds as alternative source of chemical substances with allelopathic activity

    Directory of Open Access Journals (Sweden)

    A.P.S Souza Filho

    2011-09-01

    Full Text Available Na literatura mundial, observa-se predominância das folhas como meio preferencial de estudos de compostos químicos promissores, embora informações sobre outras frações da planta também sejam encontradas. Essa tendência se deve ao fato de que a maioria dos estudos mostra as folhas com atividade potencialmente alelopática de intensidade superior à das demais frações. Nesta revisão, procurou-se compilar e analisar as informações disponíveis sobre a importância das sementes como fonte alternativa de compostos químicos com atividade alelopática. São discutidas as variações na produção e na alocação de aleloquímicos em função do estádio ontogenético das sementes presentes no banco de sementes. É discutido também o papel dos aleloquímicos produzidos por sementes na repelência de insetos, na inibição do desenvolvimento de patógenos nas sementes, na inibição do desenvolvimento inicial de plantas daninhas e como sinalizador positivo para a simbiose com microrganismos do solo. Apresenta-se ainda a atividade alelopática de diversas substâncias isoladas de sementes, destacando-se os alcaloides, flavonoides, benzoxazinoides e resinas glicosídicas. Os estudos de aleloquímicos produzidos por sementes podem contribuir expressivamente para o melhor entendimento do papel ecológico que essas substâncias desempenham na ecologia química dos agro e ecossistemas.In the literature, leaves predominate as preferred source of studies of promising allelopathic compounds, but information on other plant fractions are also found. This trend is due to the fact that most studies show that leaves have higher allelopathic potential than other plant fractions. In this review, we compiled and analyzed the information available on the importance of seeds as an alternative source of chemical compounds with allelopathic activity. We discussed the variations in production and allocation of allelochemicals at different ontogenetic stages of

  19. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae II: Costs and benefits.

    Directory of Open Access Journals (Sweden)

    Andrea X Silva

    Full Text Available BACKGROUND: Among herbivorous insects that have exploited agro-ecosystems, the peach-potato aphid, Myzus persicae, is recognized as one of the most important agricultural pests worldwide. Uses over 400 plant species and has evolved different insecticides resistance mechanisms. As M. persicae feeds upon a huge diversity of hosts, it has been exposed to a wide variety of plant allelochemicals, which probably have promoted a wide range of detoxification systems. METHODOLOGY/PRINCIPAL FINDINGS: In this work we (i evaluated whether insecticide resistance mutations (IRM in M. persicae can give an advantage in terms of reproductive fitness when aphids face two hosts, pepper (Capsicum annuum a suitable host and radish (Raphanus sativus the unfavorable host and (ii examined the transcriptional expression of six genes that are known to be up-regulated in response to insecticides. Our results show a significant interaction between host and IRM on the intrinsic rate of increase (r(m. Susceptible genotypes (not carrying insensitivity mutations had a higher r(m on pepper, and the transcriptional levels of five genes increased on radish. The r(m relationship was reversed on the unfavorable host; genotypes with multiple IRM exhibited higher r(m, without altering the transcriptional levels of the studied genes. Genotypes with one IRM kept a similar r(m on both hosts, but they increased the transcriptional levels of two genes. CONCLUSIONS/SIGNIFICANCE: Although we have studied only nine genotypes, overall our results are in agreement with the general idea that allelochemical detoxification systems could constitute a pre-adaptation for the development of insecticide resistance. Genotypes carrying IRM exhibited a higher r(m than susceptible genotypes on radish, the more unfavorable host. Susceptible genotypes should be able to tolerate the defended host by up-regulating some metabolic genes that are also responding to insecticides. Hence, our results suggest that

  20. Anatomia e histoquímica das folhas de Senna alata Anatomy and histochemistry of Senna alata leaves

    Directory of Open Access Journals (Sweden)

    I.M.C. Rodrigues

    2009-01-01

    Full Text Available Senna alata é uma espécie daninha frequente em pastagens da região amazônica, cujas folhas apresentam propriedades medicinais. Indivíduos dessa espécie foram cultivados e coletados no Campo Experimental da Embrapa Amazônia Oriental, em Belém-PA, para a realização de análises anatômica e histoquímica das folhas, com a finalidade de fornecer elementos para a taxonomia, identificação microscópica de aleloquímicos e caracterização ecofisiológica da espécie. As folhas apresentaram duas formas de tricomas: tectores e glandulares. Outras características foliares encontradas na espécie foram: lâmina foliar anfiestomática, mesofilo dorsiventral e epiderme abaxial papilosa. Algumas dessas características sugerem um mecanismo de adaptação a ambientes com excesso de calor. As folhas são ricas em cristais de oxalato de cálcio, ao longo de suas nervuras - característica da subfamília Caesalpinioideae. Compostos fenólicos, como flavonoides e antraquinonas, foram encontrados em células epidérmicas, da base de tricomas, e células dispersas no parênquima paliçádico, especialmente nas proximidades da nervura mediana. Este estudo confirmou a presença de conhecidas classes de aleloquímicos em diferentes tipos de células do mesofilo de Senna alata.Senna alata is one of the most frequent weed species in the Amazonian region pastures. Its leaves present medicinal properties. Individuals of this species were cultivated and collected in the Experimental Field of Embrapa Amazônia Oriental, Belém-PA, to carry out anatomical and histochemical analyses to provide taxonomy information, microscopic identification of allelochemicals and ecophysiological characterization of the species. Leaves presented two forms of trichomes: tector and glandular. Other foliar characteristics of the species were: amphistomatic leaf, dorsiventral mesophyll and abaxial epidermis papillose. Some of these suggest an adaptation mechanism to excessive warm

  1. What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world's worst weeds.

    Science.gov (United States)

    Bajwa, Ali Ahsan; Chauhan, Bhagirath Singh; Farooq, Muhammad; Shabbir, Asad; Adkins, Steve William

    2016-07-01

    This review provides an insight into alien plant invasion taking into account the invasion mechanism of parthenium weed ( Parthenium hysterophorus L.). A multi-lateral understanding of the invasion biology of this weed has pragmatic implications for weed ecology and management. Biological invasions are one of the major drivers of restructuring and malfunctioning of ecosystems. Invasive plant species not only change the dynamics of species composition and biodiversity but also hinder the system productivity and efficiency in invaded regions. Parthenium weed, a well-known noxious invasive species, has invaded diverse climatic and biogeographic regions in more than 40 countries across five continents. Efforts are under way to minimize the parthenium weed-induced environmental, agricultural, social, and economic impacts. However, insufficient information regarding its invasion mechanism and interference with ecosystem stability is available. It is hard to devise effective management strategies without understanding the invasion process. Here, we reviewed the mechanism of parthenium weed invasion. Our main conclusions are: (1) morphological advantages, unique reproductive biology, competitive ability, escape from natural enemies in non-native regions, and a C3/C4 photosynthesis are all likely to be involved in parthenium weed invasiveness. (2) Tolerance to abiotic stresses and ability to grow in wide range of edaphic conditions are thought to be additional invasion tools on a physiological front. (3) An allelopathic potential of parthenium weed against crop, weed and pasture species, with multiple modes of allelochemical expression, may also be responsible for its invasion success. Moreover, the release of novel allelochemicals in non-native environments might have a pivotal role in parthenium weed invasion. (4) Genetic diversity found among different populations and biotypes of parthenium weed, based on geographic, edaphic, climatic, and ecological ranges, might also

  2. Allelopathic cover crop of rye for integrated weed control in sustainable agroecosystems

    Directory of Open Access Journals (Sweden)

    Vincenzo Tabaglio

    2013-02-01

    Full Text Available The allelopathic potential of rye (Secale cereale L. is mainly due to phytotoxic benzoxazinones, compounds that are produced and accumulated in young tissues to different degrees depending on cultivar and environmental influences. Living rye plants exude low levels of benzoxazinones, while cover crop residues can release from 12 to 20 kg ha–1. This paper summarizes the results obtained from several experiments performed in both controlled and field environments, in which rye was used as a cover crop to control summer weeds in a following maize crop. Significant differences in benzoxazinoid content were detected between rye cultivars. In controlled environments, rye mulches significantly reduced germination of some broadleaf weeds. Germination and seedling growth of Amaranthus retroflexus and Portulaca oleracea were particularly affected by the application of rye mulches, while Chenopodium album was hardly influenced and Abutilon theophrasti was advantaged by the presence of the mulch. With reference to the influence of agronomic factors on the production of benzoxazinoids, nitrogen fertilization increased the content of allelochemicals, although proportionally less than dry matter. The field trial established on no-till maize confirmed the significant weed suppressiveness of rye mulch, both for grass and broadleaf weeds. A significant positive interaction between nitrogen (N fertilization and notillage resulting in the suppression of broadleaf weeds was observed. The different behavior of the weeds in the presence of allelochemicals was explained in terms of differential uptake and translocation capabilities. The four summer weeds tested were able to grow in the presence of low amounts of benzoxazolin-2(3H-one (BOA, between 0.3 and 20 mmol g–1 fresh weight. Although there were considerable differences in their sensitivity to higher BOA concentrations, P. oleracea, A. retroflexus, and Ch. album represented a group of species with a consistent

  3. Assimilatory potential of Helicoverpa armigera reared on host (Chickpea) and nonhost (Cassia tora) diets.

    Science.gov (United States)

    Dawkar, Vishal V; Chikate, Yojana R; Gupta, Vidya S; Slade, Susan E; Giri, Ashok P

    2011-11-04

    Adaptation to plant allelochemicals is a crucial aspect of herbivore chemical ecology. To understand an insect ecology, we studied an effect of nonhost Cassia tora seed-based diet (Ct) on growth, development, and molecular responses in Helicoverpa armigera. We employed a comparative approach to investigate the proteomic differences in gut, hemolymph, and frass of H. armigera reared on a normal (chickpea seed-based, Cp) and Ct diet. In this study, a total of 46 proteins were identified by nano-LC-MS(E). Among them, 17 proteins were up-regulated and 29 proteins were down-regulated when larvae were exposed to the Ct diet. Database searches combined with GO analysis revealed that gut proteases engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification were down-regulated in the Ct fed larvae. Proteins identified in H. armigera hemolymph were found to be involved in defense mechanisms. Moreover, proteins found in frass of the Ct fed larvae were observed to participate in energy metabolism. Biochemical and quantitative real-time PCR analysis of selected candidate proteins showed differential gene expression patterns and corroborated with the proteomic data. Our results suggest that the Ct diet could alter expression of proteins related to digestion, absorption of nutrients, adaptation, defense mechanisms, and energy metabolism in H. armigera.

  4. Assessment of allelopathic properties of Aloe ferox Mill. on turnip, beetroot and carrot

    Directory of Open Access Journals (Sweden)

    Sunday Arowosegbe

    2012-01-01

    Full Text Available Turnip (Brassica rapa var. rapa L., beetroot (Beta vulgaris L. and carrot (Daucus carota L. are common vegetables in South Africa. The allelopathic potential of aqueous leaf and root extracts of Aloe ferox Mill.- a highly valued medicinal plant- was evaluated against seed germination and seedling growth of the three vegetables in Petri dish experiments. The extracts were tested at concentrations of 2, 4, 6, 8, and 10 mg/mL. Leaf extract concentrations above 4 mg/mL inhibited the germination of all the crops, while the root extract had no significant effect on germination irrespective of concentration. Interestingly, the lowest concentration of leaf extract stimulated root length elongation of beetroot by 31.71%. Other concentrations significantly inhibited both root and shoot growth of the vegetable crops except the turnip shoot. The most sensitive crop was carrot, with percentage inhibition ranging from 29.15 to 100% for root and shoot lengths. Lower percentage inhibition was observed for the root extract than the leaf extract against shoot growth of beetroot and carrot. The results from this study suggested the presence of allelochemicals mostly in the leaves of A. ferox that could inhibit the growth of the turnip, beetroot and carrot.

  5. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta

    DEFF Research Database (Denmark)

    Kanost, Michael R; Arrese, Estela L; Cao, Xiaolong

    2016-01-01

    Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its......, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.......Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its...... extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression...

  6. Allelopathic Stress Produced by Bitter Gourd (Momordica charantia L.

    Directory of Open Access Journals (Sweden)

    N.B. Singh

    2014-05-01

    Full Text Available The present study deals with in vitro effects of allelochemicals present in leaf and fruit leachate of Momordica charantia in vitro on plant growth and metabolism of Lycopersicon esculentum. Momordica was selected as a donor plant and tomato as recipient. Seeds of tomato were shown in pots and after germination different concentrations viz. 25, 50, 75 and 100% of leaf and fruit leachates were applied as treatment. Twenty days old seedlings were harvested for biophysical and biochemical analyses. The root and shoot length, fresh and dry weight of the seedlings decreased in dose dependent manner. The reduction in pigment and protein contents and nitrate reductase activity was concentration dependent. Membrane leakage increased as the concentration of leachates increased. Activities of antioxidant enzymes viz. superoxide dismutase (SOD, catalase (CAT and peroxidase (POX activities significantly enhanced under allelopathic stress. Inhibition of various metabolic activities under allelopathic stress resulted in decreased plant growth and development. The fruit leachate of Momordica was more inhibitory than leaf leachate.

  7. Phytotoxicity of triterpenes and limonoids from the Rutaceae and Meliaceae. 5α,6β,8α,12α-Tetrahydro-28-norisotoonafolin--a potent phytotoxin from Toona ciliata.

    Science.gov (United States)

    Nebo, Liliane; Varela, Rosa M; Molinillo, José M G; Severino, Vanessa G P; Sarria, André L F; Cazal, Cristiane M; Fernandes, Maria Fátima das Graças; Fernandes, João B; Macías, Francisco A

    2015-01-01

    Limonoids and triterpenes are the largest groups of secondary metabolites and have notable biological activities. Meliaceae and Rutaceae are known for their high diversity of metabolites, including limonoids, and are distinguished from other families due to the frequent occurrence of such compounds. The increased interest in crop protection associated with the diverse bioactivity of these compounds has made these families attractive in the search for new allelopathic compounds. In the study reported here we evaluated the bioactivity profiles of four triterpenes (1-4) and six limonoids (5-10) from Meliaceae and Rutaceae. The compounds were assessed in a wheat coleoptile bioassay and those that had the highest activities were tested on the standard target species Lepidinum sativum (cress), Lactuca sativa (lettuce), Lycopersicon esculentum (tomato) and Allium cepa (onion). Limonoids showed phytotoxic activity and 5α,6β,8α, 12α- tetrahydro-28-norisotoonafolin (10) and gedunin (5) were the most active, with bioactivity levels similar to, and in some cases better than, those of the commercial herbicide Logran. The results indicate that these products could also be allelochemicals involved in the ecological interactions of these plant species.

  8. Highlighting the effects of coumarin on adult plants of Arabidopsis thaliana (L.) Heynh. by an integrated -omic approach.

    Science.gov (United States)

    Araniti, Fabrizio; Scognamiglio, Monica; Chambery, Angela; Russo, Rosita; Esposito, Assunta; D'Abrosca, Brigida; Fiorentino, Antonio; Lupini, Antonio; Sunseri, Francesco; Abenavoli, Maria Rosa

    2017-06-01

    In this study, the effects of the allelochemical coumarin through a metabolomic, proteomic and morpho-physiological approach in Arabidopsis adult plants (25days old) were investigated. Metabolomic analysis evidenced an increment of amino acids and a high accumulation of soluble sugars, after 6days of coumarin treatment. This effect was accompanied by a strong decrease on plant fresh and dry weights, as well as on total protein content. On the contrary, coumarin did not affect leaf number but caused a reduction in leaf area. An alteration of water status was confirmed by a reduction of relative water content and an increase in leaf osmotic potential. Moreover, coumarin impaired plant bio-membranes through an increase of lipid peroxidation and H 2 O 2 content suggesting that coumarin treatment might induce oxidative stress. Coumarin reduced the effective quantum yield of the photosystem II, the energy dissipation in the form of heat, the maximum PSII efficiency, the coefficient of the photochemical quenching and the estimated electron transport rate, while it significantly stimulated the fluorescence emission and the coefficient of the non photochemical quenching. Finally, the proteomic characterization of coumarin-treated plants revealed a down-regulation of the ROS detoxifying proteins, responsible of oxidative damage and consequently of physiological cascade effects. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Stage-specific distribution of oxidative radicals and antioxidant enzymes in the midgut of Leptinotarsa decemlineata.

    Science.gov (United States)

    Krishnan, Natraj; Kodrík, Dalibor; Turanli, Ferit; Sehnal, Frantisek

    2007-01-01

    The titers of reactive oxygen species (ROS) represented by superoxide anion and general peroxides, and the activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), are regulated in the midgut of the Colorado potato beetle (CPB) relative to the gut compartment, developmental stage, and food intake. ROS concentration is low in the potato leaves but it is very high in their digest in insect's anterior midgut. It is proposed that intensive ROS production in this gut region is linked to the processing of allelochemicals. SOD and CAT activities, low oxygen tension, and unidentified redox systems that maintain a slightly reducing milieu in the midgut lumen (pe+pH=6.95 declining to 5.36), obviously contribute to the decrease of ROS concentration along the gut length to a minimum in the wall of posterior midgut region. SOD and CAT activities are higher in the potato leaves than in the midgut tissues but the role of plant enzymes in ROS elimination within the gut lumen remains to be shown. A lower level of ROS and a higher antioxidant potential in the adult than in the larval midgut indicate stage specificity in the management of oxidative stress. The antioxidant defense is high in the diapausing adults that contain no detectable superoxide and about ten times less peroxides than the reproducing adults.

  10. Strategies of chemical anti-predator defences in leaf beetles: is sequestration of plant toxins less costly than de novo synthesis?

    Science.gov (United States)

    Zvereva, Elena L; Zverev, Vitali; Kruglova, Oksana Y; Kozlov, Mikhail V

    2017-01-01

    The evolution of defensive traits is driven both by benefits gained from protection against enemies and by costs of defence production. We tested the hypothesis that specialisation of herbivores on toxic host plants, accompanied by the ability to acquire plant defensive compounds for herbivore defence, is favoured by the lower costs of sequestration compared to de novo synthesis of defensive compounds. We measured physiological costs of chemical defence as a reduction in larval performance in response to repeated removal of secretions (simulating predator attack) and compared these costs between five species synthesising defences de novo and three species sequestering salicylic glucosides (SGs) from their host plants. Experiments simulating low predator pressure revealed no physiological costs in terms of survival, weight and duration of development in any of study species. However, simulation of high predation caused reduction in relative growth rate in Chrysomela lapponica larvae producing autogenous defences more frequently, than in larvae sequestering SGs. Still meta-analysis of combined data showed no overall difference in costs of autogenous and sequestered defences. However, larvae synthesising their defences de novo demonstrated secretion-conserving behaviour, produced smaller amounts of secretions, replenished them at considerably lower rates and employed other types of defences (regurgitation, evasion) more frequently when compared to sequestering larvae. These latter results provide indirect evidence for biosynthetic constraints for amounts of defensive secretions produced de novo, resulting in low defence effectiveness. Lifting these constraints by sequestration may have driven some leaf beetle lineages toward sequestration of plant allelochemicals as the main defensive strategy.

  11. Allelopathic potential of oil seed crops in production of crops: a review.

    Science.gov (United States)

    Shah, Adnan Noor; Iqbal, Javaid; Ullah, Abid; Yang, Guozheng; Yousaf, Muhammad; Fahad, Shah; Tanveer, Mohsin; Hassan, Waseem; Tung, Shahbaz Atta; Wang, Leishan; Khan, Aziz; Wu, Yingying

    2016-08-01

    Agricultural production enhancement has been realized by more consumption of fossil energy such as fertilizer and agrochemicals. However, the production provides the present human with sufficient and diversified commodities, but at the same time, deprives in some extent the resources from the future human as well. In the other hand, it is known that synthetic herbicides face worldwide threats to human's health and environment as well. Therefore, it is a great challenge for agricultural sustainable development. The current review has been focussed on various oilseed crop species which launch efficient allelopathic intervention, either with weeds or other crops. Crop allelopathic properties can make one species more persistent to a native species. Therefore, these crops are potentially harmful to both naturalized as well as agricultural settings. On the other side, allelopathic crops provide strong potential for the development of cultivars that are more highly weed suppressive in managed settings. It is possible to utilize companion plants that have no deleterious effect on neighbor crops and can be included in intercropping system, thus, a mean of contributing to agricultural sustainable development. In mixed culture, replacement method, wherein differing densities of a neighbor species are planted, has been used to study phytotoxic/competitive effects. So, to use alternative ways for weed suppression has become very crucial. Allelochemicals have the ability to create eco-friendly products for weed management, which is beneficial for agricultural sustainable development. Our present study assessed the potential of four oilseed crops for allelopathy on other crops and associated weeds.

  12. Chemical interactions between plants in Mediterranean vegetation: the influence of selected plant extracts on Aegilops geniculata metabolome.

    Science.gov (United States)

    Scognamiglio, Monica; Fiumano, Vittorio; D'Abrosca, Brigida; Esposito, Assunta; Choi, Young Hae; Verpoorte, Robert; Fiorentino, Antonio

    2014-10-01

    Allelopathy is the chemical mediated communication among plants. While on one hand there is growing interest in the field, on the other hand it is still debated as doubts exist at different levels. A number of compounds have been reported for their ability to influence plant growth, but the existence of this phenomenon in the field has rarely been demonstrated. Furthermore, only few studies have reported the uptake and the effects at molecular level of the allelochemicals. Allelopathy has been reported on some plants of Mediterranean vegetation and could contribute to structuring this ecosystem. Sixteen plants of Mediterranean vegetation have been selected and studied by an NMR-based metabolomics approach. The extracts of these donor plants have been characterized in terms of chemical composition and the effects on a selected receiving plant, Aegilops geniculata, have been studied both at the morphological and at the metabolic level. Most of the plant extracts employed in this study were found to have an activity, which could be correlated with the presence of flavonoids and hydroxycinnamate derivatives. These plant extracts affected the receiving plant in different ways, with different rates of growth inhibition at morphological level. The results of metabolomic analysis of treated plants suggested the induction of oxidative stress in all the receiving plants treated with active donor plant extracts, although differences were observed among the responses. Finally, the uptake and transport into receiving plant leaves of different metabolites present in the extracts added to the culture medium were observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Extracts of North Sea macroalgae reveal specific activity patterns against attachment and proliferation of benthic diatoms: a laboratory study.

    Science.gov (United States)

    Lam, C; Grage, A; Schulz, D; Schulte, A; Harder, T

    2008-01-01

    A variety of macroalgae (Ceramium rubrum, Corallina officinalis, Palmaria palmata, Mastocarpus stellatus, Fucus vesiculosus, Cladophora rupestris, Ulva sp.) were investigated by scanning electron microscopy to visualize epiphytic colonizers. The macroalgae differed in terms of their epiphytic coverage of bacteria, fungi and diatoms. Macroalgae, largely devoid of epiphytic diatoms, were hypothesized to employ effective antifouling means to reduce epiphytic coverage, whilst heavily fouled macroalgae were proposed to lack antifouling strategies. To test these hypotheses from an allelochemical perspective with regard to fouling diatoms, dichloromethane-methanol (1:1) crude extracts of macroalgae were concentrated in dimethylsulfoxide and investigated in diatom attachment and proliferation assays using four benthic diatoms (Nitzschia sp., Navicula phyllepta, Navicula arenaria and Amphora sp.). Algal extracts exhibited a distinct pattern of activity against the test diatoms, suggesting a targeted and selective effect of macroalgal metabolites on individual fouling diatoms. The main outcome of this study was that visual inspection and quantitative categorization of epiphytic colonizers on macroalgal thalli could not be used to predict reliably whether macroalgae employed a chemical defense mechanism.

  14. Cytotoxic and molecular impacts of allelopathic effects of leaf residues of Eucalyptus globulus on soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Hala M. Abdelmigid

    2017-12-01

    Full Text Available Eucalyptus trees litter plays a crucial role in structuring plant populations and regulating crop quality. To help characterize the allelopathic impact of Eucalyptus plantations and understand the interactions between tree litter and understorey plant populations, we performed two different genomic approaches to determine soybean (Glycine max crop plant response to biotic stress induced by leaf residues of Eucalyptus globulus trees. For assessing cell death, a qualitative method of DNA fragmentation test (comet assay was employed to detect cleavage of the genomic DNA into oligonucleosomal fragments and help to characterize the apoptotic event among the experimental samples. In addition, quantitative method of genome analysis at the transcriptional level also was conducted to investigate the expression responses of soybean genome to allelochemicals. Expression of specific genes, which are responsible for the breakdown of proteins during programmed cell death PCD (cysteine proteases and their inhibitors, was examined using semi-quantitative RT-PCR (sqPCR. Results of both conducted analyses proved significant genetic effects of Eucalyptus leaf residues on soybean crop genome, revealed by steady increase in DNA damage as well as variation in the transcript levels of cysteine proteases and inhibitors. Further detailed studies using more sensitive methods are necessary for a comprehensive understanding of the allelopathic effects of Eucalyptus plantations on crops.

  15. Non-invasive delivery of dsGST is lethal to the sweet potato whitefly, Bemisia tabaci (G.) (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Asokan, R; Rebijith, K B; Roopa, H K; Kumar, N K Krishna

    2015-02-01

    The sweet potato whitefly, Bemisia tabaci (G.) biotype B (Hemiptera: Aleyrodidae), is one of the most economically important pest, by being a dreaded vector of Geminiviruses, and also causes direct damage to the crops by sucking phloem sap. Glutathione S-transferase (GST) is a large family of multifunctional enzymes that play pivotal roles in the detoxification of secondary allelochemical produced by the host plants and in insecticide resistance, thus regulates insect growth and development. The objective of this study is to show the potential of RNA interference (RNAi) in the management of B. tabaci. RNAi is a sequence-specific gene silencing mechanism induced by double-stranded RNA (dsRNA) which holds tremendous potential in pest management. In this regard, we sequenced the GST from B. tabaci and synthesized approximately 500-bp dsRNA from the above and delivered through diet to B. tabaci. Real-time quantitative PCR (RT-qPCR) showed that continuous application of dsGST at 1.0, 0.5, and 0.25 μg/μl reduced mRNA expression levels for BtGST by 77.43, 64.86, and 52.95 % which resulted in mortality by 77, 59, and 40 %, respectively, after 72 h of application. Disruption of BtGST expression will enable the development of novel strategies in pest management and functional analysis of vital genes in B. tabaci.

  16. Seasonal and scale-dependent variability in nutrient- and allelopathy-mediated macrophyte–phytoplankton interactions

    Directory of Open Access Journals (Sweden)

    Lombardo P.

    2013-08-01

    Full Text Available macrophyte–phytoplankton interactions were investigated using a dual laboratory and field approach during a growing season, with responses quantified as changes in biomass. Short-term, close-range interactions in laboratory microcosms always led to mutual exclusion of macrophytes (Elodea canadensis or Ceratophyllum demersum and algae (Raphidocelis subcapitata, Fistulifera pelliculosa or cyanobacteria (Synechococcus leopoliensis, suggesting regulation by positive feedback mechanisms, progressively establishing and reinforcing a “stable state”. Laboratory results suggest that close-range regulation of R. subcapitata and F. pelliculosa by macrophytes was primarily via nutrient (N, P mediation. Sprig-produced allelochemicals may have contributed to inhibition of S. leopoliensis in C. demersum presence, while S. leopoliensis was apparently enhanced by nutrients leaked by subhealthy (discolored leaves; biomass loss E. canadensis. Seasonal changes in algal growth suppression were correlated with sprig growth. Marginal differences in in situ phytoplankton patterns inside and outside monospecific macrophyte stands suggest that the nutrient- and/or allelopathy-mediated close-range mechanisms observed in the laboratory did not propagate at the macrophyte-stand scale. Factors operating at a larger scale (e.g., lake trophic state, extent of submerged vegetation coverage appear to override in situ macrophyte–phytoplankton close-range interactions.

  17. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health

    Science.gov (United States)

    Alpermann, Tilman J.; Cembella, Allan D.; Collos, Yves; Masseret, Estelle; Montresor, Marina

    2011-01-01

    The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutritional strategies are equally diverse, including the ability to utilize a range of inorganic and organic nutrient sources, and feeding by ingestion of other organisms. Many Alexandrium species have complex life histories that include sexuality and often, but not always, cyst formation, which is characteristic of a meroplanktonic life strategy and offers considerable ecological advantages. Due to the public health and ecosystem impacts of Alexandrium blooms, the genus has been extensively studied, and there exists a broad knowledge base that ranges from taxonomy and phylogeny through genomics and toxin biosynthesis to bloom dynamics and modeling. Here we present a review of the genus Alexandrium, focusing on the major toxic and otherwise harmful species. PMID:22308102

  18. Allelopathic Effects of Aqueous Extract of Leaf Stem and Root of Sorghum bicolor on Seed Germination and Seedling Growth of Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Amir MOOSAVI

    2011-05-01

    Full Text Available Seed germination under field conditions is highly influenced by the presence of other plants. Allelopathy is an important mechanism of plant competition, by producing phytotoxins to the plant environment in order to decline other plants growth. Soil sickness problem in farm lands is also known as an allelopathic effect or even autotoxicity. The toxicity of released allelochemicals by a plant in the environment is attributed to its function of concentration, age and metabolic stage. In this study we investigate the effect (5, 20, 35 and 50 g l-1 of leaf, stem and root water extract of sorghum on seed germination and seedling growth of mung bean. The results of the experiment showed that allelopathic effect of different concentrations was not significant for germination percentage, but germination rate and mean germination time decreased significantly by increasing the concentration of allelopathic extracts; also, there was a clear allelopathic effect of sorghum extract on seedling growth of mung bean. 50 g l-1 sorghum stem extract exhibited the highest inhibitory effect on root and shoot growth of mung bean. Among all parts of sorghum, stem extracts showed the highest allelopatic effect on seedling growth. Root extract showed higher inhibitory effect than leaf extracts.

  19. Bioassay standardization for the detection of allelopathic compounds and environmental toxicants using lettuce

    Directory of Open Access Journals (Sweden)

    Mateus Salomão Simões

    2013-09-01

    Full Text Available The purpose of this study was to assess different experimental conditions to determine a protocol for bioassays based on seed germination and early seedling growth using lettuce (Lactuca sativa L. cv. Grand Rapids as indicator species. This protocol aims to provide support for the standardization of assays of various chemicals such as allelochemicals and environmental toxicants. The following tests were performed: time of germination, temperature, light, solution volume and Petri dish size. For each test (except for time of germination, the influence of the conditions investigated was determined by the endpoints germination percentage, germination speed index, root length, seedling fresh weight and total dry weight. The results showed that variations in the methods altered the results. It is recommended that bioassays using L. sativa L. cv. Grand Rapids be carried out for a minimum period of four days for assessments of both germination and initial growth and that the experimental conditions include a temperature of 20°C, 90-mm Petri dishes or larger, 0.1 mL cypsela solution, and continuous light or 12-hour photoperiod.

  20. Determination of the genotoxic effects of Convolvulus arvensis extracts on corn (Zea mays L.) seeds.

    Science.gov (United States)

    Sunar, Serap; Yildirim, Nalan; Aksakal, Ozkan; Agar, Guleray

    2013-06-01

    In this research, the methanolic extracts of Convolvulus arvensis were tested for genotoxic and inhibitor activity on the total soluble protein content and the genomic template stability against corn Zea mays L. seed. The methanol extracts of leaf, stem and root of C. arvensis were diluted to 50, 75 and 100 μl concentrations and applied to corn seed. The total soluble protein and genomic template stability results were compared with the control. The results showed that especially 100 μl extracts of diluted leaf, stem and root had a strong inhibitory activity on the genomic template stability. The changes occurred in random amplification of polymorphic DNA (RAPD) profiles of C. arvensis extract treatment included variation in band intensity, loss of bands and appearance of new bands compared with control. Also, the results obtained from this study revealed that the increase in the concentrations of C. arvensis extract increased the total soluble protein content in maize. The results suggested that RAPD analysis and total protein analysis could be applied as a suitable biomarker assay for the detection of genotoxic effects of plant allelochemicals.

  1. Development of a generalist predator, Podisus maculiventris, on glucosinolate sequestering and nonsequestering prey

    Science.gov (United States)

    van Geem, Moniek; Harvey, Jeffrey A.; Gols, Rieta

    2014-09-01

    Insect herbivores exhibit various strategies to counter the toxic effects of plant chemical defenses. These strategies include the detoxification, excretion, and sequestration of plant secondary metabolites. The latter strategy is often considered to provide an additional benefit in that it provides herbivores with protection against natural enemies such as predators. Profiles of sequestered chemicals are influenced by the food plants from which these chemicals are derived. We compared the effects of sequestration and nonsequestration of plant secondary metabolites in two specialist herbivores on the development of a generalist predator, Podisus maculiventris. Profiles of glucosinolates, secondary metabolites characteristic for the Brassicaceae, are known to differ considerably both inter- and intraspecifically. Throughout their immature (=nymphal) development, the predator was fed on larval stages of either sequestering (turnip sawfly, Athalia rosae) or nonsequestering (small cabbage white butterfly, Pieris rapae) prey that in turn had been feeding on plants originating from three wild cabbage ( Brassica oleracea) populations that have previously been shown to differ in their glucosinolate profiles. We compared survival, development time, and adult body mass as parameters for bug performance. Our results show that sequestration of glucosinolates by A. rosae only marginally affected the development of P. maculiventris. The effects of plant population on predator performance were variable. We suggest that sequestration of glucosinolates by A. rosae functions not only as a defensive mechanism against some predators, but may also be an alternative way of harmlessly dealing with plant allelochemicals.

  2. An in vitro antagonistic efficacy validation of Rhizophora mucronata

    Directory of Open Access Journals (Sweden)

    Aseer Manilal

    2015-01-01

    Full Text Available Objective: To assess the in vitro antimicrobial efficacy of Rhizophora mucronata (R. mucronata collected from the mangrove wetland of Ayiramthengu (southwest coast of India against potential human and shrimp pathogens and to analyse the allelochemical constituents by gas chromatography-mass spectrometer (GC-MS profiling. Methods: Agar diffusion assay was used to investigate the efficacy of R. mucronata extracted in different polar and non-polar solvents. The antimicrobial activity was assessed against six type cultures of human and seven type cultures of shrimp pathogens. Results: In the present study, methanol was found to be the best solvent for extracting the antimicrobial principles from R. mucronata. The results of the antimicrobial assay inferred that this mangrove could be a potential source of antibiotics for controlling the bacterial pathogens in human and shrimp. Furthermore, phytoconstituents of the crude extract were identified by GC-MS analysis. The GC-MS profile of the crude extract revealed that the main constituent was, Ethanone,1-(2-hydroxy-5-methylphenyl (Rt=9.213, which might have a functional role in the antibiotic activity. Conclusions: Collectively, the overall results implies the mangrove, R. mucronata could be utilized as a renewable natural source for the development of novel biotherapeutics to combat human and shrimp pathogens.

  3. Effects of different nitrogen levels on phytotoxicity of some allelopathic crops

    Directory of Open Access Journals (Sweden)

    Y. NOROUZI

    2016-04-01

    Full Text Available Intensive usage of herbicides can result in the serious negative impacts on environment. Allelopathy by reducing seed germination and early seedling growth can play a fundamental role in suppressing weeds in crop fields. The effectiveness of allelochemicals is governed by different factors such as soil nutrient status, pH and microorganisms. Outdoor pot experiments were conducted at the Faculty of Agriculture and Natural Resources of Razi University, Kermanshah, Iran, in 2013, to evaluate the effects of different levels of N fertilizer (0, 150, 300 kg ha-1 on the suppressing effects of alfalfa (Medicago sativa L., sorghum (Sorghum bicolor L., and tobacco (Nicotiana tabacum L. plant materials on emergence and growth parameters of some weed species including Johnson grass (Sorghum halepense (L. Pers., barnyard grass (Echinochloa crus-galli (L. Beauv. and redroot pigweed (Amaranthus retroflexus L.. Results indicated that adding plant materials of tobacco, sorghum, and alfalfa substantially reduced seed germination and early growth of the tested weeds. However, the weed species responded differently to the presence of the allelopathic plant materials. The use of N fertilizer had significant effects on the inhibitory potentials of the allelopathic plants. However, we didn't find consistent trends regarding the responses of the allelopathic crops to elevated N fertilizer levels in related to the traits under study.

  4. A Stable-Isotope Mass Spectrometry-Based Metabolic Footprinting Approach to Analyze Exudates from Phytoplankton

    Directory of Open Access Journals (Sweden)

    Mark R. Viant

    2013-10-01

    Full Text Available Phytoplankton exudates play an important role in pelagic ecology and biogeochemical cycles of elements. Exuded compounds fuel the microbial food web and often encompass bioactive secondary metabolites like sex pheromones, allelochemicals, antibiotics, or feeding attractants that mediate biological interactions. Despite this importance, little is known about the bioactive compounds present in phytoplankton exudates. We report a stable-isotope metabolic footprinting method to characterise exudates from aquatic autotrophs. Exudates from 13C-enriched alga were concentrated by solid phase extraction and analysed by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. We used the harmful algal bloom forming dinoflagellate Alexandrium tamarense to prove the method. An algorithm was developed to automatically pinpoint just those metabolites with highly 13C-enriched isotope signatures, allowing us to discover algal exudates from the complex seawater background. The stable-isotope pattern (SIP of the detected metabolites then allowed for more accurate assignment to an empirical formula, a critical first step in their identification. This automated workflow provides an effective way to explore the chemical nature of the solutes exuded from phytoplankton cells and will facilitate the discovery of novel dissolved bioactive compounds.

  5. Evaluation of the Allelopathic Influence of Selected Multi-purpose Tree Species on Maize (Zea mays under a Simulated Field Condition

    Directory of Open Access Journals (Sweden)

    Adeorike, V.

    2001-01-01

    Full Text Available Germination and growth response of maize (Zea mays that was periodically watered with 200 ml of leaf leachates of three selected multipurpose tree species (MPTs - Inga edulis, Anthonatha macrophylla and Dactyladenia barterii were evaluated under a simulated field condition to determine their allolepathic characteristics and suitability for alley cropping. There was a significant (P <0.05 difference in the germination percentage of the maize seeds among the MPTs studied. Maximum germination percentage (76.7 % of the seeds and seedling growth as indicated by radicle length, shoot length, fresh weight and plant height at taselling were obtained from seeds watered/treated with rainwater as the control treatment. Reduction in germination percentage (33 % was observed in Anthonatha macrophylla leachates while moderate germination percentage of 50 % was observed in Dactyladenia barterii leachate. Anthonatha macrophylla leachate inhibited both radicle and shoot lenght. Similarly Inga edulis leachate had inhibiting effects on radicle and shoot of germinating maize seeds. This resuit suggets that Inga edulis, Anthonatha macrophylla and Dactyladenia barterii produce allelochems which inhibit seed germination and growth of maize under the conditions of the experiment. Investigations on allelopathic characteristics of potential MPTs could be integrated in farm planning strategies in a tropical agroecology especially where alley cropping is contemplated.

  6. Accelerating of Pink Pigment Excretion from Cyanobacterium Oscillatoria by Co-Cultivation with Anabaena

    Directory of Open Access Journals (Sweden)

    DWI SUSILANINGSIH

    2007-03-01

    Full Text Available The freshwater cyanobacterium Oscillatoria BTCC/A 0004 excretes pink pigment containing lipoproteins with molecular weights of about 10 kDa. This pigment has surfactant properties with strong emulsification activity toward several hydrocarbons. This extracellular metabolite was suspected as toxin or allelochemical in their habitat. In this study, I investigated the effect of co-cultivation of Oscillatoria with Anabaena variabilis on the pigment excretion to explore the physiological roles of this pigment in its natural environment. The dead or viable cells and medium of A. variabilis were added into Oscillatoria cultures. Results showed that co-cultivation of free viable cells of A. variabilis enhanced the excretion of pigment without effect on the cell growth. Co-cultivation with viable cells in separated method and dead cells did not influenced the pigment production. The addition of A. variabilis medium was slightly increased the excretion of the pigment. Those results indicated that direct contact with A. variabilis caused Oscillatoria released a certain signaling compound.

  7. [Allelopathic effects of extracts from fibrous roots of Coptis chinensis on two leguminous species].

    Science.gov (United States)

    Li, Qian; Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo

    2013-03-01

    An experiment was carried out to study the allelopathic effects of Coptis chinensis fibrous root extracts (CRE) on the germination and seedling growth of Vicia faba and Pisum sativum in order to alleviate the allelopathic effects and increase land productivity. The seeds of both garden pea (P. sativum) and broad been (V. faba) were germinated in CRE solution of various concentrations, the germination rate, seedling growth and related physiological indexes were measured. The result indicated that there were no significant effects of CRE in low concentrations on seed germination, including both the rate and index, and seed vitality and membrane permeability. With the increment of CRE concentrations, however, the high seed membrane permeability and germination inhibition were observed. For example, the germination rates were reduced by 23.4% (P. sativum) and 9.5% (V. faba), respectively, in CRE solution with 800 mg . L-1. Simultaneously, soluble sugars and the free amino acids in the seeds were lower than those in the control (without CRE) after soaking seeds in CRE solutions. In addition, the seedling growth and nitrate reductase activity were stimulated by CRE at low concentrations in contrast to high concentrations which behaved otherwise and inhibited the nutrient utilization in endosperm. Therefore, the large amount of allelochemicals released from the roots and remains of C. chinensis in soils could inhibit the seed germination and seedling growth of legumes, which may lead to decrease even fail crop yields after growing this medical plant.

  8. A novel allelopathic substance, 13-epi-orthosiphol N, in Orthosiphon stamineus.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Hamada, Naoko; Morita, Maho; Suenaga, Kiyotake

    2013-01-01

    Orthosiphon stamineus (Java tea) has been widely used as traditional herb and several bioactive compounds against animal cells have been isolated. However, no bioactive compound against plants has been reported. Therefore, we investigated possible allelopathic properties and substances in O. stamineus. Aqueous methanol extracts of O. stamineus inhibited root and hypocotyl growth of cress (Lepidium sativum) and lettuce (Lactuca sativa) seedlings. Increasing the extract concentration increased the inhibition, which suggests that O. stamineus may have allelopathic properties. When the extract was divided into an ethyl acetate and an aqueous fraction, the ethyl acetate fraction showed the stronger inhibitory effect. Thus, the ethyl acetate phase was further purified, and the main allelopathic substance was isolated and identified as 13-epi-orthosiphol N, a novel compound, by spectral data. 13-epi-Orthosiphol N inhibited root and hypocotyl growth of cress and lettuce at concentrations greater than 10 μmol/L. The concentrations required for 50% inhibition ranged from 41 to 102 μmol/L. These results suggest that 13-epi-orthosiphol N may be an allelochemical and main contributor to the growth inhibitory effect of O. stamineus and may have potential as a template for the development of new plant control substances. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Responses of Periphyton to Fe2O3Nanoparticles: A Physiological and Ecological Basis for Defending Nanotoxicity.

    Science.gov (United States)

    Tang, Jun; Zhu, Ningyuan; Zhu, Yan; Liu, Junzhuo; Wu, Chenxi; Kerr, Philip; Wu, Yonghong; Lam, Paul K S

    2017-09-19

    The toxic effects of nanoparticles on individual organisms have been widely investigated, while few studies have investigated the effects of nanoparticles on ubiquitous multicommunity microbial aggregates. Here, periphyton as a model of microbial aggregates, was employed to investigate the responses of microbial aggregates exposed continuously to Fe 2 O 3 nanoparticles (5.0 mg L -1 ) for 30 days. The exposure to Fe 2 O 3 nanoparticles results in the chlorophyll (a, b, and c) contents of periphyton increasing and the total antioxidant capacity decreasing. The composition of the periphyton markedly changes in the presence of Fe 2 O 3 nanoparticles and the species diversity significantly increases. The changes in the periphyton composition and diversity were due to allelochemicals, such as 3-methylpentane, released by members of the periphyton which inhibit their competitors. The functions of the periphyton represented by metabolic capability and contaminant (organic matter, nitrogen, phosphorus and copper) removal were able to acclimate to the Fe 2 O 3 nanoparticles exposure via self-regulation of morphology, species composition and diversity. These findings highlight the importance of both physiological and ecological factors in evaluating the long-term responses of microbial aggregates exposed to nanoparticles.

  10. Effects of predation by Hydra (Cnidaria on cladocerans (Crustacea: Cladocera

    Directory of Open Access Journals (Sweden)

    Ligia Rivera-De la Parra

    2016-03-01

    Full Text Available Planktonic cladocerans have evolved different strategies to avoid predation from vertebrates; these include changes in morphology, behavior, physiology, and/or life-history traits. However, littoral cladocerans are better adapted to avoid invertebrate predation particularly from insect larvae by evolving morphological and physiological adaptations. Nevertheless, this has not been proven for some littoral predators such as Hydra. In this study, we provide quantitative data on how Hydra affects its zooplankton prey. We studied the predation behavior on Alona glabra, Ceridodaphnia dubia, Daphnia pulex, Daphnia cf. mendotae, Diaphanosoma birgei, Macrothrix triserialis, Moina macrocopa, Pleuroxus aduncus, Scapholeberis kingi, Simocephalus vetulus, Elaphoidella grandidieri, Brachionus rubens and Euchlanis dilatata. We also tested the indirect effect of allelochemicals from Hydra on the demography of Daphnia cf. mendotae. Littoral cladocerans are specially adapted to resist nematocyst injection and discharge of toxic substances from Hydra. A significant decrease in the population growth rate from 0.21 to 0.125 d-1 was observed at densities of 2 ind. ml-1. The role of carapace thickness as an adaptive strategy of littoral cladocerans against Hydra predation is discussed.

  11. Allelopathic effects of aqueous extracts of sunflower on wheat (triticum aestivum l.) and maize (zea mays l.)

    International Nuclear Information System (INIS)

    Muhammad, Z.; Mujeed, A.

    2014-01-01

    Sunflower is a potent allelopathic plant which possesses important allelochemicals with known allelopathic activity on other plants. In this study, allelopathic effects of fresh aqueous extracts (FAE) and air dried aqueous extracts (DAE) of root, shoot and leaves of sunflower (Halianthus annuus L.) were investigated on germination and seedling growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in seed bioassay experiments carried out at Botany Department of Peshawar University during 2010. Results showed significantly inhibitory effects of aqueous extracts on seed germination, growth and dry biomass of seedlings of wheat and maize. In wheat seedlings, significant germination inhibition (15.21%), increased mean germination time (MGT) (57.76%), reduced plumule and radical growth (21.66 and 28.44%) and lowered seedlings dry biomass (31.05%) were recorded under dry aqueous extracts of leaf when compared to control. Germination percentage of maize was inhibited by dry aqueous extracts of leaf by 7.81%, germination index by 16.51%, increased MGT by 25.53%, decreased plumule and radical lengths by 29.00 and 36.12% respectively, and lowered maize seedling dry biomass by 34.02 %. In both experiments, dry aqueous extracts (DAE) were more phytotoxic than fresh aqueous extracts (FAE). Similarly, inhibitory effects of aqueous extracts of different parts of sunflower were recorded in the order leaf > shoot > root for both tested plants. (author)

  12. Seasonal changes in phosphorus competition and allelopathy of a benthic microbial assembly facilitate prevention of cyanobacterial blooms.

    Science.gov (United States)

    Wu, Yonghong; Wang, Fengwu; Xiao, Xi; Liu, Junzhuo; Wu, Chenxi; Chen, Hong; Kerr, Philip; Shurin, Jonathan

    2017-06-01

    Interactions among microbes determine the prevalence of harmful algal blooms that threaten water quality. These interactions can be indirectly mediated by shared resources or consumers, or through interference by the production of allelochemicals. Allelopathic interactions and resource competition have been shown to occur among algae and associated microbes. However, little work has considered seasonal influences on ecosystem structure and function. Here, we report results of our investigations on seasonal changes in the interactions between benthic microbial assemblies and the bloom forming cyanobacterium Microcystis aeruginosa. We show that phosphorus (P) competition and allelopathy by the microbial assembly vary seasonally and inhibit growth of M. aeruginosa. The interactions per unit biomass of the microbial assembly are stronger under winter than summer conditions and inhibit the recruitment of the cyanobacteria, thereby preventing the reoccurrence of cyanobacterial blooms in the following summer. The seasonality of these interactions correlates with changes in composition, metabolic activity and functional diversity of the microbial assembly. Our findings highlight the importance of competitive and allelopathic interactions in regulating the occurrence of harmful algal blooms. Our results also imply that seasonal variation of competition and allelopathy of the microbial assembly might be beneficial to adjust aquatic ecosystem structure and function. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Effects of Saffron Corm and Leaf Extracts on Early Growth of Some Plants to Investigate the Possibility of Using Them as Associated Crop

    Directory of Open Access Journals (Sweden)

    Hamid-Reza FALLAHI

    2014-09-01

    Full Text Available Saffron intercropping with other plants needs to preliminary investigations about the possible negative interactions between saffron and associated crop. In this study, allelopathic effects of saffron leaf and corm extracts on germination and seedling growth indices of alfalfa (Medicago sativa, arugula (Eruca sativa and rapeseed (Brassica napus was investigated in six separate experiments based on completely randomized design. Experimental treatments were consisted of different levels of saffron leaf and corm extracts including 0, 0.75, 1.5, 3 and 6%. The maximum germination percentage of all selected crops was obtained at control treatment (on average 92% and then decreased with increasing extracts concentration. So that, the germination percentage of arugula, canola and alfalfa in highest concentration of extracts were 18, 10 and 8% for leaf extract and 72, 68 and 93% for corm extract, respectively. The relatively similar trend was observed about germination rate, root and plumule lengths and dry weights. Therefore, the inhibitory effect of saffron leaf extract was more than corm extract on initial growth indices of studied plants. The lowest inhibitory effect of saffron leaf extract and even relatively high stimulatory effect of corm extract were obtained on alfalfa initial growth criteria. Considering the differences in allelochemicals mode of action and concentrations in laboratory bioassays with natural condition, it is necessary to investigate the effects of saffron residues on growth of selected associated crops in greenhouse and field scales for the final decision.

  14. Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed

    Science.gov (United States)

    Rasher, Douglas B.; Hay, Mark E.

    2014-01-01

    Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defence against herbivores. Following 8 days of competition with the coral Porites cylindrica, the chemically rich seaweed Galaxaura filamentosa induced increased allelochemicals and became nearly twice as damaging to the coral. However, it also experienced significantly reduced growth and increased palatability to herbivores (because of reduced chemical defences). Under the same conditions, the seaweed Sargassum polycystum did not induce allelopathy and did not experience a change in growth or palatability. This is the first demonstration of induced allelopathy in a seaweed, or of competitors reducing seaweed chemical defences against herbivores. Our results suggest that the chemical ecology of coral–seaweed–herbivore interactions can be complex and nuanced, highlighting the need to incorporate greater ecological complexity into the study of chemical defence. PMID:24403332

  15. Autotoxicity and Allelopathy of 3,4-Dihydroxyacetophenone Isolated from Picea schrenkiana Needles

    Directory of Open Access Journals (Sweden)

    Zhao-Hui Li

    2011-10-01

    Full Text Available Bioassay-guided fractionation of the diethyl ether fraction of a water extract of Picea schrenkiana needles led to the isolation of the phenolic compound 3,4-dihydroxy- acetophenone (DHAP. The allelopathic effects of DHAP were evaluated under laboratory conditions on P. schrenkiana, rice (Oryza sativa L., wheat (Triticum aestivum L., radish (Raphanus sativus L., lettuce (Latuca sativa L., cucumber (Cucumis sativus L. and mung bean (Phaseolus radiatus L.. DHAP significantly inhibited seed germination and seedling growth of P. schrenkiana at concentrations of 2.5 mM and 0.5 mM (p < 0.05. Soil analysis revealed that P. schrenkiana forest soils contained exceptionally high DHAP concentrations (mean = 0.51 ± 0.03 mg/g dry soil, sufficient to inhibit natural P. schrenkiana recruitment. DHAP also exhibited strong allelopathic potential. It significantly inhibited wheat and lettuce seed germination at concentrations of 1 mM and 0.5 mM (p < 0.05. The active compound also completely inhibited root growth of the six test species at high concentrations. Our results suggest a dual role of DHAP, both as an allelochemical and as an autotoxicant. The potential for a single plant needle-leached compound to influence both inter- and intra-specific interactions emphasized the complex effects that plant secondary metabolites might have on plant population and community structure.

  16. Sources and modes of action of invasive knotweed allelopathy: the effects of leaf litter and trained soil on the germination and growth of native plants

    Directory of Open Access Journals (Sweden)

    Madalin Parepa

    2012-05-01

    Full Text Available Invasive knotweeds, native to Eastern Asia, are among the most dominant plant invaders of European and North American temperate ecosystems. Recent studies indicate that one cause of this dominance might be allelopathy, but the possible sources and modes of action of this allelopathy are insufficiently understood. Here, we asked whether the invasive knotweed Fallopia × bohemica can exert allelopathic effects on native plants also through its leaf litter, or through persistent soil contaminants, and whether these affect the germination or growth of native plants. In a germination experiment with nine native species neither litter leachate, an aqueous extract of knotweed leaves added to the soil, nor trained soil with a history of Fallopia pre-cultivation suppressed the germination or early growth of natives. A mesocosm study with experimental native communities showed that the presence of F. × bohemica, although not a dominant in these communities, caused significant shifts of life-history strategy in two dominant natives, and that similar effects could be elicited through litter leachates or trained soil alone. However, there were hardly any effects on the biomass of natives. Our study indicates that knotweed allelopathy acts on the growth rather than germination of natives, and that soil contamination through persistent allelochemicals may not be a significant problem in habitat restoration. It also shows that allelopathic effects can sometimes be subtle changes in life-history and allocation patterns of the affected species.

  17. Allelopathic effects of Clinopodium menthifolium and Salvia sclarea aqueous extracts

    Directory of Open Access Journals (Sweden)

    Šućur Jovana T.

    2016-01-01

    Full Text Available Secondary plant biomolecules are the main agents in biochemical inter­actions between plants and the environment. It is possible to distinguish the role of secondary biomolecules in allelopathic (plant-plant activity, plant-insect, plant-microbe, plant-herbivore and others. These interactions can significantly affect the productivity of agricultural crops. Application of allelochemicals into agricultural practice may reduce the use of herbicides. Effect of Salvia sclarea L. and Clinopodium menthifolium (Host aqueous extracts on lipid peroxidation process, as well as the activity of antioxidant enzymes in leaves and roots of Jimson weed (Datura stramonium L. and soybean (Glycine max L. seedlings were examined 24 h, 72 h and 120 h after the treatment. The third aim was to evaluate effectiveness of aqueous extract as contact toxicant against Rhyzopertha dominica. Our results showed that S. sclarea aqueous extract induced lipid peroxidation in roots of Jimson weed seedlings 24 h after the treatment. Furthermore, both tested concentrations of C. menthifolium aqueous extract induced lipid peroxidation in Jimson weed roots 72 h and 120 h after the treatment. It was observed that S. sclarea aqueous extract showed toxic effect against R. dominica, with high mortality rate (above 95%.

  18. Cistus ladanifer (Cistaceae): a natural resource in Mediterranean-type ecosystems.

    Science.gov (United States)

    Frazão, David F; Raimundo, Joana R; Domingues, Joana L; Quintela-Sabarís, Celestino; Gonçalves, José C; Delgado, Fernanda

    2018-02-01

    Cistus ladanifer has a well-defined taxonomic identity. 2,2,6-trimethylcyclohexanone may be an authenticity and taxonomic marker. Its traits and applications make it a possible economic resource fitted for Mediterranean areas. Cistus ladanifer is a dominant shrub species endemic to the western Mediterranean region. Due to its dominant nature and its potential ecological, aromatic or pharmacological applications, C. ladanifer has been the object of numerous studies. In this review current knowledge on different aspects of this species is summarized, from its taxonomy to its chemical characterisation or its competitive traits. There are no doubts about the taxonomic entity of C. ladanifer, although the recognition of infraspecific taxa deserves more attention. Given that the fragrant exudate of C. ladanifer holds a very specific composition, one species specific carotenoid, 2,2,6-trimethylcyclohexanone, derivative is proposed as an authenticity marker for uses of C. ladanifer in pharmacological or aromatic industries. Evidence is also gathered on the extreme adaptation of C. ladanifer to stressful conditions in the Mediterranean region, such as the ability to survive in low hydric and high solar exposition conditions, presistence in poor and contaminated soils, and growth inhibition of several other plants through the release of allelochemicals. Thus, the finding of potential applications for this plant may contribute to enhance the economic dimension of derelict lands, such as mine tailings or poor agricultural Mediterranean areas.

  19. Allelopathy as a potential strategy to improve microalgae cultivation

    Science.gov (United States)

    2013-01-01

    One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or predators of the microalgae. Numerous studies have explored the potential of naturally occurring bioactive secondary metabolites, which are natural products from plants and microorganisms, as a source of such compounds. Some of these compounds are herbicides, and marine and freshwater microalgae are a source of these compounds. Microalgae produce a remarkable diversity of biologically active metabolites. Results based on the allelopathic potential of algae have only been described for laboratory-scale production and not for algae cultivation on a pilot scale. The adoption of allelopathy on microalgal strains is an unexplored field and may be a novel solution to improve algae production. Here we present information showing the diversity of allelochemicals from microalgae and the use of an allelopathic approach to control microalgae cultivation on a pilot scale based on R&D activities being carried out in Brazil for biodiesel production. PMID:24499580

  20. [Potential allelopathic effects of Piper nigrum, Mangifera indica and Clausena lansium].

    Science.gov (United States)

    Yan, Guijun; Zhu, Chaohua; Luo, Yanping; Yang, Ye; Wei, Jinju

    2006-09-01

    With Piper nigrum, Mangifera indica and Clausena lansium as the donators, this paper studied their potential allelopathic effects on the germination and growth of Zea mays, Glycine max, Cucurbita moschata, Arachis hypogaea, Raphanus sativus, Echinochloa crusgalli, Digitaria sanguinalis and Stylosanthes guianensis. The results showed that the aqueous extracts of these donators could inhibit the germination and growth of Z. mays, G. max, C. moschata, E. crus-galli and D. sanguinalis at high concentration, but stimulate them at low concentration. In rhizosphere soil of P. nigrum and M. indica, the germination and growth of Z. mays L was stimulated, while A. hypogaea was inhibited. The aqueous extracts of the donators were extracted by ethyl acetate and n-butanol, respectively, and the inhibitory activity of both aqueous and n-butanol fractions from P. nigrum and M. indica on Z. mays, R. sativus and S. guianensis was stronger than that of ethyl acetate fraction, indicating that P. nigrum and M. indica contained the allelochemicals with high polarity.

  1. Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis.

    Science.gov (United States)

    Jassbi, Amir Reza; Zamanizadehnajari, Simin; Baldwin, Ian Thomas

    2010-12-01

    In the vicinity of big sagebrush (Artemisia tridentata), the growth of Nicotiana attenuata is negatively affected, in part due to the alleopathic effect of methyl jasmonate (MeJA) which is produced in large quantities by the aerial parts of sagebrush. Preliminary experiments suggested that growth-inhibiting substances were being emitted from the sagebrush roots. To identify the allelochemical secondary metabolites, we tested different root extracts in seedling growth bioassays with the naturally co-occurring native tobacco, Nicotiana attenuata, in a two-chamber Petri dish assay, optimized for tests of volatiles. Fractions rich in volatile compounds were particularly phytotoxic. We analyzed the volatiles emitted from the roots of intact Artemisia tridentata plants grown in soil, sand, and hydroponic cultures by using dynamic headspace extraction, headspace solvent-microextraction (HSME) and headspace solid-phase microextraction (HSPME), and GC-MS. Camphor, 1,8-cineol, nerol, and neryl isovalerate were phytotoxic and released as the major constituents. In addition to the phytotoxic monoterpenes, himachalenes, longifolene, caryophyllene, and acetylenic spiroethers, were found as characteristic components in the root's volatiles. The allelopathic potential of these root volatiles was compared with that of methyl jasmonate (MeJA), one of the most active compounds emitted from above-ground parts of the plant.

  2. Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa.

    Science.gov (United States)

    Tigre, R C; Silva, N H; Santos, M G; Honda, N K; Falcão, E P S; Pereira, E C

    2012-10-01

    Responses to germination and initial growth of Lactuca sativa (lettuce) submitted to organic extracts and purified compounds of Cladonia verticillaris ("salambaia") were analyzed in this work. The experiments were conducted in laboratory conditions using extracts and pure compounds at different concentrations. None of the assays showed any influence on the germination of L. sativa seeds using C. verticillaris extracts; however, modifications in leaf area and seedling hypocotyl and root development occurred. In the growth experiments, seedlings exposed to ether or acetone extract showed diminished hypocotyl growth in detriment to the root stimulus, compared to controls. Increases in extract concentrations led to the formation of abnormal seedlings. To determine the allelochemicals of C. verticillaris, its principal components, fumarprotocetraric and protocetraric acids, were isolated and then analyzed by high performance liquid chromatography (HPLC). When the seedlings were exposed to the two acids separately, presented increased leaf area at all concentrations. In contrast, hypocotyl and root stimulus was observed only in the presence of protocetraric acid at different concentrations. Fumarprotocetraric as well as protocetraric acids, isolated and purified from C. verticillaris and Parmotrema dilatatum respectively, influenced the development of L. sativa seedlings at high concentrations, indicating a possible bioherbicide potential of these acids. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  3. Metabolomics in chemical ecology.

    Science.gov (United States)

    Kuhlisch, Constanze; Pohnert, Georg

    2015-07-01

    Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology.

  4. Allelopathic interactions between the opportunistic species Ulva prolifera and the native macroalga Gracilaria lichvoides.

    Directory of Open Access Journals (Sweden)

    Dong Xu

    Full Text Available Allelopathy, one type of direct plant competition, can be a potent mechanism through which plant communities are structured. The aim of this study was to determine whether allelopathic interactions occur between the opportunistic green tide-forming species Ulva prolifera and the native macroalga Gracilaria lichvoides, both of which were collected from the coastline of East China sea. In laboratory experiments, the presence of G. lichvoides at 1.25 g wet weight L(-1 significantly inhibited growth and photosynthesis of U. prolifera at concentrations of 1.25, 2.50, and 3.75 g wet weight L(-1 (p0.05. Culture medium experiments further confirmed that some allelochemicals may be released by both of the tested macroalgae, and these could account for the observed physiological inhibition of growth and photosynthesis. Moreover, the native macroalgae G. lichvoides was a stronger competitor than the opportunistic species U. prolifera. Collectively, the results of the present study represent a significant advance in exploring ecological questions about the effects of green tide blooms on the macroalgal community.

  5. Coat of many colours—DNA reveals polymorphism of mantle patterns and colouration in Caribbean Cyphoma Röding, 1798 (Gastropoda, Ovulidae

    Directory of Open Access Journals (Sweden)

    Bastian T. Reijnen

    2017-03-01

    Full Text Available The iconic gastropod genus Cyphoma is commonly observed in the Caribbean, where it lives in association with various octocorallian hosts. Each species in the genus Cyphoma has a unique, characteristic mantle pattern and colouration, which separates the valid taxa. Because of its abundance and recognisability Cyphoma gibbosum has been used as a model organism in several studies concerning allelochemicals, reef degradation, and physical defence mechanisms. Molecular analyses based on four molecular markers (COI, 16S, H3 and 28S for three Cyphoma species (C. gibbosum, C. mcgintyi, C. signatum and an unidentified black morph, collected from three localities in the Caribbean, show that they represent morphological varieties of a single, genetically homogeneous species. This outcome is in agreement with previous anatomical studies. As a result C. mcgintyi and C. signatum are synonymised with C. gibbosum, which is a key result for future work using C. gibbosum as a model organism. The striking morphological differences in mantle pattern and colouration are hypothesised to be the result of one of three possible scenarios: rapid divergence, supergenes (including balanced polymorphism, or incipient speciation.

  6. POTENCIAL FITOTÓXICO DE Pterodon polygalaeflorus BENTH (LEGUMINOSAE SOBRE Acanthospermum australe (LOEFL. O. KUNTZE E Senna occidentalis (L. LINK

    Directory of Open Access Journals (Sweden)

    VALDENIR JOSÉ BELINELO

    2009-01-01

    Full Text Available The objectives of this research were synthesize and characterize the allelopatic activity of 6a,7bdi-hydroxyvouacapan-17b-oic acid derivatives, isolated from seeds of Pterodon polygalaeflorus Benth (Leguminosae. The compound characterization processes involve in infrared spectrometry (IR and hydrogen and carbon nuclear magnetic resonance (1H and 13C NMR including experiments in double dimensions (COSY 1H 1H, HMQC and HMBC. Allellopathic effects were evaluated by bioassays, carried out at controlled 25 °C temperature and photoperiod (12h light/12h dark, during 72 hours. Sample concentrations of 1,0, 100,0 and 1000,0 mg.L-1 were tested. Senna occidentalis (fedegoso and Acanthospermum australe (carrapichinho were used as the target weed plants. Was observed that the allelopatic effect of the compounds increased as a function of the enhancement of concentration, thus showing a relation dose dependence. The N-ethyl-6a-acethoxy- 7b-hydroxyvouacapan-17b-amide and N,N-diethyl-6a-acethoxy-7b-hydroxyvouacapan 17b-amide were the derivatives that present the biggest inhibitory effect on seed germination and root growth of fedegoso and carrapichinho. Therefore, these compounds represent the most allelochemical potential against these weeds.

  7. Behavioral and Immunological Features Promoting the Invasive Performance of the Harlequin Ladybird Harmonia axyridis

    Directory of Open Access Journals (Sweden)

    François J. Verheggen

    2017-12-01

    Full Text Available The harlequin ladybird Harmonia axyridis is now established as a model to test hypotheses explaining why some species become successfully invasive, while others, even closely related ones, do not. In this review, we evaluate behavioral and immunological features that may play a role in the invasive performance of this model species. We discuss the behavioral traits and associated semiochemicals that promote the invasive success of H. axyridis. In particular, we consider (1 the aggregative behavior and the particular role of long-chain hydrocarbons; (2 the importance of sex pheromones and non-volatile chemicals in mate location and selection; (3 the use of allelochemicals for prey location; and (4 the nature of chemicals that protect against natural enemies. We also highlight the superior immune system of H. axyridis, which encompasses a broader spectrum of antimicrobial peptides (and higher inducible expression levels compared with native ladybird beetles such as Adalia bipunctata and Coccinella septempunctata. The chemical defense compound harmonine and the antimicrobial peptides are thought to confer resistance against the abundant microsporidia carried by H. axyridis. These parasites can infect and kill native ladybird species feeding on H. axyridis eggs or larvae, supporting the hypothesis that intraguild predation plays a role in the ability of H. axyridis to outcompete native ladybird species in newly-colonized areas.

  8. Inhibition of insect glutathione S-transferase (GST) by conifer extracts.

    Science.gov (United States)

    Wang, Zhiling; Zhao, Zhong; Abou-Zaid, Mamdouh M; Arnason, John T; Liu, Rui; Walshe-Roussel, Brendan; Waye, Andrew; Liu, Suqi; Saleem, Ammar; Cáceres, Luis A; Wei, Qin; Scott, Ian M

    2014-12-01

    Insecticide synergists biochemically inhibit insect metabolic enzyme activity and are used both to increase the effectiveness of insecticides and as a diagnostic tool for resistance mechanisms. Considerable attention has been focused on identifying new synergists from phytochemicals with recognized biological activities, specifically enzyme inhibition. Jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) BSP.), balsam fir (Abies balsamea (L.) Mill.), and tamarack larch (Larix laricina (Du Roi) Koch) have been used by native Canadians as traditional medicine, specifically for the anti-inflammatory and antioxidant properties based on enzyme inhibitory activity. To identify the potential allelochemicals with synergistic activity, ethanol crude extracts and methanol/water fractions were separated by Sephadex LH-20 chromatographic column and tested for in vitro glutathione S-transferase (GST) inhibition activity using insecticide-resistant Colorado potato beetle, Leptinotarsa decemlineata (Say) midgut and fat-body homogenate. The fractions showing similar activity were combined and analyzed by ultra pressure liquid chromatography-mass spectrometry. A lignan, (+)-lariciresinol 9'-p-coumarate, was identified from P. mariana cone extracts, and L. laricina and A. balsamea bark extracts. A flavonoid, taxifolin, was identified from P. mariana and P. banksiana cone extracts and L. laricina bark extracts. Both compounds inhibit GST activity with taxifolin showing greater activity compared to (+)-lariciresinol 9'-p-coumarate and the standard GST inhibitor, diethyl maleate. The results suggested that these compounds can be considered as potential new insecticide synergists. © 2014 Wiley Periodicals, Inc.

  9. Variable selection based cotton bollworm odor spectroscopic detection

    Science.gov (United States)

    Lü, Chengxu; Gai, Shasha; Luo, Min; Zhao, Bo

    2016-10-01

    Aiming at rapid automatic pest detection based efficient and targeting pesticide application and shooting the trouble of reflectance spectral signal covered and attenuated by the solid plant, the possibility of near infrared spectroscopy (NIRS) detection on cotton bollworm odor is studied. Three cotton bollworm odor samples and 3 blank air gas samples were prepared. Different concentrations of cotton bollworm odor were prepared by mixing the above gas samples, resulting a calibration group of 62 samples and a validation group of 31 samples. Spectral collection system includes light source, optical fiber, sample chamber, spectrometer. Spectra were pretreated by baseline correction, modeled with partial least squares (PLS), and optimized by genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS). Minor counts differences are found among spectra of different cotton bollworm odor concentrations. PLS model of all the variables was built presenting RMSEV of 14 and RV2 of 0.89, its theory basis is insect volatilizes specific odor, including pheromone and allelochemics, which are used for intra-specific and inter-specific communication and could be detected by NIR spectroscopy. 28 sensitive variables are selected by GA, presenting the model performance of RMSEV of 14 and RV2 of 0.90. Comparably, 8 sensitive variables are selected by CARS, presenting the model performance of RMSEV of 13 and RV2 of 0.92. CARS model employs only 1.5% variables presenting smaller error than that of all variable. Odor gas based NIR technique shows the potential for cotton bollworm detection.

  10. In vitro cytotoxicity of allelopathic plants Adonis vernalis L. Origanum vulgare ssp. vulgare L. and Nepeta nuda subsp. nuda

    Science.gov (United States)

    Koleva, Vanya; Dragoeva, Asya; Stoyanova, Zheni; Yordanova, Zhenia; Ali, Selime; Uzunov, Nikolay M.; Melendez-Alafort, Laura; Rosato, Antonio; Enchev, Dobromir D.

    2018-03-01

    Medicinal plants produce various secondary metabolites as a part of their chemical defence and survival in nature. These compounds have a wide range of biological activities. Nowadays, medicinal plants are used as source of allelochemicals and new effective anticancer agents. Our previous studies revealed allelopathic potential of water extracts of Adonis vernalis L. (Ranunculaceae), Origanum vulgare ssp. vulgare L. and Nepeta nuda subsp. nuda (Lamiaceae). Present study aimed to evaluate the effect of the same extracts in vitro on human hepatoma cell line SK-HEP-1. Cell proliferation/viability was assessed using Premixed WST-1 Cell Proliferation Reagent. Adonis water extract (1.83mg/ml) had notable negative influence on cancer cell line tested. Oregano (3.5 mg/ml) also exerted negative effect, but to a lesser degree. On the contrary, nepeta water extract (6.59 mg/ml) had an opposite effect, stimulating cell proliferation. One possible explanation could be the type of extraction: after treatment with nepeta methanol extract (6.59 mg/ml) cell viability was significantly reduced. In conclusion, Adonis vernalis and Nepeta nuda subsp. nuda possess metabolites with growth inhibitory effect on human hepatoma cell line SK-HEP-1. Further research is needed to clarify biological activity of lower concentrations which are appropriate to enable the design of new anticancer drugs.

  11. Activity of the Antioxidant Defense System in a Typical Bioinsecticide-and Synthetic Insecticide-treated Cowpea Storage Beetle F. (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    Ayodele O. Kolawole

    2014-01-01

    Full Text Available The non-enzymatic and enzymatic antioxidant defense systems play a major role in detoxification of pro-oxidant endobiotics and xenobiotics. The possible involvement of beetle non-enzymatic [α-tocopherol, glutathione (GSH, and ascorbic acid] and enzymatic [catalase (CAT, superoxide dismutase (SOD, peroxidase (POX, and polyphenol oxidase (PPO] antioxidant defense system on the insecticidal activity of synthetic insecticides (cypermethrin, 2,2-dicholorovinyl dimethyl phosphate, and λ-cyhalothrin and ethanolic plant extracts of Tithonia diversifolia, Cyperus rotundus, Hyptis suaveolens leaves , and Jatropha Curcas seeds was investigated. 2,2-Dicholorovinyl dimethyl phosphate (DDVP; 200 ppm, LC 50 = 13.24 ppm and T. diversifolia (20,000 ppm resulted in 100% beetle mortality at 96-hour post-treatment. The post-treatments significantly increased the beetle α-tocopherol and GSH contents. Activities of CAT, SOD, POX, and PPO were modulated by the synthetic insecticides and bioinsecticides to diminish the adverse effect of the chemical stresses. Quantitative and qualitative allelochemical compositions of bioinsecticides and chemical structure of synthetic insecticides possibly account and for modulation of their respective enzyme activities. Altogether, oxidative stress was enormous enough to cause maladaptation in insects. This study established that oxidative imbalance created could be the molecular basis of the efficacy of both insecticides and bio-insecticides. Two, there was development of functional but inadequate antioxidant defense mechanism in the beetle.

  12. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere.

    Directory of Open Access Journals (Sweden)

    Andrew L Neal

    Full Text Available Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H-one (DIMBOA, are secondary metabolites in grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs have also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have studied the impact of BXs on the interaction between maize and Pseudomonas putida KT2440, a competitive coloniser of the maize rhizosphere with plant-beneficial traits. Chromatographic analyses revealed that DIMBOA is the main BX compound in root exudates of maize. In vitro analysis of DIMBOA stability indicated that KT2440 tolerance of DIMBOA is based on metabolism-dependent breakdown of this BX compound. Transcriptome analysis of DIMBOA-exposed P. putida identified increased transcription of genes controlling benzoate catabolism and chemotaxis. Chemotaxis assays confirmed motility of P. putida towards DIMBOA. Moreover, colonisation essays in soil with Green Fluorescent Protein (GFP-expressing P. putida showed that DIMBOA-producing roots of wild-type maize attract significantly higher numbers of P. putida cells than roots of the DIMBOA-deficient bx1 mutant. Our results demonstrate a central role for DIMBOA as a below-ground semiochemical for recruitment of plant-beneficial rhizobacteria during the relatively young and vulnerable growth stages of maize.

  13. Benzoxazinoids in Root Exudates of Maize Attract Pseudomonas putida to the Rhizosphere

    Science.gov (United States)

    Neal, Andrew L.; Ahmad, Shakoor; Gordon-Weeks, Ruth; Ton, Jurriaan

    2012-01-01

    Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs) have also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have studied the impact of BXs on the interaction between maize and Pseudomonas putida KT2440, a competitive coloniser of the maize rhizosphere with plant-beneficial traits. Chromatographic analyses revealed that DIMBOA is the main BX compound in root exudates of maize. In vitro analysis of DIMBOA stability indicated that KT2440 tolerance of DIMBOA is based on metabolism-dependent breakdown of this BX compound. Transcriptome analysis of DIMBOA-exposed P. putida identified increased transcription of genes controlling benzoate catabolism and chemotaxis. Chemotaxis assays confirmed motility of P. putida towards DIMBOA. Moreover, colonisation essays in soil with Green Fluorescent Protein (GFP)-expressing P. putida showed that DIMBOA-producing roots of wild-type maize attract significantly higher numbers of P. putida cells than roots of the DIMBOA-deficient bx1 mutant. Our results demonstrate a central role for DIMBOA as a below-ground semiochemical for recruitment of plant-beneficial rhizobacteria during the relatively young and vulnerable growth stages of maize. PMID:22545111

  14. First European interlaboratory study of the analysis of benzoxazinone derivatives in plants by liquid chromatography.

    Science.gov (United States)

    Eljarrat, E; Guillamón, M; Seuma, J; Mogensen, B B; Fomsgaard, I S; Olivero-Bastidas, A; Macías, F A; Stochmal, A; Oleszek, W; Shakaliene, O; Barceló, D

    2004-08-20

    Six laboratories from four different countries participated in the first European interlaboratory comparison exercise within the framework of the "Fate and toxicity of allelochemicals (natural plant toxins) in relation to environment and consumer" (FATEALLCHEM) European Union Project. The study, organized between November 2002 and March 2003, involved the analyses of seven benzoxazinone derivatives in two standard solutions and one purified extract of root material. Results are reported from the first phase of the study that examined the variability associated with different detection methods and different laboratories. The analytical strategies were based on liquid chromatography (LC) with diode array detection, LC coupled to mass spectrometry (MS) and LC coupled to tandem MS. When data from all laboratories were pooled, the relative standard deviation values ranged from 2 to 14% for the determination of target compounds in standard solutions, and between 19 and 47% for the analysis in root material. Comparison of the three detection techniques leads to the conclusion that MS approaches are the most accurate and precise techniques for the determination of benzoxazinone derivatives at ng/microL level in plant material.

  15. Optimization of benzoxazinones as natural herbicide models by lipophilicity enhancement.

    Science.gov (United States)

    Macías, Francisco A; Marín, David; Oliveros-Bastidas, Alberto; Molinillo, José M G

    2006-12-13

    Benzoxazinones are plant allelochemicals well-known for their phytotoxic activity and for taking part in the defense strategies of Gramineae, Ranunculaceae, and Scrophulariceae plants. These properties, in addition to the recently optimized methodologies for their large-scale isolation and synthesis, have made some derivatives of natural products, 2,4-dihydroxy-(2H)-1,4-benzoxazin-3-(4H)-one (DIBOA) and its 7-methoxy analogue (DIMBOA), successful templates in the search for natural herbicide models. These new chemicals should be part of integrated methodologies for weed control. In ongoing research about the structure-activity relationships of benzoxazinones and the structural requirements for their phytotoxicity enhancement and after characterization of the optimal structural features, a new generation of chemicals with enhanced lipophilicity was developed. They were tested on selected standard target species and weeds in the search for the optimal aqueous solubility-lipophilicity rate for phytotoxicity. This physical parameter is known to be crucial in modern drug and agrochemical design strategies. The new compounds obtained in this way had interesting phytotoxicity profiles, empowering the phytotoxic effect of the starting benzoxazinone template in some cases. Quantitative structure-activity relationships were obtained by bioactivity-molecular parameters correlations. Because optimal lipophilicity values for phytotoxicity vary with the tested plant, these new derivatives constitute a more selective way to take advantage of benzoxazinone phytotoxic capabilities.

  16. Phytotoxicity of leaf aqueous extract of Rapanea umbellata (Mart. Mez (Primulaceae on weeds - doi: 10.4025/actasciagron.v35i2.16166

    Directory of Open Access Journals (Sweden)

    Paula Novaes

    2012-12-01

    Full Text Available Allelopathic substances can be used to develop weed control alternatives based on natural products. The objective of this study was to compare the phytotoxic activity of aqueous leaf extracts of Rapanea umbellata with the toxicity of a synthetic herbicide on the germination and growth of weed species. The weeds species barnyard grass (Echinochloa crus-galli, wild poinsettia (Euphorbia heterophylla and morning glory (Ipomoea grandifolia were used. The effects of the aqueous leaf extract of R. umbellata at concentrations of 10% and 5% (g mL-1 were compared to the control (distilled water and to the synthetic herbicide oxyfluorfen. The average weed germination time was significantly lower (p < 0.05 in control than in extract and herbicide treatments. The herbicide had more significant effects than the extract on the initial growth of the aerial part. However, the initial growth of the root part was significantly more affected by the leaf extract than by the herbicide. The extract also caused many disorders in weed root anatomy. Therefore, the leaf aqueous extract of R. umbellata showed important results that indicate that it should be bioprospected and that its allelochemicals should be purified for the discovery of natural-origin herbicides.

  17. Allelopathic Effects of Aqueous Extract of Leaf Stem and Root of Sorghum bicolor on Seed Germination and Seedling Growth of Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Amir MOOSAVI

    2011-05-01

    Full Text Available Seed germination under field conditions is highly influenced by the presence of other plants. Allelopathy is an important mechanism of plant competition, by producing phytotoxins to the plant environment in order to decline other plants� growth. Soil sickness problem in farm lands is also known as an allelopathic effect or even autotoxicity. The toxicity of released allelochemicals by a plant in the environment is attributed to its function of concentration, age and metabolic stage. In this study we investigate the effect (5, 20, 35 and 50 g l-1 of leaf, stem and root water extract of sorghum on seed germination and seedling growth of mung bean. The results of the experiment showed that allelopathic effect of different concentrations was not significant for germination percentage, but germination rate and mean germination time decreased significantly by increasing the concentration of allelopathic extracts; also, there was a clear allelopathic effect of sorghum extract on seedling growth of mung bean. 50 g l-1 sorghum stem extract exhibited the highest inhibitory effect on root and shoot growth of mung bean. Among all parts of sorghum, stem extracts showed the highest allelopatic effect on seedling growth. Root extract showed higher inhibitory effect than leaf extracts.

  18. Reduced herbicide doses in combination with allelopathic plant extracts suppress weeds in wheat

    International Nuclear Information System (INIS)

    Afridi, R.A.; Khan, M.A.

    2014-01-01

    Allelopathy is gaining popularity worldwide probably for decreasing the cost of production and environment friendly weed suppressing approach. Repeated field studies conducted during 2011-12 and 2012-13 at Agricutural Research Institute Tarnab, Peshawar, Pakistan where allelopathic water extracts of Oryza sativa, Parthenium hysterophorus, Phragmites australis and Datura alba along with reduced doses of phenoxaprop-p-ethyl and bromoxinil+MCPA were tested for controlling weeds in wheat. It was observed that weed density was encouragly suppressed whereas spike length (cm), number of spikelets spike-1 and 1000 grain weight (g) of the wheat were improved when the allelopathic plant water extracts were used in combination with lower doses of herbicides. Thus, allelochemicals provide weed suppressing option in wheat. However, more studies are required to fully explore the possibility of weed management and isolation of the chemicals involved in weed suppression for environment friendly weed management in wheat. Such studies may decrease the cost of crop production and total use of herbicides. (author)

  19. Flavonoids from leaves of Derris urucu: assessment of potential effects on seed germination and development of weeds

    Directory of Open Access Journals (Sweden)

    EWERTON A.S. DA SILVA

    2013-09-01

    Full Text Available In some previous studies, we described the isolation of nine compounds from leaves of Derris urucu, a species found widely in the Amazon rainforest, identified as five stilbenes and four dihydroflavonols. In this work, three of these dihydroflavonols [urucuol A (1, urucuol B (2 and isotirumalin (3] were evaluated to identify their potential as allelochemicals, and we are also reporting the isolation and structural determination of a new flavonoid [5,3′-dihydroxy-4′-methoxy-(7,6:5″,6″-2″,2″-dimethylpyranoflavanone (4]. We investigated the effects of the dihydroflavonols 1-3 on seed germination and radicle and hypocotyl growth of the weed Mimosa pudica, using solutions at 150 mg.L–1. Urucuol B, alone, was the substance with the greatest potential to inhibit seed germination (26%, while isotirumalin showed greater ability to reduce the development of the hypocotyl (25%, but none of the three substances showed the potential to inhibit radicle. When combined in pairs, the substances showed synergism for the development of root and hypocotyl and effects on seed germination that could be attributed to antagonism. When tested separately, the trend has become more intense effects on seed germination, while for the substances tested in pairs, the intensity of the effect was greater on development of weed.

  20. Habituation in Frankliniella occidentalis to deterrent plant compounds and their blends.

    Science.gov (United States)

    Egger, Barbara; Spangl, Bernhard; Koschier, Elisabeth Helene

    2014-06-01

    Feeding and oviposition deterrence of three secondary plant compounds and their 1:1 blends to adult female Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) and the potential for habituation of the thrips to the pure compounds and the 1:1 blends at various concentrations were investigated. In choice assays, we tested dose-dependent feeding and oviposition deterrence of the two fatty acid derivatives methyl jasmonate and cis -jasmone, the phenylpropanoid allylanisole, and their blends when directly applied to bean leaf discs. The concentration required to reduce the feeding damage by 50% relative to the control treatment (FDC 50 ) was lowest for cis -jasmone and highest for allylanisole. The feeding deterrent effect of both jasmonates was increased when blended with allylanisole. Feeding deterrence and oviposition deterrence were strongly correlated. In no-choice assays conducted over four consecutive days, we discovered that dilutions at low concentrations (FDC 15 ) applied to bean leaves resulted in habituation to the deterrents, whereas no habituation occurred at higher concentrations (FDC 50 ). We observed a tendency that the 1:1 blends reduce the probability that thrips habituate to the deterrent compounds. Our results may be useful in the development of integrated crop protection strategies with the implementation of allelochemicals as pest behaviour-modifying agents.

  1. Application of PCR-denaturing-gradient gel electrophoresis (DGGE) method to examine microbial community structure in asparagus fields with growth inhibition due to continuous cropping.

    Science.gov (United States)

    Urashima, Yasufumi; Sonoda, Takahiro; Fujita, Yuko; Uragami, Atsuko

    2012-01-01

    Growth inhibition due to continuous cropping of asparagus is a major problem; the yield of asparagus in replanted fields is low compared to that in new fields, and missing plants occur among young seedlings. Although soil-borne disease and allelochemicals are considered to be involved in this effect, this is still controversial. We aimed to develop a technique for the biological field diagnosis of growth inhibition due to continuous cropping. Therefore, in this study, fungal community structure and Fusarium community structure in continuously cropped fields of asparagus were analyzed by polymerase chain reaction/denaturing-gradient gel electrophoresis (PCR-DGGE). Soil samples were collected from the Aizu region of Fukushima Prefecture, Japan. Soil samples were taken from both continuously cropped fields of asparagus with growth inhibition and healthy neighboring fields of asparagus. The soil samples were collected from the fields of 5 sets in 2008 and 4 sets in 2009. We were able to distinguish between pathogenic and non-pathogenic Fusarium by using Alfie1 and Alfie2GC as the second PCR primers and PCR-DGGE. Fungal community structure was not greatly involved in the growth inhibition of asparagus due to continuous cropping. By contrast, the band ratios of Fusarium oxysporum f. sp. asparagi in growth-inhibited fields were higher than those in neighboring healthy fields. In addition, there was a positive correlation between the band ratios of Fusarium oxysporum f. sp. asparagi and the ratios of missing asparagus plants. We showed the potential of biological field diagnosis of growth inhibition due to continuous cropping of asparagus using PCR-DGGE.

  2. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function.

    Science.gov (United States)

    Weidenhamer, Jeffrey D; Callaway, Ragan M

    2010-01-01

    Invasive plants have a multitude of impacts on plant communities through their direct and indirect effects on soil chemistry and ecosystem function. For example, plants modify the soil environment through root exudates that affect soil structure, and mobilize and/or chelate nutrients. The long-term impact of litter and root exudates can modify soil nutrient pools, and there is evidence that invasive plant species may alter nutrient cycles differently from native species. The effects of plants on ecosystem biogeochemistry may be caused by differences in leaf tissue nutrient stoichiometry or secondary metabolites, although evidence for the importance of allelochemicals in driving these processes is lacking. Some invasive species may gain a competitive advantage through the release of compounds or combinations of compounds that are unique to the invaded community—the “novel weapons hypothesis.” Invasive plants also can exert profound impact on plant communities indirectly through the herbicides used to control them. Glyphosate, the most widely used herbicide in the world, often is used to help control invasive weeds, and generally is considered to have minimal environmental impacts. Most studies show little to no effect of glyphosate and other herbicides on soil microbial communities. However, herbicide applications can reduce or promote rhizobium nodulation and mycorrhiza formation. Herbicide drift can affect the growth of non-target plants, and glyphosate and other herbicides can impact significantly the secondary chemistry of plants at sublethal doses. In summary, the literature indicates that invasive species can alter the biogeochemistry of ecosystems, that secondary metabolites released by invasive species may play important roles in soil chemistry as well as plant-plant and plant-microbe interactions, and that the herbicides used to control invasive species can impact plant chemistry and ecosystems in ways that have yet to be fully explored.

  3. Ecological shifts in Mediterranean coralligenous assemblages related to gorgonian forest loss.

    Science.gov (United States)

    Ponti, Massimo; Perlini, Rossella Angela; Ventra, Vincenzo; Grech, Daniele; Abbiati, Marco; Cerrano, Carlo

    2014-01-01

    Mediterranean gorgonian forests are threatened by several human activities and are affected by climatic anomalies that have led to mass mortality events in recent decades. The ecological role of these habitats and the possible consequence of their loss are poorly understood. Effects of gorgonians on the recruitment of epibenthic organisms were investigated by manipulating presence of gorgonians on experimental panels at 24 m depth, for Eunicella cavolinii, and at 40 m depth, for Paramuricea clavata, at two sites: Tavolara Island (Tyrrhenian Sea) and Portofino Promontory (Ligurian Sea). After 4 months, the most abundant taxa on the panels were encrusting green algae, erect red algae and crustose coralline algae at 24 m depth and encrusting brown algae and erect red algae at 40 m depth. Assemblages on the panels were significantly affected by the presence of the gorgonians, although effects varied across sites and between gorgonian species. Species diversity and evenness were lower on panels with gorgonian branches. Growth of erect algae and recruitment of serpulid polychaetes were also affected by the presence of the gorgonians, primarily at Tavolara. Crustose coralline algae and erect sponges were more abundant on E. cavolinii panels at 24 m depth, while encrusting bryozoans were more abundant on P. clavata panels at 40 m depth. Effects of gorgonians on recruited assemblages could be due to microscale modification of hydrodynamics and sediment deposition rate, or by a shading effect reducing light intensity. Gorgonians may also intercept settling propagules, compete for food with the filter-feeders and/or for space by producing allelochemicals. Presence of gorgonians mainly limits the growth of erect algae and enhances the abundance of encrusting algae and sessile invertebrates. Therefore, the gorgonian disappearances may cause a shift from assemblages characterised by crustose coralline algae to filamentous algae assemblages, decreasing complexity and resilience

  4. Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review.

    Directory of Open Access Journals (Sweden)

    Monica eFernandez-Aparicio

    2016-02-01

    Full Text Available Broomrapes are plant-parasitic weeds which constitute one of the most difficult-to-control of all biotic constraints that affect crops in Mediterranean, central and eastern Europe, and Asia. Due to their physical and metabolic overlap with the crop, their underground parasitism, their achlorophyllous nature, and hardly destructible seed bank, broomrape weeds are usually not controlled by management strategies designed for non-parasitic weeds. Instead, broomrape are in a current state of intensification and spread due to lack of broomrape-specific control programs, unconscious introduction to new areas and may be decline of herbicide use and global warming to a lesser degree. We reviewed relevant facts about the biology and physiology of broomrape weeds and the major feasible control strategies. The points of vulnerability of some underground events, key for their parasitism such as crop-induced germination or haustorial development are reviewed as inhibition targets of the broomrape-crop association. Among the reviewed strategies are those aimed 1 to reduce broomrape seed bank viability, such as fumigation, herbigation, solarization and use of broomrape-specific pathogens; 2 diversion strategies to reduce the broomrape ability to timely detect the host such as those based on promotion of suicidal germination, on introduction of allelochemical interference, or on down-regulating host exudation of germination-inducing factors; 3 strategies to inhibit the capacity of the broomrape seedling to penetrate the crop and connect with the vascular system, such as biotic or abiotic inhibition of broomrape radicle growth, crop resistance to broomrape penetration either natural, genetically engineered or elicited by biotic- or abiotic-resistance-inducing agents and 4 strategies acting once broomrape seedling has bridged its vascular system with that of the host, aimed to impede or to endure the parasitic sink such as those based on the delivery of herbicides

  5. Broomrape Weeds. Underground Mechanisms of Parasitism and Associated Strategies for their Control: A Review

    Science.gov (United States)

    Fernández-Aparicio, Mónica; Reboud, Xavier; Gibot-Leclerc, Stephanie

    2016-01-01

    Broomrapes are plant-parasitic weeds which constitute one of the most difficult-to-control of all biotic constraints that affect crops in Mediterranean, central and eastern Europe, and Asia. Due to their physical and metabolic overlap with the crop, their underground parasitism, their achlorophyllous nature, and hardly destructible seed bank, broomrape weeds are usually not controlled by management strategies designed for non-parasitic weeds. Instead, broomrapes are in current state of intensification and spread due to lack of broomrape-specific control programs, unconscious introduction to new areas and may be decline of herbicide use and global warming to a lesser degree. We reviewed relevant facts about the biology and physiology of broomrape weeds and the major feasible control strategies. The points of vulnerability of some underground events, key for their parasitism such as crop-induced germination or haustorial development are reviewed as inhibition targets of the broomrape-crop association. Among the reviewed strategies are those aimed (1) to reduce broomrape seed bank viability, such as fumigation, herbigation, solarization and use of broomrape-specific pathogens; (2) diversion strategies to reduce the broomrape ability to timely detect the host such as those based on promotion of suicidal germination, on introduction of allelochemical interference, or on down-regulating host exudation of germination-inducing factors; (3) strategies to inhibit the capacity of the broomrape seedling to penetrate the crop and connect with the vascular system, such as biotic or abiotic inhibition of broomrape radicle growth and crop resistance to broomrape penetration either natural, genetically engineered or elicited by biotic- or abiotic-resistance-inducing agents; and (4) strategies acting once broomrape seedling has bridged its vascular system with that of the host, aimed to impede or to endure the parasitic sink such as those based on the delivery of herbicides via

  6. Localization of secondary metabolites in marine invertebrates: contribution of MALDI MSI for the study of saponins in Cuvierian tubules of H. forskali.

    Directory of Open Access Journals (Sweden)

    Séverine Van Dyck

    Full Text Available BACKGROUND: Several species of sea cucumbers of the family Holothuriidae possess a particular mechanical defense system called the Cuvierian tubules (Ct. It is also a chemical defense system as triterpene glycosides (saponins appear to be particularly concentrated in Ct. In the present study, the precise localization of saponins in the Ct of Holothuria forskali is investigated. Classical histochemical labeling using lectin was firstly performed but did not generate any conclusive results. Thus, MALDI mass spectrometry Imaging (MALDI-MSI was directly applied and completed by statistical multivariate tests. A comparison between the tubules of relaxed and stressed animals was realized. RESULTS: These analyses allowed the detection of three groups of ions, corresponding to the isomeric saponins of the tubules. Saponins detected at m/z 1287 and 1303 were the most abundant and were apparently localized in the connective tissue of the tubules of both relaxed and stressed individuals. Saponins at m/z 1125 and 1141 were detected in lower amount and were present in tissues of relaxed animals. Finally, saponin ions at 1433, 1449, 1463 and 1479 were observed in some Ct of stressed holothuroids in the outer part of the connective tissue. The saponin group m/z 14xx seems therefore to be stress-specific and could originate from modifications of the saponins with m/z of 11xx. CONCLUSIONS: All the results taken together indicate a complex chemical defense mechanism with, for a single organ, different sets of saponins originating from different cell populations and presenting different responses to stress. The present study also reflects that MALDI-MSI is a valuable tool for chemical ecology studies in which specific chemical signalling molecules like allelochemicals or pheromones have to be tracked. This report represents one of the very first studies using these tools to provide a functional and ecological understanding of the role of natural products from

  7. Hard coral (Porites lobata) extracts and homarine on cytochrome P450 expression in Hawaiian butterflyfishes with different feeding strategies.

    Science.gov (United States)

    Maldonado, Aileen; Johnson, Amber; Gochfeld, Deborah; Slattery, Marc; Ostrander, Gary K; Bingham, Jon-Paul; Schlenk, Daniel

    2016-01-01

    Dietary specialists tend to be less susceptible to the effects of chemical defenses produced by their prey compared to generalist predators that feed upon a broader range of prey species. While many researchers have investigated the ability of insects to detoxify dietary allelochemicals, little research has been conducted in marine ecosystems. We investigated metabolic detoxification pathways in three species of butterflyfishes: the hard coral specialist feeder, Chaetodon multicinctus, and two generalist feeders, Chaetodon auriga and Chaetodon kleinii. Each species was fed tissue homogenate of the hard coral Porites lobata or the feeding deterrent compound homarine (found in the coral extract), and the expression and catalytic activity of cytochrome P450 (CYP) 3A-like and CYP2-like enzymes were examined after one-week of treatment. The P. lobata homogenate significantly induced content and catalytic activity of CYP2-like and CYP3A-like forms, by 2-3 fold and by 3-9 fold, respectively, in C. multicinctus. Homarine caused a significant decrease of CYP2-like and CYP3A-like proteins at the high dose in C. kleinii and 60-80% mortality in that species. Homarine also induced CYP3A-like content by 3-fold and catalytic activity by 2-fold in C. auriga, while causing non-monotonic increases in CYP2-like and CYP3A-like catalytic activity in C. multicinctus. Our results indicate that dietary exposure to coral homogenates and the feeding deterrent constituent within these homogenates caused species-specific modulation of detoxification enzymes consistent with the prey selection strategies of generalist and specialist butterflyfishes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed.

    Directory of Open Access Journals (Sweden)

    Md Abdullah Yousuf Al Harun

    Full Text Available Chrysanthemoides monilifera subsp. monilifera (boneseed, a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial

  9. Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera.

    Science.gov (United States)

    Erhard, Daniela; Pohnert, Georg; Gross, Elisabeth M

    2007-08-01

    The submersed macrophyte Elodea nuttallii (Hydrocharitaceae) is invasive in Europe and frequently found in aquatic plant communities. Many invertebrate herbivores, such as larvae of the generalist aquatic moth, Acentria ephemerella (Lepidoptera, Pyralidae), avoid feeding on E. nuttallii and preferably consume native species. First instar larvae exhibited a high mortality on E. nuttallii compared to the native macrophyte Potamogeton perfoliatus. Mortality of older larvae was also high when fed E. nuttallii exposed to high light intensities. Growth of older larvae was strongly reduced on E. nuttallii compared to pondweeds (Potamogeton lucens). Neither differences in nitrogen nor phosphorus content explained the different performance on these submerged macrophytes, but plants differed in their flavonoid content. To investigate whether plant-derived allelochemicals from E. nuttallii affect larval performance in the same way as live plants, we developed a functional bioassay, in which Acentria larvae were reared on artificial diets. We offered larvae Potamogeton leaf disks coated with crude Elodea extracts and partially purified flavonoids. Elodea extracts deterred larvae from feeding on otherwise preferred Potamogeton leaves, and yet, unknown compounds in the extracts reduced growth and survival of Acentria. The flavonoid fraction containing luteolin-7-O-diglucuronide, apigenin-7-O-diglucuronide, and chrysoeriol-7-O-diglucuronide strongly reduced feeding of larvae, but did not increase mortality. The concentrations of these compounds in our assays were 0.01-0.09% of plant dry mass, which is in the lower range of concentrations found in the field (0.02-1.2%). Chemical defense in E. nuttallii thus plays an ecologically relevant role in this aquatic plant-herbivore system.

  10. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta

    Science.gov (United States)

    Kanost, Michael R.; Arrese, Estela L.; Cao, Xiaolong; Chen, Yun-Ru; Chellapilla, Sanjay; Goldsmith, Marian R; Grosse-Wilde, Ewald; Heckel, David G.; Herndon, Nicolae; Jiang, Haobo; Papanicolaou, Alexie; Qu, Jiaxin; Soulages, Jose L.; Vogel, Heiko; Walters, James; Waterhouse, Robert M.; Ahn, Seung-Joon; Almeida, Francisca C.; An, Chunju; Aqrawi, Peshtewani; Bretschneider, Anne; Bryant, William B.; Bucks, Sascha; Chao, Hsu; Chevignon, Germain; Christen, Jayne M.; Clarke, David F.; Dittmer, Neal T.; Ferguson, Laura C.F.; Garavelou, Spyridoula; Gordon, Karl H.J.; Gunaratna, Ramesh T.; Han, Yi; Hauser, Frank; He, Yan; Heidel-Fischer, Hanna; Hirsh, Ariana; Hu, Yingxia; Jiang, Hongbo; Kalra, Divya; Klinner, Christian; König, Christopher; Kovar, Christie; Kroll, Ashley R.; Kuwar, Suyog S.; Lee, Sandy L.; Lehman, Rüdiger; Li, Kai; Li, Zhaofei; Liang, Hanquan; Lovelace, Shanna; Lu, Zhiqiang; Mansfield, Jennifer H.; McCulloch, Kyle J.; Mathew, Tittu; Morton, Brian; Muzny, Donna M.; Neunemann, David; Ongeri, Fiona; Pauchet, Yannick; Pu, Ling-Ling; Pyrousis, Ioannis; Rao, Xiang-Jun; Redding, Amanda; Roesel, Charles; Sanchez-Gracia, Alejandro; Schaack, Sarah; Shukla, Aditi; Tetreau, Guillaume; Wang, Yang; Xiong, Guang-Hua; Traut, Walther; Walsh, Tom K.; Worley, Kim C.; Wu, Di; Wu, Wenbi; Wu, Yuan-Qing; Zhang, Xiufeng; Zou, Zhen; Zucker, Hannah; Briscoe, Adriana D.; Burmester, Thorsten; Clem, Rollie J.; Feyereisen, René; Grimmelikhuijzen, Cornelis J.P; Hamodrakas, Stavros J.; Hansson, Bill S.; Huguet, Elisabeth; Jermiin, Lars S.; Lan, Que; Lehman, Herman K.; Lorenzen, Marce; Merzendorfer, Hans; Michalopoulos, Ioannis; Morton, David B.; Muthukrishnan, Subbaratnam; Oakeshott, John G.; Palmer, Will; Park, Yoonseong; Passarelli, A. Lorena; Rozas, Julio; Schwartz, Lawrence M.; Smith, Wendy; Southgate, Agnes; Vilcinskas, Andreas; Vogt, Richard; Wang, Ping; Werren, John; Yu, Xiao-Qiang; Zhou, Jing-Jiang; Brown, Susan J.; Scherer, Steven E.; Richards, Stephen; Blissard, Gary W.

    2016-01-01

    Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects. PMID:27522922

  11. Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review

    Directory of Open Access Journals (Sweden)

    Hijran Yavuzcan Yildiz

    2017-01-01

    Full Text Available Aquaponics is the combination of aquaculture (fish and hydroponic cultivation of plants. This review examines fish welfare in relation to rearing water quality, fish feed and fish waste and faeces to develop a sustainable aquaponic system where the co-cultured organisms, fish, bacteria in biofilters and plants, should be considered holistically in all aquaponics operations. Water quality parameters are the primary environmental consideration for optimizing aquaponic production and for directly impacting fish welfare/health issues and plant needs. In aquaponic systems, the uptake of nutrients should be maximised for the healthy production of the plant biomass but without neglecting the best welfare conditions for the fish in terms of water quality. Measures to reduce the risks of the introduction or spread of diseases or infection and to increase biosecurity in aquaponics are also important. In addition, the possible impacts of allelochemicals, i.e., chemicals released by the plants, should be taken into account. Moreover, the effect of diet digestibility, faeces particle size and settling ratio on water quality should be carefully considered. As available information is very limited, research should be undertaken to better elucidate the relationship between appropriate levels of minerals needed by plants, and fish metabolism, health and welfare. It remains to be investigated whether and to what extent the concentrations of suspended solids that can be found in aquaponic systems can compromise the health of fish. Water quality, which directly affects fish health and well-being, is the key factor to be considered in all aquaponic systems.

  12. Effects of Quinizarin and Five Synthesized Derivatives on Fifth Larval Instar Midgut Ecdysone 20-Monooxygenase Activity of the Tobacco Hornworm Manduca sexta

    Directory of Open Access Journals (Sweden)

    Christopher A. Drummond

    2014-01-01

    Full Text Available The plant allelochemical, quinizarin (1,4-dihydroxy-9,10-anthraquinone, and five anthraquinones that were synthesized from quinizarin, namely, 1,4-anthraquinone; 2-hydroxy-1,4-anthraquinone; 2-methoxy-1,4-anthraquinone; 9-hydroxy-1,4-anthraquinone; and 9-methoxy-1,4-anthraquinone, were assessed as to their effects on the essential, P450-dependent ecdysone 20-monooxygenase system of the insect model Manduca sexta (tobacco hornworm. This steroid hydroxylase converts the arthropod molting hormone, ecdysone, to the physiologically required 20-hydroxyecdysone form. M. sexta fifth larval instar midgut homogenates were incubated with increasing concentrations (10−8 to 10−3 M of each of the six anthraquinones followed by ecdysone 20-monooxygenase assessments using a radioenzymological assay. Four of the five anthraquinones exhibited I50’s of about 4×10-6 to 6×10-2 M. The most effective inhibitors were 2-methoxy-1,4-anthraquinone and 1,4-anthraquinone followed by 9-hydroxy-1,4 anthraquinone and 9-methoxy-1,4-anthraquinone. At lower concentrations the latter anthraquinone stimulated E20M activity. Quinizarin was less inhibitory and 2-hydroxy-1,4-anthraquinone was essentially without effect. Significantly, these studies make evident for the first time that anthraquinones can affect insect E20M activity, and thus insect endocrine regulation and development, and that a relationship between anthraquinone structure and effectiveness is apparent. These studies represent the first demonstrations of anthraquinones affecting any steroid hydroxylase system.

  13. Effects of some sesquiterpenes on the stored-product insect Tenebrio molitor (Coleoptera: Tenebrionidae Efectos de algunos sesquiterpenos sobre el insecto de productos almacenados, Tenebrio molitor (Coleoptera: Tenebrionidae

    Directory of Open Access Journals (Sweden)

    Matías García

    2003-12-01

    Full Text Available In order to evaluate the allelochemical activity of some sesquiterpenes isolated from the native plant Tessaria absinthioides (Hook. et Arn. DC, and some semi synthetic derivatives against Tenebrio molitor L. larvae, we have developed bioassays directed to quantify repellency, larval mortality, and its effects on the development. Although costic aldehyde caused the maximum repellent effect, all the compounds showed a significant effect at some dose or time, indicating behavioral avoidance. The topical application of costic aldehyde produced the largest increase on the duration of the pupal stage. Tessaric acid exhibited the highest toxicity by topical application at the experiment closure. Both eremophilane-1(10,2,11(13-triene-12-oic, and -costic acids induced some morphological deformities.Con el objeto de evaluar sesquiterpenos aislados de la planta nativa Tessaria absinthioides (Hook et Arn y algunos derivados semisintéticos frente a larvas de Tenebrio molitor L., se desarrollaron bioensayos orientados a la cuantificación de la repelencia, mortalidad de larvas y efectos sobre el desarrollo. Aldehído cóstico produjo el mayor incremento en la duración del estado pupal por aplicación tópica. Acido tessárico exhibió el más alto porcentaje de mortalidad al finalizar el período de experimentación. Los productos eremophilan-1(10,2, 11(13-trien-12-oico y ácido -cóstico dieron lugar al mayor número de malformaciones. Si bien aldehído cóstico mostró la máxima actividad de repelencia, todos los compuestos evaluados produjeron efectos significativos en el ensayo de elección.

  14. Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: contrasting efficacy of tannic acid, gallic acid, and gramine.

    Science.gov (United States)

    Laue, Pauline; Bährs, Hanno; Chakrabarti, Shumon; Steinberg, Christian E W

    2014-06-01

    Allelochemical action against planktonic phototrophs is one central issue in freshwater ecology and quality management. To determine some basic mechanisms of this toxic action, we exposed the coccal green alga, Desmodesmus armatus, and the coccal cyanobacterium, Microcystis aeruginosa, in a batch culture well-supplied with carbon dioxide to increasing concentrations of the polyphenols tannic acid and gallic acid and the alkaloid gramine. The phototrophs were checked after 2d and at the end of the culture for biomass-based growth rates, cell volume, maximum quantum yield of photosystem II (ΦPSIImax), chlorophyll a content (chla) after 2d and at the end of the culture, and lipid peroxidation only at the end of the culture. During the culture, the pH rose from 7.64 to 10.95, a pH characteristic of eutrophic freshwater bodies during nuisance algal blooms. All xenobiotics reduced the growth rate, ΦPSIImax, and chla during the first 2d with M. aeruginosa being more sensitive to the polyphenols than D. armatus. The efficacy of the polyphenols declined with increasing pH, indicating potential polymerization and corresponding reduced bioavailability of the polyphenols. In contrast to the polyphenols, gramine increased its toxic action over time, independent of the prevailing pH. All exposures caused slight to severe lipid peroxidation (LPO) in the phototrophs. Hence, one mechanism of growth inhibition may be oxidative stress-mediated reduction in photosynthesis. The presented results suggest that in successful field trials with leachate, the prevailing environmental conditions may inactivate polyphenols and xenobiotics other than polyphenols may be more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid

    Science.gov (United States)

    2013-01-01

    Background Autotoxicity plays an important role in regulating crop yield and quality. To help characterize the autotoxicity mechanism of rice, we performed a large-scale, transcriptomic analysis of the rice root response to ferulic acid, an autotoxin from rice straw. Results Root growth rate was decreased and reactive oxygen species, calcium content and lipoxygenase activity were increased with increasing ferulic acid concentration in roots. Transcriptome analysis revealed more transcripts responsive to short ferulic-acid exposure (1- and 3-h treatments, 1,204 genes) than long exposure (24 h, 176 genes). Induced genes were involved in cell wall formation, chemical detoxification, secondary metabolism, signal transduction, and abiotic stress response. Genes associated with signaling and biosynthesis for ethylene and jasmonic acid were upregulated with ferulic acid. Ferulic acid upregulated ATP-binding cassette and amino acid/auxin permease transporters as well as genes encoding signaling components such as leucine-rich repeat VIII and receptor-like cytoplasmic kinases VII protein kinases, APETALA2/ethylene response factor, WRKY, MYB and Zinc-finger protein expressed in inflorescence meristem transcription factors. Conclusions The results of a transcriptome analysis suggest the molecular mechanisms of plants in response to FA, including toxicity, detoxicification and signaling machinery. FA may have a significant effect on inhibiting rice root elongation through modulating ET and JA hormone homeostasis. FA-induced gene expression of AAAP transporters may contribute to detoxicification of the autotoxin. Moreover, the WRKY and Myb TFs and LRR-VIII and SD-2b kinases might regulate downstream genes under FA stress but not general allelochemical stress. This comprehensive description of gene expression information could greatly facilitate our understanding of the mechanisms of autotoxicity in plants. PMID:23705659

  16. Glutathione-S-transferase profiles in the emerald ash borer, Agrilus planipennis.

    Science.gov (United States)

    Rajarapu, Swapna Priya; Mittapalli, Omprakash

    2013-05-01

    The emerald ash borer, Agrilus planipennis Fairmaire is a recently discovered invasive insect pest of ash, Fraxinus spp. in North America. Glutathione-S-transferases (GST) are a multifunctional superfamily of enzymes which function in conjugating toxic compounds to less toxic and excretable forms. In this study, we report the molecular characterization and expression patterns of different classes of GST genes in different tissues and developmental stages plus their specific activity. Multiple sequence alignment of all six A. planipennis GSTs (ApGST-E1, ApGST-E2, ApGST-E3, ApGST-O1, ApGST-S1 and ApGST-μ1) revealed conserved features of insect GSTs and a phylogenetic analysis grouped the GSTs within the epsilon, sigma, omega and microsomal classes of GSTs. Real time quantitative PCR was used to study field collected samples. In larval tissues high mRNA levels for ApGST-E1, ApGST-E3 and ApGST-O1 were obtained in the midgut and Malpighian tubules. On the other hand, ApGST-E2 and ApGST-S1 showed high mRNA levels in fat body and ApGST-μ1 showed constitutive levels in all the tissues assayed. During development, mRNA levels for ApGST-E2 were observed to be the highest in feeding instars, ApGST-S1 in prepupal instars; while the others showed constitutive patterns in all the developmental stages examined. At the enzyme level, total GST activity was similar in all the tissues and developmental stages assayed. Results obtained suggest that A. planipennis is potentially primed with GST-driven detoxification to metabolize ash allelochemicals. To our knowledge this study represents the first report of GSTs in A. planipennis and also in the family of wood boring beetles. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Isolation and characterization of CYP6B4, a furanocoumarin-inducible cytochrome P450 from a polyphagous caterpillar (Lepidoptera:papilionidae).

    Science.gov (United States)

    Hung, C F; Berenbaum, M R; Schuler, M A

    1997-05-01

    Papilio glaucus (tiger swallowtail) is a generalist that rarely encounters plants containing furanocoumarins yet is constitutively capable of metabolizing low levels of these highly toxic allelochemicals. In larvae of this species, metabolism of linear (xanthotoxin, bergapten), and angular (angelicin, sphondin), furanocoumarins can be induced up to 30-fold by the presence of xanthotoxin in their diet. Degenerate primers corresponding to conserved amino acid sequences in three insect P450s, Musca domestica (CYP6A1), Drosophila melanogaster (CYP6A2) and Papilio polyxenes (CYP6B1), were used to clone xanthotoxin-induced P450 transcripts from P. glaucus larvae by a reverse transcription-polymerase chain reaction (RT-PCR) strategy. Positive clones encoding the highly conserved F--G-R-C-G P450 signature motif were used to isolate a full-length CYP6B4v1 cDNA from a P. glaucus xanthotoxin-induced cDNA library. Sequence comparisons indicate the P. glaucus CYP6B4v1 protein sequence is 63% and 61% identical, respectively, to the P. polyxenes furanocoumarin-inducible CYP6B1v1 and CYP6B3v1 proteins. Northern analysis indicates that CYP6B4 and related transcripts are highly induced in response to xanthotoxin. Baculovirus-mediated expression of the CYP6B4v1 protein in lepidopteran cell lines demonstrates that this P450 isozyme metabolizes isopimpinellin, imperatorin, and bergapten at high rates, xanthotoxin and psoralen at intermediate rates and angelicin, sphondin, and trioxsalen only at very low rates.

  18. The ethnobotany of psychoactive plant use: a phylogenetic perspective

    Directory of Open Access Journals (Sweden)

    Nashmiah Aid Alrashedy

    2016-10-01

    Full Text Available Psychoactive plants contain chemicals that presumably evolved as allelochemicals but target certain neuronal receptors when consumed by humans, altering perception, emotion and cognition. These plants have been used since ancient times as medicines and in the context of religious rituals for their various psychoactive effects (e.g., as hallucinogens, stimulants, sedatives. The ubiquity of psychoactive plants in various cultures motivates investigation of the commonalities among these plants, in which a phylogenetic framework may be insightful. A phylogeny of culturally diverse psychoactive plant taxa was constructed with their psychotropic effects and affected neurotransmitter systems mapped on the phylogeny. The phylogenetic distribution shows multiple evolutionary origins of psychoactive families. The plant families Myristicaceae (e.g., nutmeg, Papaveraceae (opium poppy, Cactaceae (peyote, Convolvulaceae (morning glory, Solanaceae (tobacco, Lamiaceae (mints, Apocynaceae (dogbane have a disproportionate number of psychoactive genera with various indigenous groups using geographically disparate members of these plant families for the same psychoactive effect, an example of cultural convergence. Pharmacological traits related to hallucinogenic and sedative potential are phylogenetically conserved within families. Unrelated families that exert similar psychoactive effects also modulate similar neurotransmitter systems (i.e., mechanistic convergence. However, pharmacological mechanisms for stimulant effects were varied even within families suggesting that stimulant chemicals may be more evolutionarily labile than those associated with hallucinogenic and sedative effects. Chemically similar psychoactive chemicals may also exist in phylogenetically unrelated lineages, suggesting convergent evolution or differential gene regulation of a common metabolic pathway. Our study has shown that phylogenetic analysis of traditionally used psychoactive plants

  19. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance.

    Science.gov (United States)

    Dermauw, Wannes; Van Leeuwen, Thomas

    2014-02-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    Science.gov (United States)

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Ecological shifts in Mediterranean coralligenous assemblages related to gorgonian forest loss.

    Directory of Open Access Journals (Sweden)

    Massimo Ponti

    Full Text Available Mediterranean gorgonian forests are threatened by several human activities and are affected by climatic anomalies that have led to mass mortality events in recent decades. The ecological role of these habitats and the possible consequence of their loss are poorly understood. Effects of gorgonians on the recruitment of epibenthic organisms were investigated by manipulating presence of gorgonians on experimental panels at 24 m depth, for Eunicella cavolinii, and at 40 m depth, for Paramuricea clavata, at two sites: Tavolara Island (Tyrrhenian Sea and Portofino Promontory (Ligurian Sea. After 4 months, the most abundant taxa on the panels were encrusting green algae, erect red algae and crustose coralline algae at 24 m depth and encrusting brown algae and erect red algae at 40 m depth. Assemblages on the panels were significantly affected by the presence of the gorgonians, although effects varied across sites and between gorgonian species. Species diversity and evenness were lower on panels with gorgonian branches. Growth of erect algae and recruitment of serpulid polychaetes were also affected by the presence of the gorgonians, primarily at Tavolara. Crustose coralline algae and erect sponges were more abundant on E. cavolinii panels at 24 m depth, while encrusting bryozoans were more abundant on P. clavata panels at 40 m depth. Effects of gorgonians on recruited assemblages could be due to microscale modification of hydrodynamics and sediment deposition rate, or by a shading effect reducing light intensity. Gorgonians may also intercept settling propagules, compete for food with the filter-feeders and/or for space by producing allelochemicals. Presence of gorgonians mainly limits the growth of erect algae and enhances the abundance of encrusting algae and sessile invertebrates. Therefore, the gorgonian disappearances may cause a shift from assemblages characterised by crustose coralline algae to filamentous algae assemblages, decreasing

  2. Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the arctiids (lepidoptera.

    Directory of Open Access Journals (Sweden)

    Sven Sehlmeyer

    2010-05-01

    Full Text Available Insects experience a wide array of chemical pressures from plant allelochemicals and pesticides and have developed several effective counterstrategies to cope with such toxins. Among these, cytochrome P450 monooxygenases are crucial in plant-insect interactions. Flavin-dependent monooxygenases (FMOs seem not to play a central role in xenobiotic detoxification in insects, in contrast to mammals. However, the previously identified senecionine N-oxygenase of the arctiid moth Tyria jacobaeae (Lepidoptera indicates that FMOs have been recruited during the adaptation of this insect to plants that accumulate toxic pyrrolizidine alkaloids. Identification of related FMO-like sequences of various arctiids and other Lepidoptera and their combination with expressed sequence tag (EST data and sequences emerging from the Bombyx mori genome project show that FMOs in Lepidoptera form a gene family with three members (FMO1 to FMO3. Phylogenetic analyses suggest that FMO3 is only distantly related to lepidopteran FMO1 and FMO2 that originated from a more recent gene duplication event. Within the FMO1 gene cluster, an additional gene duplication early in the arctiid lineage provided the basis for the evolution of the highly specific biochemical, physiological, and behavioral adaptations of these butterflies to pyrrolizidine-alkaloid-producing plants. The genes encoding pyrrolizidine-alkaloid-N-oxygenizing enzymes (PNOs are transcribed in the fat body and the head of the larvae. An N-terminal signal peptide mediates the transport of the soluble proteins into the hemolymph where PNOs efficiently convert pro-toxic pyrrolizidine alkaloids into their non-toxic N-oxide derivatives. Heterologous expression of a PNO of the generalist arctiid Grammia geneura produced an N-oxygenizing enzyme that shows noticeably expanded substrate specificity compared with the related enzyme of the specialist Tyria jacobaeae. The data about the evolution of FMOs within lepidopteran insects

  3. Response of last instar Helicoverpa armigera larvae to Bt toxin ingestion: changes in the development and in the CYP6AE14, CYP6B2 and CYP9A12 gene expression.

    Directory of Open Access Journals (Sweden)

    Pilar Muñoz

    Full Text Available Bt crops are able to produce Cry proteins, which were originally present in Bacillus thuringiensis bacteria. Although Bt maize is very efficient against corn borers, Spanish crops are also attacked by the earworm H. armigera, which is less susceptible to Bt maize. Many mechanisms could be involved in this low susceptibility to the toxin, including the insect's metabolic resistance to toxins due to cytochrome P450 monooxygenases. This paper examines the response of last instar H. armigera larvae to feeding on a diet with Bt and non-Bt maize leaves in larval development and in the gene expression of three P450 cytochromes: CYP6AE14, CYP6B2 and CYP9A12. Larvae fed on sublethal amounts of the Bt toxin showed reduced food ingestion and reduced growth and weight, preventing most of them from achieving the critical weight and pupating; additionally, after feeding for one day on the Bt diet the larvae showed a slight increase in juvenile hormone II in the hemolymp. Larvae fed on the non-Bt diet showed the highest CYP6AE14, CYP6B2 and CYP9A12 expression one day after feeding on the non-Bt diet, and just two days later the expression decreased abruptly, a finding probably related to the developmental programme of the last instar. Moreover, although the response of P450 genes to plant allelochemicals and xenobiotics has been related in general to overexpression in the resistant insect, or induction of the genes when feeding takes place, the expression of the three genes studied was suppressed in the larvae feeding on the Bt toxin. The unexpected inhibitory effect of the Cry1Ab toxin in the P450 genes of H. armigera larvae should be thoroughly studied to determine whether this response is somehow related to the low susceptibility of the species to the Bt toxin.

  4. Carotenoids Database: structures, chemical fingerprints and distribution among organisms.

    Science.gov (United States)

    Yabuzaki, Junko

    2017-01-01

    To promote understanding of how organisms are related via carotenoids, either evolutionarily or symbiotically, or in food chains through natural histories, we built the Carotenoids Database. This provides chemical information on 1117 natural carotenoids with 683 source organisms. For extracting organisms closely related through the biosynthesis of carotenoids, we offer a new similarity search system 'Search similar carotenoids' using our original chemical fingerprint 'Carotenoid DB Chemical Fingerprints'. These Carotenoid DB Chemical Fingerprints describe the chemical substructure and the modification details based upon International Union of Pure and Applied Chemistry (IUPAC) semi-systematic names of the carotenoids. The fingerprints also allow (i) easier prediction of six biological functions of carotenoids: provitamin A, membrane stabilizers, odorous substances, allelochemicals, antiproliferative activity and reverse MDR activity against cancer cells, (ii) easier classification of carotenoid structures, (iii) partial and exact structure searching and (iv) easier extraction of structural isomers and stereoisomers. We believe this to be the first attempt to establish fingerprints using the IUPAC semi-systematic names. For extracting close profiled organisms, we provide a new tool 'Search similar profiled organisms'. Our current statistics show some insights into natural history: carotenoids seem to have been spread largely by bacteria, as they produce C30, C40, C45 and C50 carotenoids, with the widest range of end groups, and they share a small portion of C40 carotenoids with eukaryotes. Archaea share an even smaller portion with eukaryotes. Eukaryotes then have evolved a considerable variety of C40 carotenoids. Considering carotenoids, eukaryotes seem more closely related to bacteria than to archaea aside from 16S rRNA lineage analysis. : http://carotenoiddb.jp. © The Author(s) 2017. Published by Oxford University Press.

  5. Bioherbicides: Current knowledge on weed control mechanism.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Alqarawi, Abdulaziz A; Abd Allah, Elsayed Fathi

    2018-04-17

    Weed control is a challenging event during crop cultivation. Integrated management, including the application of bioherbicides, is an emerging method for weed control in sustainable agriculture. Plant extracts, allelochemicals and some microbes are utilized as bioherbicides to control weed populations. Bioherbicides based on plants and microbes inhibit the germination and growth of weeds; however,few studies conducted in weed physiology. This review ascribes the current knowledge of the physiological changes in weeds that occur during the exposure to bioherbicides. Plant extracts or metabolites are absorbed by weed seeds, which initiates damage to the cell membrane, DNA, mitosis, amylase activity and other biochemical processes and delays or inhibits seed germination. The growth of weeds is also retarded due to low rates of root-cell division, nutrient uptake, photosynthetic pigment synthesis, and plant growth hormone synthesis, while the productions of reactive oxygen species (ROS) and stress-mediated hormones increase, including irregular antioxidant activity. However, lytic enzymes and toxic substances secreted from microbes degrade the weed seed coat and utilize the endosperm for survival, which inhibits seed germination. The microbes grow through the intercellular spaces to reach the root core, and the deposition of toxins in the cells affects cell division and cellular functions. Some of the metabolites of deleterious microbes cause disease, necrosis and chlorosis,which inhibit the germination and growth of weed seeds by suppressing photosynthesis and gibberellin activities and enhancing ROS, abscisic acid and ethylene. This review explains the effects of bioherbicides (derived from plants and microbes) on weed-plant physiology to elucidate their modes of action. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion

    International Nuclear Information System (INIS)

    Zhu Junying; Liu Biyun; Wang Jing; Gao Yunni; Wu Zhenbin

    2010-01-01

    For revealing the mechanism of allelopathic influence on phytoplankton by aquatic macrophytes, the growth and photosynthetic activities of cyanobacteria Microcystis aeruginosa and the chlorophyte Selenastrum capricornutum were investigated when they coexisted with submerged macrophyte Myriophyllum spicatum and were exposed to allelopathic polyphenols: pyrogallic acid (PA), gallic acid (GA), ellagic acid (EA) and (+)-catechin (CA). According to the results of coexistence assays, the non-photochemical quenching (NPQ) and effective quantum efficiency (YII) of M. aeruginosa were affected earlier and more rapidly than the cell density. However, the influence of M. spicatum on S. capricornutum was not found. When the Toxicity Index (TI) was applied to evaluate the combined effects of binary and multiple mixtures of polyphenols, it was found that the four tested polyphenols with the proportion identified in the M. spicatum-cultured solution were observed to present synergistic effect (0.36-0.49) according to the cell density, NPQ and YII of M. aeruginosa. With the combined effects of polyphenols on S. capricornutum, only additive action (0.52-1.62) was found. On the other hand, PA (2.97 mg L -1 ), GA (2.65 mg L -1 ) caused significant reductions of photosystem II (PSII) and whole electron transport chain activities of M. aeruginosa by 71.43 and 18.37%, 70.95 and 40.77% (P < 0.05), respectively, after 24-h exposure, but no inhibition effect was found in S. capricornutum. The dark respiration and photosystem I (PSI) activities of M. aeruginosa were significantly increased by exposure to PA and GA (P < 0.05). Nevertheless, EA and CA had no influence on the electron transport activities of the tested organisms. These results indicate that the reduction in photosynthetic activity of M. aeruginosa and the synergistic effect of allelochemicals may be two important causes for the inhibition of undesired phytoplankton by submersed macrophytes in natural aquatic ecosystems, and

  7. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Junying [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Liu Biyun [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China); Wang Jing; Gao Yunni [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Wu Zhenbin, E-mail: wuzb@ihb.ac.cn [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China)

    2010-06-10

    For revealing the mechanism of allelopathic influence on phytoplankton by aquatic macrophytes, the growth and photosynthetic activities of cyanobacteria Microcystis aeruginosa and the chlorophyte Selenastrum capricornutum were investigated when they coexisted with submerged macrophyte Myriophyllum spicatum and were exposed to allelopathic polyphenols: pyrogallic acid (PA), gallic acid (GA), ellagic acid (EA) and (+)-catechin (CA). According to the results of coexistence assays, the non-photochemical quenching (NPQ) and effective quantum efficiency (YII) of M. aeruginosa were affected earlier and more rapidly than the cell density. However, the influence of M. spicatum on S. capricornutum was not found. When the Toxicity Index (TI) was applied to evaluate the combined effects of binary and multiple mixtures of polyphenols, it was found that the four tested polyphenols with the proportion identified in the M. spicatum-cultured solution were observed to present synergistic effect (0.36-0.49) according to the cell density, NPQ and YII of M. aeruginosa. With the combined effects of polyphenols on S. capricornutum, only additive action (0.52-1.62) was found. On the other hand, PA (2.97 mg L{sup -1}), GA (2.65 mg L{sup -1}) caused significant reductions of photosystem II (PSII) and whole electron transport chain activities of M. aeruginosa by 71.43 and 18.37%, 70.95 and 40.77% (P < 0.05), respectively, after 24-h exposure, but no inhibition effect was found in S. capricornutum. The dark respiration and photosystem I (PSI) activities of M. aeruginosa were significantly increased by exposure to PA and GA (P < 0.05). Nevertheless, EA and CA had no influence on the electron transport activities of the tested organisms. These results indicate that the reduction in photosynthetic activity of M. aeruginosa and the synergistic effect of allelochemicals may be two important causes for the inhibition of undesired phytoplankton by submersed macrophytes in natural aquatic ecosystems

  8. Photosynthetic electron-transfer reactions in the gametophyte of Pteris multifida reveal the presence of allelopathic interference from the invasive plant species Bidens pilosa.

    Science.gov (United States)

    Zhang, Kai-Mei; Shen, Yu; Zhou, Xiao-Qi; Fang, Yan-Ming; Liu, Ying; Ma, Lena Q

    2016-05-01

    To date, the response of the fern gametophyte to its environment has received considerable attention. However, studies on the influence of plant invasion on the fern gametophyte are fewer. Allelopathy has been hypothesized to play an important role in biological invasion. Hence, it is necessary to study the allelopathy of invasive plant species to the fern gametophyte and elucidate the mechanisms by which invasive plants cause phytotoxicity. As one of the main invasive plants in China, Bidens pilosa exhibits allelopathic effects on the gametophytic growth of Pteris multifida. The root exudate plays an important role among various allelochemical delivery mechanisms in B. pilosa. The effect invasive plant species has on photosynthesis in native species is poorly understood. To elucidate this effect, the changes in photosynthesis in the gametophytes of P. multifida are analyzed to examine the mechanisms of the root exudates of B. pilosa. Meanwhile, a non-invasive plant, Coreopsis basalis, was also applied to investigate the effects on fluorescence and pigments in P. multifida gametophytes. We found that gametophytes exposed to both B. pilosa and C. basalis had decreased fluorescence parameters in comparison with the control, except for non-photochemical quenching. Furthermore, it was found that these parameters were markedly affected from day 2 to day 10 in the presence of both exudates at a concentration of 25% or above. B. pilosa exudate had a negative dose-dependent effect on chlorophyll a, chlorophyll b, carotenoid, and the total chlorophyll in the gametophyte. The inhibitory effects increased with increasing exudate concentrations of both species, exhibiting the greatest inhibition at day 10. In conclusion, B. pilosa irreversibly affected the photosynthesis of P. multifida on both PS I and PS II. Root exudates caused the primary damage with respect to the decrease of the acceptors and donors of photon and electron in photosynthetic units and the production and

  9. Aspects of the ecology of mat-forming lichens

    Directory of Open Access Journals (Sweden)

    P. D. Crittenden

    2000-03-01

    Full Text Available Lichen species in the genera Cladonia (subgenus Cladina, Cetraria, Stereocaulon and Alectoria are important vegetation components on well-drained terrain and on elevated micro-sites in peatlands in boreal-Arctic regions. These lichens often form closed mats, the component thalli in which grow vertically upwards at the apices and die off in the older basal regions; they are therefore only loosely attached to the underlying soil. This growth habit is relatively unusual in lichens being found in <0.5% of known species. It might facilitate internal nutrienr recycling and higher growth rates and, together with the production of allelochemicals, it might underlie the considerable ecological success of mat-forming lichens; experiments to critically assess the importance of these processes are required. Mat-forming lichens can constitute in excess of 60% of the winter food intake of caribou and reindeer. Accordingly there is a pressing need for data on lichen growth rates, measured as mass increment, in order to help determine the carrying capacity of winter ranges for rhese herbivores and to better predict recovery rates following grazing. Trampling during the snow-free season fragments lichen thalli; mat-forming lichens regenerate very successfully from thallus fragments provided trampling does nor re-occur. Frequent recurrence of trampling creates disturbed habitats from which lichens will rapidly become eliminated consistent with J.P. Grime's CSR strategy theory. Such damage to lichen ground cover has occurred where reindeer or caribou are unable to migrate away from their winter range such as on small islands or where political boundaries have been fenced; it can also occur on summer range that contains a significant lichen component and on winter range where numbers of migrarory animals become excessive. Species of Stereocaulon, and other genera that contain cyanobacteria (most notably Peltigera and Nephroma, are among the principal agents of

  10. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition.

    Science.gov (United States)

    Wang, Congyan; Xiao, Hongguang; Zhao, Lulu; Liu, Jun; Wang, Lei; Zhang, Fei; Shi, Yanchun; Du, Daolin

    2016-04-01

    Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of

  11. Allelopathic effect of black mustard tissues and root exudates on some crops and weeds Efeito alelopático de tecidos de mostarda-preta e exsudatos da raiz de algumas culturas e plantas daninhas

    Directory of Open Access Journals (Sweden)

    E Al-Sherif

    2013-03-01

    Full Text Available Laboratory and greenhouse experiments were conducted to evaluate the phytotoxic effect of black mustard extracts and root exudates on two crops: Trifolium alexandrinum and Triticum aestivum, and two weeds: Phalaris paradoxa and Sisymbrium irio. The seeds were treated with aqueous and ethanolic extracts and chloroform for eight days, or subjected to root exudates of just harvested mustard in a greenhouse for five weeks. High-performance liquid chromatography (HPLC was used to quantify phytotoxins from plant tissues. Seed germination of P. paradoxa was reduced with the lowest concentration of the different extracts. However, the aqueous extract at 4% completely curtailed the germination of all the target species. In general, plant extracts had a concentration-dependent reduction of seedling growth of the target species. However, the ethanolic extract, at the lowest concentration, has stimulated the shoot length of both T. alexandrinum and T. aestivum, and the root length of the former. Mustard root exudates inhibited emergence and growth of the target species throughout the experiment. Ferulic and syringic acids were the dominant allelochemicals found when HPLC was used.Experimentos de laboratório e estufa foram realizados para avaliar o efeito fitotóxico dos extratos de mostarda-preta e exsudatos de raiz de duas culturas: Trifolium alexandrinum e Triticum aestivum, bem como de duas plantas daninhas: Phalaris paradoxa e Sisymbrium irio. As sementes foram tratadas com extratos aquosos, etanólicos e clorofórmio por oito dias, ou submetidas a exsudatos de raiz de mostarda recém-colhidaem estufa durante cinco semanas. A cromatografia líquida de alto desempenho (HPLC foi usada para a quantificação de fitotoxinas a partir de tecidos de plantas. Sementes de P. paradoxa apresentam germinação reduzida com a menor concentração dos diferentes extratos. No entanto, o extrato aquoso a 4% restringiu completamente a germinação de todas as esp

  12. Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH

    Directory of Open Access Journals (Sweden)

    Patricia Sisó-Terraza

    2016-11-01

    could play a role in Fe mobilization. The structural features of the array of coumarin type-compounds produced suggest some can mobilize Fe from the soil and others can be more efficient as allelochemicals.

  13. Papel dos tricomas glandulares da folha do tomateiro na oviposição de Tuta absoluta Role of tomato leaf glandular trichomes on oviposition of Tuta absoluta

    Directory of Open Access Journals (Sweden)

    Elsa Gilardón

    2001-03-01

    Full Text Available Os tricomas glandulares presentes nas folhas e ramos das plantas do gênero Lycopersicon são responsáveis pela secreção de metabólitos de diferentes naturezas. A presença de alguns desses compostos tem sido associada à resistência do tomate a diferentes insetos. A traça-do-tomateiro, Tuta absoluta (Meyrick, é uma das pragas mais nocivas da América do Sul. O adulto oviposita sobre as folhas do tomate e suas larvas abrem galerias no mesófilo das folhas, ramos, flores e frutos. As espécies silvestres do tomate conservam a capacidade de biossintetizar compostos químicos que lhes conferem resistência a esta praga. No presente trabalho, foi avaliada a preferência para oviposição desse inseto sobre folhas com e sem tricomas glandulares de L. esculentum (Mill. cv. Uco Plata, suscetível, e de L. hirsutum f. glabratum (Mull. PI 134417, espécie silvestre afim ao tomate, e resistente à traça. Os resultados sugerem que as fêmeas ovipositam indistintamente sobre as folhas de ambas espécies, independentemente da presença, ou não, dos tricomas glandulares. E a presença destes e de seus exsudatos não têm efeito inibidor na oviposição do inseto.In the genus Lycopersicon, different metabolites are secreted by the glandular trichomes of leaves and stems. These compounds have been associated to different tomato pests resistance. The South American tomato pinworm, Tuta absoluta (Meyrick, is one of the most harmful pests in South America. The females oviposit on tomato leaves and the larvae mine the leaf mesophyl, stems, flowers and fruits. Some wild accessions of Lycopersicon keep their capacity to synthesize allelochemicals that protect them from the pest. In this paper a comparison was made between the tomato pinworm oviposition on leaves with and without trichomes of L. esculentum (Mill. cv. Uco Plata, a susceptible cultivar, and L. hirsutum f. glabratum (Mull. PI 134417, a resistant wild accession. Results suggest that the female

  14. Allelopathy of plants in space

    Science.gov (United States)

    Tomita-Yokotani, K.; Baba, K.; Fujii, Y.; Hashimoto, H.; Nakamura, T.; Yamashita, M.

    Allelopathy is a chemical way of interaction among many organisms living together on the earth, and forming ecological systems as the member of the biosphere. Biosynthesis of allelochemicals, their release, transport and sensing mechanism at the recipient organisms, which is associated with allelopathy, are under the influence of gravity in many aspects. Such gravitational action on the allelopathy could be ranged from perturbation on biochemical networks in the cells to macroscopic transportation phenomena around the organisms. If gravity is an environmental factor that governs those processes, allelopathy at the absence of gravity on space craft, or under the different magnitude of gravity on the outer planets might differ from allelopathy on the ground. Another important factor in allelopathy in space application is physical closure of living environment, and lack of natural process to decompose allelopathic chemicals or the sink among material circulation in the biosphere. Many organisms and ecological system may behave differently in spacecrafts or on outer planets, based on the modified inter-organisms and -species interactions associated with alleopahty. In order to examine allelopathy under exotic gravity and closed environment, we imposed pseudo-microgravity and physical closure on a plant-plant allelopathy system. Two plant species were co-cultured in a closed vessel, and gravity vector was randomized by the 3D-clinorotation. Velvet bean (Mucuna pruriens L.) is known to induce strong allelopathic action on many plant species. Velvet bean and lettuce was chosen as the pair. Growth of lettuce seedlings, co-cultured with velvet bean, was analyzed under the 3D-clinorotation, and compared it with growth of the ground control group. The degree of allelopathic suppression on the lettuce root growth was less on the 3D-clinorotation. L-DOPA (L-3,4-dihydroxy-phennylalanine), released from root is the major substance responsible to the allelopathy of velvet bean

  15. Potencial alelopático de Ipomoea fistulosa sobre a germinação de alface e tomate = Allelopathic potential of Ipomoea fistulosa on the germination of lettuce and tomato

    Directory of Open Access Journals (Sweden)

    Juliana Domingues Lima

    2008-07-01

    Full Text Available O objetivo do presente trabalho foi determinar o potencial alelopático de Ipomoea fistulosa na germinação e crescimento de plântulas. Em laboratório, sementes de alface e de tomate foram colocadas para germinar na presença de água ou extratos de folhasde Ipomoea fistulosa, nas concentrações de 5, 10 e 15% (p/v. Em casa-de-vegetação, as sementes foram colocadas para germinar em bandejas, contendo o substrato Plantmax® e o substrato Plantmax® + resíduo de folhas secas de Ipomoea fistulosa, na proporção 3% (p/p. Oextrato aquoso inibiu a germinação e elevou o tempo médio de germinação das sementes, além de reduzir o crescimento da radícula e hipocótilo em todas as concentrações utilizadas. Em casa-de-vegetação, a altura da planta, o número de folhas, o acúmulo de massa seca das plantas também foram reduzidos na presença dos resíduos de folhas no substrato. Os resultados sugerem a presença de aleloquímicos em Ipomoea fistulosa e demonstram maior sensibilidade da alface a esses compostos, quando comparada ao tomate.The objective of the present research was to determine theallelopathic potential of Ipomoea fistulosa plants on germination and growth of seedlings. In laboratory, lettuce and tomato seeds were placed to germinate in the presence of water or Ipomoea fistulosa leaf extract, in the concentrations of 5, 10 e 15% (p/v. In greenhouse, seeds were placed to germinate in trays containing Plantmax® substrate and Plantmax® substrate + Ipomoea fistulosa dry leaf residue, at 3% (w/w. The aqueous extract inhibited germination,raised the mean germination time of the seeds and reduced the radicle and hypocotyl growth in all used concentrations. In greenhouse, the plant height, leaf number, and dry mass accumulation also were reduced in the presence of the leaf residue in the substrate.The results suggest the presence of allelochemicals in Ipomoea fistulosa and demonstrate the highest sensitivity of lettuce that tomato

  16. Metabolitos secundários como fontes de bioherbicidas: situação actual e perspectivas Secondary metabolites as sources of bioherbicides: present situation and perspectives

    Directory of Open Access Journals (Sweden)

    L.S. Dias

    2007-01-01

    Full Text Available Metabolitos secundários produzidos e libertados por plantas, bactérias e fungos estão envolvidos numa variedade de processos ecológicos, nomeadamente como semioquímicos e alelopatinos. Adicionalmente, e para além das suas possíveis funções ecológicas, muitos dos metabolitos secundários são fitotóxicos, constituindo uma fonte relativamente inexplorada de novos herbicidas. Solanum nigrum (erva-moira é uma infestante importante e muito bem sucedida num grande número de culturas, nomeadamente hortícolas e será usada como exemplo principal das utilizações actuais de aleloquímicos vegetais bem como das perspectivas de utilização deste tipo de compostos como bioherbicidas. Nesse âmbito revêem-se as principais estratégias de pesquisa de bioherbicidas e apresenta-se o estado da arte dos modos de acção de aleloquímicos já comercializados como herbicidas (Bialaphos e PPT, patenteados (AAL-toxina e em investigação, quer produzidos por plantas superiores (sorgoleona e derivados do cineol quer de origem bacteriana (hidantocidina e fúngica (fumonisinas, coletotriquina.Secondary metabolites produced and released by plants, bacteria, and fungi are involved in a number of ecological processes, namely as semiochemicals and allelopathins. In addition, and beside their possible ecological roles, a greater number of secondary metabolites are phytotoxic and represent a relatively unexplored source of new herbicides. Solanum nigrum (black nightshade is an important and successful weed in many crops, namely in horticulture, and will be used as a major example of actual and prospective uses of phytoallelochemicals as bioherbicides. Therefore, the main strategies for bioherbicides search are reviewed and the state of art of the modes of action of allelochemicals is presented, including those already in use as herbicides (Bialaphos and PPT, patented (AAL-toxin, and under investigation, whether produced by plants (sorgoleone and cineol

  17. Allelopathic evidence in Brachiaria decumbens and its potential to invade the Brazilian Cerrados

    Directory of Open Access Journals (Sweden)

    Elizabeth Gorgone Barbosa

    2008-08-01

    Full Text Available The aim of this study was to look for evidence of allelochemicals in B. decumbens, in parts of the plant from where they could easily be released to the environment. The germination inhibition of Phalaris canariensis, Lactuca sativa (standard species and Melinis minutiflora, another invasive African grass, was tested using B. decumbens germinating seeds and aqueous leachates of the roots, green and senescent leaves, at 5, 10 and 20% w/v. Both the germinating seeds and the aqueous leachates of B. decumbens reduced the germination of the species tested; the effectiveness of the aqueous leachates increased according to concentration. Apparently, the competitive advantage of B. decumbens in the cerrados could be amplified via allelopathy.Invasão biológica é uma das maiores causas atuais da perda de biodiversidade. Várias espécies que se tornam invasoras produzem substâncias fitotóxicas que aumentam sua capacidade competitiva; assim, a alelopatia é uma estratégia capaz de potencializar o sucesso de invasão. Brachiaria decumbens, uma gramínea africana, invadiu os cerrados brasileiros e representa, atualmente, uma séria ameaça à biota regional. Neste ensaio, verificamos a presença de aleloquímicos em partes de B. decumbens das quais poderiam ser facilmente liberados para o ambiente. Testamos a inibição da germinação de Phalaris canariensis, Lactuca sativa (espécies padrão e Melinis minutiflora (outra gramínea africana invasora usando sementes de B. decumbens e soluções aquosas lixiviadas de suas raízes, folhas verdes e folhas senescentes, a 5, 10 e 20% de peso do material por volume de água. Tanto as sementes como as soluções lixiviadas de decumbens reduziram a germinação das outras espécies; a eficiência dos lixiviados aumentou de acordo com a concentração da solução. Acreditamos que a grande vantagem competitiva de B. decumbens no cerrado possa ser amplificada pela alelopatia.

  18. Seleção para alto teor de acilaçúcares em genótipos de tomateiro e sua relação com a resistência ao ácaro vermelho (Tetranychus evansi e à traça (Tuta absoluta Selection towards high acylsugar levels in tomato genotypes and its relationship with resistance to spider mite (Tetranychus evansi and to the South American pinworm (Tuta absoluta

    Directory of Open Access Journals (Sweden)

    Guilherme Victor Nippes Pereira

    2008-06-01

    Full Text Available Uma das estratégias do melhoramento do tomateiro, no Brasil, visando à resistência a pragas, tem sido a utilização de aleloquímicos presentes nos folíolos. Objetivou-se no presente trabalho, estudar os níveis de resistência a dois artrópodos-pragas [traça do tomateiro (Tuta absoluta e ácaros (Tetranychus evansi], em genótipos previamente selecionados com base apenas no seu teor foliar de acilaçúcares. Foram selecionadas 11 plantas contrastantes quanto aos níveis de acilaçúcares nos folíolos, de uma população F3RC2, derivada do cruzamento interespecífico Lycopersicon esculentum Mill 'TOM-584' x Lycopersicon pennellii (Correll D'Arcy 'LA-716'. Esses genótipos, juntamente com os genitores TOM-584 e LA-716, foram submetidos a ensaios de repelência/resistência a artrópodos-pragas. No teste de repelência ao ácaro T. evansi, as plantas com altos teores de acilaçúcares se comportaram de forma semelhante ao genitor resistente LA-716. As magnitudes das correlações foram negativas e significativas, confirmando assim a associação entre altos teores do aleloquímico e a resistência (repelência ao ácaro, avaliada pela distância percorrida. No ensaio realizado com a traça do tomateiro, os genótipos foram avaliados para danos nas plantas e lesões nos folíolos. Os genótipos contendo alto teor de acilaçúcares, demonstraram bons níveis de resistência a Tuta absoluta, não diferindo significativamente do acesso selvagem LA-716. Em todas as épocas de avaliação, os teores de acilaçúcares mostraram-se alta e negativamente correlacionados com os níveis de dano causados pela traça. Os resultados obtidos comprovaram a eficiência da seleção de genótipos de tomateiro com elevados teores de acilaçúcares nos folíolos, visando à resistência a artrópodos-praga.Selection for high foliar levels of allelochemicals has been proposed as a suitable strategy for breeding tomatoes for arthropod pest resistance. In the

  19. Estudo fitoquímico de Senna alata por duas metodologias Phytochemical study of Senna alata using two methodologies

    Directory of Open Access Journals (Sweden)

    I.M.C. Rodrigues

    2009-01-01

    determine the main classes of potential allelochemicals of different fractions (stems, flowers, leaves, roots, seeds and pods of S. alata. The plant material was dried and submitted to exhaustive extraction with hydromethanolic solvent to obtain the crude extracts, with a small part being solubilized in methanol to obtain the test solutions. The following methods were used: thin-layer chromatography (TLC, to determine the qualitative chromatographic profile, and preliminary detection tests of the distinct chemical constituents, based on their extraction with appropriate solvents and application of color testing. The results of both methods showed few similarities, with the TLC being the simplest, most inexpensive, fastest, and most appropriate for preliminary analysis of plant-derived chemical compounds, despite being a qualitative method. This method was more sensitive for flavonoid detection, although the Bouchardat reactive was more sensitive to alkaloid detection than the Dragendorff. Ammonium hydroxide 10% was more sensitive to anthraquinones than Potassium hydroxide. The study showed the high diversity of the chemical compounds present in Senna alata, justifying its extensive use in popular medicine and even indicating its potential allelopathic use.

  20. Behaviour and chemical ecology of Bactrocera flies

    International Nuclear Information System (INIS)

    Tan, Keng-Hong

    2000-01-01

    . Semiochemicals are divided into ecomone and para-ecomone, the former is released naturally into the environment, the latter is not. An ecomone with intraspecies activity is known as a pheromone. One with interspecies activity is generally grouped under allelochemicals. It is specifically known as: 1) an allomone when it benefits the releaser with detrimental effect on the receiver, 2) a kairomone when it benefits the receiver with detrimental effect on the releaser, 3) a synomone when it benefits both the releaser and receiver, or 4) an apneumone when released from dead or decaying material caused by microbial action. A para-ecomone may be either a constituent of an organism or a synthetic chemical not released naturally. It should be emphasised that a chemical can be an ecomone and a para-ecomone and, as an ecomone, may act as a pheromone as well as an allomone or a kairomone. The study of an organism's ecomone in relation to the environment, interaction between individuals belonging to the same and/or different species, and how it affects behaviour constitutes the bulk of chemical ecology. Ecomones in applied entomology may be exploited as agents for 1) insect pest surveillance and monitoring, 2) trapping insect in population estimation or as an intervention technique such as the area-wide male annihilation technique, and 3) understanding and disrupting insect communication in a pest control or management programme. This paper presents an update of the behaviour within the context of chemical ecology of Bactrocera flies which is crucial in the understanding the flies' role in the complex communal interrelationships within Malaysian agro- and natural ecosystems as previously presented (Tan 1993)

  1. Efeito alelopático de sabugueiro e capim-limão na germinação de picão-preto e soja = Allelophatic effect of Sambucus australis Cham. and Schltdl. and Cymbopogon citratus (DC Stapf. in the germination of Bidens pilosa L. and soybeans

    Directory of Open Access Journals (Sweden)

    Andréa Maria Teixeira Fortes

    2009-04-01

    Full Text Available As plantas invasoras são constantes e diminuem a produtividade das culturas por competirem por espaço, nutrientes e água. Dessa forma, os agricultores adotam, em grande escala, produtos químicos eficientes no controle da lavoura e com alta toxicidade ao meioambiente. Existem, no entanto, formas alternativas para o controle de invasoras, por meio de aleloquímicos presentes em algumas plantas, dentre elas, as medicinais. Este trabalho tem como objetivo analisar as propriedades alelopáticas dos extratos das plantas medicinais Cymbopogon citratus (DC Stapf. e Sambucus australis Cham. and Schltdl. em inibir a germinação de Bidens pilosa L., sem interferir na germinação de Glycine max L. Merrill. Os extratos foram obtidos triturandose 200 g de folhas com 1 L de água destilada. As sementes foram mantidas em B.O.D. à temperatura de 25°C, com fotoperíodo de 12h de luz. Nas condições em que foram realizados os experimentos, constatou-se que o extrato de capim-limão inibiu a germinação de picão-preto sem que este inibisse a germinação da soja, enquanto o extrato de sabugueiro inibiu a germinação de picão-preto e a germinação da soja. Assim, indica-se a utilização do capim-limão, como um herbicida natural para o picão-preto.Agriculture has been suffering adaptations throughout time, from hard hand labor to the most advanced sowing and harvesting techniques. Invasive plants are a constant, diminishing productivity by competing for space, nutrients, and water. Therefore, farmers have adopted, on alarge scale, the use of efficient synthetic chemicals, which are highly toxic to the environment, in order to control plant production. However, there are other alternative means to control those competitors: using allelochemicals present in some plants, such as medicinal ones. The objective of this paper is to analyze allelophatic properties of the medicinal plants Cymbopogon citratus (DC Stapf. and Sambucus australis Cham. and Schltdl

  2. Hosting Capacity of Horticultural Plants for Insect Pests in Brazil Capacidad de Alojamiento de Plantas Hortícolas para Plagas de Insectos en Brasil

    Directory of Open Access Journals (Sweden)

    Germano L.D Leite

    2011-09-01

    Full Text Available Factors such as fertilization, allelochemicals, trichomes, weather, and natural enemies can influence pest populations. Thus, it is necessary to understand the factors that predispose vegetable species to pests and the role of polyculture, crop rotation, and neighboring plants. The objective of this research was to study the hosting capacity for pests of Abelmoschus esculentus (L., Brassica oleracea L. vars. acephala and capitata, Capsicum annuum L., Cucurbita moschata (Duchesne, Cucurbita maxima Duchesne and Cucumis sativus L., Lycopersicon esculentum Mill., Solanum gilo Raddi and Solanum melongena L., and Phaseolus vulgaris L. The higher density of Bemisia tabaci (Genn. adults on C. sativus can be due to the higher amount of pentacosane and octacosane in this plant. The occurrence of Brevicoryne brassicae (L. only in Brassica spp. can be accounted for by the nonacosane of these plants. The low trichome density and greater palmitic acid level can explain the greatest damage by Aphis gossypii Glover in A. esculentum. Empoasca sp. was more frequent in P. vulgaris followed by A. esculentum, which are plants with lower K content. Solanum melongena was attacked more by Hydrangea similis (Walker and Epitrix sp. perhaps because of higher palmitic acid and 11,14,17-eicosatrienoic methyl ester concentrations in their leaves. Frankliniella sp. exhibited more damage in C. sativus probably owing to higher pentacosane and octacosane in its leaves. Sistena sp. was more frequent in C. maxima and had higher octadecane levels and trichome density. The presence of ¥-humulene and hexacosane can explain the damage by Tuta absoluta (Meyrick on L. esculentum.Factores tales como la fertilización, aleloquímicos, tricomas, el clima y los enemigos naturales pueden influir en las poblaciones de plagas. Por lo tanto, es necesario comprender los factores que predisponen a las especies vegetales a las plagas y el papel de policultivos, rotación de cultivos y las plantas

  3. Seleção indireta para teor de 2-tridecanona em tomateiros segregantes e sua relação com a resistência à traça-do-tomateiro Indirect selection to 2-tridecanone content and its relation to tomato pinworm resistance

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Gontijo Labory

    1999-05-01

    Full Text Available Este trabalho teve como objetivo verificar a relação entre o teor de 2-tridecanona (2-TD em materiais selecionados e o nível de resistência à traça-do-tomateiro (Tuta absoluta (Meyrick, 1917 (Lepidoptera: Gelechiidae em gerações avançadas de Lycopersicon spp. derivado de cruzamentos interespecíficos. Foi usada uma população de tomateiros segregantes (geração F4RC2 para 2-TD, uma metilcetona que confere resistência à traça-do-tomateiro. Genótipos foram selecionados e avaliados quanto à resistência do tipo não-preferência: três materiais com alto teor do aleloquímico 2-TD (HI1, HI2, HI3 e dois materiais com baixo teor (LO1, LO2, além das testemunhas. Após infestação controlada, foram avaliados: contagem do número de ovos postos, evolução da lesão nos folíolos, porcentagem de folíolos atacados, e índice geral de lesão causada pela traça. Plantas com alto teor de 2-TD (HI1 e HI3 tiveram uma baixa progressão das lesões ocasionadas pelo ataque de T. absoluta. A planta LO1 foi muito atacada pela praga, o mesmo não ocorrendo com a planta LO2, que foi infestada acidentalmente por ácaros do gênero Tetranychus, acarretando, provavelmente, uma disputa de nicho ecológico entre os dois artrópodes. Concluiu-se que altos teores de 2-TD estão ligados a mecanismos de resistência à traça-do-tomateiro do tipo não-preferência por oviposição e alimentação.This work had the objective to verify the relation between 2-tridecanone (2-TD in selected plants and resistance level to tomato pinworm (Tutaabsoluta (Meyrick, 1917 (Lepidoptera: Gelechiidae in advanced generations of Lycopersicon spp. interspecific crosses. It was used a tomato population (F4RC2 generation segregant for 2-TD, a methyl ketone that controls the resistance of the tomato pinworm. Materials were selected and evaluated for a non-preference mechanism of resistance. Three genotypes with high level of the allelochemic 2-TD (HI1, HI2, HI3, two with low

  4. Phytotoxicity of the extracts of Lonchocarpus muehlbergianus Hassl. (Fabaceae leaflets and galls on seed germination and early development of lettuce Fitotoxidade diferencial dos extratos aquosos de folíolos e galhas de Lonchocarpus muelhbergianus Hassl. (Fabaceae na germinação e desenvolvimento inicial de alface

    Directory of Open Access Journals (Sweden)

    Denis Coelho de Oliveira

    2008-12-01

    Full Text Available Galls induced by Euphalerus ostreoides (Hemiptera: Psyllidae cause structural and chemical alterations on Lonchocarpus muehlbergianus leaflets. Healthy and galled leaflet tissues of this plant species are rich in secondary metabolites with potential allelopathic effects. This research compares the allelopathic effects of the aqueous extracts of L. muehlbergianus leaflets and galls on seeds and seedlings of Lactuta sativa, and evaluates the chemical impact produced by a gall-inducing insect on the other trophic levels associated with it. The extracts were obtained through static maceration in distilled water (5% p/v. The treatments consisted of aqueous crude extracts and those previously filtered in polyvinylpirrolidone (PVP. After seven days, seedling height was measured, and the radicles were fixed in FAA50 for anatomical analyses. Healthy leaflet and gall aqueous extracts, and those filtered in PVP, significantly inhibited seed germination, with no significant differences between the two groups. Treatments with aqueous extracts reduced seed germination speed and vegetative axis length. Plant tissue alterations confirm the phytotoxicity of allelochemical substances present in the extracts. The differences among the treatments indicated that gall formation altered L. muehlbergianus leaflet metabolism, and this could influence the other trophic levels associated with this gall inducing-host plant system.Galhas induzidas por Euphalerus ostreoides (Hemiptera: Psyllidae produzem alterações estruturais e químicas nos folíolos de Lonchocarpus muehlbergianus. As galhas, em geral, atuam como drenos de fotoassimilados podendo acumular tanto compostos do metabolismo primário, associados à alimentação do inseto quanto do metabolismo secundário, relacionados às inter-relações da planta-hospedeira com o galhador e demais níveis tróficos associados. Tecidos sadios e galhados de L. muehlbergianus são ricos em metabólitos com efeito alelop

  5. Diferenças no padrão da atividade alelopática em espécies da família Leguminosae Differences in allelopathic activity patterns in Leguminosae

    Directory of Open Access Journals (Sweden)

    M. Mourão Júnior

    2010-01-01

    plant sensitivity. Bio assays of seed germination and radicle and hypocotyl elongation were developed under controlled conditions. The results indicated that the species studied do not present a similar pattern regarding the potential allelopathic effects; however, there is a hierarchy concerning the intensity of the global effects, with the allelopathic inhibitory potential being more extensive and effective for the species Bauhinia guianensis, Bowdichia virgiloides, Parkia pendula and Platimenia reticulate, and more restricted and effective for Bauhinia macrostachya. The plant fraction factor showed differences in the activity pattern, with the leaves being the main source of allelochemicals for most species, and the roots, for Bauhinia macrostachya and Inga edulis. In terms of response pattern of the receptor plants, radicle elongation is more sensitive to the effects of the extracts, with hypocotyl elongation being the least sensitive. The effect of the extracts was more intense for Mimosa pudica. These results confirm the importance of the Amazon forest as a source of chemical compounds of interest to mankind, which by itself justifies its preservation.

  6. Substâncias químicas com atividades alelopáticas presentes nas folhas de Parkia pendula (Leguminosae Chemical compounds with allelopathic activities in Parkia pendula (Leguminosae leaves

    Directory of Open Access Journals (Sweden)

    A.P.S. Souza Filho

    2005-12-01

    under controlled conditions of 25 ºC of temperature and 12-hour photoperiod for seed germination and 24-hour photoperiod for radicle elongation. The following allelochemicals were isolated and identified in P. pendula's leaves: 3,4,5-trimethoxybenzoic acid (S1, 3,4-dimethoxybenzoic acid (S2 and Blumenol A (S3. Comparatively, S1 and S2 showed greater allelopathic activity. The effects on radicle elongation were greater than those observed on seed germination. The isolated substances showed low inhibition potential on seed germination, especially on S. obtusifolia seeds. The allopathic inhibition effects were positively related to the concentration of the substances, although in some cases, these effects have not corresponded to the statistical differences.