WorldWideScience

Sample records for allelic mutant series

  1. Allelism and Molecular Mapping of Soybean Necrotic Root Mutants

    Science.gov (United States)

    Mutability of the w4 flower color locus in soybean [Glycine max (L.) Merr.] is conditioned by an allele designated w4-m. Germinal revertants recovered among self-pollinated progeny of mutable plants have been associated with the generation of necrotic root mutations, chlorophyll-deficiency mutation...

  2. Multiple origins of Plasmodium falciparum dihydropteroate synthetase mutant alleles associated with sulfadoxine resistance in India.

    Science.gov (United States)

    Lumb, Vanshika; Das, Manoj K; Singh, Neeru; Dev, Vas; Khan, Wajihullah; Sharma, Yagya D

    2011-06-01

    With the spread of chloroquine (CQ)-resistant malaria in India, sulfadoxine-pyrimethamine (SP) alone or in combination with artesunate is used as an alternative antimalarial drug. Due to continuous drug pressure, the Plasmodium falciparum parasite is exhibiting resistance to antifolates because of mutations in candidate genes dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps). Our earlier study on flanking microsatellite markers of dhfr mutant alleles from India had shown a single origin of the pyrimethamine resistance and some minor haplotypes which shared haplotypes with Southeast Asian (Thailand) strains. In the present study, we have analyzed 193 of these Indian P. falciparum isolates for 15 microsatellite loci around dhps to investigate the genetic lineages of the mutant dhps alleles in different parts of the country. Eighty-one of these samples had mutant dhps alleles, of which 62 were from Andaman and Nicobar Islands and the remaining 19 were from mainland India. Of 112 isolates with a wild-type dhps allele, 109 were from mainland India and only 3 were from Andaman and Nicobar Islands. Consistent with the model of selection, the mean expected heterozygosity (H(e)) around mutant dhps alleles (H(e) = 0.55; n = 81) associated with sulfadoxine resistance was lower (P ≤ 0.05) than the mean H(e) around the wild-type dhps allele (H(e) = 0.80; n = 112). There was more genetic diversity in flanking microsatellites of dhps than dhfr among these isolates, which confirms the assertion that dhps mutations are at a very early stage of fixation in the parasite population. Microsatellite haplotypes around various mutant dhps alleles suggest that the resistant dhps alleles have multiple independent origins in India, especially in Andaman and Nicobar Islands. Determining the genetic lineages of the resistant dhps alleles on Andaman and Nicobar Islands and mainland India is significant, given the role of Asia in the intercontinental spread of chloroquine

  3. Increased prevalence of mutant null alleles that cause hereditary fructose intolerance in the American population.

    Science.gov (United States)

    Coffee, Erin M; Yerkes, Laura; Ewen, Elizabeth P; Zee, Tiffany; Tolan, Dean R

    2010-02-01

    Mutations in the aldolase B gene (ALDOB) impairing enzyme activity toward fructose-1-phosphate cleavage cause hereditary fructose intolerance (HFI). Diagnosis of the disease is possible by identifying known mutant ALDOB alleles in suspected patients; however, the frequencies of mutant alleles can differ by population. Here, 153 American HFI patients with 268 independent alleles were analyzed to identify the prevalence of seven known HFI-causing alleles (A149P, A174D, N334K, Delta4E4, R59Op, A337V, and L256P) in this population. Allele-specific oligonucleotide hybridization analysis was performed on polymerase chain reaction (PCR)-amplified genomic DNA from these patients. In the American population, the missense mutations A149P and A174D are the two most common alleles, with frequencies of 44% and 9%, respectively. In addition, the nonsense mutations Delta4E4 and R59Op are the next most common alleles, with each having a frequency of 4%. Together, the frequencies of all seven alleles make up 65% of HFI-causing alleles in this population. Worldwide, these same alleles make up 82% of HFI-causing mutations. This difference indicates that screening for common HFI alleles is more difficult in the American population. Nevertheless, a genetic screen for diagnosing HFI in America can be improved by including all seven alleles studied here. Lastly, identification of HFI patients presenting with classic symptoms and who have homozygous null genotypes indicates that aldolase B is not required for proper development or metabolic maintenance.

  4. Origins and spread of pfdhfr mutant alleles in Plasmodium falciparum.

    Science.gov (United States)

    Mita, Toshihiro

    2010-06-01

    The emergence and spread of Plasmodium falciparum parasite resistant to sulfadoxine and pyrimethamine (SP) poses a serious public health problem. Resistance is caused by point mutations in dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps), the two key enzymes in the folate biosynthetic pathway. The use of microsatellite markers flanking pfdhfr has recently shown that the invasion of limited resistant lineages may explain the widespread SP resistance in many endemic regions. In Africa, however, multiple indigenous origins of pfdhfr triple mutants have been demonstrated. More new independent lineages and routes of geographical spread of resistance may be found by further molecular evolutionary analyses using samples from various endemic regions. Here, I review recent studies about the history of SP usage and the evolution and spread of resistant lineages while addressing the technical issue of microsatellite analysis.

  5. A highly sensitive quantitative real-time pcr assay for determination of mutant jak2 exon 12 allele burden

    DEFF Research Database (Denmark)

    Kjær, L.; Riley, C.H.; Westman, M.

    2012-01-01

    present a highly sensitive real-time quantitative PCR assay for determination of the mutant allele burden of JAK2 exon 12 mutations. In combination with high resolution melting analysis and sequencing the assay identified six patients carrying previously described JAK2 exon 12 mutations and one novel...... mutation. Two patients were homozygous with a high mutant allele burden, whereas one of the heterozygous patients had a very low mutant allele burden. The allele burden in the peripheral blood resembled that of the bone marrow, except for the patient with low allele burden. Myeloid and lymphoid cell...... populations were isolated by cell sorting and quantitative PCR revealed similar mutant allele burdens in CD16+ granulocytes and peripheral blood. The mutations were also detected in B-lymphocytes in half of the patients at a low allele burden. In conclusion, our highly sensitive assay provides an important...

  6. Independent Emergence of the Plasmodium falciparum Kelch Propeller Domain Mutant Allele C580Y in Guyana.

    Science.gov (United States)

    Chenet, Stella M; Akinyi Okoth, Sheila; Huber, Curtis S; Chandrabose, Javin; Lucchi, Naomi W; Talundzic, Eldin; Krishnalall, Karanchand; Ceron, Nicolas; Musset, Lise; Macedo de Oliveira, Alexandre; Venkatesan, Meera; Rahman, Reyaud; Barnwell, John W; Udhayakumar, Venkatachalam

    2016-05-01

    Suspected artemisinin resistance in Plasmodium falciparum can be explored by examining polymorphisms in the Kelch (PfK13) propeller domain. Sequencing of PfK13 and other gene resistance markers was performed on 98 samples from Guyana. Five of these samples carried the C580Y allele in the PfK13 propeller domain, with flanking microsatellite profiles different from those observed in Southeast Asia. These molecular data demonstrate independent emergence of the C580Y K13 mutant allele in Guyana, where resistance alleles to previously used drugs are fixed. Therefore, in Guyana and neighboring countries, continued molecular surveillance and periodic assessment of the therapeutic efficacy of artemisinin-based combination therapy are warranted.

  7. A highly sensitive quantitative real-time PCR assay for determination of mutant JAK2 exon 12 allele burden.

    Directory of Open Access Journals (Sweden)

    Lasse Kjær

    Full Text Available Mutations in the Janus kinase 2 (JAK2 gene have become an important identifier for the Philadelphia-chromosome negative chronic myeloproliferative neoplasms. In contrast to the JAK2V617F mutation, the large number of JAK2 exon 12 mutations has challenged the development of quantitative assays. We present a highly sensitive real-time quantitative PCR assay for determination of the mutant allele burden of JAK2 exon 12 mutations. In combination with high resolution melting analysis and sequencing the assay identified six patients carrying previously described JAK2 exon 12 mutations and one novel mutation. Two patients were homozygous with a high mutant allele burden, whereas one of the heterozygous patients had a very low mutant allele burden. The allele burden in the peripheral blood resembled that of the bone marrow, except for the patient with low allele burden. Myeloid and lymphoid cell populations were isolated by cell sorting and quantitative PCR revealed similar mutant allele burdens in CD16+ granulocytes and peripheral blood. The mutations were also detected in B-lymphocytes in half of the patients at a low allele burden. In conclusion, our highly sensitive assay provides an important tool for quantitative monitoring of the mutant allele burden and accordingly also for determining the impact of treatment with interferon-α-2, shown to induce molecular remission in JAK2V617F-positive patients, which may be a future treatment option for JAK2 exon 12-positive patients as well.

  8. Phenotypic analysis and molecular characterization of an allelic mutant of the D61 gene in rice

    Directory of Open Access Journals (Sweden)

    Yanan Gao

    2014-08-01

    Full Text Available Brassinosteroids (BRs are a class of plant-specific steroidal hormones that play important roles in multiple biological processes. In this paper, a classic rice mutant gsor300084, showing erect leaves and semi-dwarf stature, was characterized. Morphological analysis in darkness showed that the mesocotyl of the gsor300084 mutant did not elongate when grown in darkness. Coleoptile elongation and root growth were less affected by the exogenous application of brassinolide (BL, the most active form of BR, in gsor300084 than in the wild-type rice variety Matsumae. Lamina joint bending analysis also showed that gsor300084 was less sensitive to exogenous BL than Matsumae. These results suggested that the gsor300084 mutant is defective in BR sensitivity. Map-based cloning indicated that gsor300084 is a novel allelic mutant of the DWARF61 (D61 gene, which encodes the putative BR receptor OsBRI1. A single-base mutation appears in the LRR domain of OsBRI1, changing the 444th amino acid from tryptophan (W to arginine (R. Subcellular localization analysis suggested that both the wild-type and mutant OsBRI1 protein are localized at the cytoplasmic membrane. Structure modeling revealed that the W444R substitution may affect the perception of BRs by the LRR domain.

  9. Phenotypic analysis and molecular characterization of an allelic mutant of the D61 gene in rice

    Institute of Scientific and Technical Information of China (English)

    Yanan; Gao; Guangquan; Wang; Shoujiang; Yuan; Yanling; Qin; Jinfeng; Zhao; Yanpei; Zhang; Wenhui; Zhang; Xueyong; Li

    2014-01-01

    Brassinosteroids(BRs) are a class of plant-specific steroidal hormones that play important roles in multiple biological processes. In this paper, a classic rice mutant gsor300084,showing erect leaves and semi-dwarf stature, was characterized. Morphological analysis in darkness showed that the mesocotyl of the gsor300084 mutant did not elongate when grown in darkness. Coleoptile elongation and root growth were less affected by the exogenous application of brassinolide(BL), the most active form of BR, in gsor300084 than in the wild-type rice variety Matsumae. Lamina joint bending analysis also showed that gsor300084 was less sensitive to exogenous BL than Matsumae. These results suggested that the gsor300084 mutant is defective in BR sensitivity. Map-based cloning indicated that gsor300084 is a novel allelic mutant of the DWARF61(D61) gene, which encodes the putative BR receptor OsBRI1. A single-base mutation appears in the LRR domain of OsBRI1, changing the 444 th amino acid from tryptophan(W) to arginine(R). Subcellular localization analysis suggested that both the wild-type and mutant OsBRI1 protein are localized at the cytoplasmic membrane. Structure modeling revealed that the W444 R substitution may affect the perception of BRs by the LRR domain.

  10. MASTR: A Technique for Mosaic Mutant Analysis with Spatial and Temporal Control of Recombination Using Conditional Floxed Alleles in Mice

    Directory of Open Access Journals (Sweden)

    Zhimin Lao

    2012-08-01

    Full Text Available Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination, which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26MASTR was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26MASTR mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.

  11. Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts.

    Science.gov (United States)

    Scholefield, Janine; Watson, Lauren; Smith, Danielle; Greenberg, Jacquie; Wood, Matthew J A

    2014-12-01

    Polyglutamine (polyQ) disorders are inherited neurodegenerative conditions defined by a common pathogenic CAG repeat expansion leading to a toxic gain-of-function of the mutant protein. Consequences of this toxicity include activation of heat-shock proteins (HSPs), impairment of the ubiquitin-proteasome pathway and transcriptional dysregulation. Several studies in animal models have shown that reducing levels of toxic protein using small RNAs would be an ideal therapeutic approach for such disorders, including spinocerebellar ataxia-7 (SCA7). However, testing such RNA interference (RNAi) effectors in genetically appropriate patient cell lines with a disease-relevant phenotype has yet to be explored. Here, we have used primary adult dermal fibroblasts from SCA7 patients and controls to assess the endogenous allele-specific silencing of ataxin-7 by two distinct siRNAs. We further identified altered expression of two disease-relevant transcripts in SCA7 patient cells: a twofold increase in levels of the HSP DNAJA1 and a twofold decrease in levels of the de-ubiquitinating enzyme, UCHL1. After siRNA treatment, the expression of both genes was restored towards normal levels. To our knowledge, this is the first time that allele-specific silencing of mutant ataxin-7, targeting a common SNP, has been demonstrated in patient cells. These findings highlight the advantage of an allele-specific RNAi-based therapeutic approach, and indicate the value of primary patient-derived cells as useful models for mechanistic studies and for measuring efficacy of RNAi effectors on a patient-to-patient basis in the polyQ diseases.

  12. Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI frequently occur together in tumor cells.

    Directory of Open Access Journals (Sweden)

    Junichi Soh

    Full Text Available BACKGROUND: Activating mutations in one allele of an oncogene (heterozygous mutations are widely believed to be sufficient for tumorigenesis. However, mutant allele specific imbalance (MASI has been observed in tumors and cell lines harboring mutations of oncogenes. METHODOLOGY/PRINCIPAL FINDINGS: We determined 1 mutational status, 2 copy number gains (CNGs and 3 relative ratio between mutant and wild type alleles of KRAS, BRAF, PIK3CA and EGFR genes by direct sequencing and quantitative PCR assay in over 400 human tumors, cell lines, and xenografts of lung, colorectal, and pancreatic cancers. Examination of a public database indicated that homozygous mutations of five oncogenes were frequent (20% in 833 cell lines of 12 tumor types. Our data indicated two major forms of MASI: 1 MASI with CNG, either complete or partial; and 2 MASI without CNG (uniparental disomy; UPD, due to complete loss of wild type allele. MASI was a frequent event in mutant EGFR (75% and was due mainly to CNGs, while MASI, also frequent in mutant KRAS (58%, was mainly due to UPD. Mutant: wild type allelic ratios at the genomic level were precisely maintained after transcription. KRAS mutations or CNGs were significantly associated with increased ras GTPase activity, as measured by ELISA, and the two molecular changes were synergistic. Of 237 lung adenocarcinoma tumors, the small number with both KRAS mutation and CNG were associated with shortened survival. CONCLUSIONS: MASI is frequently present in mutant EGFR and KRAS tumor cells, and is associated with increased mutant allele transcription and gene activity. The frequent finding of mutations, CNGs and MASI occurring together in tumor cells indicates that these three genetic alterations, acting together, may have a greater role in the development or maintenance of the malignant phenotype than any individual alteration.

  13. Design of functional small interfering RNAs targeting amyotrophic lateral sclerosis-associated mutant alleles

    Institute of Scientific and Technical Information of China (English)

    GENG Chang-ming; DING Hong-liu

    2011-01-01

    Background RNA interference (RNAi) is a potential cure for amyotrophic lateral sclerosis (ALS) caused by dominant,gain-of-function superoxide dismutase 1 (SOD1) mutations. The success of such therapy relies on the functional small interfering RNAs (siRNAs) that can effectively deliver RNAi. This study aimed to design the functional siRNAs targeting ALS-associated mutant alleles.Methods A modified dual luciferase system containing human SOD1 mRNA target was established to quantify siRNA efficacy. Coupled with validated siRNAs identified in the literature, we analyzed the rationale of siRNA design and subsequently developed an asymmetry rule-based strategy for designing siRNA. We then further tested the effectiveness of this design strategy in converting a naturally symmetric siRNA into functional siRNAs with favorable asymmetry for gene silencing of SOD1 alleles.Results The efficacies of siRNAs could vary tremendously by one base-pair position change. Functional siRNAs could target the whole span of SOD1 mRNA coding sequence as well as non-coding region. While there is no distinguishable pattern of the distribution of nucleobases in these validated siRNAs, the high percent of GC count at the last two positions of siRNAs (P18 and P19) indicated a strong effect of asymmetry rule. Introducing a mismatch at position 1 of the 5' of antisense strand of siRNA successfully converted the inactive siRNA into functional siRNAs that silence SOD1 with desired efficacy.Conclusions Asymmetry rule-based strategy that incorporates a mismatch into siRNA most consistently enhances RNAi efficacy and guarantees producing functional siRNAs that successfully silence ALS-associated SOD1 mutant alleles regardless target positions. This strategy could also be useful to design siRNAs for silencing other disease-associated dominant, gain-of-function mutant genes.

  14. An allele of sequoia dominantly enhances a trio mutant phenotype to influence Drosophila larval behavior.

    Directory of Open Access Journals (Sweden)

    Kathryn E Dean

    Full Text Available The transition of Drosophila third instar larvae from feeding, photo-phobic foragers to non-feeding, photo-neutral wanderers is a classic behavioral switch that precedes pupariation. The neuronal network responsible for this behavior has recently begun to be defined. Previous genetic analyses have identified signaling components for food and light sensory inputs and neuropeptide hormonal outputs as being critical for the forager to wanderer transition. Trio is a Rho-Guanine Nucleotide Exchange Factor integrated into a variety of signaling networks including those governing axon pathfinding in early development. Sequoia is a pan-neuronally expressed zinc-finger transcription factor that governs dendrite and axon outgrowth. Using pre-pupal lethality as an endpoint, we have screened for dominant second-site enhancers of a weakly lethal trio mutant background. In these screens, an allele of sequoia has been identified. While these mutants have no obvious disruption of embryonic central nervous system architecture and survive to third instar larvae similar to controls, they retain forager behavior and thus fail to pupariate at high frequency.

  15. B-RAF mutant alleles associated with Langerhans cell histiocytosis, a granulomatous pediatric disease.

    Directory of Open Access Journals (Sweden)

    Takeshi Satoh

    Full Text Available BACKGROUND: Langerhans cell histiocytosis (LCH features inflammatory granuloma characterised by the presence of CD1a+ dendritic cells or 'LCH cells'. Badalian-Very et al. recently reported the presence of a canonical (V600EB-RAF mutation in 57% of paraffin-embedded biopsies from LCH granuloma. Here we confirm their findings and report the identification of two novel B-RAF mutations detected in LCH patients. METHODS AND RESULTS: Mutations of B-RAF were observed in granuloma samples from 11 out of 16 patients using 'next generation' pyrosequencing. In 9 cases the mutation identified was (V600EB-RAF. In 2 cases novel polymorphisms were identified. A somatic (600DLATB-RAF insertion mimicked the structural and functional consequences of the (V600EB-RAF mutant. It destabilized the inactive conformation of the B-RAF kinase and resulted in increased ERK activation in 293 T cells. The (600DLATB-RAF and (V600EB-RAF mutations were found enriched in DNA and mRNA from the CD1a+ fraction of granuloma. They were absent from the blood and monocytes of 58 LCH patients, with a lower threshold of sequencing sensitivity of 1%-2% relative mutation abundance. A novel germ line (T599AB-RAF mutant allele was detected in one patient, at a relative mutation abundance close to 50% in the LCH granuloma, blood monocytes and lymphocytes. However, (T599AB-RAF did not destabilize the inactive conformation of the B-RAF kinase, and did not induce increased ERK phosphorylation or C-RAF transactivation. CONCLUSIONS: Our data confirmed presence of the (V600EB-RAF mutation in LCH granuloma of some patients, and identify two novel B-RAF mutations. They indicate that (V600EB-RAF and (600DLATB-RAF mutations are somatic mutants enriched in LCH CD1a(+ cells and absent from the patient blood. Further studies are needed to assess the functional consequences of the germ-line (T599AB-RAF allele.

  16. B-RAF Mutant Alleles Associated with Langerhans Cell Histiocytosis, a Granulomatous Pediatric Disease

    Science.gov (United States)

    Lu, Hui-chun; Mian, Sophie; Trouillet, Celine; Mufti, Ghulam; Emile, Jean-Francois; Fraternali, Franca; Donadieu, Jean; Geissmann, Frederic

    2012-01-01

    Background Langerhans cell histiocytosis (LCH) features inflammatory granuloma characterised by the presence of CD1a+ dendritic cells or ‘LCH cells’. Badalian-Very et al. recently reported the presence of a canonical V600EB-RAF mutation in 57% of paraffin-embedded biopsies from LCH granuloma. Here we confirm their findings and report the identification of two novel B-RAF mutations detected in LCH patients. Methods and Results Mutations of B-RAF were observed in granuloma samples from 11 out of 16 patients using ‘next generation’ pyrosequencing. In 9 cases the mutation identified was V600EB-RAF. In 2 cases novel polymorphisms were identified. A somatic 600DLATB-RAF insertion mimicked the structural and functional consequences of the V600EB-RAF mutant. It destabilized the inactive conformation of the B-RAF kinase and resulted in increased ERK activation in 293 T cells. The 600DLATB-RAF and V600EB-RAF mutations were found enriched in DNA and mRNA from the CD1a+ fraction of granuloma. They were absent from the blood and monocytes of 58 LCH patients, with a lower threshold of sequencing sensitivity of 1%–2% relative mutation abundance. A novel germ line T599AB-RAF mutant allele was detected in one patient, at a relative mutation abundance close to 50% in the LCH granuloma, blood monocytes and lymphocytes. However, T599AB-RAF did not destabilize the inactive conformation of the B-RAF kinase, and did not induce increased ERK phosphorylation or C-RAF transactivation. Conclusions Our data confirmed presence of the V600EB-RAF mutation in LCH granuloma of some patients, and identify two novel B-RAF mutations. They indicate that V600EB-RAF and 600DLATB-RAF mutations are somatic mutants enriched in LCH CD1a+ cells and absent from the patient blood. Further studies are needed to assess the functional consequences of the germ-line T599AB-RAF allele. PMID:22506009

  17. Frequency of the MDR1 mutant allele associated with multidrug sensitivity in dogs from Brazil

    Directory of Open Access Journals (Sweden)

    Monobe MM

    2015-04-01

    Full Text Available Marina M Monobe,1 João P Araujo Junior,2 Kari V Lunsford,3 Rodrigo C Silva,4 Camilo Bulla41Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, 2Department of Microbiology and Immunology, Biosciences Institute, Sao Paulo State University (UNESP, Botucatu, Brazil; 3Department of Clinical Sciences and Animal Health Center, 4Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi, MS, USAAbstract: To date, a 4-bp deletion in the MDR1 gene has been detected in more than ten dog breeds, as well as in mixed breed dogs, in several countries, however information regarding this mutation in dogs from Brazil is lacking. For this reason, 103 Collies, 77 Border Collies, 76 Shetland Sheepdogs, 20 Old English Sheepdogs, 55 German Shepherds, 16 Australian Shepherds, and 53 Whippets from Brazil were screened for the presence of the mutation. The heterozygous mutated genotype, MDR1 (+/−, frequency found for Collies, Australian Shepherd, and Shetland Sheepdog was 50.5% (95% CI =41.1%–59.9%, 31.3% (95% CI =8.6%–53.2%, and 15.8% (95% CI =7.7%–23.9%, respectively. Homozygous mutated genotype, MDR1 (−/−, was detected only in Collies 35.9%. The MDR1 allele mutant frequency found for Collies, Australian Shepherd, and Shetland Sheepdog was 61.2% (95% CI =54.8%–67.5%, 15.6% (95% CI =3.1%–28.2%, and 7.9% (95% CI =3.7%–12.1%, respectively. Additionally, even free of the mutant allele, the maximum mutant prevalence (MMP in that population, with 95% CI, was 3.8%, 5.2%, 5.4%, and 13.8% for Border Collies, German Shepherds, Whippets, and Old English Sheepdogs, respectively. In this way, this information is important, not only for MDR1 genotype-based breeding programs and international exchange of breeding animals of predisposed breeds, but also for modification of drug therapy for breeds at risk.Keywords: P-glycoprotein, MDR1 mutation, ivermectin, dog, drug

  18. A series of N-terminal epitope tagged Hdh knock-in alleles expressing normal and mutant huntingtin: their application to understanding the effect of increasing the length of normal huntingtin’s polyglutamine stretch on CAG140 mouse model pathogenesis

    Directory of Open Access Journals (Sweden)

    Zheng Shuqiu

    2012-08-01

    Full Text Available Abstract Background Huntington’s disease (HD is an autosomal dominant neurodegenerative disease that is caused by the expansion of a polyglutamine (polyQ stretch within Huntingtin (htt, the protein product of the HD gene. Although studies in vitro have suggested that the mutant htt can act in a potentially dominant negative fashion by sequestering wild-type htt into insoluble protein aggregates, the role of the length of the normal htt polyQ stretch, and the adjacent proline-rich region (PRR in modulating HD mouse model pathogenesis is currently unknown. Results We describe the generation and characterization of a series of knock-in HD mouse models that express versions of the mouse HD gene (Hdh encoding N-terminal hemaglutinin (HA or 3xFlag epitope tagged full-length htt with different polyQ lengths (HA7Q-, 3xFlag7Q-, 3xFlag20Q-, and 3xFlag140Q-htt and substitution of the adjacent mouse PRR with the human PRR (3xFlag20Q- and 3xFlag140Q-htt. Using co-immunoprecipitation and immunohistochemistry analyses, we detect no significant interaction between soluble full-length normal 7Q- htt and mutant (140Q htt, but we do observe N-terminal fragments of epitope-tagged normal htt in mutant htt aggregates. When the sequences encoding normal mouse htt’s polyQ stretch and PRR are replaced with non-pathogenic human sequence in mice also expressing 140Q-htt, aggregation foci within the striatum, and the mean size of htt inclusions are increased, along with an increase in striatal lipofuscin and gliosis. Conclusion In mice, soluble full-length normal and mutant htt are predominantly monomeric. In heterozygous knock-in HD mouse models, substituting the normal mouse polyQ and PRR with normal human sequence can exacerbate some neuropathological phenotypes.

  19. Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an H19 loss-of-imprinting mutant.

    Science.gov (United States)

    Ginart, Paul; Kalish, Jennifer M; Jiang, Connie L; Yu, Alice C; Bartolomei, Marisa S; Raj, Arjun

    2016-03-01

    Imprinting is a classic mammalian epigenetic phenomenon that results in expression from a single parental allele. Imprinting defects can lead to inappropriate expression from the normally silenced allele, but it remains unclear whether every cell in a mutant organism follows the population average, which would have profound implications for human imprinting disorders. Here, we apply a new fluorescence in situ hybridization method that measures allele-specific expression in single cells to address this question in mutants exhibiting aberrant H19/Igf2 (insulin-like growth factor 2) imprinting. We show that mutant primary embryonic mouse fibroblasts are comprised of two subpopulations: one expressing both H19 alleles and another expressing only the maternal copy. Only in the latter cell population is Igf2 expression detected. Furthermore, the two subpopulations are stable in that cells do not interconvert between the two expression patterns. Combined small input methylation analysis and transcriptional imaging revealed that these two mutant subpopulations exhibit distinct methylation patterns at their imprinting control regions. Consistently, pharmacological inhibition of DNA methylation reduced the proportion of monoallelic cells. Importantly, we observed that the same two subpopulations are also present in vivo within murine cardiac tissue. Our results establish that imprinting disorders can display striking single-cell heterogeneity in their molecular phenotypes and suggest that such heterogeneity may underlie epigenetic mosaicism in human imprinting disorders.

  20. Mutant allele of rna14 in fission yeast affects pre-mRNA splicing

    Indian Academy of Sciences (India)

    SUDHANSHU YADAV; AMIT SONKAR; NAFEES AHAMAD; SHAKIL AHMED

    2016-06-01

    complex removes noncoding introns, while 3'end processing involves in cleavage and addition of poly(A) tails to the nascent transcript. Rna14 protein in budding yeast has been implicated in cleavage and polyadenylation of mRNA in the nucleus but their role in the pre-mRNA splicing has not been studied. Here, we report the isolation of a mutant allele of rna14 in fission yeast,Schizosaccharomyces pombe that exhibits reduction in protein level of Chk1 at the nonpermissive temperature, primarily due to the defects in posttranscriptional processing. Reverse transcriptase-polymerase chain reaction analysis reveals defective splicing of the chk1¹+transcript at the nonpermissive temperature. Apart from chk1¹+, the splicing of some other genes were also found to be defective at the nonpermissive temperature suggesting that Rna14 might be involved in pre-mRNA splicing. Subsequently, genetic interaction of Rna14 with prp1 and physical interactions with Prp28 suggest that the Rna14 might be part of a larger protein complex responsible for the pre-mRNA maturation.

  1. Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase.

    Science.gov (United States)

    Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe

    2014-02-01

    The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants.

  2. The Parvalbumin/Somatostatin Ratio Is Increased in Pten Mutant Mice and by Human PTEN ASD Alleles

    Directory of Open Access Journals (Sweden)

    Daniel Vogt

    2015-05-01

    Full Text Available Mutations in the phosphatase PTEN are strongly implicated in autism spectrum disorder (ASD. Here, we investigate the function of Pten in cortical GABAergic neurons using conditional mutagenesis in mice. Loss of Pten results in a preferential loss of SST+ interneurons, which increases the ratio of parvalbumin/somatostatin (PV/SST interneurons, ectopic PV+ projections in layer I, and inhibition onto glutamatergic cortical neurons. Pten mutant mice exhibit deficits in social behavior and changes in electroencephalogram (EEG power. Using medial ganglionic eminence (MGE transplantation, we test for cell-autonomous functional differences between human PTEN wild-type (WT and ASD alleles. The PTEN ASD alleles are hypomorphic in regulating cell size and the PV/SST ratio in comparison to WT PTEN. This MGE transplantation/complementation assay is efficient and is generally applicable for functional testing of ASD alleles in vivo.

  3. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    Directory of Open Access Journals (Sweden)

    Niels H Skotte

    Full Text Available Huntington disease (HD is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs. We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.

  4. Effects on murine behavior and lifespan of selectively decreasing expression of mutant huntingtin allele by supt4h knockdown.

    Directory of Open Access Journals (Sweden)

    Hui-Min Cheng

    2015-03-01

    Full Text Available Production of protein containing lengthy stretches of polyglutamine encoded by multiple repeats of the trinucleotide CAG is a hallmark of Huntington's disease (HD and of a variety of other inherited degenerative neurological and neuromuscular disorders. Earlier work has shown that interference with production of the transcription elongation protein SUPT4H results in decreased cellular capacity to transcribe mutant huntingtin gene (Htt alleles containing long CAG expansions, but has little effect on expression of genes containing short CAG stretches. zQ175 and R6/2 are genetically engineered mouse strains whose genomes contain human HTT alleles that include greatly expanded CAG repeats and which are used as animal models for HD. Here we show that reduction of SUPT4H expression in brains of zQ175 mice by intracerebroventricular bolus injection of antisense 2'-O-methoxyethyl oligonucleotides (ASOs directed against Supt4h, or in R6/2 mice by deletion of one copy of the Supt4h gene, results in a decrease in mRNA and protein encoded specifically by mutant Htt alleles. We further show that reduction of SUPT4H in mouse brains is associated with decreased HTT protein aggregation, and in R6/2 mice, also with prolonged lifespan and delay of the motor impairment that normally develops in these animals. Our findings support the view that targeting of SUPT4H function may be useful as a therapeutic countermeasure against HD.

  5. A Nearly Non-Functional Mutant Allele of the Storage Protein Locus Hor2 in Barley

    DEFF Research Database (Denmark)

    Doll, Hans

    1980-01-01

    The low content of the storage protein fraction hordein-2 in the high-lysine mutant Risø 56 is due to a mutation at or near the locus Hor2 coding for hordein-2 polypeptides. The mutant gene is recessive in its qualitative effect on the electrophoretic banding pattern of hordein-2, but co...

  6. Genomic structure and characterization of the Drosophila S3 ribosomal/DNA repair gene and mutant alleles.

    Science.gov (United States)

    Kelley, M R; Xu, Y; Wilson, D M; Deutsch, W A

    2000-03-01

    The Drosophila S3 protein is known to be associated with ribosomes, where it is thought to play a role in the initiation of protein translation. The S3 protein also contains a DNA repair activity, efficiently processing 8-oxoguanine residues in DNA via an N-glycosylase/apurinic-apyrimidinic (AP) lyase activity. The gene that encodes S3 has previously been localized to one of the Minute loci on chromosome 3 in Drosophila. This study focused on the genomic organization of S3 at M(3)95A, initial promoter characterization, and analysis of three mutant alleles at this locus. The S3 gene was found to be a single-copy gene 2 to 3 kb in length and containing a single intron. The upstream 1.6-kb region was analyzed for promoter activity, identifying a presumptive regulatory domain containing potential enhancer and suppressor elements. This finding is of interest, as the S3 gene is constitutively expressed throughout development and mRNA is most likely maternally inherited. Lastly, three Minute alleles from the same locus were sequenced and two alleles found to contain a 22-bp deletion in exon 2, resulting in a truncated S3 protein, although wildtype levels of S3 mRNA and protein were detected in the viable heterozygous Minute alleles, possibly reflecting dosage compensation.

  7. Role of swi7H4 mutant allele of DNA polymerase α in the DNA damage checkpoint response.

    Science.gov (United States)

    Khan, Saman; Ahmed, Shakil

    2015-01-01

    Besides being a mediator of initiation of DNA replication, DNA polymerase α plays a key role in chromosome maintenance. Swi7H4, a novel temperature sensitive mutant of DNA polymerase α was shown to be defective in transcriptional silencing at the mating type centromere and telomere loci. It is also required for the establishment of chromatin state that can recruit the components of the heterochromatin machinery at these regions. Recently the role of DNA polymerase α in the S-phase alkylation damage response in S. pombe has also been studied. Here we investigate whether defects generated by swi7H4, a mutant allele of DNA polymerase α can activate a checkpoint response. We show that swi7H4 exhibit conditional synthetic lethality with chk1 null mutant and the double mutant of swi7H4 with chk1 deletion aggravate the chromosome segregation defects. More importantly swi7H4 mutant cells delay the mitotic progression at non permissive temperature that is mediated by checkpoint protein kinase Chk1. In addition we show that, in the swi7H4 mutant background, cells accumulate DNA damage at non permissive temperature activating the checkpoint kinase protein Chk1. Further, we observed synthetic lethality between swi7H4 and a number of genes involved in DNA repair pathway at semi permissive temperature. We summarize that defects in swi7H4 mutant results in DNA damage that delay mitosis in a Chk1 dependent manner that also require the damage repair pathway for proper recovery.

  8. Role of swi7H4 mutant allele of DNA polymerase α in the DNA damage checkpoint response.

    Directory of Open Access Journals (Sweden)

    Saman Khan

    Full Text Available Besides being a mediator of initiation of DNA replication, DNA polymerase α plays a key role in chromosome maintenance. Swi7H4, a novel temperature sensitive mutant of DNA polymerase α was shown to be defective in transcriptional silencing at the mating type centromere and telomere loci. It is also required for the establishment of chromatin state that can recruit the components of the heterochromatin machinery at these regions. Recently the role of DNA polymerase α in the S-phase alkylation damage response in S. pombe has also been studied. Here we investigate whether defects generated by swi7H4, a mutant allele of DNA polymerase α can activate a checkpoint response. We show that swi7H4 exhibit conditional synthetic lethality with chk1 null mutant and the double mutant of swi7H4 with chk1 deletion aggravate the chromosome segregation defects. More importantly swi7H4 mutant cells delay the mitotic progression at non permissive temperature that is mediated by checkpoint protein kinase Chk1. In addition we show that, in the swi7H4 mutant background, cells accumulate DNA damage at non permissive temperature activating the checkpoint kinase protein Chk1. Further, we observed synthetic lethality between swi7H4 and a number of genes involved in DNA repair pathway at semi permissive temperature. We summarize that defects in swi7H4 mutant results in DNA damage that delay mitosis in a Chk1 dependent manner that also require the damage repair pathway for proper recovery.

  9. Double-mismatched siRNAs enhance selective gene silencing of a mutant ALS-causing allele

    Institute of Scientific and Technical Information of China (English)

    Chang-ming GENG; Hong-liu DING

    2008-01-01

    Aim: Our previous study demonstrated an siRNA-mediated, allele-specific silenc-ing of mutant genes that cause amyotrophic lateral sclerosis. To improve siRNA design for better therapeutic use of RNA interference, we systematically tested the base-pairing mismatch strategy in the design of asymmetric siRNA. Methods: A naturally symmetric siRNA that targets the human Cu Zn superoxide dismutase G85R mutant allele was modified by placing either 1 or 2 mismatches at the end of the siRNA from position 1 to 4 at each time. The target preference and silencing efficacy of modified siRNA were measured using a modified dual luciferase system. Results: The modification of single base-pairing mismatch successfully achieved the conversion of the siRNA that was originally favored to the antisense of the mutant allele to the one that was favored to the sense strand of the gene. Com-pared to the single-mismatched siRNA, those with double-mismatch at one end demonstrated an increased asymmetry, and thus, an enhanced specificity and efficacy of gene silencing. In addition, the siRNA with double-mismatch at both ends remained in symmetry. Conclusion: Our results suggest the effectiveness of converting a symmetric siRNA to an asymmetric one by introducing mismatches into its structure, and the superiority of double-mismatched siRNA to single-mismatched siRNA in producing selective gene silencing resulting from the dis-ruption of siRNA symmetry. The double-mismatch strategy is an improvement of the single-mismatch method and could be useful in the design of effective siRNAs for the treatment of diseases caused by dominant, gain-of-function gene mutations, such as ALS.

  10. A Novel Real-time Fluorescence Mutant-allele-specific Amplification Method for Rapid Single Nucleotide Polymorphism Analysis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Current methods for single nucleotide polymorphism (SNP) analysis are timeconsuming and complicated. We aimed at development of one-step real-time fluorescence mutant-allele-specific amplification (MASA) method for rapid SNP analysis. The method is a marriage of two technologies: MASA primers for target DNA and a double-stranded DNA-selective fluorescent dye, SYBR Green I. Genotypes are separated according to the different threshold cycles of the wild-type and mutant primers. K-ras oncogene was used as a target to validate the feasibility of the method. The experimental results showed that the different genotypes can be clearly discriminated by the assay. The real-time fluorescence MASA method will have an enormous potential for fast and reliable SNP analysis due to its simplicity and low cost.

  11. Allelic differences in Medicago truncatula NIP/LATD mutants correlate with their encoded proteins' transport activities in planta.

    Science.gov (United States)

    Salehin, Mohammad; Huang, Ying-Sheng; Bagchi, Rammyani; Sherrier, D Janine; Dickstein, Rebecca

    2013-02-01

    Medicago truncatula NIP/LATD gene, required for symbiotic nitrogen fixing nodule and root architecture development, encodes a member of the NRT1(PTR) family that demonstrates high-affinity nitrate transport in Xenopus laevis oocytes. Of three Mtnip/latd mutant proteins, one retains high-affinity nitrate transport in oocytes, while the other two are nitrate-transport defective. To further examine the mutant proteins' transport properties, the missense Mtnip/latd alleles were expressed in Arabidopsis thaliana chl1-5, resistant to the herbicide chlorate because of a deletion spanning the nitrate transporter AtNRT1.1(CHL1) gene. Mtnip-3 expression restored chlorate sensitivity in the Atchl1-5 mutant, similar to wild type MtNIP/LATD, while Mtnip-1 expression did not. The high-affinity nitrate transporter AtNRT2.1 gene was expressed in Mtnip-1 mutant roots; it did not complement, which could be caused by several factors. Together, these findings support the hypothesis that MtNIP/LATD may have another biochemical activity.

  12. The analysis of mutant alleles of different strength reveals multiple functions of topoisomerase 2 in regulation of Drosophila chromosome structure.

    Science.gov (United States)

    Mengoli, Valentina; Bucciarelli, Elisabetta; Lattao, Ramona; Piergentili, Roberto; Gatti, Maurizio; Bonaccorsi, Silvia

    2014-10-01

    Topoisomerase II is a major component of mitotic chromosomes but its role in the assembly and structural maintenance of chromosomes is rather controversial, as different chromosomal phenotypes have been observed in various organisms and in different studies on the same organism. In contrast to vertebrates that harbor two partially redundant Topo II isoforms, Drosophila and yeasts have a single Topo II enzyme. In addition, fly chromosomes, unlike those of yeast, are morphologically comparable to vertebrate chromosomes. Thus, Drosophila is a highly suitable system to address the role of Topo II in the assembly and structural maintenance of chromosomes. Here we show that modulation of Top2 function in living flies by means of mutant alleles of different strength and in vivo RNAi results in multiple cytological phenotypes. In weak Top2 mutants, meiotic chromosomes of males exhibit strong morphological abnormalities and dramatic segregation defects, while mitotic chromosomes of larval brain cells are not affected. In mutants of moderate strength, mitotic chromosome organization is normal, but anaphases display frequent chromatin bridges that result in chromosome breaks and rearrangements involving specific regions of the Y chromosome and 3L heterochromatin. Severe Top2 depletion resulted in many aneuploid and polyploid mitotic metaphases with poorly condensed heterochromatin and broken chromosomes. Finally, in the almost complete absence of Top2, mitosis in larval brains was virtually suppressed and in the rare mitotic figures observed chromosome morphology was disrupted. These results indicate that different residual levels of Top2 in mutant cells can result in different chromosomal phenotypes, and that the effect of a strong Top2 depletion can mask the effects of milder Top2 reductions. Thus, our results suggest that the previously observed discrepancies in the chromosomal phenotypes elicited by Topo II downregulation in vertebrates might depend on slight differences

  13. The analysis of mutant alleles of different strength reveals multiple functions of topoisomerase 2 in regulation of Drosophila chromosome structure.

    Directory of Open Access Journals (Sweden)

    Valentina Mengoli

    2014-10-01

    Full Text Available Topoisomerase II is a major component of mitotic chromosomes but its role in the assembly and structural maintenance of chromosomes is rather controversial, as different chromosomal phenotypes have been observed in various organisms and in different studies on the same organism. In contrast to vertebrates that harbor two partially redundant Topo II isoforms, Drosophila and yeasts have a single Topo II enzyme. In addition, fly chromosomes, unlike those of yeast, are morphologically comparable to vertebrate chromosomes. Thus, Drosophila is a highly suitable system to address the role of Topo II in the assembly and structural maintenance of chromosomes. Here we show that modulation of Top2 function in living flies by means of mutant alleles of different strength and in vivo RNAi results in multiple cytological phenotypes. In weak Top2 mutants, meiotic chromosomes of males exhibit strong morphological abnormalities and dramatic segregation defects, while mitotic chromosomes of larval brain cells are not affected. In mutants of moderate strength, mitotic chromosome organization is normal, but anaphases display frequent chromatin bridges that result in chromosome breaks and rearrangements involving specific regions of the Y chromosome and 3L heterochromatin. Severe Top2 depletion resulted in many aneuploid and polyploid mitotic metaphases with poorly condensed heterochromatin and broken chromosomes. Finally, in the almost complete absence of Top2, mitosis in larval brains was virtually suppressed and in the rare mitotic figures observed chromosome morphology was disrupted. These results indicate that different residual levels of Top2 in mutant cells can result in different chromosomal phenotypes, and that the effect of a strong Top2 depletion can mask the effects of milder Top2 reductions. Thus, our results suggest that the previously observed discrepancies in the chromosomal phenotypes elicited by Topo II downregulation in vertebrates might depend on

  14. Paternal or Maternal Uniparental Disomy of Chromosome 16 Resulting in Homozygosity of a Mutant Allele Causes Fanconi Anemia.

    Science.gov (United States)

    Donovan, Frank X; Kimble, Danielle C; Kim, Yonghwan; Lach, Francis P; Harper, Ursula; Kamat, Aparna; Jones, MaryPat; Sanborn, Erica M; Tryon, Rebecca; Wagner, John E; MacMillan, Margaret L; Ostrander, Elaine A; Auerbach, Arleen D; Smogorzewska, Agata; Chandrasekharappa, Settara C

    2016-05-01

    Fanconi anemia (FA) is a rare inherited disorder caused by pathogenic variants in one of 19 FANC genes. FA patients display congenital abnormalities, and develop bone marrow failure, and cancer susceptibility. We identified homozygous mutations in four FA patients and, in each case, only one parent carried the obligate mutant allele. FANCA and FANCP/SLX4 genes, both located on chromosome 16, were the affected recessive FA genes in three and one family respectively. Genotyping with short tandem repeat markers and SNP arrays revealed uniparental disomy (UPD) of the entire mutation-carrying chromosome 16 in all four patients. One FANCA patient had paternal UPD, whereas FA in the other three patients resulted from maternal UPD. These are the first reported cases of UPD as a cause of FA. UPD indicates a reduced risk of having another child with FA in the family and has implications in prenatal diagnosis.

  15. Characterization of a New Pink-Fruited Tomato Mutant Results in the Identification of a Null Allele of the SlMYB12 Transcription Factor.

    Science.gov (United States)

    Fernandez-Moreno, Josefina-Patricia; Tzfadia, Oren; Forment, Javier; Presa, Silvia; Rogachev, Ilana; Meir, Sagit; Orzaez, Diego; Aharoni, Aspah; Granell, Antonio

    2016-07-01

    The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation.

  16. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele.

    Science.gov (United States)

    Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-04-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia-cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia-cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons ('mirror neurons') in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia-cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in

  17. Real-time PCR genotyping assay for canine progressive rod-cone degeneration and mutant allele frequency in Toy Poodles, Chihuahuas and Miniature Dachshunds in Japan.

    Science.gov (United States)

    Kohyama, Moeko; Tada, Naomi; Mitsui, Hiroko; Tomioka, Hitomi; Tsutsui, Toshihiko; Yabuki, Akira; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Mizukami, Keijiro; Yamato, Osamu

    2016-03-01

    Canine progressive rod-cone degeneration (PRCD) is a middle- to late-onset, autosomal recessive, inherited retinal disorder caused by a substitution (c.5G>A) in the canine PRCD gene that has been identified in 29 or more purebred dogs. In the present study, a TaqMan probe-based real-time PCR assay was developed and evaluated for rapid genotyping and large-scale screening of the mutation. Furthermore, a genotyping survey was carried out in a population of the three most popular breeds in Japan (Toy Poodles, Chihuahuas and Miniature Dachshunds) to determine the current mutant allele frequency. The assay separated all the genotypes of canine PRCD rapidly, indicating its suitability for large-scale surveys. The results of the survey showed that the mutant allele frequency in Toy Poodles was high enough (approximately 0.09) to allow the establishment of measures for the prevention and control of this disorder in breeding kennels. The mutant allele was detected in Chihuahuas for the first time, but the frequency was lower (approximately 0.02) than that in Toy Poodles. The mutant allele was not detected in Miniature Dachshunds. This assay will allow the selective breeding of dogs from the two most popular breeds (Toy Poodle and Chihuahua) in Japan and effective prevention or control of the disorder.

  18. DNA topoisomerase 2 mutant allele mildly delays the mitotic progression and activates the checkpoint protein kinase Chk1 in fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Yadav, Sudhanshu; Verma, Sumit Kumar; Ahmed, Shakil

    2011-08-01

    DNA topoisomerases are specialized nuclear enzymes that perform topological modifications on double-stranded DNA (dsDNA) and hence are essential for DNA metabolism such as replication, transcription, recombination, condensation and segregation. In a genetic screen, we identified a temperature-sensitive mutant allele of topoisomerase 2 that exhibits conditional synthetic lethality with a chk1 knockout strain. The mutant allele of topoisomerase 2 is defective in chromosome segregation at a non-permissive temperature and there was increase in chromosome segregation defects in the double mutant of top2-10 and chk1 delete at a non-permissive temperature. More importantly, topoisomearse 2 mutant cells mildly delay the mitotic progression at non-permissive temperature that is mediated by checkpoint protein kinase Chk1. Additionally, top2-10 mutant cells also activate the Chk1 at a non-permissive temperature and this activation of Chk1 takes place at the time of mitosis. Interestingly, top2-10 mutant cells retain their viability at a non-permissive temperature if the cells are not allowed to enter into mitosis. Taking together our results, we speculate that in the top2-10 mutant, the segregation of entangled chromatids during mitosis could result in delaying the mitotic progression through the activation of Chk1 kinase.

  19. Quantification of the Mutant CALR Allelic Burden by Digital PCR: Application to Minimal Residual Disease Evaluation after Bone Marrow Transplantation.

    Science.gov (United States)

    Mansier, Olivier; Migeon, Marina; Saint-Lézer, Arnaud; James, Chloé; Verger, Emmanuelle; Robin, Marie; Socié, Gérard; Bidet, Audrey; Mahon, François-Xavier; Cassinat, Bruno; Lippert, Eric

    2016-01-01

    With the recent discovery of CALR mutations, >80% of patients with myeloproliferative neoplasms carry a phenotype-driving mutation. For JAK2 V617F, the most frequent mutation in myeloproliferative neoplasms, accurate determination of mutational loads is of interest at diagnosis, for phenotypic and prognostic purposes, and during follow-up for minimal residual disease assessment. We developed a digital PCR technique that allowed the accurate determination of CALR allelic burdens for the main mutations (types 1 and 2). Compared with the commonly used fluorescent PCR product analysis, digital PCR is more precise, reproducible, and accurate. Furthermore, this method reached a very high sensitivity. We detected at least 0.025% CALR mutants. It can thus be used for patient characterization at diagnosis and for minimal residual disease monitoring. When applied to patients with primary myelofibrosis who underwent hematopoietic stem cell transplant, the digital PCR detected low levels of minimal residual disease. After negativation of the mutational load in all patients, the disease reappeared at a low level in one patient, preceding hematologic relapse. In conclusion, digital PCR adapted to type 1 and 2 CALR mutations is an inexpensive, highly precise, and sensitive technique suitable for evaluation of myeloproliferative neoplasm patients during follow-up.

  20. Characterization of a new mutant allele of the Arabidopsis Flowering Locus D (FLD) gene that controls the flowering time by repressing FLC

    Institute of Scientific and Technical Information of China (English)

    CHEN Ruiqiang; ZHANG Suzhi; SUN Shulan; CHANG Jianhong; ZUO Jianru

    2005-01-01

    Flowering in higher plants is controlled by both the internal and environmental cues. In Arabidopsis, several major genetic loci have been defined as the key switches to control flowering. The Flowering Locus C (FLC) gene has been shown in the autonomous pathway to inhibit the vegetative-to-reproductive transition. FLC appears to be repressed by Flowering Locus D (FLD), which encodes a component of the histone deacetylase complex. Here we report the identification and characterization of a new mutant allele fld-5. Genetic analysis indicates that fld-5 (in the Wassilewskija background) is allelic to the previously characterized fld-3 and fld-4 (in the Colombia-0 background). Genetic and molecular analyses reveal that fld-5 carries a frame-shift mutation, resulting in a premature termination of the FLD open reading frame. The FLC expression is remarkably increased in fld-5, which presumably attributes to the extremely delayed flowering phenotype of the mutant.

  1. Control of grain protein contents through SEMIDWARF1 mutant alleles: sd1 increases the grain protein content in Dee-geo-woo-gen but not in Reimei.

    Science.gov (United States)

    Terao, Tomio; Hirose, Tatsuro

    2015-06-01

    A new possibility for genetic control of the protein content of rice grains was suggested by the allele differences of the SEMIDWARF1 (SD1) mutation. Two quantitative trait loci-qPROT1 and qPROT12-were found on chromosomes 1 and 12, respectively, using backcrossed inbred lines of Sasanishiki/Habataki//Sasanishiki///Sasanishiki. One of them, qPROT1, increased almost all grain proteins instead of only certain proteins in the recessive Habataki allele. Fine mapping of qPROT1 revealed that two gene candidates-Os01g0883800 and Os01g0883900-were included in this region. Os01g0883800 encoded Gibberellin 20 oxidase 2 as well as SD1, the dwarf gene used in the so-called 'Green Revolution'. Mutant analyses as well as sequencing analysis using the semi-dwarf mutant cultivars Dee-geo-woo-gen and Calrose 76 revealed that the sd1 mutant showed significantly higher grain protein contents than their corresponding wild-type cultivars, strongly suggesting that the high protein contents were caused by sd1 mutation. However, the sd1 mutant Reimei did not have high grain protein contents. It is possible to control the grain protein content and column length separately by selecting for sd1 alleles. From this finding, the genetic control of grain protein content, as well as the column length of rice cultivars, might be possible. This ability might be useful to improve rice nutrition, particularly in areas where the introduction of semi-dwarf cultivars is not advanced.

  2. Identification of a mutant allele of the androgen receptor gene in a family with androgen insensitivity syndrome: detection of carriers and prenatal diagnosis.

    Science.gov (United States)

    Fogu, G; Bertini, V; Dessole, S; Bandiera, P; Campus, P M; Capobianco, G; Sanna, R; Soro, G; Montella, A

    2004-05-01

    We report the results of a molecular study of a large family segregating the complete form of the Androgen Insensitivity Syndrome (CAIS) in several family members from three generations. We identified the mutant allele by polymerase chain reaction (PCR) amplification of the short tandem repeat (CAG)n, highly polymorphic in the population, present in the first exon of the androgen receptor (AR) gene. In this family four different alleles were detected and one of these showed a perfect segregation with the disease. This study enabled us to identify the heterozygous females in this family. We think that this simple, indirect test, is also suitable for prenatal diagnosis of Morris' syndrome when the mother is heterozygous for the size of the short tandem repeat and one affected subject in the family may be studied.

  3. Real-time PCR genotyping assay for GM2 gangliosidosis variant 0 in toy poodles and the mutant allele frequency in Japan.

    Science.gov (United States)

    Rahman, Mohammad Mahbubur; Yabuki, Akira; Kohyama, Moeko; Mitani, Sawane; Mizukami, Keijiro; Uddin, Mohammad Mejbah; Chang, Hye-Sook; Kushida, Kazuya; Kishimoto, Miori; Yamabe, Remi; Yamato, Osamu

    2014-03-01

    GM2 gangliosidosis variant 0 (Sandhoff disease, SD) is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations of the HEXB gene. In canine SD, a pathogenic mutation (c.283delG) of the canine HEXB gene has been identified in toy poodles. In the present study, a TaqMan probe-based real-time PCR genotyping assay was developed and evaluated for rapid and large-scale genotyping and screening for this mutation. Furthermore, a genotyping survey was carried out in a population of toy poodles in Japan to determine the current mutant allele frequency. The real-time PCR assay clearly showed all genotypes of canine SD. The assay was suitable for large-scale survey as well as diagnosis, because of its high throughput and rapidity. The genotyping survey demonstrated a carrier frequency of 0.2%, suggesting that the current mutant allele frequency is low in Japan. However, there may be population stratification in different places, because of the founder effect by some carriers. Therefore, this new assay will be useful for the prevention and control of SD in toy poodles.

  4. Teste de alelismo entre os mutantes de amadurecimento alcobaça e non-ripening em tomateiro Allelism test between the alcobaça and non-ripening mutants in tomato plants

    Directory of Open Access Journals (Sweden)

    Flavio Rodrigo Gandolfi Benites

    2010-12-01

    Full Text Available Desde o início da década de 1980, são relatadas na literatura divergências quanto às relações de alelismo ou não entre os mutantes de amadurecimento de frutos de tomateiro denominados alc (= alcobaça e nor (=non-ripening. Para dirimir tais dúvidas, foi realizado um teste de alelismo entre os genes considerados. Foram avaliadas 364 plantas F2 provenientes do cruzamento entre as linhagens de tomateiro TOM-559 (alc/alc e TOM-613 (nor/nor, além de vinte plantas de cada uma das linhagens TOM-559 (alc/alc, TOM-613 (nor/nor, de cada um dos híbridos F1 [(TOM-559 x TOM-613, alc+/alc nor+/nor], F1 [(Floradade x TOM-559, alc+/alc nor+/nor+] e F1 [(Floradade x TOM-613, alc+/alc+nor+/nor], bem como da linhagem de genótipo normal Floradade (alc+/alc+nor+/nor+ rin+/rin+. TOM-559 e TOM-613 são linhagens isogênicas à cv. Floradade, da qual diferem apenas quanto à presença dos genes alc e nor, respectivamente. Frutos de Floradade colhidos no estádio breaker apresentam coloração vermelha normal quando maduros (fenótipo normal, enquanto frutos de TOM-559 ou de TOM-613 permanecem amarelados ou amarelo-alaranjados (fenótipo mutante. De cada planta, foram colhidos quatro frutos no estádio breaker de maturação, que foram avaliadas quanto ao fenótipo (normal ou mutante quando maduros. Os resultados dos testes de alelismo indicam que a hipótese mais provável é a de que alc e nor sejam alélicos. Dessa maneira, alc é considerado um terceiro alelo no loco nor, e sugere-se a substituição de seu símbolo para norA.Since the early 1980's there are conflicting reports on the possible allelic relations between the tomato ripening mutants alc (=alcobaça and nor (=non-ripening. In order to end these controversies, a test of allelism between the genes alc and nor was performed. A total of 364 plants of the F2 population between the tomato lines TOM-559 (alc/alc and TOM-613 (nor/nor were screened, along with 20 plants each of lines TOM-559 (alc

  5. Neonatal screening for hereditary fructose intolerance: frequency of the most common mutant aldolase B allele (A149P) in the British population.

    Science.gov (United States)

    James, C L; Rellos, P; Ali, M; Heeley, A F; Cox, T M

    1996-10-01

    Hereditary fructose intolerance (HFI) causes severe and sometimes fatal metabolic disturbances in infants and children but responds to dietary treatment. To determine the practicability of screening newborn infants for HFI, we have investigated the frequency of the most common and widespread mutant allele of aldolase B, A149P, in the neonatal population. The polymerase chain reaction was used to amplify aldolase B exon 5 genomic sequences in DNA present in dried blood specimens preserved on Guthrie cards. The A149P mutation was identified by discriminatory hybridisation to allele specific oligonucleotides and confirmed independently by digestion with the restriction endonuclease BsaHI. Twenty-seven A149P heterozygotes were identified by the molecular analysis of aldolase B genes in blood samples obtained from a random cohort of 2050 subjects born in 1994 and 1995, 1.32 +/- 0.49% (95% confidence level). Although no A149P homozygotes were identified, the data allow the frequency of 1 in 23,000 homozygotes for this allele to be predicted. Our findings have implications for establishing an interventional mass screening programme to identify newborn infants with HFI in the UK.

  6. Declining trend of Plasmodium falciparum dihydrofolate reductase (dhfr and dihydropteroate synthase (dhps mutant alleles after the withdrawal of Sulfadoxine-Pyrimethamine in North Western Ethiopia.

    Directory of Open Access Journals (Sweden)

    Sofonias K Tessema

    Full Text Available Antimalarial drug resistance is one of the major challenges in global efforts of malaria control and elimination. In 1998, chloroquine was abandoned and replaced with sulfadoxine/pyrimethamine, which in turn was replaced with artemether/lumefantrine for the treatment of uncomplicated falciparum malaria in 2004. Sulfadoxine/pyrimethamine resistance is associated with mutations in dihydrofolate reductase (Pfdhfr and dihydropteroate synthase (Pfdhps genes. The prevalence of mutation in Pfdhfr and Pfdhps genes were evaluated and compared for a total of 159 isolates collected in two different time points, 2005 and 2007/08, from Pawe hospital, in North Western Ethiopia. The frequency of triple Pfdhfr mutation decreased significantly from 50.8% (32/63 to 15.9% (10/63 (P<0.001, while Pfdhps double mutation remained high and changed only marginally from 69.2% (45/65 to 55.4% (40/65 (P = 0.08. The combined Pfdhfr/Pfdhps quintuple mutation, which is strongly associated with sulfadoxine/pyrimethamine resistance, was significantly decreased from 40.7% (24/59 to 13.6% (8/59 (P<0.0001. On the whole, significant decline in mutant alleles and re-emergence of wild type alleles were observed. The change in the frequency is explained by the reduction of residual drug-resistant parasites caused by the strong drug pressure imposed when sulfadoxine/pyrimethamine was the first-line drug, followed by lower fitness of these resistant parasites in the absence of drug pressure. Despite the decrease in the frequency of mutant alleles, higher percentages of mutation remain prevalent in the study area in 2007/08 in both Pfdhfr and Pfdhps genes. Therefore, further multi-centered studies in different parts of the country will be required to assess the re-emergence of sulfadoxine/pyrimethamine sensitive parasites and to monitor and prevent the establishment of multi drug resistant parasites in this region.

  7. Restoration of self-sustained circadian rhythmicity by the mutant Clock allele in mice in constant illumination

    NARCIS (Netherlands)

    Spoelstra, K; Oklejewicz, M; Daan, S

    2002-01-01

    Mice mutant for the Clock gene display abnormal circadian behavior characterized by long circadian periods and a tendency to become rapidly arrhythmic in constant darkness (DID). To investigate whether this result is contingent on the absence of light, the authors studied the circadian behavior of h

  8. The Ctf18RFC clamp loader is essential for telomere stability in telomerase-negative and mre11 mutant alleles.

    Directory of Open Access Journals (Sweden)

    Honghai Gao

    Full Text Available The function of the replication clamp loaders in the semi-conservative telomere replication and their relationship to telomerase- and recombination mechanisms of telomere addition remains ambiguous. We have investigated the variant clamp loader Ctf18 RFC (Replication Factor C. To understand the role of Ctf18 at the telomere, we first investigated genetic interactions after loss of Ctf18 and TLC1 (the yeast telomerase RNA. We find that the tlc1Δ ctf18Δ double mutant confers a rapid >1000-fold decrease in viability. The rate of loss was similar to the kinetics of cell death in rad52Δ tlc1Δ cells. However, the Ctf18 pathway is distinct from Rad52, required for the repair of DSBs, as demonstrated by the synthetic lethality of rad52▵ tlc1Δ ctf18Δ triple mutants. These data suggest that each mutant elicits non-redundant defects acting on the same substrate. Second, interactions of the yeast hyper-recombinational mutant, mre11A470T, with ctf18▵ confer a synergistic cold sensitivity. The phenotype of these double mutants ultimately results in telomere loss and the generation of recombinational survivors. We observed a similar synergism between single mutants that led to hypersensitivity to the DNA alkylating agent, methane methyl sulphonate (MMS, the replication fork inhibitor hydroxyurea (HU, and to a failure to separate telomeres of sister chromatids. Hence, ctf18Δ and mre11A470T act in different pathways on telomere substrates for multiple phenotypes. The mre11A470T cells also displayed a DNA damage response (DDR at 15°C but not at 30°C while ctf18Δ mutants conferred a constitutive DDR activity. Both the 15°C DDR pattern and growth rate were reversible at 30°C and displayed telomerase activity in vivo. We hypothesize that Ctf18 confers protection against stalling and/or breaks at the replication fork in cells that either lack, or are compromised for, telomerase activity. This Ctf18-based function is likely to contribute another level

  9. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression.

    Science.gov (United States)

    Vidal, O; Longin, R; Prigent-Combaret, C; Dorel, C; Hooreman, M; Lejeune, P

    1998-05-01

    Classical laboratory strains of Escherichia coli do not spontaneously colonize inert surfaces. However, when maintained in continuous culture for evolution studies or industrial processes, these strains usually generate adherent mutants which form a thick biofilm, visible with the naked eye, on the wall of the culture apparatus. Such a mutant was isolated to identify the genes and morphological structures involved in biofilm formation in the very well characterized E. coli K-12 context. This mutant acquired the ability to colonize hydrophilic (glass) and hydrophobic (polystyrene) surfaces and to form aggregation clumps. A single point mutation, resulting in the replacement of a leucine by an arginine residue at position 43 in the regulatory protein OmpR, was responsible for this phenotype. Observations by electron microscopy revealed the presence at the surfaces of the mutant bacteria of fibrillar structures looking like the particular fimbriae described by the Olsén group and designated curli (A. Olsén, A. Jonsson, and S. Normark, Nature 338:652-655, 1989). The production of curli (visualized by Congo red binding) and the expression of the csgA gene encoding curlin synthesis (monitored by coupling a reporter gene to its promoter) were significantly increased in the presence of the ompR allele described in this work. Transduction of knockout mutations in either csgA or ompR caused the loss of the adherence properties of several biofilm-forming E. coli strains, including all those which were isolated in this work from the wall of a continuous culture apparatus and two clinical strains isolated from patients with catheter-related infections. These results indicate that curli are morphological structures of major importance for inert surface colonization and biofilm formation and demonstrate that their synthesis is under the control of the EnvZ-OmpR two-component regulatory system.

  10. Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan

    Directory of Open Access Journals (Sweden)

    Shotland Lawrence I

    2004-09-01

    Full Text Available Abstract Background Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10. TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3. Methods We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3. Results We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues. Conclusion Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449 of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein.

  11. Enhanced specificity of TPMT*2 genotyping using unidirectional wild-type and mutant allele-specific scorpion primers in a single tube.

    Science.gov (United States)

    Chen, Dong; Yang, Zhao; Xia, Han; Huang, Jun-Fu; Zhang, Yang; Jiang, Tian-Nun; Wang, Gui-Yu; Chuai, Zheng-Ran; Fu, Wei-Ling; Huang, Qing

    2014-01-01

    Genotyping of thiopurine S-methyltransferase (TPMT) is recommended for predicting the adverse drug response of thiopurines. In the current study, a novel version of allele-specific PCR (AS-PCR), termed competitive real-time fluorescent AS-PCR (CRAS-PCR) was developed to analyze the TPMT*2 genotype in ethnic Chinese. This technique simultaneously uses wild-type and mutant allele-specific scorpion primers in a single reaction. To determine the optimal conditions for both traditional AS-PCR and CRAS-PCR, we used the Taguchi method, an engineering optimization process that balances the concentrations of all components using an orthogonal array rather than a factorial array. Instead of running up to 264 experiments with the conventional factorial method, the Taguchi method achieved the same optimization using only 16 experiments. The optimized CRAS-PCR system completely avoided non-specific amplification occurring in traditional AS-PCR and could be performed at much more relaxed reaction conditions at 1% sensitivity, similar to traditional AS-PCR. TPMT*2 genotyping of 240 clinical samples was consistent with published data. In conclusion, CRAS-PCR is a novel and robust genotyping method, and the Taguchi method is an effective tool for the optimization of molecular analysis techniques.

  12. Novel rapid genotyping assays for neuronal ceroid lipofuscinosis in Border Collie dogs and high frequency of the mutant allele in Japan.

    Science.gov (United States)

    Mizukami, Keijiro; Chang, Hye-Sook; Yabuki, Akira; Kawamichi, Takuji; Kawahara, Natsuko; Hayashi, Daisuke; Hossain, Mohammad A; Rahman, Mohammad M; Uddin, Mohammad M; Yamato, Osamu

    2011-11-01

    Neuronal ceroid lipofuscinosis (NCL) constitutes a group of recessively inherited lysosomal storage diseases that primarily affect neuronal cells. Such diseases share certain clinical and pathologic features in human beings and animals. Neuronal ceroid lipofuscinosis in Border Collie dogs was first detected in Australia in the 1980s, and the pathogenic mutation was shown to be a nonsense mutation (c.619C>T) in exon 4 in canine CLN5 gene. In the present study, novel rapid genotyping assays including polymerase chain reaction (PCR)-restriction fragment length polymorphism, PCR primer-induced restriction analysis, mutagenically separated PCR, and real-time PCR with TaqMan minor groove binder probes, were developed. The utility of microchip electrophoresis was also evaluated. Furthermore, a genotyping survey was carried out in a population of Border Collies in Japan using these assays to determine the current allele frequency in Japan, providing information to control and prevent this disease in the next stage. All assays developed in the current study are available to discriminate these genotypes, and microchip electrophoresis showed a timesaving advantage over agarose gel electrophoresis. Of all assays, real-time PCR was the most suitable for large-scale examination because of its high throughput. The genotyping survey demonstrated that the carrier frequency was 8.1%. This finding suggested that the mutant allele frequency of NCL in Border Collies is high enough in Japan that measures to control and prevent the disease would be warranted. The genotyping assays developed in the present study could contribute to the prevention of NCL in Border Collies.

  13. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    Directory of Open Access Journals (Sweden)

    Sabine M Hölter

    Full Text Available Huntington's disease (HD is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  14. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    Science.gov (United States)

    Hölter, Sabine M; Stromberg, Mary; Kovalenko, Marina; Garrett, Lillian; Glasl, Lisa; Lopez, Edith; Guide, Jolene; Götz, Alexander; Hans, Wolfgang; Becker, Lore; Rathkolb, Birgit; Rozman, Jan; Schrewed, Anja; Klingenspor, Martin; Klopstock, Thomas; Schulz, Holger; Wolf, Eckhard; Wursta, Wolfgang; Gillis, Tammy; Wakimoto, Hiroko; Seidman, Jonathan; MacDonald, Marcy E; Cotman, Susan; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Lee, Jong-Min; Wheeler, Vanessa C

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  15. HMG CoA Lyase (HL): Mutation detection and development of a bacterial expression system for screening the activity of mutant alleles from HL-deficient patients

    Energy Technology Data Exchange (ETDEWEB)

    Robert, M.F.; Ashmarina, L.; Poitier, E. [Hospital Ste-Justine, Montreal (Canada)] [and others

    1994-09-01

    HL catalyzes the last step of ketogenesis, and autosomal recessive HL deficiency in humans can cause episodes of hypoglycemia and coma. Structurally, HL is a dimer of identical 325-residue peptides which requires a reducing environment to maintain activity. We cloned the human and mouse HL cDNAs and genes and have performed mutation analysis on cells from 30 HL-deficient probands. Using SSCP and also genomic Southern analysis we have identified putative mutations on 53/60 alleles of these patients (88%). To date, we have found 20 mutations: 3 large deletions, 4 termination mutations, 5 frameshift mutations, and 8 missense mutations which we suspect to be pathogenic based on evolutionary conservation and/or our previous studies on purified HL protein. We have also identified 3 polymorphic variants. In order to directly test the activity of the missense mutations, we established a pGEX-based system, using a glutathione S transferase (GST)-HL fusion protein. Expressed wild-type GST-HL was insoluble. We previously located a reactive Cys at the C-terminus of chicken HL which is conserved in human HL. We produced a mutant HL peptide, C323S, which replaced Cys323 with Ser. Purified C323S is soluble and has similar kinetics to wild-type HL. C323S-containing GST-HL is soluble and enzymatically active. We are cloning and expressing the 8 missense mutations.

  16. Structure and function of starch and resistant starch from corn with different doses of mutant amylose-extender and floury-1 alleles.

    Science.gov (United States)

    Yao, Ni; Paez, Alix V; White, Pamela J

    2009-03-11

    Four corn types with different doses of mutant amylose-extender (ae) and floury-1 (fl1) alleles, in the endosperm, including no. 1, aeaeae; no. 2, fl1fl1fl1; no. 3, aeaefl1; and no. 4, fl1fl1ae, were developed for use in making Hispanic food products with high resistant starch (RS) content. The RS percentages in the native starch (NS) of 1-4 were 55.2, 1.1, 5.7, and 1.1%, respectively. All NS were evaluated for pasting properties with a rapid viscoanalyzer (RVA) and for thermal properties with a differential scanning calorimeter (DSC). NS 1 had a low peak viscosity (PV) caused by incomplete gelatinization, whereas NS 3 had the greatest PV and breakdown of all four starch types. On the DSC, NS 2 had the lowest onset temperature and greatest enthalpy. NS 1 and 3 had similar onset and peak temperatures, both higher than those of NS 2 and 4. The gel strength of NS heated with a RVA was evaluated by using a texture analyzer immediately after RVA heating (fresh, RVA-F) and after the gel had been stored at 4 degrees C for 10 days (retrograded, RVA-R). NS 1 gel was watery and had the lowest strength (30 g) among starch gel types. NS 3 gel, although exhibiting syneresis, had greater gel strength than NS 2 and 4. The structures of the NS, the RS isolated from the NS (RS-NS), the RS isolated from RVA-F (RS-RVA-F), and the RS isolated from RVA-R (RS-RVA-R) were evaluated by using size exclusion chromatography. NS 1 had a greater percentage of amylose (AM) (58.3%) than the other NS (20.4-26.8%). The RS from all NS types (RS-NS) had a lower percentage of amylopectin (AP) and a greater percentage of low molecular weight (MW) AM than was present in the original NS materials. The RS-RVA-R from all starches had no AP or high MW AM. The percentages of longer chain lengths (DP 35-60) of NS were greater in 1 and 3 than in 2 and 4, and the percentages of smaller chain lengths (DP 10-20) were greater in 2 and 4 than in 1 and 3. In general, NS 3 seemed to have inherited some pasting

  17. Increased Prevalence of Mutant Allele Pfdhps 437G and Pfdhfr Triple Mutation in Plasmodium falciparum Isolates from a Rural Area of Gabon, Three Years after the Change of Malaria Treatment Policy

    Directory of Open Access Journals (Sweden)

    Jacques-Mari Ndong Ngomo

    2016-01-01

    Full Text Available In Gabon, sulfadoxine-pyrimethamine (SP is recommended for intermittent preventive treatment during pregnancy (IPTp-SP and for uncomplicated malaria treatment through ACTs drug. P. falciparum strains resistant to SP are frequent in areas where this drug is highly used and is associated with the occurrence of mutations on Plasmodium falciparum dihydrofolate reductase (Pfdhfr and dihydropteroate synthetase (Pfdhps genes. The aim of the study was to compare the proportion of mutations on Pfdhfr and Pfdhps genes in isolates collected at Oyem in northern Gabon, in 2005 at the time of IPTp-SP introduction and three years later. Point mutations were analyzed by nested PCR-RFLP method. Among 91 isolates, more than 90% carried Pfdhfr 108N and Pfdhfr 59R alleles. Frequencies of Pfdhfr 51I (98% and Pfdhps 437G (67.7% mutant alleles were higher in 2008. Mutations at codons 164, 540, and 581 were not detected. The proportion of the triple Pfdhfr mutation and quadruple mutation including A437G was high: 91.9% in 2008 and 64.8% in 2008, respectively. The present study highlights an elevated frequency of Pfdhfr and Pfdhps mutant alleles, although quintuple mutations were not found in north Gabon. These data suggest the need of a continuous monitoring of SP resistance in Gabon.

  18. [Mutant alleles associated to chloroquine and sulfadoxine-pyrimethanime resistance in Plasmodium falciparum of the Ecuador-Peru and Ecuador-Colombia borders].

    Science.gov (United States)

    Arróspide, Nancy; Hijar-Guerra, Gisely; de Mora, Doménica; Diaz-Cortéz, César Eduardo; Veloz-Perez, Raúl; Gutierrez, Sonia; Cabezas-Sánchez, César

    2014-04-01

    The frequency of mutations in pfCRT and DHFR/DHPS genes of Plasmodium falciparum associated with resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated in 83 strains from the districts of Esmeralda and Machala, located on the borders of Ecuador-Peru and Ecuador-Colombia in 2002. Polymerase chain reaction (PCR), conventional and its variants, was used. Mutations in the pfCRT gene were found in more than 90% of the samples from Esmeralda and Machala. For the DHFR gene, 90% of the strains were mutant samples from Esmeralda, 3 were double mutations and 1 was a triple mutation. In Machala, 25% were simple mutant forms and 75% mixed mutant forms (wild forms/mutant). In conclusion, resistance to chloroquine has been fixed in strains carrying K76T pfCRT mutation, whereas genetic imprinting for resistance to pyrimethamine is evolving, particularly in the district of Esmeralda.

  19. S-Adenosyl-L-methionine: macrocin O-methyltransferase activities in a series of Streptomyces fradiae mutants that produce different levels of the macrolide antibiotic tylosin.

    OpenAIRE

    Seno, E T; Baltz, R H

    1982-01-01

    A series of mutants of Streptomyces fradiae selected for increased production of the macrolide antibiotic tylosin was analyzed for levels of expression of macrocin O-methyltransferase, the enzyme which catalyzes the final step in the biosynthesis of tylosin. Increased tylosin production was accompanied by increased macrocin O-methyltransferase in some of the mutants. Increased expression of macrocin O-methyltransferase was due to more rapid early biosynthesis of the enzyme, to reduced decay o...

  20. Analysis of the role of flagella in the heat-labile Lior serotyping scheme of thermophilic Campylobacters by mutant allele exchange.

    Science.gov (United States)

    Alm, R A; Guerry, P; Power, M E; Lior, H; Trust, T J

    1991-11-01

    Flagellin mutations originally constructed in Campylobacter coli VC167 (serotype LIO8) by a gene replacement mutagenesis technique (P. Guerry, S. M. Logan, S. Thornton, and T. J. Trust, J. Bacteriol. 172:1853-1860, 1990) were moved from the original host into Campylobacter strains of a number of other Lior serogroups by a natural transformation procedure. This is the first report of the use of this transformation method to transfer a mutated locus among Campylobacter strains. Flagellin mutants were constructed in a number of heat-labile LIO serotypes and were serotyped and analyzed by immunoelectron microscopy with LIO typing antisera. In six cases, isogenic nonflagellated mutants were able to be serotyped in the same serogroup as their parent, and immunogold electron microscopy confirmed that antibodies in the typing antisera bound to components on the surface of both parent and mutant cells. However, in only one case, a strain belonging to serogroup LIO4, was a nonflagellated mutant untypeable, and immunogold electron microscopy showed that antibodies bound to the flagella filament of the parent but not to the cell surface. Furthermore, after introduction and expression as a flagellar filament of a LIO8 flagellin gene in this mutant, the strain could not be serotyped. These results indicate that a nonflagellar antigen is often the serodeterminant in the heat-labile Lior serotyping scheme.

  1. Allele-specific suppression of the temperature sensitivity of fitA/fitB mutants of Escherichia coli by a new mutation (fitC4): isolation, characterization and its implications in transcription control

    Indian Academy of Sciences (India)

    S Vidya; B Praveen Kamalakar; M Hussain Munavar; L Sathish Kumar; R Jayaraman

    2006-03-01

    The temperature sensitive transcription defective mutant of Escherichia coli originally called fitA76 has been shown to harbour two missense mutations namely pheS5 and fit95. In order to obtain a suppressor of fitA76, possibly mapping in rpoD locus, a Ts+ derivative (JV4) was isolated from a fitA76 mutant. It was found that JV4 neither harbours the lesions present in the original fitA76 nor a suppressor that maps in or near rpoD. We show that JV4 harbours a modified form of fitA76 (designated fitA76*) together with its suppressor. The results presented here indicate that the fit95 lesion is intact in the fitA76* mutant and the modification should be at the position of pheS5. Based on the cotransduction of the suppressor mutation and/or its wild type allele with pps, aroD and zdj-3124::Tn10 kan we have mapped its location to 39⋅01 min on the E. coli chromosome. We tentatively designate the locus defined by this new extragenic suppressor as fitC and the suppressor allele as fitC4. While fitC4 could suppress the Ts phenotype of fitA76* present in JV4, it fails to suppress the Ts phenotype of the original fitA76 mutant (harbouring pheS5 and fit95). Also fitC4 could suppress the Ts phenotype of a strain harbouring only pheS5. Interestingly, the fitC4 Ts phenotype could also be suppressed by fit95. The pattern of decay of pulse labelled RNA in the strains harbouring fitC4 and the fitA76* resembles that of the original fitA76 mutant implying a transcription defect similar to that of fitA76 in both these mutants. The implications of these findings with special reference to transcription control by Fit factors in vivo are discussed.

  2. An allelic series of mice reveals a role for RERE in the development of multiple organs affected in chromosome 1p36 deletions.

    Directory of Open Access Journals (Sweden)

    Bum Jun Kim

    Full Text Available Individuals with terminal and interstitial deletions of chromosome 1p36 have a spectrum of defects that includes eye anomalies, postnatal growth deficiency, structural brain anomalies, seizures, cognitive impairment, delayed motor development, behavior problems, hearing loss, cardiovascular malformations, cardiomyopathy, and renal anomalies. The proximal 1p36 genes that contribute to these defects have not been clearly delineated. The arginine-glutamic acid dipeptide (RE repeats gene (RERE is located in this region and encodes a nuclear receptor coregulator that plays a critical role in embryonic development as a positive regulator of retinoic acid signaling. Rere-null mice die of cardiac failure between E9.5 and E11.5. This limits their usefulness in studying the role of RERE in the latter stages of development and into adulthood. To overcome this limitation, we created an allelic series of RERE-deficient mice using an Rere-null allele, om, and a novel hypomorphic Rere allele, eyes3 (c.578T>C, p.Val193Ala, which we identified in an N-ethyl-N-nitrosourea (ENU-based screen for autosomal recessive phenotypes. Analyses of these mice revealed microphthalmia, postnatal growth deficiency, brain hypoplasia, decreased numbers of neuronal nuclear antigen (NeuN-positive hippocampal neurons, hearing loss, cardiovascular malformations-aortic arch anomalies, double outlet right ventricle, and transposition of the great arteries, and perimembranous ventricular septal defects-spontaneous development of cardiac fibrosis and renal agenesis. These findings suggest that RERE plays a critical role in the development and function of multiple organs including the eye, brain, inner ear, heart and kidney. It follows that haploinsufficiency of RERE may contribute-alone or in conjunction with other genetic, environmental, or stochastic factors-to the development of many of the phenotypes seen in individuals with terminal and interstitial deletions that include the

  3. The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals.

    Science.gov (United States)

    Dievart, Anne; Perin, Christophe; Hirsch, Judith; Bettembourg, Mathilde; Lanau, Nadège; Artus, Florence; Bureau, Charlotte; Noel, Nicolas; Droc, Gaétan; Peyramard, Matthieu; Pereira, Serge; Courtois, Brigitte; Morel, Jean-Benoit; Guiderdoni, Emmanuel

    2016-01-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses that reduce their fitness and performance. At the molecular level, the perception of extracellular stimuli and the subsequent activation of defense responses require a complex interplay of signaling cascades, in which protein phosphorylation plays a central role. Several studies have shown that some members of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) family are involved in stress and developmental pathways. We report here a systematic analysis of the role of the members of this gene family by mutant phenotyping in the monocotyledon model plant rice, Oryza sativa. We have then targeted 176 of the ∼320 LRR-RLK genes (55.7%) and genotyped 288 mutant lines. Position of the insertion was confirmed in 128 lines corresponding to 100 LRR-RLK genes (31.6% of the entire family). All mutant lines harboring homozygous insertions have been screened for phenotypes under normal conditions and under various abiotic stresses. Mutant plants have been observed at several stages of growth, from seedlings in Petri dishes to flowering and grain filling under greenhouse conditions. Our results show that 37 of the LRR-RLK rice genes are potential targets for improvement especially in the generation of abiotic stress tolerant cereals.

  4. Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele.

    OpenAIRE

    Labes, M; Rastogi, V; Watson, R.; Finan, T M

    1993-01-01

    In the N2-fixing alfalfa symbiont Rhizobium meliloti, the three sigma 54 (NTRA)-dependent positively acting regulatory proteins NIFA, NTRC, and DCTD are required for activation of promoters involved in N2 fixation (pnifHDKE and pfixABCX), nitrogen assimilation (pglnII), and C4-dicarboxylate transport (pdctA), respectively. Here, we describe an allele of ntrC which results in the constitutive activation of the above NTRC-, NIFA-, and DCTD-regulated promoters. The expression and activation of w...

  5. A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots

    Science.gov (United States)

    Hirsch, Judith; Estavillo, Gonzalo M.; Javot, Hélène; Chiarenza, Serge; Mallory, Allison C.; Maizel, Alexis; Declerck, Marie; Pogson, Barry J.; Vaucheret, Hervé; Crespi, Martin; Desnos, Thierry; Thibaud, Marie-Christine; Nussaume, Laurent; Marin, Elena

    2011-01-01

    Background Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. Principal Findings A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. Conclusions/Significance Our results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi

  6. A novel fry1 allele reveals the existence of a mutant phenotype unrelated to 5'->3' exoribonuclease (XRN activities in Arabidopsis thaliana roots.

    Directory of Open Access Journals (Sweden)

    Judith Hirsch

    Full Text Available BACKGROUND: Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3',(2',5'-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. PRINCIPAL FINDINGS: A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4. Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3'-polyadenosine 5'-phosphate (PAP into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the 3',(2',5'-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of

  7. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin

    DEFF Research Database (Denmark)

    Carroll, Jeffrey B; Warby, Simon C; Southwell, Amber L;

    2011-01-01

    Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion in the huntingtin gene (HTT) that results in a toxic gain of function in the mutant huntingtin protein (mHTT). Reducing the expression of mHTT is therefore an attractive therapy for HD. However, wild......-type HTT protein is essential for development and has critical roles in maintaining neuronal health. Therapies for HD that reduce wild-type HTT may therefore generate unintended negative consequences. We have identified single-nucleotide polymorphism (SNP) targets in the human HD population for the disease......-specific targeting of the HTT gene. Using primary cells from patients with HD and the transgenic YAC18 and BACHD mouse lines, we developed antisense oligonucleotide (ASO) molecules that potently and selectively silence mHTT at both exonic and intronic SNP sites. Modification of these ASOs with S-constrained-ethyl (c...

  8. Phenylalanine hydroxylase deficiency in south Italy: Genotype-phenotype correlations, identification of a novel mutant PAH allele and prediction of BH4 responsiveness.

    Science.gov (United States)

    Trunzo, Roberta; Santacroce, Rosa; D'Andrea, Giovanna; Longo, Vittoria; De Girolamo, Giuseppe; Dimatteo, Claudia; Leccese, Angelica; Bafunno, Valeria; Lillo, Vincenza; Papadia, Francesco; Margaglione, Maurizio

    2015-10-23

    We investigated the mutation spectrum of the phenylalanine hydroxylase gene (PAH) in a cohort of patients from 33 Italian PKU families. Mutational screening of the known coding region, including conventional intron splice sites, was performed by direct sequencing of the patients' genomic DNA. Thirty-three different disease causing mutations were identified in our patient group, including 19 missense, 6 splicing, 3 nonsense, 5 deletions, with a detection rate of 100%. The most prevalent mutation was the IVS10-11G>A, accounting for 12.1% of PKU alleles studied. Other frequent mutations were: p.R261Q (9.1%), p.P281L (7.6%), and p.R408W (6.1%). We also identified one novel missense mutation, p.H290Q. A spectrum of 31 different genotypes was observed and a genotype based predictions of BH4-responsiveness were assessed. Among all genotypes, 13 were predicted to be BH4-responsive represented by thirteen PKU families. In addition, genotype-phenotype correlations were performed. This study reveals the importance of a full genotyping of PKU patients and the prediction of BH4-responsiveness, not only because of the definitive diagnosis and prediction of the optimal diet, but also to point out those patients that could benefit from new therapeutic approach. They may potentially benefit from BH4 therapy which, combined with a less strict diet, or eventually in special cases as monotherapy, may contribute to reduce nutritional deficiencies and minimize neurological and psychological dysfunctions.

  9. An AXIN2 Mutant Allele Associated With Predisposition to Colorectal Neoplasia Has Context-Dependent Effects on AXIN2 Protein Function1

    Science.gov (United States)

    Mazzoni, Serina M.; Petty, Elizabeth M.; Stoffel, Elena M.; Fearon, Eric R.

    2015-01-01

    Heterozygous, germline nonsense mutations in AXIN2 have been reported in two families with oligodontia and colorectal cancer (CRC) predisposition, including an AXIN2 1989G>A mutation. Somatic AXIN2 mutations predicted to generate truncated AXIN2 (trAXIN2) proteins have been reported in some CRCs. Our studies of cells from an AXIN2 1989G>A mutation carrier showed that the mutant transcripts are not significantly susceptible to nonsense-mediated decay and, thus, could encode a trAXIN2 protein. In transient transfection assays, trAXIN2 was more abundant than wild-type AXIN2 protein, and in contrast to AXIN2, glycogen synthase kinase 3β inhibition did not increase trAXIN2 levels. Like AXIN2, the trAXIN2 protein interacts with β-catenin destruction complex proteins. When ectopically overexpressed, trAXIN2 inhibits β-catenin/T-cell factor–dependent reporter gene activity and SW480 CRC cell colony formation. These findings suggest the trAXIN2 protein may retain some wild-type functions when highly expressed. However, when stably expressed in rat intestinal IEC-6 cells, the trAXIN2 protein did not match AXIN2’s activity in inhibiting Wnt-mediated induction of Wnt-regulated target genes, and SW480 cells with stable expression of trAXIN2 but not AXIN2 could be generated. Our data suggest the AXIN2 1989G>A mutation may not have solely a loss-of-function role in CRC. Rather, its contribution may depend on context, with potential loss-of-function when AXIN2 levels are low, such as in the absence of Wnt pathway activation. However, given its apparent increased stability in some settings, the trAXIN2 protein might have gain-of-function in cells with substantially elevated AXIN2 expression, such as Wnt pathway–defective CRC cells. PMID:26025668

  10. An AXIN2 Mutant Allele Associated With Predisposition to Colorectal Neoplasia Has Context-Dependent Effects on AXIN2 Protein Function

    Directory of Open Access Journals (Sweden)

    Serina M. Mazzoni

    2015-05-01

    Full Text Available Heterozygous, germline nonsense mutations in AXIN2 have been reported in two families with oligodontia and colorectal cancer (CRC predisposition, including an AXIN2 1989G>A mutation. Somatic AXIN2 mutations predicted to generate truncated AXIN2 (trAXIN2 proteins have been reported in some CRCs. Our studies of cells from an AXIN2 1989G>A mutation carrier showed that the mutant transcripts are not significantly susceptible to nonsense-mediated decay and, thus, could encode a trAXIN2 protein. In transient transfection assays, trAXIN2 was more abundant than wild-type AXIN2 protein, and in contrast to AXIN2, glycogen synthase kinase 3β inhibition did not increase trAXIN2 levels. Like AXIN2, the trAXIN2 protein interacts with β-catenin destruction complex proteins. When ectopically overexpressed, trAXIN2 inhibits β-catenin/T-cell factor–dependent reporter gene activity and SW480 CRC cell colony formation. These findings suggest the trAXIN2 protein may retain some wild-type functions when highly expressed. However, when stably expressed in rat intestinal IEC-6 cells, the trAXIN2 protein did not match AXIN2’s activity in inhibiting Wnt-mediated induction of Wnt-regulated target genes, and SW480 cells with stable expression of trAXIN2 but not AXIN2 could be generated. Our data suggest the AXIN2 1989G>A mutation may not have solely a loss-of-function role in CRC. Rather, its contribution may depend on context, with potential loss-of-function when AXIN2 levels are low, such as in the absence of Wnt pathway activation. However, given its apparent increased stability in some settings, the trAXIN2 protein might have gain-of-function in cells with substantially elevated AXIN2 expression, such as Wnt pathway–defective CRC cells.

  11. On the structural affinity of macromolecules with different biological properties: Molecular dynamics simulations of a series of TEM-1 mutants

    Energy Technology Data Exchange (ETDEWEB)

    Giampaolo, Alessia Di [Dipartimento di Scienze Fisiche e Chimiche, Universita’ degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy); Mazza, Fernando [Department of Health Sciences, Univ. of L’Aquila, 67010 L’Aquila (Italy); Daidone, Isabella [Dipartimento di Scienze Fisiche e Chimiche, Universita’ degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy); Amicosante, Gianfranco; Perilli, Mariagrazia [Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy); Aschi, Massimiliano, E-mail: massimiliano.aschi@univaq.it [Dipartimento di Scienze Fisiche e Chimiche, Universita’ degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy)

    2013-07-12

    Highlights: •We have performed molecular dynamics simulations of TEM-1 mutants. •Mutations effects on the mechanical properties are considered. •Mutants do not significantly alter the average enzymes structure. •Mutants produce sharp alterations in enzyme conformational repertoire. •Mutants also produce changes in the active site volume. -- Abstract: Molecular Dynamics simulations have been carried out in order to provide a molecular rationalization of the biological and thermodynamic differences observed for a class of TEM β-lactamases. In particular we have considered the TEM-1(wt), the single point mutants TEM-40 and TEM-19 representative of IRT and ESBL classes respectively, and TEM-1 mutant M182T, TEM-32 and TEM-20 which differ from the first three for the additional of M182T mutation. Results indicate that most of the thermodynamic, and probably biological behaviour of these systems arise from subtle effects which, starting from the alterations of the local interactions, produce drastic modifications of the conformational space spanned by the enzymes. The present study suggests that systems showing essentially the same secondary and tertiary structure may differentiate their chemical–biological activity essentially (and probably exclusively) on the basis of the thermal fluctuations occurring in their physiological environment.

  12. Produção e qualidade de frutos de tomateiros portadores de alelos mutantes de amadurecimento e coloração Yield and fruit quality of tomato hybrids heterozygous for ripening and color mutant alleles

    Directory of Open Access Journals (Sweden)

    Valter Carvalho de Andrade Júnior

    2005-06-01

    Full Text Available Sete híbridos de tomateiros quase-isogênicos, à exceção dos locos norª/nor, rin, og c e hp, com as linhagens parentais FloraDade e Mospomorist, e dois híbridos comerciais heterozigotos no loco rin (Carmen F1 e Chronos F1 foram avaliados quanto às características de produção e qualidade de frutos e quanto aos possíveis efeitos do background genotípico empregado nas mesmas características. Foi utilizado o delineamento em blocos casualizados, com quatro repetições e dez plantas por parcela. Os genótipos nor+/nor e rin+/rin não afetaram as características de produção. O genótipo nor+/norª atuou diminuindo a massa média por fruto. Os genótipos nor+/norª, nor+/nor e rin+/rin, isoladamente, atrasaram a perda de firmeza e a chegada da coloração vermelha nos frutos. O tamanho relativo da cicatriz peduncular não foi afetado significativamente por esses genótipos. A combinação og c+/og c hp+/hp proporcionou maior produção total e maior massa média por fruto no híbrido nor+/norª. A firmeza e a coloração dos frutos nor+/norª não foram afetadas pela combinação og c+/og c hp+/hp. O genótipo nor+/norª reduziu a produção precoce de frutos og c+/og c hp+/hp e aumentou a meia-vida da firmeza desses frutos. O background genotípico e a interação background x mutante de amadurecimento devem ser considerados na produção de híbridos F1 de tomateiro.Seven nearly isogenic tomato hybrids, except for their genotypic constitutions in loci norª/nor, rin, og c and hp, were tested for fruit yield and quality traits along the parental background lines FloraDade and Mosporist and two commercial rin+/rin tomato hybrids (Carmen F1 and Chronos F1. The role of the different genotypic backgrounds on these fruit traits was also studied. The genotypes were tested using a randomized complete block design with four replicates and ten plants per plot. The genotypic constitutions nor+/nor or rin+/rin had no effect on yield related

  13. Longevity of africanized worker honey bees (Apis mellifera carrying eye color mutant alleles Longevidade de operárias Apis mellifera africanizadas portadoras de mutações para a cor dos olhos

    Directory of Open Access Journals (Sweden)

    Rosana de Almeida

    2003-01-01

    Full Text Available The dark coloration of insects eyes is attributed to the accumulation of the brown pigment insectorubin, a mixture of ommochromes, xanthommatin and several ommins, biosynthesized from tryptophan. When any of the events in the synthesis chain is interrupted, formation and accumulation of pigments other than insectorubin occurs, and a new eye color will appear. The aim of the present work is to evaluate the longevity of worker honey bees Apis mellifera, homozygous and heterozygous for the mutant alleles cream (cr, snow-laranja (s la and brick (bk. Eye pigmentation and average longetivity of bees are very closely related. Mutant bees carrying lighter eye pigmentation are unable to return to the hive; there is, therefore, a close association between the eye pigmentation and honey bees lifespan. Experiments ran in confinement cages confirm the orientation problems of mutant honey bees, which kept in a limited space, were able to return to the hive and had an extended lifespan in comparison to that observed in the nature, and did not present statistical difference (P>0.05 relative to the control group. Confinement to restricted areas improves honey bees orientation abilities and facilitates return to the hive.Os olhos das abelhas selvagens adultas apresentam coloração marrom-escura, devido à presença de pigmentos denominados omocromos-xantominas e diferentes tipos de ominas. Os principais passos da cadeia metabólica que determinam a biossíntese desses pigmentos iniciam-se a partir do triptofano e qualquer interrupção em um dos seus passos fará com que a cor marrom-escura seja substituída por uma nova cor. Estudou-se a longevidade de operárias de Apis mellifera portadoras dos alelos mutantes para a cor dos olhos cream (cr, snow-laranja (s la e brick (bk. Existe nítida relação entre o grau de pigmentação dos olhos e a longevidade média das abelhas. As abelhas mutantes que apresentam a cor dos olhos mais clara perdem-se no campo, quando

  14. Black crystal: a novel color mutant in the American mink (Mustela vision Schreber).

    Science.gov (United States)

    Trapezov, O V

    1997-01-01

    Black crystal, a new mutant of coat color pattern occurring in the American mink in the course of selection for domestic behavior, is described. A salient feature of the mutation is the appearance of white guard hairs producing a veil-like covering of the body. In the Black crystal homozygote, coat color is of the Himalayan type. Breeding data demonstrate that the novel color phase is inherited as a monogenic autosomal semidominant trait. The mutant gene is designated as Black crystal and is symbolized by Cr. The Cr gene is not allelic to the multiple-allelic series at the Black cross locus.

  15. Comparative genomics analysis of a series of Yarrowia lipolytica WSH-Z06 mutants with varied capacity for α-ketoglutarate production.

    Science.gov (United States)

    Zeng, Weizhu; Fang, Fang; Liu, Song; Du, Guocheng; Chen, Jian; Zhou, Jingwen

    2016-12-10

    Yarrowia lipolytica is one of the most intensively investigated α-ketoglutaric acid (α-KG) producers, and metabolic engineering has proven effective for enhancing production. However, regulation of α-KG metabolism remains poorly understood. Genetic engineering of new strains is accompanied by potential safety concerns in some countries and regions. A series of mutants with varied capacity for α-KG production were obtained using random mutagenesis of Y. lipolytica WSH-Z06. Comparative genomics analysis was implemented to identify genes candidates associated with α-KG production. Manipulation of genes regulating mitochondrial biogenesis and energy metabolism could improve α-KG production, while genes involved in regulating transformation between keto acids and amino acids may decrease production. One gene associated with cell cycle control well represented in all mutants, whereas this gene involved in cell concentration do not appear to influence α-KG production. The results shed light on α-KG production in eukaryotic cells, and pave the way for a high-throughput screening and random mutagenesis method for enhancing α-KG production.

  16. Heterozygosity for an in-frame deletion causes glutaryl-CoA dehydrogenase deficiency in a patient detected by newborn screening: investigation of the effect of the mutant allele

    DEFF Research Database (Denmark)

    Bross, Peter; Frederiksen, Jane B; Bie, Anne S

    2012-01-01

    the proband were consistent with a mild biochemical GA-1 phenotype. Recombinant expression of the mutant variant in E. coli showed that the GCDH-(p.Gly185_Ser190del) protein displayed severely decreased assembly into tetramers and enzyme activity. To discover a potential dominant negative effect of the mutant...... with the hypothesis that heterozygosity for this mutation confers a dominant negative effect resulting in a GCDH enzyme activity that is significantly lower than the expected 50%....

  17. Choreography of Ig allelic exclusion.

    Science.gov (United States)

    Cedar, Howard; Bergman, Yehudit

    2008-06-01

    Allelic exclusion guarantees that each B or T cell only produces a single antigen receptor, and in this way contributes to immune diversity. This process is actually initiated in the early embryo when the immune receptor loci become asynchronously replicating in a stochastic manner with one early and one late allele in each cell. This distinct differential replication timing feature then serves an instructive mark that directs a series of allele-specific epigenetic events in the immune system, including programmed histone modification, nuclear localization and DNA demethylation that ultimately bring about preferred rearrangement on a single allele, and this decision is temporally stabilized by feedback mechanisms that inhibit recombination on the second allele. In principle, these same molecular components are also used for controlling monoallelic expression at other genomic loci, such as those carrying interleukins and olfactory receptor genes that require the choice of one gene out of a large array. Thus, allelic exclusion appears to represent a general epigenetic phenomenon that is modeled on the same basis as X chromosome inactivation.

  18. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli.

    Directory of Open Access Journals (Sweden)

    Hubing Lou

    Full Text Available Antibiotic-resistant bacteria, particularly gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate. We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane.

  19. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli.

    Science.gov (United States)

    Lou, Hubing; Chen, Min; Black, Susan S; Bushell, Simon R; Ceccarelli, Matteo; Mach, Tivadar; Beis, Konstantinos; Low, Alison S; Bamford, Victoria A; Booth, Ian R; Bayley, Hagan; Naismith, James H

    2011-01-01

    Antibiotic-resistant bacteria, particularly gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane.

  20. Altered Antibiotic Transport in OmpC Mutants Isolated from a Series of Clinical Strains of Multi-Drug Resistant E. coli

    Science.gov (United States)

    Ceccarelli, Matteo; Mach, Tivadar; Beis, Konstantinos; Low, Alison S.; Bamford, Victoria A.; Booth, Ian R.; Bayley, Hagan; Naismith, James H.

    2011-01-01

    Antibiotic-resistant bacteria, particularly Gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane. PMID:22053181

  1. High Resolution Melt (HRM analysis is an efficient tool to genotype EMS mutants in complex crop genomes

    Directory of Open Access Journals (Sweden)

    Lochlainn Seosamh Ó

    2011-12-01

    Full Text Available Abstract Background Targeted Induced Loci Lesions IN Genomes (TILLING is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs and insertion/deletions (IN/DELs enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  2. Rescue of progeria in trichothiodystrophy by homozygous lethal Xpd alleles.

    NARCIS (Netherlands)

    J.-O. Andressoo (Jaan-Olle); J. Jans (Judith); J. de Wit (Jan); F. Coin (Frédéric); D. Hoogstraten (Deborah); H.W.M. van de Ven (Marieke); W. Toussaint (Wendy); J. Huijmans (Jan); H.B. Thio (Bing); W.J. van Leeuwen (Wibeke); J. de Boer (Jan); J.H.J. Hoeijmakers (Jan); G.T.J. van der Horst (Gijsbertus); J.R. Mitchell (James); J-M. Egly (Jean-Marc)

    2006-01-01

    textabstractAlthough compound heterozygosity, or the presence of two different mutant alleles of the same gene, is common in human recessive disease, its potential to impact disease outcome has not been well documented. This is most likely because of the inherent difficulty in distinguishing specifi

  3. Rescue of progeria in trichothiodystrophy by homozygous lethal Xpd alleles.

    Directory of Open Access Journals (Sweden)

    Jaan-Olle Andressoo

    2006-10-01

    Full Text Available Although compound heterozygosity, or the presence of two different mutant alleles of the same gene, is common in human recessive disease, its potential to impact disease outcome has not been well documented. This is most likely because of the inherent difficulty in distinguishing specific biallelic effects from differences in environment or genetic background. We addressed the potential of different recessive alleles to contribute to the enigmatic pleiotropy associated with XPD recessive disorders in compound heterozygous mouse models. Alterations in this essential helicase, with functions in both DNA repair and basal transcription, result in diverse pathologies ranging from elevated UV sensitivity and cancer predisposition to accelerated segmental progeria. We report a variety of biallelic effects on organismal phenotype attributable to combinations of recessive Xpd alleles, including the following: (i the ability of homozygous lethal Xpd alleles to ameliorate a variety of disease symptoms when their essential basal transcription function is supplied by a different disease-causing allele, (ii differential developmental and tissue-specific functions of distinct Xpd allele products, and (iii interallelic complementation, a phenomenon rarely reported at clinically relevant loci in mammals. Our data suggest a re-evaluation of the contribution of "null" alleles to XPD disorders and highlight the potential of combinations of recessive alleles to affect both normal and pathological phenotypic plasticity in mammals.

  4. Colony mutants of compatible nocardiae displaying variations in recombining capacity.

    Science.gov (United States)

    Brownell, G H; Walsh, R S

    1972-03-01

    Colonial morphology mutants of Nocardia erythropolis were isolated following ultraviolet (UV) irradiation. The alleles rou-1/smo-1 were located by recombinant analysis and found to be linked to previously mapped characters. On the basis of recombinant class type patterns obtained from various selective characters it was postulated that the rou-1 allele may span a region of unique nucleotides in the Mat-Ce genome. Recombination frequencies of rou-1 and smo-2 bearing mutants of the Mat-Ce mating type were found to differ by over 1000 fold. Attempts to demonstrate that low recombination frequencies produced by the Smo mutants were due to Rec(-) genes were unsuccessful. No increased sensitivity to either UV or X irradiation was observed by the Smo mutants. Acriflavine treatment of either Rou or Smo colony mutants failed to accelerate reversion or to alter the recombining potentials of the mutants.

  5. Using student-generated UV-induced Escherichia coli mutants in a directed inquiry undergraduate genetics laboratory.

    Science.gov (United States)

    Healy, Frank G; Livingstone, Kevin D

    2010-09-01

    We report a thematic sequence of directed inquiry-based labs taking students from bacterial mutagenesis and phenotypic identification of their own self-created mutant, through identification of mutated genes by biochemical testing, to verification of mutant alleles by complementation, and finally to mutant allele characterization by DNA sequence analysis. The lab utilizes UV mutagenesis with wild-type Escherichia coli and a UV-sensitive isogenic derivative optimized for undergraduate use. The labs take advantage of the simplicity of E. coli in a realistic genetic investigation using safe UV irradiation methods for creation and characterization of novel mutants. Assessment data collected over three offerings of the course suggest that the labs, which combine original investigation in a scientifically realistic intellectual environment with learned techniques and concepts, were instrumental in improving students' learning in a number of areas. These include the development of critical thinking skills and understanding of concepts and methods. Student responses also suggest the labs were helpful in improving students' understanding of the scientific process as a rational series of experimental investigations and awareness of the interdisciplinary nature of scientific inquiry.

  6. The number of CAG repeats within the normal allele does not influence the age of onset in Huntington's disease.

    Science.gov (United States)

    Klempíř, Jiří; Zidovská, Jana; Stochl, Jan; Ing, Věra Kebrdlová; Uhrová, Tereza; Roth, Jan

    2011-01-01

    Huntington's disease (HD) is caused by the expansion of the number of CAG repeats on the chromosome 4p16.3, which results in elongated glutamine tract of huntingtin. The purpose of this work was to examine the interaction between the normal and mutant alleles of this gene and their effect on the clinical onset of HD. We hypothesized that in patients with identical number of CAG repeats within the mutant allele, the age of onset of HD is influenced by the number of CAG repeats within the normal allele. We analyzed the relations between the number of CAG repeats within the normal and mutant alleles, the age at HD onset, and the character of initial symptoms in 468 patients with clinically expressed HD. Although the Cox regression coefficient of 0.15 was significant (P CAG repeats within normal allele. Within the groups of patients with the same number of CAG repeats of the mutant allele, number of CAG repeats of the normal allele was found uncorrelated to the age at onset. Furthermore, when analyzing subgroups of patients with the same allelic composition on both alleles, we failed to observe any correlation with the age at the onset. Our analysis gives no corroboration to the idea of a normal allele having a share in the modification of the age at HD onset. We believe that with the current state of knowledge it is not possible to devise a mathematical model for HD onset prediction because too many entirely unknown modifying factors are still involved.

  7. SEQUENCE OF THE STRUCTURAL GENE FOR GRANULE-BOUND STARCH SYNTHASE OF POTATO (SOLANUM-TUBEROSUM L) AND EVIDENCE FOR A SINGLE POINT DELETION IN THE AMF ALLELE

    NARCIS (Netherlands)

    van der Leij, Feike R.; VISSER, RGF; Ponstein, Anne S.; Jacobsen, Evert; Feenstra, Willem

    1991-01-01

    The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; "waxy protein") has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type seq

  8. Allele coding in genomic evaluation

    Directory of Open Access Journals (Sweden)

    Christensen Ole F

    2011-06-01

    Full Text Available Abstract Background Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call this centered allele coding. This study considered effects of different allele coding methods on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and Bayesian methods were used in inference. Results Theoretical derivations showed that parameter estimates and estimated marker effects in marker-based models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the equivalent models, the same results hold, even though different allele coding methods lead to different genomic relationship matrices. Calculated genomic breeding values are independent of allele coding when the estimate of the general mean is included into the values. Reliabilities of estimated genomic breeding values calculated using elements of the inverse of the coefficient matrix depend on the allele coding because different allele coding methods imply different models. Finally, allele coding affects the mixing of Markov chain Monte Carlo algorithms, with the centered coding being

  9. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.

    Directory of Open Access Journals (Sweden)

    Yusuke Ohnishi

    Full Text Available Allele-specific gene silencing by RNA interference (RNAi is therapeutically useful for specifically inhibiting the expression of disease-associated alleles without suppressing the expression of corresponding wild-type alleles. To realize such allele-specific RNAi (ASP-RNAi, the design and assessment of small interfering RNA (siRNA duplexes conferring ASP-RNAi is vital; however, it is also difficult. In a previous study, we developed an assay system to assess ASP-RNAi with mutant and wild-type reporter alleles encoding the Photinus and Renilla luciferase genes. In line with experiments using the system, we realized that it is necessary and important to enhance allele discrimination between mutant and corresponding wild-type alleles. Here, we describe the improvement of ASP-RNAi against mutant alleles carrying single nucleotide variations by introducing base substitutions into siRNA sequences, where original variations are present in the central position. Artificially mismatched siRNAs or short-hairpin RNAs (shRNAs against mutant alleles of the human Prion Protein (PRNP gene, which appear to be associated with susceptibility to prion diseases, were examined using this assessment system. The data indicates that introduction of a one-base mismatch into the siRNAs and shRNAs was able to enhance discrimination between the mutant and wild-type alleles. Interestingly, the introduced mismatches that conferred marked improvement in ASP-RNAi, appeared to be largely present in the guide siRNA elements, corresponding to the 'seed region' of microRNAs. Due to the essential role of the 'seed region' of microRNAs in their association with target RNAs, it is conceivable that disruption of the base-pairing interactions in the corresponding seed region, as well as the central position (involved in cleavage of target RNAs, of guide siRNA elements could influence allele discrimination. In addition, we also suggest that nucleotide mismatches at the 3'-ends of sense

  10. Allelic Analyses of the Arabidopsis YUC1 Locus Reveal Residues and Domains Essential for the Functions of YUC Family of Flavin Monooxygenases

    Institute of Scientific and Technical Information of China (English)

    Xianhui Hou; Sainan Liu; Florencia Pierri; Xinhua Dai; Li-Jia Qu; Yunde Zhao

    2011-01-01

    Flavin monooxygenases(FMOs)play critical roles in plant growth and development by synthesizing auxin and other signaling molecules.However,the structure and function relationship within plant FMOs is not understood.Here we defined the important residues and domains of the Arabidopsis YUC1 FMO,a key enzyme in auxin biosynthesis.We previously showed that simultaneous inactivation of YUC1 and its homologue YUC4 caused severe defects in vascular and floral development.We mutagenized the yuc4 mutant and screened for mutants with phenotypes similar to those of yuc1 yuc4 double mutants.Among the isolated mutants,five of them contained mutations in the YUC1 gene.Interestingly,the mutations identified in the new yuc1 alleles were concentrated in the two GXGXXG motifs that are highly conserved among the plant FMOs.One such motif presumably binds to flavin adenine dinucleotide(FAD) cofactor and the other binds to nicotinamide adenine dinucleotide phosphate (NADPH).We also identified the Ser139 to Phe conversion in yuc1,a mutation that is located between the two nucleotide-binding sites.By analyzing a series of yuc1 mutants,we identified key residues and motifs essential for the functions of YUC1 FMO.

  11. Tailor-made RNAi knockdown against triplet repeat disease-causing alleles.

    Science.gov (United States)

    Takahashi, Masaki; Watanabe, Shoko; Murata, Miho; Furuya, Hirokazu; Kanazawa, Ichiro; Wada, Keiji; Hohjoh, Hirohiko

    2010-12-14

    Nucleotide variations, including SNPs, in the coding regions of disease genes are important targets for RNAi treatment, which is a promising medical treatment for intractable diseases such as triplet repeat diseases. However, the identification of such nucleotide variations and the design of siRNAs conferring disease allele-specific RNAi are quite difficult. In this study we developed a pull-down method to rapidly identify coding SNP (cSNP) haplotypes of triple repeat, disease-causing alleles, and we demonstrated disease allele-specific RNAi that targeted cSNP sites in mutant Huntingtin alleles, each of which possessed a different cSNP haplotype. Therefore, the methods presented here allow for allele-specific RNAi knockdown against disease-causing alleles by using siRNAs specific to disease-linked cSNP haplotypes, and advanced progress toward tailor-made RNAi treatments for triplet repeat diseases.

  12. A platform for interrogating cancer-associated p53 alleles.

    Science.gov (United States)

    D'Brot, A; Kurtz, P; Regan, E; Jakubowski, B; Abrams, J M

    2017-01-12

    p53 is the most frequently mutated gene in human cancer. Compelling evidence argues that full transformation involves loss of growth suppression encoded by wild-type p53 together with poorly understood oncogenic activity encoded by missense mutations. Furthermore, distinguishing disease alleles from natural polymorphisms is an important clinical challenge. To interrogate the genetic activity of human p53 variants, we leveraged the Drosophila model as an in vivo platform. We engineered strains that replace the fly p53 gene with human alleles, producing a collection of stocks that are, in effect, 'humanized' for p53 variants. Like the fly counterpart, human p53 transcriptionally activated a biosensor and induced apoptosis after DNA damage. However, all humanized strains representing common alleles found in cancer patients failed to complement in these assays. Surprisingly, stimulus-dependent activation of hp53 occurred without stabilization, demonstrating that these two processes can be uncoupled. Like its fly counterpart, hp53 formed prominent nuclear foci in germline cells but cancer-associated p53 variants did not. Moreover, these same mutant alleles disrupted hp53 foci and inhibited biosensor activity, suggesting that these properties are functionally linked. Together these findings establish a functional platform for interrogating human p53 alleles and suggest that simple phenotypes could be used to stratify disease variants.

  13. Behavioral characterization of system xc- mutant mice.

    Science.gov (United States)

    McCullagh, Elizabeth A; Featherstone, David E

    2014-05-15

    The slc7a11 gene encodes xCT, an essential component of 'system xc-', a plasma membrane exchanger that imports cystine and exports glutamate. Slc7a11 is expressed primarily in the brain, but its role there is not clear. We performed behavioral tests on two different strains of homozygous slc7a11 mutant mice ('sut' and 'xCT'), as well as heteroallelic offspring of these two strains ('xCT/sut') and their associated genetic backgrounds. Homozygous sut mutant males showed reduced spontaneous alternation in spontaneous alternation tasks as well as reduced movement in an open field maze, but xCT and xCT/sut strains did not show significant changes in these tasks compared to appropriate controls. Neither xCT nor sut mutants showed differences from controls in rotarod tests. Female behavioral phenotypes were independent of estrus cycle stage. To ensure that homozygous xCT, sut, and xCT/sut strains all represent protein null alleles, we measured whole brain xCT protein levels using immunoblots. xCT, sut and xCT/sut strains showed no detectable xCT protein expression, confirming them as null alleles. Previously published microdialysis experiments showed reduced striatal glutamate in xCT mutants. Using the same methods, we measured reduced interstitial glutamate levels in the striatum but not cerebellum of sut mutants. However, we detected no glutamate change in the striatum or cerebellum of sut/xCT mice. We detected no changes in whole brain EAAT-1, -2, or -3 expression. We conclude that the behavioral and chemical differences exist between slc7a11 mutant strains, but we were unable to definitively attribute any of these differences to loss of system xc-.

  14. A new conditional Apc-mutant mouse model for colorectal cancer.

    OpenAIRE

    Robanus-Maandag, E C; Koelink, P J; Breukel, C; Salvatori, D. C. F.; Jagmohan-Changur, S. C.; Bosch, C. A. J.; Verspaget, H. W.; Devilee, P; Fodde, R.; Smits, R

    2010-01-01

    textabstractMutations of the adenomatous polyposis coli (APC) gene predispose individuals to familial adenomatous polyposis (FAP), characterized by multiple tumours in the large intestine. Most mouse models heterozygous for truncating mutant Apc alleles mimic FAP, however, the intestinal tumours occur mainly in the small intestine. To model large intestinal tumours, we generated a new conditional Apc-mutant allele, Apc15lox, with exon 15 flanked by loxP sites. Similar survival of Apc1638N/15l...

  15. A majority of Huntington's disease patients may be treatable by individualized allele-specific RNA interference.

    Science.gov (United States)

    Lombardi, Maria Stella; Jaspers, Leonie; Spronkmans, Christine; Gellera, Cinzia; Taroni, Franco; Di Maria, Emilio; Donato, Stefano Di; Kaemmerer, William F

    2009-06-01

    Use of RNA interference to reduce huntingtin protein (htt) expression in affected brain regions may provide an effective treatment for Huntington disease (HD), but it remains uncertain whether suppression of both wild-type and mutant alleles in a heterozygous patient will provide more benefit than harm. Previous research has shown suppression of just the mutant allele is achievable using siRNA targeted to regions of HD mRNA containing single nucleotide polymorphisms (SNPs). To determine whether more than a minority of patients may be eligible for an allele-specific therapy, we genotyped DNA from 327 unrelated European Caucasian HD patients at 26 SNP sites in the HD gene. Over 86% of the patients were found to be heterozygous for at least one SNP among those tested. Because the sites are genetically linked, one cannot use the heterozygosity rates of the individual SNPs to predict how many sites (and corresponding allele-specific siRNA) would be needed to provide at least one treatment possibility for this percentage of patients. By computing all combinations, we found that a repertoire of allele-specific siRNA corresponding to seven sites can provide at least one allele-specific siRNA treatment option for 85.6% of our sample. Moreover, we provide evidence that allele-specific siRNA targeting these sites are readily identifiable using a high throughput screening method, and that allele-specific siRNA identified using this method indeed show selective suppression of endogenous mutant htt protein in fibroblast cells from HD patients. Therefore, allele-specific siRNA are not so rare as to be impractical to find and use therapeutically.

  16. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Science.gov (United States)

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  17. Creation and functional analysis of new Puroindoline alleles in Triticum aestivum.

    Science.gov (United States)

    Feiz, L; Martin, J M; Giroux, M J

    2009-01-01

    The Hardness (Ha) locus controls grain texture and affects many end-use properties of wheat (Triticum aestivum L.). The Ha locus is functionally comprised of the Puroindoline a and b genes, Pina and Pinb, respectively. The lack of Pin allelic diversity is a major factor limiting Ha functional analyses and wheat quality improvement. In order to create new Ha alleles, a 630 member M(2) population was produced in the soft white spring cultivar Alpowa using ethylmethane sulfonate mutagenesis. The M(2) population was screened to identify new alleles of Pina and Pinb. Eighteen new Pin alleles, including eight missense alleles, were identified. F(2) populations for four of the new Pin alleles were developed after crossing each back to non-mutant Alpowa. Grain hardness was then measured on F(2:3) seeds and the impact of each allele on grain hardness was quantified. The tested mutations were responsible for between 28 and 94% of the grain hardness variation and seed weight and vigor of all mutation lines was restored among the F(2) populations. Selection of new Pin alleles following direct phenotyping or direct sequencing is a successful approach to identify new Ha alleles useful in improving wheat product quality and understanding Ha locus function.

  18. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping.

    Science.gov (United States)

    Lee, Han B; Schwab, Tanya L; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L; Cervera, Roberto Lopez; McNulty, Melissa S; Bostwick, Hannah S; Clark, Karl J

    2016-06-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  19. Allele-dependent changes of olivocerebellar circuit properties in the absence of the voltage-gated potassium channels Kv3.1 and Kv3.3.

    Science.gov (United States)

    McMahon, Anne; Fowler, Stephen C; Perney, Teresa M; Akemann, Walther; Knöpfel, Thomas; Joho, Rolf H

    2004-06-01

    Double-mutant mice (DKO) lacking the two voltage-gated K(+) channels Kv3.1 and Kv3.3 display a series of phenotypic alterations that include ataxia, myoclonus, tremor and alcohol hypersensitivity. The prominent cerebellar expression of mRNAs encoding Kv3.1 and Kv3.3 subunits raised the question as to whether altered electrical activity resulting from the lack of these K(+) channels might be related to the dramatic motor changes. We used the tremorogenic agent harmaline to probe mutant mice lacking different K(+) channel alleles for altered olivocerebellar circuit properties. Harmaline induced the characteristic 13-Hz tremor in wildtype mice (WT); however, no tremor was observed in DKO suggesting that the ensemble properties of the olivocerebellar circuitry are altered in the absence of Kv3.1 and Kv3.3 subunits. Harmaline induced tremor in Kv3.1-single mutants, but it was of smaller amplitude and at a lower frequency indicating the participation of Kv3.1 subunits in normal olivocerebellar system function. In contrast, harmaline tremor was virtually absent in Kv3.3-single mutants indicating an essential role for Kv3.3 subunits in tremor induction by harmaline. Immunohistochemical staining for Kv3.3 showed clear expression in the somata and proximal dendrites of Purkinje cells and in their axonal projections to the deep cerebellar nuclei (DCN). In DCN, both Kv3.1 and Kv3.3 subunits are expressed. Action potential duration is increased by approximately 100% in Purkinje cells from Kv3.3-single mutants compared to WT or Kv3.1-single mutants. We conclude that Kv3.3 channel subunits are essential for the olivocerebellar system to generate and sustain normal harmaline tremor whereas Kv3.1 subunits influence tremor amplitude and frequency.

  20. Forward genetic screen for auxin-deficient mutants by cytokinin.

    Science.gov (United States)

    Wu, Lei; Luo, Pan; Di, Dong-Wei; Wang, Li; Wang, Ming; Lu, Cheng-Kai; Wei, Shao-Dong; Zhang, Li; Zhang, Tian-Zi; Amakorová, Petra; Strnad, Miroslav; Novák, Ondřej; Guo, Guang-Qin

    2015-07-06

    Identification of mutants with impairments in auxin biosynthesis and dynamics by forward genetic screening is hindered by the complexity, redundancy and necessity of the pathways involved. Furthermore, although a few auxin-deficient mutants have been recently identified by screening for altered responses to shade, ethylene, N-1-naphthylphthalamic acid (NPA) or cytokinin (CK), there is still a lack of robust markers for systematically isolating such mutants. We hypothesized that a potentially suitable phenotypic marker is root curling induced by CK, as observed in the auxin biosynthesis mutant CK-induced root curling 1 / tryptophan aminotransferase of Arabidopsis 1 (ckrc1/taa1). Phenotypic observations, genetic analyses and biochemical complementation tests of Arabidopsis seedlings displaying the trait in large-scale genetic screens showed that it can facilitate isolation of mutants with perturbations in auxin biosynthesis, transport and signaling. However, unlike transport/signaling mutants, the curled (or wavy) root phenotypes of auxin-deficient mutants were significantly induced by CKs and could be rescued by exogenous auxins. Mutants allelic to several known auxin biosynthesis mutants were re-isolated, but several new classes of auxin-deficient mutants were also isolated. The findings show that CK-induced root curling provides an effective marker for discovering genes involved in auxin biosynthesis or homeostasis.

  1. Characteristics of the Cfu‐S Population In Mice Carrying the SlJ Allele

    NARCIS (Netherlands)

    R.E. Ploemacher (Robert); N.H.C. Brons (Nicolaas)

    1984-01-01

    textabstractAbstract Abstract. A tentative characterization of haemopoietic stem cells with respect to their organ distribution, seeding fraction and colony formation in the spleen, radiosen‐sitivity and humoral regulation was attempted in mice heterozygous for the mutant allele SlJ and in their nor

  2. Mildew-resistant mutants induced in North American two- and six-rowed malting barley cultivars

    DEFF Research Database (Denmark)

    Molina-Cano, J.L.; Simiand, J.P.; Sopena, A.;

    2003-01-01

    and were shown to have two new alleles at the mlo locus; these were designated, respectively, mlo31 and mlo32. Mutant URS2, showing partial resistance, was inherited as a dominant gene, but was not an allele at the Mla locus. The mean yield of each mutant was higher than that of its parental line......, but both URS1 and URS2 showed lower malt extract than Ursula. This lower extract might be due to the smaller grain size of the mutants that could, in turn, result from necrotic lesions in the leaves, as implied by the effects on grain yield....

  3. Mechanisms for dominance: Adh heterodimer formation in heterozygotes between ENU or x-ray induced null alleles and normal alleles in drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.C.; Lee, W.R.; Chang, S.H.; Silverman, H. (Louisiana State Univ., Baton Rouge (United States))

    1992-01-01

    To study mechanisms for dominance of phenotype, eight ENU- and four x-ray-induced mutations at the alcohol dehydrogenase (Adh) locus were analyzed for partial dominance in their interaction with normal alleles. All ENU and one of the x-ray mutations were single base substitutions; the other three x-ray mutations were 9-21 base deletions. All but one of the 12 mutant alleles were selected for this study because they produced detectable mutant polypeptides, but seven of the 11 producing a peptide could not form dimers with the normal peptide and the enzyme activity of heterozygotes was about half that of normal homozygotes. Four mutations formed dimers with a decreased catalytic efficiency and two of these were near the limit of detectability; these two also inhibited the formation of normal homodimers. The mutant alleles therefore show multiple mechanisms leading to partial enzyme expression in heterozygotes and a wide range of dominance ranging from almost complete recessive to nearly dominant. All amino acid changes in mutant peptides that form dimers are located between amino acids 182 and 194, so this region is not critical for dimerization. It may, however, be an important surface domain for catalyzation. 34 refs., 8 figs., 2 tabs.

  4. Molecular analysis of mutants of the Neurospora adenylosuccinate synthetase locus

    Indian Academy of Sciences (India)

    A. Wiest; A. J. McCarthy; R. Schnittker; K. McCluskey

    2012-08-01

    The ad-8 gene of Neurospora crassa, in addition to being used for the study of purine biology, has been extensively studied as a model for gene structure, mutagenesis and intralocus recombination. Because of this there is an extensive collection of well-characterized N. crassa ad-8 mutants in the Fungal Genetics Stock Center collection. Among these are spontaneous mutants and mutants induced with X-ray, UV or chemical mutagens. The specific lesions in these mutants have been genetically mapped at high resolution. We have sequenced the ad-8 locus from 13 of these mutants and identified the molecular nature of the mutation in each strain. We compare the historical fine-structure map to the DNA and amino acid sequence of each allele. The placement of the individual lesions in the fine-structure map was more accurate at the 5′ end of the gene and no mutants were identified in the 3′ untranslated region of this gene. We additionally analysed ad-8+ alleles in 18 N. crassa strains subjected to whole-genome sequence analysis and describe the variability among Neurospora strains and among fungi and other organisms.

  5. Allele-specific interactions between CAST AWAY and NEVERSHED control abscission in Arabidopsis flowers

    Directory of Open Access Journals (Sweden)

    William D. Groner

    2016-10-01

    Full Text Available An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST, which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.

  6. An allele of the crm gene blocks cyanobacterial circadian rhythms.

    Science.gov (United States)

    Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S

    2013-08-20

    The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.

  7. Characterization of Gibberellin Receptor Mutants of Barley (Hordeum vulgare L.)

    Institute of Scientific and Technical Information of China (English)

    Peter M.Chandler; Carol A.Harding; Anthony R.Ashton; Mark D.Mulcair; Nicholas E.Dixon; Lewis N.Mander

    2008-01-01

    The sequence of Gidl (a gene for a gibberellin (GA) receptor from rice) was used to identify a putative orthoIogue from barley.This was expressed in E.coil,and produced a protein that was able to bind GA in vitro with both structural specificity and saturability.Its potential role in GA responses was investigated using barley mutants with reduced GA sensitivity (gsel mutants).Sixteen different gsel mutants each carried a unique nucleotide substitution in this sequence.In all but one case,these changes resulted in single amino acid substitutions,and,for the remaining mutant,a substitution in the 5' untranslated region of the mRNA is proposed to interfere with translation initiation.There was perfect linkage in segregating populations between new mutant alleles and the gsel phenotype,leading to the conclusion that the putative GID1 GA receptor sequence in barley corresponds to the Gsel locus.Determination of endogenous GA contents in one of the mutants revealed enhanced accumulation of bioactive GA1,and a deficit of C20 GA precursors.All of the gsel mutants had reduced sensitivity to exogenous GA3,and to AC94377 (a GA analogue) at concentrations that are normally 'saturating',but,at much higher concentrations,there was often a considerable response.The comparison between barley and rice mutants reveals interesting differences between these two cereal species in GA hormonal physiology.

  8. Identification of an arsenic tolerant double mutant with a thiol-mediated component and increased arsenic tolerance in phyA mutants.

    Science.gov (United States)

    Sung, Dong-Yul; Lee, David; Harris, Hugh; Raab, Andrea; Feldmann, Jörg; Meharg, Andrew; Kumabe, Bryan; Komives, Elizabeth A; Schroeder, Julian I

    2007-03-01

    A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5.

  9. Identification of An Arsenic Tolerant Double Mutant With a Thiol-Mediated Component And Increased Arsenic Tolerance in PhyA Mutants

    Energy Technology Data Exchange (ETDEWEB)

    Sung, D.Y.; Lee, D.; Harris, H.; Raab, A.; Feldmann, J.; Meharg, A.; Kumabe, B.; Komives, E.A.; Schroeder, J.I.; /SLAC, SSRL /Sydney U. /Aberdeen U. /UC, San Diego

    2007-04-06

    A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5.

  10. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    Science.gov (United States)

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections.

  11. Systematic generation of in vivo G protein-coupled receptor mutants in the rat.

    Science.gov (United States)

    van Boxtel, R; Vroling, B; Toonen, P; Nijman, I J; van Roekel, H; Verheul, M; Baakman, C; Guryev, V; Vriend, G; Cuppen, E

    2011-10-01

    G-protein-coupled receptors (GPCRs) constitute a large family of cell surface receptors that are involved in a wide range of physiological and pathological processes, and are targets for many therapeutic interventions. However, genetic models in the rat, one of the most widely used model organisms in physiological and pharmacological research, are largely lacking. Here, we applied N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis to generate an in vivo GPCR mutant collection in the rat. A pre-selected panel of 250 human GPCR homologs was screened for mutations in 813 rats, resulting in the identification of 131 non-synonymous mutations. From these, seven novel potential rat gene knockouts were established as well as 45 lines carrying missense mutations in various genes associated with or involved in human diseases. We provide extensive in silico modeling results of the missense mutations and show experimental data, suggesting loss-of-function phenotypes for several models, including Mc4r and Lpar1. Taken together, the approach used resulted not only in a set of novel gene knockouts, but also in allelic series of more subtle amino acid variants, similar as commonly observed in human disease. The mutants presented here may greatly benefit studies to understand specific GPCR function and support the development of novel therapeutic strategies.

  12. Response of the pearly eye melon fly Bactrocera cucurbitae(Coquillett)(Diptera:Tephritidae) mutant to host-associated visual cues

    Science.gov (United States)

    We report on a pearly eye mutant (PEM) line generated from a single male Bactrocera cucurbitae collected in Kapoho, Hawaii. Crossing experiments with colony wild-type flies indicate that the locus controlling this trait is autosomal and the mutant allele is recessive. Experiments with females to ass...

  13. Identification of a mutant PfCRT-mediated chloroquine tolerance phenotype in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Stephanie G Valderramos

    2010-05-01

    Full Text Available Mutant forms of the Plasmodium falciparum transporter PfCRT constitute the key determinant of parasite resistance to chloroquine (CQ, the former first-line antimalarial, and are ubiquitous to infections that fail CQ treatment. However, treatment can often be successful in individuals harboring mutant pfcrt alleles, raising questions about the role of host immunity or pharmacokinetics vs. the parasite genetic background in contributing to treatment outcomes. To examine whether the parasite genetic background dictates the degree of mutant pfcrt-mediated CQ resistance, we replaced the wild type pfcrt allele in three CQ-sensitive strains with mutant pfcrt of the 7G8 allelic type prevalent in South America, the Oceanic region and India. Recombinant clones exhibited strain-dependent CQ responses that ranged from high-level resistance to an incremental shift that did not meet CQ resistance criteria. Nonetheless, even in the most susceptible clones, 7G8 mutant pfcrt enabled parasites to tolerate CQ pressure and recrudesce in vitro after treatment with high concentrations of CQ. 7G8 mutant pfcrt was found to significantly impact parasite responses to other antimalarials used in artemisinin-based combination therapies, in a strain-dependent manner. We also report clinical isolates from French Guiana that harbor mutant pfcrt, identical or related to the 7G8 haplotype, and manifest a CQ tolerance phenotype. One isolate, H209, harbored a novel PfCRT C350R mutation and demonstrated reduced quinine and artemisinin susceptibility. Our data: 1 suggest that high-level CQR is a complex biological process dependent on the presence of mutant pfcrt; 2 implicate a role for variant pfcrt alleles in modulating parasite susceptibility to other clinically important antimalarials; and 3 uncover the existence of a phenotype of CQ tolerance in some strains harboring mutant pfcrt.

  14. Neurobehavioral Mutants Identified in an ENU Mutagenesis Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Melloni N. [University of Memphis; Dunning, Jonathan P [University of Memphis; Wiley, Ronald G [Vanderbilt University and Veterans Administration, Nashville, TN; Chesler, Elissa J [ORNL; Johnson, Dabney K [ORNL; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis

    2007-01-01

    We report on a behavioral screening test battery that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and employed a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open field mutants (one displaying hyper-locomotion, the other hypo-locomotion), four tail suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning and memory mutant (displaying reduced response to the conditioned stimulus) These findings highlight the utility of a set of behavioral tasks used in a high throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.

  15. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels.

    LENUS (Irish Health Repository)

    Fang, Fang

    2009-09-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host.

  16. The pathologic effect of a novel neomorphic Fgf9(Y162C) allele is restricted to decreased vision and retarded lens growth.

    Science.gov (United States)

    Puk, Oliver; Möller, Gabriele; Geerlof, Arie; Krowiorz, Kathrin; Ahmad, Nafees; Wagner, Sibylle; Adamski, Jerzy; de Angelis, Martin Hrabé; Graw, Jochen

    2011-01-01

    Fibroblast growth factor (Fgf) signalling plays a crucial role in many developmental processes. Among the Fgf pathway ligands, Fgf9 (UniProt: P54130) has been demonstrated to participate in maturation of various organs and tissues including skeleton, testes, lung, heart, and eye. Here we establish a novel Fgf9 allele, discovered in a dominant N-ethyl-N-nitrosourea (ENU) screen for eye-size abnormalities using the optical low coherence interferometry technique. The underlying mouse mutant line Aca12 was originally identified because of its significantly reduced lens thickness. Linkage studies located Aca12 to chromosome 14 within a 3.6 Mb spanning interval containing the positional candidate genes Fgf9 (MGI: 104723), Gja3 (MGI: 95714), and Ift88 (MGI: 98715). While no sequence differences were found in Gja3 and Ift88, we identified an A→G missense mutation at cDNA position 770 of the Fgf9 gene leading to an Y162C amino acid exchange. In contrast to previously described Fgf9 mutants, Fgf9(Y162C) carriers were fully viable and did not reveal reduced body-size, male-to-female sexual reversal or skeletal malformations. The histological analysis of the retina as well as its basic functional characterization by electroretinography (ERG) did not show any abnormality. However, the analysis of head-tracking response of the Fgf9(Y162C) mutants in a virtual drum indicated a gene-dosage dependent vision loss of almost 50%. The smaller lenses in Fgf9(Y162C) suggested a role of Fgf9 during lens development. Histological investigations showed that lens growth retardation starts during embryogenesis and continues after birth. Young Fgf9(Y162C) lenses remained transparent but developed age-related cataracts. Taken together, Fgf9(Y162C) is a novel neomorphic allele that initiates microphakia and reduced vision without effects on organs and tissues outside the eye. Our data point to a role of Fgf9 signalling in primary and secondary lens fiber cell growth. The results underline the

  17. The pathologic effect of a novel neomorphic Fgf9(Y162C allele is restricted to decreased vision and retarded lens growth.

    Directory of Open Access Journals (Sweden)

    Oliver Puk

    Full Text Available Fibroblast growth factor (Fgf signalling plays a crucial role in many developmental processes. Among the Fgf pathway ligands, Fgf9 (UniProt: P54130 has been demonstrated to participate in maturation of various organs and tissues including skeleton, testes, lung, heart, and eye. Here we establish a novel Fgf9 allele, discovered in a dominant N-ethyl-N-nitrosourea (ENU screen for eye-size abnormalities using the optical low coherence interferometry technique. The underlying mouse mutant line Aca12 was originally identified because of its significantly reduced lens thickness. Linkage studies located Aca12 to chromosome 14 within a 3.6 Mb spanning interval containing the positional candidate genes Fgf9 (MGI: 104723, Gja3 (MGI: 95714, and Ift88 (MGI: 98715. While no sequence differences were found in Gja3 and Ift88, we identified an A→G missense mutation at cDNA position 770 of the Fgf9 gene leading to an Y162C amino acid exchange. In contrast to previously described Fgf9 mutants, Fgf9(Y162C carriers were fully viable and did not reveal reduced body-size, male-to-female sexual reversal or skeletal malformations. The histological analysis of the retina as well as its basic functional characterization by electroretinography (ERG did not show any abnormality. However, the analysis of head-tracking response of the Fgf9(Y162C mutants in a virtual drum indicated a gene-dosage dependent vision loss of almost 50%. The smaller lenses in Fgf9(Y162C suggested a role of Fgf9 during lens development. Histological investigations showed that lens growth retardation starts during embryogenesis and continues after birth. Young Fgf9(Y162C lenses remained transparent but developed age-related cataracts. Taken together, Fgf9(Y162C is a novel neomorphic allele that initiates microphakia and reduced vision without effects on organs and tissues outside the eye. Our data point to a role of Fgf9 signalling in primary and secondary lens fiber cell growth. The results

  18. Hypermethylated SUPERMAN epigenetic alleles in arabidopsis.

    Science.gov (United States)

    Jacobsen, S E; Meyerowitz, E M

    1997-08-22

    Mutations in the SUPERMAN gene affect flower development in Arabidopsis. Seven heritable but unstable sup epi-alleles (the clark kent alleles) are associated with nearly identical patterns of excess cytosine methylation within the SUP gene and a decreased level of SUP RNA. Revertants of these alleles are largely demethylated at the SUP locus and have restored levels of SUP RNA. A transgenic Arabidopsis line carrying an antisense methyltransferase gene, which shows an overall decrease in genomic cytosine methylation, also contains a hypermethylated sup allele. Thus, disruption of methylation systems may yield more complex outcomes than expected and can result in methylation defects at known genes. The clark kent alleles differ from the antisense line because they do not show a general decrease in genomic methylation.

  19. Fourier series

    CERN Document Server

    Tolstov, Georgi P

    1962-01-01

    Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie

  20. Biochemical and genetical characterization of nitrate reductase deficient mutants of Petunia.

    Science.gov (United States)

    Steffen, A; Schieder, O

    1984-08-01

    Four NR(-) lines were selected by their resistance to 100 mM chlorate from X-ray irradiated protoplasts of haploid Petunia hybrida var. Mitchell. The four cell lines were characterized by the presence of xanthine dehydrogenase activity and by complementation tests via protoplast fusion. One mutant (line 1) was classified as defective in the NR apoprotein (tentatively, nia-type) and the other three (lines 2, 3, 4) in the molybdenum cofactor (tentatively, cnx-type). Some NR activity (15 %) could be restored by adding unphysiologically high concentrations of molybdate to the culture medium in two of the cnx-lines (lines 3 and 4). The third cnx-line (line 2) had no NR activity. A complementation analysis via protoplast fusion confirmed that the mutants comprised 3 non-allelic groups. From these results it can be concluded that these NR(-) mutants are recessive and that two of the cnx-mutants (lines 3, 4) are allelic.

  1. Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles.

    Directory of Open Access Journals (Sweden)

    Yen Kuan Ng

    Full Text Available Sophisticated genetic tools to modify essential biological processes at the molecular level are pivotal in elucidating the molecular pathogenesis of Clostridium difficile, a major cause of healthcare associated disease. Here we have developed an efficient procedure for making precise alterations to the C. difficile genome by pyrE-based allelic exchange. The robustness and reliability of the method was demonstrated through the creation of in-frame deletions in three genes (spo0A, cwp84, and mtlD in the non-epidemic strain 630Δerm and two genes (spo0A and cwp84 in the epidemic PCR Ribotype 027 strain, R20291. The system is reliant on the initial creation of a pyrE deletion mutant, using Allele Coupled Exchange (ACE, that is auxotrophic for uracil and resistant to fluoroorotic acid (FOA. This enables the subsequent modification of target genes by allelic exchange using a heterologous pyrE allele from Clostridium sporogenes as a counter-/negative-selection marker in the presence of FOA. Following modification of the target gene, the strain created is rapidly returned to uracil prototrophy using ACE, allowing mutant phenotypes to be characterised in a PyrE proficient background. Crucially, wild-type copies of the inactivated gene may be introduced into the genome using ACE concomitant with correction of the pyrE allele. This allows complementation studies to be undertaken at an appropriate gene dosage, as opposed to the use of multicopy autonomous plasmids. The rapidity of the 'correction' method (5-7 days makes pyrE(- strains attractive hosts for mutagenesis studies.

  2. Production of Extracellular Pigment by a Mutant of Monascus kaoliang sp. nov

    OpenAIRE

    Lin, Ching-Fwu; Iizuka, Hiroshi

    1982-01-01

    A hyperpigment-producing mutant, R-10847, was derived from Monascus kaoliang F-2 (ATCC 26264) through a series of mutagenesis steps. The mutant produced a large quantity of Monascus pigment when grown in mantou (steamed bread) by solid culture. The mutant produced pigments extracellularly by extruding the pigments outside the cell in a lump together with some viscous substances. The productivity of pigment was about 100-fold greater than that of the wild type. The mutant lost the capability o...

  3. Reduced expression of the normal DMPK allele in a congenital DM patient

    Energy Technology Data Exchange (ETDEWEB)

    Funanage, V.L.; Carango, P.; Moses, R.M.; Marks, H.G. [Alfred I. duPont Institute, Wilmington, DE (United States)

    1994-09-01

    Both adult-onset and congenital myotonic dystrophy (DM) are autosomal dominant disorders caused by triplet repeat expansions within the 3{prime} untranslated region of the DM protein kinase (DMPK) gene. The size of the repeat region shows a positive correlation with disease severity; in general, the triplet repeat expansions in congenital DM patients are larger than those found in adult DM individuals. In an adult DM patient, the expanded allele of 133 repeats reduced both the synthesis and processing of DMPK mRNA, whereas expression from the unexpanded allele remained unaffected. However, in both muscle and skin tissues from a congenital DM individual, DMPK mRNA expression from the unexpanded allele was also reduced. This reduced expression was maintained in fibroblasts cultured from a skin biospy of the patient; however, normal expression of the unexpanded allele occurred in cultured myoblasts established from this patient`s muscle biopsy. To determine if the expanded repeat exerts a trans effect on DMPK gene expression, we have separated the normal and mutant DMPK alleles from the cogenital DM skin fibroblasts by somatic cell hybridization. Hybrid clones containing only the normal DMPK gene still produced reduced levels of DMPK mRNA, indicating that the reduced expression from the normal allele is due to a cis effect. Cultured skin fibroblasts from the congenital DM patient were exposed to 5-azacytidine to determine if demethylation of the DMPK gene could restore proper expression of the normal allele. We are currently analyzing DMPK mRNA levels in these cells and determining if a difference in the methylation patterns of the normal DMPK alleles from adult and congenital DM patients accounts for this effect.

  4. A thirteen-year analysis of Plasmodium falciparum populations reveals high conservation of the mutant pfcrt haplotype despite the withdrawal of chloroquine from national treatment guidelines in Gabon

    NARCIS (Netherlands)

    M. Frank; N. Lehners; P.I. Mayengue; J. Gabor; M. Dal-Bianco; D.U. Kombila; G.M. Ngoma; C. Supan; B. Lell; F. Ntoumi; M.P. Grobusch; K. Dietz; P.G. Kremsner

    2011-01-01

    Chloroquine resistance (CR) decreased after the removal of chloroquine from national treatment guidelines in Malawi, Kenia and Tanzania. In this investigation the prevalence of the chloroquine resistance (CQR) conferring mutant pfcrt allele and its associated chromosomal haplotype were determined be

  5. Myotonic Dystrophy: Increased expression of the normal allele in CDM infants muscle

    Energy Technology Data Exchange (ETDEWEB)

    Radvanyi, H.H.; Gourdon, G.; Junien, C. [Inserm U, Paris (France)]|[Universite Rene Descartes, Paris (France)

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant multisystemic disorder characterized by a highly variable clinical phenotype. The mutation has been identified as an unstable trinucleotide CTG repeat in the 3{prime} untranslated region of the myotonin-protein kinase (MT-PK) gene. Congenital myotonic dystrophy (CDM), which represents the most severe phenotype, is exclusively maternally inherited. Recent studies, analysis by Northern blots and RT-PCR provided apparently conflicting results on the mutated allele expression in samples from congenitally affected children. The level of expression of the mutant allele depends on the extent of the repeat in the adult form and is no longer expressed when over 800-1300 repeats, whether in adult forms or in CDM. Could this decrease account for the late onset forms? However, the differences between the two phenotypes cannot be explained by the same mechanism. Alternatively, these differences could be due to differences in expression of the normal allele. We analyzed by quantitative RT-PCR the expression of the MT-PK gene in muscle samples from four CDM infants and two aged-matched normal controls. In two of these, the mutant allele (3.3 and 8 kb) was undetectable on Northern blots. We observed an increased expression of the MT-PK gene (10- to 20-fold) in tissues of severely affected congenital patients which can be attributed to the normal allele. Since expression of the normal allele is either normal or slightly decreased in the adult form, the dramatic increase in the congenital form could reflect a disturbance in muscle differentiation. Expression studies of MT-PK at different stages of development and, especially after the 20th week, are therefore required.

  6. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    KAUST Repository

    Zhang, ShouDong

    2015-12-15

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1–1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1–1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.

  7. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  8. Hypersensitivity of Drosophila mei-41 mutants to hydroxyurea is associated with reduced mitotic chromosome stability.

    Science.gov (United States)

    Banga, S S; Shenkar, R; Boyd, J B

    1986-11-01

    6 mutant alleles of the mei-41 locus in Drosophila melanogaster are shown to cause hypersensitivity to hydroxyurea in larvae. The strength of that sensitivity is directly correlated with the influence of the mutant alleles on meiosis in that: alleles exhibiting a strong meiotic effect (mei-41D2, mei-41D5, mei-41D7) are highly sensitive; alleles with negligible meiotic effects (mei-41(104)D1, mei-41(104)D2) are moderately sensitive and an allele which expresses meiotic effects only under restricted conditions (mei-41D9) has an intermediate sensitivity. This sensitivity is not a general feature of strong postreplication repair-deficient mutants, because mutants with that phenotype from other loci do not exhibit sensitivity (mus(2)205A1, mus(3)302D1, mus(3)310D1). The observed lethality is not due to hypersensitivity of DNA synthesis in mei-41 larvae to hydroxyurea as assayed by tritiated thymidine incorporation. Lethality is, however, potentially attributable to an abnormal enhancement of chromosomal aberrations by hydroxyurea in mutant mei-41 larvae. Both in vivo and in vitro exposure of neuroblast cells to hydroxyurea results in an increase in 3 types of aberrations which is several fold higher in mei-41 tissue. Since hydroxyurea disrupts DNA synthesis, these results further implicate the mei-41 locus in DNA metabolism and provide an additional tool for an elucidation of its function. The possible existence of additional genes of this nature is suggested by a more modest sensitivity to hydroxyurea which has been detected in two stocks carrying mutagen-sensitive alleles of alternate genes.

  9. Nucleotide variation and identification of novel blast resistance alleles of Pib by allele mining strategy.

    Science.gov (United States)

    Ramkumar, G; Madhav, M S; Devi, S J S Rama; Prasad, M S; Babu, V Ravindra

    2015-04-01

    Pib is one of significant rice blast resistant genes, which provides resistance to wide range of isolates of rice blast pathogen, Magnaporthe oryzae. Identification and isolation of novel and beneficial alleles help in crop enhancement. Allele mining is one of the best strategies for dissecting the allelic variations at candidate gene and identification of novel alleles. Hence, in the present study, Pib was analyzed by allele mining strategy, and coding and non-coding (upstream and intron) regions were examined to identify novel Pib alleles. Allelic sequences comparison revealed that nucleotide polymorphisms at coding regions affected the amino acid sequences, while the polymorphism at upstream (non-coding) region affected the motifs arrangements. Pib alleles from resistant landraces, Sercher and Krengosa showed better resistance than Pib donor variety, might be due to acquired mutations, especially at LRR region. The evolutionary distance, Ka/Ks and phylogenetic analyzes also supported these results. Transcription factor binding motif analysis revealed that Pib (Sr) had a unique motif (DPBFCOREDCDC3), while five different motifs differentiated the resistance and susceptible Pib alleles. As the Pib is an inducible gene, the identified differential motifs helps to understand the Pib expression mechanism. The identified novel Pib resistant alleles, which showed high resistance to the rice blast, can be used directly in blast resistance breeding program as alternative Pib resistant sources.

  10. A molecular method for S-allele identification in apple based on allele-specific PCR.

    Science.gov (United States)

    Janssens, G A; Goderis, I J; Broekaert, W F; Broothaerts, W

    1995-09-01

    cDNA sequences corresponding to two self-incompatibility alleles (S-alleles) of the apple cv 'Golden Delicious' have previously been described, and now we report the identification of three additional S-allele cDNAs of apple, one of which was isolated from a pistil cDNA library of cv 'Idared' and two of which were obtained by reverse transcription-PCR (RT-PCR) on pistil RNA of cv 'Queen's Cox'. A comparison of the deduced amino acid sequences of these five S-allele cDNAs revealed an average homology of 69%. Based on the nucleotide sequences of these S-allele cDNAs, we developed a molecular technique for the diagnostic identification of the five different S-alleles in apple cultivars. The method used consists of allele-specific PCR amplification of genomic DNA followed by digestion of the amplification product with an allele-specific restriction endonuclease. Analysis of a number of apple cultivars with known S-phenotype consistently showed coincidence of phenotypic and direct molecular data of the S-allele constitution of the cultivars. It is concluded that the S-allele identification approach reported here provides a rapid and useful method to determine the S-genotype of apple cultivars.

  11. Salmonella Typhi shdA: pseudogene or allelic variant?

    Science.gov (United States)

    Urrutia, I M; Fuentes, J A; Valenzuela, L M; Ortega, A P; Hidalgo, A A; Mora, G C

    2014-08-01

    ShdA from Salmonella Typhimurium (ShdASTm) is a large outer membrane protein that specifically recognizes and binds to fibronectin. ShdASTm is involved in the colonization of the cecum and the Peyer's patches of terminal ileum in mice. On the other hand, shdA gene from Salmonella Typhi (shdASTy) has been considered a pseudogene (i.e. a nonfunctional sequence of genomic DNA) due to the presence of deletions and mutations that gave rise to premature stop codons. In this work we show that, despite the deletions and mutations, shdASTy is fully functional. S. Typhi ΔshdA mutants presented an impaired adherence and invasion of HEp-2 pre-treated with TGF-β1, an inducer of fibronectin production. Moreover, shdA from S. Typhi and S. Typhimurium seem to be equivalent since shdASTm restored the adherence and invasion of S. Typhi ΔshdA mutant to wild type levels. In addition, anti-FLAG mAbs interfered with the adherence and invasion of the S. Typhi shdA-3xFLAG strain. Finally, shdASTy encodes a detectable protein when heterologously expressed in Escherichia coli DH5α. The data presented here show that shdASTy is not a pseudogene, but a different functional allele compared with shdASTm.

  12. Complex and multi-allelic copy number variation in human disease.

    Science.gov (United States)

    Usher, Christina L; McCarroll, Steven A

    2015-09-01

    Hundreds of copy number variants are complex and multi-allelic, in that they have many structural alleles and have rearranged multiple times in the ancestors who contributed chromosomes to current humans. Not only are the relationships of these multi-allelic CNVs (mCNVs) to phenotypes generally unknown, but many mCNVs have not yet been described at the basic levels-alleles, allele frequencies, structural features-that support genetic investigation. To date, most reported disease associations to these variants have been ascertained through candidate gene studies. However, only a few associations have reached the level of acceptance defined by durable replications in many cohorts. This likely stems from longstanding challenges in making precise molecular measurements of the alleles individuals have at these loci. However, approaches for mCNV analysis are improving quickly, and some of the unique characteristics of mCNVs may assist future association studies. Their various structural alleles are likely to have different magnitudes of effect, creating a natural allelic series of growing phenotypic impact and giving investigators a set of natural predictions and testable hypotheses about the extent to which each allele of an mCNV predisposes to a phenotype. Also, mCNVs' low-to-modest correlation to individual single-nucleotide polymorphisms (SNPs) may make it easier to distinguish between mCNVs and nearby SNPs as the drivers of an association signal, and perhaps, make it possible to preliminarily screen candidate loci, or the entire genome, for the many mCNV-disease relationships that remain to be discovered.

  13. Comparison of HLA allelic imputation programs

    Science.gov (United States)

    Shaffer, Christian M.; Bastarache, Lisa; Gaudieri, Silvana; Glazer, Andrew M.; Steiner, Heidi E.; Mosley, Jonathan D.; Mallal, Simon; Denny, Joshua C.; Phillips, Elizabeth J.; Roden, Dan M.

    2017-01-01

    Imputation of human leukocyte antigen (HLA) alleles from SNP-level data is attractive due to importance of HLA alleles in human disease, widespread availability of genome-wide association study (GWAS) data, and expertise required for HLA sequencing. However, comprehensive evaluations of HLA imputations programs are limited. We compared HLA imputation results of HIBAG, SNP2HLA, and HLA*IMP:02 to sequenced HLA alleles in 3,265 samples from BioVU, a de-identified electronic health record database coupled to a DNA biorepository. We performed four-digit HLA sequencing for HLA-A, -B, -C, -DRB1, -DPB1, and -DQB1 using long-read 454 FLX sequencing. All samples were genotyped using both the Illumina HumanExome BeadChip platform and a GWAS platform. Call rates and concordance rates were compared by platform, frequency of allele, and race/ethnicity. Overall concordance rates were similar between programs in European Americans (EA) (0.975 [SNP2HLA]; 0.939 [HLA*IMP:02]; 0.976 [HIBAG]). SNP2HLA provided a significant advantage in terms of call rate and the number of alleles imputed. Concordance rates were lower overall for African Americans (AAs). These observations were consistent when accuracy was compared across HLA loci. All imputation programs performed similarly for low frequency HLA alleles. Higher concordance rates were observed when HLA alleles were imputed from GWAS platforms versus the HumanExome BeadChip, suggesting that high genomic coverage is preferred as input for HLA allelic imputation. These findings provide guidance on the best use of HLA imputation methods and elucidate their limitations. PMID:28207879

  14. Osteogensis imperfecta type I is commonly due to a COLIAI null allel of type I collagen

    Energy Technology Data Exchange (ETDEWEB)

    Willing, M.C.; Pruchno, C.J. (Univ. of Iowa, Iowa City, IA (United States)); Atkinson, M.; Byers, P.H. (Univ. of Washington, Seattle, WA (United States))

    1992-09-01

    Dermal fibroblasts from most individuals with osteogenesis imperfecta (OI) type I produce about half the normal amount of type I procollagen, as a result of decreased synthesis of one of its constituent chains, pro[alpha](I). To test the hypothesis that decreased synthesis of pro[alpha](I) chains results from mutations in the COL1A1 gene, the authors used primer extension with nucleotide-specific chain termination to measure the contribution of individual COL1A1 alleles to the mRNA pool in fibroblasts from affected individuals. A polymorphic Mn/I restriction endonuclease site in the 3'-untranslated region of COL1A1 was used to distinguish the transcripts of the two alleles in heterozygous individuals. Twenty-three individuals from 21 unrelated families were studied. In each case there was marked diminution in steady-state mRNA levels from one COL1A2 allele. Loss of an allele through deletion or rearrangement was not the cause of the diminished COL1A1 mRNA levels. Primer extension with nucleotide-specific chain termination allows identification of the mutant COL1A1 allele in cell strains that are heterozygous for an expressed polymorphism. It is applicable to sporadic cases, to small families, and to large families in whom key individuals are uninformative at the polymorphic sites used in linkage analysis, making it a useful adjunct to the biochemical screening of collagenous proteins for OI. 40 refs., 3 figs., 1 tab.

  15. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm

    Science.gov (United States)

    Morin, Shai; Biggs, Robert W.; Sisterson, Mark S.; Shriver, Laura; Ellers-Kirk, Christa; Higginson, Dawn; Holley, Daniel; Gahan, Linda J.; Heckel, David G.; Carrière, Yves; Dennehy, Timothy J.; Brown, Judith K.; Tabashnik, Bruce E.

    2003-01-01

    Evolution of resistance by pests is the main threat to long-term insect control by transgenic crops that produce Bacillus thuringiensis (Bt) toxins. Because inheritance of resistance to the Bt toxins in transgenic crops is typically recessive, DNA-based screening for resistance alleles in heterozygotes is potentially much more efficient than detection of resistant homozygotes with bioassays. Such screening, however, requires knowledge of the resistance alleles in field populations of pests that are associated with survival on Bt crops. Here we report that field populations of pink bollworm (Pectinophora gossypiella), a major cotton pest, harbored three mutant alleles of a cadherin-encoding gene linked with resistance to Bt toxin Cry1Ac and survival on transgenic Bt cotton. Each of the three resistance alleles has a deletion expected to eliminate at least eight amino acids upstream of the putative toxin-binding region of the cadherin protein. Larvae with two resistance alleles in any combination were resistant, whereas those with one or none were susceptible to Cry1Ac. Together with previous evidence, the results reported here identify the cadherin gene as a leading target for DNA-based screening of resistance to Bt crops in lepidopteran pests. PMID:12695565

  16. Lipid metabolites in seeds of diverse Gossypium accessions: Molecular identification of a high oleic mutant allele

    Science.gov (United States)

    The domestication and breeding of cotton for elite, high-fiber cultivars has led to reduced genetic variation of seed constituents within currently cultivated upland Cotton genotypes. However, a recent screen of the genetically diverse U.S. National Cotton Germplasm Collection identified Gossypium ...

  17. The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear

    Directory of Open Access Journals (Sweden)

    Paudyal Anju

    2010-08-01

    Full Text Available Abstract Background The planar cell polarity (PCP signalling pathway is fundamental to a number of key developmental events, including initiation of neural tube closure. Disruption of the PCP pathway causes the severe neural tube defect of craniorachischisis, in which almost the entire brain and spinal cord fails to close. Identification of mouse mutants with craniorachischisis has proven a powerful way of identifying molecules that are components or regulators of the PCP pathway. In addition, identification of an allelic series of mutants, including hypomorphs and neomorphs in addition to complete nulls, can provide novel genetic tools to help elucidate the function of the PCP proteins. Results We report the identification of a new N-ethyl-N-nitrosourea (ENU-induced mutant with craniorachischisis, which we have named chuzhoi (chz. We demonstrate that chuzhoi mutant embryos fail to undergo initiation of neural tube closure, and have characteristics consistent with defective convergent extension. These characteristics include a broadened midline and reduced rate of increase of their length-to-width ratio. In addition, we demonstrate disruption in the orientation of outer hair cells in the inner ear, and defects in heart and lung development in chuzhoi mutants. We demonstrate a genetic interaction between chuzhoi mutants and both Vangl2Lp and Celsr1Crsh mutants, strengthening the hypothesis that chuzhoi is involved in regulating the PCP pathway. We demonstrate that chuzhoi maps to Chromosome 17 and carries a splice site mutation in Ptk7. This mutation results in the insertion of three amino acids into the Ptk7 protein and causes disruption of Ptk7 protein expression in chuzhoi mutants. Conclusions The chuzhoi mutant provides an additional genetic resource to help investigate the developmental basis of several congenital abnormalities including neural tube, heart and lung defects and their relationship to disruption of PCP. The chuzhoi mutation

  18. A new conditional Apc-mutant mouse model for colorectal cancer

    NARCIS (Netherlands)

    E.C. Robanus-Maandag (Els); P.J. Koelink (Pim); C. Breukel (Cor); D.C.F. Salvatori (Daniela); S.C. Jagmohan-Changur (Shantie); C.A.J. Bosch (Cathy); H.W. Verspaget; P. Devilee (Peter); R. Fodde (Riccardo); M.J.M. Smits (Ron)

    2010-01-01

    textabstractMutations of the adenomatous polyposis coli (APC) gene predispose individuals to familial adenomatous polyposis (FAP), characterized by multiple tumours in the large intestine. Most mouse models heterozygous for truncating mutant Apc alleles mimic FAP, however, the intestinal tumours occ

  19. Albino and pink-eyed dilution mutants in the Russian dwarf hamster Phodopus campbelli.

    Science.gov (United States)

    Robinson, R

    1996-01-01

    The coat color mutant genes albino (c) and pink eyed dilution (p) are described in the dwarf hamster species Phodopus campbelli. Both genes are inherited as redessive to normal. Tests for linkage between the two genes gave negative results. The apparent absence of linkage is contrasted with linkage between homologous alleles c and p in other species of rodents.

  20. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal

    2017-12-01

    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr (a) ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr (a) has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr (a) significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.

  1. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.

    Science.gov (United States)

    Kaulich, Manuel; Lee, Yeon J; Lönn, Peter; Springer, Aaron D; Meade, Bryan R; Dowdy, Steven F

    2015-04-20

    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms.

  2. Diversity of Lactase Persistence Alleles in Ethiopia

    DEFF Research Database (Denmark)

    Jones, BL; Raga, TO; Liebert, Anke

    2013-01-01

    The persistent expression of lactase into adulthood in humans is a recent genetic adaptation that allows the consumption of milk from other mammals after weaning. In Europe, a single allele (−13910∗T, rs4988235) in an upstream region that acts as an enhancer to the expression of the lactase gene...... LCT is responsible for lactase persistence and appears to have been under strong directional selection in the last 5,000 years, evidenced by the widespread occurrence of this allele on an extended haplotype. In Africa and the Middle East, the situation is more complicated and at least three other...... alleles (−13907∗G, rs41525747; −13915∗G, rs41380347; −14010∗C, rs145946881) in the same LCT enhancer region can cause continued lactase expression. Here we examine the LCT enhancer sequence in a large lactose-tolerance-tested Ethiopian cohort of more than 350 individuals. We show that a further SNP...

  3. Forensic Loci Allele Database (FLAD): Automatically generated, permanent identifiers for sequenced forensic alleles.

    Science.gov (United States)

    Van Neste, Christophe; Van Criekinge, Wim; Deforce, Dieter; Van Nieuwerburgh, Filip

    2016-01-01

    It is difficult to predict if and when massively parallel sequencing of forensic STR loci will replace capillary electrophoresis as the new standard technology in forensic genetics. The main benefits of sequencing are increased multiplexing scales and SNP detection. There is not yet a consensus on how sequenced profiles should be reported. We present the Forensic Loci Allele Database (FLAD) service, made freely available on http://forensic.ugent.be/FLAD/. It offers permanent identifiers for sequenced forensic alleles (STR or SNP) and their microvariants for use in forensic allele nomenclature. Analogous to Genbank, its aim is to provide permanent identifiers for forensically relevant allele sequences. Researchers that are developing forensic sequencing kits or are performing population studies, can register on http://forensic.ugent.be/FLAD/ and add loci and allele sequences with a short and simple application interface (API).

  4. Evolutionary dynamics of sporophytic self-incompatibility alleles in plants

    DEFF Research Database (Denmark)

    Schierup, M H; Vekemans, X; Christiansen, F B

    1997-01-01

    The stationary frequency distribution and allelic dynamics in finite populations are analyzed through stochastic simulations in three models of single-locus, multi-allelic sporophytic self-incompatibility. The models differ in the dominance relationships among alleles. In one model, alleles act c...

  5. Optimized Multiplex Detection of 7 KRAS Mutations by Taqman Allele-Specific qPCR

    Science.gov (United States)

    Orue, Andrea; Rieber, Manuel

    2016-01-01

    Establishing the KRAS mutational status of tumor samples is essential to manage patients with colorectal or lung cancer, since these mutations preclude treatment with monoclonal anti-epidermal growth factor receptor (EGFR) antibodies. We report an inexpensive, rapid multiplex allele-specific qPCR method detecting the 7 most clinically relevant KRAS somatic mutations with concomitant amplification of non-mutated KRAS in tumor cells and tissues from CRC patients. Positive samples evidenced in the multiplex assay were further subjected to individual allele-specific analysis, to define the specific mutation. Reference human cancer DNA harbouring either G12A, G12C, G12D, G12R, G12S, G12V and G13D confirmed assay specificity with ≤1% sensitivity of mutant alleles. KRAS multiplex mutation analysis usefulness was also demonstrated with formalin-fixed paraffin embedded (FFPE) from CRC biopsies. Conclusion. Co-amplification of non-mutated DNA avoided false negatives from degraded samples. Moreover, this cost effective assay is compatible with mutation detection by DNA sequencing in FFPE tissues, but with a greater sensitivity when mutant DNA concentrations are limiting. PMID:27632281

  6. Time Series

    OpenAIRE

    Gil-Alana, L.A.; Moreno, A; Pérez-de-Gracia, F. (Fernando)

    2011-01-01

    The last 20 years have witnessed a considerable increase in the use of time series techniques in econometrics. The articles in this important set have been chosen to illustrate the main themes in time series work as it relates to econometrics. The editor has written a new concise introduction to accompany the articles. Sections covered include: Ad Hoc Forecasting Procedures, ARIMA Modelling, Structural Time Series Models, Unit Roots, Detrending and Non-stationarity, Seasonality, Seasonal Adju...

  7. Generation of targeted mouse mutants by embryo microinjection of TALENs.

    Science.gov (United States)

    Wefers, Benedikt; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2014-08-15

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step, without the need for embryonic stem cells. Thereby, knockout and knockin alleles can be generated fast and efficiently by embryo microinjection of TALEN mRNAs and targeting vectors. In this article we present an introduction into the TALEN technology and provide protocols for the application of TALENs in mouse zygotes.

  8. RANTES In1.1C allele polymorphisms in 13 Chinese ethnic populations

    Institute of Scientific and Technical Information of China (English)

    QIAN Yuan; SUN Hao; CHU Jia-you

    2009-01-01

    Background The In1.1C single nucleotide polymorphism (SNP) allele results in reduced RANTES transcription, which is associated with increased frequency of HIV-1 infection, and rapid progression to AIDS among HIV-1-infected individuals. This study aimed to study the mutant frequency and polymorphism of RANTES in Chinese populations.Methods The genotypes of RANTES In1.1C were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) with the digestion of restriction endonuclease Mbo Ⅱ.Results Of the 617 individuals, 290 (47%) were carriers of the RANTES In1.1C allele, 52 of whom were homozygotes,whereas 238 were heterozygotes. The frequency of the RANTES In1.1C allele in those tested individuals was 0.2840.The frequencies of Inl.lC allele vaded from 0.07-0.27 in most of the populations in South-west China except for the two Lisu populations, while the frequencies of In1.1C spans from 0.35 to 0.45 in North-west China. The prevalence of the allele varied substantially between the South-west groups and North-west groups (X2=7.838, P=0.006).Conclusions The prevalence of the RANTES In1.1C allele varies substantially between the South-west groups and North-west groups. There is no significant difference between the groups with different languages, which suggests that language relationship is not consistent with the genetic relationship. These results have important implications for the design, assessment, and implementation of HIV-1 vaccines.

  9. Fine mapping and cloning of MT1,a novel allele of D10

    Institute of Scientific and Technical Information of China (English)

    Yong Zhou; Jinyan Zhu; Zhengyi Li; Fei Gu; Honggen Zhang; Shuzhu Tang; Minghong Gu; Guohua Liang

    2009-01-01

    Rice tillering is an important determinant for grain production.To investigate the mechanism of tillering,we characterized a multiple tillering mutant (mt1) identified from the japonica variety,Zhonghua 11,treated with EMS.This mutant exhibits advanced tillering development and dwarfed compared with wild-type plants.Genetic analysis and fine gene mapping indicated that the mt1 mutant was controlled by a recessive gene,residing on a 29-kb window on AP003376 of chromosome 1.One putative gene in this region,encoding a carotenoid cleavage dioxygenase 8 (CCD8),was allelic to D10.The mt1 mutant phenotype was complemented by introduction of wild-type MT1,and knockdown of MT1 in wild-type rice mimicked the mutant phenotype.Real-time PCR analysis indicated that the MT1 gene is expressed highly in stems and at a low level in axillary buds,panicles,leaves,and roots.In addition,MT1 expression is clearly under feedback regulation.

  10. Quantification of Allele Dosage in tetraploid Roses

    NARCIS (Netherlands)

    Vukosavljev, M.; Guardo, Di M.; Weg, van de W.E.; Arens, P.; Smulders, M.J.M.

    2012-01-01

    Many important crops (wheat, potato, strawberry, rose, etc.) are polyploid. This complicates genetic analyses, as the same locus can be present on multiple homologous or homoeologous chromosomes. SSR markers are suitable for mapping in segregating populations of polyploids as they are multi-allelic,

  11. Null alleles of the aldolase B gene in patients with hereditary fructose intolerance.

    Science.gov (United States)

    Ali, M; Tunçman, G; Cross, N C; Vidailhet, M; Bökesoy, I; Gitzelmann, R; Cox, T M

    1994-06-01

    We report three new mutations in the gene for aldolase B that are associated with hereditary fructose intolerance (HFI). Two nonsense mutations create opal termination codons: R3op (C-->T, Arg3-->ter, exon 2) was found in homozygous form in four affected members of a large consanguineous Turkish pedigree and R59op (C-->T, Arg59-->ter, exon 3) was found on one allele in a woman of Austrian origin known to harbour one copy of the east European mutation, N334K (Asn334-->Lys). The third mutation occurred in a French HFI patient known to be heterozygous for the widespread mutation, A174D (Ala174-->Asp): a single mutation, G-->A, in the consensus acceptor site 3' of intron 6 was found on the remaining allele. These mutations are predicted to abrogate synthesis of functional protein and thus represent null alleles of aldolase B. The mutant alleles can be readily detected in the amplification refractory mutation system (ARMS) or (for R59op and 3' intron 6) by digestion of amplified genomic fragments with DdeI or A1wNI, respectively, to facilitate direct diagnosis of HFI by molecular analysis of aldolase B genes.

  12. On the maintenance of genetic variation: global analysis of Kimura's continuum-of-alleles model.

    Science.gov (United States)

    Bürger, R

    1986-01-01

    Methods of functional analysis are applied to provide an exact mathematical analysis of Kimura's continuum-of-alleles model. By an approximate analysis, Kimura obtained the result that the equilibrium distribution of allelic effects determining a quantitative character is Gaussian if fitness decreases quadratically from the optimum and if production of new mutants follows a Gaussian density. Lande extended this model considerably and proposed that high levels of genetic variation can be maintained by mutation even when there is strong stabilizing selection. This hypothesis has been questioned recently by Turelli, who published analyses and computer simulations of some multiallele models, approximating the continuum-of-alleles model, and reviewed relevant data. He found that the Kimura and Lande predictions overestimate the amount of equilibrium variance considerably if selection is not extremely weak or mutation rate not extremely high. The present analysis provides the first proof that in Kimura's model an equilibrium in fact exists and, moreover, that it is globally stable. Finally, using methods from quantum mechanics, estimates of the exact equilibrium variance are derived which are in best accordance with Turelli's results. This shows that continuum-of-alleles models may be excellent approximations to multiallele models, if analysed appropriately.

  13. Estimating the probability of allelic drop-out of STR alleles in forensic genetics

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt;

    2009-01-01

    In crime cases with available DNA evidence, the amount of DNA is often sparse due to the setting of the crime. In such cases, allelic drop-out of one or more true alleles in STR typing is possible. We present a statistical model for estimating the per locus and overall probability of allelic drop......-out using the results of all STR loci in the case sample as reference. The methodology of logistic regression is appropriate for this analysis, and we demonstrate how to incorporate this in a forensic genetic framework....

  14. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Joseph L Mankowski

    Full Text Available Human immunodeficiency virus (HIV infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS disease using a well-characterized simian immunodeficiency (SIV/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5. Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001. Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.

  15. Responsiveness to Exogenous Camp of a Saccharomyces Cerevisiae Strain Conferred by Naturally Occurring Alleles of Pde1 and Pde2

    OpenAIRE

    Mitsuzawa, H.

    1993-01-01

    The Saccharomyces cerevisiae strain P-28-24C, from which cAMP requiring mutants derived, responded to exogenously added cAMP. Upon the addition of cAMP, this strain showed phenotypes shared by mutants with elevated activity of the cAMP pathway. Genetic analysis involving serial crosses of this strain to a strain with another genetic background revealed that the responsiveness to cAMP results from naturally occurring loss-of-function alleles of PDE1 and PDE2, which encode low and high affinity...

  16. Susceptibility genes for schizophrenia: mutant models, endophenotypes and psychobiology.

    Science.gov (United States)

    O'Tuathaigh, Colm M P; Desbonnet, Lieve; Moran, Paula M; Waddington, John L

    2012-01-01

    Schizophrenia is characterised by a multifactorial aetiology that involves genetic liability interacting with epigenetic and environmental factors to increase risk for developing the disorder. A consensus view is that the genetic component involves several common risk alleles of small effect and/or rare but penetrant copy number variations. Furthermore, there is increasing evidence for broader, overlapping genetic-phenotypic relationships in psychosis; for example, the same susceptibility genes also confer risk for bipolar disorder. Phenotypic characterisation of genetic models of candidate risk genes and/or putative pathophysiological processes implicated in schizophrenia, as well as examination of epidemiologically relevant gene × environment interactions in these models, can illuminate molecular and pathobiological mechanisms involved in schizophrenia. The present chapter outlines both the evidence from phenotypic studies in mutant mouse models related to schizophrenia and recently described mutant models addressing such gene × environment interactions. Emphasis is placed on evaluating the extent to which mutant phenotypes recapitulate the totality of the disease phenotype or model selective endophenotypes. We also discuss new developments and trends in relation to the functional genomics of psychosis which might help to inform on the construct validity of mutant models of schizophrenia and highlight methodological challenges in phenotypic evaluation that relate to such models.

  17. Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Konrad E. Mueller

    2016-01-01

    Full Text Available Although progress in Chlamydia genetics has been rapid, genomic modification has previously been limited to point mutations and group II intron insertions which truncate protein products. The bacterium has thus far been intractable to gene deletion or more-complex genomic integrations such as allelic exchange. Herein, we present a novel suicide vector dependent on inducible expression of a chlamydial gene that renders Chlamydia trachomatis fully genetically tractable and permits rapid reverse genetics by fluorescence-reported allelic exchange mutagenesis (FRAEM. We describe the first available system of targeting chlamydial genes for deletion or allelic exchange as well as curing plasmids from C. trachomatis serovar L2. Furthermore, this approach permits the monitoring of mutagenesis by fluorescence microscopy without disturbing bacterial growth, a significant asset when manipulating obligate intracellular organisms. As proof of principle, trpA was successfully deleted and replaced with a sequence encoding both green fluorescent protein (GFP and β-lactamase. The trpA-deficient strain was unable to grow in indole-containing medium, and this phenotype was reversed by complementation with trpA expressed in trans. To assess reproducibility at alternate sites, FRAEM was repeated for genes encoding type III secretion effectors CTL0063, CTL0064, and CTL0065. In all four cases, stable mutants were recovered one passage after the observation of transformants, and allelic exchange was limited to the specific target gene, as confirmed by whole-genome sequencing. Deleted sequences were not detected by quantitative real-time PCR (qPCR from isogenic mutant populations. We demonstrate that utilization of the chlamydial suicide vector with FRAEM renders C. trachomatis highly amenable to versatile and efficient genetic manipulation.

  18. The retarded hair growth (rhg mutation in mice is an allele of ornithine aminotransferase (Oat

    Directory of Open Access Journals (Sweden)

    Jason J. Bisaillon

    2014-01-01

    Full Text Available Because of the similar phenotypes they generate and their proximate reported locations on Chromosome 7, we tested the recessive retarded hair growth (rhg and frizzy (fr mouse mutations for allelism, but found instead that these defects complement. To discover the molecular basis of rhg, we analyzed a large intraspecific backcross panel that segregated for rhg and restricted this locus to a 0.9 Mb region that includes fewer than ten genes, only five of which have been reported to be expressed in skin. Complementation testing between rhg and a recessive null allele of fibroblast growth factor receptor 2 eliminated Fgfr2 as the possible basis of the retarded hair growth phenotype, but DNA sequencing of another of these candidates, ornithine aminotransferase (Oat, revealed a G to C transversion specifically associated with the rhg allele that would result in a glycine to alanine substitution at residue 353 of the gene product. To test whether this missense mutation might cause the mutant phenotype, we crossed rhg/rhg mice with mice that carried a recessive, perinatal-lethal, null mutation in Oat (designated OatΔ herein. Hybrid offspring that inherited both rhg and OatΔ displayed markedly delayed postnatal growth and hair development, indicating that these two mutations are allelic, and suggesting strongly that the G to C mutation in Oat is responsible for the retarded hair growth phenotype. Comparisons among +/+, +/rhg, rhg/rhg and rhg/OatΔ mice showed plasma ornithine levels and ornithine aminotransferase activities (in liver lysates consistent with this assignment. Because histology of 7- and 12-month-old rhg/rhg and rhg/OatΔ retinas revealed chorioretinal degeneration similar to that described previously for OatΔ/OatΔ mice, we suggest that the rhg mutant may offer an ideal model for gyrate atrophy of the choroid and retina (GACR in humans, which is also caused by the substitution of glycine 353 in some families.

  19. Chart Series

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) offers several different Chart Series with data on beneficiary health status, spending, operations, and quality...

  20. HLA-B alleles of the Cayapa of Ecuador: New B39 and B15 alleles

    Energy Technology Data Exchange (ETDEWEB)

    Garber, T.L.; Butler, L.M.; Watkins, D.I. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-05-01

    Recent data suggest that HLA-B locus alleles can evolve quickly in native South American populations. To investigate further this phenomenon of new HLA-B variants among Amerindians, we studied samples from another South American tribe, the Cayapa from Ecuador. We selected individuals for HLA-B molecular typing based upon their HLA class II typing results. Three new variants of HLA-B39 and one new variant of HLA-B15 were found in the Cayapa: HLA-B*3905, HLA-B*3906, HLA-B*3907, and HLA-B*1522. A total of thirteen new HLA-B alleles have now been found in the four South American tribes studied. Each of these four tribes studied, including the Cayapa, had novel alleles that were not found in any of the other tribes, suggesting that many of these new HLA-B alleles may have evolved since the Paleo-Indians originally populated South America. Each of these 13 new alleles contained predicted amino acid replacements that were located in the peptide binding site. These amino acid replacements may affect the sequence motif of the bound peptides, suggesting that these new alleles have been maintained by selection. New allelic variants have been found for all common HLA-B locus antigenic groups present in South American tribes with the exception of B48. In spite of its high frequency in South American tribes, no evidence for variants of B48 has been found in all the Amerindians studied, suggesting that B48 may have unique characteristics among the B locus alleles. 70 refs., 2 figs., 2 tabs.

  1. HLA-B alleles of the Cayapa of Ecuador: new B39 and B15 alleles.

    Science.gov (United States)

    Garber, T L; Butler, L M; Trachtenberg, E A; Erlich, H A; Rickards, O; De Stefano, G; Watkins, D I

    1995-01-01

    Recent data suggest that HLA-B locus alleles can evolve quickly in native South American populations. To investigate further this phenomenon of new HLA-B variants among Amerindians, we studied samples from another South American tribe, the Cayapa from Ecuador. We selected individuals for HLA-B molecular typing based upon their HLA class II typing results. Three new variants of HLA-B39 and one new variant of HLA-B15 were found in the Cayapa: HLA-B*3905, HLA-B*3906, HLA-B*3907, and HLA-B*1522. A total of thirteen new HLA-B alleles have now been found in the four South American tribes studied. Each of these four tribes studied, including the Cayapa, had novel alleles that were not found in any of the other tribes, suggesting that many of these new HLA-B alleles may have evolved since the Paleo-Indians originally populated South America. Each of these 13 new alleles contained predicted amino acid replacements that were located in the peptide binding site. These amino acid replacements may affect the sequence motif of the bound peptides, suggesting that these new alleles have been maintained by selection. New allelic variants have been found for all common HLA-B locus antigenic groups present in South American tribes with the exception of B48. In spite of its high frequency in South American tribes, no evidence for variants of B48 has been found in all the Amerindians studied, suggesting that B48 may have unique characteristics among the B locus alleles.

  2. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  3. Initial invasion of gametophytic self-incompatibility alleles in the absence of tight linkage between pollen and pistil S alleles.

    Science.gov (United States)

    Sakai, Satoki; Wakoh, Haluka

    2014-08-01

    In homomorphic self-incompatibility (SI) systems of plants, the loci controlling the pollen and pistil types are tightly linked, and this prevents the generation of compatible combinations of alleles expressing pollen and pistil types, which would result in self-fertilization. We modeled the initial invasion of the first pollen and pistil alleles in gametophytic SI to determine whether these alleles can stably coexist in a population without tight linkage. We assume pollen and pistil loci each carry an incompatibility allele S and an allele without an incompatibility function N. We assume that pollen with an S allele are incompatible with pistils carrying S alleles, whereas other crosses are compatible. Ovules in pistils carrying an S allele suffer viability costs because recognition consumes resources. We found that the cost of carrying a pistil S allele allows pollen and pistil S alleles to coexist in a stable equilibrium if linkage is partial. This occurs because parents that carry pistil S alleles but are homozygous for pollen N alleles cannot avoid self-fertilization; however, they suffer viability costs. Hence, pollen N alleles are selected again. When pollen and pistil S alleles can coexist in a polymorphic equilibrium, selection will favor tighter linkage.

  4. Specific TP53 Mutants Overrepresented in Ovarian Cancer Impact CNV, TP53 Activity, Responses to Nutlin-3a, and Cell Survival

    Directory of Open Access Journals (Sweden)

    Lisa K. Mullany

    2015-10-01

    Full Text Available Evolutionary Action analyses of The Cancer Gene Atlas data sets show that many specific p53 missense and gain-of-function mutations are selectively overrepresented and functional in high-grade serous ovarian cancer (HGSC. As homozygous alleles, p53 mutants are differentially associated with specific loss of heterozygosity (R273; chromosome 17; copy number variation (R175H; chromosome 9; and up-stream, cancer-related regulatory pathways. The expression of immune-related cytokines was selectively related to p53 status, showing for the first time that specific p53 mutants impact, and are related to, the immune subtype of ovarian cancer. Although the majority (31% of HGSCs exhibit loss of heterozygosity, a significant number (24% maintain a wild-type (WT allele and represent another HGSC subtype that is not well defined. Using human and mouse cell lines, we show that specific p53 mutants differentially alter endogenous WT p53 activity; target gene expression; and responses to nutlin-3a, a small molecular that activates WT p53 leading to apoptosis, providing “proof of principle” that ovarian cancer cells expressing WT and mutant alleles represent a distinct ovarian cancer subtype. We also show that siRNA knock down of endogenous p53 in cells expressing homozygous mutant alleles causes apoptosis, whereas cells expressing WT p53 (or are heterozygous for WT and mutant p53 alleles are highly resistant. Therefore, despite different gene regulatory pathways associated with specific p53 mutants, silencing mutant p53 might be a suitable, powerful, global strategy for blocking ovarian cancer growth in those tumors that rely on mutant p53 functions for survival. Knowing p53 mutational status in HGSC should permit new strategies tailored to control this disease.

  5. ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy.

    Science.gov (United States)

    Liu, Jing; Yu, Dongbo; Aiba, Yuichiro; Pendergraff, Hannah; Swayze, Eric E; Lima, Walt F; Hu, Jiaxin; Prakash, Thazha P; Corey, David R

    2013-11-01

    Single-stranded silencing RNAs (ss-siRNAs) provide an alternative approach to gene silencing. ss-siRNAs combine the simplicity and favorable biodistribution of antisense oligonucleotides with robust silencing through RNA interference (RNAi). Previous studies reported potent and allele-selective inhibition of human huntingtin expression by ss-siRNAs that target the expanded CAG repeats within the mutant allele. Mutant ataxin-3, the genetic cause of Machado-Joseph Disease, also contains an expanded CAG repeat. We demonstrate here that ss-siRNAs are allele-selective inhibitors of ataxin-3 expression and then redesign ss-siRNAs to optimize their selectivity. We find that both RNAi-related and non-RNAi-related mechanisms affect gene expression by either blocking translation or affecting alternative splicing. These results have four broad implications: (i) ss-siRNAs will not always behave similarly to analogous RNA duplexes; (ii) the sequences surrounding CAG repeats affect allele-selectivity of anti-CAG oligonucleotides; (iii) ss-siRNAs can function through multiple mechanisms and; and (iv) it is possible to use chemical modification to optimize ss-siRNA properties and improve their potential for drug discovery.

  6. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs.

    Science.gov (United States)

    Yao, Jing; Huang, Jiaojiao; Hai, Tang; Wang, Xianlong; Qin, Guosong; Zhang, Hongyong; Wu, Rong; Cao, Chunwei; Xi, Jianzhong Jeff; Yuan, Zengqiang; Zhao, Jianguo

    2014-11-05

    Pigs are ideal organ donors for xenotransplantation and an excellent model for studying human diseases, such as neurodegenerative disease. Transcription activator-like effector nucleases (TALENs) are used widely for gene targeting in various model animals. Here, we developed a strategy using TALENs to target the GGTA1, Parkin and DJ-1 genes in the porcine genome using Large White porcine fibroblast cells without any foreign gene integration. In total, 5% (2/40), 2.5% (2/80), and 22% (11/50) of the obtained colonies of fibroblast cells were mutated for GGTA1, Parkin, and DJ-1, respectively. Among these mutant colonies, over 1/3 were bi-allelic knockouts (KO), and no off-target cleavage was detected. We also successfully used single-strand oligodeoxynucleotides to introduce a short sequence into the DJ-1 locus. Mixed DJ-1 mutant colonies were used as donor cells for somatic cell nuclear transfer (SCNT), and three female piglets were obtained (two were bi-allelically mutated, and one was mono-allelically mutated). Western blot analysis showed that the expression of the DJ-1 protein was disrupted in KO piglets. These results imply that a combination of TALENs technology with SCNT can efficiently generate bi-allelic KO pigs without the integration of exogenous DNA. These DJ-1 KO pigs will provide valuable information for studying Parkinson's disease.

  7. A thirteen-year analysis of Plasmodium falciparum populations reveals high conservation of the mutant pfcrt haplotype despite the withdrawal of chloroquine from national treatment guidelines in Gabon

    Directory of Open Access Journals (Sweden)

    Ngoma Ghyslain

    2011-10-01

    Full Text Available Abstract Background Chloroquine resistance (CR decreased after the removal of chloroquine from national treatment guidelines in Malawi, Kenia and Tanzania. In this investigation the prevalence of the chloroquine resistance (CQR conferring mutant pfcrt allele and its associated chromosomal haplotype were determined before and after the change in Gabonese national treatment guidelines from chloroquine (CQ to artesunate plus amodiaquine (AQ in 2003. Methods The prevalence of the wild type pfcrt allele was assessed in 144 isolates from the years 2005 - 07 by PCR fragment restriction digest and direct sequencing. For haplotype analysis of the chromosomal regions flanking the pfcrt locus, microsatellite analysis was done on a total of 145 isolates obtained in 1995/96 (43 isolates, 2002 (47 isolates and 2005 - 07 (55 isolates. Results The prevalence of the mutant pfcrt allele decreased from 100% in the years 1995/96 and 2002 to 97% in 2005 - 07. Haplotype analysis showed that in 1995/96 79% of the isolates carried the same microsatellite alleles in a chromosomal fragment spanning 39 kb surrounding the pfcrt locus. In 2002 and 2005 - 07 the prevalence of this haplotype was 62% and 58%, respectively. Pfcrt haplotype analysis showed that all wild type alleles were CVMNK. Conclusion Four years after the withdrawal of CQ from national treatment guidelines the prevalence of the mutant pfcrt allele remains at 97%. The data suggest that the combination of artesunate plus AQ may result in continued selection for the mutant pfcrt haplotype even after discontinuance of CQ usage.

  8. Loss of genetic accuracy in mutants of the thermoacidophile Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Greg D. Bell

    2002-01-01

    Full Text Available To investigate how hyperthermophilic archaea can propagate their genomes accurately, we isolated Sulfolobus acidocaldarius mutants exhibiting abnormally high rates of spontaneous mutation. Our isolation strategy involved enrichment for mutator lineages via alternating selections, followed by screening for the production of spontaneous, 5-fluoro-orotate-resistant mutants in micro-colonies. Several candidates were evaluated and found to have high frequencies of pyrE and pyrF mutation and reversion. Neither an increased efficiency of plating of mutants on selective medium, nor the creation of a genetically unstable pyrE allele, could be implicated as the cause of these high frequencies. The strains had elevated frequencies of other mutations, and exhibited certain phenotypic differences among themselves. A large increase in sensitivity to DNA-damaging agents was not observed, however. These properties generally resemble those of bacterial mutator mutants and suggest loss of functions specific to genetic accuracy.

  9. Hyper- and hyporesponsive mutant forms of the Saccharomyces cerevisiae Ssy1 amino acid sensor

    DEFF Research Database (Denmark)

    Poulsen, Peter; Gaber, Richard F.; Kielland-Brandt, Morten

    2008-01-01

    T639I) turned out to be hyporesponsive, i.e., it signals only at high inducer concentration. In accordance with a transporter-like mechanism for Ssy1p function we suggest that the hyper- and hyporesponsive mutant forms differ from the wild-type sensor by being more and less inclined, respectively...... related to amino acid permeases, but unable to transport amino acids. We isolated SSY1 mutants that constitutively activate a target promoter. Dose-response analysis showed that the mutants are hyperresponsive, requiring less inducer to give strong signaling than does the wild type. Another mutant (Ssy1p......, to adopt an outward-facing, signaling conformation. Coordinate conformational dynamics of the sensor complex was supported by additive effects of combinations of constitutive SSY1, PTR3 and SSY5 alleles. Assuming structural similarity of Ssy1p to the distantly related bacterial leucine transporter Leu...

  10. Characterization of newly established colorectal cancer cell lines: correlation between cytogenetic abnormalities and allelic deletions associated with multistep tumorigenesis

    Indian Academy of Sciences (India)

    Hans Gerdes; Abul Elahi; Quanguang Chen; Suresh C. Jhanwar

    2000-01-01

    We have established a series of 20 colorectal cancer cell lines and performed cytogenetic and RFLP analyses to show that the recurrent genetic abnormalities of chromosomes 1, 5, 17 and 18 associated with multistep tumorigenesis in colorectal cancer, and frequently detected as recurrent abnormalities in primary tumours, are also retained in long-term established cell lines. Earlier studies by us and other investigators showed that allelic losses of chromosomes 1 and 17 in primary colorectal cancers predicted poorer survival for the patients $(P = 0.03)$. We utilized the cell lines to identify specific chromosomal sites or gene(s) on chromosomes 1 and 17 which confer more aggressive phenotype. Cytogenetic deletions of chromosome 1p were detected in 14 out of the 20 (70%) cell lines, whereas allelic deletions for 1p using polymorphic markers were detected in 13 out of 18 (72%) informative cell lines for at least one polymorphic marker. We have performed Northern blotting, immunohistochemical staining (p53 mRNA, protein) and RFLP analysis using several probes including p53 and nm23. RFLP analysis using a total of seven polymorphic markers located on 17p and 17q arms showed allelic losses around the p53 locus in 16 out of the 20 cell lines (80%), four of which were losses of the p53 locus itself. In addition, seven cell lines (out of nine informative cases) also showed losses of the nm23 gene, four with concurrent losses of the p53 locus, while the remaining three were homozygous. In addition, five out of seven cell lines with nm23 deletions were derived from hepatic metastatic tumours, and one cell line was obtained from recurrent tumour. A comparison between allelic deletions of 1p and functional loss of nm23 gene revealed a close association between these two events in cell lines derived from hepatic metastasis. Following immunohistochemical staining, nine out of the twenty cell lines showed high levels (25–80%) of mutant p53, four showed intermediate levels (< 20

  11. Frequency of CCR5Δ32 allele in healthy Bosniak population.

    Directory of Open Access Journals (Sweden)

    Grażyna Adler

    2014-08-01

    Full Text Available Recent evidence has demonstrated the role of CCR5Δ32 in a variety of human diseases: from infectious and inflammatory diseases to cancer. Several studies have confirmed that genetic variants in chemokine receptor CCR5 gene are correlated with susceptibility and resistance to HIV infection. A 32-nucleotide deletion within the CCR5 reading frame is associated with decreased susceptibility to HIV acquisition and a slower progression to AIDS. Mean frequency of CCR5Δ32 allele in Europe is approximately 10%. The highest allele frequency is observed among Nordic populations (about 12% and lower in the regions of Southeast Mediterranean (about 5%. Although the frequency of CCR5Δ32 was determined in numerous European populations, there is a lack of studies on this variant in the Bosnia and Hercegovina population. Therefore, the aim of our study was to assess the frequency of CCR5Δ32 allele in the cohort of Bosniaks and compare the results with European reports. CCR5Δ32 was detected by sequence-specific PCR in a sample of 100 healthy subjects from Bosnia and Herzegovina (DNA collected 2011-2013.  Mean age of the cohort being 58.8 (±10.7 years, with 82% of women. We identified 17 heterozygotes and one mutant homozygote in study group, with mean ∆32 allele frequency of 9.5%. CCR5∆32 allele frequency among Bosniaks is comparable to that found in Caucasian populations and follows the pattern of the north-southern gradient observed for Europe. Further studies on larger cohorts with adequate female-to-male ratio are necessary. 

  12. XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer | Office of Cancer Genomics

    Science.gov (United States)

    The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity.

  13. Normal and mutant HTT interact to affect clinical severity and progression in Huntington disease

    DEFF Research Database (Denmark)

    Aziz, N A; Jurgens, C K; Landwehrmeyer, G B;

    2009-01-01

    OBJECTIVE: Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion in the HD gene (HTT). We aimed to assess whether interaction between CAG repeat sizes in the mutant and normal allele could affect disease severity and progression. METHODS: Using...... with less severe symptoms and pathology. CONCLUSIONS: Increasing CAG repeat size in normal HTT diminishes the association between mutant CAG repeat size and disease severity and progression in Huntington disease. The underlying mechanism may involve interaction of the polyglutamine domains of normal...

  14. PCR screening and allele frequency estimation of bovine leukocyte adhesion deficiency in Holstein and Gir cattle in Brazil

    Directory of Open Access Journals (Sweden)

    Luciana A. Ribeiro

    2000-12-01

    Full Text Available Bovine leukocyte adhesion deficiency (BLAD is a disease known to affect the Holstein cattle breed throughout the world. Eighty-eight Holstein dairy cows and 88 Gir dairy bulls were genotyped by PCR for the CD18 BLAD alelle. The frequency of the BLAD mutant allele and the BLAD-carrier prevalence in Brazilian Holstein cows were 2.8 and 5.7%, respectively. No mutant allele was found in any of the 88 Gir animals. We conclude that the CD18 gene mutation is prevalent in Brazilian Holstein cattle and absent or present at a very low frequency in Gir cattle.Oitenta e oito vacas da raça Holandesa e 88 touros da raça Gir foram genotipados através da PCR para o gene CD18 da deficiência de adesão de leucócitos em bovinos (BLAD. As freqüências do alelo mutante BLAD e de vacas heterozigotas da raça Holandesa foram 2,8 e 5,7%, respectivamente. Por outro lado, todos animais Gir foram identificados como homozigotos normais, ou seja, nenhum alelo mutante BLAD foi encontrado. Estes resultados sugerem que a mutação no gene CD18 é prevalente em bovinos brasileiros da raça Holandesa e ausente ou presente numa freqüência muito baixa em animais Gir.

  15. Dideoxy single allele-specific PCR - DSASP new method to discrimination allelic

    Directory of Open Access Journals (Sweden)

    Eleonidas Moura Lima

    2015-06-01

    Full Text Available Gastric cancer (GC is a multifactorial disease with a high mortality rate in Brazil and worldwide. This work aimed to evaluate single nucleotide polymorphisms (SNP rs1695, in the Glutathione S-Transferase Pi (GSTP1 gene in GC samples by comparative analysis Specific PCR - ASP and Dideoxy Single Allele-Specific PCR - DSASP methods. The DSASP is the proposed new method for allelic discrimination. This work analyzed 60 GC samples, 26 diffuse and 34 intestinal types. The SNP rs1695 of the GSTP1 gene was significantly associated with GC analyzed by DSASP method (χ2 = 9.7, P 0.05. These results suggest that the SNP rs1695 of the GSTP1 gene was a risk factor associated with gastric carcinogens is and the DSASP method was a new successfully low-cost strategy to study allelic discrimination.

  16. Determination of DQB1 alleles using PCR amplification and allele-specific primers.

    Science.gov (United States)

    Lepage, V; Ivanova, R; Loste, M N; Mallet, C; Douay, C; Naoumova, E; Charron, D

    1995-10-01

    Molecular genotyping of HLA class II genes is commonly carried out using polymerase chain reaction (PCR) in combination with sequence-specific oligotyping (PCR-SSO) or a combination of the PCR and restriction fragment length polymorphism methods (PCR-RFLP). However, the identification of the DQB1 type by PCR-SSO and PCR-RFLP is very time-consuming which is disadvantageous for the typing of cadaveric organ donors. We have developed a DQB1 typing method using PCR in combination with allele-specific amplification (PCR-ASA), which allows the identification of the 17 most frequent alleles in one step using seven amplification mixtures. PCR allele-specific amplification HLA-DQB1 typing is easy to perform, and the results are easy to interpret in routine clinical practice. The PCR-ASA method is therefore better suited to DQB1 typing for organ transplantation than other methods.

  17. Allelic genealogies in sporophytic self-incompatibility systems in plants

    DEFF Research Database (Denmark)

    Schierup, M H; Vekemans, X; Christiansen, F B

    1998-01-01

    Expectations for the time scale and structure of allelic genealogies in finite populations are formed under three models of sporophytic self-incompatibility. The models differ in the dominance interactions among the alleles that determine the self-incompatibility phenotype: In the SSIcod model...... action, and the most recessive extant allele is likely to be the most recent common ancestor. Despite these asymmetries, the expected shape of the allele genealogies does not deviate markedly from the shape of a neutral gene genealogy. The application of the results to sequence surveys of alleles...

  18. p21-ras effector domain mutants constructed by "cassette" mutagenesis

    DEFF Research Database (Denmark)

    Stone, J C; Vass, W C; Willumsen, B M;

    1988-01-01

    A series of mutations encoding single-amino-acid substitutions within the v-rasH effector domain were constructed, and the ability of the mutants to induce focal transformation of NIH 3T3 cells was studied. The mutations, which spanned codons 32 to 40, were made by a "cassette" mutagenesis...... technique that involved replacing this portion of the v-rasH effector domain with a linker carrying two BspMI sites in opposite orientations. Since BspMI cleaves outside its recognition sequence, BspMI digestion of the plasmid completely removed the linker, creating a double-stranded gap whose missing ras...... sequences were reconstructed as an oligonucleotide cassette. Based upon the ability of the mutants to induce focal transformation of NIH 3T3 cells, a range of phenotypes from virtually full activity to none (null mutants) was seen. Three classes of codons were present in this segment: one which could...

  19. Mutants of GABA transaminase (POP2 suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh mutants in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Frank Ludewig

    Full Text Available BACKGROUND: The gamma-aminubutyrate (GABA shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD, the mitochondrial enzymes GABA transaminase (GABA-T; POP2 and succinic semialdehyde dehydrogenase (SSADH. We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported. PRINCIPAL FINDINGS: To elucidate the role of succinic semialdehyde (SSA, gamma-hydroxybutyrate (GHB and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants. SIGNIFICANCE: We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.

  20. Analysis of a lin-42/period Null Allele Implicates All Three Isoforms in Regulation of Caenorhabditis elegans Molting and Developmental Timing

    Science.gov (United States)

    Edelman, Theresa L. B.; McCulloch, Katherine A.; Barr, Angela; Frøkjær-Jensen, Christian; Jorgensen, Erik M.; Rougvie, Ann E.

    2016-01-01

    The Caenorhabditis elegans heterochronic gene pathway regulates the relative timing of events during postembryonic development. lin-42, the worm homolog of the circadian clock gene, period, is a critical element of this pathway. lin-42 function has been defined by a set of hypomorphic alleles that cause precocious phenotypes, in which later developmental events, such as the terminal differentiation of hypodermal cells, occur too early. A subset of alleles also reveals a significant role for lin-42 in molting; larval stages are lengthened and ecdysis often fails in these mutant animals. lin-42 is a complex locus, encoding overlapping and nonoverlapping isoforms. Although existing alleles that affect subsets of isoforms have illuminated important and distinct roles for this gene in developmental timing, molting, and the decision to enter the alternative dauer state, it is essential to have a null allele to understand all of the roles of lin-42 and its individual isoforms. To remedy this problem and discover the null phenotype, we engineered an allele that deletes the entire lin-42 protein-coding region. lin-42 null mutants are homozygously viable, but have more severe phenotypes than observed in previously characterized hypomorphic alleles. We also provide additional evidence for this conclusion by using the null allele as a base for reintroducing different isoforms, showing that each isoform can provide heterochronic and molting pathway activities. Transcript levels of the nonoverlapping isoforms appear to be under coordinate temporal regulation, despite being driven by independent promoters. The lin-42 null allele will continue to be an important tool for dissecting the functions of lin-42 in molting and developmental timing. PMID:27729432

  1. Analysis of a lin-42/period Null Allele Implicates All Three Isoforms in Regulation of Caenorhabditis elegans Molting and Developmental Timing.

    Science.gov (United States)

    Edelman, Theresa L B; McCulloch, Katherine A; Barr, Angela; Frøkjær-Jensen, Christian; Jorgensen, Erik M; Rougvie, Ann E

    2016-12-07

    The Caenorhabditis elegans heterochronic gene pathway regulates the relative timing of events during postembryonic development. lin-42, the worm homolog of the circadian clock gene, period, is a critical element of this pathway. lin-42 function has been defined by a set of hypomorphic alleles that cause precocious phenotypes, in which later developmental events, such as the terminal differentiation of hypodermal cells, occur too early. A subset of alleles also reveals a significant role for lin-42 in molting; larval stages are lengthened and ecdysis often fails in these mutant animals. lin-42 is a complex locus, encoding overlapping and nonoverlapping isoforms. Although existing alleles that affect subsets of isoforms have illuminated important and distinct roles for this gene in developmental timing, molting, and the decision to enter the alternative dauer state, it is essential to have a null allele to understand all of the roles of lin-42 and its individual isoforms. To remedy this problem and discover the null phenotype, we engineered an allele that deletes the entire lin-42 protein-coding region. lin-42 null mutants are homozygously viable, but have more severe phenotypes than observed in previously characterized hypomorphic alleles. We also provide additional evidence for this conclusion by using the null allele as a base for reintroducing different isoforms, showing that each isoform can provide heterochronic and molting pathway activities. Transcript levels of the nonoverlapping isoforms appear to be under coordinate temporal regulation, despite being driven by independent promoters. The lin-42 null allele will continue to be an important tool for dissecting the functions of lin-42 in molting and developmental timing.

  2. Pistil-function breakdown in a new S-allele of European pear, S21*, confers self-compatibility.

    Science.gov (United States)

    Sanzol, Javier

    2009-03-01

    European pear exhibits RNase-based gametophytic self-incompatibility controlled by the polymorphic S-locus. S-allele diversity of cultivars has been extensively investigated; however, no mutant alleles conferring self-compatibility have been reported. In this study, two European pear cultivars, 'Abugo' and 'Ceremeño', were classified as self-compatible after fruit/seed setting and pollen tube growth examination. S-genotyping through S-PCR and sequencing identified a new S-RNase allele in the two cultivars, with identical deduced amino acid sequence as S(21), but differing at the nucleotide level. Test-pollinations and analysis of descendants suggested that the new allele is a self-compatible pistil-mutated variant of S(21), so it was named S(21)*. S-genotypes assigned to 'Abugo' and 'Ceremeño' were S(10)S(21)* and S(21)*S(25) respectively, of which S(25) is a new functional S-allele of European pear. Reciprocal crosses between cultivars bearing S(21) and S(21)* indicated that both alleles exhibit the same pollen function; however, cultivars bearing S(21)* had impaired pistil-S function as they failed to reject either S(21) or S (21)* pollen. RT-PCR analysis showed absence of S(21)* -RNase gene expression in styles of 'Abugo' and 'Ceremeño', suggesting a possible origin for S(21)* pistil dysfunction. Two polymorphisms found within the S-RNase genomic region (a retrotransposon insertion within the intron of S(21)* and indels at the 3'UTR) might explain the different pattern of expression between S(21) and S(21)*. Evaluation of cultivars with unknown S-genotype identified another cultivar 'Azucar Verde' bearing S(21)*, and pollen tube growth examination confirmed self-compatibility for this cultivar as well. This is the first report of a mutated S-allele conferring self-compatibility in European pear.

  3. Exposures series

    OpenAIRE

    Stimson, Blake

    2011-01-01

    Reaktion Books’ Exposures series, edited by Peter Hamilton and Mark Haworth-Booth, is comprised of 13 volumes and counting, each less than 200 pages with 80 high-quality illustrations in color and black and white. Currently available titles include Photography and Australia, Photography and Spirit, Photography and Cinema, Photography and Literature, Photography and Flight, Photography and Egypt, Photography and Science, Photography and Africa, Photography and Italy, Photography and the USA, P...

  4. Genetic Screening Identifies Cyanogenesis-Deficient Mutants of Lotus japonicus and Reveals Enzymatic Specificity in Hydroxynitrile Glucoside Metabolism

    DEFF Research Database (Denmark)

    Takos, A.; Lai, D.; Mikkelsen, L.;

    2010-01-01

    content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled....... We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside....... Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the beta-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related beta-glucosidase, BGD4, were identified. This indicated that BGD4...

  5. Plasminogen alleles influence susceptibility to invasive aspergillosis.

    Directory of Open Access Journals (Sweden)

    Aimee K Zaas

    2008-06-01

    Full Text Available Invasive aspergillosis (IA is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855 correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn was also identified in the human homolog (PLG; Gene ID 5340. An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection.

  6. Development of allele-specific therapeutic siRNA in Meesmann epithelial corneal dystrophy.

    Directory of Open Access Journals (Sweden)

    Haihui Liao

    Full Text Available BACKGROUND: Meesmann epithelial corneal dystrophy (MECD is an inherited eye disorder caused by dominant-negative mutations in either keratins K3 or K12, leading to mechanical fragility of the anterior corneal epithelium, the outermost covering of the eye. Typically, patients suffer from lifelong irritation of the eye and/or photophobia but rarely lose visual acuity; however, some individuals are severely affected, with corneal scarring requiring transplant surgery. At present no treatment exists which addresses the underlying pathology of corneal dystrophy. The aim of this study was to design and assess the efficacy and potency of an allele-specific siRNA approach as a future treatment for MECD. METHODS AND FINDINGS: We studied a family with a consistently severe phenotype where all affected persons were shown to carry heterozygous missense mutation Leu132Pro in the KRT12 gene. Using a cell-culture assay of keratin filament formation, mutation Leu132Pro was shown to be significantly more disruptive than the most common mutation, Arg135Thr, which is associated with typical, mild MECD. A siRNA sequence walk identified a number of potent inhibitors for the mutant allele, which had no appreciable effect on wild-type K12. The most specific and potent inhibitors were shown to completely block mutant K12 protein expression with negligible effect on wild-type K12 or other closely related keratins. Cells transfected with wild-type K12-EGFP construct show a predominantly normal keratin filament formation with only 5% aggregate formation, while transfection with mutant K12-EGFP construct resulted in a significantly higher percentage of keratin aggregates (41.75%; p<0.001 with 95% confidence limits. The lead siRNA inhibitor significantly rescued the ability to form keratin filaments (74.75% of the cells contained normal keratin filaments; p<0.001 with 95% confidence limits. CONCLUSIONS: This study demonstrates that it is feasible to design highly potent si

  7. Mutants of phospholipase A (pPLA-I) have a red light and auxin phenotype.

    Science.gov (United States)

    Effendi, Yunus; Radatz, Katrin; Labusch, Corinna; Rietz, Steffen; Wimalasekera, Rinukshi; Helizon, Hanna; Zeidler, Mathias; Scherer, Günther F E

    2014-07-01

    pPLA-I is the evolutionarily oldest patatin-related phospholipase A (pPLA) in plants, which have previously been implicated to function in auxin and defence signalling. Molecular and physiological analysis of two allelic null mutants for pPLA-I [ppla-I-1 in Wassilewskija (Ws) and ppla-I-3 in Columbia (Col) ] revealed pPLA-I functions in auxin and light signalling. The enzyme is localized in the cytosol and to membranes. After auxin application expression of early auxin-induced genes is significantly slower compared with wild type and both alleles show a slower gravitropic response of hypocotyls, indicating compromised auxin signalling. Additionally, phytochrome-modulated responses like abrogation of gravitropism, enhancement of phototropism and growth in far red-enriched light are decreased in both alleles. While early flowering, root coils and delayed phototropism are only observed in the Ws mutant devoid of phyD, the light-related phenotypes observed in both alleles point to an involvement of pPLA-I in phytochrome signalling.

  8. A new conditional Apc-mutant mouse model for colorectal cancer.

    Science.gov (United States)

    Robanus-Maandag, Els C; Koelink, Pim J; Breukel, Cor; Salvatori, Daniela C F; Jagmohan-Changur, Shantie C; Bosch, Cathy A J; Verspaget, Hein W; Devilee, Peter; Fodde, Riccardo; Smits, Ron

    2010-05-01

    Mutations of the adenomatous polyposis coli (APC) gene predispose individuals to familial adenomatous polyposis (FAP), characterized by multiple tumours in the large intestine. Most mouse models heterozygous for truncating mutant Apc alleles mimic FAP, however, the intestinal tumours occur mainly in the small intestine. To model large intestinal tumours, we generated a new conditional Apc-mutant allele, Apc(15lox), with exon 15 flanked by loxP sites. Similar survival of Apc(1638N/15lox) and Apc(1638N/+) mice indicated that the normal function of Apc was not impaired by the loxP sites. Deletion of exon 15, encoding nearly all functional Apc domains and containing the polyadenylation signal, resulted in a mutant allele expressing low levels of a 74 kDa truncated Apc protein. Germ line Cre-mediated deletion of exon 15 resulted in Apc(Delta15/+) mice, showing a severe Apc(Min/+)-like phenotype characterized by multiple tumours in the small intestine and early lethality. In contrast, conditional Cre-mediated deletion of exon 15 specifically directed to the epithelia of distal small and large intestine of FabplCre;Apc(15lox/+) mice led to longer survival and to tumours that developed predominantly in the large intestine, mimicking human FAP-associated colorectal cancer and sporadic colorectal cancer. We conclude that the FabplCre;Apc(15lox/+) mouse should be an attractive model for studies on prevention and treatment of colorectal cancer.

  9. Engineered zinc-finger proteins can compensate genetic haploinsufficiency by transcriptional activation of the wild-type allele: application to Willams-Beuren syndrome and supravalvular aortic stenosis.

    Science.gov (United States)

    Zhang, Pei; Huang, Angela; Morales-Ruiz, Manuel; Starcher, Barry C; Huang, Yan; Sessa, William C; Niklason, Laura E; Giordano, Frank J

    2012-11-01

    Williams-Beuren syndrome (WBS) and supravalvular aortic stenosis (SVAS) are genetic syndromes marked by the propensity to develop severe vascular stenoses. Vascular lesions in both syndromes are caused by haploinsufficiency of the elastin gene. We used these distinct genetic syndromes as models to evaluate the feasibility of using engineered zinc-finger protein transcription factors (ZFPs) to achieve compensatory expression of haploinsufficient genes by inducing augmented expression from the remaining wild-type allele. For complex genes with multiple splice variants, this approach could have distinct advantages over cDNA-based gene replacement strategies. Targeting the elastin gene, we show that transcriptional activation by engineered ZFPs can induce compensatory expression from the wild-type allele in the setting of classic WBS and SVAS genetic mutations, increase elastin expression in wild-type cells, induce expression of the major elastin splice variants, and recapitulate their natural stoichiometry. Further, we establish that transcriptional activation of the mutant allele in SVAS does not overcome nonsense-mediated decay, and thus ZFP-mediated transcriptional activation is not likely to induce production of a mutant protein, a crucial consideration. Finally, we show in bioengineered blood vessels that ZFP-mediated induction of elastin expression is capable of stimulating functional elastogenesis. Haploinsufficiency is a common mechanism of genetic disease. These findings have significant implications for WBS and SVAS, and establish that haploinsufficiency can be overcome by targeted transcriptional activation without inducing protein expression from the mutant allele.

  10. Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum.

    Science.gov (United States)

    Xu, Heng; Shen, Dong; Wu, Xue-Qiang; Liu, Zhi-Wei; Yang, Qi-He

    2014-10-01

    A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co(2+) or Mg(2+) for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme.

  11. Growth, seed development and genetic analysis in wild type and Def mutant of Pisum sativum L

    Directory of Open Access Journals (Sweden)

    Ayeh Kwadwo

    2011-11-01

    Full Text Available Abstract Background The def mutant pea (Pisum sativum L showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the def allele in F2 and F3 populations. Findings Pod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW, width of funicles (WFN, seed width (SW and seed height (SH were highly correlated and their relationships were determined in both wild type and def mutant peas. The coefficient of determination R2 values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the def dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearson's chi square analysis revealed that the inheritance and segregation of the Def locus in 3:1 ratio was significant in two F2 populations. Structural analysis of the F3 population was used to confirm the inheritance status of the Def locus in F2 heterozygote plants. Conclusions This study investigated the inheritance of the presence or absence of the Def allele, controlling the presence of an abscission zone (AZ or an abscission-less zone (ALZ forming in wild type and mutant lines respectively. The single major gene (Def controlling this phenotype was monogenic and def mutants were characterized and controlled by the homozygous recessive def allele that showed no palisade layers in the hilum region of the seed coat.

  12. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Clévio Nóbrega

    Full Text Available Machado-Joseph disease (MJD or spinocerebellar ataxia type 3 (SCA3 is an autosomal dominantly-inherited neurodegenerative disorder caused by the over-repetition of a CAG codon in the MJD1 gene. This expansion translates into a polyglutamine tract that confers a toxic gain-of-function to the mutant protein--ataxin-3, leading to neurodegeneration in specific brain regions, with particular severity in the cerebellum. No treatment able to modify the disease progression is available. However, gene silencing by RNA interference has shown promising results. Therefore, in this study we investigated whether lentiviral-mediated allele-specific silencing of the mutant ataxin-3 gene, after disease onset, would rescue the motor behavior deficits and neuropathological features in a severely impaired transgenic mouse model of MJD. For this purpose, we injected lentiviral vectors encoding allele-specific silencing-sequences (shAtx3 into the cerebellum of diseased transgenic mice expressing the targeted C-variant of mutant ataxin-3 present in 70% of MJD patients. This variation permits to discriminate between the wild-type and mutant forms, maintaining the normal function of the wild-type allele and silencing only the mutant form. Quantitative analysis of rotarod performance, footprint and activity patterns revealed significant and robust alleviation of gait, balance (average 3-fold increase of rotarod test time, locomotor and exploratory activity impairments in shAtx3-injected mice, as compared to control ones injected with shGFP. An important improvement of neuropathology was also observed, regarding the number of intranuclear inclusions, calbindin and DARPP-32 immunoreactivity, fluorojade B and Golgi staining and molecular and granular layers thickness. These data demonstrate for the first time the efficacy of gene silencing in blocking the MJD-associated motor-behavior and neuropathological abnormalities after the onset of the disease, supporting the use of

  13. Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers.

    Science.gov (United States)

    Sonneveld, T; Tobutt, K R; Robbins, T P

    2003-10-01

    PCR-based identification of all 13 known self-incompatibility (S) alleles of sweet cherry is reported. Two pairs of consensus primers were designed from our previously published cDNA sequences of S(1) to S(6) S-RNases, the stylar components of self-incompatibility, to reveal length variation of the first and the second introns. With the exception of the first intron of S(13), these also amplified S(7) to S(14) and an allele previously referred to as S(x), which we now label S(16). The genomic PCR products were cloned and sequenced. The partial sequence of S(11) matched that of S(7) and the alleles were shown to have the same functional specificity. Allele-specific primers were designed for S(7) to S(16), so that allele-specific primers are now available for all 13 S alleles of cherry (S(8), S(11) and S(15) are duplicates). These can be used to distinguish between S alleles with introns of similar size and to confirm genotypes determined with consensus primers. The reliability of the PCR with allele-specific primers was improved by the inclusion of an internal control. The use of the consensus and allele-specific primers was demonstrated by resolving conflicting genotypes that have been published recently and by determining genotypes of 18 new cherry cultivars. Two new groups are proposed, Group XXIII (S(3) S(16)), comprising 'Rodmersham Seedling' and 'Strawberry Heart', and Group XXIV (S(6) S(12)), comprising 'Aida' and 'Flamentiner'. Four new self-compatibility genotypes, S(3) S(3)', S(4)' S(6), S(4)' S(9) and S(4)' S(13), were found. The potential use of the consensus primers to reveal incompatibility alleles in other cherry species is also demonstrated.

  14. Wild Accessions and Mutant Resources

    DEFF Research Database (Denmark)

    Kawaguchi, Masayoshi; Sandal, Niels Nørgaard

    2014-01-01

    Lotus japonicus, Lotus burttii, and Lotus filicaulis are species of Lotus genus that are utilized for molecular genetic analysis such as the construction of a linkage map and QTL analysis. Among them, a number of mutants have been isolated from two wild accessions: L. japonicus Gifu B-129...

  15. A Temporarily Red Light-Insensitive Mutant of Tomato Lacks a Light-Stable, B-Like Phytochrome.

    Science.gov (United States)

    Van Tuinen, A.; Kerckhoffs, LHJ.; Nagatani, A.; Kendrick, R. E.; Koornneef, M.

    1995-07-01

    We have selected four recessive mutants in tomato (Lycopersicon esculentum Mill.) that, under continuous red light (R), have long hypocotyls and small cotyledons compared to wild type (WT), a phenotype typical of phytochrome B (phyB) mutants of other species. These mutants, which are allelic, are only insensitive to R during the first 2 days upon transition from darkness to R, and therefore we propose the gene symbol tri (temporarily red light insensitive). White light-grown mutant plants have a more elongated growth habit than that of the WT. An immunochemically and spectrophotometrically detectable phyB-like polypeptide detectable in the WT is absent or below detection limits in the tri1 mutant. In contrast to the absence of an elongation growth response to far-red light (FR) given at the end of the daily photoperiod (EODFR) in all phyB-deficient mutants so far characterized, the tri1 mutant responds to EODFR treatment. The tri1 mutant also shows a strong response to supplementary daytime far-red light. We propose that the phyB-like phytochrome deficient in the tri mutants plays a major role during de-etiolation and that other light-stable phytochromes can regulate the EODFR and shade-avoidance responses in tomato.

  16. Far-red light-insensitive, phytochrome A-deficient mutants of tomato.

    Science.gov (United States)

    van Tuinen, A; Kerckhoffs, L H; Nagatani, A; Kendrick, R E; Koornneef, M

    1995-01-20

    We have selected two recessive mutants of tomato with slightly longer hypocotyls than the wild type, one under low fluence rate (3 mumol/m2/s) red light (R) and the other under low fluence rate blue light. These two mutants were shown to be allelic and further analysis revealed that hypocotyl growth was totally insensitive to far-red light (FR). We propose the gene symbol fri (far-red light insensitive) for this locus and have mapped it on chromosome 10. Immunochemically detectable phytochrome A polypeptide is essentially absent in the fri mutants as is the bulk spectrophotometrically detectable labile phytochrome pool in etiolated seedlings. A phytochrome B-like polypeptide is present in normal amounts and a small stable phytochrome pool can be readily detected by spectrophotometry in the fri mutants. Inhibition of hypocotyl growth by a R pulse given every 4 h is quantitatively similar in the fri mutants and wild type and the effect is to a large extent reversible if R pulses are followed immediately by a FR pulse. After 7 days in darkness, both fri mutants and the wild type become green on transfer to white light, but after 7 days in FR, the wild-type seedlings that have expanded their cotyledons lose their capacity to green in white light, while the fri mutants de-etiolate. Adult plants of the fri mutants show retarded growth and are prone to wilting, but exhibit a normal elongation response to FR given at the end of the daily photoperiod. The inhibition of seed germination by continuous FR exhibited by the wild type is normal in the fri mutants.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. DQB1*06:02 allele-specific expression varies by allelic dosage, not narcolepsy status

    DEFF Research Database (Denmark)

    Weiner Lachmi, Karin; Lin, Ling; Kornum, Birgitte Rahbek;

    2012-01-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single-allele human leukocyte antigen (HLA) associations. In this study, we explored genome-wide expression...... in peripheral white blood cells of 50 narcolepsy versus 47 controls (half of whom were DQB1*06:02 positive) and observed the largest differences between the groups in the signal from HLA probes. Further studies of HLA-DQ expression (mRNA and protein in a subset) in 125 controls and 147 narcolepsy cases did...... indicate that allelic dosage is transmitted into changes in heterodimer availability, a phenomenon that may explain the increased risk for narcolepsy in DQB1*06:02 homozygotes versus heterozygotes....

  18. A Small Indel Mutant Mouse Model of Epidermolytic Palmoplantar Keratoderma and Its Application to Mutant-specific shRNA Therapy.

    Science.gov (United States)

    Lyu, Ya-Su; Shi, Pei-Liang; Chen, Xiao-Ling; Tang, Yue-Xiao; Wang, Yan-Fang; Liu, Rong-Rong; Luan, Xiao-Rui; Fang, Yu; Mei, Ru-Huan; Du, Zhen-Fang; Ke, Hai-Ping; Matro, Erik; Li, Ling-En; Lin, Zhao-Yu; Zhao, Jing; Gao, Xiang; Zhang, Xian-Ning

    2016-03-22

    Epidermolytic palmoplantar keratoderma (EPPK) is a relatively common autosomal-dominant skin disorder caused by mutations in the keratin 9 gene (KRT9), with few therapeutic options for the affected so far. Here, we report a knock-in transgenic mouse model that carried a small insertion-deletion (indel) mutant of Krt9, c.434delAinsGGCT (p.Tyr144delinsTrpLeu), corresponding to the human mutation KRT9/c.500delAinsGGCT (p.Tyr167delinsTrpLeu), which resulted in a human EPPK-like phenotype in the weight-stress areas of the fore- and hind-paws of both Krt9(+/mut) and Krt9(mut/mut) mice. The phenotype confirmed that EPPK is a dominant-negative condition, such that mice heterozygotic for the K9-mutant allele (Krt9(+/mut)) showed a clear EPPK-like phenotype. Then, we developed a mutant-specific short hairpin RNA (shRNA) therapy for EPPK mice. Mutant-specific shRNAs were systematically identified in vitro using a luciferase reporter gene assay and delivered into Krt9(+/mut) mice. shRNA-mediated knockdown of mutant protein resulted in almost normal morphology and functions of the skin, whereas the same shRNA had a negligible effect in wild-type K9 mice. Our results suggest that EPPK can be treated by gene therapy, and this has significant implications for future clinical application.

  19. Normal ATXN3 allele but not CHIP polymorphisms modulates age at onset in Machado-Joseph Disease

    Directory of Open Access Journals (Sweden)

    Marcondes C. França Jr

    2012-11-01

    Full Text Available Background: Age at onset (AO in Machado-Joseph disease (MJD is closely associated with the length of the CAG repeat at the mutant ATXN3 allele, but there are other intervening factors. Experimental evidence indicates that the normal ATXN3 allele and the C-terminal heat shock protein 70 (Hsp70-interacting protein (CHIP may be genetic modifiers of AO in MJD. Methods: To investigate this hypothesis, we determined the length of normal and expanded CAG repeats at the ATXN3 gene in 210 unrelated patients with MJD. In addition, we genotyped five single nucleotide polymorphisms (SNPs within the CHIP gene. We first compared the frequencies of the different genotypes in two subgroups of patients who were highly discordant for AO after correction for the length of the expanded CAG allele. The possible modifier effect of each gene was then evaluated in a stepwise multiple linear regression model. Results: AO was associated with the length of the expanded CAG allele (r2 = 0.596, p<0.001. Frequencies of the normal CAG repeats at the ATXN3 gene and of CHIP polymorphisms did not differ significantly between groups with highly discordant ages at onset. However, addition of the normal allele improved the model fit for prediction of AO (r2 = 0.604, p=0.014. Indeed, we found that the normal CAG allele at ATXN3 had a positive independent effect on AO. Conclusion: The normal CAG repeat at the ATXN3 gene has a small but significant influence on AO of MJD.

  20. Identification of Multiple Alleles at the Wx Locus and Development of Single Segment Substitution Lines for the Alleles in Rice

    Institute of Scientific and Technical Information of China (English)

    ZENG Rui-zhen; ZHANG Ze-min; HE Feng-hua; XI Zhang-ying; Akshay TALUKDAR; SHI Jun-qiong; QIN Li-jun; HUANG Chao-feng; ZHANG Gui-quan

    2006-01-01

    The microsatellite markers 484/485 and 484/W2R were used to identify the multiple alleles at the Wx locus in rice germplasm. Fifteen alleles were identified in 278 accessions by using microsatellite class and G-T polymorphism. Among these alleles, (CT)12-G, (CT)15-G, (CT)16-G, (CT)17-G, (CT)18-G and (CT)21-G have not been reported. Seventy-two single-segment substitution lines (SSSLs) carrying different alleles at the Wx locus were developed by using Huajingxian 74 with the (CT)11-G allele as a recipient and 20 accessions containing 12 different alleles at the Wx locus as donors. The estimated length of the substituted segments ranged from 2.2 to 77.3 cM with an average of 17.4 cM.

  1. Decreased uv mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L.; Hinkle, D.; Prakash, S.

    1978-01-01

    A DNA replication mutant of yeast, cdc8, was found to decrease uv-induced reversion of lys2-1, arg4-17, tryl and ural. This effect was observed with all three alleles of cdc8 tested. Survival curves obtained following uv irradiation in cdc8 rad double mutants show that cdc8 is epistatic to rad6, as well as to rad1; cdc8 rad51 double mutants seem to be more sensitive than the single mutants. Since uv-induced reversion in cdc8 rad1 and cdc8 rad51 double mutants is like that of the cdc8 single mutants, we conclude that CDC8 plays a direct role in error-prone repair. To test whether CDC8 codes for a DNA polymerase, we have purified both DNA polymerase I and DNA polymerase II from cdc8 and CDC+ cells. The purified DNA polymerases from cdc8 were no more heat labile than those from CDC+, suggesting that CDC8 is not a structural gene for either enzyme.

  2. Phenotypic Characterization of a Comprehensive Set of MAPK1/ERK2 Missense Mutants

    Directory of Open Access Journals (Sweden)

    Lisa Brenan

    2016-10-01

    Full Text Available Tumor-specific genomic information has the potential to guide therapeutic strategies and revolutionize patient treatment. Currently, this approach is limited by an abundance of disease-associated mutants whose biological functions and impacts on therapeutic response are uncharacterized. To begin to address this limitation, we functionally characterized nearly all (99.84% missense mutants of MAPK1/ERK2, an essential effector of oncogenic RAS and RAF. Using this approach, we discovered rare gain- and loss-of-function ERK2 mutants found in human tumors, revealing that, in the context of this assay, mutational frequency alone cannot identify all functionally impactful mutants. Gain-of-function ERK2 mutants induced variable responses to RAF-, MEK-, and ERK-directed therapies, providing a reference for future treatment decisions. Tumor-associated mutations spatially clustered in two ERK2 effector-recruitment domains yet produced mutants with opposite phenotypes. This approach articulates an allele-characterization framework that can be scaled to meet the goals of genome-guided oncology.

  3. Expression and properties of wild-type and mutant forms of the Drosophila sex comb on midleg (SCM) repressor protein.

    Science.gov (United States)

    Bornemann, D; Miller, E; Simon, J

    1998-10-01

    The Sex comb on midleg (Scm) gene encodes a transcriptional repressor of the Polycomb group (PcG). Here we show that SCM protein is nuclear and that its expression is widespread during fly development. SCM protein contains a C-terminal domain, termed the SPM domain, which mediates protein-protein interactions. The biochemical function of another domain consisting of two 100-amino-acid-long repeats, termed "mbt" repeats, is unknown. We have determined the molecular lesions of nine Scm mutant alleles, which identify functional requirements for specific domains. The Scm alleles were tested for genetic interactions with mutations in other PcG genes. Intriguingly, three hypomorphic Scm mutations, which map within an mbt repeat, interact with PcG mutations more strongly than do Scm null alleles. The strongest interactions produce partial synthetic lethality that affects doubly heterozygous females more severely than males. We show that mbt repeat alleles produce stable SCM proteins that associate with normal sites in polytene chromosomes. We also analyzed progeny from Scm mutant germline clones to compare the effects of an mbt repeat mutation during embryonic vs. pupal development. We suggest that the mbt repeat alleles produce altered SCM proteins that incorporate into and impair function of PcG protein complexes.

  4. AllelicImbalance: An R/ bioconductor package for detecting, managing, and visualizing allele expression imbalance data from RNA sequencing

    DEFF Research Database (Denmark)

    Gådin, Jesper R.; van't Hooft, Ferdinand M.; Eriksson, Per;

    2015-01-01

    the possible biases. Results: We present AllelicImblance, a software program that is designed to detect, manage, and visualize allelic imbalances comprehensively. The purpose of this software is to allow users to pose genetic questions in any RNA sequencing experiment quickly, enhancing the general utility......-nucleotide polymorphisms. Allelic imbalance analysis is subject to technical biases, due to differences in the sequences of the measured alleles. Flexible bioinformatics tools are needed to ease the workflow while retaining as much RNA sequencing information as possible throughout the analysis to detect and address......, within the robust and versatile management class, ASEset....

  5. Distribution of BoLA-DRB3 Allelic Frequencies and Identification of Two New Alleles in Iranian Buffalo Breed

    OpenAIRE

    Mosafer, J.; Heydarpour, M.; Manshad, E.; Russell, G.; Sulimova, G. E.

    2012-01-01

    The role of the major histocompatibility complex (MHC) in the immune response makes it an attractive candidate gene for associations with disease resistance and susceptibility. This study describes genetic variability in the BoLA-DRB3 in Iranian buffaloes. Heminested PCR-RFLP method was used to identify the frequency of BoLA-DRB3 alleles. The BoLA-DRB3 locus is highly polymorphic in the study herd (12 alleles). Almost 63.50% of the alleles were accounted for by four alleles (BoLA-DRB3.2 *48, ...

  6. DCP Series

    Directory of Open Access Journals (Sweden)

    Philip Stearns

    2011-06-01

    Full Text Available Photo essay. A collection of Images produced by intentionally corrupting the circuitry of a Kodak DC280 2 MP digitalcamera. By rewiring the electronics of a digital camera, glitched images are produced in a manner that parallels chemically processing unexposed film or photographic paper to produce photographic images without exposure to light. The DCP Series of Digital Images are direct visualizations of data generated by a digital camera as it takes a picture. Electronic processes associated with the normal operations of the camera, which are usually taken for granted, are revealed through an act of intervention. The camera is turned inside­out through complexes of short­circuits, selected by the artist, transforming the camera from a picture taking device to a data capturing device that renders raw data (electronic signals as images. In essence, these images are snap­shots of electronic signals dancing through the camera's circuits, manually rerouted, written directly to the on­board memory device. Rather than seeing images of the world through a lens, we catch a glimpse of what the camera sees when it is forced to peer inside its own mind.

  7. The NQO1 allelic frequency in hindu population of central India varies from that of other Asian populations

    Directory of Open Access Journals (Sweden)

    Parihar Sher

    2010-01-01

    Full Text Available Context: The enzymes encoded by the polymorphic genes NAD (P H: quinone oxidoreductase 1 (NQO1 play an important role in the activation and inactivation of xenobiotics. This enzyme has been associated with xenobiotic related diseases, such as cancer, therapeutic failure and abnormal effects of drugs. Aim: The aim of the present study was to determine the allelic and genotypic frequencies of NQO Hinf I polymorphisms in a Hindu population of Central India. Settings and Design: Polymorphisms of NQO1 were determined in 311 unrelated Hindu individuals. Materials and Methods: Polymerase chain reaction- Restriction Fragment Length Polymorphism (PCR-RFLP analysis in peripheral blood DNA for NQO1 Hinf I polymorphism was used in 311 unrelated Hindu individuals. Statistical Analysis: Allele frequencies were calculated by direct counting. Hardy Weinberg Equilibrium was evaluated using a Chi-square goodness of fit test. Results: The observed allelic frequency was 81% for C (wild and 19% for T (mutant in the total sample. Conclusions: The allelic frequency of "C" was higher than in other Asians (57%, but similar to Caucasians (81%. The genotype distributions for Hinf I polymorphisms were in Hardy-Weinberg equilibrium.

  8. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    Science.gov (United States)

    Challa, Anil K; Boitet, Evan R; Turner, Ashley N; Johnson, Larry W; Kennedy, Daniel; Downs, Ethan R; Hymel, Katherine M; Gross, Alecia K; Kesterson, Robert A

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene.

  9. Molecular characterization of Tn5-induced symbiotic (Fix-) mutants of Rhizobium meliloti.

    OpenAIRE

    Zimmerman, J L; Szeto, W W; Ausubel, F M

    1983-01-01

    To investigate the expression of specific symbiotic genes during the development of nitrogen-fixing root nodules, we conducted a systematic analysis of nodule-specific proteins and RNAs produced after the inoculation of alfalfa roots with a series of Rhizobium meliloti mutants generated by site-directed transposon Tn5 mutagenesis. The mutagenized region of the Rhizobium genome covered approximately 10 kilobases and included the region encoding the nitrogenase polypeptides. All mutant strains ...

  10. Allelic imbalance in hereditary and sporadic prostate cancer.

    NARCIS (Netherlands)

    Verhage, B.; Houwelingen, K.P. van; Ruijter, T.E.G.; Kiemeney, L.A.L.M.; Schalken, J.A.

    2003-01-01

    BACKGROUND: In this study, we evaluate the pattern of allelic imbalance (AI) in both sporadic prostate cancer (SPC) and hereditary prostate cancer (HPC) at loci that frequently show allelic imbalance in sporadic prostate cancer, or are believed to have a putative role in the disease. METHODS: DNA ob

  11. Low Penetrance Alleles in Colorectal Cancer: the arachidonic acid pathway

    NARCIS (Netherlands)

    C.L.E. Siezen

    2006-01-01

    textabstractIn summary, we can conclude that we have successfully identified low penetrance alleles in the PPAR., PLA2G2A and ALOX15 genes, conferring differential colorectal adenoma risk, and two such alleles in the PTGS2 gene, one of which is also involved in colorectal cancer risk. These resul

  12. A new mouse allele of glutamate receptor delta 2 with cerebellar atrophy and progressive ataxia.

    Science.gov (United States)

    Miyoshi, Yuka; Yoshioka, Yoshichika; Suzuki, Kinuko; Miyazaki, Taisuke; Koura, Minako; Saigoh, Kazumasa; Kajimura, Naoko; Monobe, Yoko; Kusunoki, Susumu; Matsuda, Junichiro; Watanabe, Masahiko; Hayasaka, Naoto

    2014-01-01

    Spinocerebellar degenerations (SCDs) are a large class of sporadic or hereditary neurodegenerative disorders characterized by progressive motion defects and degenerative changes in the cerebellum and other parts of the CNS. Here we report the identification and establishment from a C57BL/6J mouse colony of a novel mouse line developing spontaneous progressive ataxia, which we refer to as ts3. Frequency of the phenotypic expression was consistent with an autosomal recessive Mendelian trait of inheritance, suggesting that a single gene mutation is responsible for the ataxic phenotype of this line. The onset of ataxia was observed at about three weeks of age, which slowly progressed until the hind limbs became entirely paralyzed in many cases. Micro-MRI study revealed significant cerebellar atrophy in all the ataxic mice, although individual variations were observed. Detailed histological analyses demonstrated significant atrophy of the anterior folia with reduced granule cells (GC) and abnormal morphology of cerebellar Purkinje cells (PC). Study by ultra-high voltage electron microscopy (UHVEM) further indicated aberrant morphology of PC dendrites and their spines, suggesting both morphological and functional abnormalities of the PC in the mutants. Immunohistochemical studies also revealed defects in parallel fiber (PF)-PC synapse formation and abnormal distal extension of climbing fibers (CF). Based on the phenotypic similarities of the ts3 mutant with other known ataxic mutants, we performed immunohistological analyses and found that expression levels of two genes and their products, glutamate receptor delta2 (grid2) and its ligand, cerebellin1 (Cbln1), are significantly reduced or undetectable. Finally, we sequenced the candidate genes and detected a large deletion in the coding region of the grid2 gene. Our present study suggests that ts3 is a new allele of the grid2 gene, which causes similar but different phenotypes as compared to other grid2 mutants.

  13. A new mouse allele of glutamate receptor delta 2 with cerebellar atrophy and progressive ataxia.

    Directory of Open Access Journals (Sweden)

    Yuka Miyoshi

    Full Text Available Spinocerebellar degenerations (SCDs are a large class of sporadic or hereditary neurodegenerative disorders characterized by progressive motion defects and degenerative changes in the cerebellum and other parts of the CNS. Here we report the identification and establishment from a C57BL/6J mouse colony of a novel mouse line developing spontaneous progressive ataxia, which we refer to as ts3. Frequency of the phenotypic expression was consistent with an autosomal recessive Mendelian trait of inheritance, suggesting that a single gene mutation is responsible for the ataxic phenotype of this line. The onset of ataxia was observed at about three weeks of age, which slowly progressed until the hind limbs became entirely paralyzed in many cases. Micro-MRI study revealed significant cerebellar atrophy in all the ataxic mice, although individual variations were observed. Detailed histological analyses demonstrated significant atrophy of the anterior folia with reduced granule cells (GC and abnormal morphology of cerebellar Purkinje cells (PC. Study by ultra-high voltage electron microscopy (UHVEM further indicated aberrant morphology of PC dendrites and their spines, suggesting both morphological and functional abnormalities of the PC in the mutants. Immunohistochemical studies also revealed defects in parallel fiber (PF-PC synapse formation and abnormal distal extension of climbing fibers (CF. Based on the phenotypic similarities of the ts3 mutant with other known ataxic mutants, we performed immunohistological analyses and found that expression levels of two genes and their products, glutamate receptor delta2 (grid2 and its ligand, cerebellin1 (Cbln1, are significantly reduced or undetectable. Finally, we sequenced the candidate genes and detected a large deletion in the coding region of the grid2 gene. Our present study suggests that ts3 is a new allele of the grid2 gene, which causes similar but different phenotypes as compared to other grid2

  14. Bacterial mutants for enhanced succinate production

    NARCIS (Netherlands)

    Baart, G.J.E.; Beauprez, J.J.R.; Foulquie, M.M.R.; Heijnen, J.J.; Maertens, J.

    2010-01-01

    The present invention relates to a method for obtaining enhanced metabolite production in micro-organisms, and to mutants and/or transformants obtained with said method. More particularly, it relates to bacterial mutants and/or transformants for enhanced succinate production, especially mutants and/

  15. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  16. Estimating Relatedness in the Presence of Null Alleles.

    Science.gov (United States)

    Huang, Kang; Ritland, Kermit; Dunn, Derek W; Qi, Xiaoguang; Guo, Songtao; Li, Baoguo

    2016-01-01

    Studies of genetics and ecology often require estimates of relatedness coefficients based on genetic marker data. However, with the presence of null alleles, an observed genotype can represent one of several possible true genotypes. This results in biased estimates of relatedness. As the numbers of marker loci are often limited, loci with null alleles cannot be abandoned without substantial loss of statistical power. Here, we show how loci with null alleles can be incorporated into six estimators of relatedness (two novel). We evaluate the performance of various estimators before and after correction for null alleles. If the frequency of a null allele is 0.5, the potency of estimation is too low and such a locus should be excluded. We make available a software package entitled PolyRelatedness v1.6, which enables researchers to optimize these estimators to best fit a particular data set.

  17. Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 co-segregates with homozygotic presence of a mutated eIF4E allele

    DEFF Research Database (Denmark)

    Naderpour, M; Lund, O Søgaard; Larsen, R

    2008-01-01

    -binding proteins, eIF4E, eIF(iso)4E and nCBP. In cultivars reported to carry bc-3 resistance, eIF4E was found to display non-silent mutations at codons 53, 65, 76 and 111 closely resembling a pattern of eIF4E mutations determining potyvirus resistance in other plant species. By application of a molecular marker...... in a segregating F2 population of P. vulgaris, BCMV resistance was found to co-segregate with homozygotic presence of the mutant eIF4E allele. , BCMV resistance was found to co-segregate with homozygotic presence of the mutant allele. Silent mutations were found in eIF(iso)4E, but without correspondence to P...

  18. Facultative cheating supports the coexistence of diverse quorum-sensing alleles.

    Science.gov (United States)

    Pollak, Shaul; Omer-Bendori, Shira; Even-Tov, Eran; Lipsman, Valeria; Bareia, Tasneem; Ben-Zion, Ishay; Eldar, Avigdor

    2016-02-23

    Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer-receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is unclear what selection forces drive the maintenance of pherotype diversity. Here, we use the ComQXPA system of Bacillus subtilis as a model system, to show that pherotype diversity can be maintained by facultative cheating--a minority pherotype exploits the majority, but resumes cooperation when its frequency increases. We find that the maintenance of multiple pherotypes by facultative cheating can persist under kin-selection conditions that select against "obligate cheaters" quorum-sensing response null mutants. Our results therefore support a role for facultative cheating and kin selection in the evolution of quorum-sensing diversity.

  19. Effect of the myotonic dystrophy expanded (CTG){sub n} repeat on the transcripts of DMPK alleles

    Energy Technology Data Exchange (ETDEWEB)

    Krahe, R.; Narayana, L.; Sciliano, M.J. [and others

    1994-09-01

    Myotonic dystrophy (DM) is a pleiotropic, autosomal dominantly inherited neuromuscular disease. The clinical phenotype is associated with an unstable (CTG){sub n} repeat in the 3{prime} untranslated region of the candidate gene, DM protein kinase (DMPK). The size of the unstable repeat generally increases through successive generations and correlates to a reasonable degree with the phenotype in a given family. In various studies both decreased and increased levels of mutant steady-state DMPK mRNA and protein levels have been observed and related to (CTG){sub n} repeat expansion. This has led to different proposals to explain the molecular disease mechanism (gene-dosage vs. gain-of-function effect). Using allele-specific transcript amplification, comparative and quantitative MIMIC RT-PCR, and mRNA stability assays for the exon 9-10 region of the DMPK gene, we report co-equal expression of mutant and normal alleles at both hnRNA and mRNA levels. Identical levels of overall mRNA and no allele-specific differences in mRNA stability were seen in adult-onset and congenital DM patients compared to normal controls. The expanded repeat did not appear to interfere with transcriptional initiation or increase or decrease the stability of either primary or mature transcript of the mutant and normal DMPK allele. Similar results were obtained for two homozygous DM sisters. Pairs of somatic cell hybrids - one of the pair containing the chromosome with the expanded (CTG){sub n} repeat, the other with the normal repeat - were generated. We observed equal hnRNA, but significantly reduced mRNA levels for DMPK from exon 8 to 15 for the hybrid containing the expanded repeat, suggesting aberrant processing of mutant hnRNA to mRNA. Therefore, the results of current studies on the effect of the expanded (CTG){sub n} repeat on post-transcriptional events such as splicing downstream of the exon 10 will be reported.

  20. Vitamin D Responsive Elements within the HLA-DRB1 Promoter Region in Sardinian Multiple Sclerosis Associated Alleles

    Science.gov (United States)

    Murru, Maria Rita; Corongiu, Daniela; Tranquilli, Stefania; Fadda, Elisabetta; Murru, Raffaele; Schirru, Lucia; Secci, Maria Antonietta; Costa, Gianna; Asunis, Isadora; Cuccu, Stefania; Fenu, Giuseppe; Lorefice, Lorena; Carboni, Nicola; Mura, Gioia; Rosatelli, Maria Cristina; Marrosu, Maria Giovanna

    2012-01-01

    Vitamin D response elements (VDREs) have been found in the promoter region of the MS-associated allele HLA-DRB1*15∶01, suggesting that with low vitamin D availability VDREs are incapable of inducing *15∶01 expression allowing in early life autoreactive T-cells to escape central thymic deletion. The Italian island of Sardinia exhibits a very high frequency of MS and high solar radiation exposure. We test the contribution of VDREs analysing the promoter region of the MS-associated DRB1 *04∶05, *03∶01, *13∶01 and *15∶01 and non-MS-associated *16∶01, *01, *11, *07∶01 alleles in a cohort of Sardinians (44 MS patients and 112 healthy subjects). Sequencing of the DRB1 promoter region revealed a homozygous canonical VDRE in all *15∶01, *16∶01, *11 and in 45/73 *03∶01 and in heterozygous state in 28/73 *03∶01 and all *01 alleles. A new mutated homozygous VDRE was found in all *13∶03, *04∶05 and *07∶01 alleles. Functionality of mutated and canonical VDREs was assessed for its potential to modulate levels of DRB1 gene expression using an in vitro transactivation assay after stimulation with active vitamin D metabolite. Vitamin D failed to increase promoter activity of the *04∶05 and *03∶01 alleles carrying the new mutated VDRE, while the *16∶01 and *03∶01 alleles carrying the canonical VDRE sequence showed significantly increased transcriptional activity. The ability of VDR to bind the mutant VDRE in the DRB1 promoter was evaluated by EMSA. Efficient binding of VDR to the VDRE sequence found in the *16∶01 and in the *15∶01 allele reduced electrophoretic mobility when either an anti-VDR or an anti-RXR monoclonal antibody was added. Conversely, the Sardinian mutated VDRE sample showed very low affinity for the RXR/VDR heterodimer. These data seem to exclude a role of VDREs in the promoter region of the DRB1 gene in susceptibility to MS carried by DRB1* alleles in Sardinian patients. PMID:22848563

  1. Ethical guideposts for allelic variation databases.

    Science.gov (United States)

    Knoppers, B M; Laberge, C M

    2000-01-01

    Basically, a mutation database (MDB) is a repository where allelic variations are described and assigned within a specific gene locus. The purposes of an MDB may vary greatly and have different content and structure. The curator of an electronic and computer-based MDB will provide expert feedback (clinical and research). This requires ethical guideposts. Going to direct on-line public access for the content of an MDB or to interactive communication also raises other considerations. Currently, HUGO's MDI (Mutation Database Initiative) is the only integrated effort supporting and guiding the coordinated deployment of MDBs devoted to genetic diversity. Thus, HUGO's ethical "Statements" are applicable. Among the ethical principles, the obligation of preserving the confidentiality of information transferred by a collaborator to the curator is particularly important. Thus, anonymization of such data prior to transmission is essential. The 1997 Universal Declaration on the Human Genome and Human Rights of UNESCO addresses the participation of vulnerable persons. Researchers in charge of MDBs should ensure that information received on the testing of children or incompetent adults is subject to ethical review and approval in the country of origin. Caution should be taken against the involuntary consequences of public disclosure of results without complete explanation. Clear and enforceable regulations must be developed to protect the public against misuse of genetic databanks. Interaction with a databank could be seen as creating a "virtual" physician-patient relationship. However, interactive public MDBs should not give medical advice. We have identified new social ethical principles to govern different levels of complexity of genetic information. They are: reciprocity, mutuality, solidarity, and universality. Finally, precaution and prudence at this early stage of the MDI may not only avoid ethically inextricable conundrums but also provide for the respect for the rights

  2. Cooperation of Adhesin Alleles in Salmonella-Host Tropism

    Science.gov (United States)

    De Masi, Leon; Yue, Min; Hu, Changmin; Rakov, Alexey V.; Rankin, Shelley C.

    2017-01-01

    ABSTRACT Allelic combinations and host specificities for three fimbrial adhesins, FimH, BcfD, and StfH, were compared for 262 strains of Salmonella enterica serovar Newport, a frequent human and livestock pathogen. Like FimH, BcfD had two major alleles (designated A and B), whereas StfH had two allelic groups, each with two alleles (subgroup A1 and A2 and subgroup B1 and B2). The most prevalent combinations of FimH/BcfD/StfH alleles in S. Newport were A/A/A1 and B/B/B1. The former set was most frequently found in bovine and porcine strains, whereas the latter combination was most frequently found in environmental and human isolates. Bacteria genetically engineered to express Fim, Bcf, or Stf fimbriae on their surface were tested with the different alleles for binding to human, porcine, and bovine intestinal epithelial cells. The major allelic combinations with bovine and porcine strains (A/A/A1) or with human isolates (B/B/B1) provided at least two alleles capable of binding significantly better than the other alleles to an intestinal epithelial cell line from the respective host(s). However, each combination of alleles kept at least one allele mediating binding to an intestinal epithelial cell from another host. These findings indicated that allelic variation in multiple adhesins of S. Newport contributes to bacterial adaptation to certain preferential hosts without losing the capacity to maintain a broad host range. IMPORTANCE Salmonella enterica remains a leading foodborne bacterial pathogen in the United States; infected livestock serve often as the source of contaminated food products. A study estimated that over a billion Salmonella gastroenteritis cases and up to 33 million typhoid cases occur annually worldwide, with 3.5 million deaths. Although many Salmonella strains with a broad host range present preferential associations with certain host species, it is not clear what determines the various levels of host adaptation. Here, causal properties of host

  3. Sequencing Analysis of Mutant Allele $cdc$28-$srm$ of Protein Kinase CDC28 and Molecular Dynamics Study of Glycine-Rich Loop in Wild-Type and Mutant Allele G16S of CDK2 as Model

    CERN Document Server

    Koltovaya, N A; Kholmurodov, Kh T; Kretov, D A

    2005-01-01

    The central role that cyclin-dependent kinases play in the timing of cell division and the high incidence of genetic alteration of CDKs or deregulation of CDK inhibitors in a number of cancers make CDC28 of the yeast \\textit{Saccharomyces cerevisiae }very attractive model for studies of mechanisms of CDK regulation. Earlier it was found that certain gene mutations including \\textit{cdc28-srm} affect cell cycle progression, maintenance of different genetic structures and increase cell sensitivity to ionizing radiation. A~\\textit{cdc28-srm} mutation is not temperature-sensitive mutation and differs from the known \\textit{cdc28-ts }mutations because it has the evident phenotypic manifestations at 30 $^{\\circ}$C. Sequencing analysis of \\textit{cdc28-srm} revealed a single nucleotide substitution G20S. This is a third glycine in a conserved sequence GxGxxG in the G-rich loop positioned opposite the activation T-loop. Despite its demonstrated importance, the role of the G-loop has remained unclear. The crystal stru...

  4. A Light-Independent Allele of Phytochrome B Faithfully Recapitulates Photomorphogenic Transcriptional Networks

    Institute of Scientific and Technical Information of China (English)

    Wei Hu; Yi-Shin Su; J. Clark Lagarias

    2009-01-01

    Dominant gain-of-function alleles of Arabidopsis phytochrome B were recently shown to confer lightindependent, constitutive photomorphogenic (cop) phenotypes to transgenic plants (Su and Lagarias, 2007). In the present study, comparative transcription profiling experiments were performed to assess whether the pattern of gene expression regulated by these alleles accurately reflects the process of photomorphogenesis in wild-type Arabidopsis. Wholegenome transcription profiles of dark-grown phyAphyB seedlings expressing the Y276H mutant of phyB (YHB) revealed that YHB reprograms about 13% of the Arabidopsis transcriptome in a light-independent manner. The YHB-regulated transcriptome proved qualitatively similar to but quantitatively greater than those of wild-type seedlings grown under 15 or 50 μmol m-2 m-1 continuous red light (Rc). Among the 2977 genes statistically significant two-fold (SSTF) regulated by YHB in the absence of light include those encoding components of the photosynthetic apparatus, tetrapyrrole/pigment biosynthetic pathways, and early light-responsive signaling factors. Approximately 80% of genes SSTF regulated by Rc were also YHB-regulated. Expression of a notable subset of 346 YHB-regulated genes proved to be strongly attenuated by Rc, indicating compensating regulation by phyC-E and/or other Rc-dependent processes. Since the majority of these 346 genes are regulated by the circadian clock, these results suggest that phyA- and phyB-independent light signaling pathway(s) strongly influence clock output. Together with the unique plastid morphology of dark-grown YHB seedlings, these analyses indicate that the YHB mutant induces constitutive photomorphogenesis via faithful reconstruction of phyB signaling pathways in a light-independent fashion.

  5. Identification of a Long Rice Spikelet Mutant

    Institute of Scientific and Technical Information of China (English)

    WU Xian-jun; WANG Bin; HAN Zan-ping; XIE Zhao-hui; MOU Chun-hong; WANG Xu-dong

    2004-01-01

    A spontaneously occurring rice (Oryza sativa L. ) mutant, characterized by homeotic conversion in glumes and stamens, was found in the progeny of a cross. The mutant showed long glumes and glumaceous lodicules and morphological transformation of stamens into pistils. Mutant florets consisted of 1 to 3 completely developed pistils, some pistilloid stamens with filaments, but tipped by bulged tissue and 0 to 3 stigmas. It seens that the mutant phenotype of the homeotic conversions in glumes and stamens is similar to that of the B loss-of-function mutants in Arabidopsis and Antirrhinum. The mutant is controlled by a single recessive gene as a segregation ratio of 3:1 (wild type to mutant plants) was observed in the F2 generation.

  6. Genotype and allele frequencies of polymorphic cytochromes P450 CYP1A2 and CYP2E1 in Mexicans.

    Science.gov (United States)

    Mendoza-Cantú, Ania; Castorena-Torres, Fabiola; Bermudez, Mario; Martínez-Hernández, Roberto; Ortega, Arturo; Salinas, Juan E; Albores, Arnulfo

    2004-01-01

    CYP1A2 and CYP2E1 are two of the main cytochrome P450 isoforms involved in the metabolism of commonly used drugs and xenobiotic compounds considered to be responsible for or possible participants in the development of several human diseases. Individual susceptibility to developing these pathologies relies, among other factors, on genetic polymorphism which depends on ethnic differences, as the frequency of mutant genotypes varies in different human populations. Thus the aim of this study was to investigate the frequency of CYP1A2 5'-flanking region and CYP2E1 Rsa I/Pst I polymorphisms in Mexicans by PCR-RFLP methods. The DNA of 159 subjects was analysed and mutant allele frequencies of 30% for CYP2E1 Rsa I/Pst I sites and 43% for CYP1A2 5'-flanking region were found. These frequencies are higher than those previously reported for other human populations.

  7. Characterization of five new mutants in the carboxyl-terminal domain of human apolipoprotein E: No cosegregation with severe hyperlipidemia

    Energy Technology Data Exchange (ETDEWEB)

    Maagdenberg, A.M.J.M. van den; Bruijn, I.H. de; Hofker, M.H.; Frants, R.R. (Leiden Univ. (Netherlands)); Knijff, P. de; Smelt, A.H.M.; Leuven, J.A.G.; van' t Hooft, F.; Assmann, G.; Havekes, L.M. (Univ. Hospital, Leiden (Netherlands)); Weng, Wei; Funke, H. (Westfalische Wilhelms-Universitaet, Muester (Germany))

    1993-05-01

    Assessment of the apolipoprotein E (apoE) phenotype by isoelectric focusing of both hyperlipidemic and normolipidemic individuals identified five new variants. All mutations were confined to the downstream part of the APOE gene by using denaturing gradient gel electrophoresis (DGGE). Sequence analysis revealed five new mutations causing unique amino acid substitutions in the carboxyl-terminal part of the protein containing the putative lipid-binding domain. Three hyperlipoproteinemic probands were carriers of the APOE*2(Va1236[r arrow]Glu) allele, the APOE*3(Cys112-Arg; Arg251[r arrow]Gly) allele, or the APOE*1(Arg158[r arrow]Cys; Leu252[r arrow]Glu) allele. DGGE of the region encoding the receptor-binding domain was useful for haplotyping the mutations at codons 112 and 158. Family studies failed to demonstrate cosegregation between the new mutations and severe hyperlipoproteinemia, although a number of carriers for the APOE*3(Cys112[r arrow]Arg; Arg251[r arrow]Gly) allele and the APOE*1(Arg158-Cys; Leu252[r arrow]Glu) allele expressed hypertriglyceridemia and/ or hypercholesterolemia. Two other mutant alleles, APOE*4[sup [minus

  8. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny

    Science.gov (United States)

    Cuenca, José; Aleza, Pablo; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Background Polyploidy is a major component of eukaryote evolution. Estimation of allele copy numbers for molecular markers has long been considered a challenge for polyploid species, while this process is essential for most genetic research. With the increasing availability and whole-genome coverage of single nucleotide polymorphism (SNP) markers, it is essential to implement a versatile SNP genotyping method to assign allelic configuration efficiently in polyploids. Scope This work evaluates the usefulness of the KASPar method, based on competitive allele-specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model because of its economic importance, the ongoing worldwide polyploidy manipulation projects for cultivar and rootstock breeding, and the increasing availability of SNP markers. Conclusions Fifteen SNP markers were successfully designed that produced clear allele signals that were in agreement with previous genotyping results at the diploid level. The analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different ratios revealed a very high correlation (average = 0·9796; s.d. = 0·0094) between the allele ratio and two parameters [θ angle = tan−1 (y/x) and y′ = y/(x + y)] derived from the two normalized allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance (ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99·71 % correct allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid crosses were easily genotyped and provided useful genetic information. This work demonstrates that the KASPar SNP genotyping technique is an efficient way to assign heterozygous allelic configurations within polyploid populations. This method is accurate, simple and cost-effective. Moreover, it may be useful for quantitative studies, such as relative allele-specific expression analysis and bulk segregant analysis

  9. Analysis of genetic relationship in mutant silkworm strains of Bombyx mori using inter simple sequence repeat (ISSR) markers

    Institute of Scientific and Technical Information of China (English)

    Dhanikachalam Velu; Kangayam M. Ponnuvel; Murugiah Muthulakshmi; Randhir K. Sinha; Syed M.H. Qadri

    2008-01-01

    Amplified inter simple sequence repeats (ISSR) markers were used to determine genetic relationships among mutant silkworm strains of Bombyx mori. Fifteen ISSR primers containing simple sequence repeat (SSR) motifs were used in this study. A total of 113 markers were produced among 20 mutant swains, of which 73.45% were found to be polymorphic. In selected mutant genetic stocks, the average number of observed allele was (1.7080±0.4567), effective alleles (1.5194±0.3950) and genetic diversity (Ht) (0.2901±0.0415). The dendrogram produced using the unweighted pair group method with arithmetic means (UPGMA) and cluster analysis made using Nei's genetic distance resulted in the formation of one major group containing 6 groups separated 20 mutant silkworm strains. Therefore, ISSR amplification is a valuable method for determining the genetic variability among mutant silkworm swains. This efficient molecular marker would be useful for characterizing a considerable number of silkworm swains maintained at the germplasm center.

  10. A single-tube allele specific-polymerase chain reaction to detect T315I resistant mutation in chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Auewarakul Chirayu U

    2011-02-01

    Full Text Available Abstract Background BCR-ABL kinase domain (KD mutation is the major mechanism contributing to suboptimal response to tyrosine kinase inhibitors (TKI in BCR-ABL-positive chronic myeloid leukemia (CML patients. T315I mutation, as one of the most frequent KD mutations, has been shown to be strongly associated with TKI resistance and subsequent therapeutic failure. A simple and sensitive method is thus required to detect T315I mutation at the earliest stage. Methods A single-tube allele specific-polymerase chain reaction (AS-PCR method was developed to detect T315I mutation in a mixture of normal and mutant alleles of varying dilutions. Denaturing high performance liquid chromatography (DHPLC and direct sequencing were performed as a comparison to AS-PCR. Results T315I mutant bands were observed in the mixtures containing as low as 0.5-1% of mutant alleles by AS-PCR. The detection sensitivity of DHPLC was around 1.5-3% dilution whereas sequencing analysis was unable to detect below 6.25% dilution. Conclusion A single-tube AS-PCR is a rapid and sensitive screening method for T315I mutation. Detection of the most resistant leukemic clone in CML patients undergoing TKI therapy should be feasible with this simple and inexpensive method.

  11. Distribution of the CCR2-64I allele in three Brazilian ethnic groups

    Directory of Open Access Journals (Sweden)

    Acosta Angelina Xavier

    2003-01-01

    Full Text Available CCR2 is a member of the superfamily of seven transmembrane domain G protein-coupled receptors, the largest receptor superfamily in the human genome. CCR2 acts as a receptor for MCP-1 (CC chemokine and as a co-receptor for HIV-1 cell-target entry. The gene encoding this receptor is mapped to the chromosome band 3p21. A G-to-A transition at position 190 characterizes the CCR2-64I mutation, causing valine to isoleucine substitution in codon 64. This mutation has been identified as an important factor for delaying progression to AIDS. Here, we determined the prevalence of this allele in three different Brazilian populations: 261 Amerindians inhabiting an isolated region in northern Brazil (82 samples from the Waiampi tribe, and 179 samples from the Tiriyó tribe; 89 German descendents from Joinville, a city in southern Brazil; and 305 individuals of predominantly African ancestry, from Salvador, a city in northeast Brazil. The CCR2-64I mutant allele was identified in 26% of the Tiryió and 30% of Waiampi samples, in 18% of the Joinville samples, and in 14% of the Salvador samples.

  12. Efficient and allele-specific genome editing of disease loci in human iPSCs.

    Science.gov (United States)

    Smith, Cory; Abalde-Atristain, Leire; He, Chaoxia; Brodsky, Brett R; Braunstein, Evan M; Chaudhari, Pooja; Jang, Yoon-Young; Cheng, Linzhao; Ye, Zhaohui

    2015-03-01

    Efficient and precise genome editing is crucial for realizing the full research and therapeutic potential of human induced pluripotent stem cells (iPSCs). Engineered nucleases including CRISPR/Cas9 and transcription activator like effector nucleases (TALENs) provide powerful tools for enhancing gene-targeting efficiency. In this study, we investigated the relative efficiencies of CRISPR/Cas9 and TALENs in human iPSC lines for inducing both homologous donor-based precise genome editing and nonhomologous end joining (NHEJ)-mediated gene disruption. Significantly higher frequencies of NHEJ-mediated insertions/deletions were detected at several endogenous loci using CRISPR/Cas9 than using TALENs, especially at nonexpressed targets in iPSCs. In contrast, comparable efficiencies of inducing homologous donor-based genome editing were observed at disease-associated loci in iPSCs. In addition, we investigated the specificity of guide RNAs used in the CRISPR/Cas9 system in targeting disease-associated point mutations in patient-specific iPSCs. Using myeloproliferative neoplasm patient-derived iPSCs that carry an acquired JAK2-V617F point mutation and α1-antitrypsin (AAT) deficiency patient-derived iPSCs that carry an inherited Z-AAT point mutation, we demonstrate that Cas9 can specifically target either the mutant or the wild-type allele with little disruption at the other allele differing by a single nucleotide. Overall, our results demonstrate the advantages of the CRISPR/Cas9 system in allele-specific genome targeting and in NHEJ-mediated gene disruption.

  13. Identification and Molecular Analysis of Four New Alleles at the W1 Locus Associated with Flower Color in Soybean.

    Directory of Open Access Journals (Sweden)

    Jagadeesh Sundaramoorthy

    Full Text Available In soybean, flavonoid 3'5'-hydroxylase (F3'5'H and dihydroflavonol-4-reductase (DFR play a crucial role in the production of anthocyanin pigments. Loss-of-function of the W1 locus, which encodes the former, or W3 and W4, which encode the latter, always produces white flowers. In this study, we searched for new genetic components responsible for the production of white flowers in soybean and isolated four white-flowered mutant lines, i.e., two Glycine soja accessions (CW12700 and CW13381 and two EMS-induced mutants of Glycine max (PE1837 and PE636. F3'5'H expression in CW12700, PE1837, and PE636 was normal, whereas that in CW13381 was aberrant and missing the third exon. Sequence analysis of F3'5'H of CW13381 revealed the presence of an indel (~90-bp AT-repeat in the second intron. In addition, the F3'5'H of CW12700, PE1837, and PE636 harbored unique single-nucleotide substitutions. The single nucleotide polymorphisms resulted in substitutions of amino acid residues located in or near the SRS4 domain of F3'5'H, which is essential for substrate recognition. 3D structure modeling of F3'5'H indicated that the substitutions could interfere with an interaction between the substrate and heme group and compromise the conformation of the active site of F3'5'H. Recombination analysis revealed a tight correlation between all of the mutant alleles at the W1 locus and white flower color. On the basis of the characterization of the new mutant alleles, we discussed the biological implications of F3'5'H and DFR in the determination of flower colors in soybean.

  14. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation

    Directory of Open Access Journals (Sweden)

    Fresno Manuel

    2011-07-01

    Full Text Available Abstract Background Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. Results In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II, to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus, infected with mutant parasites did not develop any sign of pathology. Conclusions The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis.

  15. Conserved role of unc-79 in ethanol responses in lightweight mutant mice.

    Directory of Open Access Journals (Sweden)

    David J Speca

    2010-08-01

    Full Text Available The mechanisms by which ethanol and inhaled anesthetics influence the nervous system are poorly understood. Here we describe the positional cloning and characterization of a new mouse mutation isolated in an N-ethyl-N-nitrosourea (ENU forward mutagenesis screen for animals with enhanced locomotor activity. This allele, Lightweight (Lwt, disrupts the homolog of the Caenorhabditis elegans (C. elegans unc-79 gene. While Lwt/Lwt homozygotes are perinatal lethal, Lightweight heterozygotes are dramatically hypersensitive to acute ethanol exposure. Experiments in C. elegans demonstrate a conserved hypersensitivity to ethanol in unc-79 mutants and extend this observation to the related unc-80 mutant and nca-1;nca-2 double mutants. Lightweight heterozygotes also exhibit an altered response to the anesthetic isoflurane, reminiscent of unc-79 invertebrate mutant phenotypes. Consistent with our initial mapping results, Lightweight heterozygotes are mildly hyperactive when exposed to a novel environment and are smaller than wild-type animals. In addition, Lightweight heterozygotes exhibit increased food consumption yet have a leaner body composition. Interestingly, Lightweight heterozygotes voluntarily consume more ethanol than wild-type littermates. The acute hypersensitivity to and increased voluntary consumption of ethanol observed in Lightweight heterozygous mice in combination with the observed hypersensitivity to ethanol in C. elegans unc-79, unc-80, and nca-1;nca-2 double mutants suggests a novel conserved pathway that might influence alcohol-related behaviors in humans.

  16. Morphology and mapping analysis of rice (Oryza sativa L.) clustered spikelets (Cl) mutant

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The rice clustered spikelets (Cl) mutant exhibits a phenotype that most of branch apical have 2-3 spikelets clustered together. SEM (scanning electron microscope) observation suggested that the Cl gene controlled branch apical development, and influenced the terminal spikelets elongation. The spikelet number was reduced in mutant, indicating that Cl may also have an effect on spikelet number. To map Cl locus, two F2 mapping populations derived from the crosses between the Cl and ZhongHua11, and Cl and ZheFu802 were constructed, respectively. The Cl locus was roughly mapped between two CAPS markers, CK0214 and SS0324. A further fine mapping analysis showed that the Cl locus was mapped between makers R0674E and Cl2560, with genetic distances of 0.2 and 2.1 cM, respectively. Then we found a PAC contig spanning Cl locus, the region was delimited to 196 kb. This result was useful for cloning of the Cl gene. Allelism test demonstrated that Cl was allelic to Cl2, another rice clustered spikelets mutant.

  17. Influence of a nucleotide oligomerization domain 1 (NOD1) polymorphism and NOD2 mutant alleles on Crohn's disease phenotype

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To examine genetic variation of nucleotide oligomerization domain 1 (NOD1) and NOD2, their respective influences on Crohn's disease phenotype and gene-gene interactions.METHODS: (ND1+32656*1) NOD1 polymorphism and SNP8, SNP12 and SNP13 of NOD2 were analyzed in 97 patients and 50 controls. NOD2 variants were determined by reaction restriction fragment length polymorphism analysis. NOD1 genotyping and NOD2 variant confirmation were performed by specific amplification and sequencing.RESULTS: The distribution of NOD1 polymorphism in patients was different from controls (P = 0.045) and not altered by existence of NOD2 mutations. In this cohort, 30.92% patients and 6% controls carried at least one NOD2 variant (P < 0.001) with R702W being the most frequent variant. Presence of at least one NOD2 mutation was inversely associated with colon involvement (9.09% with colon vs 36.4% with ileal or ileocolonic involvement, P = 0.04) and indicative of risk of penetrating disease (52.63% with penetrating vs 25.64% with non-penetrating or stricturing behavior,P = 0.02). L1007finsC and double NOD2 mutation conferred the highest risk for severity of disease (26.3% with penetrating disease vs 3.8% with non-penetrating or stricturing behavior presented L1007finsC, P = 0.01 and 21.0% with penetrating disease vs 2.5% with non-penentrating or stricturing behavior carried double NOD2 mutation, P = 0.007). Exclusion of patients with NOD2 mutations from phenotype/NOD1-genotype analysis revealed higher prevalence of *1*1 genotype in groups of younger age at onset and colonic location.CONCLUSION: This study suggests population differences in the inheritance of risk NOD1 polymorphism and NOD2 mutations. Although no interaction between NOD1-NOD2 was noticed, a relationship between disease location and Nod-like receptor molecules was established.

  18. Continued Sensitivity of Plasmodium falciparum to Artemisinin in Guyana, With Absence of Kelch Propeller Domain Mutant Alleles

    Science.gov (United States)

    Rahman, Reyaud; Martin, Maria Jesus Sanchez; Persaud, Shamdeo; Ceron, Nicolas; Kellman, Dwayne; Musset, Lise; Carter, Keith H.; Ringwald, Pascal

    2016-01-01

    Because of concerns about possible emergence of artemisinin resistance strains of Plasmodium falciparum in mining areas of the interior of Guyana, a 7-day artesunate trial was conducted from March to December 2014. The day-3 parasite clearance rate, the efficacy of artesunate at day 28, and polymorphism of Kelch 13 (PfK13)—the marker of artemisinin resistance—were assessed. The study confirmed the continued sensitivity of P falciparum to artemisinin. A 7-day course of artesunate was 100% efficacious with only 2% (95% confidence interval, .1%–10.9%) of enrolled subjects positive at day 3. All day-0 parasite samples were wild type. Continued resistance monitoring is nevertheless recommended, given the widespread availability and uncontrolled use of artemisinin drugs in mining areas of Guyana.

  19. Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a

    Directory of Open Access Journals (Sweden)

    Chunqiao Liu

    2014-09-01

    Full Text Available Planar cell polarity (PCP signaling plays a critical role in tissue morphogenesis. In mammals, disruption of three of the six “core PCP” components results in polarity-dependent defects with rotated cochlear hair cell stereocilia and open neural tube. We recently demonstrated a role of Prickle1, a core PCP molecule in Drosophila, in mammalian neuronal development. To examine Prickle1 function along a broader developmental window, we generated three mutant alleles in mice. We show that the complete loss of Prickle1 leads to systemic tissue outgrowth defects, aberrant cell organization and disruption of polarity machinery. Curiously, Prickle1 mutants recapitulate the characteristic features of human Robinow syndrome and phenocopy mouse mutants with Wnt5a or Ror2 gene defects, prompting us to explore an association of Prickle1 with the Wnt pathway. We show that Prickle1 is a proteasomal target of Wnt5a signaling and that Dvl2, a target of Wnt5a signaling, is misregulated in Prickle1 mutants. Our studies implicate Prickle1 as a key component of the Wnt-signaling pathway and suggest that Prickle1 mediates some of the WNT5A-associated genetic defects in Robinow syndrome.

  20. Allelic exclusion of immunoglobulin genes: models and mechanisms.

    Science.gov (United States)

    Vettermann, Christian; Schlissel, Mark S

    2010-09-01

    The allelic exclusion of immunoglobulin (Ig) genes is one of the most evolutionarily conserved features of the adaptive immune system and underlies the monospecificity of B cells. While much has been learned about how Ig allelic exclusion is established during B-cell development, the relevance of monospecificity to B-cell function remains enigmatic. Here, we review the theoretical models that have been proposed to explain the establishment of Ig allelic exclusion and focus on the molecular mechanisms utilized by developing B cells to ensure the monoallelic expression of Ig kappa and Ig lambda light chain genes. We also discuss the physiological consequences of Ig allelic exclusion and speculate on the importance of monospecificity of B cells for immune recognition.

  1. 8q24 Cancer risk allele associated with major metastatic risk in inflammatory breast cancer.

    Directory of Open Access Journals (Sweden)

    François Bertucci

    Full Text Available BACKGROUND: Association studies have identified low penetrance alleles that participate to the risk of cancer development. The 8q24 chromosomal region contains several such loci involved in various cancers that have been recently studied for their propensity to influence the clinical outcome of prostate cancer. We investigated here two 8q24 breast and colon cancer risk alleles in the close vicinity of the MYC gene for their role in the occurrence of distant metastases. METHODOLOGY/PRINCIPAL FINDINGS: A retrospective series of 449 patients affected with breast or colon adenocarcinoma was genotyped for the rs13281615 and/or rs6983267 SNPs. Statistical analyses were done using the survival package v2.30 in the R software v2.9.1. The two SNPs did not influence the development of distant metastases of colon cancer; rs6983267 showed a mild effect on breast cancer. However, this effect was greatly emphasized when considering inflammatory breast cancer (IBC solely. Replicated on a larger and independent series of IBC the contribution of the genotype to the metastatic risk of IBC was found an independent predictor of outcome (p = 2e-4; OR 8.3, CI95:2.6-33. CONCLUSIONS/SIGNIFICANCE: Our study shows first that the monitoring of this specific germline variation may add a substantial tool for IBC prognostication, an aggressive disease that evolves towards distant metastases much more frequently than non-IBC and for which no reliable prognostic factor is available in medical practice. Second, it more generally suggests that risk alleles, while associated with low susceptibility, could correlate with a high risk of metastasis.

  2. [Genetic analysis and gene mapping of two novel quail-like mutants from the silkworm (Bombyx mori)].

    Science.gov (United States)

    Zhao, Qiaoling; Wang, Wenbo; Chen, Anli; Qiu, Zhiyong; Xia, Dingguo; Qian, Heying; Shen, Xingjia

    2014-04-01

    Two novel body marking mutants were discovered during silkworm (Bombyx mori) breeding. The mutants have no obvious eye-spots compared with normal marking (+) individuals, but their star spots and semilunar markings on dorsal sides are normal, and there are dots and lines with longitudinal wave markings on dorsal sides of the 6th to 7th abdominal segments which consist quail markings in between star spots and semilunar markings. The whole body markings are very similar to that of quail mutant (q); thus these mutants are named as quail-like mutants (q-l). Young larvae of one mutant are in brown color, and develop normally. Their cocoons are regular and uniform in size. Thus, this mutant is designated as brown quail-like (q-lb). Another mutant's larvae are in light purple skin; thus this mutant is named as purple quail-like (q-lp). They take little amount of mulberry leaves, and are weak and develop slowly and unevenly. Their larval bodies and cocoons are small. Genetic analysis revealed that both q-lb and q-lp were recessive genes, and they were allelic, with q-lb recessive to q-lp. These genes are different from quail mutant (q) and located on the chromosome 8 after tested by the morphological markers, P3(2), p(2), Ze(3), L(4), re(5), E(6), q(7), I-a(9), ms(12), ch(13), oa(14), cts(16), mln(18), msn(19), rb(21) and so(26) and SSR markers.

  3. Sequencing of 15 new BoLA-DRB3 alleles.

    Science.gov (United States)

    Wang, K; Sun, D; Zhang, Y

    2008-08-01

    The class II DR of bovine major histocompatibility complex of cattle (BoLA) plays a central role in the regulation of the immune response through their ability to present those peptides to T-cell receptors. In this work, we sequenced the exon2 of DRB3 to identify new alleles in Chinese yellow cattle, a total of 15 new BoLA-DRB3 alleles were found.

  4. Robust identification of local adaptation from allele frequencies.

    Science.gov (United States)

    Günther, Torsten; Coop, Graham

    2013-09-01

    Comparing allele frequencies among populations that differ in environment has long been a tool for detecting loci involved in local adaptation. However, such analyses are complicated by an imperfect knowledge of population allele frequencies and neutral correlations of allele frequencies among populations due to shared population history and gene flow. Here we develop a set of methods to robustly test for unusual allele frequency patterns and correlations between environmental variables and allele frequencies while accounting for these complications based on a Bayesian model previously implemented in the software Bayenv. Using this model, we calculate a set of "standardized allele frequencies" that allows investigators to apply tests of their choice to multiple populations while accounting for sampling and covariance due to population history. We illustrate this first by showing that these standardized frequencies can be used to detect nonparametric correlations with environmental variables; these correlations are also less prone to spurious results due to outlier populations. We then demonstrate how these standardized allele frequencies can be used to construct a test to detect SNPs that deviate strongly from neutral population structure. This test is conceptually related to FST and is shown to be more powerful, as we account for population history. We also extend the model to next-generation sequencing of population pools-a cost-efficient way to estimate population allele frequencies, but one that introduces an additional level of sampling noise. The utility of these methods is demonstrated in simulations and by reanalyzing human SNP data from the Human Genome Diversity Panel populations and pooled next-generation sequencing data from Atlantic herring. An implementation of our method is available from http://gcbias.org.

  5. Characterization of a dominant negative C. elegans Twist mutant protein with implications for human Saethre-Chotzen syndrome.

    Science.gov (United States)

    Corsi, Ann K; Brodigan, Thomas M; Jorgensen, Erik M; Krause, Michael

    2002-06-01

    Twist is a transcription factor that is required for mesodermal cell fates in all animals studied to date. Mutations of this locus in humans have been identified as the cause of the craniofacial disorder Saethre-Chotzen syndrome. The Caenorhabditis elegans Twist homolog is required for the development of a subset of the mesoderm. A semidominant allele of the gene that codes for CeTwist, hlh-8, has defects that occur earlier in the mesodermal lineage than a previously studied null allele of the gene. The semidominant allele has a charge change (E29K) in the basic DNA-binding domain of CeTwist. Surprisingly, the mutant protein retains DNA-binding activity as both a homodimer and a heterodimer with its partner E/Daughterless (CeE/DA). However, the mutant protein blocks the activation of the promoter of a target gene. Therefore, the mutant CeTwist may cause cellular defects as a dominant negative protein by binding to target promoters as a homo- or heterodimer and then blocking transcription. Similar phenotypes as those caused by the E29K mutation were observed when amino acid substitutions in the DNA-binding domain that are associated with the human Saethre-Chotzen syndrome were engineered into the C. elegans protein. These data suggest that Saethre-Chotzen syndrome may be caused, in some cases, by dominant negative proteins, rather than by haploinsufficiency of the locus.

  6. Mutants for Drosophila Isocitrate Dehydrogenase 3b Are Defective in Mitochondrial Function and Larval Cell Death

    Science.gov (United States)

    Duncan, Dianne M.; Kiefel, Paula; Duncan, Ian

    2017-01-01

    The death of larval salivary gland cells during metamorphosis in Drosophila melanogaster has been a key system for studying steroid controlled programmed cell death. This death is induced by a pulse of the steroid hormone ecdysone that takes place at the end of the prepupal period. For many years, it has been thought that the ecdysone direct response gene Eip93F (E93) plays a critical role in initiating salivary gland cell death. This conclusion was based largely on the finding that the three “type” alleles of E93 cause a near-complete block in salivary gland cell death. Here, we show that these three mutations are in fact allelic to Idh3b, a nearby gene that encodes the β subunit of isocitrate dehydrogenase 3, a mitochondrial enzyme of the tricarboxylic acid (TCA) cycle. The strongest of the Idh3b alleles appears to cause a near-complete block in oxidative phosphorylation, as mitochondria are depolarized in mutant larvae, and development arrests early during cleavage in embryos from homozygous-mutant germline mothers. Idh3b-mutant larval salivary gland cells fail to undergo mitochondrial fragmentation, which normally precedes the death of these cells, and do not initiate autophagy, an early step in the cell death program. These observations suggest a close relationship between the TCA cycle and the initiation of larval cell death. In normal development, tagged Idh3b is released from salivary gland mitochondria during their fragmentation, suggesting that Idh3b may be an apoptogenic factor that functions much like released cytochrome c in mammalian cells. PMID:28104670

  7. Biochemical and histological characterization of tomato mutants

    Directory of Open Access Journals (Sweden)

    Carolina C. Monteiro

    2012-06-01

    Full Text Available Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT, we observed that the malondialdehyde (MDA content was enhanced in the diageotropica (dgt and lutescent (l mutants, whilst the highest levels of hydrogen peroxide (H2O2 were observed in high pigment 1 (hp1 and aurea (au mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT activity when compared to MT. Guaiacol peroxidase (GPOX was enhanced in both sitiens (sit and notabilis (not mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX. Based on PAGE analysis, the activities of glutathione reductase (GR isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD isoform III was reduced in leaves of sit, epi, Never ripe (Nr and green flesh (gf mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism.Neste trabalho, analisamos as respostas bioquímicas inerentes ao sistema antioxidante, assim como propriedades morfológicas e anatômicas de mutantes fotomorfogenéticos e hormonais de tomateiro. Comparados ao não mutante Micro-Tom (MT, observamos que o conteúdo de malondialdeído (MDA aumentou nos mutantes diageotropica (dgt e lutescent (l, enquanto os maiores níveis de H2O2 foram encontrados nos mutantes high pigment 1 (hp1 e aurea (au. Análises de enzimas antioxidantes mostraram que todos os mutantes reduziram a atividade de catalase (CAT quando comparado a MT. A

  8. Mannose-binding lectin variant alleles and HLA-DR4 alleles are associated with giant cell arteritis

    DEFF Research Database (Denmark)

    Jacobsen, Soren; Baslund, Bo; Madsen, Hans O.

    2002-01-01

    OBJECTIVE: To determine whether variant alleles of the mannose-binding lectin (MBL) gene causing low serum concentrations of MBL and/or polymorphisms of HLA-DRB1 are associated with increased susceptibility to polymyalgia rheumatica (PMR) and giant cell arteritis (GCA) or particular clinical...... phenotypes of PMR/GCA. METHODS: MBL and HLA-DRB1 alleles were determined by polymerase chain reaction in 102 Danish patients with PMR (n = 37) or GCA (n = 65). Two hundred fifty and 193 healthy individuals served as controls for MBL and HLA genotyping, respectively. RESULTS: The prevalence of MBL variant...... alleles in controls, patients with PMR only, and patients with GCA was 37, 32, and 53% (p = 0.01), respectively. HLA-DRB1*04 was found in 47% of patients with PMR only and in 54% of patients with GCA, which differed significantly from the 35% found in controls (p = 0.01). HLA-DR4 alleles were...

  9. Mouse survival motor neuron alleles that mimic SMN2 splicing and are inducible rescue embryonic lethality early in development but not late.

    Directory of Open Access Journals (Sweden)

    Suzan M Hammond

    Full Text Available Spinal muscular atrophy (SMA is caused by low survival motor neuron (SMN levels and patients represent a clinical spectrum due primarily to varying copies of the survival motor neuron-2 (SMN2 gene. Patient and animals studies show that disease severity is abrogated as SMN levels increase. Since therapies currently being pursued target the induction of SMN, it will be important to understand the dosage, timing and cellular requirements of SMN for disease etiology and potential therapeutic intervention. This requires new mouse models that can induce SMN temporally and/or spatially. Here we describe the generation of two hypomorphic Smn alleles, Smn(C-T-Neo and Smn(2B-Neo. These alleles mimic SMN2 exon 7 splicing, titre Smn levels and are inducible. They were specifically designed so that up to three independent lines of mice could be generated, herein we describe two. In a homozygous state each allele results in embryonic lethality. Analysis of these mutants indicates that greater than 5% of Smn protein is required for normal development. The severe hypomorphic nature of these alleles is caused by inclusion of a loxP-flanked neomycin gene selection cassette in Smn intron 7, which can be removed with Cre recombinase. In vitro and in vivo experiments demonstrate these as inducible Smn alleles. When combined with an inducible Cre mouse, embryonic lethality caused by low Smn levels can be rescued early in gestation but not late. This provides direct genetic evidence that a therapeutic window for SMN inductive therapies may exist. Importantly, these lines fill a void for inducible Smn alleles. They also provide a base from which to generate a large repertoire of SMA models of varying disease severities when combined with other Smn alleles or SMN2-containing mice.

  10. Weed response to herbicides: regional-scale distribution of herbicide resistance alleles in the grass weed Alopecurus myosuroides.

    Science.gov (United States)

    Menchari, Yosra; Camilleri, Christine; Michel, Séverine; Brunel, Dominique; Dessaint, Fabrice; Le Corre, Valérie; Délye, Christophe

    2006-01-01

    Effective herbicide resistance management requires an assessment of the range of spatial dispersion of resistance genes among weed populations and identification of the vectors of this dispersion. In the grass weed Alopecurus myosuroides (black-grass), seven alleles of the acetyl-CoA carboxylase (ACCase) gene are known to confer herbicide resistance. Here, we assessed their respective frequencies and spatial distribution on two nested geographical scales (the whole of France and the French administrative district of Côte d'Or) by genotyping 13 151 plants originating from 243 fields. Genetic variation in ACCase was structured in local populations at both geographical scales. No spatial structure in the distribution of resistant ACCase alleles and no isolation by distance were detected at either geographical scale investigated. These data, together with ACCase sequencing and data from the literature, suggest that evolution of A. myosuroides resistance to herbicides occurred at the level of the field or group of adjacent fields by multiple, independent appearances of mutant ACCase alleles that seem to have rather restricted spatial propagation. Seed transportation by farm machinery seems the most likely vector for resistance gene dispersal in A. myosuroides.

  11. The mouse pink-eyed dilution allele of the P-gene greatly inhibits eumelanin but not pheomelanin synthesis.

    Science.gov (United States)

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2011-02-01

    The mouse pink-eyed dilution (p) locus is known to control eumelanin synthesis, melanosome morphology, and tyrosinase activity in melanocytes. However, it has not been fully determined whether the mutant allele, p affects pheomelanin synthesis. Effects of the p allele on eumelanin and phemelanin synthesis were investigated by chemical analysis of dorsal hairs of 5-week-old mice obtained from the F(2) generations (black, pink-eyed black, recessive yellow, pink-eyed recessive yellow, agouti, and pink-eyed agouti) between C57BL/10JHir (B10)-congenic pink-eyed black mice (B10-p/p) and recessive yellow (B10-Mc1r(e)/Mc1r(e)) or agouti (B10-A/A) mice. The eumelanin content was dramatically (>20-fold) decreased in pink-eyed black and pink-eyed agouti mice, whereas the pheomelanin content did not decrease in pink-eyed black, pink-eyed recessive yellow, or pink-eyed agouti mice compared to the corresponding P/- mice. These results suggest that the pink-eyed dilution allele greatly inhibits eumelanin synthesis, but not pheomelanin synthesis.

  12. Distribution of BoLA-DRB3 allelic frequencies and identification of two new alleles in Iranian buffalo breed.

    Science.gov (United States)

    Mosafer, J; Heydarpour, M; Manshad, E; Russell, G; Sulimova, G E

    2012-01-01

    The role of the major histocompatibility complex (MHC) in the immune response makes it an attractive candidate gene for associations with disease resistance and susceptibility. This study describes genetic variability in the BoLA-DRB3 in Iranian buffaloes. Heminested PCR-RFLP method was used to identify the frequency of BoLA-DRB3 alleles. The BoLA-DRB3 locus is highly polymorphic in the study herd (12 alleles). Almost 63.50% of the alleles were accounted for by four alleles (BoLA-DRB3.2 ∗48, ∗20, ∗21, and obe) in Iranian buffalo. The DRB3.2 ∗48 allele frequency (24.20%) was higher than the others. The frequencies of the DRB3.2 ∗20 and DRB3.2 ∗21 are 14.52 and 14.00, respectively, and obe and gbb have a new pattern. Significant distinctions have been found between Iranian buffalo and other cattle breed studied. In the Iranian buffaloes studied alleles associated with resistance to various diseases are found.

  13. Distribution of BoLA-DRB3 Allelic Frequencies and Identification of Two New Alleles in Iranian Buffalo Breed

    Directory of Open Access Journals (Sweden)

    J. Mosafer

    2012-01-01

    Full Text Available The role of the major histocompatibility complex (MHC in the immune response makes it an attractive candidate gene for associations with disease resistance and susceptibility. This study describes genetic variability in the BoLA-DRB3 in Iranian buffaloes. Heminested PCR-RFLP method was used to identify the frequency of BoLA-DRB3 alleles. The BoLA-DRB3 locus is highly polymorphic in the study herd (12 alleles. Almost 63.50% of the alleles were accounted for by four alleles (BoLA-DRB3.2 *48, *20, *21, and obe in Iranian buffalo. The DRB3.2 *48 allele frequency (24.20% was higher than the others. The frequencies of the DRB3.2 *20 and DRB3.2 *21 are 14.52 and 14.00, respectively, and obe and gbb have a new pattern. Significant distinctions have been found between Iranian buffalo and other cattle breed studied. In the Iranian buffaloes studied alleles associated with resistance to various diseases are found.

  14. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  15. How the Number of Alleles Influences Gene Expression

    Science.gov (United States)

    Hat, Beata; Paszek, Pawel; Kimmel, Marek; Piechor, Kazimierz; Lipniacki, Tomasz

    2007-07-01

    The higher organisms, eukaryotes, are diploid and most of their genes have two homological copies (alleles). However, the number of alleles in a cell is not constant. In the S phase of the cell cycle all the genome is duplicated and then in the G2 phase and mitosis, which together last for several hours, most of the genes have four copies instead of two. Cancer development is, in many cases, associated with a change in allele number. Several genetic diseases are caused by haploinsufficiency: Lack of one of the alleles or its improper functioning. In the paper we consider the stochastic expression of a gene having a variable number of copies. We applied our previously developed method in which the reaction channels are split into slow (connected with change of gene state) and fast (connected with mRNA/protein synthesis/decay), the later being approximated by deterministic reaction rate equations. As a result we represent gene expression as a piecewise deterministic time-continuous Markov process, which is further related with a system of partial differential hyperbolic equations for probability density functions (pdfs) of protein distribution. The stationary pdfs are calculated analytically for haploidal gene or numerically for diploidal and tetraploidal ones. We distinguished nine classes of simultaneous activation of haploid, diploid and tetraploid genes. This allows for analysis of potential consequences of gene duplication or allele loss. We show that when gene activity is autoregulated by a positive feedback, the change in number of gene alleles may have dramatic consequences for its regulation and may not be compensated by the change of efficiency of mRNA synthesis per allele.

  16. CMPD: cancer mutant proteome database.

    Science.gov (United States)

    Huang, Po-Jung; Lee, Chi-Ching; Tan, Bertrand Chin-Ming; Yeh, Yuan-Ming; Julie Chu, Lichieh; Chen, Ting-Wen; Chang, Kai-Ping; Lee, Cheng-Yang; Gan, Ruei-Chi; Liu, Hsuan; Tang, Petrus

    2015-01-01

    Whole-exome sequencing, which centres on the protein coding regions of disease/cancer associated genes, represents the most cost-effective method to-date for deciphering the association between genetic alterations and diseases. Large-scale whole exome/genome sequencing projects have been launched by various institutions, such as NCI, Broad Institute and TCGA, to provide a comprehensive catalogue of coding variants in diverse tissue samples and cell lines. Further functional and clinical interrogation of these sequence variations must rely on extensive cross-platforms integration of sequencing information and a proteome database that explicitly and comprehensively archives the corresponding mutated peptide sequences. While such data resource is a critical for the mass spectrometry-based proteomic analysis of exomic variants, no database is currently available for the collection of mutant protein sequences that correspond to recent large-scale genomic data. To address this issue and serve as bridge to integrate genomic and proteomics datasets, CMPD (http://cgbc.cgu.edu.tw/cmpd) collected over 2 millions genetic alterations, which not only facilitates the confirmation and examination of potential cancer biomarkers but also provides an invaluable resource for translational medicine research and opportunities to identify mutated proteins encoded by mutated genes.

  17. Study on culturing Trichodema mutants

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-ai; WANG Wei-ming

    2004-01-01

    @@ Trichodema mutants strains T5, T0803, T1010, T1003were cultured in different conditions and media, also in the presence of fungicides at 40 mg/kg (CK or procymidone + chlorothalonil, or maneb or phosethyl-Al) . The pH values of media were 5, 6, 7 and 8 and hyphae were grown at temperatures of 15, 20, 25 and 30 ℃. After being cultured for 3, 4, 5, or 6 days, the strains were transferred at a lower temperature to sporulate (20℃) Obtained data were analyzed statistically, with the orthogonal array and ranges (R) differing dependes on the treatments (R = 40.0,42.4, 48.0, 62.8,107.0). The results indicated that the most important factor was the nature of the strain (R =107.0), while the change in temperature and time of cultivation produced the lowest effect (R =40.0). Each factor variance was significant and A3B4C2D1E3 was the optimum combined condition, in which strain T1010 grew more quickly and sporulated most.

  18. Clinical features andMUT gene mutation spectrum in Chinese patients with isolated methylmalonic acidemia:identifi cation of ten novel allelic variants

    Institute of Scientific and Technical Information of China (English)

    Lian-Shu Han; Zhuo Huang; Feng Han; Jun Ye; Wen-Juan Qiu; Hui-Wen Zhang; Yu Wang; Zhu-Wen Gong; Xue-Fan Gu

    2015-01-01

    Background: This study aims to studyMUT gene mutation spectrum in Chinese patients with isolated methylmalonic academia (MMA) and their clinical features for the potential genotype-phenotype correlation. Methods: Forty-three patients were diagnosed with isolated MMA by elevated blood propionylcarnitine, propionylcarnitine to acetylcarnitine ratio, and urine methylmalonate without hyperhomocysteinemia. The MUT gene was amplifi ed by polymerase chain reaction and directly sequenced. Those patients with at least one variant allele were included. The novel missense mutations were assessed by bioinformatic analysis and screened against alleles sequenced from 50 control participants. Results: Among the 43 patients, 38 had typical clinical presentations, and the majority (30/38) experienced early-onset MMA. Eight patients died and seven were lost to follow-up. Twenty patients had poor outcomes and eight showed normal development. The 43 identifi edMUT gene mutations had at least one variant allele, whereas 35 had two mutant alleles. Of the 33 mutations reported before, eight recurrent mutations were identified in 32 patients, and c.729_730insTT (p.D244Lfs*39) was the most common (12/78) in the mutant alleles. Of the 10 novel mutations, six were missense mutations and four were premature termination codon mutations. The six novel missense mutations seemed to be pathogenic. Conclusions: A total of 10 novelMUT mutations were detected in the Chinese population. c.729_730insTT (p.D244Lfs*39) was the most frequent mutation. A genotype-phenotype correlation could not be found, but the genotypic characterization indicated the need of genetic counseling for MMA patients and early prenatal diagnoses for high-risk families.

  19. Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene.

    Science.gov (United States)

    Salmon, Jemma; Ward, Sally P; Hanley, Steven J; Leyser, Ottoline; Karp, Angela

    2014-05-01

    Willows (Salix spp.) are important biomass crops due to their ability to grow rapidly with low fertilizer inputs and ease of cultivation in short-rotation coppice cycles. They are relatively undomesticated and highly diverse, but functional testing to identify useful allelic variation is time-consuming in trees and transformation is not yet possible in willow. Arabidopsis is heralded as a model plant from which knowledge can be transferred to advance the improvement of less tractable species. Here, knowledge and methodologies from Arabidopsis were successfully used to identify a gene influencing stem number in coppiced willows, a complex trait of key biological and industrial relevance. The strigolactone-related More AXillary growth (MAX) genes were considered candidates due to their role in shoot branching. We previously demonstrated that willow and Arabidopsis show similar response to strigolactone and that transformation rescue of Arabidopsis max mutants with willow genes could be used to detect allelic differences. Here, this approach was used to screen 45 SxMAX1, SxMAX2, SxMAX3 and SxMAX4 alleles cloned from 15 parents of 11 mapping populations varying in shoot-branching traits. Single-nucleotide polymorphism (SNP) frequencies were locus dependent, ranging from 29.2 to 74.3 polymorphic sites per kb. SxMAX alleles were 98%-99% conserved at the amino acid level, but different protein products varying in their ability to rescue Arabidopsis max mutants were identified. One poor rescuing allele, SxMAX4D, segregated in a willow mapping population where its presence was associated with increased shoot resprouting after coppicing and colocated with a QTL for this trait.

  20. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility.

    Science.gov (United States)

    Lee, Sang-Kyu; Eom, Joon-Seob; Hwang, Seon-Kap; Shin, Dongjin; An, Gynheung; Okita, Thomas W; Jeon, Jong-Seong

    2016-10-01

    To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4 Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice.

  1. A review on the origin and spread of deleterious mutants of the beta-globin gene in Indian populations.

    Science.gov (United States)

    Das, S K; Talukder, G

    2001-01-01

    Deleterious mutations of the human beta-globin gene are responsible for beta-thalassaemia and other haemoglobinopathies, which are the most common genetic diseases in Indian populations. A highly heterogeneous distribution of those mutations is observed in India and certain mutations are restricted to some extent to particular groups only. The reasons behind the geographical clustering and origin of the mutations in India is a highly debated issue and the evidence is conflicting. Our present article aims at tracing the origin of the deleterious beta-globin mutation and evaluates the role of different evolutionary forces responsible for the spread and present distribution of those mutations in Indian populations, using data from molecular biology and statistical methods. Mutations are generated essentially randomly, but "hot-spot" sites for mutation are reported for the beta-globin gene cluster, indicating sequence dependency of mutation. A single origin of a deleterious beta-globin mutation, followed by recombination (in a hot spot region) and/or interallelic gene conversion (within beta-globin gene) through time is the most plausible hypothesis to explain the association of those mutations with multiple haplotype backgrounds and frameworks. It is suggested that India is the place of origin of HbE and HbD mutations and that they dispersed to other parts of the would by migration. HbS mutants present in Indian populations are not of Middle East origin but rather a fresh mutation is the probable explanation for the prevalence among tribal groups. beta-thalassaemia represents a heterogeneous group of mutant alleles in India. Five common and twelve rare mutations have been reported in variable frequencies among different Indian populations. Gene flow of those mutant alleles from different populations of the world by political, military and commercial interactions possibly accounts for the heterogenous nature of beta-thalassaemia among Indians. A multiple allelic

  2. Indução de mutante para maior altura basal em feijoeiro através de raios gama Induction of mutant for increased basal height in the common bean using gamma rays

    Directory of Open Access Journals (Sweden)

    Augusto Tulmann Neto

    1994-01-01

    Full Text Available Para a indução de mutantes com maior altura basal (soma das alturas do hipocótilo e epicótilo, sementes de feijoeiro (Phaseolus vulgaris L. cultivar Carioca 80 foram irradiadas com raios gama. Um mutante que apresentou altura basal 1,7 vez maior que o controle foi obtido na geração M2, do tratamento com 24 krad. A mutação foi monogênica devido a um alelo recessivo. Trata-se do primeiro mutante obtido por indução de mutação, para tal característica.Seeds of the bean cultivar (Phaseolus vulgaris L. Carioca 80 were irradiated with gamma-rays to induce mutants with higher basal height (sum of hypocotyl and epycotyl. A mutant with 1.7 time greater basal height was obtained in the M2 generation from 24 krad treatment. Genetic studies showed that the mutation was a monogenic recessive allele. This is the first report of an induced mutant with this characteristic.

  3. Mutations in new cell cycle genes that fail to complement a multiply mutant third chromosome of Drosophila.

    Science.gov (United States)

    White-Cooper, H; Carmena, M; Gonzalez, C; Glover, D M

    1996-11-01

    We have simultaneously screened for new alleles and second site mutations that fail to complement five cell cycle mutations of Drosphila carried on a single third chromosome (gnu, polo, mgr, asp, stg). Females that are either transheterozygous for scott of the antartic (scant) and polo, or homozygous for scant produce embryos that show mitotic defects. A maternal effect upon embryonic mitoses is also seen in embryos derived from females transheterozygous with helter skelter (hsk) and either mgr or asp. cleopatra (cleo), fails to complement asp but is not uncovered by a deficiency for asp. The mitotic phenotype of larvae heterozygous for cleo and the multiple mutant chromosome is similar to weak alleles of asp, but there are no defects in male meiosis. Mutations that failed to complement stg fell into two complementation groups corresponding to stg and a new gene noose. Three of the new stg alleles are early zygotic lethals, whereas the fourth is a pharate adult lethal allele that affects both mitosis and meiosis. Mutations in noose fully complement a small deficiency that removes stg, but when placed in trans to certain stg alleles, result in late lethality and mitotic abnormalities in larval brains.

  4. Fitness costs associated with evolved herbicide resistance alleles in plants.

    Science.gov (United States)

    Vila-Aiub, Martin M; Neve, Paul; Powles, Stephen B

    2009-12-01

    Predictions based on evolutionary theory suggest that the adaptive value of evolved herbicide resistance alleles may be compromised by the existence of fitness costs. There have been many studies quantifying the fitness costs associated with novel herbicide resistance alleles, reflecting the importance of fitness costs in determining the evolutionary dynamics of resistance. However, many of these studies have incorrectly defined resistance or used inappropriate plant material and methods to measure fitness. This review has two major objectives. First, to propose a methodological framework that establishes experimental criteria to unequivocally evaluate fitness costs. Second, to present a comprehensive analysis of the literature on fitness costs associated with herbicide resistance alleles. This analysis reveals unquestionable evidence that some herbicide resistance alleles are associated with pleiotropic effects that result in plant fitness costs. Observed costs are evident from herbicide resistance-endowing amino acid substitutions in proteins involved in amino acid, fatty acid, auxin and cellulose biosynthesis, as well as enzymes involved in herbicide metabolism. However, these resistance fitness costs are not universal and their expression depends on particular plant alleles and mutations. The findings of this review are discussed within the context of the plant defence trade-off theory and herbicide resistance evolution.

  5. Identification and characterization of variant alleles at CODIS STR loci.

    Science.gov (United States)

    Allor, Catherine; Einum, David D; Scarpetta, Marco

    2005-09-01

    Short tandem repeat (STR) profiles from 32,671 individuals generated by the ABI Profiler Plus and Cofiler systems were screened for variant alleles not represented within manufacturer-provided allelic ladders. A total of 85 distinct variants were identified at 12 of the 13 CODIS loci, most of which involve a truncated tetranucleotide repeat unit. Twelve novel alleles, identified at D3S1358, FGA, D18S51, D5S818, D7S820 and TPOX, were confirmed by nucleotide sequence analysis and include both insertions and deletions involving the repeat units themselves as well as DNA flanking the repeat regions. Population genetic data were collected for all variants and frequencies range from 0.0003 (many single observations) to 0.0042 (D7S820 '10.3' in North American Hispanics). In total, the variant alleles identified in this study are carried by 1.6% of the estimated 1 million individuals tested annually in the U.S. for the purposes of parentage resolution. A paternity case involving a recombination event of paternal origin is presented and demonstrates how variant alleles can significantly strengthen the genetic evidence in troublesome cases. In such instances, increased costs and turnaround time associated with additional testing may be eliminated.

  6. STR allele sequence variation: Current knowledge and future issues.

    Science.gov (United States)

    Gettings, Katherine Butler; Aponte, Rachel A; Vallone, Peter M; Butler, John M

    2015-09-01

    This article reviews what is currently known about short tandem repeat (STR) allelic sequence variation in and around the twenty-four loci most commonly used throughout the world to perform forensic DNA investigations. These STR loci include D1S1656, TPOX, D2S441, D2S1338, D3S1358, FGA, CSF1PO, D5S818, SE33, D6S1043, D7S820, D8S1179, D10S1248, TH01, vWA, D12S391, D13S317, Penta E, D16S539, D18S51, D19S433, D21S11, Penta D, and D22S1045. All known reported variant alleles are compiled along with genomic information available from GenBank, dbSNP, and the 1000 Genomes Project. Supplementary files are included which provide annotated reference sequences for each STR locus, characterize genomic variation around the STR repeat region, and compare alleles present in currently available STR kit allelic ladders. Looking to the future, STR allele nomenclature options are discussed as they relate to next generation sequencing efforts underway.

  7. Mapping and characterization of a tiller-spreading mutant lazy-2 in rice

    Institute of Scientific and Technical Information of China (English)

    LI Peijin; ZENG Dali; LIU Xinfang; XU Dan; GU Dai; LI Jiayang; QIAN Qian

    2003-01-01

    Tiller angle of rice is an important agronomic trait that contributes to breed new varieties with ideal architecture. In this study, we report mapping and characterization of a rice mutant defective in tiller angle. At the seedling stage, the newly developed tillers of the mutant plants grow with a large angle that leads to a "lazy" phenotype at the mature stage. Genetic analysis indicates that this tiller-spreading phenotype is controlled by one recessive gene that is allelic to a reported mutant la. Therefore, the mutant was named la-2 and la renamed la-1. To map and clone LA, we constructed a large mapping population. Genetic linkage analysis showed that the LA gene is located between 2 SSR markers RM202 and RM229. By using the 6 newly-developed molecular markers, the LA gene was placed within a 0.4 cM interval on chromosome 11, allowing us to clone LA and study the mechanism that controls rice tiller angle at the molecular level.

  8. A Sorghum Mutant Resource as an Efficient Platform for Gene Discovery in Grasses.

    Science.gov (United States)

    Jiao, Yinping; Burke, John; Chopra, Ratan; Burow, Gloria; Chen, Junping; Wang, Bo; Hayes, Chad; Emendack, Yves; Ware, Doreen; Xin, Zhanguo

    2016-07-01

    Sorghum (Sorghum bicolor) is a versatile C4 crop and a model for research in family Poaceae. High-quality genome sequence is available for the elite inbred line BTx623, but functional validation of genes remains challenging due to the limited genomic and germplasm resources available for comprehensive analysis of induced mutations. In this study, we generated 6400 pedigreed M4 mutant pools from EMS-mutagenized BTx623 seeds through single-seed descent. Whole-genome sequencing of 256 phenotyped mutant lines revealed >1.8 million canonical EMS-induced mutations, affecting >95% of genes in the sorghum genome. The vast majority (97.5%) of the induced mutations were distinct from natural variations. To demonstrate the utility of the sequenced sorghum mutant resource, we performed reverse genetics to identify eight genes potentially affecting drought tolerance, three of which had allelic mutations and two of which exhibited exact cosegregation with the phenotype of interest. Our results establish that a large-scale resource of sequenced pedigreed mutants provides an efficient platform for functional validation of genes in sorghum, thereby accelerating sorghum breeding. Moreover, findings made in sorghum could be readily translated to other members of the Poaceae via integrated genomics approaches.

  9. A Lesion-Mimic Syntaxin Double Mutant in Arabidopsis Reveals Novel Complexity of Pathogen Defense Signaling

    Institute of Scientific and Technical Information of China (English)

    Ziguo Zhang; Hans Thordal-Christensen; Andrea Lenk; Mats X. Andersson; Torben Gjetting; Carsten Pedersen; Mads E. Nielsen; Marl-Anne Newman; Bi-Huei Hou; Shauna C. Somerville

    2008-01-01

    The lesion-mimicArabidopsis mutant, syp121 syp122, constitutively expresses the salicylic acid (SA) signaling pathway and has low penetration resistance to powdery mildew fungi. Genetic analyses of the lesion-mimic phenotype have expanded our understanding of programmed cell death (PCD) in plants. Inactivation of SA signaling genes in syp121 syp 122 only partially rescues the lesion-mimic phenotype, indicating that additional defenses contribute to the PCD. Whole genome transcriptome analysis confirmed that SA-induced transcripts, as well as numerous other known pathogenresponse transcripts, are up-regulated after inactivation of the syntaxin genes. A suppressor mutant analysis of syp121 syp122 revealed that FMO1, ALD1, and PAD4 are important for lesion development. Mutant alleles of EDS1, NDR1, RAR1, and SGT1b also partially rescued the lesion-mimic phenotype, suggesting that mutating syntaxin genes stimulates TIR-NB-LRR and CC-NB-LRR-type resistances. The syntaxin double knockout potentiated a powdery mildewinduced HR-like response. This required functional PAD4 but not functional SA signaling. However, SA signaling potentiated the PAD4-dependent HR-like response. Analyses of quadruple mutants suggest that EDS5 and SID2 confer separate SA-independent signaling functions, and that FMO1 and ALD1 mediate SA-independent signals that are NPRl-dependent.These studies highlight the contribution of multiple pathways to defense and point to the complexity of their interactions.

  10. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    Science.gov (United States)

    Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Oono, Yutaka

    2017-01-01

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or 60Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30-110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  11. api, A novel Medicago truncatula symbiotic mutant impaired in nodule primordium invasion.

    Science.gov (United States)

    Teillet, Alice; Garcia, Joseph; de Billy, Françoise; Gherardi, Michèle; Huguet, Thierry; Barker, David G; de Carvalho-Niebel, Fernanda; Journet, Etienne-Pascal

    2008-05-01

    Genetic approaches have proved to be extremely useful in dissecting the complex nitrogen-fixing Rhizobium-legume endosymbiotic association. Here we describe a novel Medicago truncatula mutant called api, whose primary phenotype is the blockage of rhizobial infection just prior to nodule primordium invasion, leading to the formation of large infection pockets within the cortex of noninvaded root outgrowths. The mutant api originally was identified as a double symbiotic mutant associated with a new allele (nip-3) of the NIP/LATD gene, following the screening of an ethylmethane sulphonate-mutagenized population. Detailed characterization of the segregating single api mutant showed that rhizobial infection is also defective at the earlier stage of infection thread (IT) initiation in root hairs, as well as later during IT growth in the small percentage of nodules which overcome the primordium invasion block. Neither modulating ethylene biosynthesis (with L-alpha-(2-aminoethoxyvinylglycine or 1-aminocyclopropane-1-carboxylic acid) nor reducing ethylene sensitivity in a skl genetic background alters the basic api phenotype, suggesting that API function is not closely linked to ethylene metabolism or signaling. Genetic mapping places the API gene on the upper arm of the M. truncatula linkage group 4, and epistasis analyses show that API functions downstream of BIT1/ERN1 and LIN and upstream of NIP/LATD and the DNF genes.

  12. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  13. Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Morrison, W Herbert; Freshour, Glenn D; Hahn, Michael G; Ye, Zheng-Hua

    2003-06-01

    Cellulose synthase catalytic subunits (CesAs) have been implicated in catalyzing the biosynthesis of cellulose, the major component of plant cell walls. Interactions between CesA subunits are thought to be required for normal cellulose synthesis, which suggests that incorporation of defective CesA subunits into cellulose synthase complex could potentially cause a dominant effect on cellulose synthesis. However, all CesA mutants so far reported have been shown to be recessive in terms of cellulose synthesis. In the course of studying the molecular mechanisms regulating secondary wall formation in fibers, we have found that a mutant allele of AtCesA7 gene in the fra5 (fragile fiber 5) mutant causes a semidominant phenotype in the reduction of fiber cell wall thickness and cellulose content. The fra5 missense mutation occurred in a conserved amino acid located in the second cytoplasmic domain of AtCesA7. Overexpression of the fra5 mutant cDNA in wild-type plants not only reduced secondary wall thickness and cellulose content but also decreased primary wall thickness and cell elongation. In contrast, overexpression of the fra6 mutant form of AtCesA8 did not cause any reduction in cell wall thickness and cellulose content. These results suggest that the fra5 mutant protein may interfere with the function of endogenous wild-type CesA proteins, thus resulting in a dominant negative effect on cellulose biosynthesis.

  14. Increase of TCR V beta accessibility within E beta regulatory region influences its recombination frequency but not allelic exclusion.

    Science.gov (United States)

    Senoo, Makoto; Wang, Lili; Suzuki, Daisuke; Takeda, Naoki; Shinkai, Yoichi; Habu, Sonoko

    2003-07-15

    Seventy percent of the murine TCRbeta locus (475 kb) was deleted to generate a large deleted TCRbeta (beta(LD)) allele to investigate a possible linkage between germline transcription, recombination frequency, and allelic exclusion of the TCR Vbeta genes. In these beta(LD/LD) mice, the TCRbeta gene locus contained only four Vbeta genes at the 5' side of the locus, and consequently, the Vbeta10 gene was located in the original Dbeta1-Jbeta1cluster within the Ebeta regulatory region. We showed that the frequency of recombination and expression of the Vbeta genes are strongly biased to Vbeta10 in these mutant mice even though the proximity of the other three 5'Vbeta genes was also greatly shortened toward the Dbeta-Jbeta cluster and the Ebeta enhancer. Accordingly, the germline transcription of the Vbeta10 gene in beta(LD/LD) mice was exceptionally enhanced in immature double negative thymocytes compared with that in wild-type mice. During double negative-to-double positive transition of thymocytes, the level of Vbeta10 germline transcription was prominently increased in beta(LD/LD) recombination activating gene 2-deficient mice receiving anti-CD3epsilon Ab in vivo. Interestingly, however, despite the increased accessibility of the Vbeta10 gene in terms of transcription, allelic exclusion of this Vbeta gene was strictly maintained in beta(LD/LD) mice. These results provide strong evidence that increase of Vbeta accessibility influences frequency but not allelic exclusion of the TCR Vbeta rearrangement if the Vbeta gene is located in the Ebeta regulatory region.

  15. Summation of series

    CERN Document Server

    Jolley, LB W

    2004-01-01

    Over 1,100 common series, all grouped for easy reference. Arranged by category, these series include arithmetical and geometrical progressions, powers and products of natural numbers, figurate and polygonal numbers, inverse natural numbers, exponential and logarithmic series, binomials, simple inverse products, factorials, trigonometrical and hyperbolic expansions, and additional series. 1961 edition.

  16. Implication of HLA-DMA Alleles in Corsican IDDM

    Directory of Open Access Journals (Sweden)

    P. Cucchi-Mouillot

    1998-01-01

    Full Text Available The HLA-DM molecule catalyses the CLIP/antigen peptide exchange in the classical class II peptide-binding groove. As such, DM is an antigen presentation regulator and may be linked to autoimmune diseases. Using PCR derived methods, a relationship was revealed between DM gene polymorphism and IDDM, in a Corsican population. The DMA*0101 allele was observed to confer a significant predisposition to this autoimmune disease while the DMA*0102 allele protected significantly. Experiments examining polymorphism of the HLA-DRB1 gene established that these relationships are not a consequence of linkage disequilibrium with HLA-DRB1 alleles implicated in this pathology. The study of the DMA gene could therefore be an additional tool for early IDDM diagnosis in the Corsican population.

  17. A common mutation associated with the Duarte galactosemia allele

    Energy Technology Data Exchange (ETDEWEB)

    Elsas, L.J.; Dembure, P.P.; Langley, S.; Paulk, E.M.; Hjelm, L.N.; Fridovich-Keil, J. (Emory Univ. School of Medicine, Atlanta, GA (United States))

    1994-06-01

    The human cDNA and gene for galactose-1-phosphate uridyl transferase (GALT) have been cloned and sequenced. A prevalant mutation (Q188R) is known to cause classic galactosemia (G/G). G/G galactosemia has an incidence of 1/38,886 in 1,396,766 Georgia live-born infants, but a more common variant of galactosemia, Duarte, has an unknown incidence. The proposed Duarte biochemical phenotypes of GALT are as follows: D/N, D/D, and D/G, which have [approximately]75%, 50%, and 25% of normal GALT activity, respectively. In addition, the D allele has isoforms of its enzyme that have more acidic pI than normal. Here the authors systematically determine (a) the prevalence of an A-to-G transition at base pair 2744 of exon 10 in the GALT gene, a transition that produces a codon change converting asparagine to aspartic acid at position 314 (N314D), and (b) the association of this mutation with the Duarte biochemical phenotype. The 2744G nucleotide change adds an AvaII (SinI) cut site, which was identified in PCR-amplified DNA. In 111 biochemically unphenotyped controls with no history of galactosemia, 13 N314D alleles were identified (prevalence 5.9%). In a prospective study, 40 D alleles were biochemically phenotyped, and 40 N314D alleles were found. By contrast, in 36 individuals known not to have the Duarte biochemical phenotype, no N314D alleles were found. The authors conclude that the N314D mutation is a common allele that probably causes the Duarte GALT biochemical phenotype and occurs in a predominantly Caucasian, nongalactosemic population, with a prevalence of 5.9%. 36 refs., 3 figs., 2 tabs.

  18. Genetic Diversity Based on Allozyme Alleles of Chinese Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    TANG Sheng-xiang; WEI Xing-hua; JIANG Yun-zhu; D S Brar; G S Khush

    2007-01-01

    Genetic diversity was analyzed with 6 632 core rice cultivars selected from 60 282 Chinese rice accessions on the basis of 12 allozyme loci, Pgil, Pgi2, Ampl, Amp2, Amp3, Amp4, Sdh1, Adh1, Est1, Est2, Est5 and Est9, by starch gel electrophoresis. Among the materials examined, 52 alleles at 12 polymorphic loci were identified, which occupied 96.3% of 54 alleles found in cultivated germplasm of O.sativa L. The number of alleles per locus ranged from 2 to 7 with an average of 4.33. The gene diversity (He) each locus varied considerably from 0.017 for Amp4 to 0.583 for Est2 with an average gene diversity (Ht) 0.271, and Shannon-Wiener index from 0.055 to 0.946 with an average of 0.468. The degree of polymorphism (DP) was in a range from 0.9 to 46.9% with an average of 21.4%. It was found that the genetic diversity in japonica (Keng) subspecies was lower in terms of allele's number, Ht and S-W index, being 91.8, 66.2 and 75.7% of indica (Hsien) one, respectively. Significant genetic differentiation between indica and japonica rice has been appeared in the loci Pgil, Amp2, Pgi2, and Est2, with higher average coefficient of genetic differentiation (Gst) 0.635, 0.626, 0.322 and 0.282, respectively. Except less allele number per locus (3.33) for modern cultivars, being 76.9% of landraces, the Ht and S-W index showed in similar between the modern cultivars and the landraces detected. In terms of allozyme, the rice cultivars in the Southwest Plateau and Central China have richer genetic diversity. The present study reveals again that Chinese cultivated rice germplasm has rich genetic diversity, showed by the allozyme allele variation.

  19. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains

    Energy Technology Data Exchange (ETDEWEB)

    Willing, M.C.; Deschenes, S.P.; Roberts, E.J. [Univ. of Iowa, Iowa City, IA (United States)] [and others

    1996-10-01

    Nonsense and frameshift mutations, which predict premature termination of translation, often cause a dramatic reduction in the amount of transcript from the mutant allele (nonsense-mediated mRNA decay). In some genes, these mutations also influence RNA splicing and induce skipping of the exon that contains the nonsense codon. To begin to dissect how premature termination alters the metabolism of RNA from the COL1A1 gene, we studied nonsense and frameshift mutations distributed over exons 11-49 of the gene. These mutations were originally identified in 10 unrelated families with osteogenesis imperfecta (OI) type I. We observed marked reduction in steady-state amounts of mRNA from the mutant allele in both total cellular and nuclear RNA extracts of cells from affected individuals, suggesting that nonsense-mediated decay of COL1A1 RNA is a nuclear phenomenon. Position of the mutation within the gene did not influence this observation. None of the mutations induced skipping of either the exon containing the mutation or, for the frameshifts, the downstream exons with the new termination sites. Our data suggest that nonsense and frameshift mutations throughout most of the COL1A1 gene result in a null allele, which is associated with the predictable mild clinical phenotype, OI type I. 42 refs., 6 figs., 1 tab.

  20. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes.

    Science.gov (United States)

    Fertleman, Caroline R; Baker, Mark D; Parker, Keith A; Moffatt, Sarah; Elmslie, Frances V; Abrahamsen, Bjarke; Ostman, Johan; Klugbauer, Norbert; Wood, John N; Gardiner, R Mark; Rees, Michele

    2006-12-07

    Paroxysmal extreme pain disorder (PEPD), previously known as familial rectal pain (FRP, or OMIM 167400), is an inherited condition characterized by paroxysms of rectal, ocular, or submandibular pain with flushing. A genome-wide linkage search followed by mutational analysis of the candidate gene SCN9A, which encodes hNa(v)1.7, identified eight missense mutations in 11 families and 2 sporadic cases. Functional analysis in vitro of three of these mutant Na(v)1.7 channels revealed a reduction in fast inactivation, leading to persistent sodium current. Other mutations in SCN9A associated with more negative activation thresholds are known to cause primary erythermalgia (PE). Carbamazepine, a drug that is effective in PEPD, but not PE, showed selective block of persistent current associated with PEPD mutants, but did not affect the negative activation threshold of a PE mutant. PEPD and PE are allelic variants with distinct underlying biophysical mechanisms and represent a separate class of peripheral neuronal sodium channelopathy.

  1. A common allele on chromosome 9 associated with coronary heartdisease

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Ruth; Pertsemlidis, Alexander; Kavaslar, Nihan; Stewart, Alexandre; Roberts, Robert; Cox, David R.; Hinds, David; Pennachio, Len; Tybjaerg-Hansen, Anne; Folsom, Aaron R.; Boerwinkle,Eric; Hobbs, Helen H.; Cohen, Jonathan C.

    2007-03-01

    Coronary heart disease (CHD) is a major cause of death in Western countries. Here we used genome-wide association scanning to identify a 58 kb interval on chromosome 9 that was consistently associated with CHD in six independent samples. The interval contains no annotated genes and is not associated with established CHD risk factors such as plasma lipoproteins, hypertension or diabetes. Homozygotes for the risk allele comprise 20-25% of Caucasians and have a {approx}30-40% increased risk of CHD. These data indicate that the susceptibility allele acts through a novel mechanism to increase CHD risk in a large fraction of the population.

  2. Series editorial: Network and Service Management Series

    NARCIS (Netherlands)

    Pavlou, George; Pras, Aiko

    2010-01-01

    This is the ninth issue of the series on Network and Service Management, which is typically published twice a year. It was originally published in April and October, but since last year it is published in July and December. The series provides articles on the latest developments in this well establi

  3. Series editorial: Network and Service Management Series

    NARCIS (Netherlands)

    Pavlou, George; Pras, Aiko

    2011-01-01

    This is the 11th issue of the series on Network and Service Management, which is typically published twice a year. It was originally published in April and October but since last year it is published in July and December. The series provides articles on the latest developments in this well-establish

  4. Zebrafish atoh8 mutants do not recapitulate morpholino phenotypes

    Science.gov (United States)

    Place, Elsie S.; Smith, James C.

    2017-01-01

    Atoh8 is a bHLH transcription factor expressed in pancreas, skeletal muscle, the nervous system, and cardiovascular tissues during embryological development. Although it has been implicated in the regulation of pancreatic and endothelial cell differentiation, the phenotypic consequences of Atoh8 loss are uncertain. Conclusions from knockout studies in the mouse differ widely depending on the targeting strategy used, while atoh8 knockdown by interfering morpholino oligonucleotides (morpholinos) in zebrafish has led to a range of developmental defects. This study characterised zebrafish embryos homozygous for atoh8sa1465, a loss-of-function allele of atoh8, in order to provide genetic evidence for the developmental role of Atoh8 in this species. Embryos homozygous for atoh8sa1465 present normal body morphology, swimbladder inflation, and heart looping, and survive to adulthood. These embryos do not develop pericardial oedema by 72 hpf and are not sensitised to the loss of Fog1 protein, suggesting that this previously described abnormality is not a specific phenotype. Vascular patterning and primitive haematopoiesis are unaffected in atoh8sa1465/sa1465 mutant embryos. Together, the data suggest that Atoh8 is dispensible for zebrafish development under standard laboratory conditions. PMID:28182631

  5. Natural variation of model mutant phenotypes in Ciona intestinalis.

    Directory of Open Access Journals (Sweden)

    Paolo Sordino

    Full Text Available BACKGROUND: The study of ascidians (Chordata, Tunicata has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity.

  6. Relationship between circadian period and body size in the tau-mutant golden hamster.

    Science.gov (United States)

    Refinetti, Roberto

    2014-01-01

    The tau mutation in the golden (Syrian) hamster is a single gene mutation that drastically affects the speed of the circadian clock, in such a way that homozygous mutants have an endogenous circadian period of 20 h (compared with 24 h for wild-type hamsters). While studying the circadian system of tau-mutant hamsters during the past 25 years, several authors have noted an apparent relationship between circadian period and body size in these animals. This study, based on 181 hamsters from 24 litters, confirmed previous observations that a shorter circadian period is associated with smaller body size, documented a sex difference in this association, and evaluated several mechanisms that might explain the phenomenon (such as different organ sizes, body composition, and metabolic rate). The obtained evidence suggests that the reduced body size of short-period hamsters is likely a pleiotropic effect of the tau allele (an allele of the casein kinase 1 epsilon gene) rather than a consequence of the shortened circadian period.

  7. Construction of a library of cloned short tandem repeat (STR) alleles as universal templates for allelic ladder preparation.

    Science.gov (United States)

    Wang, Le; Zhao, Xing-Chun; Ye, Jian; Liu, Jin-Jie; Chen, Ting; Bai, Xue; Zhang, Jian; Ou, Yuan; Hu, Lan; Jiang, Bo-Wei; Wang, Feng

    2014-09-01

    Short tandem repeat (STR) genotyping methods are widely used for human identity testing applications, including forensic DNA analysis. Samples of DNA containing the length-variant STR alleles are typically separated and genotyped by comparison to an allelic ladder. Here, we describe a newly devised library of cloned STR alleles. The library covers alleles X and Y for the sex-determining locus Amelogenin and 259 other alleles for 22 autosomal STR loci (TPOX, D3S1358, FGA, D5S818, CSF1PO, D7S820, D8S1179, TH01, vWA, D13S317, D16S539, D18S51, D21S11, D2S1338, D6S1043, D12S391, Penta E, D19S433, D11S4463, D17S974, D3S4529 and D12ATA63). New primers were designed for all these loci to construct recombinant plasmids so that the library retains core repeat elements of STR as well as 5'- and 3'-flanking sequences of ∼500 base pairs. Since amplicons of commercial STR genotyping kits and systems developed in laboratories are usually distributed from 50 to STR alleles. The sequencing results showed all repeat structures we obtained for TPOX, CSF1PO, D7S820, TH01, D16S539, D18S51 and Penta E were the same as reported. However, we identified 102 unreported repeat structures from the other 15 STR loci, supplementing our current knowledge of repeat structures and leading to further understanding of these widely used loci.

  8. Novel Alleles of gon-2, a C. elegans Ortholog of Mammalian TRPM6 and TRPM7, Obtained by Genetic Reversion Screens.

    Directory of Open Access Journals (Sweden)

    Eric J Lambie

    Full Text Available TRP (Transient Receptor Potential cation channels of the TRPM subfamily have been found to be critically important for the regulation of Mg2+ homeostasis in both protostomes (e.g., the nematode, C. elegans, and the insect, D. melanogaster and deuterostomes (e.g., humans. Although significant progress has been made toward understanding how the activities of these channels are regulated, there are still major gaps in our understanding of the potential regulatory roles of extensive, evolutionarily conserved, regions of these proteins. The C. elegans genes, gon-2, gtl-1 and gtl-2, encode paralogous TRP cation channel proteins that are similar in sequence and function to human TRPM6 and TRPM7. We isolated fourteen revertants of the missense mutant, gon-2(q338, and these mutations affect nine different residues within GON-2. Since eight of the nine affected residues are situated within regions that have high similarity to human TRPM1,3,6 and 7, these mutations identify sections of these channels that are potentially critical for channel regulation. We also isolated a single mutant allele of gon-2 during a screen for revertants of the Mg2+-hypersensitive phenotype of gtl-2(- mutants. This allele of gon-2 converts a serine to phenylalanine within the highly conserved TRP domain, and is antimorphic against both gon-2(+ and gtl-1(+. Interestingly, others have reported that mutation of the corresponding residue in TRPM7 to glutamate results in deregulated channel activity.

  9. Phenotypical and structural characterization of the Arabidopsis mutant involved in shoot apical meristem

    Institute of Scientific and Technical Information of China (English)

    Zhe HU; Ping LI; Jinfang MA; Yunlong WANG; Xinyu WANG; Chongying WANG

    2008-01-01

    An Arabidopsis mutant induced by T-DNA insertion was studied with respect to its phenotype, micro-structure of shoot apical meristem (SAM) and histo-chemical localization of the GUS gene in comparison with the wild type. Phenotypical observation found that the mutant exhibited a dwarf phenotype with smaller organs (such as smaller leaves, shorter petioles), and slower development and flowering time compared to the wild type. Optical microscopic analysis of the mutant showed that it had a smaller and more flattened SAM, with reduced cell layers and a shortened distance between two leaf primordia compared with the wild type. In addi-tion, analysis of the histo-chemical localization of the GUS gene revealed that it was specifically expressed in the SAM and the vascular tissue of the mutant, which suggests that the gene trapped by T-DNA may function in the SAM, and T-DNA insertion could influence the functional activity of the related gene in the mutant, lead-ing to alterations in the SAM and a series of phenotypes in the mutant.

  10. Characterization of a Mutant of Alteromonas aurantia A18 and Its Application in Mariculture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mutant J61321 with enhanced siderophore production of Alteromonas aurantia A18 was obtained after a series of chemical-physical mutageneses. It was found that the antibacterial activity against Vibrio anguillarum W-1 and siderophore production of the mutant were higher than those by the original strain A18 which had been used in mariculture. The results of the specific J61321 and the original strain A18, respectively, while the siderophore with catechol group was yielded by strain W-1 (Aibrio anguillarum). Meanwhile, the siderophore yield, antibacterial activity and anti-chelator activity of strain J61321 were higher than those of its parent strain A18.

  11. Allelic drop-out probabilities estimated by logistic regression

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Asplund, Maria

    2012-01-01

    We discuss the model for estimating drop-out probabilities presented by Tvedebrink et al. [7] and the concerns, that have been raised. The criticism of the model has demonstrated that the model is not perfect. However, the model is very useful for advanced forensic genetic work, where allelic dro...

  12. Frequent allelic imbalance but infrequent microsatellite instability in gastric lymphoma

    NARCIS (Netherlands)

    Hoeve, M A; Ferreira Mota, S C; Schuuring, E; de Leeuw, W J; Chott, A; Meijerink, J P; Kluin, P M; van Krieken, J H

    1999-01-01

    Specific defects in DNA repair pathways are reflected by DNA microsatellite instability (MSI) and play an important role in carcinogenesis. Reported frequencies in gastric non-Hodgkin's lymphomas (NHL) vary from 14% to as high as 90%. Another form of genetic instability in tumours is allelic imbalan

  13. Short mucin 6 alleles are associated with H pylori infection

    Institute of Scientific and Technical Information of China (English)

    Thai V Nguyen; Marcel JR Janssen; Paulien Gritters; René HM te Morsche; Joost PH Drenth; Henri van Asten; Robert JF Laheij; Jan BMJ Jansen

    2006-01-01

    AIM: To investigate the relationship between mucin 6(MUC6) VNTR length and H pylori infection.METHODS: Blood samples were collected from patients visiting the Can Tho General Hospital for upper gastrointestinal endoscopy. DNA was isolated from whole blood, the repeated section was cut out using a restriction enzyme (Pvu Ⅱ) and the length of the allele fragments was determined by Southern blotting. H pylori infection was diagnosed by 14C urea breath test. For analysis, MUC6 allele fragment length was dichotomized as being either long (> 13.5 kbp) or short (≤ 13.5 kbp)and patients were classified according to genotype [long-long (LL), long-short (LS), short-short (SS)].RESULTS: 160 patients were studied (mean age 43years, 36% were males, 58% H pylori positive). MUC6Pvu Ⅱ-restricted allele fragment lengths ranged from 7 to 19 kbp. Of the patients with the LL, LS, SS MUC6genotype, 43% (24/56), 57% (25/58) and 76% (11/46)were infected with H pylori, respectively (P = 0.003).CONCLUSION: Short MUC6 alleles are associated with H pylori infection.

  14. Drop-out probabilities of IrisPlex SNP alleles

    DEFF Research Database (Denmark)

    Andersen, Jeppe Dyrberg; Tvedebrink, Torben; Mogensen, Helle Smidt;

    2013-01-01

    In certain crime cases, information about a perpetrator's phenotype, including eye colour, may be a valuable tool if no DNA profile of any suspect or individual in the DNA database matches the DNA profile found at the crime scene. Often, the available DNA material is sparse and allelic drop-out o...

  15. Haplotype allelic classes for detecting ongoing positive selection

    Directory of Open Access Journals (Sweden)

    Lefebvre Jean-François

    2010-01-01

    Full Text Available Abstract Background Natural selection eliminates detrimental and favors advantageous phenotypes. This process leaves characteristic signatures in underlying genomic segments that can be recognized through deviations in allelic or haplotypic frequency spectra. To provide an identifiable signature of recent positive selection that can be detected by comparison with the background distribution, we introduced a new way of looking at genomic polymorphisms: haplotype allelic classes. Results The model combines segregating sites and haplotypic information in order to reveal useful data characteristics. We developed a summary statistic, Svd, to compare the distribution of the haplotypes carrying the selected allele with the distribution of the remaining ones. Coalescence simulations are used to study the distributions under standard population models assuming neutrality, demographic scenarios and selection models. To test, in practice, haplotype allelic class performance and the derived statistic in capturing deviation from neutrality due to positive selection, we analyzed haplotypic variation in detail in the locus of lactase persistence in the three HapMap Phase II populations. Conclusions We showed that the Svd statistic is less sensitive than other tests to confounding factors such as demography or recombination. Our approach succeeds in identifying candidate loci, such as the lactase-persistence locus, as targets of strong positive selection and provides a new tool complementary to other tests to study natural selection in genomic data.

  16. Estimating the age of alleles by use of intraallelic variability

    Energy Technology Data Exchange (ETDEWEB)

    Slatkin, M.; Rannala, B. [Univ of California, Berkeley, CA (United States)

    1997-02-01

    A method is presented for estimating the age of an allele by use of its frequency and the extent of variation among different copies. The method uses the joint distribution of the number of copies in a population sample and the coalescence times of the intraallelic gene genealogy conditioned on the number of copies. The linear birth-death process is used to approximate the dynamics of a rare allele in a finite population. A maximum-likelihood estimate of the age of the allele is obtained by Monte Carlo integration over the coalescence times. The method is applied to two alleles at the cystic fibrosis (CFTR) locus, {Delta}F508 and G542X, for which intraallelic variability at three intronic microsatellite loci has been examined. Our results indicate that G542X is somewhat older than {Delta}F508. Although absolute estimates depend on the mutation rates at the microsatellite loci, our results support the hypothesis that {Delta}F508 arose <500 generations ({approx}10,000 years) ago. 32 refs., 4 figs.

  17. Targeting ESR1-Mutant Breast Cancer

    Science.gov (United States)

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0359 TITLE: Targeting ESR1-Mutant Breast Cancer PRINCIPAL INVESTIGATOR: Dr. Sarat Chandarlapaty CONTRACTING...31 Aug 2015 4. TITLE AND SUBTITLE Targeting ESR1-Mutant Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0359 5c. PROGRAM ELEMENT...mutations found in breast cancer using both structural and cell based assays. We have now have evidence for the effects of the most recurrent

  18. Targeting ESR1-Mutant Breast Cancer

    Science.gov (United States)

    2015-09-01

    Introduction Approximately 70% of ER+ breast cancers harbor expression of the estrogen receptor and are dependent upon its activity for various aspects of the...resistance to current FDA approved ER antagonists, but that more potent and selective estrogen receptor antagonists will be sufficiently active to...antagonists and their potency against ER mutants both in vitro and in vivo . Targeting ESR1-Mutant Breast Cancer W81XWH-14-1-0359 9 4. Impact A) Impact

  19. Comparison of phenotypes between different vangl2 mutants demonstrates dominant effects of the Looptail mutation during hair cell development.

    Directory of Open Access Journals (Sweden)

    Haifeng Yin

    Full Text Available Experiments utilizing the Looptail mutant mouse, which harbors a missense mutation in the vangl2 gene, have been essential for studies of planar polarity and linking the function of the core planar cell polarity proteins to other developmental signals. Originally described as having dominant phenotypic traits, the molecular interactions underlying the Looptail mutant phenotype are unclear because Vangl2 protein levels are significantly reduced or absent from mutant tissues. Here we introduce a vangl2 knockout mouse and directly compare the severity of the knockout and Looptail mutant phenotypes by intercrossing the two lines and assaying the planar polarity of inner ear hair cells. Overall the vangl2 knockout phenotype is milder than the phenotype of compound mutants carrying both the Looptail and vangl2 knockout alleles. In compound mutants a greater number of hair cells are affected and changes in the orientation of individual hair cells are greater when quantified. We further demonstrate in a heterologous cell system that the protein encoded by the Looptail mutation (Vangl2(S464N disrupts delivery of Vangl1 and Vangl2 proteins to the cell surface as a result of oligomer formation between Vangl1 and Vangl2(S464N, or Vangl2 and Vangl2(S464N, coupled to the intracellular retention of Vangl2(S464N. As a result, Vangl1 protein is missing from the apical cell surface of vestibular hair cells in Looptail mutants, but is retained at the apical cell surface of hair cells in vangl2 knockouts. Similarly the distribution of Prickle-like2, a putative Vangl2 interacting protein, is differentially affected in the two mutant lines. In summary, we provide evidence for a direct physical interaction between Vangl1 and Vangl2 through a combination of in vitro and in vivo approaches and propose that this interaction underlies the dominant phenotypic traits associated with the Looptail mutation.

  20. Frequencies of 32 base pair deletion of the (Delta 32) allele of the CCR5 HIV-1 co-receptor gene in Caucasians: a comparative analysis.

    Science.gov (United States)

    Lucotte, Gérard

    2002-05-01

    The CCR5 gene encodes for the co-receptor for the major macrophage-tropics strains of human immunodeficiency virus (HIV-1), and a mutant allele of this gene (Delta 32) provide to homozygotes a strong resistance against infection by HIV. The frequency of the Delta 32 allele was investigated in 40 populations of 8842 non-infected subjects coming from Europe, the Middle-East and North Africa. A clear north-south decreasing gradient was evident for Delta 32 frequencies, with a significant correlation coefficient (r=0.83). The main frequency value of Delta 32 for Sweden, Norway, Denmark, Finland and Iceland (0.134) is significantly (chi(2)=63.818, PVikings might have been instrumental in disseminating the Delta 32 allele during the eighth to the tenth centuries during historical times. Possibly variola virus has discriminated the Delta 32 carriers in Europe since the eighth century AD, explaining the high frequency of the Delta 32 allele in Europe today.

  1. Segregation of male-sterility alleles across a species boundary.

    Science.gov (United States)

    Weller, S G; Sakai, A K; Culley, T M; Duong, L; Danielson, R E

    2014-02-01

    Hybrid zones may serve as bridges permitting gene flow between species, including alleles influencing the evolution of breeding systems. Using greenhouse crosses, we assessed the likelihood that a hybrid zone could serve as a conduit for transfer of nuclear male-sterility alleles between a gynodioecious species and a hermaphroditic species with very rare females in some populations. Segregation patterns in progeny of crosses between rare females of hermaphroditic Schiedea menziesii and hermaphroditic plants of gynodioecious Schiedea salicaria heterozygous at the male-sterility locus, and between female S. salicaria and hermaphroditic plants from the hybrid zone, were used to determine whether male-sterility was controlled at the same locus in the parental species and the hybrid zone. Segregations of females and hermaphrodites in approximately equal ratios from many of the crosses indicate that the same nuclear male-sterility allele occurs in the parent species and the hybrid zone. These rare male-sterility alleles in S. menziesii may result from gene flow from S. salicaria through the hybrid zone, presumably facilitated by wind pollination in S. salicaria. Alternatively, rare male-sterility alleles might result from a reversal from gynodioecy to hermaphroditism in S. menziesii, or possibly de novo evolution of male sterility. Phylogenetic analysis indicates that some species of Schiedea have probably evolved separate sexes independently, but not in the lineage containing S. salicaria and S. menziesii. High levels of selfing and expression of strong inbreeding depression in S. menziesii, which together should favour females in populations, argue against a reversal from gynodioecy to hermaphroditism in S. menziesii.

  2. Mannose-binding lectin variant alleles and HLA-DR4 alleles are associated with giant cell arteritis

    DEFF Research Database (Denmark)

    Jacobsen, Soren; Baslund, Bo; Madsen, Hans Ole

    2002-01-01

    To determine whether variant alleles of the mannose-binding lectin (MBL) gene causing low serum concentrations of MBL and/or polymorphisms of HLA-DRB1 are associated with increased susceptibility to polymyalgia rheumatica (PMR) and giant cell arteritis (GCA) or particular clinical phenotypes of PMR/GCA....

  3. Allelic divergence and cultivar-specific SSR alleles revealed by capillary electrophoresis using fluorescence-labeled SSR markers in sugarcane

    Science.gov (United States)

    Though sugarcane cultivars (Saccharum spp. hybrids) are complex aneu-polyploid hybrids, genetic evaluation and tracking of clone- or cultivar-specific alleles become possible due to capillary electrophoregrams (CE) using fluorescence-labeled SSR primer pairs. Twenty-four sugarcane cultivars, 12 each...

  4. Genética de Coffea XXIV - Mutantes de Coffea arabica procedemtes da Etiópia Genetics of Coffea XXIV - Mutants of Coffea arabica from ethiopia

    Directory of Open Access Journals (Sweden)

    Alcides Carvalho

    1959-01-01

    ferrugem do cafeeiro, as quais estão sendo detalhadamente estudadas em Portugal. Diversos outros mutantes foram encontrados, afetando a posição das fôlhas nos ramos, a forma das fôlhas e dos frutos, a coloração do fruto, época de maturação e vigor vegetalivo. Alguns conjuntos são vigorosos e poderão ter interesse econômico. A ocorrência de vários fatôres novos nesse material da Etiópia indica o interêsse que há em se realizar um estudo pormenorizado dos mutantes de Coffea arábica existentes na região de origem da espécie.Very little is known about the genetic variability of the species Coffea arabica in its native home - the South-West of Ethiopia. Only more recently an increased interest is being noted with regard to the native coffee of this region and seed samples of wild, cultivated and subspontaneous coffee types have lately been gathered by various agricultural experts. Several small seedling populations from Ethiopia were received in Campinas in 1952 and 1953. Studies on genetic constitution of some of them is now being carried out. It was noted that the "Eritrean moca" coffee (PI 205 413, USDA is identical to the semperflorens mutant, being homozygous for the alleles sjsj. The results of the artificial pollination with the murta variety (ttNana revealed that from 33 analysed coffee plants from Ethiopia, 23 carry the alleles it, probably in the homozygous condition. The alleles tt characterize the variety bourbon, and its presence in Ethiopia indicates that this region and not the Reunion Island, as formerly thought, is the place of origin of this important commercial variety. The typica variety (TTNaNa also occurs in Ethiopia. Plants of the abyssinica variety were frequently found in some of the seedling populations. Although the alleles responsible for its main characters are not yet known, it was noted that abyssinica plants carry the alleles TT. Other populations, segregating for abyssinica characteristics bear the alleles it. The coffee

  5. Population genetics inference for longitudinally-sampled mutants under strong selection.

    Science.gov (United States)

    Lacerda, Miguel; Seoighe, Cathal

    2014-11-01

    Longitudinal allele frequency data are becoming increasingly prevalent. Such samples permit statistical inference of the population genetics parameters that influence the fate of mutant variants. To infer these parameters by maximum likelihood, the mutant frequency is often assumed to evolve according to the Wright-Fisher model. For computational reasons, this discrete model is commonly approximated by a diffusion process that requires the assumption that the forces of natural selection and mutation are weak. This assumption is not always appropriate. For example, mutations that impart drug resistance in pathogens may evolve under strong selective pressure. Here, we present an alternative approximation to the mutant-frequency distribution that does not make any assumptions about the magnitude of selection or mutation and is much more computationally efficient than the standard diffusion approximation. Simulation studies are used to compare the performance of our method to that of the Wright-Fisher and Gaussian diffusion approximations. For large populations, our method is found to provide a much better approximation to the mutant-frequency distribution when selection is strong, while all three methods perform comparably when selection is weak. Importantly, maximum-likelihood estimates of the selection coefficient are severely attenuated when selection is strong under the two diffusion models, but not when our method is used. This is further demonstrated with an application to mutant-frequency data from an experimental study of bacteriophage evolution. We therefore recommend our method for estimating the selection coefficient when the effective population size is too large to utilize the discrete Wright-Fisher model.

  6. Monomeric yeast PCNA mutants are defective in interacting with and stimulating the ATPase activity of RFC.

    Science.gov (United States)

    Ionescu, Costin N; Shea, Kathleen A; Mehra, Rajendra; Prundeanu, Lucia; McAlear, Michael A

    2002-10-29

    Yeast PCNA is a homo-trimeric, ring-shaped DNA polymerase accessory protein that can encircle duplex DNA. The integrity of this multimeric sliding DNA clamp is maintained through the protein-protein interactions at the interfaces of adjacent subunits. To investigate the importance of trimer stability for PCNA function, we introduced single amino acid substitutions at residues (A112T, S135F) that map to opposite ends of the monomeric protein. Recombinant wild-type and mutant PCNAs were purified from E. coli, and they were tested for their properties in vitro. Unlike the stable wild-type PCNA trimers, the mutant PCNA proteins behaved as monomers when diluted to low nanomolar concentrations. In contrast to what has been reported for a monomeric form of the beta clamp in E. coli, the monomeric PCNAs were compromised in their ability to interact with their associated clamp loader, replication factor C (RFC). Similarly, monomeric PCNAs were not effective in stimulating the ATPase activity of RFC. The mutant PCNAs were able to form mixed trimers with wild-type subunits, although these mixed trimers were unstable when loaded onto DNA. They were able to function as weak DNA polymerase delta processivity factors in vitro, and when the monomeric PCNA-41 (A112T, S135F double mutant) allele was introduced as the sole source of PCNA in vivo, the cells were viable and healthy. These pol30-41 mutants were, however, sensitive to UV irradiation and to the DNA damaging agent methylmethane sulfonate, implying that DNA repair pathways have a distinct requirement for stable DNA clamps.

  7. Alopecia in a viable phospholipase C delta 1 and phospholipase C delta 3 double mutant.

    Directory of Open Access Journals (Sweden)

    Fabian Runkel

    Full Text Available BACKGROUND: Inositol 1,4,5trisphosphate (IP(3 and diacylglycerol (DAG are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia, whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. METHODOLOGY/PRINCIPAL FINDINGS: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3(mNab that resulted from the insertion of an intracisternal A particle (IAP into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3(mNab alleles are phenotypically normal. However, the presence of one Plcd3(mNab allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9olt1Pas and the Plcd3(mNab mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. CONCLUSIONS/SIGNIFICANCE: The Plcd3(mNab mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface.

  8. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Takaaki Daimon

    Full Text Available Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs. JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.

  9. Effects of varying Notch1 signal strength on embryogenesis and vasculogenesis in compound mutant heterozygotes

    Directory of Open Access Journals (Sweden)

    Ge Changhui

    2010-03-01

    Full Text Available Abstract Background Identifying developmental processes regulated by Notch1 can be addressed in part by characterizing mice with graded levels of Notch1 signaling strength. Here we examine development in embryos expressing various combinations of Notch1 mutant alleles. Mice homozygous for the hypomorphic Notch112f allele, which removes the single O-fucose glycan in epidermal growth factor-like repeat 12 (EGF12 of the Notch1 ligand binding domain (lbd, exhibit reduced growth after weaning and defective T cell development. Mice homozygous for the inactive Notch1lbd allele express Notch1 missing an ~20 kDa internal segment including the canonical Notch1 ligand binding domain, and die at embryonic day ~E9.5. The embryonic and vascular phenotypes of compound heterozygous Notch112f/lbd embryos were compared with Notch1+/12f, Notch112f/12f, and Notch1lbd/lbd embryos. Embryonic stem (ES cells derived from these embryos were also examined in Notch signaling assays. While Notch1 signaling was stronger in Notch112f/lbd compound heterozygotes compared to Notch1lbd/lbd embryos and ES cells, Notch1 signaling was even stronger in embryos carrying Notch112f and a null Notch1 allele. Results Mouse embryos expressing the hypomorphic Notch112f allele, in combination with the inactive Notch1lbd allele which lacks the Notch1 ligand binding domain, died at ~E11.5-12.5. Notch112f/lbd ES cells signaled less well than Notch112f/12f ES cells but more strongly than Notch1lbd/lbd ES cells. However, vascular defects in Notch112f/lbd yolk sac were severe and similar to Notch1lbd/lbd yolk sac. By contrast, vascular disorganization was milder in Notch112f/lbd compared to Notch1lbd/lbd embryos. The expression of Notch1 target genes was low in Notch112f/lbd yolk sac and embryo head, whereas Vegf and Vegfr2 transcripts were increased. The severity of the compound heterozygous Notch112f/lbd yolk sac phenotype suggested that the allelic products may functionally interact. By

  10. Maximizing allele detection: Effects of analytical threshold and DNA levels on rates of allele and locus drop-out.

    Science.gov (United States)

    Rakay, Christine A; Bregu, Joli; Grgicak, Catherine M

    2012-12-01

    Interpretation of DNA evidence depends upon the ability of the analyst to accurately compare the DNA profile obtained from an item of evidence and the DNA profile of a standard. This interpretation becomes progressively more difficult as the number of 'drop-out' and 'drop-in' events increase. Analytical thresholds (AT) are typically selected to ensure the false detection of noise is minimized. However, there exists a tradeoff between the erroneous labeling of noise as alleles and the false non-detection of alleles (i.e. drop-out). In this study, the effect ATs had on both types of error was characterized. Various ATs were tested, where three relied upon the analysis of baseline signals obtained from 31 negative samples. The fourth AT was determined by utilizing the relationship between RFU signal and DNA input. The other ATs were the commonly employed 50, 150 and 200 RFU thresholds. Receiver Operating Characteristic (ROC) plots showed that although high ATs completely negated the false labeling of noise, DNA analyzed with ATs derived using analysis of the baseline signal exhibited the lowest rates of drop-out and the lowest total error rates. In another experiment, the effect small changes in ATs had on drop-out was examined. This study showed that as the AT increased from ∼10 to 60 RFU, the number of heterozygous loci exhibiting the loss of one allele increased. Between ATs of 60 and 150 RFU, the frequency of allelic drop-out remained constant at 0.27 (±0.02) and began to decrease when ATs of 150 RFU or greater were utilized. In contrast, the frequency of heterozygous loci exhibiting the loss of both alleles consistently increased with AT. In summary, for samples amplified with less than 0.5ng of DNA, ATs derived from baseline analysis of negatives were shown to decrease the frequency of drop-out by a factor of 100 without significantly increasing rates of erroneous noise detection.

  11. Defense-Related Calcium Signaling Mutants Uncovered via a Quantitative High-Throughput Screen in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Stefanie Ranf; Julia Grimmer; Yvonne P(o)schl; Pascal Pecher; Delphine Chinchilla; Dierk Scheel; Justin Lee

    2012-01-01

    Calcium acts as a second messenger for signaling to a variety of stimuli including MAMPs (Microbe-Associated Molecular Patterns),such as flg22 and elf18 that are derived from bacterial flagellin and elongation factor Tu,respectively.Here,Arabidopsis thaliana mutants with changed calcium elevation (cce) in response to fig22 treatment were isolated and characterized.Besides novel mutant alleles of the flg22 receptor,FLS2 (Flagellin-Sensitive 2),and the receptor-associated kinase,BAK1 (Brassinosteroid receptor 1-Associated Kinase 1),the new cce mutants can be categorized into two main groups—those with a reduced or an enhanced calcium elevation.Moreover,cce mutants from both groups show differential phenotypes to different sets of MAMPs.Thus,these mutants will facilitate the discovery of novel components in early MAMP signaling and bridge the gaps in current knowledge of calcium signaling during plant-microbe interactions.Last but not least,the screening method is optimized for speed (covering 384 plants in 3 or 10 h) and can be adapted to genetically dissect any other stimuli that induce a change in calcium levels.

  12. A new osteopetrosis mutant mouse strain (ntl) with odontoma-like proliferations and lack of tooth roots.

    Science.gov (United States)

    Lu, Xincheng; Rios, Hector F; Jiang, Baichun; Xing, Lianping; Kadlcek, Renata; Greenfield, Edward M; Luo, Guangbin; Feng, Jian Q

    2009-12-01

    A new spontaneous mouse mutant (ntl) with autosomal-recessive osteopetrosis was characterized. These mice formed tartrate-resistant acid phosphate (TRAP)-positive osteoclasts but their osteoclasts had no ruffled border and did not resorb bone. These mice displayed no tooth eruption or tooth root formation. Adult mutant mice developed odontoma-like proliferations near the proximal ends of the incisors. Intraperitoneal injection of progenitor cells from the liver of 16.5 days postcoitum wild-type embryos into newborn mutants rescued the osteopetrosis phenotype, indicating that the defects were intrinsic to the osteoclasts. Our findings not only provide further support for a critical role of osteoclasts in tooth eruption and tooth root development, but also suggest that the perturbation of the homeostasis of the odontogenic precursors of the incisors is primarily responsible for the development of the odontoma-like proliferations in this osteopetrosis mutant. Genetic mapping has narrowed down the location of the mutant allele to a genetic interval of 3.2 cM on mouse chromosome 17.

  13. Molecular characterization of two high-palmitic-acid mutant loci induced by X-ray irradiation in soybean.

    Science.gov (United States)

    Anai, Toyoaki; Hoshino, Tomoki; Imai, Naoko; Takagi, Yutaka

    2012-01-01

    Palmitic acid is the most abundant (approx. 11% of total fatty acids) saturated fatty acid in conventional soybean seed oil. Increasing the saturated acid content of soybean oil improves its oxidative stability and plasticity. We have developed three soybean mutants with high palmitic acid content by X-ray irradiation. In this study, we successfully identified the mutated sites of two of these high-palmitic-acid mutants, J10 and M22. PCR-based mutant analysis revealed that J10 has a 206,203-bp-long deletion that includes the GmKASIIA gene and 16 other predicted genes, and M22 has a 26-bp-long deletion in the sixth intron of GmKASIIB. The small deletion in M22 causes mis-splicing of GmKASIIB transcripts, which should result in nonfunctional products. In addition, we designed co-dominant marker sets for these mutant alleles and confirmed the association of genotypes and palmitic acid contents in F(2) seeds of J10 X M22. This information will be useful in breeding programs to develop novel soybean cultivars with improved palmitic acid content. However, in the third mutant, KK7, we found no polymorphism in either GmKASIIA or GmKASIIB, which suggests that several unknown genes in addition to GmKASIIA and GmKASIIB may be involved in elevating the palmitic acid content of soybean seed oil.

  14. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  15. Human Leukocyte Antigen Alleles and Cytomegalovirus Infection After Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Futohi

    2015-11-01

    Full Text Available Background Several studies have been conducted on the relationship between a number of human leukocyte antigen (HLA alleles and cytomegalovirus infection (CMV, in kidney transplant recipients, after transplantation. However, only a limited number of HLAs have been investigated, so far, and the results have been contradictory. Objectives This study aimed to investigate the relationship between 59 HLA alleles and the CMV infection, in transplant recipients, after kidney transplantation. Patients and Methods This retrospective cohort study was conducted on 200 patients, receiving a kidney transplant, in Baqiyatallah Hospital, in Tehran, during 2013. Throughout a one-year follow-up of kidney transplant recipients, in case of detecting the CMV antigen in patients’ blood, at any time, they were placed in the group of patients with CMV infection, whereas, if no CMV-specific antigen was developed, over a year, patients were placed in the group of patients without CMV infection, after transplantation. This study investigated the relationship between CMV infection in kidney transplant recipients and 59 HLA alleles, including 14 HLA-A, 28 HLA-B, and 17 HLA-DRB1 cases. Results Of all participants, 104 patients (52% were diagnosed with CMV infection. There was no significant difference between the two groups, with and without CMV infection, in terms of patient’s characteristics. The CMV infection, in patients receiving a transplanted organ from deceased donor, was significantly more prevalent than in those receiving kidney transplant from living donor (63% vs. 39%, respectively, P = 0.001. Recipients with HLA-B44 were more infected with CMV compared with patients without this allele (80% vs. 50%, respectively, P = 0.024; on the contrary, kidney recipients with HLA-DRB1-1 were less infected with CMV than patients without this allele (31% vs. 55%, respectively, P = 0.020. There was no significant relationship between CMV infection and other HLA alleles

  16. Modification of an HLA-B PCR-SSOP typing system leading to improved allele determination.

    Science.gov (United States)

    Middleton, D; Williams, F; Cullen, C; Mallon, E

    1995-04-01

    Modifications have been introduced to a previously reported HLA-B PCR-SSOP typing system. This has enabled further definition of alleles, determination of the probe pattern of some alleles not previously examined and identification of patterns of possible new alleles. However there are still some alleles that cannot be differentiated and there are several alleles which when present as a homozygote have the same pattern as in combination with another allele. When the method was applied to the typing of 66 consecutive cadaveric donors there were three donors whose type differed from the serological type.

  17. Phanerochaete mutants with enhanced ligninolytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Kakar, S.N.; Perez, A.; Gonzales, J.

    1993-06-01

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organopollutants in soils and aqueous media. Although some of the organic compounds are degraded under nonligninolytic conditions, most are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, biopulping, biobleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated or are hyperproducers or supersecretors of key enzymes under enriched conditions. Through ultraviolet-light and gamma-rays mutagenesis we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants produced 272 units (U) of lignin peroxidases enzyme activity per liter after nine days under high nitrogen. The mutant and the parent strains produced up to 54 U/L and 62 U/L, respectively, of the enzyme activity under low-nitrogen growth conditions during this period. In some experiments the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 days.

  18. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.

    Science.gov (United States)

    Melo-Oliveira, R; Oliveira, I C; Coruzzi, G M

    1996-05-14

    Glutamate dehydrogenase (GDH) is ubiquitous to all organisms, yet its role in higher plants remains enigmatic. To better understand the role of GDH in plant nitrogen metabolism, we have characterized an Arabidopsis mutant (gdh1-1) defective in one of two GDH gene products and have studied GDH1 gene expression. GDH1 mRNA accumulates to highest levels in dark-adapted or sucrose-starved plants, and light or sucrose treatment each repress GDH1 mRNA accumulation. These results suggest that the GDH1 gene product functions in the direction of glutamate catabolism under carbon-limiting conditions. Low levels of GDH1 mRNA present in leaves of light-grown plants can be induced by exogenously supplied ammonia. Under such conditions of carbon and ammonia excess, GDH1 may function in the direction of glutamate biosynthesis. The Arabidopsis gdh-deficient mutant allele gdh1-1 cosegregates with the GDH1 gene and behaves as a recessive mutation. The gdh1-1 mutant displays a conditional phenotype in that seedling growth is specifically retarded on media containing exogenously supplied inorganic nitrogen. These results suggest that GDH1 plays a nonredundant role in ammonia assimilation under conditions of inorganic nitrogen excess. This notion is further supported by the fact that the levels of mRNA for GDH1 and chloroplastic glutamine synthetase (GS2) are reciprocally regulated by light.

  19. Analysis of Escherichia coli nicotinate mononucleotide adenylyltransferase mutants in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Rydén-Aulin Monica

    2005-09-01

    Full Text Available Abstract Background Adenylation of nicotinate mononucleotide to nicotinate adenine dinucleotide is the penultimate step in NAD+ synthesis. In Escherichia coli, the enzyme nicotinate mononucleotide adenylyltransferase is encoded by the nadD gene. We have earlier made an initial characterization in vivo of two mutant enzymes, NadD72 and NadD74. Strains with either mutation have decreased intracellular levels of NAD+, especially for one of the alleles, nadD72. Results In this study these two mutant proteins have been further characterized together with ten new mutant variants. Of the, in total, twelve mutations four are in a conserved motif in the C-terminus and eight are in the active site. We have tested the activity of the enzymes in vitro and their effect on the growth phenotype in vivo. There is a very good correlation between the two data sets. Conclusion The mutations in the C-terminus did not reveal any function for the conserved motif. On the other hand, our data has lead us to assign amino acid residues His-19, Arg-46 and Asp-109 to the active site. We have also shown that the nadD gene is essential for growth in E. coli.

  20. A mutant beta-tubulin confers resistance to the action of benzimidazole-carbamate microtubule inhibitors both in vivo and in vitro.

    Science.gov (United States)

    Foster, K E; Burland, T G; Gull, K

    1987-03-16

    The mutant BEN210 of Physarum polycephalum is highly resistant to a number of benzimidazole carbamate agents, including methylbenzimidazole-2-yl-carbamate and parbendazole. The resistance is conferred by the benD210 mutation in a structural gene for beta-tubulin. This mutant allele encodes a beta-tubulin with novel electrophoretic mobility. We have used this strain to determine whether the mutant beta-tubulin is used in microtubules and whether this usage permits microtubule polymerisation in the presence of drugs both in vivo and in vitro. In vitro assembly studies of tubulin purified from the mutant strain have shown that microtubules are formed both in the absence of drugs and in all drug concentrations tested (up to 50 microM parbendazole). In contrast, the assembly of microtubules from wild-type tubulin in vitro is totally inhibited by 2-5 microM parbendazole. Thus the resistance of BEN210 to parbendazole observed in vivo has been reproduced in vitro using tubulin purified from the mutant strain. Electrophoretic analysis of the microtubules formed in vitro has shown that both the wild-type and the mutant beta-tubulin are incorporated into the microtubules and that the proportion of mutant to wild-type beta-tubulin appears to remain constant with increasing drug concentration. This is the first demonstration of a single mutation in a tubulin structural gene causing an altered function of the gene product in vitro.

  1. Allele-Specific DNA Methylation Detection by Pyrosequencing®

    DEFF Research Database (Denmark)

    Sommer Kristensen, Lasse; Johansen, Jens Vilstrup; Grønbæk, Kirsten

    2015-01-01

    DNA methylation is an epigenetic modification that plays important roles in healthy as well as diseased cells, by influencing the transcription of genes. In spite the fact that human somatic cells are diploid, most of the currently available methods for the study of DNA methylation do not provide......-effective protocol for allele-specific DNA methylation detection based on Pyrosequencing(®) of methylation-specific PCR (MSP) products including a single nucleotide polymorphism (SNP) within the amplicon....

  2. ABO genotyping in leukemia patients reveals new ABO variant alleles

    OpenAIRE

    Novaretti,M.C.Z.; DOMINGUES, A. E.; MANHANI, R.; Pinto, E M; Dorlhiac-Llacer, P.E.; Chamone, D.A.F.

    2008-01-01

    The ABO blood group is the most important blood group system in transfusion medicine and organ transplantation. To date, more than 160 ABO alleles have been identified by molecular investigation. Almost all ABO genotyping studies have been performed in blood donors and families and for investigation of ABO subgroups detected serologically. The aim of the present study was to perform ABO genotyping in patients with leukemia. Blood samples were collected from 108 Brazilian patients with chronic...

  3. Enhanced cellulase production in mutants of Thermomonospora

    Energy Technology Data Exchange (ETDEWEB)

    Fennington, G.; Lupo, D.; Stutzenberger, F.

    1982-01-01

    Thermomonospora curvata, a thermophilic actinomycete, secretes multiple forms of endo-beta, 1-4-glucanase (EG) when grown on cellulose-mineral salts liquid medium. The EG activity (measured as carboxymethyl cellulose hydrolysis) was separated by ion exchange chromatography into three distinct components which differed in their kinetic properties. Exposure of T. curvata to ultraviolet light, N-nitrosoguanidine, or ethane methyl sulfonate produced mutants with enhanced EG production. Selection of colonies which cleared cellulose agar plants containing 2-deoxyglucose or glycerol yielded mutants having 1.5 to 2.6 times the extracellular EG and saccharifying activity (measured by filter-paper and cotton-fiber hydrolysis). The secretion of extracellular protein was increased proportionally in mutant cultures. (Refs. 40).

  4. The protease inhibitor PI*S allele and COPD

    DEFF Research Database (Denmark)

    Hersh, C P; Ly, N P; Berkey, C S

    2005-01-01

    In many countries, the protease inhibitor (SERPINA1) PI*S allele is more common than PI*Z, the allele responsible for most cases of chronic obstructive pulmonary disease (COPD) due to severe alpha 1-antitrypsin deficiency. However, the risk of COPD due to the PI*S allele is not clear. The current...... authors located studies that addressed the risk of COPD or measured lung function in individuals with the PI SZ, PI MS and PI SS genotypes. A separate meta-analysis for each genotype was performed. Aggregating data from six studies, the odds ratio (OR) for COPD in PI SZ compound heterozygotes compared...... with PI MM (normal) individuals was significantly increased at 3.26 (95% confidence intervals (CI): 1.24-8.57). In 17 cross-sectional and case-control studies, the OR for COPD in PI MS heterozygotes was 1.19 (95%CI: 1.02-1.38). However, PI MS genotype was not associated with COPD risk after correcting...

  5. Tracing pastoralist migrations to southern Africa with lactase persistence alleles.

    Science.gov (United States)

    Macholdt, Enrico; Lede, Vera; Barbieri, Chiara; Mpoloka, Sununguko W; Chen, Hua; Slatkin, Montgomery; Pakendorf, Brigitte; Stoneking, Mark

    2014-04-14

    Although southern African Khoisan populations are often assumed to have remained largely isolated during prehistory, there is growing evidence for a migration of pastoralists from eastern Africa some 2,000 years ago, prior to the arrival of Bantu-speaking populations in southern Africa. Eastern Africa harbors distinctive lactase persistence (LP) alleles, and therefore LP alleles in southern African populations may be derived from this eastern African pastoralist migration. We sequenced the lactase enhancer region in 457 individuals from 18 Khoisan and seven Bantu-speaking groups from Botswana, Namibia, and Zambia and additionally genotyped four short tandem repeat (STR) loci that flank the lactase enhancer region. We found nine single-nucleotide polymorphisms, of which the most frequent is -14010(∗)C, which was previously found to be associated with LP in Kenya and Tanzania and to exhibit a strong signal of positive selection. This allele occurs in significantly higher frequency in pastoralist groups and in Khoe-speaking groups in our study, supporting the hypothesis of a migration of eastern African pastoralists that was primarily associated with Khoe speakers. Moreover, we find a signal of ongoing positive selection in all three pastoralist groups in our study, as well as (surprisingly) in two foraging groups.

  6. RNA-FISH to analyze allele-specific expression.

    Science.gov (United States)

    Braidotti, G

    2001-01-01

    One of the difficulties associated with the analysis of imprinted gene expression is the need to distinguish RNA synthesis occurring at the maternal vs the paternally inherited copy of the gene. Most of the techniques used to examine allele-specific expression exploit naturally occurring polymorphisms and measure steady-state levels of RNA isolated from a pool of cells. Hence, a restriction fragment length polymorphism (RFLP) an be exploited in a heterozygote, by a reverse transcriptase polymerase chain reaction (RT-PCR)- based procedure, to analyze maternal vs paternal gene expression. The human IGF2R gene was analyzed in this way. Smrzka et al. (1) were thus able to show that the IGF2R gene possesses a hemimethylated, intronic CpG island analogous to the mouse imprinting box. However, IGF2R mRNA was detected that possessed the RFLP from both the maternal and paternal alleles in all but one of the 70 lymphoblastoid samples. (The one monoallelic sample reactivated its paternal allele with continued cell culturing.) It was concluded that monoallelic expression of the human gene is a polymorphic trait occurring in a small minority of all tested samples (reviewed in refs. 2,3). Although this is a sound conclusion, the question remains: Is the human IGF2R gene imprinted?

  7. A survey of FRAXE allele sizes in three populations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, N.; Ju, W.; Curley, D. [New York State Institute for Basic Research for Developmental Disabilities, Staten Island, NY (United States)] [and others

    1996-08-09

    FRAXE is a fragile site located at Xq27-8, which contains polymorphic triplet GCC repeats associated with a CpG island. Similar to FRAXA, expansion of the GCC repeats results in an abnormal methylation of the CpG island and is associated with a mild mental retardation syndrome (FRAXE-MR). We surveyed the GCC repeat alleles of FRAXE from 3 populations. A total of 665 X chromosomes including 416 from a New York Euro-American sample (259 normal and 157 with FRAXA mutations), 157 from a Chinese sample (144 normal and 13 FRAXA), and 92 from a Finnish sample (56 normal and 36 FRAXA) were analyzed by polymerase chain reaction. Twenty-seven alleles, ranging from 4 to 39 GCC repeats, were observed. The modal repeat number was 16 in the New York and Finnish samples and accounted for 24% of all the chromosomes tested (162/665). The modal repeat number in the Chinese sample was 18. A founder effect for FRAXA was suggested among the Finnish FRAXA samples in that 75% had the FRAXE 16 repeat allele versus only 30% of controls. Sequencing of the FRAXE region showed no imperfections within the GCC repeat region, such as those commonly seen in FRAXA. The smaller size and limited range of repeats and the lack of imperfections suggests the molecular mechanisms underlying FRAXE triplet mutations may be different from those underlying FRAXA. 27 refs., 4 figs., 1 tab.

  8. Osteogenesis imperfecta type I: Molecular heterogeneity for COL1A1 null alleles of type I collagen

    Energy Technology Data Exchange (ETDEWEB)

    Willing, M.C.; Deschenes, S.P.; Pitts, S.H.; Arikat, H.; Roberts, E.J.; Scott, D.A.; Slayton, R.L. [Univ. of Iowa, Iowa City, IA (United States); Byers, P.H. [Univ. of Washington, Seattle, WA (United States)

    1994-10-01

    Osteogenesis imperfecta (OI) type I is the mildest form of inherited brittle-bone disease. Dermal fibroblasts from most affected individuals produce about half the usual amount of type I procollagen, as a result of a COL1A1 {open_quotes}null{close_quotes} allele. Using PCR amplification of genomic DNA from affected individuals, followed by denaturing gradient gel electrophoresis (DGGE) and SSCP, we identified seven different COL1A1 gene mutations in eight unrelated families with OI type I. Three families have single nucleotide substitutions that alter 5{prime} donor splice sites; two of these unrelated families have the same mutation. One family has a point mutation, in an exon, that creates a premature termination codon, and four have small deletions or insertions, within exons, that create translational frameshifts and new termination codons downstream of the mutation sites. Each mutation leads to both marked reduction in steady-state levels of mRNA from the mutant allele and a quantitative decrease in type I procollagen production. Our data demonstrate that different molecular mechanisms that have the same effect on type I collagen production result in the same clinical phenotype. 58 refs., 4 figs., 1 tab.

  9. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign.

    Directory of Open Access Journals (Sweden)

    Eldin Talundzic

    2015-04-01

    Full Text Available The recent emergence of artemisinin resistance in the Greater Mekong Subregion poses a major threat to the global effort to control malaria. Tracking the spread and evolution of artemisinin-resistant parasites is critical in aiding efforts to contain the spread of resistance. A total of 417 patient samples from the year 2007, collected during malaria surveillance studies across ten provinces in Thailand, were genotyped for the candidate Plasmodium falciparum molecular marker of artemisinin resistance K13. Parasite genotypes were examined for K13 propeller mutations associated with artemisinin resistance, signatures of positive selection, and for evidence of whether artemisinin-resistant alleles arose independently across Thailand. A total of seven K13 mutant alleles were found (N458Y, R539T, E556D, P574L, R575K, C580Y, S621F. Notably, the R575K and S621F mutations have previously not been reported in Thailand. The most prevalent artemisinin resistance-associated K13 mutation, C580Y, carried two distinct haplotype profiles that were separated based on geography, along the Thai-Cambodia and Thai-Myanmar borders. It appears these two haplotypes may have independent evolutionary origins. In summary, parasites with K13 propeller mutations associated with artemisinin resistance were widely present along the Thai-Cambodia and Thai-Myanmar borders prior to the implementation of the artemisinin resistance containment project in the region.

  10. Phenotype to genotype using forward-genetic Mu-seq for identification and functional classification of maize mutants

    Directory of Open Access Journals (Sweden)

    Charles T Hunter

    2014-01-01

    Full Text Available In pursuing our long-term goals of identifying causal genes for mutant phenotypes in maize, we have developed a new, phenotype-to-genotype approach for transposon-based resources, and used this to identify candidate genes that co-segregate with visible kernel mutants. The strategy incorporates a redesigned Mu-seq protocol (sequence-based, transposon mapping for high-throughput identification of individual plants carrying Mu insertions. Forward-genetic Mu-seq also involves a genetic pipeline for generating families that segregate for mutants of interest, and grid designs for concurrent analysis of genotypes in multiple families. Critically, this approach not only eliminates gene-specific PCR genotyping, but also profiles all Mu-insertions in hundreds of individuals simultaneously. Here, we employ this scalable approach to study 12 families that showed Mendelian segregation of visible seed mutants. These families were analyzed in parallel, and 7 showed clear co-segregation between the selected phenotype and a Mu insertion in a specific gene. Results were confirmed by PCR. Mutant genes that associated with kernel phenotypes include those encoding: a new allele of Whirly1 (a transcription factor with high affinity for organellar and single-stranded DNA, a predicted splicing factor with a KH domain, a small protein with unknown function, a putative mitochondrial transcription-termination factor, and three proteins with pentatricopeptide repeat domains (predicted mitochondrial. Identification of such associations allows mutants to be prioritized for subsequent research based on their functional annotations. Forward-genetic Mu-seq also allows a systematic dissection of mutant classes with similar phenotypes. In the present work, a high proportion of kernel phenotypes were associated with mutations affecting organellar gene transcription and processing, highlighting the importance and non-redundance of genes controlling these aspects of seed development.

  11. Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected 'hypernodulation' response in Lotus japonicus.

    Science.gov (United States)

    Chan, Pick Kuen; Biswas, Bandana; Gresshoff, Peter M

    2013-04-01

    Three independent ethylene insensitive mutants were selected from an EMS- mutagenized population of Lotus japonicus MG-20 (Miyakojima). The mutants, called 'Enigma', were mutated in the LjEIN2a gene from Lotus chromosome 1, sharing significant homology with Arabidopsis EIN2 (ethylene-insensitive2). All three alleles showed classical ethylene insensitivity phenotypes (e.g., Triple Response), but lacked the increased nodulation phenotype commonly associated with ethylene insensitivity. Indeed, all showed a marginal reduction in nodule number per plant, a phenotype that is enigmatic to sickle, an ethylene-insensitive EIN2 mutant in Medicago truncatula. In contrast to wild type, but similar to an ETR1-1 ethylene ethylene-insensitive transgenic of L. japonicus, enigma mutants formed nodules in between the protoxylem poles, demonstrating the influence of ethylene on radial positioning. Suppression of nodule numbers by nitrate and colonisation by mycorrhizal fungi in the enigma-1 mutant were indistinguishable from the wild-type MG-20. However, reflecting endogenous ethylene feedback, the enigma-1 mutant released more than twice the wild-type amount of ethylene. enigma-1 had a moderate reduction in growth, greater root mass (and lateral root formation), delayed flowering and ripening, smaller pods and seeds. Expression analysis of ethylene-regulated genes, such as ETR1, NRL1 (neverripe-like 1), and EIL3 in shoots and roots of enigma-1 and MG-20 illustrated that the ethylene-insensitive mutation strongly affected transcriptional responses in the root. These mutants open the possibility that EIN2 in L. japonicus, a determinate nodulating legume, acts in a more complex fashion possibly through the presence of a duplicated copy of LjEIN2.

  12. Classical Ethylene Insensitive Mutants of the Arabidopsis EIN2Orthologue Lack the Expected 'hypernodulation' Response in Lotus japonicus

    Institute of Scientific and Technical Information of China (English)

    Pick Kuen Chan; Bandana Biswas; Peter M.Gresshoff

    2013-01-01

    Three independent ethylene insensitive mutants were selected from an EMS-mutagenized population of Lotus japonicus MG-20 (Miyakojima).The mutants,called 'Enigma',were mutated in the LjEIN2a gene from Lotus chromosome 1,sharing significant homology with Arabidopsis EIN2 (ethylene-insensitive2).All three alleles showed classical ethylene insensitivity phenotypes (e.g.,Triple Response),but lacked the increased nodulation phenotype commonly associated with ethylene insensitivity.Indeed,all showed a marginal reduction in nodule number per plant,a phenotype that is enigmatic to sickle,an ethyleneinsensitive EIN2 mutant in Medicago truncatula.In contrast to wild type,but similar to an ETR1-1 ethylene ethylene-insensitive transgenic of L.japonicus,enigma mutants formed nodules in between the protoxylem poles,demonstrating the influence of ethylene on radial positioning.Suppression of nodule numbers by nitrate and colonisation by mycorrhizal fungi in the enigma-1 mutant were indistinguishable from the wild-type MG-20.However,reflecting endogenous ethylene feedback,the enigma-1 mutant released more than twice the wild-type amount of ethylene.enigma-1 had a moderate reduction in growth,greater root mass (and lateral root formation),delayed flowering and ripening,smaller pods and seeds.Expression analysis of ethylene-regulated genes,such as ETR1,NRL1 (neverripe-like 1),and ElL3 in shoots and roots of enigma-1 and MG-20 illustrated that the ethylene-insensitive mutation strongly affected transcriptional responses in the root.These mutants open the possibility that EIN2 in L.japonicus,a determinate nodulating legume,acts in a more complex fashion possibly through the presence of a duplicated copy of LjEIN2.

  13. Aging Kit mutant mice develop cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Lei Ye

    Full Text Available Both bone marrow (BM and myocardium contain progenitor cells expressing the c-Kit tyrosine kinase. The aims of this study were to determine the effects of c-Kit mutations on: i. myocardial c-Kit(+ cells counts and ii. the stability of left ventricular (LV contractile function and structure during aging. LV structure and contractile function were evaluated (echocardiography in two groups of Kit mutant (W/Wv and W41/W42 and in wild type (WT mice at 4 and 12 months of age and the effects of the mutations on LV mass, vascular density and the numbers of proliferating cells were also determined. In 4 month old Kit mutant and WT mice, LV ejection fractions (EF and LV fractional shortening rates (FS were comparable. At 12 months of age EF and FS were significantly decreased and LV mass was significantly increased only in W41/W42 mice. Myocardial vascular densities and c-Kit(+ cell numbers were significantly reduced in both mutant groups when compared to WT hearts. Replacement of mutant BM with WT BM at 4 months of age did not prevent these abnormalities in either mutant group although they were somewhat attenuated in the W/Wv group. Notably BM transplantation did not prevent the development of cardiomyopathy in 12 month W41/W42 mice. The data suggest that decreased numbers and functional capacities of c-Kit(+ cardiac resident progenitor cells may be the basis of the cardiomyopathy in W41/W42 mice and although defects in mutant BM progenitor cells may prove to be contributory, they are not causal.

  14. The genetics of green thorax, a new larval colour mutant, non-linked with ruby-eye locus in the malaria mosquito, Anopheles stephensi Liston

    Directory of Open Access Journals (Sweden)

    D. Sanil

    2009-06-01

    Full Text Available Background & objectives: Anopheles stephensi, an important vector of malaria continues to be distributed widely in the Indian subcontinent. The natural vigour of the species combined with its new tolerance, indeed resistance to insecticides has made it obligatory that we look for control methods involving genetic manipulation. Hence, there is an immediate need for greater understanding of the genetics of this vector species. One of the requirements for such genetic studies is the establishment of naturally occurring mutants, establishment of the genetic basis for the same and use of such mutants in the genetic transformation studies and other genetic control programme(s. This paper describes the isolation and genetic studies of a larval colour mutant, green thorax (gt, and linkage studies involving another autosomal recessive mutant ruby-eye (ru in An. stephensi. Methods: After the initial discovery, the mutant green thorax was crossed inter se and pure homozygous stock of the mutant was established. The stock of the mutant ruby-eye, which has been maintained as a pure stock in the laboratory. Crosses were made between the wild type and mutant, green thorax to determine the mode of inheritance of green thorax. For linkage studies, crosses were made between the mutant green thorax and another autosomal recessive mutant ruby-eye. The percentage cross-over was calculated for the genes linkage relationship for gt and gt ru. Results: Results of crosses between mutant and wild type showed that the inheritance of green thorax (gt in An. stephensi is monofactorial in nature. The gt allele is recessive to wild type and is autosomal. The linkage studies showed no linkage between ru and gt. Interpretation & conclusion: The mutant gt represents an excellent marker for An. stephensi as it is expressed in late III instar stage of larvae and is prominent in IV instar and pupal stages with complete penetrance and high viability. The said mutant could be easily

  15. Identification of single-nucleotide polymorphisms by the oligonucleotide ligation reaction: a DNA biosensor for simultaneous visual detection of both alleles.

    Science.gov (United States)

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S

    2009-01-01

    Although single nucleotide polymorphisms (SNPs) can be identified by direct hybridization with allele-specific oligonucleotide probes, enzyme-based genotyping methods offer much higher specificity and robustness. Among enzymatic methods, the oligonucleotide ligation reaction (OLR) offers the highest specificity for allele discrimination because two hybridization events are required for ligation. We report the development of a DNA biosensor that offers significant advantages over currently available methods for detection of OLR products: It allows simultaneous visual discrimination of both alleles using a single ligation reaction. Detection is complete within minutes without the need for any specialized instruments. It does not involve multiple cycles of incubation and washing. The dry-reagent format minimizes the pipetting steps. The need for qualified personnel is much lower than current methods. The principle of the assay is as follows: Following PCR amplification, a single OLR is performed using a biotinylated common probe and two allele-specific probes labeled with the haptens digoxigenin and fluorescein. Ligation products corresponding to the normal and mutant allele are double-labeled with biotin and either digoxigenin or fluorescein, respectively. The products are captured by antidigoxigenin or antifluorescein antibodies, or both, that are immobilized at the two test zones of the biosensor and react with antibiotin-functionalized gold nanoparticle reporters. The excess nanoparticles bind to biotinylated albumin that is immobilized at the control zone of the biosensor. The genotype is assigned by the characteristic red lines that appear at the two test zones. The proposed DNA biosensor constitutes a significant step toward point-of-care SNP genotyping.

  16. TRPV6 alleles do not influence prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Flockerzi Veit

    2009-10-01

    Full Text Available Abstract Background The transient receptor potential, subfamily V, member 6 (TRPV6 is a Ca2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Methods Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. Results We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Conclusion Our results show that the frequencies of trpv6

  17. Power of IRT in GWAS: successful QTL mapping of sum score phenotypes depends on interplay between risk allele frequency, variance explained by the risk allele, and test characteristics.

    Science.gov (United States)

    van den Berg, Stéphanie M; Service, Susan K

    2012-12-01

    As data from sequencing studies in humans accumulate, rare genetic variants influencing liability to disease and disorders are expected to be identified. Three simulation studies show that characteristics and properties of diagnostic instruments interact with risk allele frequency to affect the power to detect a quantitative trait locus (QTL) based on a test score derived from symptom counts or questionnaire items. Clinical tests, that is, tests that show a positively skewed phenotypic sum score distribution in the general population, are optimal to find rare risk alleles of large effect. Tests that show a negatively skewed sum score distribution are optimal to find rare protective alleles of large effect. For alleles of small effect, tests with normally distributed item parameters give best power for a wide range of allele frequencies. The item-response theory framework can help understand why an existing measurement instrument has more power to detect risk alleles with either low or high frequency, or both kinds.

  18. Premutation huntingtin allele adopts a non-B conformation and contains a hot spot for DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Jarem, Daniel A. [Department of Chemistry, Brown University, Providence, RI 02912 (United States); Delaney, Sarah, E-mail: sarah_delaney@brown.edu [Department of Chemistry, Brown University, Providence, RI 02912 (United States)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer First structural and thermodynamic analysis of premutation allele of HD. Black-Right-Pointing-Pointer Premutation allele of HD adopts a stem-loop non-B conformation. Black-Right-Pointing-Pointer Healthy and premutation length stem-loops are hyper-susceptible to oxidative damage. Black-Right-Pointing-Pointer Stability of stem-loop structures increases linearly with repeat length. Black-Right-Pointing-Pointer Thermodynamic stability, not the ability to adopt non-B conformation, distinguishes DNA prone to expansion from stable DNA. -- Abstract: The expansion of a CAG trinucleotide repeat (TNR) sequence has been linked to several neurological disorders, for example, Huntington's disease (HD). In HD, healthy individuals have 5-35 CAG repeats. Those with 36-39 repeats have the premutation allele, which is known to be prone to expansion. In the disease state, greater than 40 repeats are present. Interestingly, the formation of non-B DNA conformations by the TNR sequence is proposed to contribute to the expansion. Here we provide the first structural and thermodynamic analysis of a premutation length TNR sequence. Using chemical probes of nucleobase accessibility, we found that similar to (CAG){sub 10}, the premutation length sequence (CAG){sub 36} forms a stem-loop hairpin and contains a hot spot for DNA damage. Additionally, calorimetric analysis of a series of (CAG){sub n} sequences, that includes repeat tracts in both the healthy and premutation ranges, reveal that thermodynamic stability increases linearly with the number of repeats. Based on these data, we propose that while non-B conformations can be formed by TNR tracts found in both the healthy and premutation allele, only sequences containing at least 36 repeats have sufficient thermodynamic stability to contribute to expansion.

  19. Series Transmission Line Transformer

    Science.gov (United States)

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  20. Identification of common bean alleles resistant to anthracnose using RAPD

    Directory of Open Access Journals (Sweden)

    Ana L.M. Castanheira

    1999-12-01

    Full Text Available RAPD markers were identified close to common bean alleles responsible for resistance to the fungus Colletotrichum lindemuthianum and may be useful in selecting plants resistant to this pathogen. DNA from F2 plants of the crosses Carioca 300V x P45, Carioca 300V x Ouro and P24 x Ouro was amplified by RAPD. Line P45 has the Co.4 allele for resistance, and the Ouro cultivar has the Co.5 allele. The primer OPC08 amplified a DNA fragment of about 1059 bp linked to the Co.4 allele. The recombination frequency was 0.133 (SE = 0.039; 95% CI = 0.056-0.211. Using the primer OPF10 a DNA fragment of about 912 bp was amplified and found to be associated with the Co.5 allele. The recombination frequency was 0.115 (SE = 0.038; 95% CI = 0.041-0.189. A second marker (1122 pb amplified by the OPR03 primer was identified in the population P24 x Ouro. The recombination frequency for this marker was 0.363 (SE = 0.081; 95% CI = 0.205-0.522. Both these markers flanked the Co.5 allele. The markers identified in this study may be useful in identifying lines with the Co.4 and Co.5 alleles.Marcadores RAPD foram identificados próximos de alelos do feijão responsáveis pela resistência ao Colletotrichum lindemuthianum, visando auxiliar na seleção de plantas resistentes ao patógeno. Empregou-se o método dos bulks segregantes de DNA extraídos de plantas F2 dos seguintes cruzamentos: Carioca 300V x P45, Carioca 300V x Ouro e P24 x Ouro. A linhagem P45 é portadora do alelo Co.4 de resistência e o cultivar Ouro é portador do alelo Co.5, os quais foram marcados. Procedeu-se à reação RAPD dos bulks e foi identificado o iniciador OPC08 que amplificou um fragmento de DNA com cerca de 1059 pb, ligado ao alelo Co.4. A freqüência de recombinação foi de 0,133 (erro padrão 0,039 e o intervalo de confiança foi 0,056 e 0,211, com 95% de probabilidade. Em relação ao alelo Co.5 foi identificado um fragmento de DNA amplificado pelo iniciador OPF10 com cerca de 912 pb, na

  1. Fourier Series Operating Package

    Science.gov (United States)

    Charnow, Milton L.

    1961-01-01

    This report presents a computer program for multiplying, adding, differentiating, integrating, "barring" and scalarly multiplying "literal" Fourier series as such, and for extracting the coefficients of specified terms.

  2. A high-throughput method for genotyping S-RNase alleles in apple

    DEFF Research Database (Denmark)

    Larsen, Bjarne; Ørgaard, Marian; Toldam-Andersen, Torben Bo;

    2016-01-01

    We present a new efficient screening tool for detection of S-alleles in apple. The protocol using general and multiplexed primers for PCR reaction and fragment detection on an automatized capillary DNA sequencer exposed a higher number of alleles than any previous studies. Analysis of alleles...

  3. Genetic, molecular and expression features of the Pervenets mutant leading to high oleic acid content of seed oil in sunflower

    Directory of Open Access Journals (Sweden)

    Lacombe Séverine

    2002-01-01

    Full Text Available Pervenets is a sunflower population that displays seed oil with a high oleic acid content [HOAC]. Our aim is to reconcile all the data gathered on this mutant in a unique explanatory mechanism. All Pervenets-derived [HOAC] lines display no accumulation or a very reduced accumulation of the DELTA12-desaturase transcript in the embryos during the stages for oil accumulation. They also carry oleHOS specific RFLP markers revealed by an DELTA12-desaturase cDNA used as a probe. The linoleic or [LO] genotypes do not carry this RFLP marker, but another allele: oleLOR (oleHL locus. Linkage disequilibrium between the oleHOS allele and [HOAC] was verified. We studied the mode of inheritance of [HOAC] in two segregating populations. A F2 progenies revealed one dominant allele for [HOAC] that co-segregated with the oleHOS allele showing that the Pervenets mutation and oleHOS were closely linked. F6 recombinant inbred lines, showed the [HOAC] trait due to two independent loci: the locus carrying the oleHOS allele and another locus sup. One allele, supole, at this second locus may suppress the effect of the oleHOS allele on the [HOAC] trait. Northern analyses performed on [HOAC] lines and F1 ([HOAC] x [LO] hybrids revealed under-accumulation of DELTA12-desaturase transcript. Thus Pervenets mutation acts in trans. The oleHOS genomic region that may carry the Pervenets mutation was cloned. A genomic library was constructed in lambdafixII with the DNA from the RHA345 [HOAC] line and screened with a DELTA12-desaturase cDNA as a probe. Two overlapping clones were entirely sequenced and revealed carrying a gene for an DELTA12-desaturase probably located in the RE. This corresponds to the invariant part of the oleHL locus. Another clone (11.1 probably carries DELTA12-desaturase repeated sequences that cause instability of the clone. We showed that the 11.1 clone carries most of cDNA sequence, but due to its organization it is not yet sequenced. A mutation mechanism

  4. A dominant semi dwarf mutant in rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ In the winter of 1997, a semi dwarf mutant was found in the F6 population of M9056/ R8018 xuan in Hainan Province. In the spring of 1998, the seeds were sown in Hefei, Anhui Province and the plant height of the population was measured at maturity.

  5. Nicotinamide ribosyl uptake mutants in Haemophilus influenzae.

    Science.gov (United States)

    Herbert, Mark; Sauer, Elizabeta; Smethurst, Graeme; Kraiss, Anita; Hilpert, Anna-Karina; Reidl, Joachim

    2003-09-01

    The gene for the nicotinamide riboside (NR) transporter (pnuC) was identified in Haemophilus influenzae. A pnuC mutant had only residual NR uptake and could survive in vitro with high concentrations of NR, but could not survive in vivo. PnuC may represent a target for the development of inhibitors for preventing H. influenzae disease.

  6. Colored HOMFLY polynomials can distinguish mutant knots

    CERN Document Server

    Nawata, Satoshi; Singh, Vivek Kumar

    2015-01-01

    We illustrate from the viewpoint of braiding operations on WZNW conformal blocks how colored HOMFLY polynomials with multiplicity structure can detect mutations. As an example, we explicitly evaluate the (2,1)-colored HOMFLY polynomials that distinguish a famous mutant pair, Kinoshita-Terasaka and Conway knot.

  7. A Hypomorphic PALB2 Allele Gives Rise to an Unusual Form of FA-N Associated with Lymphoid Tumour Development.

    Directory of Open Access Journals (Sweden)

    Philip J Byrd

    2016-03-01

    Full Text Available Patients with biallelic truncating mutations in PALB2 have a severe form of Fanconi anaemia (FA-N, with a predisposition for developing embryonal-type tumours in infancy. Here we describe two unusual patients from a single family, carrying biallelic PALB2 mutations, one truncating, c.1676_1677delAAinsG;(p.Gln559ArgfsTer2, and the second, c.2586+1G>A; p.Thr839_Lys862del resulting in an in frame skip of exon 6 (24 amino acids. Strikingly, the affected individuals did not exhibit the severe developmental defects typical of FA-N patients and initially presented with B cell non-Hodgkin lymphoma. The expressed p.Thr839_Lys862del mutant PALB2 protein retained the ability to interact with BRCA2, previously unreported in FA-N patients. There was also a large increased chromosomal radiosensitivity following irradiation in G2 and increased sensitivity to mitomycin C. Although patient cells were unable to form Rad51 foci following exposure to either DNA damaging agent, U2OS cells, in which the mutant PALB2 with in frame skip of exon 6 was induced, did show recruitment of Rad51 to foci following damage. We conclude that a very mild form of FA-N exists arising from a hypomorphic PALB2 allele.

  8. Expression and loss of alleles in cultured mouse embryonic fibroblasts and stem cells carrying allelic fluorescent protein genes

    Directory of Open Access Journals (Sweden)

    Stringer Saundra L

    2006-10-01

    Full Text Available Abstract Background Loss of heterozygosity (LOH contributes to many cancers, but the rate at which these events occur in normal cells of the body is not clear. LOH would be detectable in diverse cell types in the body if this event were to confer an obvious cellular phenotype. Mice that carry two different fluorescent protein genes as alleles of a locus would seem to be a useful tool for addressing this issue because LOH would change a cell's phenotype from dichromatic to monochromatic. In addition, LOH caused by mitotic crossing over might be discernable in tissues because this event produces a pair of neighboring monochromatic cells that are different colors. Results As a step in assessing the utility of this approach, we derived primary embryonic fibroblast populations and embryonic stem cell lines from mice that carried two different fluorescent protein genes as alleles at the chromosome 6 locus, ROSA26. Fluorescence activated cell sorting (FACS showed that the vast majority of cells in each line expressed the two marker proteins at similar levels, and that populations exhibited expression noise similar to that seen in bacteria and yeast. Cells with a monochromatic phenotype were present at frequencies on the order of 10-4 and appeared to be produced at a rate of approximately 10-5 variant cells per mitosis. 45 of 45 stably monochromatic ES cell clones exhibited loss of the expected allele at the ROSA26 locus. More than half of these clones retained heterozygosity at a locus between ROSA26 and the centromere. Other clones exhibited LOH near the centromere, but were disomic for chromosome 6. Conclusion Allelic fluorescent markers allowed LOH at the ROSA26 locus to be detected by FACS. LOH at this locus was usually not accompanied by LOH near the centromere, suggesting that mitotic recombination was the major cause of ROSA26 LOH. Dichromatic mouse embryonic cells provide a novel system for studying genetic/karyotypic stability and factors

  9. GAMPMS: Genetic algorithm managed peptide mutant screening.

    Science.gov (United States)

    Long, Thomas; McDougal, Owen M; Andersen, Tim

    2015-06-30

    The prominence of endogenous peptide ligands targeted to receptors makes peptides with the desired binding activity good molecular scaffolds for drug development. Minor modifications to a peptide's primary sequence can significantly alter its binding properties with a receptor, and screening collections of peptide mutants is a useful technique for probing the receptor-ligand binding domain. Unfortunately, the combinatorial growth of such collections can limit the number of mutations which can be explored using structure-based molecular docking techniques. Genetic algorithm managed peptide mutant screening (GAMPMS) uses a genetic algorithm to conduct a heuristic search of the peptide's mutation space for peptides with optimal binding activity, significantly reducing the computational requirements of the virtual screening. The GAMPMS procedure was implemented and used to explore the binding domain of the nicotinic acetylcholine receptor (nAChR) α3β2-isoform with a library of 64,000 α-conotoxin (α-CTx) MII peptide mutants. To assess GAMPMS's performance, it was compared with a virtual screening procedure that used AutoDock to predict the binding affinity of each of the α-CTx MII peptide mutants with the α3β2-nAChR. The GAMPMS implementation performed AutoDock simulations for as few as 1140 of the 64,000 α-CTx MII peptide mutants and could consistently identify a set of 10 peptides with an aggregated binding energy that was at least 98% of the aggregated binding energy of the 10 top peptides from the exhaustive AutoDock screening.

  10. Carpel, a new Arabidopsis epi-mutant of the SUPERMAN gene: phenotypic analysis and DNA methylation status.

    Science.gov (United States)

    Rohde, A; Grunau, C; De Beck, L; Van Montagu, M; Rosenthal, A; Boerjan, W

    1999-09-01

    The carpel (car) mutation affects the morphology of reproductive organs in Arabidopsis thaliana. car flowers have an increased number of carpels, on average 2.7 +/- 0.8 instead of two in the wild type. Through allelism test with fon1-3 and analysis of the methylation state of the SUPERMAN (SUP) gene in car mutants, we show that car is an epi-mutation of SUP. The methylation pattern of car is clearly distinct from that of fon1-3, another epi-mutation of the SUP gene. Methylation was found predominantly in Cp(A/T)p(A/G) triplets and in CpG pairs. We suggest that the extensive SUP methylation in car has arisen from an abundant methylation of a single CpG site that was already present in abscisic acid-insensitive (abi3-4) mutants, from which car was segregating.

  11. Time Series Momentum

    DEFF Research Database (Denmark)

    Moskowitz, Tobias J.; Ooi, Yao Hua; Heje Pedersen, Lasse

    2012-01-01

    under-reaction and delayed over-reaction. A diversified portfolio of time series momentum strategies across all asset classes delivers substantial abnormal returns with little exposure to standard asset pricing factors and performs best during extreme markets. Examining the trading activities...... of speculators and hedgers, we find that speculators profit from time series momentum at the expense of hedgers....

  12. Seri Kinship Terminology.

    Science.gov (United States)

    Moser, Mary B.; Marlett, Stephen A.

    The Seri language contains over 50 kinship terms and represents one of the most highly elaborated kinship systems described to date. This paper discusses Seri kinship terminology and centers around, but is not limited to, the set of obligatory possessed noun stems that are inflected with the following possessive prefixes": "hi-,""ma-," and "a-."…

  13. Fourier Series Optimization Opportunity

    Science.gov (United States)

    Winkel, Brian

    2008-01-01

    This note discusses the introduction of Fourier series as an immediate application of optimization of a function of more than one variable. Specifically, it is shown how the study of Fourier series can be motivated to enrich a multivariable calculus class. This is done through discovery learning and use of technology wherein students build the…

  14. Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton.

    Science.gov (United States)

    Rong, Junkang; Pierce, Gary J; Waghmare, Vijay N; Rogers, Carl J; Desai, Aparna; Chee, Peng W; May, O Lloyd; Gannaway, John R; Wendel, Jonathan F; Wilkins, Thea A; Paterson, Andrew H

    2005-10-01

    Mapping of genes that play major roles in cotton fiber development is an important step toward their cloning and manipulation, and provides a test of their relationships (if any) to agriculturally-important QTLs. Seven previously identified fiber mutants, four dominant (Li (1), Li (2), N (1) and Fbl) and three recessive (n (2), sma-4(h (a)), and sma-4(fz)), were genetically mapped in six F(2) populations comprising 124 or more plants each. For those mutants previously assigned to chromosomes by using aneuploids or by linkage to other morphological markers, all map locations were concordant except n (2), which mapped to the homoeolog of the chromosome previously reported. Three mutations with primary effects on fuzz fibers (N (1), Fbl, n (2)) mapped near the likelihood peaks for QTLs that affected lint fiber productivity in the same populations, perhaps suggesting pleiotropic effects on both fiber types. However, only Li (1) mapped within the likelihood interval for 191 previously detected lint fiber QTLs discovered in non-mutant crosses, suggesting that these mutations may occur in genes that played early roles in cotton fiber evolution, and for which new allelic variants are quickly eliminated from improved germplasm. A close positional association between sma-4(h ( a )), two leaf and stem-borne trichome mutants (t (1) , t (2)), and a gene previously implicated in fiber development, sucrose synthase, raises questions about the possibility that these genes may be functionally related. Increasing knowledge of the correspondence of the cotton and Arabidopsis genomes provides several avenues by which genetic dissection of cotton fiber development may be accelerated.

  15. Localization and mobility of synaptic vesicles in Myosin VI mutants of Drosophila.

    Directory of Open Access Journals (Sweden)

    Marta Kisiel

    Full Text Available BACKGROUND: At the Drosophila neuromuscular junction (NMJ, synaptic vesicles are mobile; however, the mechanisms that regulate vesicle traffic at the nerve terminal are not fully understood. Myosin VI has been shown to be important for proper synaptic physiology and morphology at the NMJ, likely by functioning as a vesicle tether. Here we investigate vesicle dynamics in Myosin VI mutants of Drosophila. RESULTS: In Drosophila, Myosin VI is encoded by the gene, jaguar (jar. To visualize active vesicle cycling we used FM dye loading and compared loss of function alleles of jar with controls. These studies revealed a differential distribution of vesicles at the jar mutant nerve terminal, with the newly endocytosed vesicles observed throughout the mutant boutons in contrast to the peripheral localization visualized at control NMJs. This finding is consistent with a role for Myosin VI in restraining vesicle mobility at the synapse to ensure proper localization. To further investigate regulation of vesicle dynamics by Myosin VI, FRAP analysis was used to analyze movement of GFP-labeled synaptic vesicles within individual boutons. FRAP revealed that synaptic vesicles are moving more freely in the jar mutant boutons, indicated by changes in initial bleach depth and rapid recovery of fluorescence following photobleaching. CONCLUSION: This data provides insights into the role for Myosin VI in mediating synaptic vesicle dynamics at the nerve terminal. We observed mislocalization of actively cycling vesicles and an apparent increase in vesicle mobility when Myosin VI levels are reduced. These observations support the notion that a major function of Myosin VI in the nerve terminal is tethering synaptic vesicles to proper sub-cellular location within the bouton.

  16. Consequences of zygote injection and germline transfer of mutant human mitochondrial DNA in mice

    Science.gov (United States)

    Yu, Hong; Koilkonda, Rajeshwari D.; Chou, Tsung-Han; Porciatti, Vittorio; Mehta, Arpit; Hentall, Ian D.; Chiodo, Vince A.; Boye, Sanford L.; Hauswirth, William W.; Lewin, Alfred S.; Guy, John

    2015-01-01

    Considerable evidence supports mutations in mitochondrial genes as the cause of maternally inherited diseases affecting tissues that rely primarily on oxidative energy metabolism, usually the nervous system, the heart, and skeletal muscles. Mitochondrial diseases are diverse, and animal models currently are limited. Here we introduced a mutant human mitochondrial gene responsible for Leber hereditary optic neuropathy (LHON) into the mouse germ line using fluorescence imaging for tissue-specific enrichment in the target retinal ganglion cells. A mitochondria-targeted adeno-associated virus (MTS-AAV) containing the mutant human NADH ubiquinone oxidoreductase subunit 4 (ND4) gene followed by mitochondrial-encoded mCherry was microinjected into zygotes. Female founders with mCherry fluorescence on ophthalmoscopy were backcrossed with normal males for eight generations. Mutant human ND4 DNA was 20% of mouse ND4 and did not integrate into the host genome. Translated human ND4 protein assembled into host respiratory complexes, decreasing respiratory chain function and increasing oxidative stress. Swelling of the optic nerve head was followed by progressive demise of ganglion cells and their axons, the hallmarks of human LHON. Early visual loss that began at 3 mo and progressed to blindness 8 mo after birth was reversed by intraocular injection of MTS-AAV expressing wild-type human ND4. The technology of introducing human mitochondrial genes into the mouse germ line has never been described, to our knowledge, and has implications not only for creating animal models recapitulating the counterpart human disorder but more importantly for reversing the adverse effects of the mutant gene using gene therapy to deliver the wild-type allele. PMID:26438859

  17. SERI Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  18. Distribution of HIV-1 resistance-conferring polymorphic alleles SDF-1-3′A, CCR2-64I and CCR5-32 in diverse populations of Andhra Pradesh, South India

    Indian Academy of Sciences (India)

    G. V. Ramana; A. Vasanthi; M. Khaja; B. Su; V. Govindaiah; L. Jin; L. Singh; R. Chakraborty

    2001-12-01

    Polymorphic allelic variants of chemokine receptors CCR2 and CCR5, as well as of stromal-derived factor-1 SDF-1, the ligand for the chemokine receptor CXCR4, are known to have protective effects against HIV-1 infection and to be involved with delay in disease progression. We have studied the DNA polymorphisms at the loci that encode these proteins in 525 healthy individuals without any history of HIV-1 infection from 11 diverse populations of Andhra Pradesh, South India. The two protective alleles SDF-1-3′A and CCR2-64I at the SDF-1 and CCR2 loci, respectively, are present in all populations studied, although their frequencies differ considerably across populations (from 17% to 35% for the SDF-1-3′A allele, and from 3% to 17% for CCR2-64I). In contrast the CCR5-32 allele is observed only in three populations (Yamani, Pathan and Kamma), all in low frequencies (i.e. 1% to 3%). The mean number of mutant alleles (for the three loci together) carried by each individual varies from 0.475 (in Vizag Brahmins) to 0.959 (in Bohra Muslims). The estimated relative hazard values for the populations, computed from the three-locus genotype data, are comparable to those from Africa and Southeast Asia, where AIDS is known to be widespread.

  19. Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa).

    Science.gov (United States)

    Zhao, Jing; Chen, Hongyi; Ren, Ding; Tang, Huiwu; Qiu, Rong; Feng, Jinglei; Long, Yunming; Niu, Baixiao; Chen, Danping; Zhong, Tianyu; Liu, Yao-Guang; Guo, Jingxin

    2015-11-01

    Initiation of flowering, also called heading, in rice (Oryza sativa) is determined by the florigens encoded by Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Early heading date 1 (Ehd1) regulates Hd3a and RFT1. However, different rice varieties have diverged alleles of Ehd1 and Hd3a/RFT1 and their genetic interactions remain largely unclear. Here we generated three segregating populations for different combinations of diverged Ehd1 and Hd3a/RFT1 alleles, and analyzed their genetic interactions between these alleles. We demonstrated that, in an ehd1 mutant background, Hd3a was silenced, but RFT1 was expressed (although at lower levels than in plants with a functional Ehd1) under short-day (SD) and long-day (LD) conditions. We identified a nonfunctional RFT1 allele (rft1); the lines carrying homozygous ehd1 and Hd3a/rft1 failed to induce the floral transition under SD and LD conditions. Like Hd3a, RFT1 also interacted with 14-3-3 proteins, the florigen receptors, but a nonfunctional RFT1 with a crucial E105K mutation failed to interact with 14-3-3 proteins. Furthermore, analyses of sequence variation and geographic distribution suggested that functional RFT1 alleles were selected during rice adaptation to high-latitude regions. Our results demonstrate the important roles of RFT1 in rice flowering and regional adaptation.

  20. The Rh allele frequencies in Gaza city in Palestine

    Directory of Open Access Journals (Sweden)

    Skaik Younis

    2011-01-01

    Full Text Available Background: The Rh blood group system is the second most clinically significant blood group system. It includes 49 antigens, but only five (D, C, E, c and e are the most routinely identified due to their unique relation to hemolytic disease of the newborn (HDN and transfusion reactions. Frequency of the Rh alleles showed variation, with regard to race and ethnic. Objectives: The purpose of the study was to document the Rh alleles′ frequencies amongst males (M and females (F in Gaza city in Palestine. Materials and Methods: Two hundred and thirty-two blood samples (110 M and 122 F were tested against monoclonal IgM anti-C,anti-c, anti-E, anti-e and a blend of monoclonal/polyclonal IgM/IgG anti-D. The expected Rh phenotypes were calculated using gene counting method. Results: The most frequent Rh antigen in the total sample was e, while the least frequent was E.The order of the combined Rh allele frequencies in both M and F was CDe > cDe > cde > CdE > cDE > Cde > CDE. A significant difference was reported between M and F regarding the phenotypic frequencies (P < 0.05. However, no significance (P > 0.05 was reported with reference to the observed and expected Rh phenotypic frequencies in either M or F students. Conclusion: It was concluded that the Rh antigens, alleles and phenotypes in Gaza city have unique frequencies, which may be of importance to the Blood Transfusion Center in Gaza city and anthropology.

  1. Autoimmune disease classification by inverse association with SNP alleles.

    Directory of Open Access Journals (Sweden)

    Marina Sirota

    2009-12-01

    Full Text Available With multiple genome-wide association studies (GWAS performed across autoimmune diseases, there is a great opportunity to study the homogeneity of genetic architectures across autoimmune disease. Previous approaches have been limited in the scope of their analysis and have failed to properly incorporate the direction of allele-specific disease associations for SNPs. In this work, we refine the notion of a genetic variation profile for a given disease to capture strength of association with multiple SNPs in an allele-specific fashion. We apply this method to compare genetic variation profiles of six autoimmune diseases: multiple sclerosis (MS, ankylosing spondylitis (AS, autoimmune thyroid disease (ATD, rheumatoid arthritis (RA, Crohn's disease (CD, and type 1 diabetes (T1D, as well as five non-autoimmune diseases. We quantify pair-wise relationships between these diseases and find two broad clusters of autoimmune disease where SNPs that make an individual susceptible to one class of autoimmune disease also protect from diseases in the other autoimmune class. We find that RA and AS form one such class, and MS and ATD another. We identify specific SNPs and genes with opposite risk profiles for these two classes. We furthermore explore individual SNPs that play an important role in defining similarities and differences between disease pairs. We present a novel, systematic, cross-platform approach to identify allele-specific relationships between disease pairs based on genetic variation as well as the individual SNPs which drive the relationships. While recognizing similarities between diseases might lead to identifying novel treatment options, detecting differences between diseases previously thought to be similar may point to key novel disease-specific genes and pathways.

  2. A high-throughput method for genotyping S-RNase alleles in apple

    DEFF Research Database (Denmark)

    Larsen, Bjarne; Ørgaard, Marian; Toldam-Andersen, Torben Bo

    2016-01-01

    We present a new efficient screening tool for detection of S-alleles in apple. The protocol using general and multiplexed primers for PCR reaction and fragment detection on an automatized capillary DNA sequencer exposed a higher number of alleles than any previous studies. Analysis of alleles...... is made on basis of three individual fragment sizes making the allele interpretation highly accurate. The method was employed to genotype 432 Malus accessions and exposed 25 different S-alleles in a selection of Malus domestica cultivars of mainly Danish origin (402 accessions) as well as a selection...

  3. Modulation of allele leakiness and adaptive mutability in Escherichia coli

    Indian Academy of Sciences (India)

    R. Jayaraman

    2000-08-01

    It is shown that partial phenotypic suppression of two ochre mutations (argE3 and lacZU118) and an amber mutation (in argE) by sublethal concentrations of streptomycin in an rpsL+ (streptomycin-sensitive) derivative of the Escherichia coli strain AB1157 greatly enhances their adaptive mutability under selection. Streptomycin also increases adaptive mutability brought about by the ppm mutation described earlier. Inactivation of recA affects neither phenotypic suppression by streptomycin nor replication-associated mutagenesis but abolishes adaptive mutagenesis. These results indicate a causal relationship between allele leakiness and adaptive mutability.

  4. Common Kibra alleles are associated with human memory performance.

    Science.gov (United States)

    Papassotiropoulos, Andreas; Stephan, Dietrich A; Huentelman, Matthew J; Hoerndli, Frederic J; Craig, David W; Pearson, John V; Huynh, Kim-Dung; Brunner, Fabienne; Corneveaux, Jason; Osborne, David; Wollmer, M Axel; Aerni, Amanda; Coluccia, Daniel; Hänggi, Jürgen; Mondadori, Christian R A; Buchmann, Andreas; Reiman, Eric M; Caselli, Richard J; Henke, Katharina; de Quervain, Dominique J-F

    2006-10-20

    Human memory is a polygenic trait. We performed a genome-wide screen to identify memory-related gene variants. A genomic locus encoding the brain protein KIBRA was significantly associated with memory performance in three independent, cognitively normal cohorts from Switzerland and the United States. Gene expression studies showed that KIBRA was expressed in memory-related brain structures. Functional magnetic resonance imaging detected KIBRA allele-dependent differences in hippocampal activations during memory retrieval. Evidence from these experiments suggests a role for KIBRA in human memory.

  5. Human placental alkaline phosphatase electrophoretic alleles: Quantitative studies

    Science.gov (United States)

    Lucarelli, Paola; Scacchi, Renato; Corbo, Rosa Maria; Benincasa, Alberto; Palmarino, Ricciotti

    1982-01-01

    Human placental alkaline phosphatase (ALP) activity has been determined in specimens obtained from 562 Italian subjects. The mean activities of the three common homozygotes (Pl 2 = 4.70 ± 0.24, Pl 1 = 4.09 ± 0.08, and Pl 3 = 2.15 ± 0.71 μmol of p-nitrophenol produced) were significantly different. The differences among the various allelic forms account for 10% of the total quantitative variation of the human placental alkaline phosphatase. PMID:7072721

  6. A unique missense allele of BAF155, a core BAF chromatin remodeling complex protein, causes neural tube closure defects in mice.

    Science.gov (United States)

    Harmacek, Laura; Watkins-Chow, Dawn E; Chen, Jianfu; Jones, Kenneth L; Pavan, William J; Salbaum, J Michael; Niswander, Lee

    2014-05-01

    Failure of embryonic neural tube closure results in the second most common class of birth defects known as neural tube defects (NTDs). While NTDs are likely the result of complex multigenic dysfunction, it is not known whether polymorphisms in epigenetic regulators may be risk factors for NTDs. Here we characterized Baf155(msp3) , a unique ENU-induced allele in mice. Homozygous Baf155(mps3) embryos exhibit highly penetrant exencephaly, allowing us to investigate the roles of an assembled, but malfunctional BAF chromatin remodeling complex in vivo at the time of neural tube closure. Evidence of defects in proliferation and apoptosis were found within the neural tube. RNA-Seq analysis revealed that surprisingly few genes showed altered expression in Baf155 mutant neural tissue, given the broad epigenetic role of the BAF complex, but included genes involved in neural development and cell survival. Moreover, gene expression changes between individual mutants were variable even though the NTD was consistently observed. This suggests that inconsistent gene regulation contributes to failed neural tube closure. These results shed light on the role of the BAF complex in the process of neural tube closure and highlight the importance of studying missense alleles to understand epigenetic regulation during critical phases of development.

  7. The glossyhead1 allele of acc1 reveals a principal role for multidomain acetyl-coenzyme a carboxylase in the biosynthesis of cuticular waxes by Arabidopsis

    KAUST Repository

    Lu, Shiyou

    2011-09-23

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C 20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling. © 2011 American Society of Plant Biologists. All Rights Reserved.

  8. A single tube modified allele-specific-PCR for rapid detection of erythromycin-resistant Mycoplasma pneumoniae in Beijing

    Institute of Scientific and Technical Information of China (English)

    LI Shao-li; SUN Hong-mei; ZHAO Han-qing; CAO Ling; YUAN Yi; FENG Yan-ling; XUE Guan-hua

    2012-01-01

    Beijing,China.Our modified allele-specific PCR analysis can identify erythromycin resistant mutations more rapidly from specimens than any other method currently available.Erythromycin is still effective for treating patients infected with the mutation negative M.pneumoniae,but this treatment fails to work on mutant organisms.This method can facilitate clinicians in selecting appropriate therapy within short timescales.

  9. Comparative quantitative analysis of BCR-ABL transcripts with the T315I mutant clone by polymerase chain reaction (PCR)-Invader method.

    Science.gov (United States)

    Tadokoro, Kenichi; Ishikawa, Maho; Suzuki, Makoto; Saito, Tomoyoshi; Suzuki, Yoshie; Yamaguchi, Toshikazu; Yagasaki, Fumiharu

    2011-09-01

    Drug resistance is a serious complication in the treatment of chronic myeloid leukemia (CML). The most common and best-characterized mechanism of secondary imatinib resistance in CML is the development of kinase domain mutations in the BCR-ABL gene. Second-generation tyrosine kinase inhibitors, such as dasatinib or nilotinib, overcome most of these mutations, but they are not effective against the T315I mutant. To determine whether these mutations contribute to clinical resistance, it is necessary to monitor the ratio of the mutant and wild-type forms. Here, we developed a polymerase chain reaction (PCR)-Invader assay for comparative quantitative analysis (qPI assay) of BCR-ABL transcripts with the T315I mutant clone. T315I ratios were calculated for the wild-type and mutant fold-over-zero (FOZ) values. In examination with 2 kinds of plasmids containing wild-type or T315I mutant PCR amplicons, mutant FOZ values were detected down to 1% of the total. The results of 12 serial samples from 2 patients (case A: Philadelphia-positive acute lymphoblastic leukemia and case B: CML) with the T315I mutant clone were compared with those of direct sequencing or 2 kinds of allele-specific oligonucleotide (ASO)-PCR. All samples showed the T315I mutation by qPI assay and ASO-PCR, and 10 samples showed it by direct sequencing. Significant correlation (correlation coefficient; r2 = 0.951) was noted between the qPI assay and quantitative ASO-PCR to analyze T315I mutant ratios. Thus, the qPI assay is a useful method for evaluating the T315I mutant clone in BCR-ABL transcripts.

  10. Self-(in)compatibility of the almonds P. dulcis and P. webbii: detection and cloning of 'wild-type Sf ' and new self-compatibility alleles encoding inactive S-RNases.

    Science.gov (United States)

    Bosković, Radovan I; Tobutt, Kenneth R; Ortega, Encarnación; Sutherland, Bruce G; Godini, Angelo

    2007-12-01

    Prunus dulcis, the almond, is a predominantly self-incompatible (SI) species with a gametophytic self-incompatibility system mediated by S-RNases. The economically important allele Sf, which results in self-compatibility in P. dulcis, is said to have arisen by introgression from Prunus webbii in the Italian region of Apulia. We investigated the range of self-(in)compatibility alleles in Apulian material of the two species. About 23 cultivars of P. dulcis (14 self-compatible (SC) and nine SI) and 33 accessions of P. webbii (16 SC, two SI and 15 initially of unknown status), all from Apulia, were analysed using PCR of genomic DNA to amplify S-RNase alleles and, in most cases, IEF and staining of stylar protein extracts to detect S-RNase activity. Some amplification products were cloned and sequenced. The allele Sf was present in nearly all the SC cultivars of P. dulcis but, surprisingly, was absent from nearly all SC accessions of P. webbii. And of particular interest was the presence in many SI cultivars of P. dulcis of a new active allele, labelled S30, the sequence of which showed it to be the wild-type of Sf so that Sf can be regarded as a stylar part mutant S30 degrees . These findings indicate Sf may have arisen within P. dulcis, by mutation. One SC cultivar of P. dulcis, 'Patalina', had a new self-compatibility allele lacking RNase activity, Sn5, which could be useful in breeding programmes. In the accessions of P. webbii, some of which were known to be SC, three new alleles were found which lacked RNase activity but had normal DNA sequences.

  11. Polymorphism of Mhc-DRB alleles in Cercopithecus aethiops (green monkey): generation and functionality.

    Science.gov (United States)

    Rosal-Sánchez, M; Paz-Artal, E; Moreno-Pelayo, M A; Martínez-Quiles, N; Martínez-Laso, J; Martín-Villa, J M; Arnaiz-Villena, A

    1998-05-01

    DRB genes have been studied for the first time in green monkeys (Cercopithecus aethiops). Eleven new DRB alleles (exon 2, exon 3) have been obtained and sequenced from cDNA. A limited number of lineages have been identified: DRB1*03 (4 alleles), DRB1*07 (3 alleles), DRB5 (1 allele), DRB*w6 (1 allele), and DRB*w7 (2 alleles). The existence of Ceae-DRB1 duplications is supported by the finding of 3 DRB1 alleles in 3 different individuals. Ceae-DRB1*0701 may be non-functional because it bears serine at position 82, which hinders molecule surface expression in mice; the allele is only found in Ceae-DRB duplicated haplotypes. Base changes in cDNA Ceae-DRB alleles are consistent with the generation of polymorphism by point mutations or short segment exchanges between alleles. The eleven green monkey DRB alleles meet the requirements for functionality as antigen-presenting molecules (perhaps, excluding DRB1*0701), since: 1) they have been isolated from cDNA and do not present deletions, insertions or stop codons: 2) structural motifs necessary for a correct folding of the molecule, for the formation of DR/DR dimers and for CD4 interactions are conserved, and 3) the number of non-synonymous substitutions is higher than the number of synonymous substitutions in the peptide binding region (PBR), while the contrary holds true for the non-PBR region.

  12. Allelic Diversity of Major Histocompatibility Complex Class II DRB Gene in Indian Cattle and Buffalo

    Directory of Open Access Journals (Sweden)

    Sachinandan De

    2011-01-01

    Full Text Available The present study was conducted to study the diversity of MHC-DRB3 alleles in Indian cattle and buffalo breeds. Previously reported BoLA-DRB exon 2 alleles of Indian Zebu cattle, Bos taurus cattle, buffalo, sheep, and goats were analyzed for the identities and divergence among various allele sequences. Comparison of predicted amino acid residues of DRB3 exon 2 alleles with similar alleles from other ruminants revealed considerable congruence in amino acid substitution pattern. These alleles showed a high degree of nucleotide and amino acid polymorphism at positions forming peptide-binding regions. A higher rate of nonsynonymous substitution was detected at the peptide-binding regions, indicating that BoLA-DRB3 allelic sequence evolution was driven by positive selection.

  13. Analysis of elite variety tag SNPs reveals an important allele in upland rice.

    Science.gov (United States)

    Lyu, Jun; Zhang, Shilai; Dong, Yang; He, Weiming; Zhang, Jing; Deng, Xianneng; Zhang, Yesheng; Li, Xin; Li, Baoye; Huang, Wangqi; Wan, Wenting; Yu, Yang; Li, Qiong; Li, Jun; Liu, Xin; Wang, Bo; Tao, Dayun; Zhang, Gengyun; Wang, Jun; Xu, Xun; Hu, Fengyi; Wang, Wen

    2013-01-01

    Elite crop varieties usually fix alleles that occur at low frequencies within non-elite gene pools. Dissecting these alleles for desirable agronomic traits can be accomplished by comparing the genomes of elite varieties with those from non-elite populations. Here we deep-sequence six elite rice varieties and use two large control panels to identify elite variety tag single-nucleotide polymorphism alleles (ETASs). Guided by this preliminary analysis, we comprehensively characterize one protein-altering ETAS in the 9-cis-epoxycarotenoid dioxygenase gene of the IRAT104 upland rice variety. This allele displays a drastic frequency difference between upland and irrigated rice, and a selective sweep is observed around this allele. Functional analysis indicates that in upland rice, this allele is associated with significantly higher abscisic acid levels and denser lateral roots, suggesting its association with upland rice suitability. This report provides a potential strategy to mine rare, agronomically important alleles.

  14. A search for radiosensitive mouse mutants by use of the micronucleus technique.

    Science.gov (United States)

    van Buul, P P; Tuinenburg-Bolraap, A; Searle, A G; Natarajan, A T

    1987-01-01

    In order to identify radiosensitive mutations in mice, 26 genetically well defined mutations in 26 different combinations of homozygous, hemizygous or heterozygous conditions, together with normal mice and mutagen-sensitive MS/Ae mice were analysed for the induction of micronuclei by X-rays in bone-marrow cells. For each mutant two doses of 0.5 and 1.0 Gy, two sampling times of 18 and 27 h after irradiation and unirradiated controls were studied. Using our criteria, homozygous contrasted allele of steel (Slcon), scabby (scb), viable dominant spotting (Wv), quaking (qk), fidget (fi) and postaxial hemimelia (px), heterozygous lurcher (Lc), hemizygous gyro (Gy), the compounds Slcon/grizzle-belly (SlgbH) and Wv/rump-white (Rw) and MS/Ae mice, were regarded as radiosensitive, with Slcon/Slcon the highest in rank order. Homozygous wabbler-lethal (wl) and wasted (wst) showed hyposensitivity which for the latter may be connected with enhanced cell killing.

  15. Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response

    Science.gov (United States)

    Fischbach, K. F.; Heisenberg, M.

    1981-01-01

    KS58, one out of six known alleles of the small optic lobes (sol) gene in Drosophila melanogaster, reduces the cell number in the medulla cortex by degeneration of ganglion cells in the pupae to about 50%. Also, about half the volume of the medulla and lobula complex neuropils is missing. Many Golgistained cells in the mutant optic lobes resemble their homologues in wild type. However, special classes of transmedullary columnar neurons projecting to the lobula or to both lobula and lobula plate are not seen in the mutant. Some neurons linking the lobula complex to the central brain send branches to the medulla (the branches do not exist in wild type); some other types seem to be missing. The fate mapping of the KS58 focus reveals a location ventral to the head bristles and in sine oculis (so) flies the mutation further reduces the rudiments of the optic lobes normally seen. Therefore the sol phenotype is not induced by mutant eyes and the primary gene action seems to be on nervous tissue. The structural alterations of the small optic lobes are reflected in visual orientation behavior. The optomotor yaw response, however, is almost quantitatively preserved. The respective neural network should still be present in the mutant optic lobes. Images PMID:16592962

  16. Amuvatinib has cytotoxic effects against NRAS-mutant melanoma but not BRAF-mutant melanoma.

    Science.gov (United States)

    Fedorenko, Inna V; Fang, Bin; Koomen, John M; Gibney, Geoffrey T; Smalley, Keiran S M

    2014-10-01

    Effective targeted therapy strategies are still lacking for the 15-20% of melanoma patients whose melanomas are driven by oncogenic NRAS. Here, we report on the NRAS-specific behavior of amuvatinib, a kinase inhibitor with activity against c-KIT, Axl, PDGFRα, and Rad51. An analysis of BRAF-mutant and NRAS-mutant melanoma cell lines showed the NRAS-mutant cohort to be enriched for targets of amuvatinib, including Axl, c-KIT, and the Axl ligand Gas6. Increasing concentrations of amuvatinib selectively inhibited the growth of NRAS-mutant, but not BRAF-mutant melanoma cell lines, an effect associated with induction of S-phase and G2/M-phase cell cycle arrest and induction of apoptosis. Mechanistically, amuvatinib was noted to either inhibit Axl, AKT, and MAPK signaling or Axl and AKT signaling and to induce a DNA damage response. In three-dimensional cell culture experiments, amuvatinib was cytotoxic against NRAS-mutant melanoma cell lines. Thus, we show for the first time that amuvatinib has proapoptotic activity against melanoma cell lines, with selectivity observed for those harboring oncogenic NRAS.

  17. nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response.

    Science.gov (United States)

    Veereshlingam, Harita; Haynes, Janine G; Penmetsa, R Varma; Cook, Douglas R; Sherrier, D Janine; Dickstein, Rebecca

    2004-11-01

    To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses

  18. Low frequency of the scrapile resistance-associated allele and presence of lysine-171 allele of the prion protein gene in Italian Biellese ovine breed

    NARCIS (Netherlands)

    Acutis, P.L.; Sbaiz, L.; Verburg, F.J.; Riina, M.V.; Ru, G.; Moda, G.; Caramelli, M.; Bossers, A.

    2004-01-01

    Frequencies of polymorphisms at codons 136, 154 and 171 of the prion protein (PrP) gene were studied in 1207 pure-bred and cross-bred Italian Biellese rams, a small ovine breed of about 65 000 head in Italy. Aside from the five most common alleles (VRQ, ARQ, ARR, AHQ and ARH), the rare ARK allele wa

  19. Allele frequency of CODIS 13 in Indonesian population.

    Science.gov (United States)

    Untoro, Evi; Atmadja, Djaja Surya; Pu, Chang-En; Wu, Fang-Chi

    2009-04-01

    Since the first application of DNA technology in 1985 in forensic cases, and the acceptance of this technology in 1988 at court, the DNA typing is widely used in personal identification, parentage cases and tracing the source of biological samples found in the crime scene. The FBI on 1990 had recommended the forensic labs to used 13 loci of Short Tandem Repeats (STR), known as CODIS 13, as the loci of choice for forensic use. The research on the population DNA database on these loci is extremely important for calculating the Paternity Index as well as Matching Probability for forensic application of DNA technology. As many as 402 unrelated persons, consisted of 322 from western part of Indonesia and 80 from eastern part of Indonesia, were chosen as the respondents of this research, after signing the informed consent. The peripheral blood sample was taken using sterile lancets and dropped onto FTA classic cards. The DNA was extracted by FTA purification solution (3x) and TE(-1) (2x), and amplified by PCR mix, either Cofiler or Profiler Plus (Perkin Elmers), followed by sequencing using ABI Prism type 3100 Avant Genetic Analyzer. The analysis showed that the alleles frequencies of Indonesian is specific, different with the other Asian populations with some specific alleles and microvariant were found.

  20. Cytochrome allelic variants and clopidogrel metabolism in cardiovascular diseases therapy.

    Science.gov (United States)

    Jarrar, Mohammed; Behl, Shalini; Manyam, Ganiraju; Ganah, Hany; Nazir, Mohammed; Nasab, Reem; Moustafa, Khaled

    2016-06-01

    Clopidogrel and aspirin are among the most prescribed dual antiplatelet therapies to treat the acute coronary syndrome and heart attacks. However, their potential clinical impacts are a subject of intense debates. The therapeutic efficiency of clopidogrel is controlled by the actions of hepatic cytochrome P450 (CYPs) enzymes and impacted by individual genetic variations. Inter-individual polymorphisms in CYPs enzymes affect the metabolism of clopidogrel into its active metabolites and, therefore, modify its turnover and clinical outcome. So far, clinical trials fail to confirm higher or lower adverse cardiovascular effects in patients treated with combinations of clopidogrel and proton pump inhibitors, compared with clopidogrel alone. Such inconclusive findings may be due to genetic variations in the cytochromes CYP2C19 and CYP3A4/5. To investigate potential interactions/effects of these cytochromes and their allele variants on the treatment of acute coronary syndrome with clopidogrel alone or in combination with proton pump inhibitors, we analyze recent literature and discuss the potential impact of the cytochrome allelic variants on cardiovascular events and stent thrombosis treated with clopidogrel. The diversity of CYP2C19 polymorphisms and prevalence span within various ethnic groups, subpopulations and demographic areas are also debated.

  1. Characterization of ROP18 alleles in human toxoplasmosis.

    Science.gov (United States)

    Sánchez, Víctor; de-la-Torre, Alejandra; Gómez-Marín, Jorge Enrique

    2014-04-01

    The role of the virulent gene ROP18 polymorphisms is not known in human toxoplasmosis. A total of 320 clinical samples were analyzed. In samples positive for ROP18 gene, we determined by an allele specific PCR, if patients got the upstream insertion positive ROP18 sequence Toxoplasma strain (mouse avirulent strain) or the upstream insertion negative ROP18 sequence Toxoplasma strain (mouse virulent strain). We designed an ELISA assay for antibodies against ROP18 derived peptides from the three major clonal lineages of Toxoplasma. 20 clinical samples were of quality for ROP18 allele analysis. In patients with ocular toxoplasmosis, a higher inflammatory reaction on eye was associated to a PCR negative result for the upstream region of ROP18. 23.3%, 33% and 16.6% of serums from individuals with ocular toxoplasmosis were positive for type I, type II and type III ROP18 derived peptides, respectively but this assay was affected by cross reaction. The absence of Toxoplasma ROP18 promoter insertion sequence in ocular toxoplasmosis was correlated with severe ocular inflammatory response. Determination of antibodies against ROP18 protein was not useful for serotyping in human toxoplasmosis.

  2. Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport.

    Directory of Open Access Journals (Sweden)

    Ming Liu

    Full Text Available Recently, a syndrome of Mutant INS-gene-induced Diabetes of Youth (MIDY, derived from one of 26 distinct mutations has been identified as a cause of insulin-deficient diabetes, resulting from expression of a misfolded mutant proinsulin protein in the endoplasmic reticulum (ER of insulin-producing pancreatic beta cells. Genetic deletion of one, two, or even three alleles encoding insulin in mice does not necessarily lead to diabetes. Yet MIDY patients are INS-gene heterozygotes; inheritance of even one MIDY allele, causes diabetes. Although a favored explanation for the onset of diabetes is that insurmountable ER stress and ER stress response from the mutant proinsulin causes a net loss of beta cells, in this report we present three surprising and interlinked discoveries. First, in the presence of MIDY mutants, an increased fraction of wild-type proinsulin becomes recruited into nonnative disulfide-linked protein complexes. Second, regardless of whether MIDY mutations result in the loss, or creation, of an extra unpaired cysteine within proinsulin, Cys residues in the mutant protein are nevertheless essential in causing intracellular entrapment of co-expressed wild-type proinsulin, blocking insulin production. Third, while each of the MIDY mutants induces ER stress and ER stress response; ER stress and ER stress response alone appear insufficient to account for blockade of wild-type proinsulin. While there is general agreement that ultimately, as diabetes progresses, a significant loss of beta cell mass occurs, the early events described herein precede cell death and loss of beta cell mass. We conclude that the molecular pathogenesis of MIDY is initiated by perturbation of the disulfide-coupled folding pathway of wild-type proinsulin.

  3. Identification of colorectal cancer patients with tumors carrying the TP53 mutation on the codon 72 proline allele that benefited most from 5-fluorouracil (5-FU based postoperative chemotherapy

    Directory of Open Access Journals (Sweden)

    Tsuchiya Eiju

    2009-12-01

    Full Text Available Abstract Background Although postoperative chemotherapy is widely accepted as the standard modality for Dukes' stage C or earlier stage colorectal cancer (CRC patients, biomarkers to predict those who may benefit from the therapy have not been identified. Previous in vitro and clinical investigations reported that CRC patients with wild-type p53 gene (TP53-tumors benefit from 5-fluorouracil (5-FU based chemotherapy, while those with mutated TP53-tumors do not. However, these studies evaluated the mutation-status of TP53 by immunohistochemistry with or without single-strand conformation polymorphism, and the mutation frequency was different from study to study. In addition, the polymorphic status at p53 codon 72, which results in arginine or proline residues (R72P and is thought to influence the function of the protein significantly, was not examined. Methods To evaluate the significance of the TP53 mutation as a molecular marker to predict the prognosis of CRC patients, especially those who received postoperative chemotherapy, we examined the mutation by direct sequencing from fresh CRC tumors and evaluated the R72P polymorphism of the mutated TP53 by a combined mutant allele- and polymorphic allele-specific polymerase chain reaction (PCR. Results The TP53 mutation occurred in 147 (70% of 211 Japanese CRC tumors. The mutation was observed in 93 (63% tumors on the R72 allele and in 54 (37% tumors on the P72 allele. Although the alterations to TP53 have no prognostic significance for CRC patients overall, we found that Dukes' stage C CRC patients who did not receive postoperative chemotherapy and carried the mutated TP53-R72 showed significantly longer survival times than those with the mutated TP53-P72 when evaluated by overall survival (p = 0.012. Conclusion Using a combined mutant allele- and polymorphic allele-specific PCR, we defined the codon 72 polymorphic status of the TP53 mutated allele in Japanese CRC patients. We raised a possibility

  4. Targeting ESR1-Mutant Breast Cancer

    Science.gov (United States)

    2015-09-01

    disease-free survival, the majority of breast cancer patients will present recurrent antiestrogen resistant metastatic lesions following prolonged...exposure to these therapies. By investigating how these lesions become resistant to antiestrogen while maintaining expression of ERα, we found...Retreat. Invited oral presentation. C) Other products Nothing to report. Targeting  ESR1-­‐Mutant  Breast  Cancer   W81XWH-­‐14-­‐1-­‐0360

  5. Characterization of a Legionella micdadei mip mutant

    DEFF Research Database (Denmark)

    O'Connell, W A; Bangsborg, Jette Marie; Cianciotto, N P

    1995-01-01

    The pathogenesis of Legionella micdadei is dependent upon its ability to infect alveolar phagocytes. To better understand the basis of intracellular infection by this organism, we examined the importance of its Mip surface protein. In Legionella pneumophila, Mip promotes infection of both human m...... into the phagocyte. Similarly, the mutant was less able to parasitize Hartmannella amoebae. Taken together, these data argue that Mip specifically potentiates intracellular growth by L. micdadei....

  6. Studies on the Mutant Systems of the Bombyx mori Gene Bank

    Institute of Scientific and Technical Information of China (English)

    LU Cheng; DAI Fang-yin; XIANG Zhong-huai

    2002-01-01

    Through over ten years of study, more than 1 000 genetic materials including mutant genes,chromosomal variation strains and special genetic materials of Bombyx mori, Linnaeus, collected, introduced or created since 1940s especially late 1980s, have been sorted out and put in order. After identifications and genetic analyses of their morphological, physiological and biochemical characters, the silkworm gene bank was constructed and the preservation system was perfected, and more than 600 silkworm strains were kept in this gene bank. The preserved silkworm mutant genes have covered more than 90% of existent ones across the world, in which, more than 100 are rare and precious mutant genes, and over 60 mutant genes were found and studied for the first time. Through hybrid analyses, linkage tests and three-point gene location tests, a perfect linkage retrieval labeling system of silkworm was established, which included 230 marker genes covering all the 28 linkage groups of Bombyx mori. The gene location system (composite system of recessive genes) of different linkage groups was set up. The intergenic complementation of mutant egg color and third type of maternal heredity egg color have been found, and indicated that the epistatic effect of mutant gene of white egg is universal. Twenty eight independent near isogenic lines murked with morphological mutation gene have been created and a series of novel breeding materials possessing great potential for application such as high feeding efficiency, special sex markers, natural colored silk, resistance to disease, wider feeding range and adjustable parthenogenesis, etc., have been developed. The sustainable maintenance and management technique system of silkworm gene resources were well established.

  7. Historical Climatology Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Historical Climatology Series (HCS) is a set of climate-related publications published by NOAA's National Climatic Data Center beginning in 1978. HCS is...

  8. Multivariate Time Series Search

    Data.gov (United States)

    National Aeronautics and Space Administration — Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical...

  9. A partially active mutant aldolase B from a patient with hereditary fructose intolerance.

    Science.gov (United States)

    Brooks, C C; Tolan, D R

    1994-01-01

    Hereditary fructose intolerance (HFI) is a potentially fatal autosomal recessive disease of carbohydrate metabolism. HFI patients are deficient in aldolase B, the isozyme expressed in fructose-metabolizing tissues. The eight protein coding exons, including splicing signals, of the aldolase B gene from one American HFI patient were amplified by the polymerase chain reaction (PCR). Single-strand conformational polymorphism (SSCP) analysis and direct sequence determination were applied to the amplified fragments. The mutations in the patient's alleles were identified as a nonsense mutation (R59op) in exon 3 and a missense mutation (C134R) in exon 5. These mutations were confirmed by sequence determination of cloned PCR-amplified exons 3 and 5 from the patient. Allele specific oligonucleotide (ASO) hybridizations of amplified exons 3 and 5 showed the Mendelian inheritance of both mutations. Site-directed mutagenesis was used to generate an expression plasmid for the C134R mutation, and the mutant enzyme was expressed in bacteria. Assays of partially purified enzyme preparations showed that this missense mutation results in an apparently unstable enzyme that retains partial activity. This is the first evidence for a partially active aldolase B from an HFI individual with an identified mutation, and supports the hypothesis that adequate gluconeogenesis/glycolysis is maintained in HFI patients by the presence of partially active enzymes.

  10. Invasion of Africa by a single pfcrt allele of South East Asian type

    Directory of Open Access Journals (Sweden)

    Bouchier Christiane

    2006-04-01

    Full Text Available Abstract Background Because of its dramatic public health impact, Plasmodium falciparum resistance to chloroquine (CQ has been documented early on. Chloroquine-resistance (CQR emerged in the late 1950's independently in South East Asia and South America and progressively spread over all malaria areas. CQR was reported in East Africa in the 1970's, and has since invaded the African continent. Many questions remain about the actual selection and spreading process of CQR parasites, and about the evolution of the ancestral mutant gene(s during spreading. Methods Eleven clinical isolates of P. falciparum from Cambodia and 238 from Africa (Senegal, Ivory Coast, Bukina Faso, Mali, Guinea, Togo, Benin, Niger, Congo, Madagascar, Comoros Islands, Tanzania, Kenya, Mozambique, Cameroun, Gabon were collected during active case detection surveys carried out between 1996 and 2001. Parasite DNA was extracted from frozen blood aliquots and amplification of the gene pfcrt exon 2 (codon 72–76, exon 4 and intron 4 (codon 220 and microsatellite marker were performed. All fragments were sequenced. Results 124 isolates with a sensitive (c76/c220:CVMNK/A haplotype and 125 isolates with a resistant c76/c220:CVIET/S haplotype were found. The microsatellite showed 17 different types in the isolates carrying the c76/c220:CVMNK/A haplotype while all 125 isolates with a CVIET/S haplotype but two had a single microsatellite type, namely (TAAA3(TA15, whatever the location or time of collection. Conclusion Those results are consistent with the migration of a single ancestral pfcrt CQR allele from Asia to Africa. This is related to the importance of PFCRT in the fitness of P. falciparum point out this protein as a potential target for developments of new antimalarial drugs.

  11. Construction and Verification of LuxS-negative Mutants of Streptococcus Mutans and the Effect of the Absence of LuxS Gene on the Acid Tolerance

    Institute of Scientific and Technical Information of China (English)

    YU Dan-ni; CHEN Jie; ZHANG Yao-chao; HAN Yu-zhi

    2009-01-01

    Objective: To knock out the entire Luxs gene of Streptococcus mutans(S.mutans) UA159 strain via homologous recombination and construct a Luxs-deleted mutant strain of S. Mutans. To study the difference between the acid resistance of S. Mutans Ingbritt C international standard strain and the acid resistance of LuxS mutant strain. Methods: Two DNA fragments locating in the upper and downstream of Luxs gene were amplified and a erythromycin resistance gene of PJT10 between them were engineered into PUC19 plasmid for constructing the recombination plasmid pUCluxKO. Electrotransformation of S.mutans cells with pUCluxKO-mutant resulted in isolation of erythromycin resistant S. Mutans transformants, which was identified by polymerase chain reaction, V.harveyi BB170 luminescence bioassay and sequencing analysis. Solutions of S. Mutans standard strain and LuxS mutant strain with same density were made and cultured at pH 3.5 to 7.0 BHI liquid for the same period.Terminal growth situation was compared.Firstly acidized in pH 5.5 BHI liquid,the two strains were cultured at pH 3.0 BHI liquid. The acid tolerance responses of the two strains were compared.Results:Restriction endonuclease analyses showed that pUCluxKO-mutant vector had been successfully recombined. The Luxs-deleted status of S.mutans mutants was confirmed by PCR with primers which were specific for the genes of Luxs and Erythromycin resistance. S.mutans mutant can not induce bioluminescence, indiating the mutant had been successfully recombined. After twenty generations of culture, the constructed Chinese S.mutans mutants were confirmed to be stable. Significant difference of aciduricity was observed between S.mutans standard strain and LuxS mutant strain.The acid resistance of standard strain was stronger than that of LuxS mutant strain.The two strains both displayed the capability of acid tolerance responses. Conclusion:The S.mutans gene allelic exchange plasmid is constructed correctively and a Luxs

  12. Long time series

    DEFF Research Database (Denmark)

    Hisdal, H.; Holmqvist, E.; Hyvärinen, V.;

    Awareness that emission of greenhouse gases will raise the global temperature and change the climate has led to studies trying to identify such changes in long-term climate and hydrologic time series. This report, written by the......Awareness that emission of greenhouse gases will raise the global temperature and change the climate has led to studies trying to identify such changes in long-term climate and hydrologic time series. This report, written by the...

  13. Genetic localization of diuron- and mucidin-resistant mutants relative to a group of loci of the mitochondrial DNA controlling coenzyme QH2-cytochrome c reductase in Saccharomyces cerevisiae.

    Science.gov (United States)

    Colson, A M; Slonimski, P P

    1979-01-02

    Diuron-resistance, DIU (Colson et al., 1977), antimycin-resistance, ANA (Michaelis, 1976; Burger et al., 1976), funiculosin-resistance, FUN (Pratje and Michaelis, 1977; Burger et al., 1977) and mucidin-resistance, MUC (Subik et al., 1977) are each coded by a pair of genetic loci on the mit DNA of S. cerevisiae. In the present paper, these respiratiory-competent, drug-resistant loci are localized relative to respiratory-deficient BOX mutants deficient in coenzyme QH2-cytochrome c reductase (Kotylak and Slonimski, 1976, 1977) using deletion and recombination mapping. Three drug-resistant loci possessing distinct mutated allelic forms are distinguished. DIU1 is allelic or closely linked to ANA2, FUN1 and BOX1; DIU2 is allelic or closely linked to ANA1, MUC1 and BOX4/5; MUC2 is allelic to BOX6. The high recombinant frequencies observed between the three loci (13% on the average for 33 various combinations analyzed) suggest the existence of either three genes coding for three distinct polypeptides or of a single gene coding for a single polypeptide but subdivided into three easily separable segments. The resistance of the respiratory-chain observed in vitro in the drug-resistant mutants and the allelism relationships between respiratory-competent, drug-resistant loci and coQH2-cyt c reductase deficient, BOX, loci strongly suggest that each of the three drug-resistant loci codes for a structural gene-product which is essential for the normal coQH2-cyt c reductase activity and is obviously a good candidate for a gene product of the drug-resistant loci mapped in this paper. Polypeptide length modifications of cytochrome b were observed in mutants deficient in the coQH2-cyt c red and localized at the BOX1, BOX4 and BOX6 genetic loci (Claisse et al., 1977, 1978) which are precisely the loci allelic to drug resistant mutants as shown in the present work. Taken together these two sets of data provide a strong evidence in favor of the idea that there exist three non contiguous

  14. Distribution of FMR-1 and associated microsatellite alleles in a normal Chinese population

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, N.; Houck, G.E. Jr.; Li, S.; Dobkin, C.; Brown, W.T. [New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY (United States); Xixian Liu; Shen Gou [Tongji Medical Univ., Wuhan (China)

    1994-07-15

    The CGG repeat size distribution of the fragile X mental retardation gene (FMR-1) was studied in a population of normal Chinese X chromosomes along with that of two proximal microsatellite polymorphic markers: FRAXAC1 and DXS548. The most common CGG repeat allele was 29 (47.2%) with 30 being second most common (26%). This distribution was different from that seen in Caucasian controls, where the most common allele was 30 repeats. Other differences with Caucasian controls included a secondary model peak at 36 repeats and the absence of peaks at 20 or 23 repeats. There were only two FRAXAC1 and five DXS548 alleles found in the Chinese sample. A striking linkage disequilibrium of FMR-1 alleles with FRAXAC1 alleles was observed, in that 90% of the 29 CGG repeat alleles but only 41% of the 30 CGG repeat alleles had the FRAXAC1 152 bp allele (18 AC repeats). This disequilibrium suggests that slippage between the closely spaced normal CGG repeat alleles, 29 and 30, and between 152 and 154 FRAXAC1 alleles is very rare. This study lays the groundwork for an understanding of founder chromosome effects in comparing Asian and Caucasian populations. 29 refs., 5 tabs.

  15. Characterization of null and hypomorphic alleles of the Drosophila l(2)dtl/cdt2 gene: Larval lethality and male fertility.

    Science.gov (United States)

    Sloan, Roketa S; Swanson, Christina I; Gavilano, Lily; Smith, Kristen N; Malek, Pamela Y; Snow-Smith, Mayronne; Duronio, Robert J; Key, S Catherine Silver

    2012-01-01

    The Drosophila lethal(2)denticleless (l(2)dtl) gene was originally reported as essential for embryogenesis and formation of the rows of tiny hairs on the larval ventral cuticle known as denticle belts. It is now well-established that l(2)dtl (also called cdt2) encodes a subunit of a Cullin 4-based E3 ubiquitin ligase complex that targets a number of key cell cycle regulatory proteins, including p21, Cdt1, E2F1 and Set8, to prevent replication defects and maintain cell cycle control. To investigate the role of l(2)dtl/cdt2 during development, we characterized existing l(2)dtl/cdt2 mutants and generated new deletion alleles, using P-element excision mutagenesis. Surprisingly, homozygous l(2)dtl/cdt2 mutant embryos developed beyond embryogenesis, had intact denticle belts, and lacked an observable embryonic replication defect. These mutants died during larval stages, affirming that loss of l(2)dtl/cdt2 function is lethal. Our data show that L(2)dtl/Cdt2 is maternally deposited, remains nuclear throughout the cell cycle, and has a previously unreported, elevated expression in the developing gonads. We also find that E2f1 regulates l(2)dtl/cdt2 expression during embryogenesis, possibly via several highly conserved putative E2f1 binding sites near the l(2)dtl/cdt2 promoter. Finally, hypomorphic allele combinations of the l(2)dtl/cdt2 gene result in a novel phenotype: viable, low-fertility males. We conclude that "denticleless" is a misnomer, but that l(2)dtl/cdt2 is an essential gene for Drosophila development.

  16. A new analysis tool for individual-level allele frequency for genomic studies

    Directory of Open Access Journals (Sweden)

    Pan Wen-Harn

    2010-07-01

    Full Text Available Abstract Background Allele frequency is one of the most important population indices and has been broadly applied to genetic/genomic studies. Estimation of allele frequency using genotypes is convenient but may lose data information and be sensitive to genotyping errors. Results This study utilizes a unified intensity-measuring approach to estimating individual-level allele frequencies for 1,104 and 1,270 samples genotyped with the single-nucleotide-polymorphism arrays of the Affymetrix Human Mapping 100K and 500K Sets, respectively. Allele frequencies of all samples are estimated and adjusted by coefficients of preferential amplification/hybridization (CPA, and large ethnicity-specific and cross-ethnicity databases of CPA and allele frequency are established. The results show that using the CPA significantly improves the accuracy of allele frequency estimates; moreover, this paramount factor is insensitive to the time of data acquisition, effect of laboratory site, type of gene chip, and phenotypic status. Based on accurate allele frequency estimates, analytic methods based on individual-level allele frequencies are developed and successfully applied to discover genomic patterns of allele frequencies, detect chromosomal abnormalities, classify sample groups, identify outlier samples, and estimate the purity of tumor samples. The methods are packaged into a new analysis tool, ALOHA (Allele-frequency/Loss-of-heterozygosity/Allele-imbalance. Conclusions This is the first time that these important genetic/genomic applications have been simultaneously conducted by the analyses of individual-level allele frequencies estimated by a unified intensity-measuring approach. We expect that additional practical applications for allele frequency analysis will be found. The developed databases and tools provide useful resources for human genome analysis via high-throughput single-nucleotide-polymorphism arrays. The ALOHA software was written in R and R GUI and

  17. Establishing a Markerless Genetic Exchange System for Methanosarcina mazei Strain Gö1 for Constructing Chromosomal Mutants of Small RNA Genes

    Directory of Open Access Journals (Sweden)

    Claudia Ehlers

    2011-01-01

    Full Text Available A markerless genetic exchange system was successfully established in Methanosarcina mazei strain Gö1 using the hpt gene coding for hypoxanthine phosphoribosyltransferase. First, a chromosomal deletion mutant of the hpt gene was generated conferring resistance to the purine analog 8-aza-2,6-diaminopurine (8-ADP. The nonreplicating allelic exchange vector (pRS345 carrying the pac-resistance cassette for direct selection of chromosomal integration, and the hpt gene for counterselection was introduced into this strain. By a pop-in and ultimately pop-out event of the plasmid from the chromosome, allelic exchange is enabled. Using this system, we successfully generated a M. mazei deletion mutant of the gene encoding the regulatory non-coding RNA sRNA154. Characterizing M. mazei Δ154 under nitrogen limiting conditions demonstrated differential expression of at least three cytoplasmic proteins and reduced growth strongly arguing for a prominent role of sRNA154 in regulation of nitrogen fixation by posttranscriptional regulation.

  18. The central complex of Drosophila melanogaster is involved in flight control: studies on mutants and mosaics of the gene ellipsoid body open.

    Science.gov (United States)

    Ilius, M; Wolf, R; Heisenberg, M

    2007-01-01

    Visual flight control is studied in three mutant alleles of the gene ellipsoid body open (ebo) of Drosophila melanogaster. In mutant ebo flies the central complex is disturbed to varying degrees. Defects range from a small opening in the ellipsoid body to the dissociation of the ring into two parts, a cleft in the fan-shaped body and hypoplasia in the protocerebral bridge. Other parts of the brain are not visibly affected. Flight behavior is normal with respect to the amplitude of the optomotor response and to the object response (single rotating stripe). A reduced amplitude in the small random oscillations of the torque trace (yaw torque activity), however, is found in all three alleles. In two of them the frequency of torque spikes is reduced. In the allele ebo(678) the dynamics of the optomotor response is altered. Upon reversal of the direction of rotation mutant flies take longer than wild type to shift their yaw torque to the new response level (optomotor reversal time). Finally, these flies also behave abnormally in the flight simulator in which their yaw torque controls the angular velocity of the panorama. Many ebo(678) flies fixate a single stripe less persistently than normal flies, some even trying to fly away from it (antifixation). In ebo(678) gynandromorphs the four behavioral phenotypes ("yaw torque activity", "torque spike frequency", "on-target-fixation" and "optomotor reversal time") are all highly correlated with the phenotype of the ellipsoid body. Yaw torque activity and torque spike frequency in addition are correlated with the phenotype of the thorax suggesting that these behavioral defects are in part caused by mutant influences on the ventral ganglion. The results support the hypothesis that the central complex is involved in the control of flight behavior.

  19. Confirmation of mutant alpha 1 Na,K-ATPase gene and transcript in Dahl salt-sensitive/JR rats.

    Science.gov (United States)

    Ruiz-Opazo, N; Barany, F; Hirayama, K; Herrera, V L

    1994-09-01

    As the sole renal Na,K-ATPase isozyme, the alpha 1 Na,K-ATPase accounts for all active transport of Na+ throughout the nephron. This role in renal Na+ reabsorption and the primacy of the kidney in hypertension pathogenesis make it a logical candidate gene for salt-sensitive genetic hypertension. An adenine (A)1079-->thymine (T) transversion, resulting in the substitution of glutamine276 with leucine and associated with decreased net 86Rb+ (K+) influx, was identified in Dahl salt-sensitive/JR rat kidney alpha 1 Na,K-ATPase cDNA. However, because a Taq polymerase chain reaction amplification-based reanalysis did not detect the mutant T1079 but rather only the wild-type A1079 alpha 1 Na,K-ATPase allele in Dahl salt-sensitive rat genomic DNA, we reexamined alpha 1 Na,K-ATPase sequences using Taq polymerase error-independent amplification-based analyses of genomic DNA (by polymerase allele-specific amplification and ligase chain reaction analysis) and kidney RNA (by mRNA-specific thermostable reverse transcriptase-polymerase chain reaction analysis). We also performed modified 3' mismatched correction analysis of genomic DNA using an exonuclease-positive thermostable DNA polymerase. All the confirmatory test results were concordant, confirming the A1079-->T transversion in the Dahl salt-sensitive alpha 1 Na,K-ATPase allele and its transcript, as well as the wild-type A1079 sequence in the Dahl salt-resistant alpha 1 Na,K-ATPase allele and its transcript. Documentation of a consistent Taq polymerase error that selectively substituted A at T1079 (sense strand) was obtained from Taq polymerase chain reaction amplification and subsequent cycle sequencing of reconfirmed known Dahl salt-sensitive/JR rat mutant T1079 alpha 1 cDNA M13 subclones. This Taq polymerase error results in the reversion of mutant sequence back to the wild-type alpha 1 Na,K-ATPase sequence. This identifies a site- and nucleotide-specific Taq polymerase misincorporation, suggesting that a structural

  20. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches.

    Science.gov (United States)

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-04-29

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points.

  1. On Sums of Numerical Series and Fourier Series

    Science.gov (United States)

    Pavao, H. Germano; de Oliveira, E. Capelas

    2008-01-01

    We discuss a class of trigonometric functions whose corresponding Fourier series, on a conveniently chosen interval, can be used to calculate several numerical series. Particular cases are presented and two recent results involving numerical series are recovered. (Contains 1 note.)

  2. A nonsense nucleotide substitution in the oculocutaneous albinism II gene underlies the original pink-eyed dilution allele (Oca2(p)) in mice.

    Science.gov (United States)

    Shoji, Haruka; Kiniwa, Yukiko; Okuyama, Ryuhei; Yang, Mu; Higuchi, Keiichi; Mori, Masayuki

    2015-01-01

    The original pink-eyed dilution (p) on chromosome 7 is a very old spontaneous mutation in mice. The oculocutaneous albinism II (Oca2) gene has previously been identified as the p gene. Oca2 transcripts have been shown to be absent in the skin of SJL/J mice with the original p mutant allele (Oca2(p)); however, the molecular genetic lesion underlying the original Oca2(p) allele has never been reported. The NCT mouse (commonly known as Nakano cataract mouse) has a pink-eyed dilution phenotype, which prompted us to undertake a molecular genetic analysis of the Oca2 gene of this strain. Our genetic linkage analysis suggests that the locus for the pink-eyed dilution phenotype of NCT is tightly linked to the Oca2 locus. PCR cloning and nucleotide sequence analysis indicates that the NCT mouse has a nonsense nucleotide substitution at exon 7 of the Oca2 gene. Examination of three mouse strains (NZW/NSlc, SJL/J, and 129X1/SvJJmsSlc) with the original Oca2(p) allele revealed the presence of a nonsense nucleotide substitution identical to that in the NCT strain. RT-PCR analysis revealed that the Oca2 transcripts were absent in the skin of NCT mice, suggesting intervention of the nonsense-mediated mRNA decay pathway. Collectively, the data in this study indicate that the nonsense nucleotide substitution in the Oca2 gene underlies the Oca2(p) allele. Our data also indicate that the NCT mouse can be used not only as a cataract model, but also as a model for human type II oculocutaneous albinism.

  3. Polymorphisms in the glucocerebrosidase gene and pseudogene urge caution in clinical analysis of Gaucher disease allele c.1448T>C (L444P

    Directory of Open Access Journals (Sweden)

    Lahey Cora

    2006-08-01

    Full Text Available Abstract Background Gaucher disease is a potentially severe lysosomal storage disorder caused by mutations in the human glucocerebrosidase gene (GBA. We have developed a multiplexed genetic assay for eight diseases prevalent in the Ashkenazi population: Tay-Sachs, Gaucher type I, Niemann-Pick types A and B, mucolipidosis type IV, familial dysautonomia, Canavan, Bloom syndrome, and Fanconi anemia type C. This assay includes an allelic determination for GBA allele c.1448T>C (L444P. The goal of this study was to clinically evaluate this assay. Methods Biotinylated, multiplex PCR products were directly hybridized to capture probes immobilized on fluorescently addressed microspheres. After incubation with streptavidin-conjugated fluorophore, the reactions were analyzed by Luminex IS100. Clinical evaluations were conducted using de-identified patient DNA samples. Results We evaluated a multiplexed suspension array assay that includes wild-type and mutant genetic determinations for Gaucher disease allele c.1448T>C. Two percent of samples reported to be wild-type by conventional methods were observed to be c.1448T>C heterozygous using our assay. Sequence analysis suggested that this phenomenon was due to co-amplification of the functional gene and a paralogous pseudogene (ΨGBA due to a polymorphism in the primer-binding site of the latter. Primers for the amplification of this allele were then repositioned to span an upstream deletion in the pseudogene, yielding a much longer amplicon. Although it is widely reported that long amplicons negatively impact amplification or detection efficiency in recently adopted multiplex techniques, this assay design functioned properly and resolved the occurrence of false heterozygosity. Conclusion Although previously available sequence information suggested GBA gene/pseudogene discrimination capabilities with a short amplified product, we identified common single-nucleotide polymorphisms in the pseudogene that

  4. A Dominant Allele of Arabidopsis Pectin-Binding Wall-Associated Kinase Induces a Stress Response Suppressed by MPK6 but Not MPK3 Mutations

    Institute of Scientific and Technical Information of China (English)

    Bruce D.Kohorn; Susan L.Kohorn; Tanya Todorova; Gillian Baptiste; Kevin Stansky; Meghan McCullough

    2012-01-01

    The plant cell wall is composed of a matrix of cellulose fibers,flexible pectin polymers,and an array of assorted carbohydrates and proteins.The receptor-like Wall-Associated Kinases(WAKs)of Arabidopsis bind pectin in the wall,and are necessary both for cell expansion during development and for a response to pathogens and wounding.Mitogen Activated Protein Kinases(MPKs)form a major signaling link between cell surface receptors and both transcriptional and enzyme regulation in eukaryotes,and Arabidopsis MPK6 and MPK3 indeed have important roles in development and the response to stress and pathogens.A dominant allele of WAK2 requires kinase activity and activates a stress response that includes an increased ROS accumulation and the up-regulation of numerous genes involved in pathogen resistance,wounding,and cell wall biogenesis.This dominant allele requires a functional pectin binding and kinase domain,indicating that it is engaged in a WAK signaling pathway.A null mutant of the major plasma membrane ROS-producing enzyme complex,rbohd/f does not suppress the WAK2cTAP-induced phenotype.A mpk6,but not a mpk3,null allele is able to suppress the effects of this dominant WAK2 mutation,thus distinguishing MPK3 and MPK6,whose activity previously was thought to be redundant.Pectin activation of gene expression is abated in a wak2-null,but is tempered by the WAK-dominant allele that induces elevated basal stress-related transcript levels.The results suggest a mechanism in which changes to the cell wall can lead to a large change in cellular responses and help to explain how pathogens and wounding can have general effects on growth.

  5. Rapid DNA typing for HLA-C using sequence-specific primers (PCR-SSP): identification of serological and non-serologically defined HLA-C alleles including several new alleles.

    Science.gov (United States)

    Bunce, M; Welsh, K I

    1994-01-01

    Detection of HLA-C antigens by complement mediated cytotoxicity using human alloantisera is often difficult. Between 20 to 40% of individuals in every race have undetectable HLA-C locus antigens and 9 out of the 29 sequenced HLA-C alleles so far published encode serologically undetected antigens. In addition, HLA-C molecules are expressed at the cell surface at about 10% of the levels of HLA-A and HLA-B. Recently, amplification of DNA using sequence-specific primers (PCR-SSP) has proved a reliable and rapid method for typing HLA-DR, HLA-DQA and HLA-DQB genes. PCR-SSP takes two hours to perform and is therefore suitable for the genotyping of cadaveric donors. We have designed a set of primers which will positively identify the HLA-C alleles corresponding to the serologically defined series HLA-Cw1, Cw2, Cw3, Cw4, Cw5, Cw6, Cw7 and Cw8. The serologically undetectable alleles have also been detected in groups according to sequence homology. In addition, three new unsequenced variants have been identified. DNA samples from 56 International Histocompatibility Workshop reference cell lines and 103 control individuals have been typed by the HLA-C PCR-SSP technique. 4/56 cell line types and 11/103 normal control individuals types were discrepant with the reported serological types. All combinations of serologically detectable and most of the serologically blank HLA-C antigens can be readily identified. DNA typing for HLA-Cw by PCR-SSP can take as little as 130 minutes from start to finish, including DNA preparation.

  6. Substrate specificity of allelic variants of the TAP peptide transporter.

    Science.gov (United States)

    Heemels, M T; Ploegh, H L

    1994-12-01

    The transporter associated with antigen processing (TAP) translocates peptides from the cytosol into the lumen of the endoplasmic reticulum (ER). An important determinant for the specificity of translocation is the identity of the C-terminal residue of the peptide substrate. In the rat, a suitable C terminus is necessary but not always sufficient for a peptide to be selected for translocation. Here we show that sequence constraints within a peptide of optimal length (9 residues) may interfere with transport; that the transporter selectively translocates shorter derivatives of a 16-mer peptide rather than the 16-mer itself; and that the transporter cimb allele, which is most selective in the C termini it will tolerate, is more relaxed in peptide length preference than is the clma variant.

  7. A Truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1,AtNAP1;3T,Alters Plant Growth Responses to Abscisic Acid and Salt in the Atnap 1;3-2 Mutant

    Institute of Scientific and Technical Information of China (English)

    Zi-Qiang Liu; Juan Gao; Ai-Wu Dong

    2009-01-01

    Chromatin remodeling is thought to have crucial roles in plant adaptive response to environmental stimulus.Here,we report that,in Arebidopsis,the evolutionarily conserved histone chaperone,NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1),is involved in plant response to abscisic acid (ABA),a phytohormone important in stress adaptation.We show that simultaneous loss-of-function of AtNAP1;1,AtNAP1;2,and AtNAP1;3 (the triple mutant m123-1) caused a slight hypersensitive response to ABA in seedling growth.Strikingly,the other triple mutant m123-2 containing a different mutant allele of AtNAP1;3,the Atnap1;3-2 allele,showed a hyposensitive response to ABA and a decreased tolerance to salt stress.This ABAhyposensitive and salt response phenotype specifically associated with the Atnap1;3-2 mutant allele.We show that this mutant allele produced a truncated protein,AtNAP1;3T,which lacks 34 amino acids at the C-terminus compared to the wild-type protein AtNAP1;3.We further show that the heterozygous plants containing the Atnap1;3-2 mutant allele as well as transgenic plants overexpressing AtNAP1;3T exhibit ABA-hyposensitive phenotype.It thus indicates that AtNAP1;3T functions as a dominant negative factor in ABA response.The expression of some ABA-responsive genes,including genes encoding protein kinases and transcription regulators,was found perturbed in the mutant and in the AtNAP1;3T transgenic plants.Taken together,our study uncovered AtNAP1 proteins as positive regulators and AtNAP1;3T as a negative regulator in ABA signaling pathways,providing a novel link of chromatin remodeling to hormonal and stress responses.

  8. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line.

  9. The microcephalin ancestral allele in a Neanderthal individual.

    Directory of Open Access Journals (Sweden)

    Martina Lari

    Full Text Available BACKGROUND: The high frequency (around 0.70 worldwide and the relatively young age (between 14,000 and 62,000 years of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1 locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the first PCR amplification and high-throughput sequencing of nuclear DNA at the microcephalin (MCPH1 locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy. We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. CONCLUSIONS/SIGNIFICANCE: The MCPH1 genotype of the Monti Lessini (MLS Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.

  10. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    Science.gov (United States)

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes.

  11. An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy.

    Science.gov (United States)

    Zhang, Yu-Xian; Qian, Xiao-Yi; Peng, Hui-Deng; Wang, Jian-Hui

    2016-01-01

    For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And H ε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy.

  12. An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy

    Directory of Open Access Journals (Sweden)

    Yu-Xian Zhang

    2016-01-01

    Full Text Available For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And Hε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy.

  13. Allelic diversity and molecular characterization of puroindoline genes in five diploid species of the Aegilops genus.

    Science.gov (United States)

    Cuesta, Susana; Guzmán, Carlos; Alvarez, Juan B

    2013-11-01

    Grain hardness is an important quality trait in wheat. This trait is related to the variation in, and the presence of, puroindolines (PINA and PINB). This variation can be increased by the allelic polymorphism present in the Aegilops species that are related to wheat. This study evaluated allelic Pina and Pinb gene variability in five diploid species of the Aegilops genus, along with the molecular characterization of the main allelic variants found in each species. This polymorphism resulted in 16 alleles for the Pina gene and 24 alleles for the Pinb gene, of which 10 and 17, respectively, were novel. Diverse mutations were detected in the deduced mature proteins of these alleles, which could influence the hardness characteristics of these proteins. This study shows that the diploid species of the Aegilops genus could be a good source of genetic variability for both Pina and Pinb genes, which could be used in breeding programmes to extend the range of different textures in wheat.

  14. Association between the CCR5 32-bp deletion allele and late onset of schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Timm, Sally; Wang, August G;

    2006-01-01

    OBJECTIVE: The 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well. METHOD: The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission......-onset schizophrenia) and healthy subjects differed significantly. This was reflected in an increased frequency of the deletion allele in the patient subgroup. Patients with ages at first admission below and above 40 years significantly differed in distribution of genotypes and alleles, with an overrepresentation...... of the deletion allele in the latter subgroup of patients. CONCLUSIONS: These findings suggest that the CCR5 32-bp deletion allele is a susceptibility factor for schizophrenia with late onset. Alternatively, the CCR5 32-bp deletion allele may act as a modifier by delaying the onset of schizophrenia without...

  15. Prostate Cancer Aggressiveness Locus on Chromosome 7832-q33 Identified by Linkage and Allelic Imbalance Studies

    Directory of Open Access Journals (Sweden)

    Phillippa J. Neville

    2002-01-01

    Full Text Available The biologic aggressiveness of prostate tumors is an important indicator of prognosis. Chromosome 7g32-q33 was recently reported to show linkage to more aggressive prostate cancer, based on Gleason score, in a large sibling pair study. We report confirmation and narrowing of the linked region using finer-scale genotyping. We also report a high frequency of allelic imbalance. (AI defined within this locus in a series of 48 primary prostate tumors from men unselected for family history or disease status. The highest frequency of AI was observed with adjacent markers D7S2531. (52% and D7S1804. (36%. These two markers delineated a common region of AI, with 24 tumors exhibiting interstitial AI involving one or both markers. The 1.1-Mb candidate region contains relatively few transcripts. Additionally, we observed positive associations between interstitial AI at D7S1804 and early age at diagnosis. (P=.03 as well as a high combined Gleason score and tumor stage. (P=.06. Interstitial AI at D7S2531 was associated with a positive family history of prostate cancer. (P=.05. These data imply that we have localized a prostate cancer tumor aggressiveness loci to chromosome 7832-q33 that is involved in familial and nonfamilial forms of prostate cancer.

  16. Clinical characteristics and HLA alleles of a family with simultaneously occurring alopecia areata.

    Science.gov (United States)

    Emre, Selma; Metin, Ahmet; Caykoylu, Ali; Akoglu, Gulsen; Ceylan, Gülay G; Oztekin, Aynure; Col, Esra S

    2016-06-01

    Alopecia areata (AA) is a T-cell-mediated autoimmune disease resulting in partial or total noncicatricial hair loss. HLA class II antigens are the most important markers that constitute genetic predisposition to AA. Various life events and intense psychological stress may play an important role in triggering AA attacks. We report an unusual case series of 4 family members who had simultaneously occurring active AA lesions. Our aim was to evaluate the clinical and psychiatric features of 4 cases of active AA lesions occurring simultaneously in a family and determine HLA alleles. The clinical and psychological features of all patients were examined. HLA antigen DNA typing was performed by polymerase chain reaction with sequence-specific primers. All patients had typical AA lesions over the scalp and/or beard area. Psychological examinations revealed obsessive-compulsive personality disorder in the proband's parents as well as anxiety and lack of self-confidence in both the proband and his sister. HLA antigen types were not commonly shared with family members. These findings suggest that AA presenting concurrently in members of the same family was not associated with genetic predisposition. Shared psychological disorders and stressful life events might be the major key points in the concurrent presentation of these familial AA cases and development of resistance against treatments.

  17. Parental somatic and germ-line mosaicism for a multiexon deletion with unusual endpoints in a type III collagen (COL3Al) allele produces ehlers-danlos syndrome type IV in the heterozygous offspring

    Energy Technology Data Exchange (ETDEWEB)

    McGookey Milewicz, D.; Witz, A.M.; Byers, P.H. (Univ of Washington, Seattle (United States)); Smith, A.C.M.; Manchester, D.K.; Waldstein, G. (Children' s Hospital, Denver, CO (United States))

    1993-07-01

    Ehlers-Danlos syndrome (EDS) type IV is a dominantly inherited disorder that results from mutation in the type III collagen gene (COL3A1). The authors studied the structure of the COL3A1 gene of an individual with EDS type IV and that of her phenotypically normal parents. The proband was heterozygous for a 2-kb deletion in COL3A1, while her father was mosaic for the same deletion in somatic and germ cells. In fibroblasts from the father, approximately two-fifths of the COL3A1 alleles carried the deletion, but only 10% of the COL3A1 alleles in white blood cells were of the mutant species. The deletion in the mutant allele extended from intron 7 into intron 11. There was a 12-bp direct repeat in intron 7 and intron 11, the latter about 60 bp 5' to the junction. At the breakpoint there was a duplication of 10 bp from intron 11 separated by an insertion of 4 bp contained within the duplicated sequence. The father was mosaic for the deletion so that the gene rearrangement occurred during his early embryonic development prior to lineage allocation. These findings suggest that at least some of the deletions seen in human genes may occur during replication, rather than as a consequence of meiotic crossing-over, and that they thus have a risk for recurrence when observed de novo. 71 refs., 4 figs., 2 tabs.

  18. Parental somatic and germ-line mosaicism for a multiexon deletion with unusual endpoints in a type III collagen (COL3A1) allele produces Ehlers-Danlos syndrome type IV in the heterozygous offspring.

    Science.gov (United States)

    Milewicz, D M; Witz, A M; Smith, A C; Manchester, D K; Waldstein, G; Byers, P H

    1993-01-01

    Ehlers-Danlos syndrome (EDS) type IV is a dominantly inherited disorder that results from mutations in the type III collagen gene (COL3A1). We studied the structure of the COL3A1 gene of an individual with EDS type IV and that of her phenotypically normal parents. The proband was heterozygous for a 2-kb deletion in COL3A1, while her father was mosaic for the same deletion in somatic and germ cells. In fibroblasts from the father, approximately two-fifths of the COL3A1 alleles carried the deletion, but only 10% of the COL3A1 alleles in white blood cells were of the mutant species. The deletion in the mutant allele extended from intron 7 into intron 11. There was a 12-bp direct repeat in intron 7 and intron 11, the latter about 60 bp 5' to the junction. At the breakpoint there was a duplication of 10 bp from intron 11 separated by an insertion of 4 bp contained within the duplicated sequence. The father was mosaic for the deletion so that the gene rearrangement occurred during his early embryonic development prior to lineage allocation. These findings suggest that at least some of the deletions seen in human genes may occur during replication, rather than as a consequence of meiotic crossing-over, and that they thus have a risk for recurrence when observed de novo. Images Figure 1 Figure 2 Figure 3 PMID:8317500

  19. Rheumatoid Arthritis Educational Video Series

    Science.gov (United States)

    ... Corner / Patient Webcasts / Rheumatoid Arthritis Educational Video Series Rheumatoid Arthritis Educational Video Series This series of five videos ... Your Arthritis Managing Chronic Pain and Depression in Arthritis Nutrition & Rheumatoid Arthritis Arthritis and Health-related Quality of Life ...

  20. Characterisation of cuticular mutants in Arabidopsis thaliana

    OpenAIRE

    Faust, Andrea

    2006-01-01

    Plants are protected by the extracellular cuticle, which is made up of cutin, cutan and waxes. The cutin composition of a variety of plants has been known and models of the biosynthesis of cutin monomers exist but not many enzymes have been identified. It is generally accepted that a defect in the cuticle leads to an organ fusion phenotype. In the model plant A. thaliana many fusion mutants have been identified but the identification of genes involved have not lead to a complete picture of th...

  1. Applied time series analysis

    CERN Document Server

    Woodward, Wayne A; Elliott, Alan C

    2011-01-01

    ""There is scarcely a standard technique that the reader will find left out … this book is highly recommended for those requiring a ready introduction to applicable methods in time series and serves as a useful resource for pedagogical purposes.""-International Statistical Review (2014), 82""Current time series theory for practice is well summarized in this book.""-Emmanuel Parzen, Texas A&M University""What an extraordinary range of topics covered, all very insightfully. I like [the authors'] innovations very much, such as the AR factor table.""-David Findley, U.S. Census Bureau (retired)""…

  2. Time series analysis

    CERN Document Server

    Madsen, Henrik

    2007-01-01

    ""In this book the author gives a detailed account of estimation, identification methodologies for univariate and multivariate stationary time-series models. The interesting aspect of this introductory book is that it contains several real data sets and the author made an effort to explain and motivate the methodology with real data. … this introductory book will be interesting and useful not only to undergraduate students in the UK universities but also to statisticians who are keen to learn time-series techniques and keen to apply them. I have no hesitation in recommending the book.""-Journa

  3. Identification of Francisella novicida mutants that fail to induce prostaglandin E2 synthesis by infected macrophages.

    Directory of Open Access Journals (Sweden)

    Matthew Dale Woolard

    2013-02-01

    Full Text Available Francisella tularensis is the causative agent of tularemia. We have previously shown that infection with F. tularensis Live Vaccine Strain (LVS induces macrophages to synthesize prostaglandin E2 (PGE2. Synthesis of PGE2 by F. tularensis infected macrophages results in decreased T cell proliferation in vitro and increased bacterial survival in vivo. Although we understand some of the biological consequences of F. tularensis induced PGE2 synthesis by macrophages, we do not understand the cellular pathways (neither host nor bacterial that result in up-regulation of the PGE2 biosynthetic pathway in F. tularensis infected macrophages. We took a genetic approach to begin to understand the molecular mechanisms of bacterial induction of PGE2 synthesis from infected macrophages. To identify F. tularensis genes necessary for the induction of PGE2 in primary macrophages, we infected cells with individual mutants from the closely related strain Francisella tularensis subspecies novicida U112 (U112 two allele mutant library. Twenty genes were identified that when disrupted resulted in U112 mutant strains unable to induce the synthesis of PGE2 by infected macrophages. Fourteen of the genes identified are located within the Francisella pathogenicity island (FPI. Genes in the FPI are required for F. tularensis to escape from the phagosome and replicate in the cytosol, which might account for the failure of U112 with transposon insertions within the FPI to induce PGE2. This implies that U112 mutant strains that do not grow intracellularly would also not induce PGE2. We found that U112 clpB::Tn grows within macrophages yet fails to induce PGE2, while U112 pdpA::Tn does not grow yet does induce PGE2. We also found that U112 iglC::Tn neither grows nor induces PGE2. These findings indicate that there is dissociation between intracellular growth and the ability of F. tularensis to induce PGE2 synthesis. These mutants provide a critical entrée into the pathways used

  4. Using of AFLP to evaluate gamma-irradiated amaranth mutants

    Directory of Open Access Journals (Sweden)

    Labajová Mária

    2013-01-01

    Full Text Available To determine which of several gamma-irradiated mutants of amaranth Ficha cultivar and K-433 hybrid are most genetically similar to their non-irradiated control genotypes, we performed amplified fragment length polymorphism (AFLP based analysis. A total of 40 selective primer combinations were used in reported analyses. First analyses of gamma-irradiated amaranth mutant lines were done used the AFLP. In the study, primers with the differentiation ability for all analysed mutant lines are reported. The very specific changes in the mutant lines´ non-coding regions based on AFLP length polymorphism were analysed. Mutant lines of the Ficha cultivar (C15, C26, C27, C82, C236 shared a genetic dissimilarity of 0,11 and their ISSR profiles are more similar to the Ficha than those of K-433 hybrid mutant lines. The K-433 mutant lines (D54, D279, D282 shared genetic dissimilarity of 0,534 but are more distinct to their control plant as a whole, as those of the Ficha mutant lines. Different AFLP fingerprints patters of the mutant lines when compared to the Ficha cultivar and K-433 hybrid AFLP profiles may be a consequence of the complex response of the intergenic space of mutant lines to the gamma-radiance. Although a genetic polymorphism was detected within accessions, the AFLP markers successfully identified all the accessions. The AFLP results are discussed by a combination of biochemical characteristics of mutant lines and their control genotypes.

  5. Distribution of soluble amino acids in maize endosperm mutants

    Directory of Open Access Journals (Sweden)

    Toro Alejandro Alberto

    2003-01-01

    Full Text Available For human nutrition the main source of vegetable proteins are cereal and legume seeds. The content of total soluble amino acids in mature endosperm of wild-type, opaque and floury maize (Zea mays L. mutants were determined by HPLC. The total absolute concentration of soluble amino acids among the mutants varied depending on the mutant. The o11 and o13 mutants exhibited the highest average content, whereas o10, fl3 and fl1 exhibited the lowest average content. In general, the mutants exhibited similar concentrations of total soluble amino acids when compared to the wild-type lines, with the clear exception of mutants o11 and fl1, with the o11 mutant exhibiting a higher concentration of total soluble amino acids when compared to its wild-type counterpart W22 and the fl1 mutant a lower concentration when compared to its wild-type counterpart Oh43. For methionine, the mutants o2 and o11 and wild-type Oh43 exhibited the highest concentrations of this amino acid. Significant differences were not observed between mutants for other amino acids such as lysine and threonine. The high lysine concentrations obtained originally for these mutants may be due to the amino acids incorporated into storage proteins, but not those present in the soluble form.

  6. Sequence analysis of two de novo mutation alleles at the DXS10011 locus.

    Science.gov (United States)

    Tamura, Akiyoshi; Iwata, Misa; Takase, Izumi; Miyazaki, Tokiko; Matsui, Kiyoshi; Nishio, Hajime; Suzuki, Koichi

    2003-09-01

    We have detected two unusual alleles at the DXS10011 locus in two paternity trio cases. In one case, one allele of the daughter was found not to have been derived from the mother but the other allele was shared with the father. In the other case, the mother and the son shared no bands. Paternity in both cases was established using conventional polymorphic markers in addition to DNA markers (probabilities: >0.999999). Sequencing showed that the two de novo alleles of the children acquired a single unit (GAAA).

  7. Allelic-specific expression in relation to Bombyx mori resistance to Bt toxin.

    Science.gov (United States)

    Chen, Yazhou; Li, Muwang; Islam, Iftakher; You, Lang; Wang, Yueqiang; Li, Zhiqian; Ling, Lin; Zeng, Baosheng; Xu, Jun; Huang, Yongping; Tan, Anjiang

    2014-11-01

    Understanding the mechanism of Bt resistance is one of the key elements of the effective application of Bt in pest control. The lepidopteran model insect, the silkworm, demonstrates qualities that make it an ideal species to use in achieving this understanding. We screened 45 strains of silkworm (Bombyx mori) using a Cry1Ab toxin variant. The sensitivity levels of the strains varied over a wide range. A resistant strain (P50) and a phylogenetically related susceptible strain (Dazao) were selected to profile the expressions of 12 Bt resistance-related genes. The SNPs in these genes were detected based on EST analysis and were validated by allelic-specific PCR. A comparison of allelic-specific expression between P50 and Dazao showed that the transcript levels of heterozygous genes containing two alleles rather than an imbalanced allelic expression contribute more to the resistance of P50 against Bt. The responses of the allelic-specific expression to Bt in hybrid larvae were then investigated. The results showed that the gene expression pattern of an ATP-binding cassette transporter C2 (ABCC2) and an aminopeptidase N (APN3), changed in an allelic-specific manner, with the increase of the resistant allele expression correlated with larval survival. The results suggest that a trans-regulatory mechanism in ABCC2 and APN3 allelic-specific expression is involved in the insect's response to the Bt toxin. The potential role of allelic-specific gene regulation in insect resistance to Bt toxins is discussed.

  8. A novel HLA-B*57 (B*5714) allele in a healthy male Caucasian individual.

    Science.gov (United States)

    Altermann, W W; Grondkowski, V; Reichert, S; Seliger, B; Schlaf, G

    2008-03-01

    A novel human leucocyte antigen (HLA)-B57 (HLA-B*5714) allele has been identified in a male Caucasian individual from Middle Europe using single allele-specific sequencing strategy. This allele is identical to the HLA-B*570101 allele except for two point mutations in exon 3 at codon 138 (ACG-->ACC) with no amino acid change [persisting threonine (T)] and at codon 171 (TAC-->CAC), resulting in an amino acid change from tyrosine (Y) to histidine (H).

  9. FMR1 alleles in Tasmania: a screening study of the special educational needs population.

    Science.gov (United States)

    Mitchell, R J; Holden, J J A; Zhang, C; Curlis, Y; Slater, H R; Burgess, T; Kirkby, K C; Carmichael, A; Heading, K D; Loesch, D Z

    2005-01-01

    The distribution of fragile X mental retardation-1 (FMR1) allele categories, classified by the number of CGG repeats, in the population of Tasmania was investigated in 1253 males with special educational needs (SEN). The frequencies of these FMR1 categories were compared with those seen in controls as represented by 578 consecutive male births. The initial screening was based on polymerase chain reaction analysis of dried blood spots. Inconclusive results were verified by Southern analysis of a venous blood sample. The frequencies of common FMR1 alleles in both samples, and of grey zone alleles in the controls, were similar to those in other Caucasian populations. Consistent with earlier reports, we found some (although insignificant) increase of grey zone alleles in SEN subjects compared with controls. The frequencies of predisposing flanking haplotypes among grey zone males FMR1 alleles were similar to those seen in other Caucasian SEN samples. Contrary to expectation, given the normal frequency of grey zone alleles, no premutation (PM) or full mutation (FM) allele was detected in either sample, with only 15 fragile X families diagnosed through routine clinical admissions registered in Tasmania up to 2002. An explanation of this discrepancy could be that the C19th founders of Tasmania carried few PM or FM alleles. The eight to ten generations since white settlement of Tasmania has been insufficient time for susceptible grey zone alleles to evolve into the larger expansions.

  10. Allele specific expression in worker reproduction genes in the bumblebee Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Harindra E. Amarasinghe

    2015-07-01

    Full Text Available Methylation has previously been associated with allele specific expression in ants. Recently, we found methylation is important in worker reproduction in the bumblebee Bombus terrestris. Here we searched for allele specific expression in twelve genes associated with worker reproduction in bees. We found allele specific expression in Ecdysone 20 monooxygenase and IMP-L2-like. Although we were unable to confirm a genetic or epigenetic cause for this allele specific expression, the expression patterns of the two genes match those predicted for imprinted genes.

  11. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. (Beckman Research Institute of the City of Hope, Duarte, CA (USA))

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  12. Association between the CCR5 32-bp deletion allele and late onset of schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, H.B.; Timm, S.; Wang, A.G.;

    2006-01-01

    OBJECTIVE: The 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well. METHOD: The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission...... of the deletion allele in the latter subgroup of patients. CONCLUSIONS: These findings suggest that the CCR5 32-bp deletion allele is a susceptibility factor for schizophrenia with late onset. Alternatively, the CCR5 32-bp deletion allele may act as a modifier by delaying the onset of schizophrenia without...

  13. The distinctive molecular, pathological and clinical characteristics of BRAF-mutant colorectal tumors.

    Science.gov (United States)

    Scartozzi, Mario; Giampieri, Riccardo; Aprile, Giuseppe; Iacono, Donatella; Santini, Daniele; dell'Aquila, Emanuela; Silvestris, Nicola; Gnoni, Antonio; Bonotto, Marta; Puzzoni, Marco; Demurtas, Laura; Cascinu, Stefano

    2015-01-01

    Several clinical series have demonstrated a notably low overall survival for colorectal cancer patients diagnosed with a BRAF-mutant tumor. A potentially interesting predictive role has also been suggested for BRAF-mutant colorectal cancer receiving anti-EGFR monoclonal antibodies. Although a global consensus exists in indicating BRAF as a prognostic factor with a possible predictive activity, the clinical use of BRAF mutational status in colorectal tumors is still controversial. This article reviews the current knowledge on the use and implications of BRAF mutational status in colorectal tumors, in order to define its present role in the clinical practice. Also suggested are possible treatment strategies in this prognostically challenging group of patients. Finally, a comprehensive outlook on future developments for specifically directed anti-BRAF therapy is illustrated.

  14. Allelic and non-allelic heterogeneities in pyridoxine dependent seizures revealed by ALDH7A1 mutational analysis.

    Science.gov (United States)

    Kanno, Junko; Kure, Shigeo; Narisawa, Ayumi; Kamada, Fumiaki; Takayanagi, Masaru; Yamamoto, Katsuya; Hoshino, Hisao; Goto, Tomohide; Takahashi, Takao; Haginoya, Kazuhiro; Tsuchiya, Shigeru; Baumeister, Fritz A M; Hasegawa, Yuki; Aoki, Yoko; Yamaguchi, Seiji; Matsubara, Yoichi

    2007-08-01

    Pyridoxine dependent seizure (PDS) is a disorder of neonates or infants with autosomal recessive inheritance characterized by seizures, which responds to pharmacological dose of pyridoxine. Recently, mutations have been identified in the ALDH7A1 gene in Caucasian families with PDS. To elucidate further the genetic background of PDS, we screened for ALDH7A1 mutations in five PDS families (patients 1-5) that included four Orientals. Diagnosis as having PDS was confirmed by pyridoxine-withdrawal test. Exon sequencing analysis of patients 1-4 revealed eight ALDH7A1 mutations in compound heterozygous forms: five missense mutations, one nonsense mutation, one point mutation at the splicing donor site in intron 1, and a 1937-bp genomic deletion. The deletion included the entire exon 17, which was flanked by two Alu elements in introns 16 and 17. None of the mutations was found in 100 control chromosomes. In patient 5, no mutation was found by the exon sequencing analysis. Furthermore, expression level or nucleotide sequences of ALDH7A1 mRNA in lymphoblasts were normal. Plasma pipecolic acid concentration was not elevated in patient 5. These observations suggest that ALDH7A1 mutation is unlikely to be responsible for patient 5. Abnormal metabolism of GABA/glutamate in brain has long been suggested as the underlying pathophysiology of PDS. CSF glutamate concentration was elevated during the off-pyridoxine period in patient 3, but not in patient 2 or 5. These results suggest allelic and non-allelic heterogeneities of PDS, and that the CSF glutamate elevation does not directly correlate with the presence of ALDH7A1 mutations.

  15. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia.

    OpenAIRE

    1989-01-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell beta-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer co...

  16. Impact of alleles at the Yellow Burley (Yb) loci and nitrogen fertilization rate on nitrogen utilization efficiency and tobacco-specific nitrosamine (TSNA) formation in air-cured tobacco.

    Science.gov (United States)

    Lewis, Ramsey S; Parker, Robert G; Danehower, David A; Andres, Karen; Jack, Anne M; Whitley, D Scott; Bush, Lowell P

    2012-06-27

    Tobacco-specific nitrosamine (TSNA) formation in tobacco is influenced by alkaloid levels and the availability of nitrosating agents. Tobacco types differ in their potential for TSNA accumulation due to genetic, agronomic, and curing factors. Highest TSNA concentrations are typically measured in burley tobaccos. One of the main genetic differences between burley and all other tobacco types is that this tobacco type is homozygous for recessive mutant alleles at the Yellow Burley 1 (Yb(1)) and Yellow Burley 2 (Yb(2)) loci. In addition, burley tobacco is typically fertilized at higher nitrogen (N) rates than most other tobacco types. This study utilized nearly isogenic lines (NILs) differing for the presence of dominant or recessive alleles at the Yb(1) and Yb(2) loci to investigate the potential influence of genes at these loci on TSNA accumulation. Three pairs of NILs were evaluated at three different nitrogen fertilization rates for alkaloid levels, nitrogen physiology measures, and TSNA accumulation after air-curing. As previously observed by others, positive correlations were observed between N application rates and TSNA accumulation. Recessive alleles at Yb(1) and Yb(2) were associated with increased alkaloid levels, reduced nitrogen use efficiency, reduced nitrogen utilization efficiency, and increased leaf nitrate nitrogen (NO(3)-N). Acting together, these factors contributed to significantly greater TSNA levels in genotypes possessing the recessive alleles at these two loci relative to those carrying the dominant alleles. The chlorophyll-deficient phenotype conferred by the recessive yb(1) and yb(2) alleles probably contributes in a substantial way to increase available NO(3)-N during curing and, consequently, increased potential for TSNA formation.

  17. Molecular footprints reveal the impact of the protective HLA-A*03 allele in hepatitis C virus infection.

    LENUS (Irish Health Repository)

    Fitzmaurice, Karen

    2012-02-01

    BACKGROUND AND AIMS: CD8 T cells are central to the control of hepatitis C virus (HCV) although the key features of a successful CD8 T cell response remain to be defined. In a cohort of Irish women infected by a single source, a strong association between viral clearance and the human lecucocyte (HLA)-A*03 allele has been described, and the aim of this study was to define the protective nature of the associated CD8 T cell response. METHODS: A sequence-led approach was used to identify HLA-A*03-restricted epitopes. We examine the CD8 T cell response associated with this gene and address the likely mechanism underpinning this protective effect in this special cohort, using viral sequencing, T cell assays and analysis of fitness of viral mutants. RESULTS: A strong \\'HLA footprint\\' in a novel NS3 epitope (TVYHGAGTK) was observed. A lysine (K) to arginine (R) substitution at position 9 (K1088R) was seen in a significant number of A*03-positive patients (9\\/12) compared with the control group (1\\/33, p=0.0003). Threonine (T) was also substituted with alanine (A) at position 8 (T1087A) more frequently in A*03-positive patients (6\\/12) compared with controls (2\\/33, p=0.01), and the double substitution of TK to AR was also observed predominantly in HLA-A*03-positive patients (p=0.004). Epitope-specific CD8 T cell responses were observed in 60% of patients three decades after exposure and the mutants selected in vivo impacted on recognition in vitro. Using HCV replicons matched to the viral sequences, viral fitness was found to be markedly reduced by the K1088R substitution but restored by the second substitution T1087A. CONCLUSIONS: It is proposed that at least part of the protective effect of HLA-A*03 results from targeting of this key epitope in a functional site: the requirement for two mutations to balance fitness and escape provides an initial host advantage. This study highlights the potential protective impact of common HLA-A alleles against persistent

  18. Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes.

    Directory of Open Access Journals (Sweden)

    Fernando Calahorro

    Full Text Available Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C and worm NLG-1 (R437C proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA, both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1 or pan-muscular (myo-3 specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders.

  19. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.

    Directory of Open Access Journals (Sweden)

    Noheon Park

    Full Text Available The mammalian circadian clock is an endogenous biological timer comprised of transcriptional/translational feedback loops of clock genes. Bmal1 encodes an indispensable transcription factor for the generation of circadian rhythms. Here, we report a new circadian mutant mouse from gene-trapped embryonic stem cells harboring a C-terminus truncated Bmal1 (Bmal1GTΔC allele. The homozygous mutant (Bmal1GTΔC/GTΔC mice immediately lost circadian behavioral rhythms under constant darkness. The heterozygous (Bmal1+/GTΔC mice displayed a gradual loss of rhythms, in contrast to Bmal1+/- mice where rhythms were sustained. Bmal1GTΔC/GTΔC mice also showed arrhythmic mRNA and protein expression in the SCN and liver. Lack of circadian reporter oscillation was also observed in cultured fibroblast cells, indicating that the arrhythmicity of Bmal1GTΔC/GTΔC mice resulted from impaired molecular clock machinery. Expression of clock genes exhibited distinct responses to the mutant allele in Bmal1+/GTΔC and Bmal1GTΔC/GTΔC mice. Despite normal cellular localization and heterodimerization with CLOCK, overexpressed BMAL1GTΔC was unable to activate transcription of Per1 promoter and BMAL1-dependent CLOCK degradation. These results indicate that the C-terminal region of Bmal1 has pivotal roles in the regulation of circadian rhythms and the Bmal1GTΔC mice constitute a novel model system to evaluate circadian functional mechanism of BMAL1.

  20. Composition: Unity - Diversity series

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2015-01-01

    Unity-Diversity series are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it...

  1. Discrimination. Opposing Viewpoints Series.

    Science.gov (United States)

    Williams, Mary E., Ed.

    Books in the Opposing Viewpoints series challenge readers to question their own opinions and assumptions. By reading carefully balanced views, readers confront new ideas on the topic of interest. The Civil Rights Act of 1964, which prohibited job discrimination based on age, race, religion, gender, or national origin, provided the groundwork for…

  2. Visual time series analysis

    DEFF Research Database (Denmark)

    Fischer, Paul; Hilbert, Astrid

    2012-01-01

    commands, our application is select-and-click-driven. It allows to derive many different sequences of deviations for a given time series and to visualize them in different ways in order to judge their expressive power and to reuse the procedure found. For many transformations or model-ts, the user may...

  3. Parent's Journal. [Videotape Series].

    Science.gov (United States)

    1999

    Parent's Journal is a set of 16 videotapes for parents of prenatal, infant, and toddler-age children, created by the Alaska Native Home Base Video Project of the Tlingit and Haida Head Start Program. This series offers culturally relevant solutions to the challenges of parenting, drawing on the life stories and experiences of capable mothers and…

  4. Family Feathers. [Videotape Series].

    Science.gov (United States)

    1999

    Family Feathers is a set of 18 videotapes for parents of preschool children, created by the Alaska Native Home Base Video Project of the Tlingit and Haida Head Start Program. This series offers culturally relevant solutions to the challenges of parenting, drawing on practical advice from Tlingit and Haida parents, wisdom from elders, and some of…

  5. Little Herder Reading Series.

    Science.gov (United States)

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    The Little Herder Reading Series is comprised of 4 volumes based on the life of a Navajo Indian girl. The books are written in English blank verse and describe many facets of Indian life. The volumes contain illustrations by Hoke Denetsosie which give a pictorial representation of the printed verse. The reading level is for the middle and upper…

  6. Indy mutants: live long and prosper

    Directory of Open Access Journals (Sweden)

    Stewart eFrankel

    2012-02-01

    Full Text Available Indy encodes the fly homologue of a mammalian transporter of di and tricarboxylatecomponents of the Krebs cycle. Reduced expression of fly Indy or two of the C. elegansIndy homologs leads to an increase in life span. Fly and worm tissues that play key roles inintermediary metabolism are also the places where Indy genes are expressed. One of themouse homologs of Indy (mIndy is mainly expressed in the liver. It has been hypothesizedthat decreased INDY activity creates a state similar to caloric restriction (CR. Thishypothesis is supported by the physiological similarities between Indy mutant flies on highcalorie food and control flies on CR, such as increased physical activity and decreases inweight, egg production, triglyceride levels, starvation resistance, and insulin signaling. Inaddition, Indy mutant flies undergo changes in mitochondrial biogenesis also observed inCR animals. Recent findings with mIndy knockout mice support and extend the findingsfrom flies. mIndy-/- mice display an increase in hepatic mitochondrial biogenesis, lipidoxidation and decreased hepatic lipogenesis. When mIndy-/- mice are fed high calorie foodthey are protected from adiposity and insulin resistance. These findings point to INDY as apotential drug target for the treatment of metabolic syndrome, type 2 diabetes and obesity.

  7. Auxin physiology of the tomato mutant diageotropica

    Science.gov (United States)

    Daniel, S. G.; Rayle, D. L.; Cleland, R. E.

    1989-01-01

    The tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibits biochemical, physiological, and morphological abnormalities that suggest the mutation may have affected a primary site of auxin perception or action. We have compared two aspects of the auxin physiology of dgt and wild-type (VFN8) seedlings: auxin transport and cellular growth parameters. The rates of basipetal indole-3-acetic acid (IAA) polar transport are identical in hypocotyl sections of the two genotypes, but dgt sections have a slightly greater capacity for IAA transport. 2,3,5-Triiodobenzoic acid and ethylene reduce transport in both mutant and wild-type sections. The kinetics of auxin uptake into VFN8 and dgt sections are nearly identical. These results make it unlikely that an altered IAA efflux carrier or IAA uptake symport are responsible for the pleiotropic effects resulting from the dgt mutation. The lack of auxin-induced cell elongation in dgt plants is not due to insufficient turgor, as the osmotic potential of dgt cell sap is less (more negative) than that of VFN8. An auxin-induced increase in wall extensibility, as measured by the Instron technique, only occurs in the VFN8 plants. These data suggest dgt hypocotyls suffer a defect in the sequence of events culminating in auxin-induced cell wall loosening.

  8. SOME PROPERTIES OF MULTIPLE TAYLOR SERIES AND RANDOM TAYLOR SERIES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Some polar coordinates are used to determine the domain and the ball of convergence of a multiple Taylor series. In this domain and in this ball the series converges,converges absolutely and converges uniformly on any compact set. Growth and other properties of the series may also be studied. For some random multiple Taylor series there are some corresponding properties.

  9. Distribution of BoLA-DRB3 allelic frequencies and identification of a new allele in the iranian cattle breed sistani (Bos indicus).

    Science.gov (United States)

    Mohammadi, A; Nassiry, M R; Mosafer, J; Mohammadabadi, M R; Sulimova, G E

    2009-02-01

    The distribution of the frequencies of BoLA-DRB3 gene alleles in the Iranian cattle breed Sistani was studied by the PCR-RFLP ("hemi-nested") assay using restriction endonucleases RsaI, HaeIII and BstYI. In the examined cattle breed (65 animals) 32 alleles have been identified one of which being described for the first time (6.15% frequency). The nucleotide sequence of the polymorphic region of exon 2 of this allele has been determined and submitted in the GeneBank database under accession number DQ486519. The submitted sequence has maximum homology (92%) with the previously described sequence DRB3-mRNA from Bos indicus (AccN X79346) and differs from it by 24 nucleotide substitutions which result in 16 amino acid substitutions. The peptide (on the basis of the reconstructed amino acid sequence) has 89% identity to the sequence encoded by the BIDRBF 188 locus (Bos indicus). The results obtained permit the sequence described by us to be considered as a new allele of the BoLA-DRB3 gene (DRB3.2**X). The total frequency of the main six alleles (DRB3.2*X, *10, *11, *20, *34 and *X) occurring with a frequency of over 5% is about 60% in Iranian Sistani cattle. Fifteen alleles have DRB3.2*8 allele (21.54%) like in other previously described breeds of Bos indicus (up to 23.07%). The Iranian breed Sistani has a high level of similarity by the spectrum of BoLA-DRB3 alleles and their frequencies to other Bos indicus breeds and significantly differs by these criteria from the Bos taurus breeds. The Iranian Sistani herd under study includes alleles associated with to resistance to leukemia (DRB3.2*ll and *23) and to different forms of mastitis (DRB3.2*2, *7, *11, *23 and *24) although their frequencies are low (from 0.77 to 5.37%). On the whole, a high level of diversity of BoLA-DRB3 gene alleles and the availability of alleles associated with resistance to different diseases makes this breed of interest for breeding practice.

  10. Mutants of Saccharomyces cerevisiae with defects in acetate metabolism: isolation and characterization of Acn- mutants.

    Science.gov (United States)

    McCammon, M T

    1996-09-01

    The two carbon compounds, ethanol and acetate, can be oxidatively metabolized as well as assimilated into carbohydrate in the yeast Saccharomyces cerevisiae. The distribution of acetate metabolic enzymes among several cellular compartments, mitochondria, peroxisomes, and cytoplasm makes it an intriguing system to study complex metabolic interactions. To investigate the complex process of carbon catabolism and assimilation, mutants unable to grow on acetate were isolated. One hundred five Acn- ("ACetate Nonutilizing") mutants were sorted into 21 complementation groups with an additional 20 single mutants. Five of the groups have defects in TCA cycle enzymes: MDH1, CIT1, ACO1, IDH1, and IDH2. A defect in RTG2, involved in the retrograde communication between the mitochondrion and the nucleus, was also identified. Four genes encode enzymes of the glyoxylate cycle and gluconeogenesis: ICL1, MLS1, MDH2, and PCK1. Five other genes appear to be defective in regulating metabolic activity since elevated levels of enzymes in several metabolic pathways, including the glyoxylate cycle, gluconeogenesis, and acetyl-CoA metabolism, were detected in these mutants: ACN8, ACN9, ACN17, ACN18, and ACN42. In summary, this analysis has identified at least 22 and as many as 41 different genes involved in acetate metabolism.

  11. Chloroquine clinical failures in P. falciparum malaria are associated with mutant Pfmdr-1, not Pfcrt in Madagascar.

    Directory of Open Access Journals (Sweden)

    Valérie Andriantsoanirina

    Full Text Available Molecular studies have demonstrated that mutations in the Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt play a major role in chloroquine resistance, while mutations in P. falciparum multidrug resistance gene (Pfmdr-1 act as modulator. In Madagascar, the high rate of chloroquine treatment failure (44% appears disconnected from the overall level of in vitro CQ susceptibility (prevalence of CQ-resistant parasites 60% of isolates, but did not explore their association with P. falciparum chloroquine resistance. To document the association of Pfmdr-1 alleles with chloroquine resistance in Madagascar, 249 P. falciparum samples collected from patients enrolled in a chloroquine in vivo efficacy study were genotyped in Pfcrt/Pfmdr-1 genes as well as the estimation of the Pfmdr-1 copy number. Except 2 isolates, all samples displayed a wild-type Pfcrt allele without Pfmdr-1 amplification. Chloroquine treatment failures were significantly associated with Pfmdr-1 86Y mutant codon (OR = 4.6. The cumulative incidence of recurrence of patients carrying the Pfmdr-1 86Y mutation at day 0 (21 days was shorter than patients carrying Pfmdr-1 86N wild type codon (28 days. In an independent set of 90 selected isolates, in vitro susceptibility to chloroquine was not associated with Pfmdr-1 polymorphisms. Analysis of two microsatellites flanking Pfmdr-1 allele showed that mutations occurred on multiple genetic backgrounds. In Madagascar, Pfmdr-1 polymorphism is associated with late chloroquine clinical failures and unrelated with in vitro susceptibility or Pfcrt genotype. These results highlight the limits of the current in vitro tests routinely used to monitor CQ drug resistance in this unique context. Gaining insight about the mechanisms that regulate polymorphism in Pfmdr1 remains important, particularly regarding the evolution and spread of Pfmdr-1 alleles in P. falciparum populations under changing drug pressure which may have important

  12. An Epstein-Barr virus mutant produces immunogenic defective particles devoid of viral DNA.

    Science.gov (United States)

    Pavlova, Sophia; Feederle, Regina; Gärtner, Kathrin; Fuchs, Walter; Granzow, Harald; Delecluse, Henri-Jacques

    2013-02-01

    Virus-like particles (VLPs) from hepatitis B and human papillomaviruses have been successfully used as preventative vaccines against these infectious agents. These VLPs consist of a self-associating capsid polymer formed from a single structure protein and are devoid of viral DNA. Since virions from herpesviruses consist of a large number of molecules of viral and cellular origin, generating VLPs from a subset of these would be a particularly arduous task. Therefore, we have adopted an alternative strategy that consists of producing DNA-free defective virus particles in a cell line infected by a herpesvirus mutant incapable of packaging DNA. We previously reported that an Epstein-Barr virus (EBV) mutant devoid of the terminal repeats (ΔTR) that act as packaging signals in herpesviruses produces substantial amounts of VLPs and of light particles (LPs). However, ΔTR virions retained some infectious genomes, and although these mutants had lost their transforming abilities, this poses potential concerns for clinical applications. Therefore, we have constructed a series of mutants that lack proteins involved in maturation and assessed their ability to produce viral DNA-free VLP/LPs. Some of the introduced mutations were deleterious for capsid maturation and virus production. However, deletion of BFLF1/BFRF1A or of BBRF1 resulted in the production of DNA-free VLPs/LPs. The ΔBFLF1/BFRF1A viruses elicited a potent CD4(+) T-cell response that was indistinguishable from the one obtained with wild-type controls. In summary, the defective particles produced by the ΔBFLF1/BFRF1A mutant fulfill the criteria of efficacy and safety expected from a preventative vaccine.

  13. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases.

    Directory of Open Access Journals (Sweden)

    Rong Chen

    Full Text Available Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may

  14. Apolipoprotein E alleles in Alzheimer`s and Parkinson`s patients

    Energy Technology Data Exchange (ETDEWEB)

    Poduslo, S.E. [Texas Tech Univ., Lubbock, TX (United States); Schwankhaus, J.D. [Department of Veterans Affairs, Lubbock, TX (United States)

    1994-09-01

    A number of investigators have found an association between the apolipoprotein E4 allele and Alzheimer`s disease. The E4 allele appears at a higher frequency in late onset familial Alzheimer`s patients. In our studies we obtained blood samples from early and late onset familial and sporadic Alzheimer`s patients and spouses, as well as from Parkinson`s patients. The patients were diagnosed as probable Alzheimer`s patients after a neurological examination, extensive blood work, and a CAT scan. The diagnosis was made according to the NINCDS-ADRDA criteria. The apolipoprotein E4 polymorphism was detected after PCR amplification of genomic DNA, restriction enzyme digestion with Hhal, and polyacrylamide gel electrophoresis. Ethidium bromide-stained bands at 91 bp were designated as allele 3, at 83 bp as allele 2, and at 72 bp as allele 4. Of the 84 probable Alzheimer`s patients (all of whom were Caucasian), 47 were heterozygous and 13 were homozygous for the E4 allele. There were 26 early onset patients; 13 were heterozygous and 7 homozygous for the E4 allele. The frequencies for the E4 allele for late onset familial patients was 0.45 and for sporadic patients was 0.37. We analyzed 77 spouses with an average age of 71.9 {plus_minus} 7.4 years as controls, and 15 were heterozygous for the E4 allele for an E4 frequency of 0.097. Of the 53 Parkinson`s patients, 11 had the E4 allele for a frequency of 0.113. Thus our findings support the association of the ApoE4 allele with Alzheimer`s disease.

  15. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases.

    Science.gov (United States)

    Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T; Morgan, Alex A; Moreno-Estrada, Andres; Nilsen, Geoffrey B; Ruau, David; Lincoln, Stephen E; Bustamante, Carlos D; Butte, Atul J

    2012-01-01

    Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed

  16. Differences in 4-hydroxyestradiol levels in leukocytes are related to CYP1A1(∗)2C, CYP1B1(∗)3 and COMT Val158Met allelic variants.

    Science.gov (United States)

    Martínez-Ramírez, O C; Pérez-Morales, R; Petrosyan, P; Castro-Hernández, C; Gonsebatt, M E; Rubio, J

    2015-10-01

    Exposure to estrogen and its metabolites, including catechol estrogens (CEs) and catechol estrogen quinones (CE-Qs) is closely related to breast cancer. Polymorphisms of the genes involved in the catechol estrogens metabolism pathway (CEMP) have been shown to affect the production of CEs and CE-Qs. In this study, we measured the induction of CYP1A1, CYP1B1, COMT, and GSTP1 by 17β-estradiol (17β-E2) in leukocytes with CYP1A1(∗)2C, CYP1B1(∗)3, COMT Val158Met and GSTP1 Ile105Val polymorphisms by semi quantitative RT-PCR and compared the values to those of leukocytes with wild type alleles; we also compared the differences in formation of 4- hydroxyestradiol (4-OHE2) and DNA-adducts. The data show that in the leukocytes with mutant alleles treatment with 17β-E2 up-regulates CYP1A1 and CYP1B1 and down-regulates COMT mRNA levels, resulting in major increments in 4-OHE2 levels compared to leukocytes with wild-type alleles. Therefore, we propose induction levels of gene expression and intracellular 4-OHE2 concentrations associated with allelic variants in response to exposure of 17β-E2 as a noninvasive biomarker that can help determine the risk of developing non-hereditary breast cancer in women.

  17. Major histocompatibility complex class I chain related (MIC) A gene, TNFa microsatellite alleles and TNFB alleles in juvenile idiopathic arthritis patients from Latvia.

    Science.gov (United States)

    Nikitina Zake, Liene; Cimdina, Ija; Rumba, Ingrida; Dabadghao, Preethi; Sanjeevi, Carani B

    2002-05-01

    In order to analyze involvement of major histocompatibility complex class I chain-related gene A (MICA) and tumor necrosis factor a (TNFa) microsatellite polymorphisms as well as TNFB gene in juvenile idiopathic arthritis (JIA), we studied 128 patients divided into groups according to clinical features [monoarthritis (n = 14), oligoarthritis (n = 58), polyarthritis (n = 50), and systemic (n = 6)], and 114 age- and sex-matched healthy controls from Latvia. DNA samples were amplified with specific primers and used for genotyping of MICA and TNFa microsatellite. Typing for a biallelic NcoI polymerase chain reaction RFLP polymorphism located at the first intron of TNFB gene was done as follows: restriction digests generated fragments of 555bp and 185bp for TNFB*1 allele, and 740bp for TNFB*2 allele. The results were compared between cases and controls. We found significant increase of MICA allele A4 (p = 0.009; odds ratio [OR] = 2.3) and allele TNFa2 (p = 0.0001; OR = 4.4) in patients compared with controls. The frequency of allele TNFa9 was significantly decreased (p = 0.0001; OR = 0.1) in patients with JIA. No significant differences of TNFB allele frequency were found. Our data suggest that MICA and TNFa microsatellite polymorphisms may be used as markers for determination of susceptibility and protection from JIA.

  18. Long-term control of HIV-1 in hemophiliacs carrying slow-progressing allele HLA-B*5101.

    Science.gov (United States)

    Kawashima, Yuka; Kuse, Nozomi; Gatanaga, Hiroyuki; Naruto, Takuya; Fujiwara, Mamoru; Dohki, Sachi; Akahoshi, Tomohiro; Maenaka, Katsumi; Goulder, Philip; Oka, Shinichi; Takiguchi, Masafumi

    2010-07-01

    HLA-B*51 alleles are reported to be associated with slow disease progression to AIDS, but the mechanism underlying this association is still unclear. In the present study, we analyzed the effect of HLA-B*5101 on clinical outcome for Japanese hemophiliacs who had been infected with HIV-1 before 1985 and had been recruited in 1998 for this study. HLA-B*5101(+) hemophiliacs exhibited significantly slow progression. The analysis of HLA-B*5101-restricted HIV-1-specific cytotoxic T-lymphocyte (CTL) responses to 4 HLA-B*-restricted epitopes in 10 antiretroviral-therapy (ART)-free HLA-B*5101(+) hemophiliacs showed that the frequency of Pol283-8-specific CD8(+) T cells was inversely correlated with the viral load, whereas the frequencies of CD8(+) T cells specific for 3 other epitopes were positively correlated with the viral load. The HLA-B*5101(+) hemophiliacs whose HIV-1 replication had been controlled for approximately 25 years had HIV-1 possessing the wild-type Pol283-8 sequence or the Pol283-8V mutant, which does not critically affect T-cell recognition, whereas other HLA-B*5101(+) hemophiliacs had HIV-1 with escape mutations in this epitope. The results suggest that the control of HIV-1 over approximately 25 years in HLA-B*5101-positive hemophiliacs is associated with a Pol283-8-specific CD8(+) T-cell response and that lack of control of HIV-1 is associated with the appearance of Pol283-8-specific escape mutants.

  19. Mutants of downy mildew resistance in Lactuca sativa (lettuce).

    Science.gov (United States)

    Okubara, P A; Anderson, P A; Ochoa, O E; Michelmore, R W

    1994-07-01

    As part of our investigation of disease resistance in lettuce, we generated mutants that have lost resistance to Bremia lactucae, the casual fungus of downy mildew. Using a rapid and reliable screen, we identified 16 distinct mutants of Latuca sativa that have lost activity of one of four different downy mildew resistance genes (Dm). In all mutants, only a single Dm specificity was affected. Genetic analysis indicated that the lesions segregated as single, recessive mutations at the Dm loci. Dm3 was inactivated in nine of the mutants. One of five Dm 1 mutants was selected from a population of untreated seeds and therefore carried a spontaneous mutation. All other Dm1, Dm3, Dm5/8 and Dm7 mutants were derived from gamma- or fast neutron-irradiated seed. In two separate Dm 1 mutants and in each of the eight Dm3 mutants analyzed, at least one closely linked molecular marker was absent. Also, high molecular weight genomic DNA fragments that hybridized to a tightly linked molecular marker in wild type were either missing entirely or were truncated in two of the Dm3 mutants, providing additional evidence that deletions had occurred in these mutants. Absence of mutations at loci epistatic to the Dm genes suggested that such loci were either members of multigene families, were critical for plant survival, or encoded components of duplicated pathways for resistance; alternatively, the genes determining downy mildew resistance might be limited to the Dm loci.

  20. Prevalence of URAT1 allelic variants in the Roma population.

    Science.gov (United States)

    Stiburkova, Blanka; Gabrikova, Dana; Čepek, Pavel; Šimek, Pavel; Kristian, Pavol; Cordoba-Lanus, Elizabeth; Claverie-Martin, Felix

    2016-12-01

    The Roma represents a transnational ethnic group, with a current European population of 8-10 million. The evolutionary process that had the greatest impact on the gene pool of the Roma population is called the founder effect. Renal hypouricemia (RHUC) is a rare heterogenous inherited disorder characterized by impaired renal urate reabsorption. The affected individuals are predisposed to recurrent episodes of exercise-induced nonmyoglobinuric acute kidney injury and nephrolithiasis. To date, more than 150 patients with a loss-of-function mutation for the SLC22A12 (URAT1) gene have been found, most of whom are Asians. However, RHUC 1 patients have been described in a variety of ethnic groups (e.g., Arab Israelis, Iraqi Jews, Caucasians, and Roma) and in geographically noncontiguous countries. This study confirms our previous findings regarding the high frequency of SLC22A12 variants observed. Frequencies of the c.1245_1253del and c.1400C>T variants were found to be 1.92% and 5.56%, respectively, in a subgroup of the Roma population from five regions in three countries: Slovakia, Czech Republic, and Spain. Our findings suggested that the common dysfunction allelic variants of URAT1 exist in the general Roma population and thus renal hypouricemia should be kept in differential diagnostic algorithm on Roma patients with defect in renal tubular urate transport. This leads to confirm that the genetic drift in the Roma have increased the prevalence of hereditary disorders caused by very rare variants in major population.

  1. Elevated Fibroblast Growth Factor Signaling Is Critical for the Pathogenesis of the Dwarfism in Evc2/Limbin Mutant Mice.

    Science.gov (United States)

    Zhang, Honghao; Kamiya, Nobuhiro; Tsuji, Takehito; Takeda, Haruko; Scott, Greg; Rajderkar, Sudha; Ray, Manas K; Mochida, Yoshiyuki; Allen, Benjamin; Lefebvre, Veronique; Hung, Irene H; Ornitz, David M; Kunieda, Tetsuo; Mishina, Yuji

    2016-12-01

    Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome.

  2. Series elastic actuators

    Science.gov (United States)

    Williamson, Matthew M.

    1995-01-01

    This thesis presents the design, construction, control and evaluation of a novel for controlled actuator. Traditional force controlled actuators are designed from the premise that 'Stiffer is better'. This approach gives a high bandwidth system, prone to problems of contact instability, noise, and low power density. The actuator presented in this thesis is designed from the premise that 'Stiffness isn't everything'. The actuator, which incorporates a series elastic element, trades off achievable bandwidth for gains in stable, low noise force control, and protection against shock loads. This thesis reviews related work in robot force control, presents theoretical descriptions of the control and expected performance from a series elastic actuator, and describes the design of a test actuator constructed to gather performance data. Finally the performance of the system is evaluated by comparing the performance data to theoretical predictions.

  3. Extinction time and age of an allele in a large finite population

    NARCIS (Netherlands)

    Herwaarden, van O.A.; Wal, van der N.J.

    2002-01-01

    For a single locus with two alleles we study the expected extinction and fixation times of the alleles under the influence of selection and genetic drift. Using a diffusion model we derive asymptotic approximations for these expected exit times for large populations. We consider the case where the f

  4. Characterization of the novel HLA-Cw*0624 allele identified by sequence-based typing.

    Science.gov (United States)

    Deng, Z-H; Wang, D-M; Gao, S-Q; Xu, Y-P

    2010-01-01

    A novel HLA-Cw*0624 variant allele differs from the closest allele Cw*06020101 by single nucleotide change at genomic nt 923 T>C (CDS nt 547 T>C, codon 159 TAC>CAC) in exon 3, which results in an amino acid change Tyr159His.

  5. A novel HLA-Cw*01 variant allele, HLA-Cw*0130.

    Science.gov (United States)

    Deng, Z-H; Wang, D-M

    2009-12-01

    The novel HLA-Cw*0130 variant allele differs from the closest allele Cw*010201 by single nucleotide change at genomic nt 959 T>C (CDS nt 583 T>C, codon 171 TAC>CAC) in exon 3, which causes an amino acid change Tyr171His.

  6. A new mutation for Huntington disease following maternal transmission of an intermediate allele

    NARCIS (Netherlands)

    Semaka, Alicia; Kay, Chris; Belfroid, Rene D. M.; Bijlsma, Emilia K.; Losekoot, Monique; van Langen, Irene M.; van Maarle, Merel C.; Oosterloo, Mayke; Hayden, Michael R.; van Belzen, Martine J.

    2015-01-01

    New mutations for Huntington disease (HD) originate from CAG repeat expansion of intermediate alleles (27-35 CAG). Expansions of such alleles into the pathological range (>= 36 CAG) have been exclusively observed in paternal transmission. We report the occurrence of a new mutation that defies the pa

  7. Microsatellite allele dose and configuration establishment (MADCE): an integrated approach for genetic studies in allopolyploids

    NARCIS (Netherlands)

    Dijk, van T.; Noordijk, Y.; Dubos, T.; Bink, M.C.A.M.; Visser, R.G.F.; Weg, van de W.E.

    2012-01-01

    BACKGROUND: Genetic studies in allopolyploid plants are challenging because of the presence of similar sub-genomes, which leads to multiple alleles and complex segregation ratios. In this study, we describe a novel method for establishing the exact dose and configuration of microsatellite alleles fo

  8. Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Øhlenschlaeger, Tommy; Garred, Peter; Madsen, Hans O

    2004-01-01

    Cardiovascular disease is an important complication in patients with systemic lupus erythematosus (SLE). Variant alleles of the mannose-binding lectin gene are associated with SLE as well as with severe atherosclerosis. We determined whether mannose-binding lectin variant alleles were associated...

  9. The effect of wild card designations and rare alleles in forensic DNA database searches.

    Science.gov (United States)

    Tvedebrink, Torben; Bright, Jo-Anne; Buckleton, John S; Curran, James M; Morling, Niels

    2015-05-01

    Forensic DNA databases are powerful tools used for the identification of persons of interest in criminal investigations. Typically, they consist of two parts: (1) a database containing DNA profiles of known individuals and (2) a database of DNA profiles associated with crime scenes. The risk of adventitious or chance matches between crimes and innocent people increases as the number of profiles within a database grows and more data is shared between various forensic DNA databases, e.g. from different jurisdictions. The DNA profiles obtained from crime scenes are often partial because crime samples may be compromised in quantity or quality. When an individual's profile cannot be resolved from a DNA mixture, ambiguity is introduced. A wild card, F, may be used in place of an allele that has dropped out or when an ambiguous profile is resolved from a DNA mixture. Variant alleles that do not correspond to any marker in the allelic ladder or appear above or below the extent of the allelic ladder range are assigned the allele designation R for rare allele. R alleles are position specific with respect to the observed/unambiguous allele. The F and R designations are made when the exact genotype has not been determined. The F and R designation are treated as wild cards for searching, which results in increased chance of adventitious matches. We investigated the probability of adventitious matches given these two types of wild cards.

  10. Revealing the Genetic Variation and Allele Heterozygote Javanese and Arab Families in Malang East Java Indonesia

    Directory of Open Access Journals (Sweden)

    Nila Kartika Sari

    2014-02-01

    Results: Our result showed that the genetic variability and heterozygote allele increasing by using the 13 CODIS markers from the first generation to the next generation with paternity testing from each family were matched. Conclusion: We can conclude that in a Javanese-Arab family ethnic seems stimulate the increasing genetic variation and allele heterozygote.

  11. Correlation in chicken between the marker LEI0258 alleles and Major Histocompatibility Complex sequences

    DEFF Research Database (Denmark)

    Chazara, Olympe; Juul-Madsen, Helle Risdahl; Chang, Chi-Seng

    Background The LEI0258 marker is located within the B region of the chicken Major Histocompatibility Complex (MHC), and is surprisingly well associated with serology. Therefore, the correlation between the LEI0258 alleles and the MHC class I and the class II alleles at the level of sequences is w...

  12. Allele frequency changes due to hitch-hiking in genomic selection programs

    DEFF Research Database (Denmark)

    Liu, Huiming; Sørensen, Anders Christian; Meuwissen, Theo H E;

    2014-01-01

    of inbreeding due to changes in allele frequencies and hitch-hiking. This study aimed at understanding the impact of using long-term genomic selection on changes in allele frequencies, genetic variation and the level of inbreeding. Methods Selection was performed in simulated scenarios with a population of 400...

  13. Effects of the APOE ε2 Allele on Mortality and Cognitive Function in the Oldest Old

    DEFF Research Database (Denmark)

    Lindahl-Jacobsen, Rune; Tan, Qihua; Mengel-From, Jonas;

    2013-01-01

    Some studies indicate that the APOE ε2 allele may have a protective effect on mortality and mental health among the elderly adults. We investigated the effect of the APOE ε2 allele on cognitive function and mortality in 1651 members of the virtually extinct Danish 1905 birth cohort. We found...

  14. Google: a narrativa de uma marca mutante

    Directory of Open Access Journals (Sweden)

    Elizete de Azevedo Kreutz

    2010-01-01

    Full Text Available As marcas mutantes já fazem parte de nossa realidade, embora ainda não totalmente percebidas e/ou aceitas como tal. O presente artigo busca refletir sobre a relevância dessas novas estratégias de comunicação e branding, identificando suas principais características. Para isso, utilizamos o método de estudo de caso, o Google, ancorado nos métodos de pesquisa bibliográfica e de internet. A escolha foi intencional, posto que a organização é referência em sua categoria, mecanismo de busca, e reflete essa estratégia comunicacional contemporânea. Como resultado, as informações obtidas nos possibilitam compreender essa tendência de comportamento de marca que busca a interação com seus públicos.

  15. Substituted tetrahydroquinolines as potent allosteric inhibitors of reverse transcriptase and its key mutants

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dai-Shi; Lim, John J.; Tinney, Elizabeth; Wan, Bang-Lin; Young, Mary Beth; Anderson, Kenneth D.; Rudd, Deanne; Munshi, Vandna; Bahnck, Carolyn; Felock, Peter J.; Lu, Meiqing; Lai, Ming-Tain; Touch, Sinoeun; Moyer, Gregory; DiStefano, Daniel J.; Flynn, Jessica A.; Liang, Yuexia; Sanchez, Rosa; Prasad, Sridhar; Yan, Youwei; Perlow-Poehnelt, Rebecca; Torrent, Maricel; Miller, Mike; Vacca, Joe P.; Williams, Theresa M.; Anthony, Neville J.; Merck

    2010-09-27

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are key elements of multidrug regimens, called HAART (Highly Active Antiretroviral Therapy), that are used to treat HIV-1 infections. Elucidation of the structure-activity relationships of the thiocarbamate moiety of the previous published lead compound 2 provided a series of novel tetrahydroquinoline derivatives as potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells. The SAR optimization, mutation profiles, preparation of compounds, and pharmacokinetic profile of compounds are described.

  16. Causality between time series

    CERN Document Server

    Liang, X San

    2014-01-01

    Given two time series, can one tell, in a rigorous and quantitative way, the cause and effect between them? Based on a recently rigorized physical notion namely information flow, we arrive at a concise formula and give this challenging question, which is of wide concern in different disciplines, a positive answer. Here causality is measured by the time rate of change of information flowing from one series, say, X2, to another, X1. The measure is asymmetric between the two parties and, particularly, if the process underlying X1 does not depend on X2, then the resulting causality from X2 to X1 vanishes. The formula is tight in form, involving only the commonly used statistics, sample covariances. It has been validated with touchstone series purportedly generated with one-way causality. It has also been applied to the investigation of real world problems; an example presented here is the cause-effect relation between two climate modes, El Ni\\~no and Indian Ocean Dipole, which have been linked to the hazards in f...

  17. Mutant p53: multiple mechanisms define biologic activity in cancer

    Directory of Open Access Journals (Sweden)

    Michael Paul Kim

    2015-11-01

    Full Text Available The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of p53 alterations involve missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may acquire novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in multiple model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 are reviewed and their limitations discussed.

  18. Screening and identification of mutants of Magnaporthe grisea by REMI

    Institute of Scientific and Technical Information of China (English)

    XIONG Ruyi; LIU Juan; ZHOU Yijun; FAN Yongjian; ZHENG Xiaobo

    2007-01-01

    The plasmid pUCATPH was used to establish a transformation system in wild-type isolate M131 of Magnaporthe grisea.Six hundred and thirty-nine transformants were obtained by restriction enzyme-mediated integration (REMI) with hygromycin B (hyg B) resistance as a tag.Morphological analysis of two of the REMI mutants confirmed that they produced little melanin under black light and continued for three generations.Pathogenicity identification of six mutants screened proved that they made pathogenicity changes on three sets of differential varieties with different resistance genes.Rep-PCR analyses showed that two morphological mutants and two pathogenicity mutants differed from wild-type isolate M131 at the molecular level.RFLP analyses were performed to study the four mutants at the molecular level and the integration sites of the plasmid DNA.The results showed that the plasmid was inserted into all four mutants and that the insertion sites were random.

  19. Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity

    Energy Technology Data Exchange (ETDEWEB)

    Upchurch, R.G.; Walker, D.C.; Rollins, J.A.; Ehrenshaft, M.; Daub, M.E. (North Carolina State Univ., Raleigh (United States))

    1991-10-01

    The authors have obtained spontaneous and UV-induced stable mutants, altered in the synthesis of cercosporin, of the fungal soybean pathogen Cercospora kikuchii. The mutants were isolated on the basis of colony color on minimal medium. The UV-induced mutants accumulated, at most, 2% of wild-type cercosporin levels on all media tested. In contrast, cercosporin accumulation by the spontaneous mutants was strongly medium regulated, occurring only on potato dextrose medium but at concentrations comparable to those produced by the wild-type strain. UV-induced mutants unable to synthesize cercosporin on any medium were unable to incite lesions when inoculated onto the soybean host. Cercosporin was reproducibly isolated from all inoculated leaves showing lesions. Although cercosporin involvement in disease has been indirectly suggested by many previous studies, this is the first report in which mutants blocked in cercosporin synthesis have been used to demonstrate that cercosporin is a crucial pathogenicity factor for this fungal genus.

  20. Mutants of Cercospora kikuchii Altered in Cercosporin Synthesis and Pathogenicity.

    Science.gov (United States)

    Upchurch, R G; Walker, D C; Rollins, J A; Ehrenshaft, M; Daub, M E

    1991-10-01

    We have obtained spontaneous and UV-induced stable mutants, altered in the synthesis of cercosporin, of the fungal soybean pathogen Cercospora kikuchii. The mutants were isolated on the basis of colony color on minimal medium. The UV-induced mutants accumulated, at most, 2% of wild-type cercosporin levels on all media tested. In contrast, cercosporin accumulation by the spontaneous mutants was strongly medium regulated, occurring only on potato dextrose medium but at concentrations comparable to those produced by the wild-type strain. UV-induced mutants unable to synthesize cercosporin on any medium were unable to incite lesions when inoculated onto the soybean host. Cercosporin was reproducibly isolated from all inoculated leaves showing lesions. Although cercosporin involvement in disease has been indirectly suggested by many previous studies, this is the first report in which mutants blocked in cercosporin synthesis have been used to demonstrate that cercosporin is a crucial pathogenicity factor for this fungal genus.

  1. BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes.

    Science.gov (United States)

    de Santiago, Ines; Liu, Wei; Yuan, Ke; O'Reilly, Martin; Chilamakuri, Chandra Sekhar Reddy; Ponder, Bruce A J; Meyer, Kerstin B; Markowetz, Florian

    2017-02-24

    Allele-specific measurements of transcription factor binding from ChIP-seq data are key to dissecting the allelic effects of non-coding variants and their contribution to phenotypic diversity. However, most methods of detecting an allelic imbalance assume diploid genomes. This assumption severely limits their applicability to cancer samples with frequent DNA copy-number changes. Here we present a Bayesian statistical approach called BaalChIP to correct for the effect of background allele frequency on the observed ChIP-seq read counts. BaalChIP allows the joint analysis of multiple ChIP-seq samples across a single variant and outperforms competing approaches in simulations. Using 548 ENCODE ChIP-seq and six targeted FAIRE-seq samples, we show that BaalChIP effectively corrects allele-specific analysis for copy-number variation and increases the power to detect putative cis-acting regulatory variants in cancer genomes.

  2. The number of self-incompatibility alleles in a finite, subdivided population

    DEFF Research Database (Denmark)

    Schierup, M H

    1998-01-01

    The actual and effective number of gametophytic self-incompatibility alleles maintained at mutation-drift-selection equilibrium in a finite population subdivided as in the island model is investigated by stochastic simulations. The existing theory founded by Wright predicts that for a given...... population size the number of alleles maintained increases monotonically with decreasing migration as is the case for neutral alleles. The simulation results here show that this is not true. At migration rates above Nm = 0.01-0.1, the actual and effective number of alleles is lower than for an undivided...... population with the same number of individuals, and, contrary to Wright's theoretical expectation, the number of alleles is not much higher than for an undivided population unless Nm

  3. Multi-primer target PCR for rapid identification of bovine DRB3 alleles.

    Science.gov (United States)

    Ledwidge, S A; Mallard, B A; Gibson, J P; Jansen, G B; Jiang, Z H

    2001-08-01

    Multi-primer target polymerase chain reaction (MPT-PCR) is a rapid method for the identification of specific BoLA-DRB3 alleles. In a single PCR reaction, the presence of two alleles associated with increased risk, DRB3.2*23 (DRB3*2701-2703, 2705-2707) and decreased risk, DRB3.2*16 (DRB3*1501, 1502), of mastitis in Canadian Holstein can be detected. Two outer primers amplify exon 2 of DRB3. Simultaneously, two inner, allele-specific primers amplify individual alleles. Initially, 40 cows previously typed by PCR-restriction fragment length polymorphism (PCR-RFLP) were genotyped using the multi-primer approach. An additional 30 cows were first genotyped by multi-primer target PCR, then by PCR-RFLP. All animals were correctly identified and there were no false positives. This technique can readily be modified to identify other BoLA alleles of interest.

  4. The effect of subdivision on variation at multi-allelic loci under balancing selection

    DEFF Research Database (Denmark)

    Schierup, M H; Vekemans, X; Charlesworth, D

    2000-01-01

    Simulations are used to investigate the expected pattern of variation at loci under different forms of multi-allelic balancing selection in a finite island model of a subdivided population. The objective is to evaluate the effect of restricted migration among demes on the distribution...... of polymorphism at the selected loci at equilibrium, and to compare the results with those expected for a neutral locus. The results show that the expected number of alleles maintained, and numbers of nucleotide differences between alleles, are relatively insensitive to the migration rate, and differentiation...... remains low even under very restricted migration. However, nucleotide divergence between copies of functionally identical alleles increases sharply when migration decreases. These results are discussed in relation to published surveys of allelic diversity in MHC and plant self-incompatibility systems...

  5. Inter-allelic interactions play a major role in microsatellite evolution.

    Science.gov (United States)

    Amos, William; Kosanović, Danica; Eriksson, Anders

    2015-11-07

    Microsatellite mutations identified in pedigrees confirm that most changes involve the gain or loss of single repeats. However, an unexpected pattern is revealed when the resulting data are plotted on standardized scales that range from the shortest to longest allele at a locus. Both mutation rate and mutation bias reveal a strong dependency on allele length relative to other alleles at the same locus. We show that models in which alleles mutate independently cannot explain these patterns. Instead, both mutation probability and direction appear to involve interactions between homologues in heterozygous individuals. Simple models in which the longer homologue in heterozygotes is more likely to mutate and/or biased towards contraction readily capture the observed trends. The exact model remains unclear in all its details but inter-allelic interactions are a vital component, implying a link between demographic history and the mode and tempo of microsatellite evolution.

  6. [Eremothecium ashbyii mutants resistant to 2,6-diaminopurine].

    Science.gov (United States)

    Stepanov, A I; Beburov, M Iu; Zhdanov, V G

    1975-01-01

    3 groups of Eremothecium ashbyii mutants resistant to 5-10(-3) M 2,6-diaminopurine (DAP) ahve been obtained. The mutants of the 1st group (Dap-r) are selected from the in