WorldWideScience

Sample records for allanite

  1. Rapid chemical analysis of allanite

    International Nuclear Information System (INIS)

    Nishiyama, Goro; Hayashi, Hiroshi

    1981-01-01

    Rapid chemical analysis of allanite was studied by atomic absorption spectrophotometry. Powdered sample was fused with mixture of sodium carbonate anhydrous and borax (4 : 1 weight) in platinum crucible and sample solution was prepared. SiO 2 , Fe 2 O 3 , Al 2 O 3 , MnO and rare earth metals were determined by atomic absorption spectrophotometry, CaO, MgO and Ce 2 O 3 by titration, ThO 2 by colorimetry, and La 2 O 3 by flame photometry respectively. For sample solution treated with hydrofluoric acid and sulfuric acid. Na 2 O and K 2 O were determined by atomic absorption spectrophotometry, TiO 2 and P 2 O 5 by colorimetry. Chemical analyses for four samples were carried out and gave consistent results. (author)

  2. Allanite behaviour during incipient melting in the southern Central Alps

    DEFF Research Database (Denmark)

    Gregory, C.J.; Rubatto, D.; Hermann, J.

    2012-01-01

    al., 2008; Gabudianu et al., 2009). However, significant fluid interaction and deformation can expose allanite to open-system isotopic behaviour, even at low metamorphic temperatures (Gabudianu et al., 2009). In comparison, allanite formation in high-grade rocks, and the response of U–Th–Pb isotope...... was ablated into a mixed He-Ar (1:3) carrier gas (gas flow ~1.2 L/min). Each isotope analysis was of 65 s duration in time-resolved (peak hopping) analysis mode, including 40 s of ablation and 25 s monitoring gas blank. The depth of laser drilling was ~20–25 µm per analysis. A post-plasma oxide was used...... was processed offline using an in-house macro-based EXCEL spreadsheet. Each analysis was corrected for background gas blank and for laser-induced element fractionation processes, which occur during stationary laser sampling (e.g. Eggins et al., 1998). External calibration of 208Pb/232Th was done against...

  3. Preservation of Permian allanite within an Alpine eclogite facies shear zone at Mt Mucrone, Italy: Mechanical and chemical behaviour of allanite during mylonitization

    DEFF Research Database (Denmark)

    Cenki-Tok, Benedicte; Oliot, E.; Berger, Alfons

    2011-01-01

    This study addresses the mechanical and cehmical behavior of allanite during shear zone formation under high-pressure metamorphism. Understanding physico-chemical processes related to the retention or resetting of Pb isotopes in allanite during geological processes is essential for robust......, and they were thus chemically and mechanically shielded during Alpine mylonitization. In undeformed samples (8a and 8b), two populations of epidote group minerals were found. Allanite forms either coronas around Permianmonazite or individual grains with patchy zoning. Both types yield Permian ages (208Pb/232Th...... age: 291±5 Ma). On the other hand, grains of REE-rich clinozoisite of Cretaceous age are found in undeformed rocks. These grains appear as small fragments with embayed surface outlines and minute satellites or rims around Permian allanite. These (re)crystallized grains are Sr-rich and show mosaic...

  4. Constraining metamorphic rates through allanite and monazite petrochronology: a case study from the Miyar Valley (High Himalayan Crystalline of Zanskar, NW India)

    Science.gov (United States)

    Robyr, Martin; Goswami-Banerjee, Sriparna

    2014-05-01

    Dating metamorphic rocks raises specific issues because metamorphism comprises a complex sequence of structural changes and chemical reactions that can be extended over millions or tens of millions of years so that metamorphic rocks cannot in general be said to have "an age". Therefore, an accurate interpretation of radiometric age data from metamorphic rocks requires first to establish the behavior of the isotopic system used for dating relative to the pressure and temperature (P-T) conditions that a metamorphic rock experienced. As the U-Th-Pb system in LREE-accessory phases like monazite and allanite is not easily reset during subsequent temperature increase, allanite and monazite U-Th-Pb ages are collectively interpreted as reflecting crystallization ages. As a consequence, to correctly interpret allanite and monazite crystallization ages, it is essential to accurately determine the physical conditions of their crystallization. A meticulous account of the chemical and textural evolution of monazite and allanite along a well constrained prograde pelitic sequence of the High Himalayan Crystalline of Zanskar (Miyar Valley; e.g. Robyr et al., 2002; 2006; 2014) reveals that: (1) the occurrence of the first metamorphic allanite coincides with the biotite-in isograd and (2) the formation of the first metamorphic monazite occurs at the staurolite-in isograd. The finding of both monazite and allanite as inclusion in staurolite porphyroblasts indicates that the breakdown of allanite and the formation of monazite occurred during staurolite crystallization. Thermobarometry results show that the metamorphic allanites are appeared in the 400-420 °C, while the signature of the first metamorphic monazite is found at ~ 600 °C with staurolite-in isograd. Allanite and monazite U-Th-Pb ages thus constrain the timing when the rocks reached the ~ 420 °C and ~ 600 °C isotherms respectively. In situ LA-ICPMS dating of coexisting allanite and monazite inclusions in garnet

  5. Resolving the age of Wilson Creek Formation tephras and the Mono Lake excursion using high-resolution SIMS dating of allanite and zircon rims

    Science.gov (United States)

    Vazquez, J. A.; Lidzbarski, M. I.

    2012-12-01

    Sediments of the Wilson Creek Formation surrounding Mono Lake preserve a high-resolution archive of glacial and pluvial responses along the eastern Sierra Nevada due to late Pleistocene climate change. An absolute chronology for the Wilson Creek stratigraphy is critical for correlating the paleoclimate record to other archives in the western U.S. and the North Atlantic region. However, multiple attempts to date the Wilson Creek stratigraphy using carbonates and interbedded rhyolitic tephras yield discordant 14C and 40Ar/39Ar results due to open-system effects, carbon reservoir uncertainties, as well as abundant xenocrysts entrained during eruption. Ion microprobe (SIMS) 238U-230Th dating of the final increments of crystallization recorded by allanite and zircon autocrysts from juvenile pyroclasts yields ages that effectively date eruption of key tephra beds and resolve age uncertainties about the Wilson Creek stratigraphy. To date the final several micrometers of crystal growth, individual allanite and zircon crystals were embedded in soft indium to allow sampling of unpolished rims. Isochron ages derived from rims on coexisting allanite and zircon (± glass) from hand-selected pumiceous pyroclasts delimit the timing of Wilson Creek sedimentation between Ashes 7 and 19 (numbering of Lajoie, 1968) to the interval between ca. 27 to ca. 62 ka. The interiors of individual allanite and zircon crystals sectioned in standard SIMS mounts yield model 238U-230Th ages that are mostly hydrologic responses in the Sierra Nevada and Mono Basin to climate change, with intervals of lake filling and glacial-snowpack melting that are in phase with peaks in spring insolation. Moreover, the results demonstrate that high-spatial resolution SIMS dating of accessory mineral rims is an alternative and promising approach for resolving the depositional ages of silicic tephras containing minerals that crystallized over protracted intervals or that are plagued by incorporation of xenocrysts

  6. LA-ICP-MS U-Th-Pb Dating and Trace Element Geochemistry of Allanite: Implications on the Different Skarn Metallogenesis between the Giant Beiya Au and Machangqing Cu-Mo-(Au Deposits in Yunnan, SW China

    Directory of Open Access Journals (Sweden)

    Yu Fu

    2017-12-01

    Full Text Available The giant Beiya Au skarn deposit and Machangqing porphyry Cu-Mo-(Au deposit are located in the middle part of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt. The Beiya deposit is the largest Au skarn deposit in China, whilst the Machangqing deposit comprises a well-developed porphyry-skarn-epithermal Cu-Mo-(Au mineral system. In this paper, we present new allanite U-Th-Pb ages and trace element geochemical data from the two deposits and discuss their respective skarn metallogenesis. Based on the mineral assemblage, texture and Th/U ratio, the allanite from the Beiya and Machangqing deposits are likely hydrothermal rather than magmatic. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS allanite U-Th-Pb dating has yielded Th-Pb isochron ages of 33.4 ± 4.6 Ma (MSWD = 0.22 (Beiya and 35.4 ± 9.8 Ma (MSWD = 0.26 (Machangqing, representing the retrograde alteration and magnetite skarn mineralization age of the two deposits. The Beiya and Machangqing alkali porphyry-related mineralization are synchronous and genetically linked to the magmatic hydrothermal activities of the Himalayan orogenic event. Major and trace element compositions reveal that the Beiya allanite has higher Fe3+/(Fe3+ + Fe2+ ratios, U content and Th content than the Machangqing allanite, which indicate a higher oxygen fugacity and F content for the ore-forming fluids at Beiya. Such differences in the ore-forming fluids may have contributed to the different metallogenic scales and metal types in the Beiya and Machangqing deposit.

  7. Zircon and allanite U-Pb ID-TIMS ages of vaugnerites from the Calzadilla pluton, Salamanca (Spain): dating mantle-derived magmatism and post-magmatic subsolidus overprint

    International Nuclear Information System (INIS)

    López-Moro, F.J.; Romer, R. L.; López-Plaza, M.; González Sánchez, M.

    2017-01-01

    Basic to intermediate high-K, high-Mg mantle-derived rocks occur throughout the Iberian Massif and are particularly important in the Tormes Dome, where vaugnerites form several stocks and small plutons. One of the largest and geochemically most variable among these plutons is the Calzadilla pluton in the Tormes Dome that crystallized at 318 ± 1.4Ma (Bashkirian; U-Pb TIMS zircon). This age reveals that the vaugnerite pluton was emplaced during the transition from late D2 extensional deformation to early D3 contractional deformation (319 to 317Ma). Large-scale extension in the area resulted, on one hand, in extensive anatexis in the crust due to quasiisothermal decompression and mica-dehydration melting and, on the other hand, in the upwelling of the mantle, which induced partial melting of the enriched domains in the lithospheric mantle. The driving reason why crustal and mantle melts were coeval is extension. The U-Pb ID-TIMS age of allanite is not related to the emplacement nor cooling of the Calzadilla vaugnerite, but it seems to be related to a younger subsolidus overprint ca. 275Ma that, in the scale of the Central Iberian Zone, corresponds to a period of hydrothermal alteration, including episyenite formation and tungsten mineralization.

  8. Zircon and allanite U-Pb ID-TIMS ages of vaugnerites from the Calzadilla pluton, Salamanca (Spain): dating mantle-derived magmatism and post-magmatic subsolidus overprint

    Energy Technology Data Exchange (ETDEWEB)

    López-Moro, F.J.; Romer, R. L.; López-Plaza, M.; González Sánchez, M.

    2017-07-01

    Basic to intermediate high-K, high-Mg mantle-derived rocks occur throughout the Iberian Massif and are particularly important in the Tormes Dome, where vaugnerites form several stocks and small plutons. One of the largest and geochemically most variable among these plutons is the Calzadilla pluton in the Tormes Dome that crystallized at 318 ± 1.4Ma (Bashkirian; U-Pb TIMS zircon). This age reveals that the vaugnerite pluton was emplaced during the transition from late D2 extensional deformation to early D3 contractional deformation (319 to 317Ma). Large-scale extension in the area resulted, on one hand, in extensive anatexis in the crust due to quasiisothermal decompression and mica-dehydration melting and, on the other hand, in the upwelling of the mantle, which induced partial melting of the enriched domains in the lithospheric mantle. The driving reason why crustal and mantle melts were coeval is extension. The U-Pb ID-TIMS age of allanite is not related to the emplacement nor cooling of the Calzadilla vaugnerite, but it seems to be related to a younger subsolidus overprint ca. 275Ma that, in the scale of the Central Iberian Zone, corresponds to a period of hydrothermal alteration, including episyenite formation and tungsten mineralization.

  9. Extraction of Cerium (IV) Using Di–n-butylsulfoxide in Chloroform ...

    African Journals Online (AJOL)

    NICO

    2015-01-12

    Jan 12, 2015 ... Cerium is the most abundant among rare earth metals and is extracted from monazite, allanite and ... Variamine blue, 2,4, dihydroxy benzophenoe benzoic hydrazone, ... thoroughly for colour development. The reagent blank ...

  10. Některé informace z koncentrátů těžkých minerálů z melechovského masivu

    Czech Academy of Sciences Publication Activity Database

    Procházka, V.; Žáček, M.; Chlupáčová, M.; Matějka, D.; Korbelová, Zuzana; Klementová, Mariana

    2011-01-01

    Roč. 2011, - (2011), s. 172-176 ISSN 0514-8057 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z40320502 Keywords : heavy minerals * uraninite * tourmaline * allanite Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/zpravy/obsah/2010/zpravy-2010-39.pdf

  11. Physico-chemical control on the REE minerals in chloritoid-grade metasediments from a single outcrop (Central Alps, Switzerland)

    DEFF Research Database (Denmark)

    Janots, Emilie; Berger, Alfons; Engi, Martin

    2011-01-01

    minerals record fluid/ rock interaction that occurred at different deformation stages. Arsenic concentrations in REE phosphates appear to reflect conditions of elevated oxygen fugacity. In cases where such conditions are not inherited from the sedimentary protolith, the oxidation reflects a hydrothermal......). Allanite formation is texturally coeval with apatite, chloritoid and xenotime, during the main tectono-metamorphic stage. Allanite formation implies significant mass transfer of Ca and P via a fluid phase, which is not clearly related to advective transport. In Ga06, elongate monazite grains have...... a detrital core rimmed by newly formed monazite. Significant arsenic contents are found in newly formed monazite, xenotime and apatite. Monazite texture and composition suggest (re)crystallization by pressure solution, at an oxygen fugacity sufficient to partly oxidize As, S, U, and Fe. Whether...

  12. Detection of rare-earth-mineral phases by scanning electron microscopy/energy dispersive x-rays (SEM/EDX) in the alkaline complexes of Tamil Nadu

    International Nuclear Information System (INIS)

    Sengupta, S.K.; Nathan, N.P.; Ganesan, V.; Shome, S.

    2005-01-01

    The alkaline complexes of the Southern Granulite Terrain (SGT) are generally restricted within NNW-SSE-trending Dharmapuri Shear Zone (DSZ), extending from Gudiyatham in the north and Bhavani in the south in Tamil Nadu. REE-rich phases have been studied under EDX (Energy Dispersive X-rays) from the different alkaline suites of Tamil Nadu. In Elagiri, the Th-rich epidote/allanite is concentrically zoned and occurs in the outermost coarse sub-solvus syenite, indicating that the REE concentration is restricted within the late-stage magmatic activity. In Koratti, the apatites are LREE rich. In Samalpatti Complex, the carbonatites host a number of REE-rich minerals commonly classified as betafite, along with nioborutite and nioboilmenite. The niobo-rutile and niobo-ilmenite show exsolved texture. The betafite is zoned with mendelyeerite. Some of the molybdenite in Samalpatti is dendritic indicating incomplete crystallisation. In Sivamalai, the REE phases are generally associated with ferrosyenite and nepheline syenite as adsorbed grains around apatite or carbonate. The REE minerals are Zr-REE titanate, REE-titano silicate and REE-yttrium silicate. In the Pikkili Complex, the REE minerals generally occur as rim around apatite and calcite. A discrete metamict allanite grain with radial cracks occurs within syenite. In Pakkanadu Complex zoned allanite occurs with distinct chemical zonation in syenite. Monazite and celesto-barite are associated with barite suggesting that the REE phases are developed in the late intrusive stage. (author)

  13. Rare earth mineralisation in the Cnoc nan Cuilean intrusion of the Loch Loyal Syenite Complex, northern Scotland

    Science.gov (United States)

    Walters, A. S.; Hughes, H. S. R.; Goodenough, K. M.; Gunn, A. G.; Lacinska, A.

    2012-04-01

    Due to growing global concerns about security of rare earth element (REE) supply, there is considerable interest in identifying new deposits and in understanding the processes responsible for their formation. Ongoing studies by BGS on potential indigenous resources have focused on the Caledonian alkaline intrusive complexes of north-west Scotland. The highest values of total rare earth oxide (TREO) have been found in the Cnoc nan Cuilean intrusion of the Loch Loyal Complex in Sutherland. The Loch Loyal Syenite Complex comprises three intrusions: Ben Loyal, Beinn Stumanadh and Cnoc nan Cuilean. The Cnoc nan Cuilean intrusion, which covers an area of about 3 km2, can be subdivided into two zones: a Mixed Syenite Zone (MSZ) and a later Massive Leucosyenite Zone (MLZ). Evidence from field mapping and 3D-modelling suggests that the melasyenites were passively emplaced to form a lopolith concordant with the Moine and Lewisian country rocks. A later episode of leucosyenitic magmatism caused mixing and mingling with the melasyenite forming the MSZ. Continued intrusion of leucosyenite melts then formed the MLZ [1]. The melasyenites are enriched in TREO relative to the leucosyenites with average values of 3800 ppm and 1400 ppm respectively. The highest contents, up to 20 000 ppm TREO, are found in narrow biotite-magnetite-rich veins identified in a single stream section near the eastern margin of the intrusion. All lithologies are light rare earth element (LREE) dominated with high concentrations of Ba and Sr and low levels of Nb and Ta. Various REE-bearing minerals are present but allanite is dominant, being present in all major magmatic lithologies and the biotite-magnetite veins. Three generations of allanite have been identified: a late-magmatic phase rimming apatite; allanite micro veinlets cross-cutting the syenite; and a third phase only observed in the biotite-magnetite veins. TREO concentrations of the different allanite generations are similar, averaging 22%. The

  14. Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho Cobalt Belt: Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system

    Science.gov (United States)

    Slack, John F.

    2012-01-01

    Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes.Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), ∑REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As

  15. Enrichment of Rare Earth Elements during magmatic and post-magmatic processes: a case study from the Loch Loyal Syenite Complex, northern Scotland

    Science.gov (United States)

    Walters, A. S.; Goodenough, K. M.; Hughes, H. S. R.; Roberts, N. M. W.; Gunn, A. G.; Rushton, J.; Lacinska, A.

    2013-10-01

    Concern about security of supply of critical elements used in new technologies, such as the Rare Earth Elements (REE), means that it is increasingly important to understand the processes by which they are enriched in crustal settings. High REE contents are found in syenite-dominated alkaline complexes intruded along the Moine Thrust Zone, a major collisional zone in north-west Scotland. The most northerly of these is the Loch Loyal Syenite Complex, which comprises three separate intrusions. One of these, the Cnoc nan Cuilean intrusion, contains two mappable zones: a Mixed Syenite Zone in which mafic melasyenite is mixed and mingled with leucosyenite and a Massive Leucosyenite Zone. Within the Mixed Syenite Zone, hydrothermal activity is evident in the form of narrow altered veins dominated by biotite and magnetite; these are poorly exposed and their lateral extent is uncertain. The REE mineral allanite is relatively abundant in the melasyenite and is extremely enriched in the biotite-magnetite veins, which have up to 2 % total rare earth oxides in bulk rock analyses. An overall model for development of this intrusion can be divided into three episodes: (1) generation of a Light Rare Earth Element (LREE)-enriched parental magma due to enrichment of the mantle source by subduction of pelagic carbonates; (2) early crystallisation of allanite in melasyenite, due to the saturation of the magma in the LREE; and (3) hydrothermal alteration, in three different episodes identified by petrography and mineral chemistry, generating the intense enrichment of REE in the biotite-magnetite veins. Dating of allanite and titanite in the biotite-magnetite veins gives ages of c. 426 Ma, overlapping with previously published crystallisation ages for zircon in the syenite.

  16. Petrology, chronology and sequence of vein systems: Systematic magmatic and hydrothermal history of a major intracontinental shear zone, Canadian Appalachians

    Science.gov (United States)

    Pe-Piper, Georgia; Piper, David J. W.; McFarlane, Chris R. M.; Sangster, Chris; Zhang, Yuanyuan; Boucher, Brandon

    2018-04-01

    Intra-continental shear zones developed during continental collision may experience prolonged magmatism and mineralization. The Cobequid Shear Zone formed part of a NE-SW-trending, orogen-parallel shear system in the late Devonian-early Carboniferous, where syn-tectonic granite-gabbro plutons and volcanic rocks 4 km thick were progressively deformed. In late Carboniferous to Permian, Alleghanian collision of Africa with Laurentia formed the E-W trending Minas Fault Zone, reactivating parts of the Cobequid Shear Zone. The 50 Ma history of hydrothermal mineralization following pluton emplacement is difficult to resolve from field relationships of veins, but SEM study of thin sections provides clear detail on the sequence of mineralization. The general paragenesis is: albite ± quartz ± chlorite ± monazite → biotite → calcite, allanite, pyrite → Fe-carbonates, Fe-oxides, minor sulfides, calcite and synchysite. Chronology was determined from literature reports and new U-Pb LA-ICPMS dating of monazite and allanite in veins. Vein mineralization was closely linked to magmatic events. Vein emplacement occurred preferentially during fault movement recognised from basin-margin inversion, as a result of fractures opening in the damage zone of master faults. The sequence of mineralization, from ca. 355 Ma riebeckite and albite veins to ca. 327 (-305?) Ma siderite-magnetite and sulfide mineralization, resembles Precambrian iron-oxide-copper-gold (IOCG) systems in the literature. The abundant magmatic Na, halogens and CO2 in veins and some magmatic bodies, characteristic of IOCG systems, were derived from the deeply subducted Rheic Ocean slab with little terrigenous sediment. Regional extension of the Magdalen Basin caused asthenospheric upwelling and melting of the previously metasomatized sub-continental lithospheric mantle. Crustal scale strike-slip faulting facilitated the rise of magmas, resulting in high heat flow driving an active hydrothermal system. Table S2

  17. Low-degree partial melting of metapelites - another possible implement for selective concentration of uranium: Example from the Rozna uranium deposit, Bohemian Massif

    International Nuclear Information System (INIS)

    Leichmann, J.; Matula, M.; Broska, I.; Holeczy, D.

    2002-01-01

    Monazite, as the main carrier of U and Th in host biotite gneiss at the Rozna uranium deposit, was replaced by allanite during the process of partial melting. The transformation was accompanied by a release of U, and to a lesser extent of Th, from the monazite lattice. The liberated U and Th crystallized in the extracted granitic melt mainly in the form of thorogummite or cheralite. The granites are depleted in HFS and LREE. Garnet-poor granites are depleted in HREE as well, whereas garnet-rich types are enriched in HREE. (author)

  18. Rare earths, thorium, and other minor elements in sphene from some plutonic rocks in West-Central Alaska

    International Nuclear Information System (INIS)

    Staatz, M.H.; Conklin, N.M.; Brownfield, I.K.

    1977-01-01

    Sphene is an abundant accessory mineral in some abnormally radioactive plutonic rocks in west-central Alaska. Seven samples of sphene from four different areas in west-central Alaska contained from 20,350 to 39,180 parts per million total rare earths and 390 to 2000 ppM thorium. The lanthanide content in six of the seven sphenes is chiefly the light rare earths and is similar to that of crystal abundance; a seventh sphene from the Darby Mountains, however, contains above average amounts of the heavy rare earths. A comparison of the lanthanide distribution in sphene from several areas indicates that the structure of sphene will accommodate whatever lanthanides are available when the mineral crystallizes. The amount of thorium and rare earths in sphene is also affected by the presence of other accessory minerals. Sphene in rocks containing either allanite or zircon has a lower thorium content than in rocks that do not contain allanite or zircon. Sphene, because of its abundance, may contain the greater part of the rare earths and thorium in some of the plutonic rocks of west-central Alaska

  19. Radiatives elements distribution in Serra do Carambei granite, Parana, Brazil

    International Nuclear Information System (INIS)

    Pinto-Coelho, C.V.; Siedlecki, K.N.

    1988-01-01

    In the Serra do Carambei Granite, the uranium present in the rock in anomalous concentration is hosted, preferentially, in accessory mineralogical phases-zircon, xenotime, magnetite and ilmenite, and, in lesser proportion, in the essential minerals of the rock-potassium feldspar and also iron oxydes/hydroxydes and alterated biotite. Optical petrography, autorradiomicrography, scanning electronic microscopy, and the utilization of correlation matrixes and the respective dendrograms revealed a distribution of radioactive elements basically controlled by autometassomatic, tardi/pos-magmatic or supergene processes. Intrusive felsic dikes in the Serra do Carambei Granite have radioelement concentration level approximately four times higher than the enclosing granite, where uranium as well as thorium is preferentially found in metamictized accessory minerals-zircon and allanite. (author) [pt

  20. Dating emplacement and evolution of the orogenic magmatism in the internal Western Alps

    DEFF Research Database (Denmark)

    Berger, Alfons; Thomsen, Tonny B.; Ovtcharova, Maria

    2012-01-01

    The Canavese Line in the Western Alps represents the position in the Alpine chain, where alkaline and calc-alkaline magmatism occur in close spatial and temporal association. In addition to available data on the alkaline Valle del Cervo Pluton, we present petrological and geochemical data...... on the Miagliano tonalite. The latter is of special interest, because it is located in the south-eastern side of the Canavese Line, in contrast to most Periadriatic Plutons. The dioritic to tonalitic rocks of the Miagliano Pluton represent an intermediate stage of a calc-alkaline differentiation, demonstrated...... by relics of two different pyroxenes as well as the texture of allanite. Hornblende barometry indicates pressures of similar to 0.46 GPa consistent with the presence of magmatic epidote. Field relationships between the two Plutons, the volcanic and volcaniclastic rocks of the Biella Volcanic Suite...

  1. Trace and major elements in rock samples from Itingussu River Basin, Coroa-Grande, Rio de Janeiro

    International Nuclear Information System (INIS)

    Araripe, D.R.; Patchineelam, S.R.; Bellido, A.V.B.; Vasconcellos, M.B.A.

    2006-01-01

    The goal of the present work was to determine the concentration of 23 elements by instrumental neutron activation analysis in rock samples from the vicinity of Itingussu River, in order to investigate the contribution of trace and major elements from the local lithology to the river basin. The Itingussu River Basin ends in a mangrove area not yet largely impacted by antropogenic activities. So far, there are no data for the concentration of trace elements in that region, even though these data are important to the understanding of the influence of the rocks on the composition of the mangrove sediments. The results showed some enrichment of Th and some light rare earths, probably because of the presence of the mineral allanite and other accessory minerals, as identified by petrographic analysis. (author)

  2. Micro-structural and compositional variations of hydrothermal epidote-group minerals from a peralkaline granite, Corupá Pluton, Graciosa Province, South Brazil, and their petrological implications

    Directory of Open Access Journals (Sweden)

    Silvio R.F. Vlach

    2012-06-01

    Full Text Available Epidote-group minerals, together with albite, quartz, fluorite, Al-poor and Fe-rich phyllosilicates, zircon, and minor oxides and sulphides, are typical hydrothermal phases in peralkaline alkali-feldspar granites from the Corupá Pluton, Graciosa Province, South Brazil. The epidote-group minerals occur as single crystals and as aggregates filling in rock interstices and miarolitic cavities. They display complex recurrent zoning patterns with an internal zone of ferriallanite-(Ce, followed by allanite-(Ce, then epidote-ferriepidote, and an external zone with allanite-(Ce, with sharp limits, as shown in BSE and X-ray images. REE patterns show decreasing fractionation degrees of LREE over HREE from ferriallanite to epidote. The most external allanite is enriched in MREE. LA-ICP-MS data indicate that ferriallanite is enriched (>10-fold in Ti, Sr and Ga, and depleted in Mg, Rb, Th and Zr relative to the host granite. Allanite has lower Ga and Mn and higher Zr, Nb and U contents as compared to ferriallanite, while epidote is enriched in Sr, U and depleted in Pb, Zr, Hf, Ti and Ga. The formation of these minerals is related to the variable concentrations of HFSE, Ca, Al, Fe and F in fluids remaining from magmatic crystallization, in an oxidizing environment, close to the HM buffer. L-MREE were in part released by the alteration of chevkinite, their main primary repository in the host rocks.Minerais do grupo do epidoto, com albita, quartzo, fluorita, filossilicatos pobres em Al e ricos em Fe, zircão e quantidades menores de óxidos e sulfetos são fases hidrotermais típicas em álcali-feldpato granitos peralcalinos do Pluton Corupá, Província Graciosa, Sul do Brasil. Os minerais do grupo do epidoto ocorrem como cristais individuais ou agregados que preenchem interstícios e cavidades miarolíticas na rocha. Mostram zonamento complexo, recorrente, descrito por uma zona interna de ferriallanita-(Ce, seguida por allanita-(Ce, epidoto-ferriepidoto e uma

  3. New Gallium End-Member in Epidote Group

    Science.gov (United States)

    Soboleva, A. A.; Varlamov, D.; Mayorova, T.

    2011-12-01

    Unique ultrahigh-Ga (Ga up to 14.5 wt. %) mineral of epidote group is discovered in Tykatlova gold-sulfure ore occurrence in the eastern slope of the Subpolar Urals, Russia. It is the first find of the Ga silicate mineral in the world. Only five Ga minerals are presented in the IMA official list. Generally, two unique deposites in Africa contain Ga minerals - Tsumeb in Namibia and Kipushi in DR Congo. Tykatlova occurrence is situated in early Ordovician rhyolites and rhyodacites metamorphosed in greenschist facies, sulfide mineralization is located in fault zones. Ga-phases were found out in sphalerite-pyrite-galena assemblage with chalcopyrite and minor Ag-bearing bornite, tetrahedrite-tennantite, various Ag and Cu sulfides and sulfosalts. Secondary ore minerals are anglesite, cerussite, lead and zinc hydroxides. Vein minerals are quartz, calcite, Zn-Mn carbonates, anhydrite (or gypsum). Ga-minerals are usually inclusions (common in sphalerite, sometimes in pyrite and galena), they are rarely located between grains of sulfides or quartz. Ga-phases are assigned to epidote group due to morphology of grains, their chemical composition (EPMA using EDS and WDS), stoichiometry and Raman data. Their grains are elongated, roundish or well-shaped, they are 30-60 up to 100 μm in length, with complex zonality. The general sequence of zones from the core to rims: a) "epidote-(Ga)" with 6-20 wt.% Ga2O3, REE are almost absent; b) high Ga allanite-(Ce) with 3-11 wt.% Ga2O3, 3-20 wt.% REE (calculated as oxide); c) allanite-(Ce) with 0.0-2.0 wt.% Ga2O3, 4-19 wt.% REE; d) epidote-allanite rims without Ga, 0-6 wt.% REE. Empirical formula of phases mostly enriched in Ga: (Ca1.88Mg0.15Mn0.03)2.06(Al1.77Ga0.97Fe3+0.26)3.00(Si2.91Al0.09)3O12(OH) (Ca1.85Mg0.11Mn0.02)1.98(Al1.89Ga1.03Fe3+0.19)3.11(Si2.93Al0.07)3O12(OH). Crystal chemistry of Ga-epidote isn't clear yet, but we assume that Ga substitutes Fe3+ rather than Al. Correlation factor in Fe3+-Ga pair (core zones of grains) reaches

  4. Structural controls and evolution of gold-, silver-, and REE-bearing copper-cobalt ore deposits, Blackbird district, east-central Idaho: Epigenetic origins

    Science.gov (United States)

    Lund, K.; Tysdal, Russell G.; Evans, Karl V.; Kunk, Michael J.; Pillers, Renee M.

    2011-01-01

    The Cu-Co ± Au (± Ag ± Ni ± REE) ore deposits of the Blackbird district, east-central Idaho, have previously been classified as Besshi-type VMS, sedex, and IOCG deposits within an intact stratigraphic section. New studies indicate that, across the district, mineralization was introduced into the country rocks as a series of structurally controlled vein and alteration systems. Quartz-rich and biotite-rich veins (and alteration zones) and minor albite and siderite veinlets maintain consistent order and sulfide mineral associations across the district. Both early and late quartz veins contain chalcopyrite and pyrite, whereas intermediate-stage tourmaline-biotite veins host the cobaltite. Barren early and late albite and late carbonate (generally siderite) form veins or are included in the quartz veins. REE minerals, principally monazite, allanite, and xenotime, are associated with both tourmaline-biotite and late quartz veins. The veins are in mineralized intervals along axial planar cleavage, intrafolial foliation, and shears.

  5. Provenance of radioactive placers, Big Meadow area, Valley and Boise Counties, Idaho

    International Nuclear Information System (INIS)

    Truesdell, D.; Wegrzyn, R.; Dixon, M.

    1977-02-01

    For many years, radioactive black-sand placers have been known to be present in the Bear Valley area of west-central Idaho. The largest of these is in Big Meadow, near the head of Bear Valley Creek. Presence of these placers suggests that low-grade uranium deposits might occur in rocks of the Idaho Batholith, adjacent to Bear Valley. This study was undertaken to locate the provenance of the radioactive minerals and to identify problems that need to be solved before undertaking further investigations. The principal radioactive minerals in these placers are monazite and euxenite. Other minerals include columbite, samarskite, fergusonite, xenotime, zircon, allanite, sphene, and brannerite. Only brannerite is a uranium mineral; the others contain uranium as an impurity in crystal lattices. Radiometric determinations of the concentration of uranium in stream sediments strongly indicate that the radioactive materials originate in an area drained by Casner and Howard Creeks. Equivalent uranium levels in bedrock are highest on the divide between Casner and Howard Creeks. However, this area is not known to contain low-grade uranium occurrences. Euxenite, brannerite, columbite-tantalite, samarskite, and allanite are the principal radioactive minerals that were identified in rock samples. These minerals were found in granite pegmatites, granites, and quartz monzonites. Appreciably higher equivalent uranium concentrations were also found within these rock types. The major problem encountered in this study was the difficulty in mapping bedrock because of extensive soil and glacial mantle. A partial solution to this problem might be the application of radon emanometry so that radiometric measurements would not be limited to the sparse bedrock samples

  6. The Lagoa Real subalkaline granitic complex (south Bahia, Brazil): a source for uranium mineralizations associated with Na-Ca metasomatism

    International Nuclear Information System (INIS)

    Maruejol, P.; Cuney, M.; Poty, B.; Neto, A.M.

    1987-01-01

    In the central zone of the Sao Francisco Craton (South Bahia), the lower Proterozoic Lagoa Real granites and orthogneisses overthrust to the West the younger Urandi and Espinhaco metamorphic series, probably a late Brazilian event. This thrust is related to the regional metamorphism (amphibolite facies) of the Lagoa Real granites and induces a reverse HP metamorphism in the over thrusted series. Undeformed granites (sao Timoeto type) present two feldspars, perthitic orthoclase largely predominant over plagioclase (oligoclase ≥ albite), blue quartz, Fe-rich amphibole and biotite ± clinopyroxene assemblages, ilmenite ≥ magnetite, zircon, apatite, allanite and Nb ± Ti-REE oxides and silicates. The crystallization of the granites begins at high temperature and under low fO 2 and P H2O conditions. Fractional crystallization of pyroxene and plagioclase leads to silica enrichment during magmatic differentiation. Increasing fO 2 and P H2O are observed during this evolution. Orthogneisses show strongly recrystallized paragenesis: equal abundance of non-perthitic microcline and plagioclase (oligoclase ≤ albite), quartz, more Al-rich amphibole and biotite, magnetite, sphene, zircon, allanite, Nb ± Ti-REE oxides and silicates, and ± apatite. HT Na and Ca metasomatism occurs 330 Ma later than granite emplacement and is synchronous with important uranium mineralizations. Major elements and trace-elements geochemistry of the granites and orthogneisses indicate subalkaline to alkaline typology. Incompatible behaviour of Th, REE, Y, Zr, Nb, and F points out a convergence with alkaline magmatism. CI, F, Th, Y, REE, NB enrichments and Ba, Sr depletions are also related to a late magmatic stage. U-Th-rich and metamict accessory minerals of the granites represent a favorabl source for the Lagoa Real uranium ore-deposits [pt

  7. The recovery of rare earth elements (REE) from beach sands

    International Nuclear Information System (INIS)

    Petrache, Cristina A.; Santos, Gabriel P. Jr.; Fernandez, Lourdes G.; Castillo, Marilyn K.; Tabora, Estrellita U; Intoy, Socorro P.; Reyes, Rolando Y.

    2005-01-01

    This preliminary study describes a metallurgical process that will extract, recover and produce REE oxides from beach sands obtained from Ombo, San Vicente, northern Palawan. The beach sands contain REE minerals of allanite and small amounts of monazite. Allanite is a sorosilicate mineral containing rare earths, thorium and uranium. Monazite is the anhydrous phosphate of cerium and the lanthanum group of rare earths with thorium commonly present in replacement for cerium and lanthanum. Collected beach sand were first pan-concentrated in-situ to produce heavy mineral concentrates. Screening using a 32 mesh (0.500 mm) sieve was done at the Nuclear Materials Research Laboratory to remove oversize sand particles. The -32 mesh fraction was treated with bromoform (sp. gr. 2.89) to separate the heavy minerals from siliceous gangue. Grinding to -325 mesh size (0.044mm) followed to liberate the minerals prior to leaching. Two acids leachants were used - concentrated HCl for the first trial and a mixture of concentrated HCl and HNO 3 (10:1 volume ratio) for the second trial. Both leaching trials were carried out at 180 o C for 7 hours or until dry. The resulting leached residues were re-dissolved in concentrated HCl and filtered. Ionquest R 801, an organophosphorous extractant, was added to the filtrate to separate the radioactive thorium from REE. Sodium hydroxide was added to the aqueous phase to precipitate the REE. After filtering the precipitate, it was dissolved in HCl. The acid solution was repeatedly extracted three (3) times with Ionquest R 801 to remove iron and other contaminants. Ammonium hydroxide was added to the final solution to precipitate the REE, which was then dried in the oven. The precipitate was calcined/roasted in the furnace at two different temperatures for different periods of time to burn off the organic matter and to form oxides. Results of the XRD analysis showed peaks of the calcined precipitate matching with the peaks of lanthanum oxide

  8. Mid Carboniferous lamprophyres, Cobequid Fault Zone, eastern Canada, linked to sodic granites, voluminous gabbro, and albitization

    Science.gov (United States)

    Pe-Piper, Georgia; Piper, David J. W.; Papoutsa, Angeliki

    2018-01-01

    Major intra-continental shear zones developed during the later stages of continental collision in a back-arc setting are sites of prolonged magmatism. Mantle metasomatism results from both melting of subducted sediments and oceanic crust. In the Cobequid Fault Zone of the northern Appalachians, back-arc A-type granites and gabbros dated ca. 360 Ma are locally intruded by lamprophyric dykes dated ca. 335 Ma. All the lamprophyres are kersantites with biotite and albite, lesser ilmenite, titanite and fluorapatite, and minor magmatic calcite, allanite, pyrite, magnetite, quartz and K-feldspar in some samples. The lamprophyres show enrichment in Rb, Ba, K, Th and REE and classify as calc-alkaline lamprophyre on the basis of biotite and whole rock chemistry. Pb isotopes lie on a mixing line between normal mantle-derived gabbro and OIB magma. Nd isotopes range from 1.3-3.5 εNdt, a little lower than in local gabbro. Most lamprophyres have δ18O = 3.8-4.4‰. Country rock is cut by pyrite-(Mg)-chlorite veins with euhedral allanite crystals that resemble the lamprophyres mineralogically, with the Mg-chlorite representing chloritized glass. Early Carboniferous unenriched mafic dykes and minor volcanic rocks are widespread along the major active strike-slip fault zones. The lamprophyres are geographically restricted to within 10 km of a small granitoid pluton with some sodic amphibole and widespread albitization. This was displaced by early Carboniferous strike-slip faulting from its original position close to the large Wentworth Pluton, the site of mantle-derived sodic amphibole granite, a major late gabbro pluton, and a volcanic carapace several kilometres thick, previously demonstrated to be the site of mantle upwelling and metasomatism. The age of the lamprophyres implies that enriched source material in upper lithospheric mantle or lower crust was displaced 50 km by crustal scale strike-slip faulting after enrichment by the mantle upwelling before lamprophyre emplacement

  9. Mineralogic investigation into occurrence of high uranium well waters in upstate South Carolina, USA

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Richard, E-mail: wrichar@clemson.edu [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634-0919 (United States); Meadows, Jason; Sojda, Scott; Price, Van; Temples, Tom [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634-0919 (United States); Arai, Yuji [Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, SC 29634-0315 (United States); Fleisher, Chris [Department of Geology, University of Georgia, Athens, GA 30602-2501 (United States); Crawford, Bruce; Stone, Peter [Bureau of Water, South Carolina Department of Health and Environmental Control, Columbia, SC 29201 (United States)

    2011-05-15

    Research Highlights: > Oxidative dissolution of uraninite in biotite granite is primary source of uranium in high-U well waters near Simpsonville, SC. > Uranium is chiefly transported as mixed uranyl hydroxyl-carbonate complexes. > Local reduction has resulted in secondary precipitation of uranium along fractures as coffinite. > Dissolution of uraninite and precipitation of coffinite were geologically recent. - Abstract: High levels of U (up to 5570 {mu}g/L) have been discovered in well waters near Simpsonville, South Carolina, USA. In order to characterize the mineralogical source of the U and possible structural controls on its presence, a deep (214 m) well was cored adjacent to one of the enriched wells. The highest gamma-ray emissions in the recovered core occur in coarse biotite granite at a depth just below 52 m. A slickenlined fault plane at 48.6 m and narrow pegmatite layers at depths of 113, 203 and 207 m also yield high gamma-ray counts. Thin sections were made from the above materials and along several subvertical healed fractures. Uraninite and coffinite are the principal U-rich minerals in the core. Other U-bearing minerals include thorite and thorogummite, monazite, zircon and allanite. Primary uraninite occurs in the biotite granite and in pegmatite layers. Secondary coffinite is present as tiny (<5 {mu}m) crystals dispersed along fractures in the granite and pegmatites. Coffinite also occurs along the slickenlined fault plane, where it is associated with calcite and calcic zeolite and also replaces allanite. Coffinite lacks radiogenic Pb, hence is considerably younger than the uraninite. Dissolution of partially oxidized Ca-rich uraninite occurring in the surficial biotite granite (or secondary coffinite in fracture zones) is likely the main source for the current high levels of U in nearby area wells. The high-U well waters have a carbonate signature, consistent with pervasive calcite vein mineralization in the core. Aqueous speciation calculations

  10. Uranium-lead dating of hydrothermal zircon and monazite from the Sin Quyen Fe-Cu-REE-Au-(U) deposit, northwestern Vietnam

    Science.gov (United States)

    Li, Xiao-Chun; Zhou, Mei-Fu; Chen, Wei Terry; Zhao, Xin-Fu; Tran, MyDung

    2018-03-01

    The Sin Quyen deposit in northwestern Vietnam contains economic concentrations of Cu, Au and LREE, and sub-economic concentration of U. In this deposit, massive and banded replacement ores are hosted in Neoproterozoic metapelite. The paragenetic sequence includes sodic alteration (stage I), calcic-potassic alteration and associated Fe-REE-(U) mineralization (stage II), Cu-Au mineralization (stage III), and sulfide-(quartz-carbonate) veins (stage IV). The Sin Quyen deposit experienced an extensive post-ore metamorphic overprint, which makes it difficult to precisely determine the mineralization age. In this study, zircon and monazite U-Pb geochronometers and the Rb-Sr isochron method are used to constrain the timing of mineralization. Zircon grains in the ore are closely intergrown or texturally associated with hydrothermal minerals of stage II (e.g., garnet, allanite, and hedenbergite). They may contain primary fluid inclusions and display irregular zoning in cathodoluminescence (CL) images. Zircon grains are rich in U (688 to 2902 ppm) and poor in Th (0.2 to 2.9 ppm). Their δ18OV-SMOW values range from 11.9 to 14.0‰, higher than those of typical magmatic zircon. These textural and compositional features imply that zircon precipitated from 18O- and U-rich hydrothermal fluids, coeval with the minerals of stage II. Monazite occurs in close association with stage II magnetite and allanite and has low contents of Th (<2700 ppm), indicative of a hydrothermal origin. Hydrothermal zircon and monazite have indistinguishable U-Pb ages of 841 ± 12 and 836 ± 18 Ma, respectively, representing the timing of Fe-REE mineralization. There is no direct isotopic constraint on the timing of the Cu-Au mineralization, but geological observations suggest that the Cu-Au and Fe-REE ores most likely formed within a single evolved hydrothermal process. In the plot of 87Rb/86Sr vs. 87Sr/86Sr, the composition of bulk-ore and biotite separates from ore lie along a reference line for 30 Ma

  11. Petrography, geochemistry, and U-Pb geochronology of pegmatites and aplites associated with the Alvand intrusive complex in the Hamedan region, Sanandaj-Sirjan zone, Zagros orogen (Iran)

    Science.gov (United States)

    Sepahi, Ali Asghar; Salami, Sedigheh; Lentz, David; McFarlane, Christopher; Maanijou, Mohammad

    2018-04-01

    The Alvand intrusive complex in the Hamedan area in Iran is in the Sanandaj-Sirjan zone of the Zagros orogen. It consists of a wide range of plutonic rocks, mainly gabbro, diorite, granodiorite, granite, and leucogranites that were intruded by aplitic and pegmatitic dykes. At least three successive magmatic episodes generated an older gabbro-diorite-tonalite assemblage, followed by a voluminous granodiorite-granite association, which was then followed by minor leucocratic granitoids. Aplitic and pegmatitic dykes and bodies have truncated both plutonic rocks of the Alvand intrusive complex and its metamorphic aureole. Chemically they belong to peraluminous LCT (Li-, Cs-, and Ta-bearing) family of pegmatites. Mineralogically, they resemble Muscovite (MS) and Muscovite Rare Element (MSREL) classes of pegmatites. High amounts of some elements, such as Sn (up to 10,000 ppm), Rb (up to 936 ppm), Ba (up to 706 ppm), and LREE (up to 404 ppm) indicate the highly fractionated nature of some of these aplites and pegmatites. U-Pb dating of monazite, zircon, and allanite by LA-ICPMS indicate the following ages: monazite-bearing aplites of Heydareh-e-Poshteshahr and Barfejin areas, southwest of Hamedan, give an age range of 162-172 Ma; zircon in Heydareh-e-Poshteshar gives an average age of 165 Ma and for allanite-bearing pegmatites of Artiman area, north of Tuyserkan, an age of 154.1 ± 3.7 Ma was determined. These overlap with previously reported ages (ca. 167-153 Ma) for the plutonic rocks of the Alvand complex. Therefore, these data reveal that the Jurassic was a period of magmatism in the Hamedan region and adjacent areas in the Sanandaj-Sirjan zone, which was situated at the southern edge of the central Iranian micro-plate (southern Eurasian plate) at this time. Our results also suggest that advective heating in a continental arc setting has caused melting of fertile supracrustal lithologies, such as meta-pelites. These partial melts were then emplaced at much higher

  12. The Morro do Resende orthogneiss: mineralogy, petrography, geochemistry and geochronology; Ortognaisse Morro do Resende: mineralogia, petrografia, geoquimica e geocronologia

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Fabiana Franco de; Avila, Ciro Alexandre; Bongiolo, Everton Marques; Camara, Beatriz de Oliveira; Menezes, Victor Hugo Riboura; Cunha, Fernanda Caetano de Mattos, E-mail: fma3003@globo.com, E-mail: avila@mn.ufrj.br, E-mail: ebongiolo@geologia.ufrj.br, E-mail: camara_b@hotmail.com, E-mail: vmenezes92@gmail.com, E-mail: fefemattos@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Neumann, Reiner, E-mail: reiner.neumann@gmail.com [Centro de Tecnologia Mineral (CETEM), Rio de Janeiro, RJ (Brazil); Teixeira, Wilson; Barbosa, Natali, E-mail: wteixeir@usp.br, E-mail: natali@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Geociencias

    2017-01-15

    The Morro do Resende orthogneiss is a hololeucocratic to leucocratic, fine-grained body with monzogranitic to granodioritic composition, cropping out near the Volta Grande mine in Nazareno County, State of Minas Gerais, Brazil. It bears xenoliths of metamafic rocks of the Rio das Mortes metavolcano-sedimentary sequence and yields a U-Pb SHRIMP crystallization age of 2174 ± 4 Ma, relating it to one of the magmatic pulses of the Mineiro Belt. The primary mineralogy includes quartz, albite, microcline, biotite, allanite, zircon, magnetite, titanite and apatite, while sericite, epidote, zoisite, clinozoisite, carbonate and chlorite are metamorphic minerals. Maghemite, barite, fluorite, monazite, xenotime, garnet and REE fluorides (possibly gagarinite) are hydrothermal, as they fill the fractures, intergrow or replace the primary and metamorphic minerals. Fluid interaction was not homogeneous throughout the body. Metamorphic paragenesis points to greenschist facies conditions, which could be related to the Paleoproterozoic II event of the Mineiro Belt, which lasted from 2131 to 2101 Ma. The Morro do Resende orthogneiss is distinguished by significant REE enrichment, as well as a negative Eu anomaly linked to the magmatic crystallization and a negative Ce anomaly related to oxidizing hydrothermal fluids circulation. (author)

  13. Uranium and REE potential of the albitite-pyroxenite-microclinite belt of Rajasthan, India

    International Nuclear Information System (INIS)

    Singh, Govind; Sharma, D.K.; Yadav, O.P.; Jain, Rajan B.; Singh, Rajendra

    1998-01-01

    A number of radioactive albitite, pyroxenite and microclinite occurrences have been identified in north and central Rajasthan, along or in close proximity to major lineaments, from Dancholi - Mewara in the NE to Tal in the SW. With these new findings the total extent of Albitite belt of Rajasthan now stands at over 320 km. These occurrences have been evaluated on the basis of their U, Th and REE content to identify the potential areas for the second phase of uranium exploration programme. Further, based on the various characteristic features of radioactive host rocks, the Albitite Belt has been divided into five sectors. The U 3 O 8 content of albitites varies from 0.008 to 0.44% and of pyroxenites from 0.022 to 2.0% whereas ThO 2 varies from < 0.005 to 0.83% in albitites and <0.005 to 0.033% in pyroxenities. These albitites, microclinites and pyroxenites are also characterised by anomalous concentration of REEs. Uranium and REE bearing phases are represented by uraninite, brannerite, davidite, fergusonite, monazite, anatase, rutile, zircon, allanite and britholite. The data accrued so far suggest that U and REE potential of the Mewara-Maonda and Hurra Ki Dhani-Rohil sectors are very high and hence needs further detailed integrated exploration. (author)

  14. The U resources inventory at Tebalungkang sector, west Kalimantan systematic prospection stage

    International Nuclear Information System (INIS)

    Soetopo, B.; Suripto; Boman; Sajiyo

    1996-01-01

    The systematic prospection at Tebalungkang sector, West Kalimantan was carried out to characterize the occurrence of U mineralization and to invent the potential U resources at the area. The investigation was done on the basis of previous results, i.e. radiometric anomalous outcrops and boulders of 1000-7000 C/s. The methods for the investigation was systematic geological mapping and radiometric measurements of soil and tranced rocks and supported by mineralogical and geochemical analyses. The results of the investigation show that this area consists of metamorphic rocks, intruded by granite quartz-diorite batholites and dike of andesite and lamprophyre. From geological structure this is 30 o plunging from anticlin NE-SW and NNW-SSE, is crossed by NE-SW and E-W normal faults and NW-SE and WNW-ESE strike slip faults. Uranium mineralization appears in quartz-schist brecciated and quachitite (lamprophyre). The radioactive minerals were thorite and monazite, associated with rutile, ilmenite, magnetite, hematite, pyrite, calcopyrite, muscovite, apatite and allanite. The U content from rock samples has been found to be 4,5-54,75 ppm U

  15. The Statherian itabirite-bearing sequence from the Morro Escuro Ridge, Santa Maria de Itabira, Minas Gerais, Brazil

    Science.gov (United States)

    Silveira Braga, Flávia Cristina; Rosière, Carlos Alberto; Queiroga, Gláucia Nascimento; Rolim, Vassily Khoury; Santos, João Orestes Schneider; McNaughton, Neal Jesse

    2015-03-01

    The itabirite-bearing metasedimentary sequence from Morro Escuro Ridge comprises the basal units of the Espinhaço Supergroup and makes up a small tectonic inlier developed during one of the Brasiliano orogenic events (800-500 Ma), amongst horses of the Archean TTG gneisses, including sheared granites of the anorogenic Borrachudos Suite (˜1700 Ma). The metasedimentary rocks are comprised of low-to intermediate-amphibolite facies schists, quartzites, conglomerates and banded iron formation (itabirite) correlatable with the sequences of the Serro Group, which underlies the metasedimentary rocks of the Espinhaço Supergroup in the Serra da Serpentina Ridge. A maximum Statherian deposition age (1668 Ma) was established using SHRIMP U-Pb isotopic constraints on zircon grains from conglomerate and quartzite units overlying the itabirite. The itabirite is predominantly hematitic and its geochemical characteristics are typical of a Lake Superior-type BIF deposited in a platformal, suboxic to anoxic environment distant from Fe-bearing hydrothermal vents. Close to the contact zone with amphibolites of the Early Neoproterozoic Pedro Lessa mafic suite, an increase of the magnetite content and crystallization of metasomatic Mg-hornblende and Ce-allanite can be observed. These mineralogical changes developed preferentially along the igneous contact zone but are probably co-genetic with the formation of alteration haloes in zircon grains during the Neoproterozoic Brasiliano orogeny (506 ± 6 Ma).

  16. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Canakkale), Western Anatolia, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Orguen, Y. [Faculty of Mines, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469-Istanbul (Turkey)]. E-mail: orgun@itu.edu.tr; Altinsoy, N. [Institute of Energy, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469-Istanbul (Turkey); Sahin, S.Y. [Department of Geophysics, Engineering Faculty, Istanbul University, Istanbul (Turkey); Guengoer, Y. [Department of Geophysics, Engineering Faculty, Istanbul University, Istanbul (Turkey); Gueltekin, A.H. [Faculty of Mines, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469-Istanbul (Turkey); Karahan, G. [Cekmece Nuclear Research and Training Center, P.O. Box 1, Atatuerk Airport, 34149-Istanbul (Turkey); Karacik, Z. [Faculty of Mines, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469-Istanbul (Turkey)

    2007-06-15

    This paper represents the first reports on the natural and anthropogenic radionuclides in Kestanbol granitic pluton and surrounding rocks, and coastal region of the Ezine town. To assess the radiological hazard of the natural radioactivity, the radium equivalent activity, the absorbed dose rate and the external hazard index were calculated, and in situ gamma dose rates were measured. The high-activity concentrations were measured in the pluton and sands, which was originated mainly from the pluton, due to the presence of zircon, allanite, monazite, thorite, uranothorite and apatite. The average activity concentrations of {sup 238}U, {sup 232}Th and {sup 40}K are 174.78, 204.69 and 1171.95 Bq kg{sup -1} for pluton, and 290.36, 532.04 and 1160.75 Bq kg{sup -1} for sands, respectively. {sup 137}Cs in Ezine region ranged from 0-6.57 Bq kg{sup -1}. The average absorbed dose rate for the granitic and sand samples were calculated to be 251.6 and 527.92 nGy h{sup -1}, respectively. The maximum contribution to the total absorbed gamma dose rate in air was due to the {sup 232}Th (52.3% for pluton and 67.1% for sands). The Raeq activities of the pluton and sands are higher than the recommended maximum value of 370 Bq kg{sup -1} criterion limit of Raeq activity for building materials.

  17. Geochemistry Petrography, thermobarometry and investigation of magmatic series in Mirabad- Chehel Khane granitoid body (east of Bouin– Miandasht, Isfahan province

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Tabatabaei Manesh

    2017-11-01

    Full Text Available On the base of petrology, the Mirabad- Chehel Khane granitoid, east of Bouin-Miandasht, dominantly consists of syenogranite, monzogranite, alkali granite and granodiorites. The main minerals of these rocks are quartz, alkali feldspar (Orthoclase, plagioclase (Albite - Oligoclase, biotite, ± amphibole with minor amount of allanite, zircon, titanite, apatite, ± tourmaline.  The biotite from the granites are Fe-rich type (annite and primary magmatic in origin. The composition of the biotites studied principally falls in the calc-alkaline subduction related I-type granite on the tectonomagmatic discrimination diagrams, which stand on their major element oxides. Which is consistent with the nature of their host rocks. The studied amphiboles are classified as calcic (ferro-hornblende which points to the I-type nature of the granitoid.  The tourmaline composition plots on the schorl - foitite field. The temperature for the alteration, on the base of chlorite composition from the syenogranite, is estimated around 350°C and from the monzogranite rocks about 341°C.  Based on the application of Al-in amphibole, a 3 Kbar pressure was determined for the syenogranite unit corresponding to the depth of 8-11 Km for the emplacement of the pluton. Hornblende- plagioclase thermometer shows 694 to 700°C for the equilibrium of these two minerals.

  18. Trace and major elements in geological samples from Itingusssu River Basin, Sepetiba Bay - Rio de Janeiro

    International Nuclear Information System (INIS)

    Araripe, D.R.; Favaro, D.I.T.

    2011-01-01

    The Itingussu drainage basin is situated at 22 deg 44' - 22 deg 55' SL and 44 deg 53' - 43 deg 55' WL, in Coroa-Grande district, Sepetiba Bay, southwest of Rio de Janeiro, Brazil. Its total area is less than 10 km 2 and includes a waterfall with three drop offs. The study area is located in a granitic pre-Cambrian embasement, discharging in a mangrove forest fringe. This work attempts to investigate the influence of lithology types in the elemental composition of soil of region and sediments of related mangrove. Instrumental neutron activation analysis and subsequent gamma-ray spectrometry were used. This technique enabled the measurement of at least twenty-one chemical elements. The more representative soil samples were enriched with U and Th. Multivariate Statistical Analysis showed that the soil and sediments formed in this area have been influenced by the leucocratic rocks, enriched with LREE and Th. The factorial analysis enables the identification of five factors of influence in the ordination of elements: presence of iron minerals (biotite); presence of allanite; marine influence in the sediment; differentiated kinetic of transport and diagenesis. (author)

  19. New P-T and U-Pb constraints on Alpine Schist metamorphism in south Westland, New Zealand

    International Nuclear Information System (INIS)

    Scott, J.M.; Auer, A.; Muhling, J.R.; Czertowicz, T.A.; Cooper, A.F.; Billia, M.A.; Kennedy, A.K.

    2015-01-01

    Metamorphic mineral compositions of a staurolite-bearing greyschist from the middle reaches of the Moeraki River valley in south Westland reveal peak equilibration at c. 558±50 degrees C and c. 6.1±1.2 kbar. Two c. 83 Ma U-Pb monazite age populations from the cores of monazite-apatite-allanite-epidote corona structures in mylonitised schists from near Fox Glacier confirm that Alpine Schist metamorphism occurred during the Late Cretaceous. The published spread in Late Cretaceous metamorphic ages indicates that metamorphism was diachronous or was a protracted event. Further dating is required to pin down the cryptic transition into the Jurassic-Early Cretaceous metamorphosed Otago Schist, but the Alpine Schist must extend at least 11 km east of the Alpine Fault in south Westland and overprint the suture between the Pounamu and Rakaia terranes. The P-T-t results imply that the Late Cretaceous crust represented by portions of the Alpine Schist was probably of similar thickness to that beneath the Southern Alps today, but with dehydration and partial melting occurring near the base. The crust under Westland and Otago may be dry and therefore strong. (author).

  20. The Transhimalaya (Gangdese) plutonism in the Ladakh region: A U-Pb and Rb-Sr study

    International Nuclear Information System (INIS)

    Schaerer, U.; Hamet, J.; Allegre, C.J.

    1984-01-01

    The age and origin of the Transhimalaya (Gangdese) plutonic belt in the Ladakh area has been studied by high-resolution U-Pb analyses of accessory minerals (zircon and monazite/allanite) and Rb-Sr measurements on whole rock samples. The ages determined of 101+-2 m.y. for a granodiorite and of 60.7+-0.4 m.y. for a granite substantiate that the Transhimalaya plutonism was active at least in mid-Cretaceous (Albian) and earliest Tertiary (Palaeocene) times. A Rb-Sr isochron of 73.4+-2.4 m.y. might be fortuitous because the Rb-Sr systematics shows important heterogeneities on the whole rock scale. The inherited radiogenic lead in zircon demonstrates that anatexis of continental crust was involved in magma genesis. The thus recycled continental material was heterogeneous with respect to its primary ages and/or metamorphic history; the approximate minimum ages of the continental sources range from 350 to 590 m.y. The 101+-2 m.y. old Transhimalaya granodiorite, which intrudes a series of mainly basaltic island arc rocks (Dras Series) shows that this island arc was attached to the continental margin at that times. This is consistent with the hypothesis that the ''Ladakh Tethys'' closed through two subduction regimes: (1) an early Cretaceous subduction, which formed the Dras island arc, and (2) a late Cretaceous to Palaeocene subduction at the continental margin, which caused the emplacement of the Transhimalaya plutonic belt. (orig.)

  1. The Morro do Resende orthogneiss: mineralogy, petrography, geochemistry and geochronology

    International Nuclear Information System (INIS)

    Vasconcelos, Fabiana Franco de; Avila, Ciro Alexandre; Bongiolo, Everton Marques; Camara, Beatriz de Oliveira; Menezes, Victor Hugo Riboura; Cunha, Fernanda Caetano de Mattos; Neumann, Reiner; Teixeira, Wilson; Barbosa, Natali

    2017-01-01

    The Morro do Resende orthogneiss is a hololeucocratic to leucocratic, fine-grained body with monzogranitic to granodioritic composition, cropping out near the Volta Grande mine in Nazareno County, State of Minas Gerais, Brazil. It bears xenoliths of metamafic rocks of the Rio das Mortes metavolcano-sedimentary sequence and yields a U-Pb SHRIMP crystallization age of 2174 ± 4 Ma, relating it to one of the magmatic pulses of the Mineiro Belt. The primary mineralogy includes quartz, albite, microcline, biotite, allanite, zircon, magnetite, titanite and apatite, while sericite, epidote, zoisite, clinozoisite, carbonate and chlorite are metamorphic minerals. Maghemite, barite, fluorite, monazite, xenotime, garnet and REE fluorides (possibly gagarinite) are hydrothermal, as they fill the fractures, intergrow or replace the primary and metamorphic minerals. Fluid interaction was not homogeneous throughout the body. Metamorphic paragenesis points to greenschist facies conditions, which could be related to the Paleoproterozoic II event of the Mineiro Belt, which lasted from 2131 to 2101 Ma. The Morro do Resende orthogneiss is distinguished by significant REE enrichment, as well as a negative Eu anomaly linked to the magmatic crystallization and a negative Ce anomaly related to oxidizing hydrothermal fluids circulation. (author)

  2. High-resolution tephrochronology of the Wilson Creek Formation (Mono Lake, California) and Laschamp event using 238U-230Th SIMS dating of accessory mineral rims

    Science.gov (United States)

    Vazquez, Jorge A.; Lidzbarski, Marsha I.

    2012-12-01

    Sediments of the Wilson Creek Formation surrounding Mono Lake preserve a high-resolution archive of glacial and pluvial responses along the eastern Sierra Nevada due to late Pleistocene climate change. An absolute chronology for the Wilson Creek stratigraphy is critical for correlating the paleoclimate record to other archives in the western U.S. and the North Atlantic region. However, multiple attempts to date the Wilson Creek stratigraphy using carbonates and tephras yield discordant results due to open-system effects and radiocarbon reservoir uncertainties as well as abundant xenocrysts. New ion microprobe 238U-230Th dating of the final increments of crystallization recorded by allanite and zircon autocrysts from juvenile pyroclasts yield ages that effectively date eruption of key tephra beds and delimit the timing of basal Wilson Creek sedimentation to the interval between 26.8±2.1 and 61.7±1.9 ka. Tephra (Ash 15) erupted during the geomagnetic excursion originally designated the Mono Lake excursion yields an age of 40.8±1.9 ka, indicating that the event is instead the Laschamp excursion. The new ages support a depositional chronology from magnetostratigraphy that indicates quasi-synchronous glacial and hydrologic responses in the Sierra Nevada and Mono Basin to regional climate change, with intervals of lake filling and glacial-snowpack melting that are in phase with peaks in spring insolation.

  3. Geochemistry of U-Th- REE bearing minerals, in radioactive pegmatite in Um Swassi-Dara area, north eastern desert, Egypt

    International Nuclear Information System (INIS)

    Ali, B. H.

    2007-01-01

    Some of the pegmatites in the north Eastern Desert of Egypt have high radioactive values, between them the studied radioactive pegmatites which are clustered just in the western margin of Um Swassi-Dara hosted monzogranites. In zoned pegmatite the alteration zones locate between quartz core and intermediate zone are characterizing with the abundance of rare-earth minerals, anderbergite, cenosite, Y-allanite and uranium, thorium minerals such as euxenite, ferro-columbite and complex titanium-yetrum oxides (Kobbite). This zone is a result of many alteration processes developed from volatile-rich magmatic fluids and/or hydrothermal solution which evolved from late differentiated magmatic fluid and lead to increase of U, Th, Zr, Nb, Ti and REE bearing minerals. Such a distinctive alkaline mineralization suite, possibly related to an alkali fluid phase, is superimposed on a more normal, less alkaline group of minerals such as cassiterite, chalcopyrite, and galena. Nb-Ta-Ti minerals bearing U and Th, define a sequence of oxide, cyclosilicate and silicate minerals, showing the effect of hydrothermal overprinting with extreme REE enrichment of the fluids. It can be concluded that the studied mineralization took place in three overlapping stages

  4. Sr and Nd isotopic signature of the high-K calc-alkaline magmatism of the central Ribeira belt: the Sao Pedro Granite in Lumiar, RJ; Assinatura isotopica de Sr e Nd do magmatismo calcio-alcalino de alto-K na Faixa Ribeira central: o exemplo do Granito Sao Pedro em Lumiar, RJ

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Julio Cezar; Medeiros, Silvia Regina de; Chaves, Eduardo Amorim, E-mail: julio@geologia.ufrj.br, E-mail: silvia@geologia.ufrj.br, E-mail: edupc2@yahoo.com.br [Departamento de Geologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro (RJ) (Brazil)

    2011-09-15

    In the central-northern Ribeira belt there are many granitic to granodioritic bodies showing varied shape and size, characterizing a late- to post-collisional Ca-alkaline, cordilleran I-type province. The Sao Pedro Granite occurs in the mountain region of Rio de Janeiro State as small post-collisional bodies. It presents isotropic fabric, equigranular to seriate inequigranular texture, as well as local concentration of allanite, which gives discrete composition and texture variation to the rock. The granite has a high-K calcalkaline to alkali-calcic character and weakly peraluminous nature. Despite its short geochemical variation, high Ba, Zr and Th contents besides low concentrations of MgO and CaO are noticeable. High REE contents are associated with fractionated REE patterns showing strong negative Eu anomalies. A crustal origin for the granite can be assumed by its very negative and positive .Nd and .Sr values, respectively, as well as by 87Sr/86Sr initial ratios ranging from 0,718 to 0,740. TDM ages point to paleoproterozoic source, which agrees with geological time of intensive crust generation. (author)

  5. High-resolution tephrochronology of the Wilson Creek Formation (Mono Lake, California) and Laschamp event using 238U-230Th SIMS dating of accessory mineral rims

    Science.gov (United States)

    Vazquez, Jorge A.; Lidzbarski, Marsha I.

    2012-01-01

    Sediments of the Wilson Creek Formation surrounding Mono Lake preserve a high-resolution archive of glacial and pluvial responses along the eastern Sierra Nevada due to late Pleistocene climate change. An absolute chronology for the Wilson Creek stratigraphy is critical for correlating the paleoclimate record to other archives in the western U.S. and the North Atlantic region. However, multiple attempts to date the Wilson Creek stratigraphy using carbonates and tephras yield discordant results due to open-system effects and radiocarbon reservoir uncertainties as well as abundant xenocrysts. New ion microprobe 238U-230Th dating of the final increments of crystallization recorded by allanite and zircon autocrysts from juvenile pyroclasts yield ages that effectively date eruption of key tephra beds and delimit the timing of basal Wilson Creek sedimentation to the interval between 26.8±2.1 and 61.7±1.9 ka. Tephra (Ash 15) erupted during the geomagnetic excursion originally designated the Mono Lake excursion yields an age of 40.8±1.9 ka, indicating that the event is instead the Laschamp excursion. The new ages support a depositional chronology from magnetostratigraphy that indicates quasi-synchronous glacial and hydrologic responses in the Sierra Nevada and Mono Basin to regional climate change, with intervals of lake filling and glacial-snowpack melting that are in phase with peaks in spring insolation.

  6. Uranium and thorium abundances in some graphite-bearing precambrian rocks of India and implications

    International Nuclear Information System (INIS)

    Pandey, U.K.; Krishnamurthy, P.

    1995-01-01

    Graphite schists from parts of Gujarat in the Aravalli supergroup show maximum contents of uranium (70-95 ppm), hosted mainly in the graphites, whereas such schists from the Tamil Nadu granulite terrain contain distinctly lower amounts of uranium (7-9 ppm). Graphite-bearing hornblende gneiss and calc-granulites from Madurai, Tamil Nadu, contain higher amounts of uranium (12-28 ppm) than the schists, and uranium is mainly hosted by the magnetite and allanite occurring as independent grains with flaky graphite and also as inclusions within quartz. Khondalites from Andhra Pradesh are depleted in uranium (0.9-1.3 ppm) compared to Th (17.5-20.2 ppm). Except for the khondalites, which have high Th/U ratio (13.5-22.4), all the other samples have very low Th/U ratios (0.10-0.80) compared to the crustal average (3-4). Such variations among similar rock types, may in part be related to uranium and thorium abundances inherited from parental rocks, modified later by hydrothermal and/or metasomatic processes. Graphites from such rock types can provide both in situ and migrant reductants for hosting a variety of uranium and other metallic deposits. (author). 12 refs., 1 tab., 1 fig

  7. Fluid inclusion study of radioactive granite and cherty cataclasite in the Southeastern part of Nanded district, Maharashtra: implications for the uranium mineralisation

    International Nuclear Information System (INIS)

    Banerjee, Rahul; Shivkumar, K.; Thomas, Tresa; Thomas, Jugina; Pandian, M.S.

    2013-01-01

    Southeastern part of Nanded district, Maharashtra exposes Palaeoproterozoic granitoids, representing the younger phase of Peninsular Gneissic Complex (PGC), mark the northeastern extension of Eastern Dharwar Craton. These granitoids are predominantly pink/grey granites, which are traversed by younger phosphatic cherty cataclasites close to the Deccan Trap capping. They are also affected by profuse pegmatitic/quartzo-feldspathic, quartz and epidote venations, especially close to fault/shear zones. A number of N-S to NNE-SSW, NE-SW, NW-SE and E-W trending lineaments marked by faults/fractures/shear zones and dykes are delineated in this granitic terrain. Among these, NE-SW and NNE-SSW faults/shear zones affecting granitoids and cherty cataclasites in Shahpur-Sujayatpur and Thadisaoli area have recorded significant uranium anomalies (Granitoids: upto 1% U 3 O 8 and 0.20% ThO 2 ; Cherty cataclasites upto 0.11% U 3 O 8 and <0.005% ThO 2 ) and enrichment in rare metal and rare earth element content (Nb-77ppm, Y-111 ppm, Zr-432ppm; n=9 and total REE-1167ppm; n=3). Presence of discrete uranium/thorium minerals (uraninite, b-uranophane and thorite) and high content of resistates viz., apatite, zircon, allanite, sphene, cerianite, monazite and ilmenite are responsible for radioactivity in granitoids while phosphatic material accounts for radioactivity in cherty cataclasites

  8. Towards the challenging REE exploration in Indonesia

    Science.gov (United States)

    Setiawan, Iwan

    2018-02-01

    Rare earth elements (REE) are the seventeen elements, including fifteen from 57La to 71Lu, in addition to 21Sc and 39Y. In rock-forming minerals, rare earth elements typically occur in compounds as trivalent cations in carbonates, oxides, phosphates, and silicates. The REE occur in a wide range of rock types: igneous, sedimentary and metamorphic rocks. REE are one of the critical metals in the world. Their occurrences are important to supply the world needs on high technology materials. Indonesia has a lot of potential sources of REE that are mainly from residual tin mining processes in Bangka islands, which are associated with radioactive minerals e.g. monazite and xenotime. However, the REE from monazite and xenotime are difficult to extract and contain high radioactivity. Granitoids are widely distributed in Sumatra, Sulawesi, Kalimantan and Papua. They also have a very thick weathering crusts. Important REE-bearing minerals are allanite and titanite. Their low susceptibilities during weathering result an economically potential REE concentration. I-/A- type granitoids and their weathered crusts are important REE sources in Indonesia. Unfortunately, their distribution and genesis have not been deeply studied. Future REE explorations challenge are mainly of the granitoids their weathered crusts. Geochemical and mineralogical characterization of type of granitoids and their weathered crusts, the hydrothermally altered rocks, and clear REE regulation will help discover REE deposits in Indonesia.

  9. Uranium occurrence in major rock types by fission-track mapping

    International Nuclear Information System (INIS)

    Ledger, E.G.; Bomber, B.J.; Schaftenaar, W.E.; Tieh, T.T.

    1984-01-01

    Microscopic occurrence of uranium has been determined in about 50 igneous rocks from various location, and in a genetically unrelated sandstone from south Texas. Precambrian granites from the Llano uplift of central Texas contain from a few ppm uranium (considered normal) to over 100 ppm on a whole-rock basis. In granite, uranium is concentrated in: (1) accessory minerals including zircon, biotite, allanite, Fe-Ti oxides, and altered sphene, (2) along grain boundaries and in microfractures by precipitation from deuteric fluids, and (3) as point sources (small inclusions) in quartz and feldspars. Tertiary volcanic rocks from the Davis Mountains of west Texas include diverse rock types from basalt to rhyolite. Average uranium contents increase from 1 ppm in basalts to 7 ppm in rhyolites. Concentration occurs: (1) in iron-titanium-oxides, zircon, and rutile, (2) in the fine-grained groundmass as uniform and point-source concentrations, and (3) as late uranium in cavities associated with banded, silica-rich material. Uranium in ore-grade sandstone is concentrated to more than 3%. Specific occurrences include (1) leucoxene and/or anatase, (2) opaline and calcite cements, (3) mud clasts and altered volcanic rock fragments, and (4) in a few samples, as silt-size uranium- and molybdenum-rich spheres. Uranium content is quite low in pyrite, marcasite, and zeolites

  10. La asociacion Monzonitica del Domo Anatectico del Tormes: geoquimica y petrogenesis

    Directory of Open Access Journals (Sweden)

    López Plaza, M.

    2001-08-01

    Full Text Available In certain peripheral zones of the Anatectic Tormes Dome there exists a group of rocks, which are from basic to acid as well as rich in alkali feldspar, apatite and allanite. Such an unusual mineralogy makes the rocks to be enriched in K20, P2O5, LREE and other elements of low ionic potential. Their geochemical signature is related to the volcanic shoshonites, to the vaugnerites of the French Central Massif as well as to the monzonitic series of Ballon, being, in turn, almost exceptional in the iberian variscan. The least evolved terms are rather fractionated, therefore, they are not primary melts. During the differentiation, the saturation of accessory phases such as apatite, allanite and zircon exerts an important effect in the evolution of the residual liquid giving rise to an inflection point in the Harker diagrams. From the good adjustments obtained in mass balance and Rayleigh fractionation modelling, we can infer that the process of fractional crystallization is the dominant one. In this respect, the porphyritic granitoids can be derived from a liquid of monzodioritic composition, being rocks genetically to the associated acid rocks. The corroded cores of plagioclase and the spatial relations suggest the existence of different pulses of magma from basic to acid coming from the same magmatic chamber.En dos bandas del Domo anatéctico del Tormes aparece un conjunto de rocas plutónicas desde básicas a ácidas ricas en feldespato potásico, apatito y allanita. Esta mineralogía tan particular hace que estén enriquecidas en K20, P205, LREE y otros elementos de bajo potencial iónico. Su quimismo es afín a las shoshonitas volcánicas, a las vaugneritas del Macizo Central francés y a las series monzoníticas de Ballon, siendo, a su vez, casi excepcional en el varisco ibérico. Los términos menos evolucionados están bastante fraccionados por lo que no se trata de fundidos primarios. Durante la diferenciación existen fases accesorias como

  11. Contribution to uranium geochemistry in intrusive granites; Contribution a la geochimie de l'uranium dans les granites intrusifs

    Energy Technology Data Exchange (ETDEWEB)

    Coulomb, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-01-15

    This work aims to define the position of a certain number of French granitic deposits within the field of the geochemistry of granites in general, and of the geochemistry of uranium in particular. The regions concerned are: - 3 French Hercynian ranges, in the Vendee, in Brittany and in the Morvan, - 1 African range, probably precambrian, of the Hoggar. For each range, the petrochemical framework is first of all determined and then the degree of chemical homogeneity of the rocks is evaluated. In the petrochemical groups thus obtained the geochemical behaviour of the uranium is studied. From a point of view of the geochemistry of the granites under investigation, a comparison of the laws of distribution of the major elements in the 4 ranges shows up a convergence of average composition which was not anticipated by geological and petrographic considerations alone. The statistical and geochemical distribution laws of the total uranium as a function of the petrochemical variations are established. A study of the chemical forms of uranium in the rocks has drawn an attention to the qualitative and quantitative importance of the fraction of this uranium soluble in dilute acids. We have therefore reconsidered on the one hand, the laws of distribution of the insoluble uranium, which represents essentially the uranium fixed in crystalline structures (zircon, allanite...), and we have justified on the other hand the interest presented by the soluble uranium: this, although more complex in character, presents a geochemical unity in post magmatic phenomena which makes possible to find a genetic connection between the uraniferous deposits and the intrusive massifs. Finally we have given a plan of the geochemical cycle of uranium, in which we hope to have provided some more accurate data on the igneous phase. (author) [French] Le but du travail presente est de situer sur le plan de la geochimie des granites en general, sur le plan de la geochimie de l'uranium en particulier, un

  12. Trace element mobility in mine waters from granitic pegmatite U–Th–REE deposits, Bancroft area, Ontario

    International Nuclear Information System (INIS)

    Desbarats, A.J.; Percival, J.B.; Venance, K.E.

    2016-01-01

    Small, low-grade, granitic pegmatite U–Th–REE deposits are found throughout the Grenville geological province of eastern Canada. Groundwater quality at historical mining properties in the Bancroft area was investigated in order to better understand the mobility of trace elements that may pose health risks if there is renewed development of this class of mineral deposit. Groundwater samples were obtained from diamond drill holes, flowing adits and flooded mine shafts. Uranium occurs almost entirely in the dissolved (<0.45 μm) phase and is found at concentrations reaching 2579 μg/L. The Canadian maximum acceptable concentration for U in drinking water (0.02 mg/L) was exceeded in 70% of samples. Regulatory limits for 226 Ra (0.5 Bq/L) and for 210 Pb (0.2 Bq/L) were generally exceeded in these samples as well. Speciation modeling indicates that over 98% of dissolved U is in the form of highly mobile uranyl-Ca–carbonate complexes known to inhibit U adsorption. Uranium concentrations in groundwater appear to be correlated with the uranothorite content of the deposits rather than with their U grade. Uranothorite may be more soluble than uraninite, the other ore mineral, because of its non-ideal composition and metamict structure. Thorium, released concomitantly with U during the dissolution of uranothorite and thorian uraninite, exhibits median and maximum total concentrations of only 0.1 and 11 μg/L, respectively. Mass balance and stoichiometric considerations indicate that almost all Th is immobilized very close to its source. The sums of total light REE (La–Gd) concentrations have median and maximum values of 6 and 117 μg/L, respectively. The sums of total heavy REE (Tb–Lu) concentrations have median and maximum values of 0.8 and 21 μg/L, respectively. Light REE are derived mainly from the dissolution of metamict allanite whereas the sources of heavy REE are widely dispersed among accessory minerals. Fractionation patterns of REE in the dissolved

  13. Contribution to uranium geochemistry in intrusive granites; Contribution a la geochimie de l'uranium dans les granites intrusifs

    Energy Technology Data Exchange (ETDEWEB)

    Coulomb, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-01-15

    This work aims to define the position of a certain number of French granitic deposits within the field of the geochemistry of granites in general, and of the geochemistry of uranium in particular. The regions concerned are: - 3 French Hercynian ranges, in the Vendee, in Brittany and in the Morvan, - 1 African range, probably precambrian, of the Hoggar. For each range, the petrochemical framework is first of all determined and then the degree of chemical homogeneity of the rocks is evaluated. In the petrochemical groups thus obtained the geochemical behaviour of the uranium is studied. From a point of view of the geochemistry of the granites under investigation, a comparison of the laws of distribution of the major elements in the 4 ranges shows up a convergence of average composition which was not anticipated by geological and petrographic considerations alone. The statistical and geochemical distribution laws of the total uranium as a function of the petrochemical variations are established. A study of the chemical forms of uranium in the rocks has drawn an attention to the qualitative and quantitative importance of the fraction of this uranium soluble in dilute acids. We have therefore reconsidered on the one hand, the laws of distribution of the insoluble uranium, which represents essentially the uranium fixed in crystalline structures (zircon, allanite...), and we have justified on the other hand the interest presented by the soluble uranium: this, although more complex in character, presents a geochemical unity in post magmatic phenomena which makes possible to find a genetic connection between the uraniferous deposits and the intrusive massifs. Finally we have given a plan of the geochemical cycle of uranium, in which we hope to have provided some more accurate data on the igneous phase. (author) [French] Le but du travail presente est de situer sur le plan de la geochimie des granites en general, sur le plan de la geochimie de l'uranium en particulier

  14. Linking microstructures, petrology and in situ U-(Th)-Pb geochronology to constrain P-T-t-D evolution of the Greather Himalyan Sequences in Western Nepal (Central Himalaya)

    Science.gov (United States)

    Iaccarino, Salvatore; Montomoli, Chiara; Carosi, Rodolfo; Langone, Antonio

    2013-04-01

    Last advances in forward modelling of metamorphic rocks and into the understanding of accessories minerals behaviour, suitable for geochronology (e.g. zircon and monazite), during metamorphism, bring new insights for understanding the evolution of metamorphic tectonites during orogenic cycles (Williams and Jercinovic, 2012 and reference therein). One of the best exposure of high- to medium grade- metamorphic rocks, is represented by the Greater Himalayan Sequence (GHS) in the Himalayan Belt, one of the most classic example of collisional orogen. Recent field work in Mugu Karnali valley, Western Nepal (Central Himalaya), identified a compressional top to the South ductile shear zone within the core of the GHS, named Magri Shear Zone (MSZ), developed in a high temperature regime as testified by quartz microstructures and syn-kinematic growth of sillimanite. In order to infer the tectono-metamorphic meaning of MSZ, a microstructural study coupled with pseudosection modelling and in situ U-(Th)-Pb monazite geochronology was performed on selected samples from different structural positions. Footwall sample constituted by (Grt + St ± Ky) micaschist shows a prograde garnet growth (cores to inner rims zoning), from ~500°C, ~0.60GPa (close to garnet-in curve) to ~580°C, ~1.2 GPa temporal constrained between 21-18 Ma, by medium Y cores to very low Y mantles monazite micro-chemical/ages domain . In this sample garnet was still growing during decompression and heating at ~640°C, ~0.75 GPa (rims), and later starts to be consumed, in conjunction with staurolite growth at 15-13 Ma, as revealed by high Y rims monazite micro-chemical/ages domain. Hanging-wall mylonitic samples have a porphyroclastic texture, with garnet preserve little memory of prograde path. Garnet near rim isoplets and matrix minerals intersect at ~700°C and ~0.70 GPa. A previous higher P stage, at ~1.10 GPa ~600°C, is testified by cores of larger white mica porhyroclasts. Prograde zoned allanite (Janots

  15. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration

    Science.gov (United States)

    Bern, Carleton R.; Yesavage, Tiffany; Foley, Nora K.

    2017-01-01

    Ion-adsorbed rare earth element (REE) deposits supply the majority of world heavy REE production and substantial light REE production, but relatively little is known of their occurrence outside Southeast Asia. We examined the distribution and forms of REEs on a North American pluton located in the highly weathered and slowly eroding South Carolina Piedmont. The Hercynian Liberty Hill pluton experiences a modern climate that includes ~ 1500 mm annual rainfall and a mean annual temperature of 17 °C. The pluton is medium- to coarse-grained biotite-amphibole granite with minor biotite granite facies. REE-bearing phases are diverse and include monazite, zircon, titanite, allanite, apatite and bastnäsite. Weathered profiles were sampled up to 7 m-deep across the ~ 400 km2 pluton. In one profile, ion-adsorbed REEs plus yttrium (REE + Y) ranged up to 581 mg/kg and accounted for up to 77% of total REE + Y in saprolite. In other profiles, ion-adsorbed REE + Y ranged 12–194 mg/kg and only accounted for 3–37% of totals. The profile most enriched in ion-adsorbed REEs was located along the mapped boundary of two granite facies and contained trioctahedral smectite in the saprolite, evidence suggestive of hydrothermal alteration of biotite at that location. Post-emplacement deuteric alteration can generate easily weathered REE phases, particularly fluorocarbonates. In the case of Liberty Hill, hydrothermal alteration may have converted less soluble to more soluble REE minerals. Additionally, regolith P content was inversely correlated with the fraction ion-adsorbed REEs, and weathering related secondary REE-phosphates were found in some regolith profiles. Both patterns illustrate how low P content aids in the accumulation of ion-adsorbed REEs. The localized occurrence at Liberty Hill sheds light on conditions and processes that generate ion-adsorbed REEs.

  16. Site investigation SFR. Fracture mineralogy and geochemistry of borehole sections sampled for groundwater chemistry and Eh. Results from boreholes KFR01, KFR08, KFR10, KFR19, KFR7A and KFR105

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Bjoern (WSP Sverige AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB, Grabo (Sweden))

    2011-01-15

    This report is part of the complementary site investigations for the future expansion of SFR. The report presents the results obtained during a detailed mineralogical and geochemical study of fracture minerals in drill cores from borehole section sampled for groundwater chemistry and where downhole Eh measurements have been performed. The groundwater redox system comprises not only the water, but also the bedrock/fracture mineral system in contact with this water. It is thus important to gain knowledge of the solid phases in contact with the groundwater, i.e. the fracture minerals. The samples studied for mineralogy and geochemistry, here reported, were selected to represent the fracture surfaces in contact with the groundwater in the sampled borehole sections and will give input to the hydrogeochemical model (SFR SDM). The mineralogy was determined using SEM-EDS and XRD and the geochemistry of fracture filling material was analysed by ICP-AES and ICP-QMS. The most common fracture minerals in the samples are mixed layer clay (smectite-illite), illite, chlorite, calcite, quartz, adularia and albite. Other minerals identified in the borehole sections include laumontite, pyrite, barite, chalcopyrite, hematite, Fe-oxyhydroxide, muscovite, REE-carbonate, allanite, biotite, asphaltite, galena, sphalerite, arsenopyrite, uranium phosphate, uranium silicate, Y-Ca silicate, monazite, xenotime, harmotome and fluorite. There are no major differences between the fracture mineralogy of the investigated borehole sections from SFR and the fracture mineralogy of the Forsmark site investigation area. The four fracture mineral generations distinguished within the Forsmark site investigation are also found at SFR. However, some differences have been observed: 1) Barite and uranium minerals are more common in the SFR fractures, 2) clay minerals like mixed layer illite-smectite and illite dominates in contrast to Forsmark where corrensite is by far the most common clay mineral and, 3

  17. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Saudi Arabia

    International Nuclear Information System (INIS)

    1977-09-01

    Saudi Arabia occupies most of the Arabian Peninsula and has an area of 872,722 sq miles, or 2,260,350 sq km. The ancient Arabian Shield of igneous and metamorphic rocks comprises most of the western third of the country. The shield contains many extinct volcanoes surrounded by lava beds. Sloping eastwards are the newer sedimentary areas in which rich oil fields are found. In Saudi Arabia oil is paramount and less effort has been put into searching for mineral deposits than in other countries of similar size and geology. Pour aerial radiometric surveys have been undertaken and some of the anomalies discovered in the earlier ones were ground checked by an IAEA expert in 1963-64. Two anomalies warranted more detailed work, these were the Jabal Said anomaly in the Central Shield area and the Al Ghrayyat in Wadi Sawawin about 70 miles from the Jordan border. The Jabal Said anomaly consists of a zone of altered rocks consisting largely of pegmatite and pegmatite granite= Allanite, pyrochlore, cyrtolite, xenotime and monazite are the ore minerals,, The deposit was estimated to have 2.2 million tons of ore grading 0.2 - 0.3 percent Nb 2 O 5 and 0.03 - 0,05% U 3 O 8 . The other occurrence at Al Ghrayyat is similar but with much lower grade uranium content. In view of the huge size of Saudi Arabia, the existence of many geologically favourable rock types and the poor coverage by sophisticated uranium exploration techniques, the Speculative Potential is placed between 10,000 and 50,000 Tonnes uranium. (author)

  18. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    International Nuclear Information System (INIS)

    Black, B.A.

    1980-09-01

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leads to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits

  19. The petrogenesis of metamorphosed carbonatites in the Grenville Province, Ontario

    International Nuclear Information System (INIS)

    Moecher, D.P.; Anderson, E.D.; Cook, C.A.; Mezger, K.

    1997-01-01

    Veins and dikes of calcite-rich rocks within the Central Metasedimentary Belt boundary zone (CMBbz) in the Grenville Province of Ontario have been interpreted to be true carbonatites or to be pseudocarbonatites derived from interaction of pegmatite melts and regional Grenville marble. The putative carbonatites have been metamorphosed and consist mainly of calcite, biotite, and apatite with lesser amounts of clinopyroxene, magnetite, allanite, zircon, titanite, cerite, celestite, and barite. The rocks have high P and rare earth element (REE) contents, and calcite in carbonatite has elevated Sr, Fe, and Mn contents relative to Grenville Supergroup marble and marble melange. Values of δ 18 O SMOW (9.9 - 13.3o/oo) and δ 13 C PDB (-4.8 to -1.9o/oo) for calcite are also distinct from those for marble and most marble melange. Titanites extracted from clinopyroxene -calcite-scapolite skarns formed by metasomatic interaction of carbonatites and silicate lithologies yield U-Pb ages of 1085 to 1035 Ma. Zircon from one carbonatite body yields a U-Pb age of 1089 ± 5 Ma; zircon ages from two other bodies are 1170 ± 3 and 1143 ± 8 Ma, suggesting several carbonatite formation events or remobilization of carbonatite during deformation and metamorphism around 1080 Ma. Values of ε Nd (T) are 1.7 - 3.2 for carbonatites, -1.5 -1.0 for REE-rich granite dikes intruding the CMBbz, and 1.6 - 1.7 for marble. The mineralogy and geochemical data are consistent with derivation of the carbonatites from a depleted mantle source. Mixing calculations indicate that interaction of REE-rich pegmatites with regional marbles cannot reproduce selected major and minor element abundance, REE contents, and O and Nd isotope compositions of the carbonatites. (author)

  20. Heavy mineral survey for rare earths in the Northern part of Palawan

    International Nuclear Information System (INIS)

    Reyes, R.Y.; Santos, G.P.; Magsambol, W.N.; Ramos, A.F.; Petrache, C.A.; Tabora, E.U.

    1992-01-01

    A reconnaissance geochemical survey for rare earths was carried out over the northern half of Palawan with considerable success. The survey represents the first systematic geochemical exploration effort to look for indigenous rare earth resources in the Philippines. Total area covered was about 5,000 sq km. The survey entailed the systematic collection of 740 heavy mineral panned concentrate and stream sediment samples along streams and rivers. The average sampling density was about one set of sample per 2-15 sq km. A total of 218 heavy mineral samples were analyzed for lathanum, cerium, praseodymium, neodymium and yttrium. Analysis of stream sediments for rare earths was discontinued due to the high detection limit of the X-ray fluorescence spectrometer. Results of the survey clearly indicated the effectiveness of heavy mineral sampling for rare earths at the reconnaissance level of exploration. Six anomalous and well-defined areas of interest were delineated for possible rare earth mineralization. Three priority zones were further outlined from the six prospective areas for possible follow-up surveys. Mineralogical examination of heavy minerals revealed the presence of major allanite and minor monazite as the potential hosts of rare earths in the priority zone number one. Gray monazite was identified in the priority zone number two as the rare earth mineral. Minute specks and grains of gold were visibly present in some of the heavy mineral samples taken in this area. A combined mineralization of rare earths and gold in this area is a possibility. The discovery of the first gray nodular monazite in Palawan may extend the age of the oldest rocks in the Philippines to Lower Paleozoic. A separate study to establish the age of the oldest rocks in the country is likewise necessary. (auth.). 27 refs.; 6 figs.; 8 tabs

  1. Accessory mineral records of tectonic environments? (Invited)

    Science.gov (United States)

    Storey, C.; Marschall, H. R.; Enea, F.; Taylor, J.; Jennings, E. S.

    2010-12-01

    Accessory mineral research continues to gather momentum as we seek to unleash their full potential. It is now widely recognised that robust accessory minerals, such as zircon, rutile, titanite, allanite and monazite, are archives of important trace elements that can help deduce metamorphic reaction history in metapelites, metabasites and other rock types. Moreover, they are important carriers of certain trace elements and govern or influence the products of partial melting and of fluid-rock interaction (e.g. magmas and mineralisation) in settings like subduction zones and hydrothermal systems. Perhaps most importantly, they can often be dated using the U-Th-Pb system. More recently, radiogenic (Lu-Hf, Sm-Nd, Rb-Sr) and stable (O) isotope systems have been applied and have further pushed the utility of accessory mineral research. In this talk I will discuss some of these advances towards one particular aim: the use of detrital accessory minerals for fingerprinting tectonic environments. This is a particularly laudable aim in Precambrian rocks, for which the preservation potential of orogenic belts and fossil subduction zones and their diagnostic metamorphic rocks is low. The implication is that our understanding of plate tectonics, particularly in the Archaean, is biased by the preserved in-tact rock record. An analogy is that Jack Hills zircons record evidence of Earth’s crust some 400 Ma before the preserved rock record begins. I will focus on some recent advances and new data from rutile and also the mineral inclusion record within zircon, which shows great promise for petrologic interpretation.

  2. The El Horror uranium anomaly in northeastern Sonora, Mexico: Constraints from geochemical and mineralogical approaches

    Science.gov (United States)

    Grijalva-Rodríguez, T.; Valencia-Moreno, M.; Calmus, T.; Del Rio-Salas, R.; Balcázar-García, M.

    2017-12-01

    This work reviews the characteristics of the El Horror uranium prospect in northeastern Sonora, Mexico. It was formerly detected by a radiometric anomaly after airborne gamma ray exploration carried out in the 70's by the Mexican government. As a promising site to contain important uranium resources, the El Horror was re-evaluated by CFE (Federal Electricity Commission) by in situ gamma ray surveys. The study also incorporates rock and stream sediment ICP-MS geochemistry, X-ray diffraction, X-ray fluorescence, Raman spectrometry and Scanning Electron Microscopy (SEM) to provide a better understanding of the radiometric anomaly. The results show that, instead of a single anomaly, it comprises at least five individual anomalies hosted in hydrothermally altered Laramide (80-40 Ma) andesitic volcanic rocks of the Tarahumara Formation. Concentrations for elemental uranium and uranium calculated from gamma ray surveys (i.e., equivalent uranium) are not spatially coincident within the anomaly, but, at least at some degree, they do so in specific sites. X-ray diffraction and Raman spectrometry revealed the presence of rutile/anatase, uvite, bukouvskyte and allanite as the more likely mineral phases to contain uranium. SEM studies revealed a process of iron-rich concretion formation, suggesting that uranium was initially incorporated to the system by adsorption, but was largely removed later during incorporation of Fe+3 ions. Stream sediment geochemistry reveals that the highest uranium concentrations are derived from the southern part of the Sierra La Madera batholith (∼63 Ma), and decrease toward the El Horror anomaly.

  3. Fitful and protracted magma assembly leading to a giant eruption, Youngest Toba Tuff, Indonesia

    Science.gov (United States)

    Reid, Mary R; Vazquez, Jorge A.

    2017-01-01

    The paroxysmal eruption of the 74 ka Youngest Toba Tuff (YTT) of northern Sumatra produced an extraordinary 2800 km3 of non-welded to densely welded ignimbrite and co-ignimbrite ash-fall. We report insights into the duration of YTT magma assembly obtained from ion microprobe U-Th and U-Pb dates, including continuous age spectra over >50% of final zircon growth, for pumices and a welded tuff spanning the compositional range of the YTT. A relatively large subpopulation of zircon crystals nucleated before the penultimate caldera-related eruption at 501 ka, but most zircons yielded interior dates 100-300 ka thereafter. Zircon nucleation and growth was likely episodic and from diverse conditions over protracted time intervals of >100 to >500 ka. Final zircon growth is evident as thin rim plateaus that are in Th/U chemical equilibrium with hosts, and that give crystallization ages within tens of ka of eruption. The longevity and chemical characteristics of the YTT zircons, as well as evidence for intermittent zircon isolation and remobilization associated with magma recharge, is especially favored at the cool and wet eutectoid conditions that characterize at least half of the YTT, wherein heat fluxes could dissolve major phases but have only a minor effect on larger zircon crystals. Repeated magma recharge may have contributed to the development of compositional zoning in the YTT but, considered together with limited allanite, quartz, and other mineral dating and geospeedometry, regular perturbations to the magma reservoir over >400 ka did not lead to eruption until 74 ka ago.

  4. The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China

    Science.gov (United States)

    Smith, M.; Kynicky, J.; Xu, Cheng; Song, Wenlei; Spratt, J.; Jeffries, T.; Brtnicky, M.; Kopriva, A.; Cangelosi, D.

    2018-05-01

    The silico‑carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Burbankite was also potentially an early crystallising phase. Monazite-(Ce) was subsequently altered to produce a second generation of apatite, which was in turn replaced and overgrown by britholite-(Ce), accompanied by the formation of allanite-(Ce). Bastnäsite and parisite where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, to more silica-rich conditions during early hydrothermal processes, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate hydrothermal fluids must have contributed HREE to the mineralisation. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid (where a is activity), and breakdown of HREE-enriched calcite may have been the HREE source. Leaching in the presence of strong, LREE-selective ligands (Cl-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during alteration, and hence sulphate complexation may have been important for preferential HREE transport. Alongside HREE-enriched magmatic sources, and enrichment during magmatic processes, late stage alteration with non-LREE-selective ligands may be critical in forming HREE

  5. "Gris Quintana": a Spanish granite from the Past into the Future.

    Science.gov (United States)

    José Tejado, Juan; Mota, M. Isabel; Pereira, Dolores

    2014-05-01

    "Gris Quintana" is a medium-grained, biotite and amphibole granodiorite extracted in the Pluton of Quintana de la Serena (Extremadura, Spain). It is a constant light grey granite from the Hercynian geologic with excellent physicomechanical and physicochemical properties. The granodiorite is composed of plagioclase, biotite, quartz and alkali feldspar, with accessory allanite, titanite, apatite, zircon and ilmenite, mostly as inclusions within the biotite crystals. This commercial variety is extracted from many quarries in the late Hercynian plutons located in the Iberian Massif in Spain period (transition between Central Iberian and Ossa-Moren Zones), having large reserves of granite. Many of the quarries have their own transformation factory (high production zone), with which the sector is offered an endless variety of finishes and constructive rock typologies. A wide range of solutions to architects and designers are offered. Gris Quintana granite is one of the materials with highest technological benefits that are used in arquitecture. "Gris Quintana" granite has been used since ancient times, not only at a regional, but also at national and international level: paving, building (structural, exterior façadas, interior uses), urban decoration and funeral art. It can be found in monuments and more recently, in buildings of different styles and uses, that stand out in beauty and splendor, lasting in time. Some singular works in "Gris Quintana" granite all over the world: extension to the "Congreso de Diputados" (Parliament) in Madrid, "Puerta de San Vicente" in Madrid, Andalucia Parliament columns in Sevilla, New Senate Buiding in Madird, "Gran Vía" pavement in Madrid, "Teatro Real façade" in Madrid… "Gris Quintana" granite accomplishes all the requirements for its nomination as Global Heritage Stone Resource, for both its use in construction and for artistic purposes.

  6. Site investigation SFR. Fracture mineralogy and geochemistry of borehole sections sampled for groundwater chemistry and Eh. Results from boreholes KFR01, KFR08, KFR10, KFR19, KFR7A and KFR105

    International Nuclear Information System (INIS)

    Sandstroem, Bjoern; Tullborg, Eva-Lena

    2011-01-01

    This report is part of the complementary site investigations for the future expansion of SFR. The report presents the results obtained during a detailed mineralogical and geochemical study of fracture minerals in drill cores from borehole section sampled for groundwater chemistry and where downhole Eh measurements have been performed. The groundwater redox system comprises not only the water, but also the bedrock/fracture mineral system in contact with this water. It is thus important to gain knowledge of the solid phases in contact with the groundwater, i.e. the fracture minerals. The samples studied for mineralogy and geochemistry, here reported, were selected to represent the fracture surfaces in contact with the groundwater in the sampled borehole sections and will give input to the hydrogeochemical model (SFR SDM). The mineralogy was determined using SEM-EDS and XRD and the geochemistry of fracture filling material was analysed by ICP-AES and ICP-QMS. The most common fracture minerals in the samples are mixed layer clay (smectite-illite), illite, chlorite, calcite, quartz, adularia and albite. Other minerals identified in the borehole sections include laumontite, pyrite, barite, chalcopyrite, hematite, Fe-oxyhydroxide, muscovite, REE-carbonate, allanite, biotite, asphaltite, galena, sphalerite, arsenopyrite, uranium phosphate, uranium silicate, Y-Ca silicate, monazite, xenotime, harmotome and fluorite. There are no major differences between the fracture mineralogy of the investigated borehole sections from SFR and the fracture mineralogy of the Forsmark site investigation area. The four fracture mineral generations distinguished within the Forsmark site investigation are also found at SFR. However, some differences have been observed: 1) Barite and uranium minerals are more common in the SFR fractures, 2) clay minerals like mixed layer illite-smectite and illite dominates in contrast to Forsmark where corrensite is by far the most common clay mineral and, 3

  7. The Life and Times of Supervolcanoes: Inferences from Long Valley Caldera

    Science.gov (United States)

    Simon, Justin

    2014-01-01

    Cataclysmic eruptions of silicic magma from "supervolcanoes" are among the most awe-inspiring natural phenomena found in the geologic record, in terms of size, power, and potential hazard. Based on the repose intervals between eruptions of this magnitude, the magmas responsible for them could accumulate gradually in the shallow crust over time scales that may be in excess of a million years (Smith, 1979; Spera and Crisp, 1981; Shaw, 1985). Pre-eruption magma residence time scales can also be inferred from the age difference between eruption (i.e., using 40Ar/39Ar dating to determine the time when hot erupted material cools to below its Ar closure temperature, 200 to 600 degC) and early pre-eruption crystallization (i.e., zircon saturation temperatures; Reid et al., 1997). I will discuss observations from Long Valley a Quaternary volcanic center in California. Long Valley is a voluminous, dominantly silicic caldera system. Based on extensive dating of accessory minerals (e.g., U-Th-Pb dating of zircon and allanite) along with geochemical and isotopic data we find that silicic magmas begin to crystallize 10's to 100's of thousands of years prior to their eruption and that rhyolites record episodes of punctuated and independent evolution rather than the periodic tapping of a long-lived magma. The more punctuated versus more gradual magma accumulation rates required by the absolute and model ages, respectively, imply important differences in the mass and heat fluxes associated with the generation, differentiation, and storage of voluminous rhyolites and emphasize the need to reconcile the magmatic age differences.

  8. Co-Cu-Au deposits in metasedimentary rocks-A preliminary report

    Science.gov (United States)

    Slack, J.F.; Causey, J.D.; Eppinger, R.G.; Gray, J.E.; Johnson, C.A.; Lund, K.I.; Schulz, K.J.

    2010-01-01

    A compilation of data on global Co-Cu-Au deposits in metasedimentary rocks refines previous descriptive models for their occurrence and provides important information for mineral resource assessments and exploration programs. This compilation forms the basis for a new classification of such deposits, which is speculative at this early stage of research. As defined herein, the Co-Cu-Au deposits contain 0.1 percent or more by weight of Co in ore or mineralized rock, comprising disseminated to semi-massive Co-bearing sulfide minerals with associated Fe- and Cu-bearing sulfides, and local gold, concentrated predominantly within rift-related, siliciclastic metasedimentary rocks of Proterozoic age. Some deposits have appreciable Ag ? Bi ? W ? Ni ? Y ? rare earth elements ? U. Deposit geometry includes stratabound and stratiform layers, lenses, and veins, and (or) discordant veins and breccias. The geometry of most deposits is controlled by stratigraphic layering, folds, axial-plane cleavage, shear zones, breccias, or faults. Ore minerals are mainly cobaltite, skutterudite, glaucodot, and chalcopyrite, with minor gold, arsenopyrite, pyrite, pyrrhotite, bismuthinite, and bismuth; some deposits have appreciable tetrahedrite, uraninite, monazite, allanite, xenotime, apatite, scheelite, or molybdenite. Magnetite can be abundant in breccias, veins, or stratabound lenses within ore or surrounding country rocks. Common gangue minerals include quartz, biotite, muscovite, K-feldspar, albite, chlorite, and scapolite; many deposits contain minor to major amounts of tourmaline. Altered wall rocks generally have abundant biotite or albite. Mesoproterozoic metasedimentary successions constitute the predominant geologic setting. Felsic and (or) mafic plutons are spatially associated with many deposits and at some localities may be contemporaneous with, and involved in, ore formation. Geoenvironmental data for the Blackbird mining district in central Idaho indicate that weathering of

  9. Contribution to uranium geochemistry in intrusive granites

    International Nuclear Information System (INIS)

    Coulomb, R.

    1959-01-01

    This work aims to define the position of a certain number of French granitic deposits within the field of the geochemistry of granites in general, and of the geochemistry of uranium in particular. The regions concerned are: - 3 French Hercynian ranges, in the Vendee, in Brittany and in the Morvan, - 1 African range, probably precambrian, of the Hoggar. For each range, the petrochemical framework is first of all determined and then the degree of chemical homogeneity of the rocks is evaluated. In the petrochemical groups thus obtained the geochemical behaviour of the uranium is studied. From a point of view of the geochemistry of the granites under investigation, a comparison of the laws of distribution of the major elements in the 4 ranges shows up a convergence of average composition which was not anticipated by geological and petrographic considerations alone. The statistical and geochemical distribution laws of the total uranium as a function of the petrochemical variations are established. A study of the chemical forms of uranium in the rocks has drawn an attention to the qualitative and quantitative importance of the fraction of this uranium soluble in dilute acids. We have therefore reconsidered on the one hand, the laws of distribution of the insoluble uranium, which represents essentially the uranium fixed in crystalline structures (zircon, allanite...), and we have justified on the other hand the interest presented by the soluble uranium: this, although more complex in character, presents a geochemical unity in post magmatic phenomena which makes possible to find a genetic connection between the uraniferous deposits and the intrusive massifs. Finally we have given a plan of the geochemical cycle of uranium, in which we hope to have provided some more accurate data on the igneous phase. (author) [fr

  10. The alkaline peralkaline granitic post-collisional Tin Zebane dyke swarm (Pan-African Tuareg shield, Algeria): prevalent mantle signature and late agpaitic differentiation

    Science.gov (United States)

    Hadj-Kaddour, Zakia; Liégeois, Jean-Paul; Demaiffe, Daniel; Caby, Renaud

    1998-12-01

    The Tin Zebane dyke swarm was emplaced at the end of the Pan-African orogeny along a mega-shear zone separating two contrasting terranes of the Tuareg shield. It is located along the western boundary of the Archaean In Ouzzal rigid terrane, but inside the adjacent Tassendjanet terrane, strongly remobilized at the end of the Precambrian. The Tin Zebane swarm was emplaced during post-collisional sinistral movements along the shear zone at 592.2±5.8 Ma (19WR Rb-Sr isochron). It is a dyke-on-dyke system consisting of dykes and stocks of gabbros and dykes of metaluminous and peralkaline granites. All rock types have Sr and Nd isotopic initial ratios (Sr i=0.7028 and ɛNd=+6.2) typical of a depleted mantle source, similar to the prevalent mantle (PREMA) at that period. No crustal contamination occurred in the genesis of the Tin Zebane swarm. Even the samples showing evidence of fluid interaction (essentially alkali mobility) have the same isotopic signature. The peralkaline granites have peculiar geochemical characteristics that mimic subduction-related granites: this geochemical signature is interpreted in terms of extensive differentiation effects due to late cumulates comprising aegirine, zircon, titanite, allanite and possibly fergusonite, separated from the liquid in the swarm itself due to magmatic flow turbulence. The Tin Zebane dyke swarm is thus of paramount importance for constraining the differentiation of mantle products to generate highly evolved alkaline granites without continental crust participation, in a post-collisional setting.

  11. Preliminary geological assessment for rare earths at Ombo Area, San Vicente, Northern Palawan

    International Nuclear Information System (INIS)

    Ramos, Angelito F.; Santos, Gabriel Jr.; Magsambol, Wilfred N.; Castillo, Marilyn K.; Tabora, Estrelita U.

    2001-04-01

    A preliminary geological assessment for rare earths was conducted along Ombo beach area, San Vicente, northern Palawan to evaluate the potential geologic reserve and to determine the relative concentration of REE, thorium and uranium. This investigation also aims to establish the distribution of heavy minerals. The study area, covering, about 6500 m 2 is comprised of the undisturbed beach sand deposits confined between the high tide line and the base of the mountains that borders the coastline. The investigation involved the establishment of shallow test pits with depths varying from one meter ot less than three meters. A total of 23 heavy mineral panned concentrates were collected. All the samples were analyzed for REE, Th and U using the portable X-MET 820 x-ray fluorescence and GR-320 gamma ray spectrometer. Radiometric measurements were also taken along the stretch of Ombo beach to establish the natural background radioactivity. The radiometric values vary from 27 cps to 420 cps. The high readings could be attributed to the presence of radioactive rare earth bearing minerals, principally allanite. This initial investigation indicates a positive geologic reserve of approximately 19,000 metric tons beach sand deposits, containing an average grade of 22.19% REE (Ce, La), 0.85% Th and 0.55% U. The average distribution of heavy minerals is 3600 gm heavies per cubic meter. Moreover, a probable geologic reserve of about 41,000 metric tons with an average grade of 22.13% REE (Ce, La), 0.85% Th and 0.55% U was also determined. The average distribution of heavy minerals is about 3300 gm heavies per cubic meter. (Author)

  12. Geochemistry and mineralogy of the radioactive minerals associated with some pegmatite veins of the Ukma-Nawahatu Hursi sector, Purulia district, W.B., in the Precambrian Chhotanagpur Gneissic complex

    International Nuclear Information System (INIS)

    Baidya, Tapan Kumar

    2014-01-01

    Some barite-bearing pegmatites in the Ukma-Nawahatu-Hursi sector (23° 25 min - 26 sec N, 86° 02 min - 04 sec E) in Purulia dist., West Bengal, have association of radioactive minerals in the form of coarse-grained pitchblack lumps and irregular patches. The present author and his associates first reported the occurrence of this radioactive belt along a ENE-WSW shearzone during their fieldwork in November, 1978. Groundborne radiometric survey and isorad mapping has established a radioactive high zone of about 15 km length running through Ukma, Nawahatu and Hursi areas. Mineralogical studies of the radioactive minerals have revealed the occurrence of Chevkinite, Aeschynite, Brannerite, Allanite, Uraninite, Tyuyamunite, Davidite, Euxenite, Samarskite, Thorutite, Autunite, Cerianite, in association with quartz, barite, microcline as the principal minerals and various minor minerals like biotite, vermiculite, hornblende, augite, orthoclase, celsian, muscovite, calcite, epidote, zoisite, ilmenite, sphene, rutile, hematite, magnetite, anatase, galena and sodic plagioclase. The barite-bearing pegmatites occur as lenses or lenticular veins hosted by garnetiferous sillimanite-biotite-quartz-schist or occasionally by migmatite. Near Nawahatu the radioactive barite-pegmatite vein occurs at or near the junction between the footwall amphibolite and hangingwall garnetiferous schist. The pegmatite veins have followed mainly schistosity of the host rock and dip at 70°-80° towards south. Chemical analyses of individual radioactive minerals by SEM-EDX and also of the bulk radioactive lumps by ICP-MS have shown significant concentration of U, Tb and Rare earths. Minor and trace element analyses also record notable contents of Zr, Ga, Sc, Pb, Zn, Nb, Cu, Ni, V, Cr, As, W, Pd, Ag and TI. Details of chemical analytical data are presented here. Chemically active fluids generated during metamorphism, metasomatism and granitic activity appear to have played a significant role in the

  13. REE potential of the Nordkinn Peninsula, North Norway: A comparison of soil and bedrock composition

    International Nuclear Information System (INIS)

    Schilling, Julian; Reimann, Clemens; Roberts, David

    2014-01-01

    Highlights: • Soil geochemistry outlines an extensive REE anomaly on the Nordkinn Peninsula, North Norway. • Soil and bedrock geochemistry are compared with respect to REE and other HFSE. • Petrology of soil and rock samples reveals that the economic potential is limited. • Poor condition of REE minerals causes elevated REE concentrations in AR-digested soil samples. - Abstract: Regional-scale, low-density sampling, geochemical surveys using a variety of different sample materials have repeatedly indicated the Nordkinn Peninsula (northern Norway) as a substantial rare earth element (REE) anomaly. Recently, a more detailed soil geochemical survey, covering about 2000 km 2 at a sample density of 1 site per 2 km 2 , was carried out in the area. The new geochemical survey outlined a large area (several hundred km 2 ) where the soil samples contained several hundred and up to over 2000 mg/kg aqua regia extractable REE. In the surroundings of the highest soil anomalies, bedrock samples were collected for a mineralogical and compositional characterisation of the metasedimentary bedrock with focus on the possible economic potential. The REE concentrations obtained for aliquots of bedrock following aqua regia extraction, 4-Acid digestion and Li-borate fusion/decomposition closely match the results from soil pulps after an aqua regia extraction. Total contents for the REE determined in bedrock using the above methods range between 19 and 429 mg/kg, indicating an overall limited economic REE potential and the predominance of the light REE over the heavy REE. In terms of petrography, essentially all the bedrock samples are characterised by the presence of detrital, altered and locally even decomposed allanite (a LREE-incorporating, epidote-group mineral) and minor xenotime (a HREE-incorporating phosphate) while texturally stable REE phases are scarce. It is the poor condition of the REE minerals that makes them prone towards acidic leaching and, given similar results

  14. 2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon)

    Science.gov (United States)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel

    2014-09-01

    The Archean granitoids in the Kiéné area, Gabon, are overlained by the Paleoproterozoic sediments of the Franceville basin (2.1 Ga). The basin is known for its high-grade uranium deposits among which some have been forming natural nuclear fission reactors. Most of the studies were dedicated to the FA-FB Paleoproterozoic sediments hosting these uranium deposits. Little is known on the Archean basement itself and specifically on the hydrous alteration events it experienced before and after the sediment deposition. The present work is focused on their petrographical, mineralogical and geochemical characterization. Dating the successive alteration events has been attempted on altered monazite crystals. Rocks in different alteration states have been sampled from eight drill cores crosscutting the Archean - Paleoproterozoic unconformity. The Archean granitoids observed in the deepest levels exhibit typical petrographical features of a propylitic alteration while they are intensely illitized up to the unconformity. The propylitic alteration is mainly pervasive but the original texture of the granitoïds is conserved in spite of the formation of new minerals: Mg-chlorite, allanite and epidote forming a typical paragenesis. The illitic alteration is much more invasive near the unconformity. The illitization process leads to the replacement of feldspars and the corrosion of quartz crysals by an illitic matrix while the ferromagnesian minerals are pseudomorphosed by a Fe-chlorite + phengite + hematite assemblage. The final fluid-rock interaction step is marked by fissural deposits of calcite and anhydrite. The δ13C isotopic data show that the fissural carbonates precipitated from diagenetic fluids enriched carbon products deriving from the maturation of organic matter. The U-Pb isotopic analyzes performed on monazite crystals have dated three distinct events: 3.0-2.9 Ga (magmatic), 2.6 Ga (propylitic alteration) and 1.9 Ga (diagenetic illitization). The calculation of

  15. Geology of the plutonic basement rocks of Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    2004-01-01

    Exposures of basement rocks on Stewart Island provide a c. 70 km long by 50 km wide map of part of the Median Batholith that spans the margin of the Western Province. Because of their distance from the present plate boundary, these rocks are relatively unaffected by Cenozoic tectonism, allowing examination of unmodified Carboniferous-Cretaceous relationships within the Median Batholith. Thirty individual plutons (>c.20 km 2 ) have been mapped along with numerous relatively small intrusions ( 2 ). The large plutons form 85-90% of the Median Batholith on Stewart Island while the many smaller intrusions comprise 10-15%, mostly in the north. Lithologies include: biotite ± minor hornblende granodiorite, granite and leucogranite with accessory titanite - magmatic epidote and allanite (c. 50%); biotite ± muscovite ± garnet granite with S-type affinities (c. 10%); alkaline quartz monzonite, granite, and alkali feldspar granite with rare aegirine and blue-green amphibole (c. 3%); quartz monzodiorite and diorite with hornblende > biotite (c. 23%); gabbro and anorthosite (c. 12%) and ultramafic rocks (c. 2%). U-Pb zircon and monazite dating indicates that c. 12% of these plutonic rocks were emplaced during the Carboniferous between 345 and 290 Ma, c. 20% in the Early-Middle Jurassic at c. 170-165 Ma, c. 30% in the latest Jurassic to earliest Cretaceous between 152 and 128 Ma, and c. 38% in the Early Cretaceous between 128 and 100 Ma. The distribution of Pegasus Group schists and peraluminous granitoid rocks indicates that the northern limit of extensive early Paleozoic Western Province basement is located either within the Gutter Shear Zone or at the Escarpment Fault, 10-15 km south of the Freshwater Fault System previously thought to mark this boundary. Carboniferous and Middle Jurassic magmatism extended plutonic basement northwards as far as the Freshwater Fault System, while further magmatism during the latest Jurassic and earliest Cretaceous produced the basement

  16. The rapakivi granite plutons of Bodom and Obbnäs, southern Finland: petrography and geochemistry

    Directory of Open Access Journals (Sweden)

    Kosunen, P.

    1999-12-01

    Full Text Available The Obbnäs and Bodom granite plutons of southernmost Finland show the typical petrographic and geochemical features of the Proterozoic rapakivi granites in Finland and elsewhere: they cut sharply across the 1900 Ma Svecofennian metamorphic bedrock and have the geochemical characteristics of subalkaline A-type granites. The Bodom pluton is composed of porphyritic granites (hornblende-, hornblende-biotite-, and biotite-bearing varieties and an even-grained granite that probably represent two separate intrusive phases. This lithologic variation does not occur in the Obbnäs pluton, which is almost entirely composed of porphyritic hornblende-biotite granite that gradually becomes more mafic to the southwest. Three types of hybrid granitoids resulting from magma mingling and mixing occur on the southwestern tip of the Obbnäs peninsula. The Bodom granites are syenogranites, whereas the composition of the Obbnäs granite varies from syeno- to monzogranite. The main silicates of both the Bodom and Obbnäs granites are quartz, microcline, plagioclase (An1541, biotite (siderophyllite, and generally also amphibole (ferropargasite or hastingsite. Plagioclase-mantled alkali feldspar megacrysts are absent or rare. The accessory minerals are fluorite, allanite, zircon, apatite, and iron-titanium oxides; the Obbnäs granite also contains titanite. The Bodom and Obbnäs granites are metaluminous to weakly peraluminous, with average A/CNK of 1.00 and 1.05, respectively, have high Fe/Mg (average FeOtot/[FeOtot+MgO] is 0.94 for the Bodom and 0.87 for the Obbnäs granites, and high Ga/Al (3.78 to 5.22 in Bodom and 2.46 to 4.18 in Obbnäs. The REE contents are high with LREE-enriched chondrite-normalized patterns and moderate (Obbnäs to relatively strong (Bodom negative Eu-anomalies. The Obbnäs granite is enriched in CaO, TiO2, MgO, and FeO, and depleted in SiO2 and K2O compared to the Bodom granites. Also, there are differences in the Ba, Rb, and Sr contents of

  17. Metasedimentary, granitoid, and gabbroic rocks from central Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    1997-01-01

    A NNE-NE trending strip, 3-8 km wide, extending from the Freshwater valley across Mt Rakeahua Table Hill, and Mt Allen to the northern end or the Tin Range was mapped at a scale of 1:12,500 to locate and investigate the boundary between the Median Tectonic Zone (MTZ) and Western Province on Stewart Island. A NNE-trending fault, herein termed the Escarpment Fault, separates predominantly ductily deformed rocks on its south side from essentially undeformed rocks to the north. North of the Escarpment Fault, a small (2-3 km 2 ) pluton of alkali-feldspar granite (Freds Camp) intruded gabbroic rocks tentatively considered to be associated with gabbro/anorthosite/diorite of the Rakeahua pluton, centred on Mt Rakeahua. Both units were subsequently intruded by I-type biotite granite of the South West Arm pluton. South of the Escarpment Fault the oldest intrusions are biotite tonalite-granite orthogneisses (Ridge and Table Hill plutons) intercalated with the sillimanite-cordierite-bearing Pegasus Group metasedimentary rocks, considered to represent the Western Province. They contain titanite, allanite, and magmatic epidote-bearing assemblages, implying affinities with I-type granitoids. These older granitoids have been affected by at least three phases of ductile deformation. Immediately south of the Escarpment Fault, the Escarpment pluton (hornblende, biotite, quartz, monzonite-quartz monzodiorite) only exhibit effects of the third phase of deformation. Minor gabbroic intrusives concordant with the S 3 fabric intrude the Pegasus Group and intercalated orthogneisses. Plutons of two-mica, garnet ±cordierite granite (Blaikies and Knob) and younger biotite-titanite-magmatic epidote granite (Campsite) cut fabrics associated with the third phase of ductile deformation. Preliminary U-Pb dating indicate Devonian-Carboniferous, Jurassic, and Early Cretaceous emplacement ages for Ridge Orthogneiss, Freds Camp pluton, South West Arm pluton, and Blaikies pluton, respectively. South

  18. NİĞDE, ELMALI GÜNEYİ S-TİPİ BİYOTİT GRANİTOİDLERİ VE ANKLAVLARININ PETROLOJİSİ

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2006-02-01

    Full Text Available Biyotit granitoidler başlıca kuvars, biyotit, plajiyoklas, K-feldispat, muskovit nadiren amfibol içerirler. Tali bileşen olarak apatit, zirkon, allanit ve ikincil olarak klorit ve serisit içerirler. Anklavlar başlıca plajiyoklas, amfibol, ojit, biyotit, tali bileşen olarak sfen, zirkon ve ikincil olarak kalsit ve epidot minerallerini içerirler. Metalumino bileşimli anklav içeren, granitoidler S-tip granitlere ait kimyasal ve mineralojik özellikler gösterirler: peralumino (A/CNK oranı >1.15 bileşim ve muskovit minerali. Granitoidler büyük iyonlu litofil element (BİLE ve hafif nadir toprak elementlerce (HNTE zenginleşme ve ağır nadir toprak elementlerce fakirleşme (ANTE sunarlar. Bu durum granitoidlerin kabuk ergimesiyle oluştuğunu, negatif Eu anomalisi ve büyük iyon litofil elementlerince zenginlik göstermeleri plajiyoklasların fraksiyonlaşmada etkisini göstermektedir. Anklavlarda büyük iyonlu litofil element (BİLE zenginleşmesi, yüksek alan enerjili elementlerde (YAEE fakirleşme, nadir toprak element (NTE dağılımlarında yataya yakın desen vermeleri ve negatif Eu anomalisi göstermeleri, anklavların litosferik mantodan kaynaklandığını ve hornblend, plajiyoklasların fraksiyonlaşmada etkisini göstermektedir. Arazi, petrografik ve jeokimyasal verilere dayanarak, volkanik yay özellikli granitlerin mafik magmanın kabuğa sokulması ve muhtemelen kabuk kalınlaşması ile oluştuğu ve mafik magma ile fiziksel olarak karışarak anklavları oluşturduğu ileri sürülmüştür.

  19. Archaeological jade mystery solved using a 119-year-old rock collection specimen

    Science.gov (United States)

    Harlow, G. E.; Davies, H. L.; Summerhayes, G. R.; Matisoo-Smith, E.

    2012-12-01

    In a recent publication (Harlow et al. 2012), a ~3200-year old small stone artefact from an archaeological excavation on Emirau Island, Bismarck Archipelago, Papua New Guinea was described and determined to be a piece of jadeite jade (jadeitite). True jadeitite from any part of New Guinea was not previously known, either in an archaeological or geological context, so this object was of considerable interest with respect to its geological source and what that would mean about trade between this source and Emirau Island. Fortuitously, the artefact, presumably a wood-carving gouge, is very unusual with respect to both pyroxene composition and minor mineral constituents. Pyroxene compositions lie essentially along the jadeite-aegirine join: Jd94Ae6 to Jd63Ae36, and without any coexisting omphacite. This contrasts with Jd-Di or Jd-Aug compositional trends commonly observed in jadeitites worldwide. Paragonite and albite occur in veins and cavities with minor titanite, epidote-allanite, and zircon, an assemblage seen in a few jadeitites. Surprisingly, some titanite contains up to 6 wt% Nb2O5 with only trace Ta and a single grain of a Y-Nb phase (interpreted as fergusonite) is present; these are unique for jadeitite. In a historical tribute to C.E.A. Wichmann, a German geologist who taught at Utrecht University, the Netherlands, a previously unpublished description of chlormelanite from the Torare River in extreme northeast Papua, Indonesia was given. The bulk composition essentially matches the pyroxene composition of the jade, so this sample was hypothesized as coming from the source. We were able to arrange a loan from the petrology collection at Utrecht University of the specimen acquired by Wichmann in 1893. In addition we borrowed stone axes from the Natural History Museum - Naturalis in Leiden obtained from natives near what is now Jayapura in eastern-most Papua. Petrography and microprobe analysis of sections of these samples clearly show that (1) Wichmann's 1893

  20. Pliocene to late Pleistocene magmatism in the Aurora Volcanic Field, Nevada and California, USA

    Science.gov (United States)

    Kingdon, S.; Cousens, B.; John, D. A.; du Bray, E. A.

    2013-12-01

    The 3.9- 0.1 Ma Aurora Volcanic Field (AVF) covers 325 km2 east and southeast of the Bodie Hills, north of Mono Lake, California, USA. The AVF is located immediately northwest of the Long Valley magmatic system and adjacent and overlapping the Miocene Bodie Hills Volcanic Field (BHVF). Rock types range from trachybasalt to trachydacite, and high-silica rhyolite. The trachybasalts to trachydacites are weakly to moderately porphyritic (1-30%) with variable phenocryst assemblages that are some combination of plagioclase, hornblende, clinopyroxene, and lesser orthopyroxene, olivine, and/or biotite. Microphenocrysts are dominated by plagioclase, and include opaque oxides, clinopyroxene, and apatite. These rocks are weakly to strongly devitrified. The high-silica rhyolites are sparsely porphyritic with trace to 10% phenocrysts of quartz, sanidine, plagioclase, biotite, (+/- hornblende), accessory opaque oxide minerals, titanite, allanite, (+/-apatite, zircon), and have glassy groundmasses. Rocks in the AVF are less strongly porphyritic than those of BHVF. Plagioclase phenocrysts are often oscillatory zoned and many have sieve texture. Amphiboles have distinct black opaque rims. Xenocrystic quartz and plagioclase are rare. AVF lavas have bimodal SiO2 compositions, ranging from 49 to 78 wt%, with a gap between 65 and 75 wt%. They are high-K calc-alkaline to shoshonitic in composition, and are metaluminous to weakly peraluminous. They are enriched in rare earth elements (REE), especially light REEs, compared to the Miocene BHVF rocks. Primordial mantle-normalized incompatible element patterns show arc- or subduction-related signatures, with enrichment in Ba and Pb, and depletion in Nb and Ta. Enrichment in K and Sr and depletion in Ti are less pronounced than in the BHVF rocks. There is no correlation between lead isotope ratios and silica (initial 206Pb/204Pb ratios range from 18.974 to 19.151). Neodymium isotope ratios show a moderate negative correlation with silica

  1. Microstructural record vs chemical and geochronological preservation in muscovite: implications for P-T-t estimates in deformed metapelites

    Science.gov (United States)

    Airaghi, Laura; Lanari, Pierre; Warren, Clare J.; de Sigoyer, Julia; Guillot, Stéphane

    2017-04-01

    Pressure-temperature-deformation (P-T-ɛ) paths for metamorphic rocks commonly relies on the link between successive metamorphic assemblages and the microstructures. However, with increasing P-T conditions, metamorphic minerals in an early microstructure can re-equilibrate by changing their chemical composition. The direct link between deformation phases and mineral compositions for thermobarometry purposes can therefore be distorted. This study focuses on a series of garnet-biotite metapelites from the Longmen Shan (Sichuan, China) that preserve muscovite of different chemistry in distinct microstructures. To quantify the degree of re-equilibration of muscovite, a microstructural study was coupled with high-resolution chemical mapping. Then, the chemical evolution of muscovite (Si4+ and XMg) was modeled using Gibbs free energy minimization along a P-T loop previously constrained by phase equilibria calculations, semi-empirical and empirical thermobarometry. Our results show that the studied metapelites experienced a "typical" three stages metamorphic history: (1) heating and burial up to 11 kbar, 530˚ C, (2) minor decompression and heating up to 6 kbar, 580˚ C and (3) decompression and cooling down to 4-5 kbar, 380-450˚ C. However, muscovite has been partially or completely re-equilibrated during the three stages by idiomorphic replacement, although it is mainly observed in prograde microstructures preceding the pressure peak. The main factors controlling the degree of re-equilibration are the intensity of the deformation and the fluid availability during metamorphism. The P-T conditions of metamorphic assemblages thus reflect pulses of fluids release that enhanced mineral resorption and local replacement. The metamorphic peak (2) was dated by in situ 40Ar/39Ar on biotite porphyroblasts and by in situ (U-Pb)/Th laser ablation on allanite (REE-rich epidote) at 185±15 Ma. Muscovite grains preserved in prograde microstructures and partially re-equilibrated during

  2. Geochemistry of the Serifos calc-alkaline granodiorite pluton, Greece: constraining the crust and mantle contributions to I-type granitoids

    Science.gov (United States)

    Stouraiti, C.; Baziotis, I.; Asimow, P. D.; Downes, H.

    2017-11-01

    The Late Miocene (11.6-9.5 Ma) granitoid intrusion on the island of Serifos (Western Cyclades, Aegean Sea) is composed of syn- to post-tectonic granodiorite with quartz monzodiorite enclaves, cut by dacitic and aplitic dikes. The granitoid, a typical I-type metaluminous calcic amphibole-bearing calc-alkaline pluton, intruded the Cycladic Blueschists during thinning of the Aegean plate. Combining field, textural, geochemical and new Sr-Nd-O isotope data presented in this paper, we postulate that the Serifos intrusion is a single-zoned pluton. The central facies has initial 87Sr/86Sr = 0.70906 to 0.7106, ɛNd(t) = - 5.9 to - 7.5 and δ18Οqtz = + 10 to + 10.6‰, whereas the marginal zone (or border facies) has higher initial 87Sr/86Sr = 0.711 to 0.7112, lower ɛ Nd(t) = - 7.3 to - 8.3, and higher δ18Οqtz = + 10.6 to + 11.9‰. The small range in initial Sr and Nd isotopic values throughout the pluton is paired with a remarkable uniformity in trace element patterns, despite a large range in silica contents (58.8 to 72 wt% SiO2). Assimilation of a crustally derived partial melt into the mafic parental magma would progressively add incompatible trace elements and SiO2 to the evolving mafic starting liquid, but the opposite trend, of trace element depletion during magma evolution, is observed in the Serifos granodiorites. Thermodynamic modeling of whole-rock compositions during simple fractional crystallization (FC) or assimilation-fractional crystallization (AFC) processes of major rock-forming minerals—at a variety of pressure, oxidation state, and water activity conditions—fails to reproduce simultaneously the major element and trace element variations among the Serifos granitoids, implying a critical role for minor phases in controlling trace element fractionation. Both saturation of accessory phases such as allanite and titanite (at SiO2 ≥ 71 wt%)(to satisfy trace element constraints) and assimilation of partial melts from a metasedimentary component (to

  3. Oxidation state analyses of uranium with emphasis on chemical speciation in geological media

    International Nuclear Information System (INIS)

    Ervanne, H.

    2004-01-01

    This thesis focuses on chemical methods suitable for the determination of uranium redox species in geological materials. Nd-coprecipitation method was studied for the determination of uranium oxidation states in ground waters. This method is ideally suited for the separation of uranium oxidation states in the field, which means that problems associated with the instability of U(IV) during transport are avoided. An alternative method, such as ion exchange, is recommended for the analysis of high saline and calcium- and iron-rich ground waters. U(IV)/Utot was 2.8-7.2% in ground waters in oxidizing conditions and 60-93% in anoxic conditions. From thermodynamic model calculations applied to results from anoxic ground waters it was concluded that uranium can act as redox buffer in granitic ground waters. An ion exchange method was developed for the analysis of uranium oxidation states in different solid materials of geological origin. These included uranium minerals, uraniumbearing minerals, fracture coatings and bulk rock. U(IV)/Utot was 50-70% in uraninites, 5.8-8.7% in secondary uranium minerals, 15-49% in different fracture coatings and 64- 77% in samples from deep bedrock. In the uranium-bearing minerals, U(IV)/Utot was 33-43% (allanites), 5.9% (fergusonite) and 93% (monazite). Although the ion exchange method gave reliable results, there is a risk for the conversion of uranium oxidation states during analysis of heterogeneous samples due to the redox reactions that take place in the presence of some iron compounds. This risk was investigated in a study of several common iron-bearing minerals. The risk for conversion of uranium oxidation states can be screened by sample selection and minimized with use of a redox buffer compound such as polyacrylic acid (PAA). In studies of several carboxylic acids, PAA was found to be the most suitable for extending the application of the method. The stability of uranium oxidation states during analysis and the selectivity

  4. Geology, petrology and U-Pb geochronology of Serra da Rajada Granitic Pluton: implications about ediacaran magmatic evolution in NE portion of the Rio Piranhas-Serido Domain (NE of Borborema Province); Geologia, petrologia e geocronologia U-Pb do Pluton Granitico Serra da Rajada: implicacoes sobre a evolucao magmatica ediacarana na porcao do Dominio Rio Piranhas-Serido (NE da Provincia Borborema)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alan Pereira da; Dantas, Alexandre Ranier, E-mail: alan.costa@cprm.gov.br, E-mail: alexandre.dantas@cprm.gov.br [Servico Geologico do Brasil (CPRM), Natal, RN (Brazil). Nucleo de Apoio de Natal/Superintendencia Regional de Recife; Nascimento, Marcos Antonio Leite do; Galindo, Antonio Carlos, E-mail: marcos@geologia.ufrn.br, E-mail: galindo@geologia.ufrn.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Departamento de Geologia

    2015-12-15

    The Ediacaran plutonic activity, related to the Brazilian/Pan-African orogeny, is one of the most important geological features in the Borborema Province, formed by batholiths, stocks and dikes. The Serra da Rajada Granitic Pluton (SRGP), located in the central portion of the Rio Piranhas-Serido Domain, is an example of these bodies. This site is the target of cartographic, petrographic, lithochemical and geochronological studies. Its rocks are described as monzogranites consisting of K-feldspar, plagioclase (oligoclase-An{sub 23-24%}), quartz and biotite (main mafic), having as accessory minerals opaque, titanite, allanite, apatite and zircon. Chlorite, white mica and carbonate are alteration minerals. Lithochemical data from 15 samples show quite evolved rocks (SiO{sub 2} , 69% to 75%), rich in alkalis (Na{sub 2}O + K{sub 2}O ≥ 8.0%), depleted in MgO (≤ 0.45%), CaO (≤ 1.42%) and TiO{sub 2} (≤ 0.36%), and displaying moderate levels of Fe{sub 2}O{sub 3} t (2.16 to 3.53%). These rocks present a transitional nature between metaluminous and peraluminous (predominance of the latter) and have subalkaline/monzonitic affinity (high-K Calc-alkaline). Harker diagrams represent negative correlations in Fe{sub 2}O{sub 3}t, MgO and CaO, indicating fractionation of mafic and plagioclase. The REE spectrum show enrichment of light in relation to heavy REE (LaN/YbN = 23.70 to 10.13), with negative anomaly in Eu (Eu/ Eu* = 0.70 to 10.13) suggesting fractionation or accumulation in the feldspars source (plagioclase). Data integration allows correlating the SRGP rocks with those described as Equigranular high-K Calc-alkaline Suite. The U-Pb geochronology and Sm-Nd isotope dating indicate that the biotite monzogranite have a crystallization age of 557 ± 13 Ma and TDM model age of 2.36 Ga, respectively, and ε{sub Nd} value of - 20.10 for the crystallization age, allowing to infer a crustal source for the magma generated in the Paleoproterozoic age. (author)

  5. Uranium cycle and tectono-metamorphic evolution of the Lufilian Pan-African orogenic belt (Zambia)

    International Nuclear Information System (INIS)

    Eglinger, Aurelien

    2013-01-01

    tectonic accretion in the internal zone of the Lufilian orogenic belt. During these syn-metamorphic fluid-rock interactions, uranium has been leached from U-bearing minerals such as allanite or monazite hosted by the reworked and partially molten gneissic basement. (author) [fr

  6. Constraints on the timing of multiple thermal events and re-equilibration recorded by high-U zircon and xenotime: Case study of pegmatite from Piława Górna (Góry Sowie Block, SW Poland)

    Science.gov (United States)

    Budzyń, Bartosz; Sláma, Jiří; Kozub-Budzyń, Gabriela A.; Konečný, Patrik; Holický, Ivan; Rzepa, Grzegorz; Jastrzębski, Mirosław

    2018-06-01

    The application of zircon and xenotime geochronometers requires knowledge of their potential and limitations related to possible disturbance of the age record. The alteration of the intergrown zircon and xenotime in pegmatite from the Góry Sowie Block (SW Poland) was studied using the electron microprobe analysis, X-ray WDS compositional mapping, micro-Raman analysis, and LA-ICP-MS U-Pb dating of zircon and xenotime, as well as the U-Th-total Pb dating of uraninite. These microanalytical techniques were applied to understand the formation mechanisms of the secondary textures related to post-magmatic processes in the zircon and xenotime intergrowth, and to constrain their timing. Textural and compositional features combined with U-Pb data indicate that the pegmatite-related crystallization of the zircon and xenotime intergrowth occurred ca. 2.09 Ga (2086 ± 35 Ma for zircon and 2093 ± 52 Ma for xenotime), followed by the re-equilibration of zircon and xenotime ca. 370 Ma (373 ± 18 Ma and 368 ± 6 Ma, respectively) during the formation of the younger pegmatite. The zircon and xenotime were most likely derived from Precambrian basement rocks and emplaced in the pegmatite as a restite. The zircon preserved textures related to diffusion-reaction processes that affected its high-U core (up to ca. 9.6 wt% UO2), which underwent further metamictization and amorphization due to self-radiation damage. The zircon rim and xenotime were affected by coupled dissolution-reprecipitation processes that resulted in patchy zoning, age disturbance and sponge-like textures. Xenotime was also partially replaced by fluorapatite or hingganite-(Y) and Y-enriched allanite-(Ce). The termination of the low-temperature alteration was constrained by the U-Th-total Pb age of the uraninite inclusions that crystallized in zircon at 281 ± 2 Ma, which is consistent with the age of 278 ± 15 Ma obtained from the youngest cluster of U-Pb ages in the re-equilibrated high-U zircon domains. This study

  7. Signal or noise? Separating grain size-dependent Nd isotope variability from provenance shifts in Indus delta sediments, Pakistan

    Science.gov (United States)

    Jonell, T. N.; Li, Y.; Blusztajn, J.; Giosan, L.; Clift, P. D.

    2017-12-01

    Rare earth element (REE) radioisotope systems, such as neodymium (Nd), have been traditionally used as powerful tracers of source provenance, chemical weathering intensity, and sedimentary processes over geologic timescales. More recently, the effects of physical fractionation (hydraulic sorting) of sediments during transport have called into question the utility of Nd isotopes as a provenance tool. Is source terrane Nd provenance resolvable if sediment transport strongly induces noise? Can grain-size sorting effects be quantified? This study works to address such questions by utilizing grain size analysis, trace element geochemistry, and Nd isotope geochemistry of bulk and grain-size fractions (Pakistan. Here we evaluate how grain size effects drive Nd isotope variability and further resolve the total uncertainties associated with Nd isotope compositions of bulk sediments. Results from the Indus delta indicate bulk sediment ɛNd compositions are most similar to the <63 µm fraction as a result of strong mineralogical control on bulk compositions by silt- to clay-sized monazite and/or allanite. Replicate analyses determine that the best reproducibility (± 0.15 ɛNd points) is observed in the 125-250 µm fraction. The bulk and finest fractions display the worst reproducibility (±0.3 ɛNd points). Standard deviations (2σ) indicate that bulk sediment uncertainties are no more than ±1.0 ɛNd points. This argues that excursions of ≥1.0 ɛNd points in any bulk Indus delta sediments must in part reflect an external shift in provenance irrespective of sample composition, grain size, and grain size distribution. Sample standard deviations (2s) estimate that any terrigenous bulk sediment composition should vary no greater than ±1.1 ɛNd points if provenance remains constant. Findings from this study indicate that although there are grain-size dependent Nd isotope effects, they are minimal in the Indus delta such that resolvable provenance-driven trends can be

  8. Evaluating the controls on Tourmaline Crystallization in the mylonitic granite-gneiss pluton in the Northeastern of Jan mine (Lorestan province

    Directory of Open Access Journals (Sweden)

    Arezoo Moradi

    2017-02-01

    represents the formation of the tourmaline mineral from the melt is along with the progress of the differentiation (Jolliff et al., 1987; Kontak et al., 2002. Also the average composition of tourmaline – bearing mylonitic granite-gneiss pluton normalized spider diagram for the studied tourmaline shows positive anomaly and negative anomaly in Eu that indicates tourmaline minerals surrounded by quartz and feldspar grains (Copjakova et al., 2013. Secondary phases such as zircon and allanite very much effect on the REE patterns (Rollinson, 1993. Therefore, in the final stages of differentiation, allanite appeared earlier than it appeared in areas without tourmaline crystalliziation and LREE soon after tourmaline crystalized and they are deposited (Cuney and Friedrich, 1987. Using a combination of phase diagrams, the controlling factors of creation of tourmaline associated with biotite-tourmaline can be assessed, and the relationship between tourmaline and associated minerals, chemistry of tourmaline – bearing granitoid pluton, and location of petrological minerals tourmaline can be sought (Pesquera et al., 2005. Discussion The results of LA-ICP-MS on tourmalines of mylonitic granite-gneiss body in the north east of Jan mine in Sanandaj – Sirjan Zone represents tourmaline crystallization from the melt along with the progress of the differentiation. Also, the average composition of tourmaline – bearing mylonitic granite-gneiss pluton normalized spider diagram for the studied tourmaline shows positive anomaly and negative anomaly in Eu that indicates that tourmalines are surrounded by quartz and feldspar grains. According to petrographic evidence of tourmaline and biotite, it can be seen with muscovite. Therefore, where tourmaline is dominant, biotite and associated minerals are limited or do not exist. Using a combination of phase diagrams controlling factors of tourmaline crystallization associated with biotite-tourmaline can be assessed, and the relationship between

  9. Environmental review of the Mary Kathleen uranium minesite, Northwest Queensland

    International Nuclear Information System (INIS)

    Costelloe, M.T.; Lottermoser, B.G.; Ashley, P.M.

    1999-01-01

    Full text: The Mary Kathleen uranium deposit, in northwest Queensland, was discovered in 1954 and mined in 19561963 and 1976-1982. Rehabilitation of the site was completed in 1985 and the work won an award for environmental excellence. In 1999 gamma-ray data, plus stream sediment, soil, rock chip, mineral efflorescence, vegetation and water samples were collected from selected sites to assist in the examination of the current environmental status of the rehabilitated area. This paper presents preliminary results and interpretations. In the Mark Kathleen open pit, skarn type U-Th-REE mineralisation is hosted in amphibolite grade metamorphosed calc-silicate, mafic to intermediate igneous and sedimentary rocks. Remnant ore zones are composed of medium to coarse grained garnet and clinopyroxene, with accessory allanite, plagioclase, pyrrhotite, chalcopyrite and uraninite. Later retrograde alteration to chlorite, calcite, sericite, epidote and scapolite occurs. Fine grained uraninite is enclosed in allanite, and is partly replaced by metamict products nd traces of galena. Elevated gamma-ray readings in the open pit correspond to exposed ore lenses, the former haul road and abandoned ore stockpiles (up to 16 mSv/year). Surficial oxidation of ore and adjacent sulphide-bearing calc-silicate rocks has led to contemporary precipitation of yellow, orange, green and white mineral efflorescences on the pit walls. Wallrock oxidation of reactive sulphides (mainly pyrrhotite breakdown) produces acidic solutions, however, buffering reactions of these fluids with gangue calc-silicates and carbonate phases prevent low pH conditions from developing. The open pit lake is approximately 40m deep and contains saline (0.15%) surface waters which are Ca-, SO 4 -rich with elevated Cu, Fe, Mn, Ni, U and Zn at a pH of 6.11. Waste rock piles are up to 30m thick and have been covered by a thin veneer of benign waste. However, there are high radiation levels on several waste rock piles (up to 20

  10. Natural analogue study of uranium deposits in Japan with special reference to the Tono uranium deposit

    International Nuclear Information System (INIS)

    Komuro, Kosei; Sasao, Eiji

    2004-05-01

    In order to verify the safety assessment for geological disposal system of high-level radioactive waste, it is necessary to evaluate properly the stability of the disposal system under natural hydrogeological environment over long period of time (ten to hundred thousands years). For the safety assessment for that in the Japanese Islands, many geological processes inherent in the tectonically active Island-Arc system should be also taken into consideration in addition to those in stable continental environment. However, it is difficult because some processes such as earthquake seem to be accidental and some are periodic or gradual over our life scale. The uranium deposits in Japan are subjected to many geological processes inherent in the tectonically active Island-Arc system. The studies on long-term preservation of uranium deposits in Japan from a natural analogue viewpoint would be expected to provide useful information for the assessment in the Japanese Islands over long period of time. In order to understand the behavior of radionuclides under natural hydrogeological environment in Japanese Islands over long period of time, the uranium deposits in Japan, especially of the Tono uranium deposit was investigated from a natural analogue viewpoint under the course of joint research program by University of Tsukuba and Japan Nuclear Cycle Development Institute. Important conclusions obtained in the present study are summarized as follows: The migration behavior of the radionuclides in the granite area is mainly controlled by the stability of original minerals in oxic condition, being due to poor reducing agents such as organic matter and sulfide minerals. In the case of hydrothermal alteration, yttrialite and fergusonite were decomposed and thorogummite was formed at the altered part, whereas zircon and allanite have not been significantly altered. In the case of weathering, autunite and torbernite were formed, probably due to the high phosphorus weathering

  11. Caracterización petrográfica y geoquímica del batolito Cerro Aspero-Alpa Corral (32°34'-32°42' LS y 64°43'-64°52' LO, provincia de Córdoba, Argentina

    Directory of Open Access Journals (Sweden)

    Porta, G.

    1992-12-01

    Full Text Available The Cerro Aspero-Alpa Corral (CA-AC batholith is a 440 km2 granite body present in the Southern edge of the Eastern Pampean Ranges, Córdoba province, central Argentina. The intrusive body of probably paleozoic age shows both post-tectonic and epizonal character. Country rocks include Upper Precambrian-Lower Paleozoic metasedimentary rocks mainly represented by mica-schists, gneisses and migmatites, locally interrupted by minor amphibolite and marble outcrops.This paper deals with representative petrographic and geochemical data that characterize a 150 km2 central stripe between 32°34'-32°42'S and 64°43'-64°52'W.Three granitic facies have been distinguished based on their distinctive modal mineralogy and texture, and upon well known chemical parameters.A K-feldspar megacryst porphydic-type is the areally prevalent facies, but dykes of micro- leucogranites and biotite-phenocryst bearing granite are also well represented. They are all monzogranites of subalkaline and peraluminous chemistry. Their mineralogy shows variable proportions of QAP constituents and micas, with minor phases represented by Fe-Ti oxides, apatite (Ap, titanite (Tt, allanite (Aln.Microgranular enclaves, abundantly distributed in the porphydic facies, provide valuable information for a better understanding of parental magma evolution.The high-Ca content of the melt makes this body quite distinctive compared to its larger northern neighbour, the Achala batholith.Pegmatite and aplite bodies, as well as fluorite bearing breccias and quartz veins, barren or mineralized, are also present within the CA-AC batholith.El batolito Cerro Aspero-Alpa Corral (CA-AC es un cuerpo granítico que aflora en el extremo sur de las Sierras Pampeanas Orientales, en la provincia de Córdoba, República Argentina, cubriendo una superficie cercana a los 440 km2.Es un cuerpo intrusivo postcinemático de probable edad paleozoica. Las rocas encajantes son metamorfitas correspondientes al Prec

  12. Gneiss wastes as secondary raw material for the ceramic industry: an example from the Verbano Cusio Ossola district (Piedmont, north-western Alps, Italy)

    Science.gov (United States)

    Cavallo, Alessandro

    2015-04-01

    The Verbano Cusio Ossola province (VCO, Piedmont, north-western Italy) is one of the most important Italian quarrying districts, due to the peculiarity and variety of its exploited rock types, mainly orthogneisses such as Serizzo and Beola, and subordinately granites, marbles and other rocks. The most important and extensively exploited ornamental stone from the VCO province is surely the Serizzo, commercialized in four main varieties, and representing about 70% of all the stone production from the VCO area. The protholith of the Serizzo is a Permian granite - granodiorite metamorphosed during the alpine events, and the rock-forming minerals are mainly quartz, K-feldspar, plagioclase (andesine), biotite, with variable amounts of muscovite and epidote (allanite). The other important ornamental stone of the VCO province is the Beola, a series of heterogeneous materials (mainly orthogneisses) with marked (mylonitic) foliation and strong mineralogical lineation, occurring in the median Ossola Valley; its production (15% of the whole stones of the VCO) is subordinated with respect to that of Serizzo. The mineralogical composition of the Beola varieties is similar to Serizzo, consisting of quite homogeneous quartz, K-feldspar (orthoclase or microcline), plagioclase, biotite and muscovite. The main differences relate to the grain size, the rock fabric (generally mylonitic) and to the presence of accessory/secondary minerals. Recent regulatory developments and the growing environmental awareness, require an increasing reuse of wastes deriving from the extraction and processing of dimension stones (up to 50 % of the extracted gross volume). Granite wastes from the VCO (Baveno pink granite and Montorfano white granite), after specific industrial treatments (crushing, sieving, drying, magnetic separation of biotite and hornblende), are used successfully as quartz-feldspars mix in the ceramic industry, with very low FeOtot content. On the other hand, other quartzose

  13. Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar

    International Nuclear Information System (INIS)

    Berger, Alfons; Janots, Emilie; Gnos, Edwin; Frei, Robert; Bernier, Felix

    2014-01-01

    Highlights: • Secondary REE-mineralogy depend on redox conditions inside a laterite. • Detailed mineralogy in different layers of a laterite is given. • A Gd-sulfate is described. • Change in bulk rock chemistry control REE mineralogy. - Abstract: In this study, rare earth element (REE) distribution has been investigated in a weathering profile from central Madagascar. Combination of bulk rock geochemical data (elements and isotopes) with mineral characterization reveals a remarkable evolution of the REE abundances and REE-minerals in the vertical weathering profile. In the fresh tonalite (bedrock), REE + Y concentrations are typical of granitoids (299–363 ppm) and the main REE-minerals are allanite and chevkinite. In the C-horizon (saprolite), primary REE-minerals disappear and REEs are transported via fluid to precipitate rhabdophane group minerals in cracks and pores. The presence of sulfate ligands, produced by sulfide oxidation, may be responsible for the REE speciation, as suggested by the composition of the secondary REE-minerals. Rhabdophane group minerals contain up to 9 wt% SO 3 and 7 wt% CaO, indicating a mixture between rhabdophane sensu stricto, (REE)PO 4 ·H 2 O, and tristamite, (Ca,U,Fe (III) )(PO 4 ,SO 4 )·2H 2 O. Due to intense Ca-leaching, rhabdophane disappears and Al-phosphates (alunite–jarosite group) are found in the soil. Cerianite (Ce (IV) O 2 ) also precipitates in the B-horizon of the soil. Mass transfer calculations based on immobile Ti indicate significant REE leaching in A-horizon with preferential leaching of the heavy REE. REEs accumulate partly in the B-horizon. The uniform Nd isotope compositions and the constant proportion of immobile elements do not reveal external input. In the B-horizon, total REE + Y reach 2194 ppm with high Ce concentrations (1638 ppm; 9 * Ce bedrock ) compared to other REE (3–4 * REE bedrock ). Tetravalent Ce state is dominant in the B-horizon and requires oxidizing conditions that likely

  14. Reconnaissance for radioactive materials in northeastern United States during 1952

    Science.gov (United States)

    McKeown, Francis A.; Klemic, Harry

    1953-01-01

    Reconnaissance for radioactive materials was made in parts of Maine, New York, New Jersey, and Pennsylvania. The primary objective was to examine the iron ore deposits and associated rocks in the Adirondack Mountains of New York and the Highlands of New Jersey. In addition, several deposits known or reported to contain radioactive minerals were examined to delimit their extent. Most of the deposits examined are not significant as possible sources of radioactive elements and the data pertaining to them are summarized in table form. Deposits that do warrant more description than can be given in table form are: Benson Mines, St. Lawrence County, N. Y.; Rutgers mine, Clinton County, N. Y.; Mineville Mines, Essex County, N. Y.l Canfield phosphate mine, Morris County, N. J.; Mullgan quarry, Hunterdon County, N. J.; and the Chestnut Hill-Marble Mountain area, Pennsylvania and New Jersey. The Old Bed in the Mineville district is the only deposit that may be economically significant. Apatite from Old Bed ore contains as much as 4.9 percent total rare earth. 0.04 percent thorium, and 0.018 percent uranium. Magnetite ore at the Rutgers mine contains radioactive zircon and apatite. Radioactivity measurements of outcrops and dump material show that the ore contains from 0.005 to 0.010 percent equivalent uranium. One sample of lean magnetite ore contains 0.006 percent equivalent uranium. Garnet-rich zones in the Benson Mines magnetite deposit contain as much as 0.017 equivalent uranium. Most of the rock and ore, however, contains about 0.005 percent equivalent uranium. Available data indicate that the garnet-rich zones are enriched in radioactive allanite. A shear zone in the Kittatinny limestone of Cambrian age at the Mulligan quarry contains uraniferous material. Radioactivity anomalies elsewhere in the quarry and in adjacent fields indicate that there may be other uraniferous shear zones. Assays of samples and measurements of outcrop radioactivity indicate that the uranium

  15. Cataclastic rocks of the San Gabriel fault—an expression of deformation at deeper crustal levels in the San Andreas fault zone

    Science.gov (United States)

    Anderson, J. Lawford; Osborne, Robert H.; Palmer, Donald F.

    1983-10-01

    moderate to high stress regime for the San Andreas, which is consistent with experimental rock failure studies. Moreover, these results suggest that the previously observed lack of heat flow coaxial with the fault zone may be the result of dissipation rather than low stress. Much of the mineralogy of the cataclastic rocks is still relict from the earlier igneous or metamorphic history of the protolith; porphyroclasts, even in the most deformed rocks, consist of relict plagioclase (oligoclase to andesine), alkali feldspar, quartz, biotite, amphibole, epidote, allanite, and Fe-Ti oxides (ilmenite and magnetite). We have found no significant development of any clay minerals (illite, kaolinite, or montmorillonite). For many sites, the compositions of these minerals directly correspond to the mineral compositions in rock types on one or both sides of the fault. Whole rock major and trace element chemistry coupled with mineral compositions show that mixing within the zone of cataclasis is not uniform, and that originally micaceous foliated, or physically more heterogeneous rock units may contribute a disproportionally large amount to the resultant intrafault material. As previously found for the gouge along the San Andreas, chemical mobility is not a major factor in the formation of cataclastic rocks of the San Gabriel fault. We see only minor changes for Si and alkalies; however, there is a marked mobility of Li, which is a probable result of the alteration and formation of new mica minerals. The gouge of the San Andreas and San Gabriel faults probably formed by cataclastic flow. There is some indication, presently not well constrained, that the fine-grained matrix of the cataclasite of from the San Gabriel fault formed in response to superplastic flow.

  16. Mianningite, (□,Pb,Ce,Na) (U{sup 4+},Mn,U{sup 6+}) Fe{sup 3+}{sub 2}(Ti,Fe{sup 3+}){sub 18}O{sub 38}, a new member of the crichtonite group from Maoniuping REE deposit, Mianning county, southwest Sichuan, China

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xiangkun; Fan, Guang; Chen, Zhangru; Ai, Yujie [Beijing Research Institute of Uranium Geology, Beijing (China); Li, Guowu [China Univ. of Geosciences, Beijing (China). Lab. of Crystal Structure; Shen, Ganfu [Chengdu Institute of Geology and Mineral Resources, Chengdu (China)

    2017-05-15

    Mianningite (IMA 2014-072), ideally (□,Pb,Ce,Na)(U{sup 4+},Mn,U{sup 6+}) Fe{sup 3+}{sub 2}(Ti,Fe{sup 3+}){sub 18}O{sub 38}, is a new member of the crichtonite group from the Maoniuping REE deposit, Mianning county, Sichuan province, China. It was found in fractures of lamprophyre veins and in the contact between lamprophyre and a later quartz-alkali feldspar syenite dyke with REE mineralization, and is named after its type locality. Associated minerals are microcline, albite, quartz, iron-rich phlogopite, augite, muscovite, calcite, baryte, fluorite, epidote, pyrite, magnetite, hematite, galena, hydroxylapatite, titanite, ilmenite, rutile, garnet-group minerals, zircon, allanite-(Ce), monazite-(Ce), bastnaesite-(Ce), parisite-(Ce), maoniupingite-(Ce), thorite, pyrochlore-group minerals and chlorite. Mianningite occurs as opaque subhedral to euhedral tabular crystals, up to 1-2 mm in size, black in color and streak, and with a submetallic luster. Mianningite is brittle, with a conchoidal fracture. Its average micro-indentation hardness is 83.8 kg/mm{sup 2} (load 0.2 kg), which is equivalent to ∝6 on the Mohs hardness scale. Its measured and calculated densities are 4.62 (8) g/cm{sup 3} and 4.77 g/cm{sup 3}, respectively. Under reflected light, mianningite is grayish white, with no internal reflections. It appears isotropic and exhibits neither bireflectance nor pleochroism. The empirical formula, calculated on the basis of 38 O atoms per formula unit (apfu), is [□{sub 0.322}(Pb{sub 0.215}Ba{sub 0.037}Sr{sub 0.036}Ca{sub 0.010}){sub Σ0.298}(Ce{sub 0.128}La{sub 0.077}Nd{sub 0.012}){sub Σ0.217} (Na{sub 0.127}K{sub 0.036}){sub Σ0.163}]{sub Σ01.000}(U{sup 4+}{sub 0.447}Mn{sub 00.293}U{sup 6} {sup +}{sub 0.112}Y{sub 0.091}Zr{sub 0.023}Th{sub 0.011}){sub Σ0.977}(Fe{sup 3+}{sub 1.224}Fe{sup 2+}{sub 0.243}Mg{sub 0.023}P{sub 0.008}Si{sub 0.006} □{sub 0.496}){sub Σ2.000}(Ti{sub 12.464}Fe{sup 3+}{sub 5.292}V{sup 5+}{sub 0.118}Nb{sub 0.083}Al{sub 0.026}Cr{sup 3

  17. The Long-term deformation of the Longmen Shan (Sichuan, China), a key to understand the present structure of the eastern Tibet

    Science.gov (United States)

    Airaghi, Laura; de Sigoyer, Julia; Guillot, Stéphane; Lanari, Pierre; Warren, Clare J.; Robert, Alexandra

    2017-04-01

    The Longmen Shan thrust belt, at the eastern border of Tibetan plateau, is a tectonically active region as demonstrated by the Mw 7.9 Wenchuan (2008) and Mw 6.6 Lushan (2013) earthquakes. The Moho discontinuity deepens across the Longmen Shan (below the along-strike Wenchuan fault) from ˜40 km beneath the Sichuan basin to more than 60 km beneath the Songpan-Ganze block. Such a thickness is not compatible with the only ˜35 km of shortening estimated at the front of the belt during the Cenozoic-Quaternary compressive reactivation. The geological inheritance may thus play a key role in the present structure of the Longmen Shan. However the long-term history of the belt is still poorly documented. The major Wenchuan fault separates medium-grade metamorphic rocks to the West (internal domain of the Longmen Shan) to the greenschist metamorphic rocks to the East (external domain). In the hanging and footwall of the fault the South China basement also crops out. Metamorphic rocks, exhumed from depth, offer the opportunity to investigate the deep processes occurred in the Longmen Shan. We have characterized and dated the metamorphism in the central part of the belt by combining structural and microstructural observations with high-resolution X-ray mapping and chemical analyses of metamorphic minerals related to the different stages of deformation. In situ 40Ar/39Ar dating on mica and in situ U-Pb/Th dating on allanite (REE-rich epidote) allowed the different phases of metamorphism and deformation to be dated. Our results show that the Longmen Shan underwent a complex Mesozoic tectono-metamorphic history, articulated in a succession of pulses of deformation (burial or uplifting) and periods of quiescence. A first phase of rapid thin-skinned deformation occurred about 200 Ma ago. Internal sedimentary units were strongly deformed and buried down to 11±1 kbar, 550±30˚ C. This phase was followed by a period of slow exhumation between 200 and 170 Ma. A second pulse of

  18. Subduction-related shoshonitic and ultrapotassic magmatism: a study of Siluro-Ordovician syenites from the Scottish Caledonides

    Science.gov (United States)

    Thompson, R. N.; Fowler, M. B.

    1986-12-01

    Syenites are important or predominant components of several plutonic complexes, emplaced between 456 and 415 Ma along the NW margin of the Caledonian orogenic belt, adjacent to the Lewisian foreland, in W and NW Scotland. Although there are, in detail, chemical differences between the syenites from each centre, they form a well-defined compositional group overall. Ratios amongst their trace elements (especially very high values of La/Nb) are quite different from those trachytes and syenites formed by fractional crystallisation of ocean-island basalts and their continental equivalents, emplaced in regions of anorogenic crustal tension. Instead, the Scottish Caledonian syenites closely resemble chemically the fractional-crystallisation residua of potassic subduction-related magmas, such as the shoshonitic series. A comendite minor intrusion from a swarm associated with the Loch Borralan and Loch Ailsh syenitic complexes is remarkably similar in composition to Recent obsidian from the shoshonitic volcano of Lipari, in the Aeolian Arc. Published Sr- and Pb-isotopic ratios preclude a significant component of either upper (Proterozoic Moine schists) or lower crust (granulite-facies Archaean Lewisian or Proterozoic Grenvillian gneisses) in all these syenites, except in local syenitic facies of the Glenelg-Ratagain complex. Fractional crystallisation appears to be the mechanism by which the liquids which formed these syenites evolved from basic parental magmas. The phases involved in this process may have included plagioclase, alkali feldspar, pyroxene, amphibole, biotite, garnet, Fe-Ti oxide, sphene, allanite, apatite, zircon and zirconolite, and therefore all the ratios amongst even the so-called incompatible elements may have changed during the evolution of the leucocratic magmas. Nevertheless, a detailed study of the Glen Dessarry complex shows that the changes are insufficient to disguise the geochemical nature of the parental magmas. These appear to be picritic

  19. Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell Basin

    Science.gov (United States)

    Bookstrom, Arthur A.; Box, Stephen E.; Cossette, Pamela M.; Frost, Thomas P.; Gillerman, Virginia; King, George; Zirakparvar, N. Alex

    2016-01-01

    The Blackbird cobalt-copper (Co-Cu) district in the Salmon River Mountains of east-central Idaho occupies the central part of the Idaho cobalt belt—a northwest-elongate, 55-km-long belt of Co-Cu occurrences, hosted in grayish siliciclastic metasedimentary strata of the Lemhi subbasin (of the Mesoproterozoic Belt-Purcell Basin). The Blackbird district contains at least eight stratabound ore zones and many discordant lodes, mostly in the upper part of the banded siltite unit of the Apple Creek Formation of Yellow Lake, which generally consists of interbedded siltite and argillite. In the Blackbird mine area, argillite beds in six stratigraphic intervals are altered to biotitite containing over 75 vol% of greenish hydrothermal biotite, which is preferentially mineralized.Past production and currently estimated resources of the Blackbird district total ~17 Mt of ore, averaging 0.74% Co, 1.4% Cu, and 1.0 ppm Au (not including downdip projections of ore zones that are open downward). A compilation of relative-age relationships and isotopic age determinations indicates that most cobalt mineralization occurred in Mesoproterozoic time, whereas most copper mineralization occurred in Cretaceous time.Mesoproterozoic cobaltite mineralization accompanied and followed dynamothermal metamorphism and bimodal plutonism during the Middle Mesoproterozoic East Kootenay orogeny (ca. 1379–1325 Ma), and also accompanied Grenvilleage (Late Mesoproterozoic) thermal metamorphism (ca. 1200–1000 Ma). Stratabound cobaltite-biotite ore zones typically contain cobaltite1 in a matrix of biotitite ± tourmaline ± minor xenotime (ca. 1370–1320 Ma) ± minor chalcopyrite ± sparse allanite ± sparse microscopic native gold in cobaltite. Such cobaltite-biotite lodes are locally folded into tight F2 folds with axial-planar S2 cleavage and schistosity. Discordant replacement-style lodes of cobaltite2-biotite ore ± xenotime2 (ca. 1320–1270 Ma) commonly follow S2fractures and fabrics

  20. Metallogeny of Mesoproterozoic Sedimentary Rocks in Idaho and Montana - Studies by the Mineral Resources Program, U.S. Geological Survey, 2004-2007

    Science.gov (United States)

    O'Neill, J. Michael

    2007-01-01

    -central Idaho are integrated and summarized by Bookstrom and others (chapter B, this volume). In particular, their field investigations and analysis of evidence and previous arguments for synsedimentary versus epigenetic mineral deposit types, both of which have been postulated by earlier workers, led them to conclude that both processes were likely instrumental in forming the ore deposits of the Blackbird district. Finally, this report supplies new data on isotopic ratios of sulfur, oxygen, carbon, and helium in minerals associated with cobalt-bearing ores of the cobalt belt. Slack (chapter C, this volume) identified several previously unrecognized rare-earth-element minerals in Blackbird ores: monazite (Ce,La,Y,Th)PO4, xenotime (YPO4), allanite (CaCe)2(Al,Fe)3Si3O12(OH), and gadolinite (Be2FeY2Si2O10). Light rare-earth elements reside mostly in monazite, whereas yttrium and heavy rare-earth minerals reside mostly in xenotime. Dated monazite, which in the Blackbird district is interstitial to cobaltite, is Cretaceous. This date brings into question the otherwise geologically convincing interpretation of Blackbird ores as being of Mesoproterozoic age and synsedimentary origin. This volume consists of three summary articles: A. Great Divide megashear, Montana, Idaho, and Washington: An intraplate crustal-scale shear zone recurrently active since the Mesoproterozoic by J. Michael O'Neill, Edward T. Ruppel, and David A. Lopez B. Blackbird Fe-Cu-Co-Au-REE deposits by Arthur A. Bookstrom, Craig A. Johnson, Gary P. Landis, and Thomas P. Frost C. Geochemical and mineralogical studies of sulfide and iron oxide deposits in the Idaho cobalt belt by John F. Slack

  1. Petrography, mineral chemistry and lithochemistry of the albitite and granite-gneissics rocks of anomaly 35 from Lagoa Real uranium province; Petrografia, quimica mineral e litoquimica do albitito e das rochas granito-gnaissicas da anomalia 35, provincia uranifera de Lagoa Real

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Camila Marques dos

    2016-07-01

    albitites and gneisses are macroscopically gradational, however, in the garnet albitites replacement of granitic mineral facies by the albitite facies were observed petrographically, implying a granitic protolith for this rock. On the other hand, magnetite albitites do not have clear relationship with granites. Albitites usually have porphyroblastic texture with granoblastic polygonal matrix and chessboard texture in albite porphyroclasts. The garnet albitites comprise hedenbergite, hastingsite, garnet, magnetite and sphena. Magnetite albitites, in turn, have hedenbergite, Fe-edenite, biotite, martitized magnetite, allanite and sphene. The diopside+actinolite+eastonita association is late, and in these rocks, it is restricted to more deformed portions or filling voids. The biotite albitites comprise biotite, zircon and apatite hedenbergite (?). Mineralization occurs in magnetite albitites as thin lenses composed by sphene, magnetite, carbonate and zircon. The uranium mineral is the uraninite, which occurs filling spaces between crystals and sphene or albite granules. In comparison to granites, albitites have a higher content of Na{sub 2}O, MgO, V, W, Zr, Pb and Sr for and lower K{sub 2}O, SiO{sub 2} and F. They have a geochemical REE pattern that is identical to that of granite. The similarity between macroscopic granites and albitites, the presence of vazios, feldspar hematitization and sericitization causing macroscopical reddening in transitional portions and the replacement of potassic feldspar by albite and oligoclase are suggestive of episyenitization processes. The metasomatic perthites and presence of chessboard texture in porphyroclasts indicate successive albitization processes prior to deformation. The comparison between albitite samples of different drill cores and anomalies shows that there are differences in the formation and mineralization of these rocks. The V and Mg enrichment in some albitites suggests that these rocks may result from the interaction of

  2. Philippines targeting unconventional sources for uranium

    International Nuclear Information System (INIS)

    Reyes, R.

    2014-01-01

    The quest for uranium in the Philippines dates back in the mid–1950s and to date about 70% of the country has been systematically explored, from reconnaissance to some detailed level using the combined radiometric and geochemical survey methods. However, no major uranium deposit has been discovered so far, only some minor mineralization. Also, there is a general view that the geological environment of the Philippines is unfavourable for uranium based on the lack of similarity between the geological features of known uranium–producing districts around the world and that of the country. It is in this light that the search for uranium in the country shifted to unconventional sources. The first unconventional source of uranium (U) that is being looked into is from rare earth elements (REE)–thorium (Th) minerals. Radiometric measurements along the beaches in northern Palawan identified major REE–Th and minor U potential areas. Heavy beach and stream panned concentrate gave high values of REE and Th, including U within the Ombo and Erawan coastal areas. Preliminary evaluation conducted in these two prospective areas indicated; 1) in the Ombo area, an estimated reserve of 750 t of Th, 30,450 t of REE and 80 t of U contained in about 540,000 t of beach sand with a respective average grade of 0.14% Th, 5.64% REE and 0.015% U, and 2) in the Erawan area, an estimated total reserve of 2,200 t of Th, 113,430 t of REE and 150 t U contained in 2,450,00 t of beach sand with an average grade of 0.09% Th, 4.63% REE and 0.006% U, respectively. Major allanite and minor monazite are the minerals identified and the source of these heavy minerals is the Tertiary Kapoas granitic intrusive rocks. Another unconventional source is a base metal zone with numerous occurrences containing complex assemblages of Cu–Mo–U within the Larap–Paracale mineralized district in Camarines Norte province, in which uranium may be produced as a by–product. A private mining company conducted

  3. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Papua New Guinea

    International Nuclear Information System (INIS)

    1977-08-01

    prospective rocks. The Permian or Triassic granite and Triassic acidic volcanics are possible source rocks for uranium in the Mesozoic sediments, although the uranium levels are unknown. Granitic rocks of similar age, exposed in the western part of Irian Jaya (Rirdshead) are accompanied by radiometric anomalies and are known to contain monazite, allanite, xenotime, zircon, and thorite. Miocene and younger intrusions - principally diorite, tonalite, and granodiorite - in the central range, contain up to 4 ppm U and 16 ppm Th, while Tertiary intrusives in New Britain and the Solomon Islands contain less than 2.5 ppm U and 7 ppm Th. Quaternary volcanics in New Britain and on islands off the North New Guinea coast have low levels of U and Th similar to those of the Tertiary intrusives in the area. Some of the tertiary limestone deposits in Papua New Guinea could be potential host rocks to uranium. The most favourable rock unit is Miocene basinal limestone on the platform; it consists of argillaceous micrite and biomicrite, and calcareous mudstone, and is a source and (locally) a reservoir rock of petroleum. Apart, from the inherent difficulties of exploration of a remote region an added problem is the difficulty of airborne surveying in areas of rugged topography and terrain covered by dense forest. In lowland areas there are the additional problems of permanent water cover, leaching of the surface rocks, and heavy soil cover

  4. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, Michel

    2014-01-01

    The strongly incompatible behaviour of uranium in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behavior, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth, which crystallized uraninite, dated at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: per-alkaline, high-K met-aluminous calc-alkaline, L-type peraluminous and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass of their volcanic equivalents represent the best U source. Per-alkaline granites or syenites are associated with the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction under the present economic conditions and make them unfavorable U sources for other deposit types. By contrast, felsic per-alkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals (U-thorite, allanite, Nb oxides) become metamict. The volcanic rocks of the same geochemistry may be

  5. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, M.

    2014-01-01

    Uranium strongly incompatible behaviour in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behaviour, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth which crystallized uraninite appeared at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: peralkaline, high-K metaluminous calc-alkaline, L-type peraluminous ones and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass in their volcanic equivalents represent the best U source. Peralkaline granites or syenites represent the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction at the present economic conditions and make them unfavourable U sources for other deposit types. By contrast, felsic peralkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals [U-thorite, allanite, Nb oxides] become metamict. The volcanic rocks of the same geochemistry may be also a

  6. Origin of heavy REE mineralisation in carbonatites: Constraints form the Huanglongpu Mo-HREE deposit, Qinling, China.

    Science.gov (United States)

    Smith, Martin; Cheng, Xu; Kynicky, Jindrich; Cangelosi, Delia; Wenlei, Song

    2017-04-01

    The carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. Carbonatite monazite (208.9±4.6 Ma to 213.6±4.0; Song et al., 2016) gives a comparable U-Pb radiometric age to molybdenite (220Ma; Stein et al., 1997), confirming interpretations that Mo is derived from the carbonatite, and not a subsequent overprint from regional porphyry-style mineralisation ( 141Ma). The sulphides in the carbonatites have mantle-like 34S ( 1‰) and low δ26Mg values (-1.89 to -1.07‰), similar to sedimentary carbonates, suggesting a recycled sediment contribution in their mantle sources that may be responsible for the Mo and HREE enrichment (Song et al., 2016). The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Monazite-(Ce) was subsequently altered to produce apatite, which was in turn replaced by britholite-(Ce), accompanied by the formation of allanite-(Ce). The REE-fluorcarbonates where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered initially to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, through to more silica-rich conditions during the magmatic-hydrothermal transition, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate that the HREE enrichment could not be a passive process, and that hydrothermal fluids must have contributed HREE to the system. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid, and so breakdown of HREE-enriched calcite may have been the HREE source

  7. Laachite, (Ca,Mn){sub 2}Zr{sub 2}Nb{sub 2}TiFeO{sub 14}, a new zirconolite-related mineral from the Eifel volcanic region, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Chukanov, Nikita V. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Krivovichev, Sergey V.; Pakhomova, Anna S. [St. Petersburg State Univ. (Russian Federation). Faculty of Crystallography; Pekov, Igor V.; Vigasina, Marina F. [Moscow State Univ. (Russian Federation). Faculty of Geology; Schaefer, Christof [Suedwestdeutsche Salzwerke AG, Heilbronn (Germany); Van, Konstantin V. [Russian Academy of Sciences, Chernogolovka (Russian Federation). Inst. of Experimental Mineralogy

    2014-02-15

    The new mineral laachite was discovered in a sanidinite specimen from the Laach Lake (Laacher See) volcano, Eifel region, Rheinland-Pfalz, Germany. Associated minerals are sanidine, allanite-(Ce), baddeleyite, hau¨yne, hedenbergite, intermediate members of the jacobsite-magnetite series, phlogopite, rhodonite, spessartine, tephroite, thorite, zircon, and a pyrochlore-group mineral. Laachite is deep brownish-red, has an adamantine lustre, and is translucent; the streak is brownish red. It forms longprismatic crystals up to 0.02 x 0.04 x 0.5 mm, which are present as random intergrowths and twins in cavities within sanidinite. The density calculated from the empirical formula is 5.417 g/cm{sup 3}. The mean refractive index calculated from the Gladstone-Dale relationship is 2.26. The Raman spectrum shows the absence of hydrogen-bearing groups. The chemical composition is (electron microprobe, mean of 5 analyses, wt. %): CaO 4.29, MnO 9.42, FeO 5.73, Y{sub 2}O{sub 3} 2.56, La{sub 2}O{sub 3} 2.00, Ce{sub 2}O{sub 3} 6.37, Nd{sub 2}O{sub 3} 2.22, Al{sub 2}O{sub 3} 0.99, ThO{sub 2} 7.75, TiO{sub 2} 10.98, ZrO{sub 2} 19.39, Nb{sub 2}O{sub 5} 27.82, total 99.52. The empirical formula based on 14 O atoms is: (Ca{sub 0.66}Mn{sub 0.37}Th{sub 0.25}Y{sub 0.20}La{sub 0.11}Ce{sub 0.34}Nd{sub 0.11})(Zr{sub 1.3} {sub 6}Mn{sub 0.64})(Nb{sub 1.81}Ti{sub 1.19})(Fe{sub 0.69}Al{sub 0.17}Mn{sub 0.14})O{sub 14.00}. The simplified formula, taking into account the structural data, is: (Ca,Mn){sub 2}(Zr,Mn){sub 2}Nb{sub 2}TiFeO{sub 14}. Laachite is monoclinic, space group C2/c, a = 7.3119(5), b = 14.1790(10), c = 10.1700(7)Aa, β = 90.072(2), V = 1054.38(1) Aa{sup 3}, Z = 4. The crystal structure was solved using single-crystal X-ray diffraction data. Laachite is a monoclinic analogue of zirconolite-3O, CaZrTi{sub 2}O{sub 7}, with Nb dominant over Ti in the octahedral sites Nb1 and Nb2 and Fe dominant in a site with four-fold coordination. The strongest lines of the powder X-ray diffraction

  8. U-Pb, Re-Os, and Ar/Ar geochronology of rare earth element (REE)-rich breccia pipes and associated host rocks from the Mesoproterozoic Pea Ridge Fe-REE-Au deposit, St. Francois Mountains, Missouri

    Science.gov (United States)

    Aleinikoff, John N.; Selby, David; Slack, John F.; Day, Warren C.; Pillers, Renee M.; Cosca, Michael A.; Seeger, Cheryl; Fanning, C. Mark; Samson, Iain

    2016-01-01

    Rare earth element (REE)-rich breccia pipes (600,000 t @ 12% rare earth oxides) are preserved along the margins of the 136-million metric ton (Mt) Pea Ridge magnetite-apatite deposit, within Mesoproterozoic (~1.47 Ga) volcanic-plutonic rocks of the St. Francois Mountains terrane in southeastern Missouri, United States. The breccia pipes cut the rhyolite-hosted magnetite deposit and contain clasts of nearly all local bedrock and mineralized lithologies.Grains of monazite and xenotime were extracted from breccia pipe samples for SHRIMP U-Pb geochronology; both minerals were also dated in one polished thin section. Monazite forms two morphologies: (1) matrix granular grains composed of numerous small (minerals includes Re-Os on fine-grained molybdenite and 40Ar/39Ar on muscovite, biotite, and K-feldspar.Ages (±2σ errors) obtained by SHRIMP U-Pb analysis are as follows: (1) zircon from the two host rhyolite samples have ages of 1473.6 ± 8.0 and 1472.7 ± 5.6 Ma; most zircon in late felsic dikes is interpreted as xenocrystic (age range ca. 1522–1455 Ma); a population of rare spongy zircon is likely of igneous origin and yields an age of 1441 ± 9 Ma; (2) pale-yellow granular monazite—1464.9 ± 3.3 Ma (no dated xenotime); (3) reddish matrix granular monazite—1462.0 ± 3.5 Ma and associated xenotime—1453 ± 11 Ma; (4) coarse glassy-yellow monazite—1464.8 ± 2.1, 1461.7 ± 3.7 Ma, with rims at 1447.2 ± 4.7 Ma; and (5) matrix monazite (in situ)—1464.1 ± 3.6 and 1454.6 ± 9.6 Ma, and matrix xenotime (in situ)—1468.0 ± 8.0 Ma. Two slightly older ages of cores are about 1478 Ma. The young age of rims on the coarse glassy monazite coincides with an Re-Os age of 1440.6 ± 9.2 Ma determined in this study for molybdenite intergrown with quartz and allanite, and with the age of monazite inclusions in apatite from the magnetite ore (Neymark et al., 2016). A 40Ar/39Ar age of 1473 ± 1 Ma was obtained for muscovite from a breccia pipe sample.Geochronology and

  9. Geochemistry of biotite granites from the Lamas de Olo Pluton, northern Portugal

    Science.gov (United States)

    Fernandes, Susana; Gomes, Maria; Teixeira, Rui; Corfu, Fernando

    2013-04-01

    In the Central Iberian Zone (CIZ) extensive crustal recycling occurred during the post-thickening extension stage of the Variscan orogeny (~330-290 Ma). After the ductile deformation phase D3 (~320-300 Ma), characterized by the intrusion of large volumes of highly peraluminous granitic magmas, rapid and drastic tectonic changes at about 300 Ma gave rise to the brittle phase of deformation D4 that controlled the emplacement of Fe-K subalkaline granites (296-290 Ma; Dias et al. 1998). The Lamas de Olo Pluton (LOP) is controlled by NE-SW and NW-SE fracture systems, probably related to the Régua-Verin fault zone (Pereira, 1989). The LOP is a medium to coarse-grained, porphyritic biotite granite, accompanied by medium- to fine grained, porphyritic biotite granite (Alto dos Cabeços- AC) and a more leucocratic, fine-grained, slightly porphyritic biotite-muscovite granite (Barragens- BA). The contacts between LO and AC are generally diffuse, whereas those to BA are sharp. In fact, the BA granite can occur in dykes and sills cutting LO and AC. Microgranular enclaves and xenoliths are very rare. The LOP intrudes the Douro Group, presumably of Precambrian to Cambrian age, and two-mica granites from the Vila Real composite massif. The LOP granites consist of quartz, microcline, plagioclase, biotite, zircon, titanite, tourmaline apatite, fluorite, ilmenite, magnetite, and rutile, with muscovite in BA granite and rare allanite in the LO and AC granites. The plagioclase composition is of oligoclase (An12) - andesine (An35) for LO granite, albite (An9) - andesine (An30) for CA granite and albite (An5) - oligoclase (An20) for BA granite. There are decreases in: a) anorthite content from phenocryst to matrix plagioclase; b) Ba content from phenocryst to matrix microcline in all granites. The Fe2+ biotite has a composition similar to that of biotite from calc-alkaline to sub-alkaline rock series. The LO and AC granites are meta- to peraluminous with ASI variable between 1.05 and 1

  10. Microchemistry, geochemistry and geochronology of the Lagoa Real Uranium Province (BA) magmatic association: petrological and evolutionary significance

    International Nuclear Information System (INIS)

    Amorim, Lucas Eustaquio Dias

    2016-01-01

    characterized by low content of U, Sr, and Ba. Based on the chemical-compositional data of titanite in granites and albite gneisses and mineral reactions, it was possible to distinguish three hydrothermal events that affected the rocks of magmatic association. These events promoted, in a sequential but separately way, the formation of various minerals which composition reflect the chemistry of these events. A first event, tardi to post-magmatic, is comprised by a fluid rich in F and Cl, generated amphibole and biotite at the expense of pyroxene. The second hydrothermal event, is post-magmatic and characterized by presenting a fluid with F, HREE, Th and ± V. During this event occurred a 11 reaction between ilmenite, plagioclase and hornblende/biotite resulting in the crystallization of titanite. Finally, the last hydrothermal event which is also post-magmatic, is characterized by the presence of F, ±CO_3"2"-, PO_4"3"- ±, LREE, Th, U, Zr. During this last event, the formation of a second generation of titanite and allanite has occurred, both in expense of the previously titanite. Also during this event fluoro-carbonates and REE phosphates, thorite and a second generation of zircon were precipitated. Finally, isotopic studies, geochronological and chemistry mineral data allowed to contribute to a better understanding of the petrological/temporal evolution occurred in the Lagoa Real magmatic association and in the crust segment which the PULR is located. (author)

  11. Petrography, mineral chemistry and lithochemistry of the albitite and granite-gneissics rocks of anomaly 35 from Lagoa Real uranium province

    International Nuclear Information System (INIS)

    Santos, Camila Marques dos

    2016-01-01

    albitites and gneisses are macroscopically gradational, however, in the garnet albitites replacement of granitic mineral facies by the albitite facies were observed petrographically, implying a granitic protolith for this rock. On the other hand, magnetite albitites do not have clear relationship with granites. Albitites usually have porphyroblastic texture with granoblastic polygonal matrix and chessboard texture in albite porphyroclasts. The garnet albitites comprise hedenbergite, hastingsite, garnet, magnetite and sphena. Magnetite albitites, in turn, have hedenbergite, Fe-edenite, biotite, martitized magnetite, allanite and sphene. The diopside+actinolite+eastonita association is late, and in these rocks, it is restricted to more deformed portions or filling voids. The biotite albitites comprise biotite, zircon and apatite hedenbergite (?). Mineralization occurs in magnetite albitites as thin lenses composed by sphene, magnetite, carbonate and zircon. The uranium mineral is the uraninite, which occurs filling spaces between crystals and sphene or albite granules. In comparison to granites, albitites have a higher content of Na 2 O, MgO, V, W, Zr, Pb and Sr for and lower K 2 O, SiO 2 and F. They have a geochemical REE pattern that is identical to that of granite. The similarity between macroscopic granites and albitites, the presence of vazios, feldspar hematitization and sericitization causing macroscopical reddening in transitional portions and the replacement of potassic feldspar by albite and oligoclase are suggestive of episyenitization processes. The metasomatic perthites and presence of chessboard texture in porphyroclasts indicate successive albitization processes prior to deformation. The comparison between albitite samples of different drill cores and anomalies shows that there are differences in the formation and mineralization of these rocks. The V and Mg enrichment in some albitites suggests that these rocks may result from the interaction of fluids with

  12. Mianningite, (□,Pb,Ce,Na) (U"4"+,Mn,U"6"+) Fe"3"+_2(Ti,Fe"3"+)_1_8O_3_8, a new member of the crichtonite group from Maoniuping REE deposit, Mianning county, southwest Sichuan, China

    International Nuclear Information System (INIS)

    Ge, Xiangkun; Fan, Guang; Chen, Zhangru; Ai, Yujie; Li, Guowu

    2017-01-01

    Mianningite (IMA 2014-072), ideally (□,Pb,Ce,Na)(U"4"+,Mn,U"6"+) Fe"3"+_2(Ti,Fe"3"+)_1_8O_3_8, is a new member of the crichtonite group from the Maoniuping REE deposit, Mianning county, Sichuan province, China. It was found in fractures of lamprophyre veins and in the contact between lamprophyre and a later quartz-alkali feldspar syenite dyke with REE mineralization, and is named after its type locality. Associated minerals are microcline, albite, quartz, iron-rich phlogopite, augite, muscovite, calcite, baryte, fluorite, epidote, pyrite, magnetite, hematite, galena, hydroxylapatite, titanite, ilmenite, rutile, garnet-group minerals, zircon, allanite-(Ce), monazite-(Ce), bastnaesite-(Ce), parisite-(Ce), maoniupingite-(Ce), thorite, pyrochlore-group minerals and chlorite. Mianningite occurs as opaque subhedral to euhedral tabular crystals, up to 1-2 mm in size, black in color and streak, and with a submetallic luster. Mianningite is brittle, with a conchoidal fracture. Its average micro-indentation hardness is 83.8 kg/mm"2 (load 0.2 kg), which is equivalent to ∝6 on the Mohs hardness scale. Its measured and calculated densities are 4.62 (8) g/cm"3 and 4.77 g/cm"3, respectively. Under reflected light, mianningite is grayish white, with no internal reflections. It appears isotropic and exhibits neither bireflectance nor pleochroism. The empirical formula, calculated on the basis of 38 O atoms per formula unit (apfu), is [□_0_._3_2_2(Pb_0_._2_1_5Ba_0_._0_3_7Sr_0_._0_3_6Ca_0_._0_1_0)_Σ_0_._2_9_8(Ce_0_._1_2_8La_0_._0_7_7Nd_0_._0_1_2)_Σ_0_._2_1_7 (Na_0_._1_2_7K_0_._0_3_6)_Σ_0_._1_6_3]_Σ_0_1_._0_0_0(U"4"+_0_._4_4_7Mn_0_0_._2_9_3U"6 "+_0_._1_1_2Y_0_._0_9_1Zr_0_._0_2_3Th_0_._0_1_1)_Σ_0_._9_7_7(Fe"3"+_1_._2_2_4Fe"2"+_0_._2_4_3Mg_0_._0_2_3P_0_._0_0_8Si_0_._0_0_6 □_0_._4_9_6)_Σ_2_._0_0_0(Ti_1_2_._4_6_4Fe"3"+_5_._2_9_2V"5"+_0_._1_1_8Nb_0_._0_8_3Al_0_._0_2_6Cr"3"+_0_._0_1_7)_Σ_1_8_._0_0_0O_3_8. Mianningite is trigonal, belongs to the space group R anti 3, and has

  13. Black and red granites in the Egyptian Antiquity Museum of Turin. A minero-petrographic and provenance study.

    Science.gov (United States)

    Serra, M.; Borghi, A.; Vaggelli, G.; D'Amicone, E.; Vigna, L.

    2009-04-01

    materials used for two of the best known masterpieces of Egyptian art. As regards to red granites, it has been observed that most of the exposed sculptures were made of rocks closely akin to Aswan granite. Just in one case, the Ram headed sphinx (cat. 836), macroscopic differences in colour index, grain size and isoorientation of feldspar phenocrysts, suggested a different provenance of the source material and determined the choice of picking up a small fragment for minero-petrographic analysis. The sample collected from the sarcophagus of Nefertari (suppl. 5153) during the recent restoration of the sculpture, was analysed in order to test the accuracy of the results, as the provenance of the material used for its realization was already certain. Petrographic observations and chemical analysis were undertaken by a scanning electron microscope equipped with an energy-dispersive spectrometer. Minero-petrographic data primarily showed that all samples vary in composition from granite (red granites) to granodiorite and tonalite (black granites). The main sialic phases are represented by plagioclase (albite to oligoclase), alkali-feldspar (microcline) and quartz, while femic phases are amphibole (green horneblende) and biotite (Fe- to Mg-biotite), always coexisting in variable relative percentages. Minor amount of apatite (≈ 1 wt.%), magnetite, ilmenite, often associated to sphene, zircon, pyrite and allanite also occur. The identification of some compositional markers in all samples suggested a common provenance for all the rocks used for the sculptures. Thus, it was supposed that they could all have been quarried in the famous district of Aswan, well known at least since Dynastic period. This provenance hypothesis was confirmed by geological literature and archeological evidences, considering the relative proximity of Aswan quarries to Nile river and to the key centres of power in the New Kingdom. Therefore, several geological samples were collected in Aswan area, in order

  14. Geochemistry of mylonitic tourmaline-bearing granite- gneiss pluton in the northeast of June mine

    Directory of Open Access Journals (Sweden)

    Arezoo Moradi

    2017-07-01

    , allanite, apatite, and magnetite. The mylonitic gneiss-granite has a mantled porphyroclast texture that may be characterized by large asymmetrical porphyroclasts of K-feldspar and plagioclase with a mantle which includes white-mica, biotite, quartz and feldspar aggregates. Some of the petrographic evidence show dynamic deformation during the crystallization such as grain boundary migration (GBM or sub-grain rotation (SGR, patchy perthite. Evidence of strain, such as deformation twins, bent or curved twins, undulatory extinction occur characteristically in plagioclase and display dynamic deformation in solid state. The rocks exhibit identical compositional ranges with 71.24–78.35 wt.% SiO2; high levels of alkalies (Na2O ranges from 3.07 to 4.02 %, K2O varies from 4.18 to 5.53 %; low levels of Fe2O3tot (0.80 to 2.60 %. Also, the trace element compositions display significant variations, such as Zr (157.7-330.5 ppm, Eu (0.07-0.28 ppm, Nb (40.9-77.3 ppm, Ga (19.7-25.97 ppm. The studied rocks are strongly enriched in LREE and HFSE and show a strong depletion in Ba, Sr, Eu and Ti and enrichment in Rb and Zr. The element contents are also similar to typical A-type granite (Whalen et al., 1987. The rocks are alkali to alkali-calcic, metaluminous to mildly peraluminous granite and ferroan in new geochemical classification scheme for granitoids (proposed by Frost et al., 2001. Discussion The chondrite-normalized rare-earth element patterns of the mylonitic gneiss- granitic rocks indicate the LREE over HREE fractionation with significant negative Eu anomalies. Primitive-mantle-normalized spidergrams (Sun and McDonough, 1989 normalized trace element patterns with negative Ba and Nb anomalies, and positive Rb, Th and Ce anomalies, simulate the collisional and post-collisional granitoids of Pearce et al (Pearce et al., 1984. All of the samples fall in the A2 group in Eby classification (Eby, 1992. On the tectonic discrimination plots, the granites show a within-plate granite (WPG