WorldWideScience

Sample records for all-solid pbg fiber

  1. Monolithic Yb-fiber femtosecond laser with intracavity all-solid PBG fiber and ex-cavity HC-PCF

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2010-01-01

    (PM) photonic bandgap fiber (PBG) is used in the cavity of the master oscillator for dispersion compensation and stabilization of modelocking. The final compression of an chirped-pulse-amplified laser signal is performed in a hollow PM PCF, yielding final fiber-delivered pulse energy of around 7 n......We demonstrate an all-fiber femtosecond master oscillator / power amplifier operating at the central wavelength of 1033 nm, based on Yb-doped fiber as gain medium, and two different kinds of photonic crystal fibers for dispersion control and stabilization. An all-solid (AS) polarization maintaining...

  2. Coupler Studies for PBG Fiber Accelerators

    International Nuclear Information System (INIS)

    Photonic band gap (PBG) fiber with hollow core defects are being designed and fabricated for use as laser driven accelerators because they can provide gradients of several GeV/m for picosecond pulse lengths. We expect to produce fiber down to λ = 1.5-2.0 (micro)m wavelengths but still lack a viable means for efficient coupling of laser power into such structures due to the very different character of the TM-like modes from those used in the telecom field and the fact that the defect must function as both a longitudinal waveguide for the accelerating field and a transport channel for the particles. We discuss the status of our work in pursuing both end and side coupling. For both options, the symmetry of these crystals leads to significant differences with the telecom field. Side coupling provides more options and appears to be preferred. Our goals are to test gradients, mode content and coupling efficiencies on the NLCTA at SLAC. While there are many potential types of fiber based on very different fabrication methods and materials we will concentrate on 2D axisymmetric glass with hexagonal symmetry but will discuss several different geometries including 2D and 3D planar structures. Since all of these can be fabricated using modern techniques with a variety of dielectric materials they are expected to have desirable optical and radiation hardness properties. Thus, we expect a new generation of very high gradient accelerators that extends the Livingston-Panofsky chart of exponential growth in energy vs. time at greatly reduced costs. For illustration, Fig.1 shows a simulation of our first engineered fiber with an accelerating mode expected near 7.3 (micro)m that is now ready to test on the NLCTA. In this example, one sees the uniform longitudinal accelerating field in the central defect as first shown by Lin3 together with a hexagonal array of surrounding hot spots. Contrary to what one expects from the telecom field, Ng et al. have shown4 that the ideal end

  3. Coupler Studies for PBG Fiber Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    England, J.; Ng, C.; Noble, R.; Spencer, J.; Wu, Z.; Xu, D.; /SLAC

    2011-08-17

    Photonic band gap (PBG) fiber with hollow core defects are being designed and fabricated for use as laser driven accelerators because they can provide gradients of several GeV/m for picosecond pulse lengths. We expect to produce fiber down to {lambda} = 1.5-2.0 {micro}m wavelengths but still lack a viable means for efficient coupling of laser power into such structures due to the very different character of the TM-like modes from those used in the telecom field and the fact that the defect must function as both a longitudinal waveguide for the accelerating field and a transport channel for the particles. We discuss the status of our work in pursuing both end and side coupling. For both options, the symmetry of these crystals leads to significant differences with the telecom field. Side coupling provides more options and appears to be preferred. Our goals are to test gradients, mode content and coupling efficiencies on the NLCTA at SLAC. While there are many potential types of fiber based on very different fabrication methods and materials we will concentrate on 2D axisymmetric glass with hexagonal symmetry but will discuss several different geometries including 2D and 3D planar structures. Since all of these can be fabricated using modern techniques with a variety of dielectric materials they are expected to have desirable optical and radiation hardness properties. Thus, we expect a new generation of very high gradient accelerators that extends the Livingston-Panofsky chart of exponential growth in energy vs. time at greatly reduced costs. For illustration, Fig.1 shows a simulation of our first engineered fiber with an accelerating mode expected near 7.3 {micro}m that is now ready to test on the NLCTA. In this example, one sees the uniform longitudinal accelerating field in the central defect as first shown by Lin3 together with a hexagonal array of surrounding hot spots. Contrary to what one expects from the telecom field, Ng et al. have shown4 that the ideal end

  4. Measurement of Thermal Dependencies of PBG Fiber Properties

    International Nuclear Information System (INIS)

    Photonic crystal fibers (PCFs) represent a class of optical fibers which have a wide spectrum of applications in the telecom and sensing industries. Currently, the Advanced Accelerator Research Department at SLAC is developing photonic bandgap particle accelerators, which are photonic crystal structures with a central defect used to accelerate electrons and achieve high longitudinal electric fields. Extremely compact and less costly than the traditional accelerators, these structures can support higher accelerating gradients and will open a new era in high energy physics as well as other fields of science. Based on direct laser acceleration in dielectric materials, the so called photonic band gap accelerators will benefit from mature laser and semiconductor industries. One of the key elements to direct laser acceleration in hollow core PCFs, is maintaining thermal and structural stability. Previous simulations demonstrate that accelerating modes are sensitive to the geometry of the defect region and the variations in the effective index. Unlike the telecom modes (for which over 95% of the energy propagates in the hollow core) most of the power of these modes is located in the glass at the periphery of the central hole which has a higher thermal constant than air (γSiO#sub 2# = 1.19 x 10-6 1/K, γair = -9 x 10-7 1/K with γ = dn/dT). To fully control laser driven acceleration, we need to evaluate the thermal and structural consequences of such modes on the PCFs. We are conducting series of interferometric tests to quantify the dependencies of the HC-633-02 (NKT Photonics) propagation constant (kz) on temperature, vibration amplitude, stress and electric field strength. In this paper we will present the theoretical principles characterizing the thermal behavior of a PCF, the measurements realized for the fundamental telecom mode (TE00), and the experimental demonstration of TM-like mode propagation in the HC-633-02 fiber.

  5. Measurement of Thermal Dependencies of PBG Fiber Properties

    Energy Technology Data Exchange (ETDEWEB)

    Laouar, Rachik

    2011-07-06

    Photonic crystal fibers (PCFs) represent a class of optical fibers which have a wide spectrum of applications in the telecom and sensing industries. Currently, the Advanced Accelerator Research Department at SLAC is developing photonic bandgap particle accelerators, which are photonic crystal structures with a central defect used to accelerate electrons and achieve high longitudinal electric fields. Extremely compact and less costly than the traditional accelerators, these structures can support higher accelerating gradients and will open a new era in high energy physics as well as other fields of science. Based on direct laser acceleration in dielectric materials, the so called photonic band gap accelerators will benefit from mature laser and semiconductor industries. One of the key elements to direct laser acceleration in hollow core PCFs, is maintaining thermal and structural stability. Previous simulations demonstrate that accelerating modes are sensitive to the geometry of the defect region and the variations in the effective index. Unlike the telecom modes (for which over 95% of the energy propagates in the hollow core) most of the power of these modes is located in the glass at the periphery of the central hole which has a higher thermal constant than air ({gamma}{sub SiO{sub 2}} = 1.19 x 10{sup -6} 1/K, {gamma}{sub air} = -9 x 10{sup -7} 1/K with {gamma} = dn/dT). To fully control laser driven acceleration, we need to evaluate the thermal and structural consequences of such modes on the PCFs. We are conducting series of interferometric tests to quantify the dependencies of the HC-633-02 (NKT Photonics) propagation constant (k{sub z}) on temperature, vibration amplitude, stress and electric field strength. In this paper we will present the theoretical principles characterizing the thermal behavior of a PCF, the measurements realized for the fundamental telecom mode (TE{sub 00}), and the experimental demonstration of TM-like mode propagation in the HC-633

  6. Optical Fiber Lasers and All Solid-State Passively Modulated Microchip Lasers

    Institute of Scientific and Technical Information of China (English)

    Junewen; Chen; Pie-Yau; Chien; Yu-Ting; Lee

    2003-01-01

    Erbium fiber lasers of continuous mode outputs and of pulsed picosecond and sub-picosecond pulses train are reported. Compact all solid state passively modulated microchip lasers are also developed to the same degree.

  7. Characteristics of Bragg Gratings in All-Solid Photonic Bandgap Fiber

    Institute of Scientific and Technical Information of China (English)

    Bai-Ou Guan; Zhi Wang; Yang Zhang; Da Chen

    2008-01-01

    We report on fiber Bragg gratings in all-solid photonie bandgap fiber that was composed of a triangular array of high-index Ge-doped rods in pure silica background with fluorine-doped index-depressed layer surrounding the Ge-doped rod. Fiber Bragg gratings were photowritten with 193 nm ArF excimer laser and characterized for their response to strain, temperature, bending, and torsion. These gratings couple light from the forward core mode to not only backward core mode but also backward rod modes. This results in multiple resonance peaks in the reflection spectrum. All resonance wavelengths exhibited the same temperature and strain response with coefficient similar to that of Bragg gratings in standard single-mode fiber. The strength of the resonance peaks corresponding to the backward rod modes showed high sensitivity to bending and torsion.

  8. Refractive index sensing in an all-solid twin-core photonic bandgap fiber

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham E.; Bang, Ole

    2010-01-01

    We describe a highly sensitive refractive index sensor based on a twin-core coupler in an all-solid photonic bandgap guiding optical fiber. A single hole acts as a microfluidic channel for the analyte, which modifies the coupling between the cores, and avoids the need for selective filling....... By operating in the bandgap guiding regime the proposed sensor is capable of measuring refractive indices around that of water, and because the analyte varies the coupling coefficient (i.e., instead of phase matching condition) the device is capable of both high sensitivity and a relatively large dynamic range....

  9. Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers

    Directory of Open Access Journals (Sweden)

    Celine Caillaud

    2014-08-01

    Full Text Available An original way to obtain fibers with special chromatic dispersion and single-mode behavior is to consider microstructured optical fibers (MOFs. These fibers present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. In this study, the first all-solid all-chalcogenide MOFs exhibiting photonic bandgap transmission have been achieved and optically characterized. The fibers are made of an As38Se62 matrix, with inclusions of Te20As30Se50 glass that shows a higher refractive index (n = 2.9. In those fibers, several transmission bands have been observed in mid infrared depending on the geometry. In addition, for the first time, propagation by photonic bandgap effect in an all-chalcogenide MOF has been observed at 3.39 µm, 9.3 µm, and 10.6 µm. The numerical simulations based on the optogeometric properties of the fibers agree well with the experimental characterizations.

  10. Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing.

    Science.gov (United States)

    Duan, Li; Zhang, Peng; Tang, Ming; Wang, Ruoxu; Zhao, Zhiyong; Fu, Songnian; Gan, Lin; Zhu, Benpeng; Tong, Weijun; Liu, Deming; Shum, Perry Ping

    2016-09-01

    A compact high temperature sensor utilizing a multipath Michelson interferometer (MI) structure based on weak coupling multicore fiber (MCF) is proposed and experimentally demonstrated. The device is fabricated by program-controlled tapering the spliced region between single mode fiber (SMF) and a segment of MCF. After that, a spherical reflective structure is formed by arc-fusion splicing the end face of MCF. Theoretical analysis has been implemented for this specific multipath MI structure; beam propagation method based simulation and corresponding experiments were performed to investigate the effect of taper and spherical end face on system's performance. Benefiting from the multipath interferences and heterogeneous structure between the center core and surrounding cores of the all-solid MCF, an enhanced temperature sensitivity of 165 pm/°C up to 900°C and a high-quality interference spectrum with 25 dB fringe visibility were achieved. PMID:27607628

  11. Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers

    Directory of Open Access Journals (Sweden)

    Kobelke Jens

    2014-09-01

    Full Text Available All-solid microstructured optical fibers (MOF allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI, or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters (e.g., the RI homogeneity of the cladding are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-µm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.

  12. All-solid birefringent hybrid photonic crystal fiber based interferometric sensor for measurement of strain and temperature

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Zhang, A. Ping;

    2011-01-01

    A highly sensitive fiber-optic interferometric sensor based on an all-solid birefringent hybrid photonic crystal fiber (PCF) is demonstrated for measuring strain and temperature. A strain sensitivity of similar to 23.8 pm/mu epsilon and a thermal sensitivity of similar to-1.12 nm/degrees C...

  13. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion.

    Science.gov (United States)

    Liu, Lai; Cheng, Tonglei; Nagasaka, Kenshiro; Tong, Hoangtuan; Qin, Guanshi; Suzuki, Takenobu; Ohishi, Yasutake

    2016-01-15

    We report the coherent mid-infrared supercontinuum generation in an all-solid chalcogenide microstructured fiber with all-normal dispersion. The chalcogenide microstructured fiber is a four-hole structure with core material of AsSe2 and air holes that are replaced by As2S5 glass rods. Coherent mid-infrared supercontinuum light extended to 3.3 μm is generated in a 2 cm long chalcogenide microstructured fiber pumped by a 2.7 μm laser. PMID:26766722

  14. Temperature Compensated Strain Sensor Based on Cascaded Sagnac Interferometers and All-Solid Birefringent Hybrid Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Wu; He, Sailing;

    2012-01-01

    We demonstrate a temperature compensated strain sensor with two cascaded Sagnac interferometers, that provide strain sensing and temperature compensation, respectively. The Sagnac interferometers use an all-solid hybrid photonic crystal fiber with stress-induced birefringence. The stress......-induced birefringent fiber is known to offer the maximum strain sensitivity, but also to suffer from temperature crosstalk. Our experimental results show that the cascaded Sagnac sensor can suppress the crosstalk to a temperature upto 0.33 με/ºC, while still providing a high strain sensitivity of ~25.6 pm}/με....

  15. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion

    Science.gov (United States)

    Liu, Lai; Cheng, Tonglei; Nagasaka, Kenshiro; Tong, Hoang Tuan; Suzuki, Takenobu; Ohishi, Yasutake

    2016-02-01

    We report the coherent mid-infrared supercontinuum generation in an all-solid chalcogenide microstructured fiber with all-normal dispersion. The chalcogenide microstructured fiber is four-hole structure with core material of AsSe2 and air holes are replaced by As2S5 glass rods. Coherent mid-infrared supercontinuum light is generated in a 2-cm-long chalcogenide microstructured fiber pumped by a 2.7 μm laser. The simulated and experimental results have a good match and the coherence property of supercontinuum light in the chalcogenide microstructured fiber has been studied by using the complex degree of coherence theory. Coherent mid-infrared supercontinuum generation is extended to 3.3 μm in this work.

  16. Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance.

    Science.gov (United States)

    Ma, Wujun; Chen, Shaohua; Yang, Shengyuan; Chen, Wenping; Weng, Wei; Zhu, Meifang

    2016-06-15

    Activated carbon (AC) is the most extensively used electrode material for commercial electric double layer capacitors (EDLC) given its high specific surface area (SSA) and moderate cost. However, AC is primarily used in the forms of powders, which remains a big challenge in developing AC powders into continuous fibers. If AC powders can be processed into fiber, then they may be scaled up for practical applications to supercapacitors (SCs) and satisfy the rapid development of flexible electronics. Herein, we report a bottom-up method to fabricate AC fiber employing graphene oxide (GO) as both dispersant and binder. After chemical reduction, the fiber has high electrical conductivity (185 S m(-1)), high specific surface area (1476.5 m(2) g(-1)), and good mechanical flexibility. An all solid-state flexible SC was constructed using the prepared fiber as electrode, which is free of binder, conducting additive, and additional current collector. The fiber-shaped SC shows high capacitance (27.6 F cm(-3) or 43.8 F g(-1), normalized to the two-electrode volume), superior cyclability (90.4% retention after 10 000 cycles), and good bendability (96.8% retention after bending 1000 times). PMID:27239680

  17. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.

    Science.gov (United States)

    Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2016-07-01

    Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications. PMID:27193636

  18. High sensitivity high temperature sensor based on SMS structure with large-core all-solid bandgap fiber as the multimode section

    Science.gov (United States)

    Franco, Marcos A. R.; Cruz, Alice L. S.; Serrão, Valdir A.; Barbosa, Carmem L.

    2014-05-01

    A fiber optic interferometric device based on a singlemode-multimode-singlemode (SMS) structure is proposed as a high sensitive high temperature sensor. The multimode section (MMF) consists of a large-core all-solid photonic bandgap fiber (AS-PBF) with silica as the background material and germanium-doped silica at the high index regions. The numerical analyses were carried out by beam propagation method. The numerical results indicate a constant high temperature sensitivity of ~-35 pm/°C over a large temperature range from 20oC to 930°C.

  19. Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55µm

    OpenAIRE

    Feng, Xian; Poletti, Francesco; Camerlingo, Angela; Parmigiani, Francesca; Horak, Peter; Petropoulos, Periklis; Loh, Wei H.; Richardson, David J

    2009-01-01

    We report the fabrication of an all-solid highly nonlinear microstructured optical fiber. The structured preform was made by glass extrusion using two types of commercial lead silicate glasses that provide high index-contrast. Effectively single-moded guidance was observed in the fiber at 1.55µm. The effective nonlinearity and the propagation loss at this wavelength were measured to be 120W/km respectively at 1.55µm. These predictions are consistent with the experimentally determined dispersi...

  20. Photonic Bandgap (PBG) Shielding Technology

    Science.gov (United States)

    Bastin, Gary L.

    2007-01-01

    Photonic Bandgap (PBG) shielding technology is a new approach to designing electromagnetic shielding materials for mitigating Electromagnetic Interference (EM!) with small, light-weight shielding materials. It focuses on ground planes of printed wiring boards (PWBs), rather than on components. Modem PSG materials also are emerging based on planar materials, in place of earlier, bulkier, 3-dimensional PBG structures. Planar PBG designs especially show great promise in mitigating and suppressing EMI and crosstalk for aerospace designs, such as needed for NASA's Constellation Program, for returning humans to the moon and for use by our first human visitors traveling to and from Mars. Photonic Bandgap (PBG) materials are also known as artificial dielectrics, meta-materials, and photonic crystals. General PBG materials are fundamentally periodic slow-wave structures in I, 2, or 3 dimensions. By adjusting the choice of structure periodicities in terms of size and recurring structure spacings, multiple scatterings of surface waves can be created that act as a forbidden energy gap (i.e., a range of frequencies) over which nominally-conductive metallic conductors cease to be a conductor and become dielectrics. Equivalently, PBG materials can be regarded as giving rise to forbidden energy gaps in metals without chemical doping, analogous to electron bandgap properties that previously gave rise to the modem semiconductor industry 60 years ago. Electromagnetic waves cannot propagate over bandgap regions that are created with PBG materials, that is, over frequencies for which a bandgap is artificially created through introducing periodic defects

  1. PBG Based High Gain Microstrip Stacked Antenna

    Directory of Open Access Journals (Sweden)

    Babulal Chaudhary

    2013-03-01

    Full Text Available In this paper, authors have proposed the analysis of a rectangular stacked patch antenna operates at the frequency of 2.4 GHz with a photonic band-gap structure (PBG and compared its performances with a conventional patch antenna. Due to the presence of the PBG structure in the dielectric substrate, proposed antenna shows a significant reduction in surface wave levels than a conventional patch antenna. As a result, the gain of the proposed antenna is found to be improved by 3.2 dB

  2. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  3. A Wearable All-Solid Photovoltaic Textile.

    Science.gov (United States)

    Zhang, Nannan; Chen, Jun; Huang, Yi; Guo, Wanwan; Yang, Jin; Du, Jun; Fan, Xing; Tao, Changyuan

    2016-01-13

    A solution is developed to power portable electronics in a wearable manner by fabricating an all-solid photovoltaic textile. In a similar way to plants absorbing solar energy for photosynthesis, humans can wear the as-fabricated photovoltaic textile to harness solar energy for powering small electronic devices.

  4. New construction of hybrid and aperiodic ordered PBG cavity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The band gap of a photonic crystal (PhC) cavity intrinsically avoids HOM problems. In this paper, we present a new PBG structure based on the possible advantage of using hybrid structures and aperiodic lattices. This novel hybrid and aperiodically ordered cavity was designed for apparently higher Q-factor (more than 10300) and achieving large accelerating field gradient. The HOMs in the cavity are able to be absorbed efficiently.

  5. Low index-contrast photonic bandgap fiber for transmission of short pulsed light

    DEFF Research Database (Denmark)

    Riishede, Jesper; Lægsgaard, Jesper; Broeng, Jes;

    2004-01-01

    The use of low-index-contrast photonic bandgap (PBG) fiber for transmission of short pulsed light is discussed. PBG fibers have positive waveguide dispersion at long wavelengths at which conventional index-guiding fibers have negative waveguide dispersion. PBG fibers with low-index contrast can...... be used to obtain fibers with zero dispersion and a large mode area below 800 nm$+3$/. The results show that the PBG fiber is less sensitive to nonlinear effects and allows transmission of considerably larger intensities....

  6. Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in [Faculty of Physical Sciences, Institute of Natural Sciences and Humanities Shri Ramswaroop Memorial University, Lucknow-Deva Road, Uttar Pradesh-225003 (India); Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India); Jain, P. K. [Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India)

    2014-09-15

    The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE{sub 041}-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE{sub 041}-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE{sub 041}-like mode with ∼15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  7. Novel All Solid-state Polymer Electrolytes for Lithium Battery

    Institute of Scientific and Technical Information of China (English)

    Hui Jiang; Shibi Fang

    2005-01-01

    @@ 1Introduction All solid-state polymer electrolytes for lithium battery was proved to be an attractive direction. Compared with prevenient polymer electrolytes all solid-state polymer electrolytes were superiority in more broad electrochemical window, more stable/low interfacial resistance especially when situ-polymerization utilized, excellent mechanical properties and dissepiment free. A lithium secondary battery using all solid-state polymer electrolyte meet the challenge of energy source for both portable electronic devices and electric vehicles (EV) or engine/battery hybrid vehicles (HEV). All solid-state comb-like network polymer electrolytes (CNPE) based on polysiloxane with internal plasticizing chain (IPC) has been designed and synthesized. See Fig. 1.

  8. Absorption Spectra of a Three-Level Atom Embedded in a PBG Reservoir

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; ZHANG Han-Zhuang

    2007-01-01

    We introduce the 'decay rate' terms into the density matrix equations of an atom embedded in a photonic band gap (PSG)reservoir successfully.By utilizing the master equations,the probe absorption spectra and the refractivity properties of a three-level atom in the PBG reservoir are obtained.The interaction between the atom and the PBG reservoir as well as the effects of the quantum interference on the absorption of the atom has also been taken into account.It is interesting that two different types of the anomalous dispersion relations of refractivity are exhibited in one dispersion line.The methodology used here can be applied to theoretical investigation of quantum interference effects of other atomic models embedded in a PBG reservoir.

  9. Design and analysis of planar printed microwave and PBG filters using an FDTD method

    DEFF Research Database (Denmark)

    Tong, M.S.; Lu, Y.L.; Chen, Y.C.;

    2004-01-01

    In this paper, various planar printed microwave and photonic band-gap (PBG) filters have been designed and analyzed by applying the finite difference time domain method, together with an unsplit-anisotropic perfectly matched layer technique as treatments of boundary conditions. The implemented...... solver was first validated by comparing the computed data with those published in literature, and a good agreement was observed between the results. Then, based on the specified design criteria, various microwave and PBG filters were designed and analyzed, in which the theoretical predictions matched...... well with the computed results for the characteristics of the proposed filters....

  10. All solid state pulsed power system for water discharge

    OpenAIRE

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; サクガワ, タカシ; ヤマグチ, タカヒロ; ヤマモト, クニヒロ; キヤン, ツヨシ; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 佐久川, 貴志

    2005-01-01

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges...

  11. Analysis of photonic band-gap (PBG) structures using the FDTD method

    DEFF Research Database (Denmark)

    Tong, M.S.; Cheng, M.; Lu, Y.L.;

    2004-01-01

    In this paper, a number of photonic band-gap (PBG) structures, which are formed by periodic circuit elements printed oil transmission-line circuits, are studied by using a well-known numerical method, the finite-difference time-domain (FDTD) method. The results validate the band-stop filter...

  12. Diode-pumped all-solid-state lasers and applications

    CERN Document Server

    Parsons-Karavassilis, D

    2002-01-01

    This thesis describes research carried out by the within the Physics Department at Imperial College that was aimed at developing novel all-solid-state laser sources and investigating potential applications of this technology. A description of the development, characterisation and application of a microjoule energy level, diode-pumped all-solid-state Cr:LiSGAF femtosecond oscillator and regenerative amplifier system is presented. The femtosecond oscillator was pumped by two commercially available laser diodes and produced an approx 80 MHz pulse train of variable pulse duration with approx 30 mW average output power and a tuning range of over approx 60 nm. This laser oscillator was used to seed a regenerative amplifier, resulting in adjustable repetition rate (single pulse to 20 kHz) approx 1 mu J picosecond pulses. These pulses were compressed to approx 150 fs using a double-pass twin-grating compressor. The amplifier's performance was investigated with respect to two different laser crystals and different pul...

  13. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  14. A New All Solid State Approach to Gaseous Pollutant Detection

    Science.gov (United States)

    Brown, V.; Tamstorf, K.

    1971-01-01

    Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.

  15. Design and simulate on cylindrical conformal microstrip patch antenna with PBG structure%PBG 结构圆柱形微带贴片天线的设计与仿真

    Institute of Scientific and Technical Information of China (English)

    陈志贤

    2016-01-01

    本文利用光子晶体带隙(PBG)结构的特点,将特殊设计的 PBG 结构应用于圆柱形微带贴片天线中。在同轴线馈电的圆柱形微带贴片天线的介质上蚀刻出按一定规律排列的 PBG 结构,并基于 HFSS 对特殊设计的 PGB 结构圆柱形微带贴片天线和普通的圆柱形微带贴片天线进行仿真和优化,仿真结果表明,按照一定规律排列的 PBG 结构可以有效抑制天线表面波的传播,明显提高圆柱形微带贴片天线的带宽和增益,有效改善圆柱形微带贴片天线的辐射方向图,实现天线性能的优化设计。%This paper proposes a new structure named Photonic Band Gap(PBG)for microstrip patch antenna.The new PBG structure is etched on the dielectric plane of a probe-fed microstrip patch antenna and arranged by a certain rule. The cylindrical conformal microstrip patch antenna with PBG structure was simulated by HFSS.The simulation results indicate that using the PBG structure which is arranged by a certain rule on the antenna could suppresse the propagation of the surface wave,significantly improve the cylindrical microstrip patch antenna bandwidth and gain,effectively improve the cylindrical microstrip patch antenna radiation pattern.

  16. PBG 结构圆柱形微带贴片天线的设计与仿真%Design and simulate on cylindrical conformal microstrip patch antenna with PBG structure

    Institute of Scientific and Technical Information of China (English)

    陈志贤

    2016-01-01

    This paper proposes a new structure named Photonic Band Gap(PBG)for microstrip patch antenna.The new PBG structure is etched on the dielectric plane of a probe-fed microstrip patch antenna and arranged by a certain rule. The cylindrical conformal microstrip patch antenna with PBG structure was simulated by HFSS.The simulation results indicate that using the PBG structure which is arranged by a certain rule on the antenna could suppresse the propagation of the surface wave,significantly improve the cylindrical microstrip patch antenna bandwidth and gain,effectively improve the cylindrical microstrip patch antenna radiation pattern.%本文利用光子晶体带隙(PBG)结构的特点,将特殊设计的 PBG 结构应用于圆柱形微带贴片天线中。在同轴线馈电的圆柱形微带贴片天线的介质上蚀刻出按一定规律排列的 PBG 结构,并基于 HFSS 对特殊设计的 PGB 结构圆柱形微带贴片天线和普通的圆柱形微带贴片天线进行仿真和优化,仿真结果表明,按照一定规律排列的 PBG 结构可以有效抑制天线表面波的传播,明显提高圆柱形微带贴片天线的带宽和增益,有效改善圆柱形微带贴片天线的辐射方向图,实现天线性能的优化设计。

  17. Tunable All-Solid-State Local Oscillators to 1900 GHz

    Science.gov (United States)

    Ward, John; Chattopadhyay, Goutam; Maestrini, Alain; Schlecht, Erich; Gill, John; Javadi, Hamid; Pukala, David; Maiwald, Frank; Mehdi, Imran

    2004-01-01

    We present a status report of an ongoing effort to develop robust tunable all-solid-state sources up to 1900 GHz for the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory. GaAs based multi-chip power amplifier modules at W-band are used to drive cascaded chains of multipliers. We have demonstrated performance from chains comprised of four doublers up to 1600 GHz as well as from a x2x3x3 chain to 1900 GHz. Measured peak output power of 23 (micro)W at 1782 GHz and 2.6 (micro)W at 1900 GHz has been achieved when the multipliers are cooled to 120K. The 1900 GHz tripler was pumped with a four anode tripler that produces a peak of 4 mW at 630 GHz when cooled to 120 K. We believe that these sources can now be used to pump hot electron bolometer (HEB) heterodyne mixers.ter (HEB) heterodyne mixers.

  18. RF-components embedded with photonic-band-bap (PBG) and fishnet-metamaterial structures for high frequency accelerator application

    CERN Document Server

    Robak, Sara; Shin, Young-Min

    2015-01-01

    In the development of high efficiency and high gradient RF-accelerators, RF waveguides and cavities have been designed with Photonic Band Gap (PBG) and fishnet- metamaterial structures. The designed structures are comprised of a periodically corrugated channel sandwiched between two photonic crystal slabs with alternating high to low dielectric constants and a multi-cell cavity-resonator designed with fishnet-metamaterial apertures. The structural designs of our interest are intended to only allow an operating-mode or -band within a narrow frequency range to propagate. The simulation analysis shows that trapped non-PBG modes are effectively suppressed down to ~ -14.3 dB/cm, while PBG modes propagated with ~2 dB of insertion loss, corresponding to ~1.14 dB/cm attenuation. The pre- liminary modeling analysis on the fishnet-embedded cavity shows noticeable improvement of Q-factor and field gradient of the operating mode (TM010) compared to those of typical pillbox- or PBG-cavities. Fabrication of the Ka-band PBG...

  19. Five-cell superconducting RF module with a PBG coupler cell: design and cold testing of the copper prototype

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, Sergey Andreyevich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shchegolkov, Dmitry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boulware, Chase [Niowave, Lansing, MI (United States); Grimm, Terry [Niowave, Lansing, MI (United States); Rogacki, Adam [Niowave, Lansing, MI (United States)

    2015-04-29

    We report the design and experimental data for a copper prototype of a superconducting radio-frequency (SRF) accelerator module. The five-cell module has an incorporated photonic band gap (PBG) cell with couplers. The purpose of the PBG cell is to achieve better higher order mode (HOM) damping, which is vital for preserving the quality of high-current electron beams. Better HOM damping raises the current threshold for beam instabilities in novel SRF accelerators. The PBG design also increases the real-estate gradient of the linac because both HOM damping and the fundamental power coupling can be done through the PBG cell instead of on the beam pipe via complicated end assemblies. First, we will discuss the design and accelerating properties of the structure. The five-cell module was optimized to provide good HOM damping while maintaining the same accelerating properties as conventional elliptical-cell modules. We will then discuss the process of tuning the structure to obtain the desired accelerating gradient profile. Finally, we will list measured quality factors for the accelerating mode and the most dangerous HOMs.

  20. Fiber

    Science.gov (United States)

    Diet - fiber; Roughage; Bulk ... Dietary fiber adds bulk to your diet. Because it makes you feel full faster, it can help with ... Elsevier Saunders; 2016:chap 213. National Research Council. ... Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids ( ...

  1. Development of an All Solid High Energy Density Space Rated Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's intends to develop an all-solid 600 Wh/kg, flexible form-factor lithium rechargeable energy device for advanced space power applications. Quallion's...

  2. Polarization splitter based on dual core liquid crystal-filled holey fiber

    Science.gov (United States)

    Wang, Er-Lei; Jiang, Hai-Ming; Xie, Kang; Chen, Chun; Hu, Zhi-Jia

    2016-09-01

    Through filling the liquid crystal into the air holes of a dual-core holey fiber with a simple structure, the transmission mechanism of the fiber is changed from total internal reflection to photonic bandgap (PBG), and a polarization splitter based on the liquid crystal-filled dual-core PBG holey fiber is investigated. The results demonstrate that, by setting appropriate geometrical parameters, the polarization splitter possesses a short length of 890.5 μm, and its wide bandwidth of ˜150 nm almost covers all the S, C, and L communication bands. Besides, it has an excellent electro-interference-resistance property and certain sensitivity to temperature.

  3. Efficient all solid-state continuous-wave yellow-orange light source

    DEFF Research Database (Denmark)

    Janousek, Jiri; Johansson, Sandra; Tidemand-Lichtenberg, Peter;

    2005-01-01

    We present highly efficient sum-frequency generation between two CW IR lasers using periodically poled KTP. The system is based on the 1064 and 1342 nm laser-lines of two Nd:YVO4 lasers. This is an all solid-state light source in the yellow-orange spectral range. The system is optimized in terms...

  4. Theoretical analysis of a biased photonic crystal fiber infiltrated with a negative dielectric anisotropy liquid crystal

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Lægsgaard, Jesper;

    2009-01-01

    We simulate the PBG mode of a biased Photonic Crystal Fiber (PCF) infiltrated with a Liquid Crystal (LC) with negative dielectric anisotropy. We analyse the voltage induced change of the transmission spectrum, dispersion and losses and compare them to the experimental values.......We simulate the PBG mode of a biased Photonic Crystal Fiber (PCF) infiltrated with a Liquid Crystal (LC) with negative dielectric anisotropy. We analyse the voltage induced change of the transmission spectrum, dispersion and losses and compare them to the experimental values....

  5. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda

    2016-05-01

    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  6. Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Yutao; Zhou, Weidong; Xin, Sen; Li, Shuai; Zhu, Jinlong; Lü, Xujie; Cui, Zhiming; Jia, Quanxi; Zhou, Jianshi; Zhao, Yusheng; Goodenough, John B

    2016-08-16

    A fluorine-doped antiperovskite Li-ion conductor Li2 (OH)X (X=Cl, Br) is shown to be a promising candidate for a solid electrolyte in an all-solid-state Li-ion rechargeable battery. Substitution of F(-) for OH(-) transforms orthorhombic Li2 OHCl to a room-temperature cubic phase, which shows electrochemical stability to 9 V versus Li(+) /Li and two orders of magnitude higher Li-ion conductivity than that of orthorhombic Li2 OHCl. An all-solid-state Li/LiFePO4 with F-doped Li2 OHCl as the solid electrolyte showed good cyclability and a high coulombic efficiency over 40 charge/discharge cycles. PMID:27356953

  7. All-solid-state narrow-linewidth 455-nm blue laser based on Ti: sapphire crystal

    Institute of Scientific and Technical Information of China (English)

    Shankui Rong; Xiaolei Zhu; Weibiao Chen

    2009-01-01

    A compact, all-solid-state, narrow-linewidth, pulsed 455-nm blue laser based on Ti:sapphire crystal is developed. Pumped by a 10-Hz, frequency-doubled all-solid-state Nd:YAG laser and injection-seeded by an external cavity laser diode, the narrow-linewidth 910-nm laser with pulse width of 20 ns is obtained from a Tirsapphire laser. 3.43-mJ blue laser can be obtained from the laser system by frequency-doubling with BBO crystal. This research is very useful to determine the roadmap of developing the practical, high power blue laser. This kind of laser will have potential application for underwater communication.

  8. Oxide-ceramic electrolyte layers for all-solid-state lithium batteries

    OpenAIRE

    Reppert, Thorsten; Tsai, Chih-Long; Finsterbusch, Martin; Uhlenbruck, Sven; Guillon, Olivier; Bram, Martin

    2015-01-01

    In the past decade, electricity generated from renewable energy sources, as well as electro mobility have gained much importance in our society. With this readiness to change the current system, an increase of requirements for electric grid and safety aspects of energy storage systems appear. All-solid-state lithium batteries (ASB) have better safety properties due to the non-flammable solid electrolyte than common lithium ion batteries (LIB), which use flammable organic liquid as electrolyte...

  9. An rf system using all-solid-state amplifiers for the JAERI FEL

    Science.gov (United States)

    Sawamura, M.; Ohkubo, M.; Minehara, E.; Nagai, R.; Takao, M.; Kikuzawa, N.; Sugimoto, M.; Suzuki, Y.; Kawarasaki, Y.; Nagatsuka, K.; Sato, K.; Matsumoto, H.; Kashiwagi, A.

    1993-07-01

    The JAERI FEL linac is energized with four kinds of all-solid-state amplifiers having 5, 1.5, 4, and 50 kW of peak power with a 1-2 ms pulse length. Amplitude and phase stabilities of the 50 kW amplifiers are ˜ 1% and ˜1°, respectively. A feed-forward loop circuit is effective when a feedback loop circuit is not able to stabilize the output of rf power.

  10. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanhui [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Ding, Yi [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Shandong Applied Research Center for Gold Technology (Au-SDARC), Yantai 264005 (China)

    2011-09-15

    A sub-micrometer-thick, flexible, all-solid-state supercapacitor is fabricated. Through simultaneous realization of high dispersity of pseudocapacitance materials and quick electrode response, the hybrid nanostructures show enhanced volumetric capacitance and excellent stability, as well as very high power and energy densities. This suggests their potential as next-generation, high-performance energy conversion and storage devices for wearable electronics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. High repetition rate, compact micro-pulse all-solid-state laser

    Institute of Scientific and Technical Information of China (English)

    Yutong Feng; Junqing Meng; Weibiao Chen

    2007-01-01

    A high repetition rate, compact micro-pulse all-solid-state laser is designed. The diffusion bonded crystal of YAG, Nd:YAG, and Cr4+:YAG is taken as a monolithic cavity. The optimized initial transmission,output coupling, and pumping size of Cr4+:YAG are calculated. The experimental results show that the laser satisfies the requirement of a spaceborne laser range finder.

  12. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    OpenAIRE

    Luca Porcarelli; Claudio Gerbaldi; Federico Bella; Jijeesh Ravi Nair

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene o...

  13. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...

  14. Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Larfaillou, S.; Guy-Bouyssou, D.; le Cras, F.; Franger, S.

    2016-07-01

    Constant miniaturization of electronic devices opens the way to the development of thin film microbatteries (TFB). For this type of devices, the use of an all-solid-state thin film technology has many advantages over conventional lithium cells. These microbatteries are thin, bendable and can be produced with a customizable shape for integration in microelectronic devices. Moreover, without liquid electrolyte, they are safer. With the aim to support the industrial production of these TFBs, adequate tools for understanding the electrochemical behavior of the complete microbattery and the identification of their possible failures that can occur have to be developed. In this context, the Electrochemical Impedance Spectroscopy seems to be a good compromise for cells characterization. Widely used for the characterization of liquid electrolyte-based batteries, this technique has been less applied to all solid state batteries, mainly because of the difficulty to work with a two-electrode system. There has been no comprehensive study deeply explaining the impedance evolution during the entire life of a microbattery. In this paper, physical characterizations of individual active materials and aging experiments have been performed in order to undoubtedly assign each EIS contributions, and to propose a more comprehensive electrical model for this family of commercial all-solid-state microbatteries.

  15. Fiber

    Science.gov (United States)

    ... a fiber-rich sandwich with whole-grain bread, peanut butter, and bananas. Use whole-grain spaghetti and other ... cookies and muffins. Top whole-wheat crackers with peanut butter or low-fat cheese. Go easy on the ...

  16. Wet-process Fabrication of Low-cost All-solid Wire-shaped Solar Cells on Manganese-plated Electrodes

    International Nuclear Information System (INIS)

    Highlights: • All-solid wire-shaped flexible solar cells are firstly assembled on low-cost Mn-plated fibers. • Energy efficiency improved by >27% after coating a layer of Mn on various substrates. • The cell is fabricated via wet process under low temperature and mild pH conditions. • Stable flexible solar cells are realized on lightweight and low-cost polymer fiber. - Abstract: All-solid wire-shaped flexible solar cells are assembled for the first time on low-cost Mn-plated wires through wet-process fabrication under low temperature and mild pH conditions. With a price cheap as the steel, metal Mn can be easily plated on almost any substrates, and evidently promote the photovoltaic efficiency of wire-shaped solar cells on various traditional metal wire substrates, such as Fe and Ti, by 27% and 65%, respectively. Flexible solar cell with much lower cost and weight is assembled on Mn-plated polymer substrate, and is still capable of giving better performance than that on Fe or Ti substrate. Both its mechanical and chemical stability are good for future weaving applications. Owing to the wire-type structure, such low-cost metals as Mn, which are traditionally regarded as unsuitable for solar cells, may provide new opportunities for highly efficient solar cells

  17. Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions

    OpenAIRE

    Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei

    2010-01-01

    One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with incr...

  18. Nitrogen dissociation during RF sputtering of Lipon electrolyte for all-solid-states batteries

    DEFF Research Database (Denmark)

    Stamate, Eugen; Christiansen, Ane Sælland; Holtappels, Peter

    2013-01-01

    phosphorus oxynitride (Lipon), that can be compacted with the anode and cathode electrodes in an all-solid-states structure where the nitrogen incorporation is considered one of the key parameters for controlling the ionic conductivity. In this work the nitrogen dissociation during RF sputtering of Lipon......Small size and high power density secondary batteries are desired for a large number of applications based on miniature wireless devices and sensors that need to be compatible with the microelectronic fabrication technology. This fact resulted in the development of solid electrolytes, like lithium...

  19. Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres

    Science.gov (United States)

    Siwicki, Bartłomiej; Kasztelanic, Rafał; Klimczak, Mariusz; Cimek, Jarosław; Pysz, Dariusz; Stępień, Ryszard; Buczyński, Ryszard

    2016-06-01

    The bandwidth of coherent supercontinuum generated in optical fibres is strongly determined by the all-normal dispersion characteristic of the fibre. We investigate all-normal dispersion limitations in all-solid oxide-based soft glass photonic crystal fibres with various relative inclusion sizes and lattice constants. The influence of material dispersion on fibre dispersion characteristics for a selected pair of glasses is also examined. A relation between the material dispersion of the glasses and the fibre dispersion has been described. We determined the parameters which limit the maximum range of flattened all-normal dispersion profile achievable for the considered pair of heavy-metal-oxide soft glasses.

  20. High power, broadly tunable all-solid-state synchronously-pumped lithium triborate optical parametric oscillator

    OpenAIRE

    Butterworth, S.D.; Girard, S; Hanna, D.C.

    1995-01-01

    The performance of a high-power all-solid-state synchronously-pumped optical parametric oscillator (OPO) based on a Brewster-angled lithium triborate (LBO) crystal is reported. The pump scheme includes a diode-pumped amplifier stage to boost the mean output power from an additive-pulse mode-locked Nd:YLF laser by a factor of two. Improvements in the efficiency of an external resonant frequency-doubler have produced a useful output power of 660mW at 523.5µm for pumping the OPO. Temperature-tun...

  1. An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    OpenAIRE

    Eismann, U.; Gerbier, F.; Canalias, C.; Zukauskas, A.; Trénec, G.; Vigué, J.; Chevy, F.; Salomon, C.

    2012-01-01

    International audience We present an all solid-state narrow line\\-width laser source emitting $670\\,\\mathrm{mW}$ output power at $671\\,\\mathrm{nm}$ delivered in a diffraction-limited beam. The \\linebreak source is based on a fre\\-quency-doubled diode-end-\\linebreak pumped ring laser operating on the ${^4F}_{3/2} \\rightarrow {^4I}_{13/2}$ transition in Nd:YVO$_4$. By using periodically-poled po\\-tassium titanyl phosphate (ppKTP) in an external build\\-up cavity, doubling efficiencies of up t...

  2. All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science

    Science.gov (United States)

    Xiayin, Yao; Bingxin, Huang; Jingyun, Yin; Gang, Peng; Zhen, Huang; Chao, Gao; Deng, Liu; Xiaoxiong, Xu

    2016-01-01

    The scientific basis of all-solid-state lithium batteries with inorganic solid electrolytes is reviewed briefly, touching upon solid electrolytes, electrode materials, electrolyte/electrode interface phenomena, fabrication, and evaluation. The challenges and prospects are outlined as well. Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA050906), the National Natural Science Foundation of China (Grant Nos. 51172250 and 51202265), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010201), and Zhejiang Province Key Science and Technology Innovation Team, China (Grant No. 2013PT16).

  3. All solid-state, injection-seeded Ti: sapphire ring laser

    Institute of Scientific and Technical Information of China (English)

    Ting Yu; Weibiao Chen; Jun Zhou; Jinzi Bi; Junwen Cui

    2005-01-01

    @@ In this letter, we present an all solid-state, injection-seeded Ti:sapphire laser. The laser is pumped by a laser diode pumped frequency-doubled Nd:YAG laser, and injection-seeded by an external cavity laser diode with the wavelength between 770 and 780 nm. The single longitude mode and the doubling efficiency of the laser are obtained after injection seeding. The experimental setup and relative results are reported.It is a good candidate laser source for mobile differential absorption lidar (DIAL) system.

  4. An all-solid-state lithium-sulfur battery using two solid electrolytes having different functions

    Science.gov (United States)

    Nagata, Hiroshi; Chikusa, Yasuo

    2016-10-01

    All-solid-state lithium-sulfur batteries are expected to be valuable next generation batteries. To improve the performance of all-solid-state lithium-sulfur batteries, it is essential to raise both the reactivity of sulfur and the ionic conductivity of the positive composite electrode. For achieving this, we investigate a positive composite electrode prepared using P2S5 and a solid electrolyte with a high ionic conductivity. As a result, we have found that the lithium-sulfur cell exhibits a relatively low activation energy together with high ionic conductivity. The positive composite electrode exhibits an extremely high capacity of 1550 mA h g-1 (sulfur) at 1.3 mA cm-2 and 25 °C. Moreover, when using the positive electrode, the energy densities at the cell level (18650) are 540 W h kg-1 and 990 W h L-1, estimated from the equivalent structure of a current lithium-ion battery.

  5. All-Solid-State UV Transmitter Development for Ozone Sensing Applications

    Science.gov (United States)

    Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell Jr.

    2009-01-01

    In this paper, recent progress made in the development of an all-solid-state UV transmitter suitable for ozone sensing applications from space based platforms is discussed. A nonlinear optics based UV setup based on Rotated Image Singly Resonant Twisted Rectangle (RISTRA) optical parametric oscillator (OPO) module was effectively coupled to a diode pumped, single longitudinal mode, conductively cooled, short-pulsed, high-energy Nd:YAG laser operating at 1064 nm with 50 Hz PRF. An estimated 10 mJ/pulse with 10% conversion efficiency at 320 nm has been demonstrated limited only by the pump pulse spatial profile. The current arrangement has the potential for obtaining greater than 200 mJ/pulse. Previously, using a flash-lamp pumped Nd:YAG laser with round, top-hat profile, up to 24% IR-UV conversion efficiency was achieved with the same UV module. Efforts are underway to increase the IR-UV conversion efficiency of the all solid-state setup by modifying the pump laser spatial profile along with incorporating improved OPO crystals.

  6. Characterization of All Solid State Hydrogen Ion Selective Electrode Based on PVC-SR Hybrid Membranes

    Directory of Open Access Journals (Sweden)

    Yoon-Bo Shim

    2003-06-01

    Full Text Available Hydrogen ion selective membranes formulated with 3140 RTV silicone rubber (SR in PVC were studied to extend the life time of solid state ion sensors through improved membrane adhesion. All solid state hydrogen ion selective electrodes were prepared by incorporation of tridodecyl amine (TDDA as an ionophore, potassium tetrakis[3.5-bis(p-chlorophenylborate (KTpClPB as a lipophilic additive, bis(2-ethylhexyladipate (DOA as a plasticizer. Their linear dynamic range was pH 2.0-11.0 and showed the near Nernstian slope of 55.1±0.2 mV/pH (r=0.999. The ifluences from alkali and alkaline earth metal ions were studied for the response of the final ISE membrane composition. Impedance spectroscopic data showed that the resistance was increased by increasing SR content in PVC. Brewster Angle Microscopy (BAM image showed clear differences according to the SR compositions in PVC. Life time of the all solid state membrane electrode was extended to about 2 months by preparing the membrane with PVC and SR. The standard reference material from NIST (2181 HEPES Free acid and 2182 NaHEPESate was tested for the ISE and it gave good result.

  7. All Solid-State Lithium Metal Batteries Using Cross-linked Polymer Electrolytes

    Science.gov (United States)

    Pan, Qiwei; Li, Christopher; Soft Materials Team

    Nowadays, to prepare all solid-state lithium metal batteries with high rate capability and stability using solid polymer electrolytes (SPEs) is still a grand challenge because of the interfaces between the SPE and the electrodes. In this presentation, we report a series of hybrid SPEs with controlled network structures by using POSS as cross-linker. These hybrid network SPEs show promising ionic conductivity, mechanical properties, and lithium dendrite growth resistance. All solid-state LiFePO4/Li batteries were also prepared using these SPEs as the electrolytes to study the effect of conductivity and mechanical properties of the SPEs on the performance of the batteries. At 90 °C, the prepared cells show high rate capability and stability. Capacity up to 160 mAh/g can be obtained at a C/2 rate during the galvanostatic cycling. Capacity retention of the cells is higher than 80% after 250 cycles. Battery performance at 60 °C and decay mechanism of the batteries will also be discussed.

  8. Design and characterization of novel all-solid-state potentiometric sensor array dedicated to physiological measurements.

    Science.gov (United States)

    Toczyłowska-Mamińska, Renata; Kloch, Monika; Zawistowska-Deniziak, Anna; Bala, Agnieszka

    2016-10-01

    A novel construction of all-solid-state potentiometric sensor array designed for physiological measurements has been presented. The planar construction and elimination of liquid phase creates broad opportunities for the modifications in the sensing part of the sensor. The designed construction is based on all-solid-state ion-selective electrodes integrated with the ionic-liquid based reference electrode. Work parameters of the sensor arrays were characterized. It has been shown that presented sensor design indicates high sensitivity (55.2±1mV/dec, 56.3±2mV/dec, 58.4±1mV/dec and 53.5±1mV/pH for sodium-, potassium-, chloride- and pH-selective electrodes, respectively in 10(-5)-10(-1.5)M range of primary ions), low response time (t95 did not exceed 10s), high potential stability (potential drift in 28-h measurement was ca. ±2mV) and potential repeatability ca. ±1mV. The system was successfully applied to the simultaneous determination of K(+), Cl(-), Na(+) and pH in the model physiological solution and for the ion flux studies in human colon epithelium Caco-2 cell line as well.

  9. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    Science.gov (United States)

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm-1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

  10. All-solid-state supercapacitors on silicon using graphene from silicon carbide

    Science.gov (United States)

    Wang, Bei; Ahmed, Mohsin; Wood, Barry; Iacopi, Francesca

    2016-05-01

    Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitance behavior with a specific area capacitance of up to 174 μF cm-2 with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.

  11. 1047-nm all-solid-state laser based on Nd: LuLF

    Institute of Scientific and Technical Information of China (English)

    Rui Li; Ting Yu; Lianhan Zhang; Weibiao Chen; Yin Hang

    2011-01-01

    @@ A compact all-solid-state continuous-wave (CW) laser at 1047 nm is developed based on Nd:LuLF, which is grown through the Czochralski technique. From the laser system, 1.3-W laser can be obtained, which corresponds to the slope efficiencies of 20.1% and 49.5% with respect to the incident and absorbed pump powers, respectively. To the best of our knowledge, this is the highest power level achieved at 1047 nm based on the Nd:LuLF crystal.%A compact all-solid-state continuous-wave (CW) laser at 1047 nm is developed based on Nd:LuLF, which is grown through the Czochralski technique. From the laser system, 1.3-W laser can be obtained, which corresponds to the slope efficiencies of 20.1% and 49.5% with respect to the incident and absorbed pump powers, respectively. To the best of our knowledge, this is the highest power level achieved at 1047 nm based on the Nd:LuLF crystal.

  12. All-solid state flexible supercapacitors based on graphene/polymer composites

    International Nuclear Information System (INIS)

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated

  13. All-solid state flexible supercapacitors based on graphene/polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Won; Choi, Bong Gill, E-mail: bgchoi@kangwon.ac.kr

    2015-06-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated.

  14. Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, Peter John

    2009-01-01

    of obtaining pedestal-free output pulses. Particular emphasis is placed on the influence of the air pressure in the HC-PBG fiber. It is found that a reduction in air pressure enables an increase in the fraction of power going into the most redshifted soliton and also improves the quality of the filtered pulse...

  15. Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches.

    Science.gov (United States)

    Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li

    2014-09-01

    A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ~40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed. PMID:25273719

  16. Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches

    Energy Technology Data Exchange (ETDEWEB)

    Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang 621900 (China)

    2014-09-15

    A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ∼40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed.

  17. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  18. High efficiency single frequency 355 nm all-solid-state UV laser

    Science.gov (United States)

    Xie, Xiaobing; Wei, Daikang; Ma, Xiuhua; Li, Shiguang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao

    2016-05-01

    A novel conductively cooled high energy single-frequency 355 nm all-solid-state UV laser is presented based on sum-frequency mixing technique. In this system, a pulsed seeder laser at 1064 nm wavelength, modulated by an AOM, is directly amplified by the cascaded multi-stage hybrid laser amplifiers, and two LBO crystals are used for the SHG and SFG, finally a maximum UV pulse energy of 226 mJ at 355 nm wavelength is achieved with frequency-tripled conversion efficiency as high as 55%, the pulse width is around 12.2 ns at the repetition frequency of 30 Hz. The beam quality factor M 2 of the output UV laser is measured to be 2.54 and 2.98 respectively in two orthogonal directions.

  19. All-Solid-State Multi-wavelength Laser System from 208 to 830 nm

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shang-Hong; CHEN Guo-Fu; ZHAO Wei; WANG Yi-Shan; YU Lian-Jun

    2001-01-01

    Four-wavelength lasers from the near-infrared to deep-ultraviolet range, 532, 830, 415 and 208nm, have been developed in one all-solid-state laser system. The laser system is pumped by a diode-Q-YLF laser at 532nm,a Ti:sapphire laser, and the nonlinear second-harmonic-generation crystals LBO and BBO are used to generate different wavelengths. Maximum average powers (repetition rate 1 kHz) of 1.1 W at 830nm, 380m W at 415nm and 39mW at 208nm are obtained when the pumping power is 3.6 W. The main characteristics of this system are presented.

  20. An All Solid-State Pulsed Power Generator for Plasma Immersion Ion Implantation (PⅢ)

    Institute of Scientific and Technical Information of China (English)

    LIU Kefu; QIU Jian; WU Yifan

    2009-01-01

    An all solid-state pulsed power generator for plasma immersion ion implantation (PⅢ) is described. The pulsed power system is based on a Marx circuit configuration and semi-conductor switches, which have many advantages in adjustable repetition frequency, pulse width modulation and long serving life compared with the conventional circuit category, tube-based technologies such as gridded vacuum tubes, thyratrons, pulse forming networks and transformers.The operation of PⅢ with pulse repetition frequencies up to 500 Hz has been achieved at a pulse voltage amplitude from 2 kV to 60 kV, with an adjustable pulse duration from 1 μs to 100 μs.The proposed system and its performance, as used to drive a plasma ion implantation chamber,axe described in detail on the basis of the experimental results.

  1. The research on the micro-processing-used all-solid-state picosecond laser

    Science.gov (United States)

    Bai, Zhen-xu; Ai, Qing-kang; Duan, Jin-peng; Chen, Meng; Li, Gang

    2012-04-01

    A micro processing used LD end-pumped Nd:YVO4 all solid-state picosecond pulse laser was demonstrated under the semiconductor saturable absorption mirror(SESAM) mode-locking technology and regeneration amplifier technology, by using BBO crystal as electro-optic crystal and diode-side-pumped Nd:YAG. 1064nm laser was obtained with 1.47mJ single pulse energy, 15ps pulse width at 1 kHz repetition rate and the pulse energy fluctuation was less than 0.6% in 3 hours operation. Finally, through the galvanometric we got the beam focused, realizing the steel plate processing which thickness was 0.5mm and the aperture radius was 25.5μm.

  2. An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    CERN Document Server

    Eismann, Ulrich; Canalias, Carlota; Zukauskas, Andrius; Trénec, Gérard; Vigué, Jacques; Chevy, Frédéric; Salomon, Christophe

    2011-01-01

    We present an all solid-state narrow line-width laser source emitting $670\\,\\mathrm{mW}$ output power at $671\\,\\mathrm{nm}$ delivered in a diffraction-limited beam. The source is based on a frequency-doubled diode-end-pumped ring laser operating on the ${^4F}_{3/2} \\rightarrow {^4I}_{13/2}$ transition in Nd:YVO$_4$. By using periodically-poled potassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over $100\\,\\rm GHz$ is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented.

  3. Grating solitons near the photonic bandgap of a fiber Bragg grating

    Energy Technology Data Exchange (ETDEWEB)

    Senthilnathan, K. [Photonics Research Center and Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong (China); Ramesh Babu, P. [Department of Physics, Vellore Institute of Technology, Deemed University, Vellore 632014 (India); Porsezian, K. [Department of Physics, Pondicherry University, Pondicherry 605014 (India)]. E-mail: porsz@hotmail.com; Santhanam, V. [Department of Physics, Presidency College, University of Madras, Chennai 600005 (India); Gnanasekaran, S. [Department of Physics, Anna University, Chennai 600025 (India)

    2007-07-15

    In this paper, we consider the nonlinear pulse propagation through a fiber Bragg grating (FBG) structure wherein the nonlinearity includes both cubic and quintic effects. We study theoretically the formation of bright grating solitons in such a FBG when the carrier frequency of a nonlinear laser pulse is detuned out of the proper edge of the photonic bandgap (PBG). By using multiple scale analysis, we investigate the generation of the bright soliton near the PBG with the higher order linear and nonlinear effects. We also study the impact of quintic nonlinearity on the dispersion curves by deriving the nonlinear dispersion relation from the governing equations.

  4. Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions

    Directory of Open Access Journals (Sweden)

    Hongwei Deng

    2010-11-01

    Full Text Available One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M, and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  5. One-step spray processing of high power all-solid-state supercapacitors

    Science.gov (United States)

    Huang, Chun; Grant, Patrick S.

    2013-08-01

    Aqueous suspensions of multi-wall carbon nanotubes (MWNTs) in dilute H2SO4 were sprayed onto both sides of a Nafion membrane and dried to fabricate flexible solid-state supercapacitors. A single cell with MWNT-only electrodes had a capacitance of 57 F g-1 per electrode at 2 mV s-1 and 44 F g-1 at 150 mV s-1 but with low H+ mobility. Cells with MWNT + ionomer hybrid electrodes showed higher H+ mobility, and the electric double layer (EDL) capacitance increased to 145 F g-1 at 2 mV s-1 and 91 F g-1 at 150 mV s-1. The energy and power densities of one electrode charged to 1 V at 1 A g-1 were 12.9 Wh kg-1 and 3.3 kW kg-1 respectively. Three solid-state supercapacitor cells connected in series charged to 3 V at 1 and 2 A g-1 provided a device power density of 8.9 kW kg-1 at 1 A g-1 and 9.4 kW kg-1 at 2 A g-1, the highest for all-solid-state EDL supercapacitors.

  6. Fabrication and performance of all-solid-state chloride sensors in synthetic concrete pore solutions.

    Science.gov (United States)

    Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei

    2010-01-01

    One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments. PMID:22163467

  7. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes

    Science.gov (United States)

    Du, Fuming; Zhao, Ning; Li, Yiqiu; Chen, Cheng; Liu, Ziwei; Guo, Xiangxin

    2015-12-01

    All solid-state lithium batteries are constructed by using highly conducting Ta-doped Li7La3Zr2O12 (LLZTO) as the solid electrolytes as well as the supports, coated with composite cathodes consisting of poly(vinylidene fluoride) (PVdF):LiTFSI, Ketjen Black, and carbon-coated LiFePO4 on one side and attached with Li anode on the other side. At 60 °C, the batteries show the first discharge capacity of 150 mAh g-1 at 0.05 C and 93% capacity retention after 100 cycles. As the current density increases from 0.05 C to 1 C, the specific capacity decreases from 150 mAh g-1 to 100 mAh g-1. Further elevated temperature up to 100 °C leads to further improved performance, i.e. 126 mAh g-1 at 1 C and 99% capacity retention after 100 cycles. This good performance can be attributed to the highly conducting ceramic electrolytes, the optimum electronic and ionic conducting networks in the composite cathodes, and closely contacted cathode/LLZTO interface. These results indicate that the present strategy is promising for development of high-performance solid-state Li-ion batteries operated at medium temperature.

  8. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes

    International Nuclear Information System (INIS)

    We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm−2 for a scan rate of 0.1 V s−1 and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s−1. Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices. (paper)

  9. Superior Electrical Conductivity in Hydrogenated Layered Ternary Chalcogenide Nanosheets for Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Hu, Xin; Shao, Wei; Hang, Xudong; Zhang, Xiaodong; Zhu, Wenguang; Xie, Yi

    2016-05-01

    As the properties of ultrathin two-dimensional (2D) crystals are strongly related to their electronic structures, more and more attempts were carried out to tune their electronic structures to meet the high standards for the construction of next-generation smart electronics. Herein, for the first time, we show that the conductive nature of layered ternary chalcogenide with formula of Cu2 WS4 can be switched from semiconducting to metallic by hydrogen incorporation, accompanied by a high increase in electrical conductivity. In detail, the room-temperature electrical conductivity of hydrogenated-Cu2 WS4 nanosheet film was almost 10(10) times higher than that of pristine bulk sample with a value of about 2.9×10(4)  S m(-1) , which is among the best values for conductive 2D nanosheets. In addition, the metallicity in the hydrogenated-Cu2 WS4 is robust and can be retained under high-temperature treatment. The fabricated all-solid-state flexible supercapacitor based on the hydrogenated-Cu2 WS4 nanosheet film shows promising electrochemical performances with capacitance of 583.3 F cm(-3) at a current density of 0.31 A cm(-3) . This work not only offers a prototype material for the study of electronic structure regulation in 2D crystals, but also paves the way in searching for highly conductive electrodes.

  10. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview

    International Nuclear Information System (INIS)

    Polymer electrolytes are promising materials for electrochemical device applications, namely, high energy density rechargeable batteries, fuel cells, supercapacitors, electrochromic displays, etc. The area of polymer electrolytes has gone through various developmental stages, i.e. from dry solid polymer electrolyte (SPE) systems to plasticized, gels, rubbery to micro/nano-composite polymer electrolytes. The polymer gel electrolytes, incorporating organic solvents, exhibit room temperature conductivity as high as ∼10-3 S cm-1, while dry SPEs still suffer from poor ionic conductivity lower than 10-5 S cm-1. Several approaches have been adopted to enhance the room temperature conductivity in the vicinity of 10-4 S cm-1 as well as to improve the mechanical stability and interfacial activity of SPEs. In this review, the criteria of an ideal polymer electrolyte for electrochemical device applications have been discussed in brief along with presenting an overall glimpse of the progress made in polymer electrolyte materials designing, their broad classification and the recent advancements made in this branch of materials science. The characteristic advantages of employing polymer electrolyte membranes in all-solid-state battery applications have also been discussed. (topical review)

  11. Superior Electrical Conductivity in Hydrogenated Layered Ternary Chalcogenide Nanosheets for Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Hu, Xin; Shao, Wei; Hang, Xudong; Zhang, Xiaodong; Zhu, Wenguang; Xie, Yi

    2016-05-01

    As the properties of ultrathin two-dimensional (2D) crystals are strongly related to their electronic structures, more and more attempts were carried out to tune their electronic structures to meet the high standards for the construction of next-generation smart electronics. Herein, for the first time, we show that the conductive nature of layered ternary chalcogenide with formula of Cu2 WS4 can be switched from semiconducting to metallic by hydrogen incorporation, accompanied by a high increase in electrical conductivity. In detail, the room-temperature electrical conductivity of hydrogenated-Cu2 WS4 nanosheet film was almost 10(10) times higher than that of pristine bulk sample with a value of about 2.9×10(4)  S m(-1) , which is among the best values for conductive 2D nanosheets. In addition, the metallicity in the hydrogenated-Cu2 WS4 is robust and can be retained under high-temperature treatment. The fabricated all-solid-state flexible supercapacitor based on the hydrogenated-Cu2 WS4 nanosheet film shows promising electrochemical performances with capacitance of 583.3 F cm(-3) at a current density of 0.31 A cm(-3) . This work not only offers a prototype material for the study of electronic structure regulation in 2D crystals, but also paves the way in searching for highly conductive electrodes. PMID:27060363

  12. All-solid-state nitrate-selective electrode and its application in drinking water

    International Nuclear Information System (INIS)

    An all-solid-state nitrate-selective electrode with the implementation of graphene as the ion-to-electron transducer was reported. The charge-transfer process was examined by electrochemical impedance spectroscope and the hydrophobic nature of the graphene film was characterized via the potentiometric water layer test. The analytical performance of the nitrate-selective electrode was investigated by the determination of nitrate in drinking water. The obtained results showed that graphene can significantly facilitate the ion-to-electron transducer and prevent the formation of water layer between the ion-selective membrane and the graphene layer. The fabricated nitrate-selective electrode displayed a Nernstian slope of 57.9 mV per decade of nitrate concentration, a low detection limit of 3 × 10−5 M and a rapid response time (within 10 s) for concentration upon 10−4 M. The determination of real samples indicated that the constructed nitrate-selective electrode was capable of monitoring nitrate in drinking water, providing a handy alternative for routine analysis.

  13. A miniature all-solid-state calcium electrode applied to in situ seawater measurement

    Science.gov (United States)

    Xu, Hui; Wang, You; Luo, Zhiyuan; Pan, Yiwen

    2013-12-01

    An all-solid-state miniature calcium ion selective electrode (ISE) based on poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT(PSS)) for continuous in situ measurement in seawater was studied. The electrode substrate was a platinum (Pt) wire of 0.5 mm diameter and PEDOT(PSS) was electropolymerized on one end of the Pt wire to act as the solid contact of this calcium ISE. The PEDOT(PSS) layer was covered with a calcium-selective poly(vinyl chloride) membrane, which contained ETH129 as calcium ionophore, potassium tetrakis-(p-chlorophenyl)borate as lipophilic anion and bis(2-ethylhexyl) sebacate as the plasticizer. Experiments using electrochemical impedance spectroscopy and reversed chronopotentiometry illustrated that electropolymerized PEDOT(PSS) decreased the resistance and improved the stability of the electrode. The sensors can work stably in the calcium ion concentration range of 10-6-10-1 mol L-1 with the slope of 27.7 mV/decade. Also Na+, K+ and Mg2+ can hardly interfere with the performance of the electrode. This electrode was applied to measure the calcium ion concentration of seawater samples. The experimental data showed that the electrode can resist the corrosion of seawater and its reproducibility was good (SD < 0.1 mM kg-1). The lifetime of such an electrode was at least six months. Because of the wire-shape and the small size of such a liquid junction free calcium electrode, it is pressure-resistant and easy to package and seal, therefore it is suitable for use in underwater equipment for in situ seawater measurement.

  14. All-Solid-State Iodide Selective Electrode for Iodimetry of Iodized Salts and Vitamin C

    Directory of Open Access Journals (Sweden)

    TIRUWORK MEQUANINT

    2012-12-01

    Full Text Available A laboratory-made all-solid state iodide selective electrode, with Ag2S-AgI coated on a graphite rod recovered from dry cell battery, was prepared according to previous procedures. The electrode’s linear response to iodide was in the concentration range of 10-6 M to 10-1 M with a slope of 56.85 mV/decade and a detection limit of 6×10-7M. Iodate recovery test for laboratory formulated iodate-iodized salt was found to be 98.6 % with a standard deviation of 1.14%. The titratability of the iodized salt solution was at least 10-200 ppm potassium iodate (6-120 ppm iodine, exhibiting distinct endpoints in the range wider than the ones set in regulatory standards and reflecting that QC monitoring in production and stability decline of iodine content upon storage can be performed with the electrode method. On the basis this potentiometric titration, the application of the laboratory-made iodide electrode (vs. a saturated calomel reference electrode was extended to the determination of iodine in commercial iodized salts. In all the iodine assays, the iodate-iodized salt was initially treated with acid and an excess of iodide before titration against Na2S2O3 solution. The iodine content in table salts iodized with iodide was determined by direct potentiometry. The electrode was further used for vitamin C (ascorbic acid determinations in pharmaceutical tablets and orange juice by back titrating excess I3- against standard Na2S2O3 in acidic media. The overall outcome is that the iodide ISE can be used as sharp endpoint indicator for these titrimetric reactions in place of the well known official, but visually monitored, starch- triodide end-point reaction detection.

  15. PBG urine test

    Science.gov (United States)

    Porphobilinogen test ... temporarily stop taking medicines that may affect the test results. Be sure to tell your provider about ... This test involves only normal urination, and there is no discomfort.

  16. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging

    NARCIS (Netherlands)

    Zhao, Q.; Schelen, B.; Schouten, R., et al.

    2012-01-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device des

  17. Ultra-wide bandwidth wavelength selective couplers based on the all solid multi-core Ge-doped fibre

    Science.gov (United States)

    Li, X.; Sun, B.; Yu, Y.

    2014-09-01

    A novel wavelength selective coupler based on the all solid nine-core Ge-doped fibre has been proposed. The wavelength selective coupler is based on the phenomenon of a multi-core coupling. All the cores are made of Ge-doped silica and the index of central core is larger than the outer core. At the fixed fibre length, the different wavelength can be selected. The performances of coupling and propagation characteristics have been numerically investigated by using a full beam propagation method (BPM). Simulation results show that the all solid nine-core Ge-doped fibre can achieve simultaneous shorter coupler length and wideband filtering characteristics. The 0.763 mm and 0.745 mm wavelength selective coupler are proposed to achieve different wavelength division and the bandwidth is up to the 400 nm, and 300 nm, respectively.

  18. Radiation risk models for all solid cancers other than those types of cancer requiring individual assessments after a nuclear accident.

    Science.gov (United States)

    Walsh, Linda; Zhang, Wei

    2016-03-01

    In the assessment of health risks after nuclear accidents, some health consequences require special attention. For example, in their 2013 report on health risk assessment after the Fukushima nuclear accident, the World Health Organisation (WHO) panel of experts considered risks of breast cancer, thyroid cancer and leukaemia. For these specific cancer types, use was made of already published excess relative risk (ERR) and excess absolute risk (EAR) models for radiation-related cancer incidence fitted to the epidemiological data from the Japanese A-bomb Life Span Study (LSS). However, it was also considered important to assess all other types of solid cancer together and the WHO, in their above-mentioned report, stated "No model to calculate the risk for all other solid cancer excluding breast and thyroid cancer risks is available from the LSS data". Applying the LSS models for all solid cancers along with the models for the specific sites means that some cancers have an overlap in the risk evaluations. Thus, calculating the total solid cancer risk plus the breast cancer risk plus the thyroid cancer risk can overestimate the total risk by several per cent. Therefore, the purpose of this paper was to publish the required models for all other solid cancers, i.e. all solid cancers other than those types of cancer requiring special attention after a nuclear accident. The new models presented here have been fitted to the same LSS data set from which the risks provided by the WHO were derived. Although it is known already that the EAR and ERR effect modifications by sex are statistically significant for the outcome "all solid cancer", it is shown here that sex modification is not statistically significant for the outcome "all solid cancer other than thyroid and breast cancer". It is also shown here that the sex-averaged solid cancer risks with and without the sex modification are very similar once breast and thyroid cancers are factored out. Some other notable model

  19. Radiation risk models for all solid cancers other than those types of cancer requiring individual assessments after a nuclear accident.

    Science.gov (United States)

    Walsh, Linda; Zhang, Wei

    2016-03-01

    In the assessment of health risks after nuclear accidents, some health consequences require special attention. For example, in their 2013 report on health risk assessment after the Fukushima nuclear accident, the World Health Organisation (WHO) panel of experts considered risks of breast cancer, thyroid cancer and leukaemia. For these specific cancer types, use was made of already published excess relative risk (ERR) and excess absolute risk (EAR) models for radiation-related cancer incidence fitted to the epidemiological data from the Japanese A-bomb Life Span Study (LSS). However, it was also considered important to assess all other types of solid cancer together and the WHO, in their above-mentioned report, stated "No model to calculate the risk for all other solid cancer excluding breast and thyroid cancer risks is available from the LSS data". Applying the LSS models for all solid cancers along with the models for the specific sites means that some cancers have an overlap in the risk evaluations. Thus, calculating the total solid cancer risk plus the breast cancer risk plus the thyroid cancer risk can overestimate the total risk by several per cent. Therefore, the purpose of this paper was to publish the required models for all other solid cancers, i.e. all solid cancers other than those types of cancer requiring special attention after a nuclear accident. The new models presented here have been fitted to the same LSS data set from which the risks provided by the WHO were derived. Although it is known already that the EAR and ERR effect modifications by sex are statistically significant for the outcome "all solid cancer", it is shown here that sex modification is not statistically significant for the outcome "all solid cancer other than thyroid and breast cancer". It is also shown here that the sex-averaged solid cancer risks with and without the sex modification are very similar once breast and thyroid cancers are factored out. Some other notable model

  20. Investigations of a high power all-solid-state synchronously-pumped lithium triborate optical parametric oscillator

    OpenAIRE

    Butterworth, Stuart David

    1997-01-01

    The work presented in this thesis describes the operation of a high power all-solid-state synchronously pumped optical parametric oscillator based on a Brewster-angled lithium triborate crystal. The OPO is pumped by a resonant frequency doubled, amplified, diode-pumped mode-locked laser. Performance characteristics of the individual "modules" in the overall system are presented. The work describes the production of 2.0 psec pulses from a diode-pumped Nd:YLF laser using the passive mode-lo...

  1. All-Solid-State Textile Batteries Made from Nano-Emulsion Conducting Polymer Inks for Wearable Electronics

    OpenAIRE

    Tapani Ryhänen; Darryl Cotton; Di Wei

    2012-01-01

    A rollable and all-solid-state textile lithium battery based on fabric matrix and polymer electrolyte that allows flexibility and fast-charging capability is reported. When immerged into poly(3,4-ethylenedioxythiophene) (PEDOT) nano-emulsion inks, an insulating fabric is converted into a conductive battery electrode for a fully solid state lithium battery with the highest specific energy capacity of 68 mAh/g. This is superior to most of the solid-state conducting polymer primary and/or second...

  2. Fracture Toughness of Carbon Fiber Composites Containing Various Fiber Sizings and a Puncture Self-Healing Thermoplastic Matrix

    Science.gov (United States)

    Cano, Roberto J.; Grimsley, Brian W.; Ratcliffe, James G.; Gordon, Keith L.; Smith, Joseph G.; Siochi, Emilie J.

    2015-01-01

    Ongoing efforts at NASA Langley Research Center (LaRC) have resulted in the identification of several commercially available thermoplastic resin systems which self-heal after ballistic impact and through penetration. One of these resins, polybutylene graft copolymer (PBg), was selected as a matrix for processing with unsized carbon fibers to fabricate reinforced composites for further evaluation. During process development, data from thermo-physical analyses was utilized to determine a processing cycle to fabricate laminate panels, which were analyzed by photo microscopy and acid digestion. The process cycle was further optimized based on these results to fabricate panels for mechanical property characterization. The results of the processing development effort of this composite material, as well as the results of the mechanical property characterization, indicated that bonding between the fiber and PBg was not adequate. Therefore, three sizings were investigated in this work to assess their potential to improve fiber/matrix bonding compared to previously tested unsized IM7 fiber. Unidirectional prepreg was made at NASA LaRC from three sized carbon fibers and utilized to fabricate test coupons that were tested in double cantilever beam configurations to determine GIc fracture toughness.

  3. High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride

    Science.gov (United States)

    Song, Seung-Wan; Lee, Ki-Chang; Park, Ho-Young

    2016-10-01

    Rapidly growing interest and demand for wearable electronics require the development of flexible and lightweight all-solid-state batteries as power sources that guarantee high performance and safety with the absence of the risk of fire or explosion that can occur with traditional liquid electrolyte systems. Herein, we successfully fabricate new flexible all-solid-state microbatteries integrating a solid electrolyte film of lithium boron oxynitride (LiBON) on a flexible substrate using sophisticated thin-film fabrication technology. The new microbattery of Li/LiBON/LiCoO2 exhibits excellent mechanical integrity even under severe bending and twisting test conditions, enabling the realization of flexible microbatteries. The microbatteries demonstrate superior electrochemical cycling stability relative to conventional batteries, delivering an outstanding capacity retention of 90% on the 1000th cycle. Furthermore, operation at various temperatures from -10 °C to +60 °C and fast charging within 3-6 min are achieved. With various types of flexible substrates, the microbatteries can provide diverse opportunities for flexible and wearable electronics.

  4. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    International Nuclear Information System (INIS)

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10−8 S cm−1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10−8 S cm−1 at 26 °C (299 K). (paper)

  5. Recent progress in all-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingyao, E-mail: wangqingyao0532@163.com [Ludong University, School of Chemistry and Materials Science (China); Chen, Chao; Liu, Wei [Tongji University, School of Materials Science and Engineering (China); Gao, Shanmin [Ludong University, School of Chemistry and Materials Science (China); Yang, Xiuchun, E-mail: yangxc@tongji.edu.cn [Tongji University, School of Materials Science and Engineering (China)

    2016-01-15

    All-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells have been drawing great attention to solar energy conversion, which break through restrictions in traditional solar cells, such as the high recombination at interfaces of porous TiO{sub 2} films/sensitizers/hole conductors/counter electrodes, instability of dyes, and leakage of solution electrolyte, and so the novel solar cells exhibit promising applications in the future. In this Minireview article, the assembling of solar cells including the preparation of TiO{sub 2} nanotube array photoanodes, quantum dot preparation and sensitization on photoanodes, filling of hole conductors in TiO{sub 2} nanotubes, and selection of counter electrodes are overviewed, and the development course of all-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells in recent years are summarized in detail. Moreover, the influences of TiO{sub 2} nanotube array photoanodes, quantum dots, solid electrolyte, and counter electrodes on photon-to-current efficiencies of solar cells are summarized. In addition, current problems of solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells are analyzed, and the corresponding improvements, such as multisensitizers and passivation layers, are proposed to improve the photoelectric conversion efficiency. Finally, this Minireview provides a perspective for the future development of this novel solar cell.

  6. High-energy all-solid-state sodium beacon laser with line width of 0.6 GHz

    Science.gov (United States)

    Lu, Yan-Hua; Xie, Gang; Zhang, Lei; Fan, Guo-Bin; Pang, Yu; Li, Nan; Wei, Bin; Gao, Song-Xin; Zhang, Wei; Tang, Chun

    2015-02-01

    A high-energy all-solid-state sodium beacon laser at 589 nm with a repetition rate of 50 Hz is introduced, which is based on sum frequency mixing between a 1,064 nm laser and a 1,319 nm laser. The 1,064 nm laser, which features an external modulated CW seed laser and several stages of amplifiers, can provide pulse energy of 740 mJ with ultra-narrow line width (~17 kHz) and superior stability. The 1,319 nm laser can deliver pulse energy of 580 mJ with a narrow line width of 0.6 GHz. By sum frequency mixing in a LBO crystal, pulse energy of 380 mJ is achieved at 589 nm with a conversion efficiency of 29 %. By controlling the center wavelength of 1,064 nm laser, the target beam's central wavelength is locked to be 589.1592 nm with a line width of 0.6 GHz, which is dominated mainly by the 1,319 nm laser. The beam quality factor is measured to be M 2 = 1.6. The pulse duration is measured to be 140 μs in full-width at half-maximum (FWHM). To the best of our knowledge, this represents the highest pulse energy for all-solid-state sodium beacon laser ever reported.

  7. Recent progress in all-solid-state quantum dot-sensitized TiO2 nanotube array solar cells

    International Nuclear Information System (INIS)

    All-solid-state quantum dot-sensitized TiO2 nanotube array solar cells have been drawing great attention to solar energy conversion, which break through restrictions in traditional solar cells, such as the high recombination at interfaces of porous TiO2 films/sensitizers/hole conductors/counter electrodes, instability of dyes, and leakage of solution electrolyte, and so the novel solar cells exhibit promising applications in the future. In this Minireview article, the assembling of solar cells including the preparation of TiO2 nanotube array photoanodes, quantum dot preparation and sensitization on photoanodes, filling of hole conductors in TiO2 nanotubes, and selection of counter electrodes are overviewed, and the development course of all-solid-state quantum dot-sensitized TiO2 nanotube array solar cells in recent years are summarized in detail. Moreover, the influences of TiO2 nanotube array photoanodes, quantum dots, solid electrolyte, and counter electrodes on photon-to-current efficiencies of solar cells are summarized. In addition, current problems of solid-state quantum dot-sensitized TiO2 nanotube array solar cells are analyzed, and the corresponding improvements, such as multisensitizers and passivation layers, are proposed to improve the photoelectric conversion efficiency. Finally, this Minireview provides a perspective for the future development of this novel solar cell

  8. Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids.

    Science.gov (United States)

    Pniewski, Jacek; Stefaniuk, Tomasz; Van, Hieu Le; Long, Van Cao; Van, Lanh Chu; Kasztelanic, Rafał; Stępniewski, Grzegorz; Ramaniuk, Aleksandr; Trippenbach, Marek; Buczyński, Ryszard

    2016-07-01

    We present a numerical study of the dispersion characteristic modification of nonlinear photonic crystal fibers infiltrated with liquids. A photonic crystal fiber based on the soft glass PBG-08, infiltrated with 17 different organic solvents, is proposed. The glass has a light transmission window in the visible-mid-IR range of 0.4-5 μm and has a higher refractive index than fused silica, which provides high contrast between the fiber structure and the liquids. A fiber with air holes is designed and then developed in the stack-and-draw process. Analyzing SEM images of the real fiber, we calculate numerically the refractive index, effective mode area, and dispersion of the fundamental mode for the case when the air holes are filled with liquids. The influence of the liquids on the fiber properties is discussed. Numerical simulations of supercontinuum generation for the fiber with air holes only and infiltrated with toluene are presented. PMID:27409187

  9. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries

    Science.gov (United States)

    Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.; Han, Lili; Grillon, Nathanael; Guy-Bouyssou, Delphine; Bouyssou, Emilien; Proust, Marina; Meng, Ying Shirley

    2016-08-01

    All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte - electrode interfaces will be critical to improve performance. In this study, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grew in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. The stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.

  10. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH4 electrolyte

    DEFF Research Database (Denmark)

    Das, Supti; Ngene, Peter; Norby, Poul;

    2016-01-01

    In this work we characterize all-solid-state lithium-sulfur batteries based on nano-confined LiBH4 in mesoporous silica as solid electrolytes. The nano-confined LiBH4 has fast ionic lithium conductivity at room temperature, 0.1 mScm-1, negligible electronic conductivity and its cationic transport...... number (t+ = 0.96), close to unity, demonstrates a purely cationic conductor. The electrolyte has an excellent stability against lithium metal. The behavior of the batteries is studied by cyclic voltammetry and repeated charge/discharge cycles in galvanostatic conditions. The batteries show very good...... performance, delivering high capacities versus sulfur mass, typically 1220 mAhg-1 after 40 cycles at moderate temperature (55°C), 0.03 C rates and working voltage of 2 V....

  11. Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries

    Science.gov (United States)

    Miyazaki, Reona; Ohta, Narumi; Ohnishi, Tsuyoshi; Takada, Kazunori

    2016-10-01

    This paper reports the effects of introducing oxygen into amorphous silicon films on their anode properties in all-solid-state lithium batteries. Although poor cycling performance is a critical issue in silicon anodes, it has been effectively improved by introducing even a small amount of oxygen, that is, even in Si-rich amorphous silicon suboxide (a-SiOx) films. Because of the small amount of oxygen in the films, high cycling performance has been achieved without lowering the capacity and power density: an a-Si film delivers discharge capacity of 2500 mAh g-1 under high discharge current density of 10 mA cm-2 (35 C). These results demonstrate that a-SiOx is a promising candidate for high-capacity anode materials in solid-state batteries.

  12. An all-solid-state laser source at 671 nm for cold-atom experiments with lithium

    Science.gov (United States)

    Eismann, U.; Gerbier, F.; Canalias, C.; Zukauskas, A.; Trénec, G.; Vigué, J.; Chevy, F.; Salomon, C.

    2012-01-01

    We present an all-solid-state narrow-linewidth laser source emitting 670 mW output power at 671 nm delivered in a diffraction-limited beam. The source is based on a frequency-doubled diode-end-pumped ring laser operating on the 4 F 3/2→4 I 13/2 transition in Nd:YVO4. By using periodically poled potassium titanyl phosphate (ppKTP) in an external buildup cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100 GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally, a simplified design based on intra-cavity doubling is described and first results are presented.

  13. Flexible all solid state supercapacitor with high energy density employing black titania nanoparticles as a conductive agent

    Science.gov (United States)

    Zhi, Jian; Yang, Chongyin; Lin, Tianquan; Cui, Houlei; Wang, Zhou; Zhang, Hui; Huang, Fuqiang

    2016-02-01

    Increasing the electrical conductivity of pseudocapacitive materials without changing their morphology is an ideal structural solution to realize both high electrochemical performance and superior flexibility for an all solid state supercapacitor (ASSSC). Herein, we fabricate a flexible ASSSC device employing black titania (TiO2-x:N) decorated two-dimensional (2D) NiO nanosheets as the positive electrode and mesoporous graphene as the negative electrode. In this unique design, NiO nanosheets are used as pseudocapacitive materials and TiO2-x:N nanoparticles serve as the conductive agent. Owing to the excellent electrical conductivity of TiO2-x:N and well defined ``particle on sheet'' planar structure of NiO/TiO2-x:N composites, the 2D morphology of the decorated NiO nanosheets is completely retained, which efficiently reinforces the pseudocapacitive activity and flexibility of the whole all solid state device. The maximum specific capacitance of fabricated the NiO/TiO2-x:N//mesoporous graphene supercapacitor can reach 133 F g-1, which is 2 and 4 times larger than the values of the NiO based ASSSC employing graphene and carbon black as the conductive agent, respectively. In addition, the optimized ASSSC displays intriguing performances with an energy density of 47 W h kg-1 in a voltage region of 0-1.6 V, which is, to the best of our knowledge, the highest value for flexible ASSSC devices. The impressive results presented here may pave the way for promising applications of black titania in high energy density flexible storage systems.Increasing the electrical conductivity of pseudocapacitive materials without changing their morphology is an ideal structural solution to realize both high electrochemical performance and superior flexibility for an all solid state supercapacitor (ASSSC). Herein, we fabricate a flexible ASSSC device employing black titania (TiO2-x:N) decorated two-dimensional (2D) NiO nanosheets as the positive electrode and mesoporous graphene as the

  14. Modulation of superconducting critical temperature in niobium film by using all-solid-state electric-double-layer transistor

    International Nuclear Information System (INIS)

    An all-solid-state electric-double-layer transistor (EDLT) was fabricated for electrical modulation of the superconducting critical temperature (Tc) of Nb film epitaxially grown on α-Al2O3 (0001) single crystal. In an experiment, Tc was modulated from 8.33 to 8.39 K while the gate voltage (VG) was varied from 2.5 to −2.5 V. The specific difference of Tc for the applied VG was 12 mK/V, which is larger than that of an EDLT composed of ionic liquid. A Tc enhancement of 300 mK was found at the Li4SiO4/Nb film interface and is attributed to an increase in density of states near the Fermi level due to lattice constant modulation. This solid electrolyte gating method should enable development of practical superconducting devices highly compatible with other electronic devices

  15. One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery

    Science.gov (United States)

    Chen, Bo; Xu, Qiang; Huang, Zhen; Zhao, Yanran; Chen, Shaojie; Xu, Xiaoxiong

    2016-11-01

    A new class of copolymer electrolytes with tunable network structure is successfully designed and prepared via a facile one-pot reaction. The trimethylolpropane triglycidyl ether (TMPEG) is cross-linked with poly (ethylene glycol) diamine (NPEG) to create well-defined solid network polymer electrolyte (SNPE). The network structure could be tuned by changing the molar ratio of TMPEG and NPEG or the molecular weight of NPEG. The effects of molecular weight of NPEG and molar ratio of EO/Li+ on the ionic conductivity are systematically investigated. The optimal electrolyte TMPEG-NPEG4K[2:1]-16:1 presents a maximum conductivity of 1.10 × 10-4 S cm-1 under 30 °C, and an 18-fold ionic conductivity enhancement in that of PEO-based electrolyte. Furthermore, it also exhibits wide electrochemical window (0-5.4 V), excellent compatibility with metallic Li, and superior mechanical properties. The all-solid-state lithium batteries LiFePO4/Li are assembled with TMPEG-NPEG4K[2:1]-16:1 electrolyte, and present good cycling and rate performance under 60 °C. The initial discharge specific capacities of the batteries are 161.7 mAh g-1 at 0.2 C and 132.7 mAh g-1 at 1 C, and the capacity retention ratio can be retained at 90.6% and 90.5% after 100 cycles. This new copolymer electrolyte may become a promising candidate for applications in all-solid-state lithium battery.

  16. Modulation of superconducting critical temperature in niobium film by using all-solid-state electric-double-layer transistor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Takashi, E-mail: TSUCHIYA.Takashi@nims.go.jp, E-mail: TERABE.Kazuya@nims.go.jp; Moriyama, Satoshi; Terabe, Kazuya, E-mail: TSUCHIYA.Takashi@nims.go.jp, E-mail: TERABE.Kazuya@nims.go.jp; Aono, Masakazu [International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-07-06

    An all-solid-state electric-double-layer transistor (EDLT) was fabricated for electrical modulation of the superconducting critical temperature (T{sub c}) of Nb film epitaxially grown on α-Al{sub 2}O{sub 3} (0001) single crystal. In an experiment, T{sub c} was modulated from 8.33 to 8.39 K while the gate voltage (V{sub G}) was varied from 2.5 to −2.5 V. The specific difference of T{sub c} for the applied V{sub G} was 12 mK/V, which is larger than that of an EDLT composed of ionic liquid. A T{sub c} enhancement of 300 mK was found at the Li{sub 4}SiO{sub 4}/Nb film interface and is attributed to an increase in density of states near the Fermi level due to lattice constant modulation. This solid electrolyte gating method should enable development of practical superconducting devices highly compatible with other electronic devices.

  17. Effect of Molecular Weight on Mechanical and Electrochemical Performance of All Solid-State Polymer Electrolyte Membranes

    Science.gov (United States)

    He, Ruixuan; Ward, Daniel; Echeverri, Mauricio; Kyu, Thein

    2015-03-01

    Guided by ternary phase diagrams of polyethylene glycol diacrylate (PEGDA), succinonitrile plasticizer, and LiTFSI salt, completely amorphous solid-state transparent polymer electrolyte membranes (ss-PEM) were fabricated by UV irradiation in the isotropic melt state. Effects of PEGDA molecular weight (700 vs 6000 g/mol) on ss-PEM performance were investigated. These amorphous PEMs have superionic room temperature ionic conductivity of ~10-3 S/cm, whereby PEGDA6000-PEM outperforms its PEGDA700 counterpart, which may be ascribed to lower crosslinking density and greater segmental mobility. The longer chain between crosslinked points of PEGDA6000-PEM is responsible for greater extensibility of ~80% versus ~7% of PEGDA700-PEM. Besides, both PEMs exhibited thermal stability up to 120 °C and electrochemical stability versus Li+/Li up to 4.7V. LiFePO4/PEM/Li and Li4Ti5O12 /PEM/Li half-cells exhibited stable cyclic behavior up to 50 cycles tested with a capacity of ~140mAh/g, suggesting that LiFePO4/PEM/Li4Ti5O12 may be a promising full-cell for all solid-state lithium battery. We thank NSF-DMR 1161070 for providing funding of this project.

  18. Optical rogue waves in an all-solid-state laser with a saturable absorber: importance of the spatial effects

    International Nuclear Information System (INIS)

    We study the features of the optical rogue waves (ORWs) observed in an all-solid-state (Cr:YAG+Nd:YVO4) passively-Q-switched laser, which is a system of wide practical interest. The extreme events appear as isolated pulses of extraordinary intensity during the chaotic regime of this laser. The standard theoretical description (three-level rate equations for a single mode of the field and a two-level system for the absorber) does predict the existence of many of the observed dynamical features, including chaos, but it fails to predict the existence of ORWs. Faced with the problem of improving the theoretical description, we find that ORWs are observed only when the Fresnel number of the laser cavity and the embedding dimension of the attractor reconstructed from the experimental time series are high, and the laser spot profile has a spatially complex structure. These results suggest that spatial effects are an essential ingredient in the formation of ORWs in this type of laser. (paper)

  19. Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors

    Science.gov (United States)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei

    2016-08-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.

  20. Proton conductive tantalum oxide thin film deposited by reactive DC magnetron sputtering for all-solid-state switchable mirror

    Science.gov (United States)

    Tajima, K.; Yamada, Y.; Bao, S.; Okada, M.; Yoshimura, K.

    2008-03-01

    Our developed all-solid-state switchable mirror as a smart window is consisted in multi-layer of Mg4Ni/Pd/Ta2O5/WO3/ITO/glass and can switch reversibly from the reflective state to the transparent one. The development of high performance solid electrolyte thin film of Ta2O5 is important for fast speed switching and high durability of the device. In this work, we have investigated the electrochemical property of Ta2O5 thin film deposited by reactive DC magnetron sputtering. The effect of thickness on electrochemical and proton conductivities of Ta2O5 thin film was investigated. The Ta2O5 thin film with a thickness of 400 nm had better proton conductivity of 1.5×10-9 S/cm measured by AC impedance method. The transmittance at wavelength of 670 nm of the device with 400 nm thick Ta2O5 thin film was changed from 0.1% (reflective state) to 51% (transparent state) within 10 s by applying voltage of 5 V. The device showed high durability up to two-thousand switching cycles.

  1. Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium-Ion Batteries.

    Science.gov (United States)

    Shim, Jimin; Bae, Ki Yoon; Kim, Hee Joong; Lee, Jin Hong; Kim, Dong-Gyun; Yoon, Woo Young; Lee, Jong-Chan

    2015-12-21

    Solid polymer electrolytes (SPEs) for all-solid-state lithium-ion batteries are prepared by simple one-pot polymerization induced by ultraviolet (UV) light using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as an ion-conducting monomeric unit and tannic acid (TA)-based crosslinking agent and plasticizer. The crosslinking agent and plasticizer based on natural resources are obtained from the reaction of TA with glycidyl methacrylate and glycidyl poly(ethylene glycol), respectively. Dimensionally stable free-standing SPE having a large ionic conductivity of 5.6×10(-4)  Scm(-1) at room temperature can be obtained by the polymerization of PEGMA into P(PEGMA) with a very small amount (0.1 wt %) of the crosslinking agent and 2.0 wt % of the plasticizer. The ionic conductivity value of SPE with a crosslinked structure is one order of magnitude larger than that of linear P(PEGMA) in the waxy state.

  2. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    Science.gov (United States)

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  3. Analysis of PBG Structures and Its Application in Cylindrical Conformal Microstrip Antenna%PBG结构分析及其在柱面共形微带天线中的应用

    Institute of Scientific and Technical Information of China (English)

    王淑娟

    2011-01-01

    利用光学Bragg反射条件,设计了两种曲面光子带隙结构,并将其应用于柱面共形微带贴片天线中,分析了光子带隙结构的结构参数对微带贴片天线性能的影响.计算仿真表明,利用合适的PBG结构可以增强微带贴片天线的前向增益,抑制高次谐波,减小旁瓣,减小表面波损耗.%According to the reflection condition of optics Bragg, the two-dimensional curved PBG structures are designed and applied to the cylindrical conformal microstrip antenna, and the parameter of PBG structures influenced on the performance of microstrip patch antenna is analyzed. The simulation results indicate that using the appropriate PBG structures can get higher gain, suppress higher harmonics, reduce broadside radiation and surface wave dissipation of the microstrip patch antenna.

  4. An All-Solid-State, Room-Temperature, Heterodyne Receiver for Atmospheric Spectroscopy at 1.2 THz

    Science.gov (United States)

    Siles, Jose V.; Mehdi, Imran; Schlecht, Erich T.; Gulkis, Samuel; Chattopadhyay, Goutam; Lin, Robert H.; Lee, Choonsup; Gill, John J.; Thomas, Bertrand; Maestrini, Alain E.

    2013-01-01

    Heterodyne receivers at submillimeter wavelengths have played a major role in astrophysics as well as Earth and planetary remote sensing. All-solid-state heterodyne receivers using both MMIC (monolithic microwave integrated circuit) Schottky-diode-based LO (local oscillator) sources and mixers are uniquely suited for long-term planetary missions or Earth climate monitoring missions as they can operate for decades without the need for any active cryogenic cooling. However, the main concern in using Schottky-diode-based mixers at frequencies beyond 1 THz has been the lack of enough LO power to drive the devices because 1 to 3 mW are required to properly pump Schottky diode mixers. Recent progress in HEMT- (high-electron-mobility- transistor) based power amplifier technology, with output power levels in excess of 1 W recently demonstrated at W-band, as well as advances in MMIC Schottky diode circuit technology, have led to measured output powers up to 1.4 mW at 0.9 THz. Here the first room-temperature tunable, all-planar, Schottky-diode-based receiver is reported that is operating at 1.2 THz over a wide (˜20%) bandwidth. The receiver front-end (see figure) consists of a Schottky-diode-based 540 to 640 GHz multiplied LO chain (featuring a cascade of W-band power amplifiers providing around 120 to 180 mW at W-band), a 200-GHz MMIC frequency doubler, and a 600-GHz MMIC frequency tripler, plus a biasable 1.2-THz MMIC sub-harmonic Schottky-diode mixer. The LO chain has been designed, fabricated, and tested at JPL and provides around 1 to 1.5 mW at 540 o 640 GHz. The sub-harmonic mixer consists of two Schottky diodes on a thin GaAs membrane in an anti-parallel configuration. An integrated metal insulator metal (MIM) capacitor has been included on-chip to allow dc bias for the Schottky diodes. A bias voltage of around 0.5 V/diode is necessary to reduce the LO power required down to the 1 to 1.5 mW available from the LO chain. The epilayer thickness and doping profiles have

  5. All-solid-state potentiometric sensors for ascorbic acid by using a screen-printed compatible solid contact

    Energy Technology Data Exchange (ETDEWEB)

    Veltsistas, Panayotis G.; Prodromidis, Mamas I.; Efstathiou, Constantinos

    2004-01-23

    The development of all-solid-state potentiometric ion selective electrodes for monitoring of ascorbic acid, by using a screen-printed compatible solid contact is described. The applied methodology is based on the use of PVC membrane modified with some firstly-tested ionophores (triphenyltin(IV)chloride, triphenyltin(IV)hydroxide and palmitoyl-L-ascorbic acid) and a novel one synthesized in our laboratory (dibutyltin(IV) diascorbate). Synthesis protocol and some preliminary identification studies are given. A conductive graphite-based polymer thick film ink was used as an internal solid contact between the graphite electrode and the PVC membrane. The presence and the nature of the solid contact (plain or doped with lanthanum 2,6-dichlorophenolindophenol (DCPI)) seem to enhance the analytical performance of the electrodes in terms of sensitivity, dynamic range, and response time. The analytical performance of the constructed electrodes was evaluated with potentiometry, constant-current chronopotentiometry and electrochemical impedance spectroscopy (EIS). The interference effect of various compounds was also tested. The potential response of the optimized Ph{sub 3}SnCl-based electrode was linear against ascorbic acid concentration range 0.005-5.0 mM. The applicability of the proposed sensors in real samples was also tested. The detection limit was 0.002 mM ascorbic acid (50 mM phosphate, pH 5 in 50 mM KCl). The slope of the electrodes was super-Nernstian and pH dependent, indicating a mechanism involving a combination of charge transfer and ion exchange processes. Fabrication of screen-printed ascorbate ISEs has also been demonstrated.

  6. Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries

    Science.gov (United States)

    Kato, Takehisa; Yoshida, Ryuji; Yamamoto, Kazuo; Hirayama, Tsukasa; Motoyama, Munekazu; West, William C.; Iriyama, Yasutoshi

    2016-09-01

    Sintering processes yield a mutual diffusion region at the electrode/solid electrolyte interface, which is considered as a crucial problem for developing large-sized all-solid-state rechargeable lithium batteries with high power density. This work focuses on the interface between LiNi1/3Co1/3Mn1/3O2 (NMC) and NASICON-structured Li+ conductive glass ceramics solid electrolyte (Li2Osbnd Al2O3sbnd SiO2sbnd P2O5sbnd TiO2sbnd GeO2: LATP sheet (AG-01)), and investigates the effects of sintering temperature on interfacial structure and interfacial resistance at the NMC/LATP sheet. Thin films of NMC were fabricated on the LATP sheets at 700 °C or 900 °C as a model system. We found that the thickness of the mutual diffusion region was almost the same, ca. 30 nm, in these two samples, but the NMC film prepared at 900 °C had three orders of magnitude larger interfacial resistance than the NMC film prepared at 700 °C. Around the interface between the NMC film prepared at 900 °C and the LATP sheet, Co in the NMC accumulates as a reduced valence and lithium-free impurity crystalline phase will be also formed. These two problems must contribute to drastic increasing of interfacial resistance. Formation of de-lithiated NMC around the interface and its thermal instability at higher temperature may be considerable reason to induce these problems.

  7. Estimation of low loss and dispersion of hollow core photonic crystal fiber designs for wdm systems

    International Nuclear Information System (INIS)

    Secure and uninterruptable data communication is one of the most important requirements in telecommunication sector. Research is being done in the field of telecommunication in order to provide secure data to customers by reducing dispersion and confinement losses within an optical fiber. Photonic crystal fiber is a new technology of optical fibers which has provided secure and managed data transfer with low dispersion properties and confinement loss. In this paper we produced different designs of Hollow Core Photonic Crystal Fibers (HC-PCF) with reduced dispersion and confinement losses through their core. We presented different designs of HC-PCF and selected one design with reduced losses. The main purpose of this study was to develop a design that can be utilized in Wavelength Division Multiplexing Systems (WDM). In WDM systems we can only use a fiber that has low material dispersion and confinement loss. The wavelength range for a WDM system is from 1300nm to 1550nm. So, we studied HC-PCF designs and calculated the confinement loss and dispersion within this range. the core by the effect known as Total Internal Reflection (TIR) (iii). In PCF light is guided through the core using Total Internal Reflection (TIR) and also the Photonic Band Gap effect (PBG) that is generated due to the periodic air hole rings in the cladding (iv). If the refractive index of core of PCF is greater than that of cladding, light guidance is due to TIR, and if the refractive index of core is smaller than the combined effect of air hole rings of cladding, light is guided due to PBG effect. In HC-PCF light guidance is mainly due to PBG effect. The Fig. 1 shows the structure of HC-PCF. (author)

  8. Research and Applications of All-Solid-State Blue Lasers%全固体蓝激光器的研究与应用

    Institute of Scientific and Technical Information of China (English)

    Tan Huiming

    2004-01-01

    In comparison with traditional gas lasers and lamp pumped solid state lasers, laser diode(LD) pumped or laser diode array (LDA) pumped solid state lasers called all-solid-state lasers are developed quickly in recent years. With the advantages of compact size, long lifetime,

  9. Research on Transmission Characteristics of an Anisotropic Dielectric PBG Structures Based on Semianalytical Spectral Element Method%基于半解析谱元法的各向异性介质PBG 结构传输特性的研究

    Institute of Scientific and Technical Information of China (English)

    杨红卫; 王改页; 黄翠莺; 孟珊珊

    2015-01-01

    Precise integration method combined with the spectral element is used to simulate and analyze the stop-band char-acteristic of anisotropic dielectric layer photonic band-gap (PBG)structures in waveguide.From the variational principle based on single variable corresponding to the vector wave equation,2-D spectral elements are employed to discretize the cross section of the layered structure,which contains anisotropic dielectric.Introducing the dual-variables,the variational principle is cast into the Hamil-tonian system,and then the high precision integration method is utilized to perform the stiff matrices.Compared with conventional fi-nite element method and semianalytical finite element method,numerical results demonstrate that the semianalytical spectral element method is more accurate and efficient for anisotropic PBG structures analysis,and it can achieve spectral accuracy with the increase of interpolation degrees of basis functions.%将精细积分方法与谱单元法结合,对含有各向异性介质的波导介质层光子带隙(PBG)结构的传输特性进行了研究。从矢量波动方程相对应的单变量变分形式出发,对含有各向异性介质波导横截面采用谱单元进行离散,引入对偶变量,将单变量变分原理导入到哈密顿体系,利用精细积分法求出出口刚度矩阵。数值算例将半解析谱元法与常规有限元法、半解析有限元法进行了比较,表明本文方法具有高精度、高效率的特点,而且计算精度随着谱单元阶数的增加呈指数增长。

  10. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    Science.gov (United States)

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ.

  11. Reflection on Promoting Tourism Cooperation Between Guangxi and PBG%关于积极推动广西与泛北部湾地区旅游合作发展的思考

    Institute of Scientific and Technical Information of China (English)

    余小军

    2011-01-01

    从泛北部湾(简称“泛北”)旅游合作的意义、现实条件、合作内容、已取得成果和未来前景4个方面详细分析了泛北合作的问题.认为开展泛北部湾(简称“泛北”)旅游合作具有深远的意义、有诸多有利的现实条件且已取得了丰硕的合作成果,最后提出了从国家政策、泛北旅游大通道、区域特色线路、区域大市场、旅游信息共享平台、区域城市旅游联盟7个方面深化广西与“泛北”地区旅游合作的战略设想。%The essay analyzed in details the issue of tourism cooperation between Guangxi and PBG from the following four aspectstsignificance,current conditions,cooperative contents, achievements and prospects, and then affirmed all the above. In the end, the essay put forward some strategic visions on promoting tourim cooperation between Guangxi and PBG from seven aspects: national policy, PBG tourism large channel, regional unique route, regional large market,tourism information sharing platform and tourism urban alliance.

  12. Fabrication of All-Solid-State Lithium-ion Cells using Three-Dimensionally Structured Solid Electrolyte Li7La3Zr2O12 Pellets

    Directory of Open Access Journals (Sweden)

    MAO SHOJI

    2016-08-01

    Full Text Available All-solid-state lithium-ion batteries using Li+-ion conducting ceramic electrolytes have been focused on as attractive future batteries for electric vehicles and renewable energy conversion systems because high safety can be realized due to non-flammability of ceramic electrolytes. In addition, a higher volumetric energy density than that of current lithium-ion batteries is expected since the all-solid-state lithium-ion batteries can be made in bipolar cell configurations. However, the special ideas and techniques based on ceramic processing are required to construct the electrochemical interface for all-solid-state lithium-ion batteries since the battery development has been done so far based on liquid electrolyte system over 100 years. As one of promising approaches to develop practical all-solid-state batteries, we have been focusing on three-dimensionally (3D structured cell configurations such as an interdigitated combination of 3D pillars of cathode and anode, which can be realized by using solid electrolyte membranes with hole-array structures. The application of such kinds of 3D structures effectively increases the interface between solid electrode and solid electrolyte per unit volume, lowering the internal resistance of all-solid-state lithium-ion batteries. In this study, Li6.25Al0.25La3Zr2O12 (LLZAl, which is a Al-doped Li7La3Zr2O12 (LLZ with Li+-ion conductivity of ~10–4 S cm–1 at room temperature and high stability against lithium-metal, was used as a solid electrolyte, and its pellets with 700 um depth holes in 700 x 700 um2 area were fabricated to construct 3D-structured all-solid-state batteries with LiCoO2 / LLZAl / lithium-metal configuration. It is expected that the LiCoO2-LLZAl interface is formed by point to point contact even when the LLZAl pellet with 3D hole-array structure is applied. Therefore, the application of mechanically soft Li3BO3 with a low melting point at around 700 °C was also performed as a supporting

  13. Hardware authentication using transmission spectra modified optical fiber

    International Nuclear Information System (INIS)

    The ability to authenticate the source and integrity of data is critical to the monitoring and inspection of special nuclear materials, including hardware related to weapons production. Current methods rely on electronic encryption/authentication codes housed in monitoring devices. This always invites the question of implementation and protection of authentication information in an electronic component necessitating EMI shielding, possibly an on board power source to maintain the information in memory. By using atomic layer deposition techniques (ALD) on photonic band gap (PBG) optical fibers we will explore the potential to randomly manipulate the output spectrum and intensity of an input light source. This randomization could produce unique signatures authenticating devices with the potential to authenticate data. An external light source projected through the fiber with a spectrometer at the exit would 'read' the unique signature. No internal power or computational resources would be required.

  14. Hardware authentication using transmission spectra modified optical fiber.

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert K.; Romero, Juan A.

    2010-09-01

    The ability to authenticate the source and integrity of data is critical to the monitoring and inspection of special nuclear materials, including hardware related to weapons production. Current methods rely on electronic encryption/authentication codes housed in monitoring devices. This always invites the question of implementation and protection of authentication information in an electronic component necessitating EMI shielding, possibly an on board power source to maintain the information in memory. By using atomic layer deposition techniques (ALD) on photonic band gap (PBG) optical fibers we will explore the potential to randomly manipulate the output spectrum and intensity of an input light source. This randomization could produce unique signatures authenticating devices with the potential to authenticate data. An external light source projected through the fiber with a spectrometer at the exit would 'read' the unique signature. No internal power or computational resources would be required.

  15. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte

    Science.gov (United States)

    Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong

    2016-02-01

    The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.

  16. All-Solid-Thin Film Electrochromic Devices Consisting of Layers ITO / NiO / ZrO2 / WO3 / ITO

    Directory of Open Access Journals (Sweden)

    K.J. Patel

    2013-05-01

    Full Text Available We have prepared an all-solid-thin film electrochromic device (ECD, consisting of layers ITO / NiO / ZrO2 / WO3 / ITO using the PVD method. The WO3 is used as an electrochromic layer, NiO as an ion-storage layer, and ZrO2 as a solid electrolyte layer in the all-solid-thin film ECD. The optical transmittance varied between 3-59 %. The device shows the coloration and bleaching time of 120 s and 2 s, respectively, with a good memory effect and desirable cycle-life.

  17. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  18. An Integrated Glucose Sensor with an All-Solid-State Sodium Ion-Selective Electrode for a Minimally Invasive Glucose Monitoring System

    OpenAIRE

    Junko Kojima; Samiko Hosoya; Chihiro Suminaka; Nobuyasu Hori; Toshiyuki Sato

    2015-01-01

    We developed a minimally invasive glucose monitoring system that uses a microneedle to permeate the skin surface and a small hydrogel to accumulate interstitial fluid glucose. The measurement of glucose and sodium ion levels in the hydrogel is required for estimating glucose levels in blood; therefore, we developed a small, enzyme-fixed glucose sensor with a high-selectivity, all-solid-state, sodium ion-selective electrode (ISE) integrated into its design. The glucose sensor immobilized gluco...

  19. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Ruiqi

    2016-03-04

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  20. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    OpenAIRE

    Taku Tsuneishi; Hisatoshi Sakamoto; Kazushi Hayashi; Go Kawamura; Hiroyuki Muto; Atsunori Matsuda

    2014-01-01

    Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH) were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as...

  1. All-solid-state electrochemical capacitors using MnO2 electrode/SiO2-Nafion electrolyte composite prepared by the sol-gel process

    Science.gov (United States)

    Shimamoto, Kazushi; Tadanaga, Kiyoharu; Tatsumisago, Masahiro

    2014-02-01

    Electrode-electrolyte composites of MnO2 active material, acetylene black (AB), and SiO2-Nafion solid electrolyte were prepared using the sol-gel process to form good solid-solid interfaces. The composites were obtained by the addition of MnO2 and AB into a sol of hydrolyzed tetraethoxysilane with Nafion, and successive solidification of the precursor sol. Scanning electron microscope and energy dispersive X-ray spectroscopy measurements show that good solid-solid interface is formed between electrodes and solid electrolytes in the composites. All-solid-state hybrid capacitors were fabricated using the composites or the hand-grinding mixture of MnO2, AB and SiO2-Nafion powder as positive electrodes, activated carbon powder as a negative electrode, and phosphosilicate gel as a solid electrolyte. The all-solid-state hybrid capacitors using the composites exhibit larger capacitances and better rate performance than the capacitors using the electrode prepared by hand-mixing of powders. Specific discharge capacitances of the capacitor with the composite are 85 F g-1 for the one with the composite electrode and 48 F g-1 for the one with the hand-mixed electrode, at 1 mA cm-2. Moreover, the all-solid-state capacitors using the composite electrode can be operated at temperatures between -30 °C and 60 °C.

  2. Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor.

    Science.gov (United States)

    Chu, Iek-Heng; Kompella, Christopher S; Nguyen, Han; Zhu, Zhuoying; Hy, Sunny; Deng, Zhi; Meng, Ying Shirley; Ong, Shyue Ping

    2016-09-20

    All-solid-state sodium-ion batteries are promising candidates for large-scale energy storage applications. The key enabler for an all-solid-state architecture is a sodium solid electrolyte that exhibits high Na(+) conductivity at ambient temperatures, as well as excellent phase and electrochemical stability. In this work, we present a first-principles-guided discovery and synthesis of a novel Cl-doped tetragonal Na3PS4 (t-Na3-xPS4-xClx) solid electrolyte with a room-temperature Na(+) conductivity exceeding 1 mS cm(-1). We demonstrate that an all-solid-state TiS2/t-Na3-xPS4-xClx/Na cell utilizing this solid electrolyte can be cycled at room-temperature at a rate of C/10 with a capacity of about 80 mAh g(-1) over 10 cycles. We provide evidence from density functional theory calculations that this excellent electrochemical performance is not only due to the high Na(+) conductivity of the solid electrolyte, but also due to the effect that "salting" Na3PS4 has on the formation of an electronically insulating, ionically conducting solid electrolyte interphase.

  3. Comparison between all-solid-state Raman lasers and OPO lasers%固体Raman激光器与OPO激光器比较

    Institute of Scientific and Technical Information of China (English)

    孙国正

    2011-01-01

    The development of all-solid-state Raman laser and optical parametric oscillation (OPO) laser were summarized during the past five years.The principle and crystal of Raman laser and OPO laser were compared.An all-solid-state Raman lasers has advantages in beam quality and optical stability.While, an OPO laser has a larger tuning range and higher output power.Finally, the future development of all-solid-state Raman and OPO lasers was put forward.%综述了近5年来固体Raman激光器和光参量振荡(OPO)激光器的发展情况,并对Raman激光器和OPO激光器在工作原理、晶体材料方面进行了比较.Raman激光器在光束质量、光路稳定方面存在优势,而OPO激光器调谐范围大,输出功率高.最后对固体Raman激光器和OPO激光器发展前景进行了简要介绍.

  4. An all-solid state laser system for the laser ion source RILIS and in-source laser spectroscopy of astatine at ISOLDE,CERN

    OpenAIRE

    Rothe, Sebastian

    2012-01-01

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spec...

  5. High-efficiency GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy

    OpenAIRE

    Lu, Shulong; Ji, Lian; He, Wei; Dai, Pan; Yang, Hui; Arimochi, Masayuki; Yoshida, Hiroshi; Uchida, Shiro; Ikeda, Masao

    2011-01-01

    We report the initial results of GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy (MBE) technique. For GaAs single-junction solar cell, with the application of AlInP as the window layer and GaInP as the back surface field layer, the photovoltaic conversion efficiency of 26% at one sun concentration and air mass 1.5 global (AM1.5G) is realized. The efficiency of 16.4% is also reached for GaInP solar cell. Our results demonstrate that the MBE-grown phosphide-contained ...

  6. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Yang, Xiangwen; Lin, Zhixing; Zheng, Jingxu; Huang, Yingjuan; Chen, Bin; Mai, Yiyong; Feng, Xinliang

    2016-04-01

    This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window.This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window. Electronic supplementary information (ESI) available: ESI

  7. Facile fabrication of all-solid-state flexible interdigitated MnO2 supercapacitor via in-situ catalytic solution route

    Science.gov (United States)

    Long, Xiao; Zeng, Zhigang; Guo, Erjuan; Shi, Xiaobo; Zhou, Haijun; Wang, Xiaohong

    2016-09-01

    With the rapid development of wearable and portable electronics, the demand for all-solid-state flexible energy storage devices with high performance, long-term cycling stability and bending stability has been aroused. Physical and chemical method for preparing thin-film materials has enabled planar flexible supercapacitors (SCs) to be fabricated for a variety of applications. In this work, we report on the facile fabrication of an all-solid-state flexible interdigitated supercapacitor with a convenient and efficient two-step method. 3-D nanostructured α-MnO2 has been prepared on the surface of interdigitated Pt metal pattern on polyethylene terephthalate (PET) substrate as high-performance electrode material via in-situ catalytic solution route without any assistance of template or surfactant. The SCs are fabricated with PVA/H3PO4 as solid-state electrolyte, which exhibited good electrochemical performance with areal capacitance as much as 20 mF cm-2 at a scan rate of 10 mV s-1, relatively high energy density (3.6 × 10-7 Wh cm-2-1.9 × 10-6 Wh cm-2) and power density (9 × 10-5 W cm-2-1.6 × 10-4 W cm-2), and excellent long-term cycling stability with capacitance retention of 82.2% (10,000 times charge and discharge), and bending stability with capacitance retention of 89.6%.

  8. Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates.

    Science.gov (United States)

    Han, Na; Ahmed, Ifty; Parsons, Andrew J; Harper, Lee; Scotchford, Colin A; Scammell, Brigitte E; Rudd, Chris D

    2013-05-01

    Polymers prepared from polylactic acid (PLA) have found a multitude of uses as medical devices. For a material that degrades, the main advantage is that an implant would not necessitate a second surgical event for removal. In this study, fibers produced from a quaternary phosphate-based glass (PBG) in the system 50P2O5-40CaO-5Na2O-5Fe2O3 were used to reinforce PLA polymer. The purpose of this study was to assess the effect of screw holes in a range of PBG-reinforced PLA composites with varying fiber layup and volume fraction. The flexural properties obtained showed that the strength and modulus values increased with increasing fiber volume fraction; from 96 MPa to 320 MPa for strength and between 4 GPa and 24 GPa for modulus. Furthermore, utilizing a larger number of thinner unidirectional (UD) fiber prepreg layers provided a significant increase in mechanical properties, which was attributed to enhanced wet out and thus better fiber dispersion during production. The effect of gamma sterilization via flexural tests showed no statistically significant difference between the sterilized and nonsterilized samples, with the exception of the modulus values for samples with screw holes. Degradation profiles revealed that samples with screw holes degraded faster than those without screw holes due to an increased surface area for the plates with screw holes in PBS up to 30 days. Scanning electron microscope (SEM) analysis revealed fiber pullout before and after degradation. Compared with various fiber impregnation samples, with 25% volume fraction, 8 thinner unidirectional prepreg stacked samples had the shortest fiber pull-out lengths in comparison to the other samples investigated. PMID:22207606

  9. Design of a Polymer-Based Hollow-Core Bandgap Fiber for Low-Loss Terahertz Transmission

    DEFF Research Database (Denmark)

    Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.;

    2016-01-01

    We use numerical simulations to design a hollow-core microstructured polymer optical fiber (HC-mPOF) suitable for broadband, terahertz (THz) pulse transmission with relatively low losses and small dispersion. The HC-mPOF consists of a central large air-core surrounded by periodically arranged...... of non-zero values of the longitudinal wavevector. We have achieved PBG over a broad spectral range (bandwidth similar to 400 GHz) ranging from 1.65 to 2.05 THz in the proposed HC-mPOF. The achievable loss coefficient in our designed HC-mPOF is...

  10. Dietary Fiber

    Science.gov (United States)

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble fiber or insoluble fiber. Both types have important health benefits. Good sources of dietary fiber include Whole grains Nuts ...

  11. Controllable light filters using an all-solid-state switchable mirror with a Mg-Ir thin film for preterm infant incubators

    Science.gov (United States)

    Tajima, Kazuki; Shimoike, Mika; Li, Heng; Inagaki, Masumi; Izumi, Hitomi; Akiyama, Misaki; Matsushima, Yukiko; Ohta, Hidenobu

    2013-04-01

    We have fabricated a controllable light filter using an all-solid-state switchable mirror incorporating a Mg-Ir thin film for use in preterm infant incubators. The solid-state switchable mirror device was fabricated by depositing a multilayer on a glass substrate. The mixed hydride of MgH2 and Mg6Ir2H11 created from the Mg-Ir thin film is red in the transparent state. The optical switching speeds between the reflective and transparent red states depended on applied voltage. The device showed three states, namely, reflective, black, and transparent red, due to the properties of the switchable mirror material. These results suggest that the material could be used as a controllable light filter for preterm infant incubators, since it eliminates the light wavelength that disturbs regular sleep-wake cycles of preterm infants.

  12. A Compact All-Solid-State 630-ps 9.43-kHz High Power Nd: YAG/ Nd: YVO4 Hybrid Laser System

    Institute of Scientific and Technical Information of China (English)

    XU Shi-Xiang; WEI Xiao-Yu; DU Ke-Ming; LI Jing-Zhen

    2008-01-01

    We present a simple and compact design for an all-solid-state laser amplifier system which can output 9.43-kHz 630-ps, 3.5-W pulse trains under 20W absorbed pumping power. The excellent matching between the repetition of its seed source and the fluorescence lifetime of the amplifying medium makes it quiet efficient for the four-pass amplifier to be pumped in cw mode without need of any synchronization device between the oscillator and the amplifier. The entire setup just covers an area of 55×25cm2. The output average power fluctuation is less than ±1.5% within 10min and 3% within 6h.

  13. 1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells

    DEFF Research Database (Denmark)

    Luo, Jiangshui; Jensen, Annemette Hindhede; Brooks, Neil R.;

    2015-01-01

    1,2,4-Triazolium perfluorobutanesulfonate (1), a novel, pure protic organic ionic plastic crystal (POIPC) with a wide plastic crystalline phase, has been explored as a proof-of-principle anhydrous proton conductor for all-solid-state high temperature hydrogen/air fuel cells. Its physicochemical......), plastic crystalline (phase II and I) and melt phases successively from 173 C to 200 C. Differential scanning calorimetry and temperature dependent powder X-ray diffraction (XRD) measurements together with polarized optical microscopy and thermomechanical analysis reveal the two solid–solid phase...... transitions of 1 at 76.8 C and 87.2 C prior to the melting transition at 180.9 C, showing a wide plastic phase (87–181 C). Scanning electron microscopy displays the morphology of different phases, indicating the plasticity in phase I. Single-crystal XRD studies reveal the molecular structure of 1 and its...

  14. A simple model for approximate bandgap structure calculation of all-solid photonic bandgap fibre based on an array of rings

    Institute of Scientific and Technical Information of China (English)

    Fang Hong; Lou Shu-Qin; Guo Tie-Ying; Yao Lei; Li nong-Lei; Jian ShuiSheng

    2008-01-01

    A simple model for approximate bandgap structure caculation of all-solid photonic bandgap fibre based on an array of rings is proposed.In this model calculated are only the potential modes of a unit cell,which is a high-index ring in the low-index background for this fibre,rather than the whole cladding periodic structure based on Bloch's theorem to find the bandgap.Its accuracy is proved by comparing its results with the results obtained by using the accurate full-vector plane-wave method.High speed in computation is its great advantage over the other exact methods,because it only needs to find the roots of one-dimensional analytical expressions.And the results of this model,mode plots,offer an ideal environment to explore the basic properties of photonic bandgap clearly.

  15. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  16. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  17. Facile fabrication of all-solid-state SnO2/NiCo2O4 biosensor for self-powered glucose detection

    Science.gov (United States)

    Cai, Bin; Mao, Weiwei; Ye, Zhizhen; Huang, Jingyun

    2016-09-01

    With increasing attention on daily diabetes management, we develop an all-solid-state self-powered glucose biosensor, with simultaneous solar energy conversion, electrochemical energy storage and glucose sensing. The SnO2 nanosheet arrays are used to obtain photogenerated electron-hole pairs, and rhombus-shaped NiCo2O4 nanorod arrays are developed for solar energy storage. A stable open circuit voltage ~0.58 V is obtained after being fully charged, which is a suitable voltage for the oxidation of glucose. The biosensor can work under two different modes without any external bias voltage, and both show large linear range and excellent selectivity. Under the sunlight, photocurrent shows a sensitive decrease upon different glucose additions. Meanwhile, in the dark condition, the open circuit voltage of the charged biosensor also exhibits a corresponding response to glucose.

  18. High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite.

    Science.gov (United States)

    Han, Fudong; Yue, Jie; Fan, Xiulin; Gao, Tao; Luo, Chao; Ma, Zhaohui; Suo, Liumin; Wang, Chunsheng

    2016-07-13

    All-solid-state lithium-sulfur batteries (ASSLSBs) using highly conductive sulfide-based solid electrolytes suffer from low sulfur utilization, poor cycle life, and low rate performance due to the huge volume change of the electrode and the poor electronic and ionic conductivities of S and Li2S. The most promising approach to mitigate these challenges lies in the fabrication of a sulfur nanocomposite electrode consisting of a homogeneous distribution of nanosized active material, solid electrolyte, and carbon. Here, we reported a novel bottom-up method to synthesize such a nanocomposite by dissolving Li2S as the active material, polyvinylpyrrolidone (PVP) as the carbon precursor, and Li6PS5Cl as the solid electrolyte in ethanol, followed by a coprecipitation and high-temperature carbonization process. Li2S active material and Li6PS5Cl solid electrolyte with a particle size of ∼4 nm were uniformly confined in a nanoscale carbon matrix. The homogeneous nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic and electronic conductivities enabled a mechanical robust and mixed conductive (ionic and electronic conductive) sulfur electrode for ASSLSB. A large reversible capacity of 830 mAh/g (71% utilization of Li2S) at 50 mA/g for 60 cycles with a high rate performance was achieved at room temperature even at a high loading of Li2S (∼3.6 mg/cm(2)). This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance all-solid-state lithium sulfur batteries. PMID:27322663

  19. High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite.

    Science.gov (United States)

    Han, Fudong; Yue, Jie; Fan, Xiulin; Gao, Tao; Luo, Chao; Ma, Zhaohui; Suo, Liumin; Wang, Chunsheng

    2016-07-13

    All-solid-state lithium-sulfur batteries (ASSLSBs) using highly conductive sulfide-based solid electrolytes suffer from low sulfur utilization, poor cycle life, and low rate performance due to the huge volume change of the electrode and the poor electronic and ionic conductivities of S and Li2S. The most promising approach to mitigate these challenges lies in the fabrication of a sulfur nanocomposite electrode consisting of a homogeneous distribution of nanosized active material, solid electrolyte, and carbon. Here, we reported a novel bottom-up method to synthesize such a nanocomposite by dissolving Li2S as the active material, polyvinylpyrrolidone (PVP) as the carbon precursor, and Li6PS5Cl as the solid electrolyte in ethanol, followed by a coprecipitation and high-temperature carbonization process. Li2S active material and Li6PS5Cl solid electrolyte with a particle size of ∼4 nm were uniformly confined in a nanoscale carbon matrix. The homogeneous nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic and electronic conductivities enabled a mechanical robust and mixed conductive (ionic and electronic conductive) sulfur electrode for ASSLSB. A large reversible capacity of 830 mAh/g (71% utilization of Li2S) at 50 mA/g for 60 cycles with a high rate performance was achieved at room temperature even at a high loading of Li2S (∼3.6 mg/cm(2)). This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance all-solid-state lithium sulfur batteries.

  20. Processing and Damage Tolerance of Continuous Carbon Fiber Composites Containing Puncture Self-Healing Thermoplastic Matrix

    Science.gov (United States)

    Grimsley, Brian W.; Gordon, Keith L.; Czabaj, Michael W.; Cano, Roberto J.; Siochi, Emilie J.

    2012-01-01

    Research at NASA Langley Research Center (NASA LaRC) has identified several commercially available thermoplastic polymers that self-heal after ballistic impact and through-penetration. One of these resins, polybutadiene graft copolymer (PB(sub g)), was processed with unsized IM7 carbon fibers to fabricate reinforced composite material for further evaluation. Temperature dependent characteristics, such as the degradation point, glass transition (T(sub g)), and viscosity of the PBg polymer were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic parallel plate rheology. The PBg resin was processed into approximately equal to 22.0 cm wide unidirectional prepreg tape in the NASA LaRC Advanced Composites Processing Research Laboratory. Data from polymer thermal characterization guided the determination of a processing cycle used to fabricate quasi-isotropic 32-ply laminate panels in various dimensions up to 30.5cm x 30.5cm in a vacuum press. The consolidation quality of these panels was analyzed by optical microscopy and acid digestion. The process cycle was further optimized based on these results and quasi-isotropic, [45/0/-45/90]4S, 15.24cm x 15.24cm laminate panels were fabricated for mechanical property characterization. The compression strength after impact (CAI) of the IM7/pBG composites was measured both before and after an elevated temperature and pressure healing cycle. The results of the processing development effort of this composite material as well as the results of the mechanical property characterization are presented in this paper.

  1. Bend sensors based on periodically-tapered soft glass fibers

    OpenAIRE

    Wang, Y.; Richardson, D. J.; Brambilla, G; Feng, X.; Petrovich, M.N.; Ding, M.; Song, Z.(Central China Normal University, Wuhan, China)

    2011-01-01

    We demonstrate a technique for tapering periodically an all-solid soft glass fiber consisting of two types of lead silicate glasses by the use of a CO2 laser and investigate the bend sensing applications of the periodically-tapered soft glass fiber. Such a soft glass fiber with periodic microtapers could be used to develop a promising bend sensor with a sensitivity of ?27.75 ?W/m-1 by means of measuring the bend-induced change of light intensity. The proposed bend sensor exhibits a very low m...

  2. High Energy Density All Solid State Asymmetric Pseudocapacitors Based on Free Standing Reduced Graphene Oxide-Co3O4 Composite Aerogel Electrodes.

    Science.gov (United States)

    Ghosh, Debasis; Lim, Joonwon; Narayan, Rekha; Kim, Sang Ouk

    2016-08-31

    Modern flexible consumer electronics require efficient energy storage devices with flexible free-standing electrodes. We report a simple and cost-effective route to a graphene-based composite aerogel encapsulating metal oxide nanoparticles for high energy density, free-standing, binder-free flexible pseudocapacitive electrodes. Hydrothermally synthesized Co3O4 nanoparticles are successfully housed inside the microporous graphene aerogel network during the room temperature interfacial gelation at the Zn surface. The resultant three-dimensional (3D) rGO-Co3O4 composite aerogel shows mesoporous quasiparallel layer stack morphology with a high loading of Co3O4, which offers numerous channels for ion transport and a 3D interconnected network for high electrical conductivity. All solid state asymmetric pseudocapacitors employing the composite aerogel electrodes have demonstrated high areal energy density of 35.92 μWh/cm(2) and power density of 17.79 mW/cm(2) accompanied by excellent cycle life.

  3. 2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium

    CERN Document Server

    Eismann, Ulrich; Salomon, Christophe; Chevy, Frédéric

    2013-01-01

    We present an all-solid-state laser source emitting up to 2.1 W of single-frequency light at 671 nm developed for laser cooling of lithium atoms. It is based on a diode-pumped, neodymium-doped orthovanadate (Nd:YVO$_4$) ring laser operating at 1342 nm. Optimization of the thermal management in the gain medium results in a maximum multi-frequency output power of 2.5 W at the fundamental wavelength. We develop a simple theory for the efficient implementation of intracavity second harmonic generation, and its application to our system allows us to obtain nonlinear conversion efficiencies of up to 88%. Single-mode operation and tuning is established by adding an etalon to the resonator. The second-harmonic wavelength can be tuned over 0.5 nm, and mode-hop-free scanning over more than 6 GHz is demonstrated, corresponding to around ten times the laser cavity free spectral range. The output frequency can be locked with respect to the lithium $D$-line transitions for atomic physics applications. Furthermore, we obser...

  4. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries

    Science.gov (United States)

    Zhao, Yanran; Wu, Chuan; Peng, Gang; Chen, Xiaotian; Yao, Xiayin; Bai, Ying; Wu, Feng; Chen, Shaojie; Xu, Xiaoxiong

    2016-01-01

    Li10GeP2S12 (LGPS) is incorporated into polyethylene oxide (PEO) matrix to fabricate composite solid polymer electrolyte (SPE) membranes. The lithium ion conductivities of as-prepared composite membranes are evaluated, and the optimal composite membrane exhibits a maximum ionic conductivity of 1.21 × 10-3 S cm-1 at 80 °C and an electrochemical window of 0-5.7 V. The phase transition behaviors for electrolytes are characterized by DSC, and the possible reasons for their enhanced ionic conductivities are discussed. The LGPS microparticles, acting as active fillers incorporation into the PEO matrix, have a positive effect on the ionic conductivity, lithium ion transference number and electrochemical stabilities. In addition, two kinds of all-solid-state lithium batteries (LiFeO4/SPE/Li and LiCoO2/SPE/Li) are fabricated to demonstrate the good compatibility between this new SPE membrane and different electrodes. And the LiFePO4/Li battery exhibits fascinating electrochemical performance with high capacity retention (92.5% after 50 cycles at 60 °C) and attractive capacities of 158, 148, 138 and 99 mAh g-1 at current rates of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C, respectively. It is demonstrated that this new composite SPE should be a promising electrolyte applied in solid state batteries based on lithium metal electrode.

  5. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches

    Science.gov (United States)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  6. High Energy Density All Solid State Asymmetric Pseudocapacitors Based on Free Standing Reduced Graphene Oxide-Co3O4 Composite Aerogel Electrodes.

    Science.gov (United States)

    Ghosh, Debasis; Lim, Joonwon; Narayan, Rekha; Kim, Sang Ouk

    2016-08-31

    Modern flexible consumer electronics require efficient energy storage devices with flexible free-standing electrodes. We report a simple and cost-effective route to a graphene-based composite aerogel encapsulating metal oxide nanoparticles for high energy density, free-standing, binder-free flexible pseudocapacitive electrodes. Hydrothermally synthesized Co3O4 nanoparticles are successfully housed inside the microporous graphene aerogel network during the room temperature interfacial gelation at the Zn surface. The resultant three-dimensional (3D) rGO-Co3O4 composite aerogel shows mesoporous quasiparallel layer stack morphology with a high loading of Co3O4, which offers numerous channels for ion transport and a 3D interconnected network for high electrical conductivity. All solid state asymmetric pseudocapacitors employing the composite aerogel electrodes have demonstrated high areal energy density of 35.92 μWh/cm(2) and power density of 17.79 mW/cm(2) accompanied by excellent cycle life. PMID:27494271

  7. Generation of 3.5W high efficiency blue-violet laser by intracavity frequency-doubling of an all-solid-state tunable Ti:sapphire laser.

    Science.gov (United States)

    Ding, X; Wang, R; Zhang, H; Wen, W Q; Huang, L; Wang, P; Yao, J Q; Yu, X Y; Li, Z

    2008-03-31

    In this paper, we report a high power, high efficiency blue-violet laser obtained by intracavity frequency-doubling of an all-solid-state Q-switched tunable Ti:sapphire laser, which was pumped by a 532 nm intracavity frequency-doubled Nd:YAG laser. A beta-BaB2O4 (BBO) crystal was used for frequency-doubling of the Ti:sapphire laser and a V-shape folded three-mirror cavity was optimized to obtain high power high efficiency second harmonic generation (SHG). At an incident pump power of 22 W, the tunable output from 355 nm to 475 nm was achieved, involving the maximum average output of 3.5 W at 400 nm with an optical conversion efficiency of 16% from the 532 nm pump laser to the blue-violet output. The beam quality factor M(2) was measured to be Mx(2)=2.15, My(2)=2.38 for characterizing the tunable blue laser.

  8. All-solid-state doubly resonant intracavity frequency sum mixing orange yellow laser with 3.2 W output power at 593.5 nm

    Science.gov (United States)

    Zhu, P. F.; Li, B.; Liu, W. Q.; Liu, T. H.; Fang, C. X.; Zhano, Y.; Yao, Y.; Zheng, Q.

    2013-01-01

    A compact and efficient 593.5 nm orange-yellow laser is realized using doubly resonant intracavity sum frequency mixing. Two Nd: YVO4 crystals are employed as the gain crystals. In two sub-cavities, 1064 nm radiation from one Nd: YVO4 and 1342 nm radiation from the other Nd: YVO4 are mixed to generate 593.5 nm orange-yellow laser. In the overlapping of the two cavities, sum frequency mixing is achieved in a type I critical phase matching (CPM) LBO crystal. An output power of 3.2 W at the wavelength of 593.5 nm is obtained with total incident pump power of 38 W. The optical to optical conversion efficiency is up to 8.4% and the stability of the output power is better than 2.48% in 8 h. To the best knowledge, this it the highest watt-level laser at 593.5 nm generated by diode end pump all-solid-state technology.

  9. T he Protection Technology of All-solid-state Modulator%全固态调制器的保护技术

    Institute of Scientific and Technical Information of China (English)

    王登峰; 田为; 谢英

    2016-01-01

    The all-solid-state hard tube modulator is widely used in the electro-vacuum transmitter and accelerator etc .In this paper, the troubles of the modulator using process are discussed .The fault causes are analyzed .The emphasis is placed on key technologies and measures , like switch tube voltage balance circuit , the protection of driving circuit , the protection on klystron arcing and the on-line detection methods of the switch tube .The typical circuit diagram is given .The prospects of the application are forecasted .%全固态刚管调制器现阶段已广泛应用于大功率发射机、加速器等众多领域中。针对固态调制器使用过程中出现的问题,分析了其故障原因,重点介绍了为保护固态开关和调制器采用的开关管均压、驱动信号保护、高压打火保护电路、开关管状态在线监测等关键技术和措施,给出了典型的应用电路,并对应用前景进行了展望。

  10. Generation of 3.5W high efficiency blue-violet laser by intracavity frequency-doubling of an all-solid-state tunable Ti:sapphire laser.

    Science.gov (United States)

    Ding, X; Wang, R; Zhang, H; Wen, W Q; Huang, L; Wang, P; Yao, J Q; Yu, X Y; Li, Z

    2008-03-31

    In this paper, we report a high power, high efficiency blue-violet laser obtained by intracavity frequency-doubling of an all-solid-state Q-switched tunable Ti:sapphire laser, which was pumped by a 532 nm intracavity frequency-doubled Nd:YAG laser. A beta-BaB2O4 (BBO) crystal was used for frequency-doubling of the Ti:sapphire laser and a V-shape folded three-mirror cavity was optimized to obtain high power high efficiency second harmonic generation (SHG). At an incident pump power of 22 W, the tunable output from 355 nm to 475 nm was achieved, involving the maximum average output of 3.5 W at 400 nm with an optical conversion efficiency of 16% from the 532 nm pump laser to the blue-violet output. The beam quality factor M(2) was measured to be Mx(2)=2.15, My(2)=2.38 for characterizing the tunable blue laser. PMID:18542555

  11. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    Science.gov (United States)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  12. An Integrated Glucose Sensor with an All-Solid-State Sodium Ion-Selective Electrode for a Minimally Invasive Glucose Monitoring System

    Directory of Open Access Journals (Sweden)

    Junko Kojima

    2015-06-01

    Full Text Available We developed a minimally invasive glucose monitoring system that uses a microneedle to permeate the skin surface and a small hydrogel to accumulate interstitial fluid glucose. The measurement of glucose and sodium ion levels in the hydrogel is required for estimating glucose levels in blood; therefore, we developed a small, enzyme-fixed glucose sensor with a high-selectivity, all-solid-state, sodium ion-selective electrode (ISE integrated into its design. The glucose sensor immobilized glucose oxidase showed a good correlation between the glucose levels in the hydrogels and the reference glucose levels (r > 0.99, and exhibited a good precision (coefficient of variation = 2.9%, 0.6 mg/dL. In the design of the sodium ISEs, we used the insertion material Na0.33MnO2 as the inner contact layer and DD16C5 exhibiting high Na+/K+ selectivity as the ionophore. The developed sodium ISE exhibited high selectivity (\\( \\log \\,k^{pot}_{Na,K} = -2.8\\ and good potential stability. The sodium ISE could measure 0.4 mM (10−3.4 M sodium ion levels in the hydrogels containing 268 mM (10−0.57 M KCl. The small integrated sensor (ϕ < 10 mm detected glucose and sodium ions in hydrogels simultaneously within 1 min, and it exhibited sufficient performance for use as a minimally invasive glucose monitoring system.

  13. Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide.

    Science.gov (United States)

    Kim, Dong-Min; Cho, Seong Je; Cho, Chul-Ho; Kim, Kwang Bok; Kim, Min-Yeong; Shim, Yoon-Bo

    2016-05-15

    Poly(terthiophene benzoic acid) (pTBA) layered-AuZn alloy oxide (AuZnOx) deposited on the screen printed carbon electrode (pTBA/AuZnOx/SPCE) was prepared to create a disposable all-solid-state pH sensor at first. Further, FAD-glucose oxidase (GOx) was immobilized onto the pTBA/AuZnOx/SPCE to fabricate a glucose sensor. The characterizations of the sensor probe reveal that AuZnOx forms a homogeneous hierarchical structure, and that the polymerized pTBA layer on the alloy oxide surface captures GOx covalently. The benzoic acid group of pTBA coated on the probe layer synergetically improved the pH response of the alloy oxide and provide chemical binding sites to enzyme, which resulted in a Nernstian behavior (59.2 ± 0.5 mV/pH) in the pH range of 2-13. The experimental parameters affecting the glucose analysis were studied in terms of pH, temperature, humidity, and interferences. The sensor exhibited a fast response time <1s and a dynamic range between 30 and 500 mg/dL glucose with a detection limit of 17.23 ± 0.32 mg/dL. The reliabilities of the disposable pH and glucose sensors were examined for biological samples. PMID:26703994

  14. Research of the DC discharge of He-Ne gas mixture in hollow core fiber

    Science.gov (United States)

    Wang, Xinbing; Duan, Lian

    2013-09-01

    Since the first waveguide 0.633 μm He-Ne laser from a 20 cm length of 430 μm glass capillary was reported in 1971, no smaller waveguide gas laser has ever been constructed. Recently as the development of low loss hollow core PBG fiber, it is possible to constract a He-Ne lasers based on hollow-core PBG fibers. For the small diameter of the air hole, it is necessary to do some research to obtain glow discharge in hollow core fibers. In this paper, the experimental research of DC discharge in 200 μm bore diameter hollow core fibers was reported. Stable glow discharge was obained at varioue He-Ne mixtures from 4 Torr to 18 Torr. In order to obtain the plasma parameter of the discharge, the trace gasses of N2 and H2 were added to the He-Ne mixtures, the optical emission spectroscopy of the discharge was recorded by a PI 2750 spectroscopy with a CCD camera. The gas temperature (Tg) could be obtained by matching the simulated rovibronic band of the N2 emission with the observed spectrum in the ultraviolet region. The spectral method was also used to obtained the electron density, which is based on the analysis of the wavelength profile of the 486.13 nm Hβ line, and the electron temperature was obtain by Boltzmann plot methods. Experimental results show that it is very difficult to achieve DC discharge in bore diameter less than 50 μm, and a RF discharge method was proposed. Project supported by the National Natural Science Foundation of China (61078033).

  15. Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes.

    Science.gov (United States)

    Oleshko, Vladimir P; Lam, Thomas; Ruzmetov, Dmitry; Haney, Paul; Lezec, Henri J; Davydov, Albert V; Krylyuk, Sergiy; Cumings, John; Talin, A Alec

    2014-10-21

    Complex interfacial phenomena and phase transformations that govern the operation of Li-ion batteries require detailed nanoscale 3D structural and compositional characterization that can be directly related to their capacity and electrical transport properties. For this purpose, we have designed model miniature all solid-state radial heterostructure Li-ion batteries composed of LiCoO2 cathode, LiPON electrolyte and amorphous Si anode shells, which were deposited around metallized high-aspect-ratio Si nanowires as a scaffolding core. Such diagnostic batteries, the smallest, complete secondary Li-ion batteries realized to date, were specifically designed for in situ electrical testing in a field-emission scanning electron microscope and/or transmission electron microscope. The results of electrochemical testing were described in detail in a previous publication (Nano Lett., 2012, 12, 505-511). The model Li-ion batteries allow analysis of the correlations between electrochemical properties and their structural evolution during cycling in various imaging, diffraction and spectroscopic modes down to the atomic level. Employing multimode analytical scanning/transmission electron microscopy imaging coupled with correlative multivariate statistical analysis and tomography, we have analyzed and quantified the 3D morphological and structural arrangement of the batteries, including textured platelet-like LiCoO2 nanocrystallites, buried electrode-electrolyte interfaces and hidden internal defects to clarify effects of scaling on a battery's electrochemical performance. Characterization of the nanoscale interfacial processes using model heterostructure nanowire-based Li-ion batteries provides useful guidelines for engineering of prospective nano-sized building blocks in future electrochemical energy storage systems.

  16. Modelling of the fracture toughness anisotropy in fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    S. Tarasovs

    2016-01-01

    Full Text Available Steel fiber reinforced concrete is potentially very promising material with unique properties, which currently is widely used in some applications, such as floors and concrete pavements. However, lack of robust and reliable models of fiber reinforced concrete fracture limits its application as structural material. In this work a numerical model is proposed for predicting the crack growth in fiber reinforced concrete. The mixing of the steel fibers with the concrete usually creates nonuniform fibers distribution with more fibers oriented in horizontal direction, than in vertical. Simple numerical models of fiber reinforced concrete require a priori knowledge of the crack growth direction in order to take into account bridging action of the fibers, which depends on the fibers orientation. In proposed model user defined elements are used to calculate the bridging force during the course of the analysis when the crack starts to grow. Cohesive elements were used to model the crack propagation in the concrete matrix. In cohesive zone model the cohesive elements are embedded between all solid elements to simulate the arbitrary crack path. The bridging effect of the fibers are modeled as nonlinear springs, where the stiffness of the springs is defined from experimentally measured pull-out force and the angle between the fiber and crack opening direction.

  17. Ultrasensitive refractive index sensor based on twin-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham E.; Bang, Ole

    We have theoretically investigated twin-core all-solid photonic bandgap fibers (PBGFs) for evanescent wave sensing of refractive index within one single microfluidic analyte channel centered between the two cores. The sensor can achieve ultrahigh sensitivity by detecting the change in transmission...

  18. Water Fibers

    CERN Document Server

    Douvidzon, Mark L; Martin, Leopoldo L; Carmon, Tal

    2016-01-01

    Fibers constitute the backbone of modern communication and are used in laser surgeries; fibers also genarate coherent X-ray, guided-sound and supercontinuum. In contrast, fibers for capillary oscillations, which are unique to liquids, were rarely considered in optofluidics. Here we fabricate fibers by water bridging an optical tapered-coupler to a microlensed coupler. Our water fibers are held in air and their length can be longer than a millimeter. These hybrid fibers co-confine two important oscillations in nature: capillary- and electromagnetic-. We optically record vibrations in the water fiber, including an audio-rate fundamental and its 3 overtones in a harmonic series, that one can hear in soundtracks attached. Transforming Micro-Electro-Mechanical-Systems [MEMS] to Micro-Electro-Capillary-Systems [MECS], boosts the device softness by a million to accordingly improve its response to minute forces. Furthermore, MECS are compatible with water, which is a most important liquid in our world.

  19. Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams

    Energy Technology Data Exchange (ETDEWEB)

    Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

    2006-12-31

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the

  20. 150kV全固态高压脉冲发生器设计%Design of 150 kV all-solid-state high voltage pulsed power generator

    Institute of Scientific and Technical Information of China (English)

    雷宇; 邱剑; 刘克富

    2012-01-01

    The paper presents a design of all-solid-state pulsed power generator based on Marx generator with MOSFET semiconductor switch devices. Charging resistance is replaced by fast recovery diode in the circuit, which reduces power loss in charging process. Drive circuit is integrated in and gets power supply from main circuit. Optical fiber is used to deliver the drive signal so as to protect it from the interference of discharging. A clockwise/counter-clockwise ring-shaped compact configuration is applied, which reduces the loop inductance, and makes the generator modularized and compact. The proposed generator is com-posed of 180 Marx unites in series, each of which is charged at a low voltage of 900 V, and generates a fast output pulse of voltage 150 kV, rise time less than 500 ns and duration adjustable between 1 and 5 Ωs. Some experimental results of the pulsed power generator are listed, with a load of 50 kΩ resistance and 5 pF capacitance in parallel. Through comparison and analysis, some factors affecting the rise time of output pulses are summarized, including loop inductance, drive voltage of MOSFET and distributed capacitance of main circuit. Approaches for pulse rise time improvement are also discussed.%设计了一种基于全固态MOSFET半导体开关器件的Marx脉冲发生器.充电回路用快恢复二极管代替充电电阻,减小了充电部分功率损耗;将主电路和驱动电路集成在一起,采用自取电模式给驱动电路供电;由光纤传输驱动信号,抑制了放电回路对触发信号的干扰;采用顺/逆时针方向环形分布的紧凑型拓扑结构,不仅减小了回路电感,而且实现了脉冲发生器的小型化与模块化.所设计的Marx发生器充电部分仅需提供900 V低压,用180级单元串联,获得最高幅值为150 kV、脉宽1~5 μs可调的高压快脉冲,前沿控制在500ns以内.利用该脉冲发生器在50 kΩ电阻和5 pF电容并联的等效负载上进行了一系列实验;比

  1. Development of all solid-state, high average power ultra-short pulse laser for X-ray generation. High average power CPA system and wavefront control of ultra short laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Harayama, Sayaka; Akaoka, Katsuaki; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Maruyama, Yoichiro; Matoba, Toru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We developed a prototype CPA laser system which is pumped by a all solid-state Nd:YAG laser. In a preliminary experiment, the output energy of 52mJ before compression was obtained when the pumping energy was 250mJ. To compensate the wavefront distortion, an adaptive optics has been developed. By using this wavefront control system, the laser beam with the distortion of 0.15{lambda} was obtained. (author)

  2. 我国全固态激光技术研发情况及发展趋势%New Progress on All Solid State Laser Technology in China

    Institute of Scientific and Technical Information of China (English)

    姚建铨

    2007-01-01

    @@ 1 Significance of All Solid State Laser (DPL)Technology in Field of Laser Because of the advantages of high conversion efficiency, good beam quality, small size and light weight, DPL becomes the hotspot and priority of development of laser technology. It may be the main body of laser in the future and replace gas laser and liquid laser. It is a great revolution of laser technology.

  3. Progress in hollow core photonic crystal fiber for atomic vapour based coherent optics

    Science.gov (United States)

    Bradley, T. D.; Wang, Y. Y.; Alharbi, M.; Fourcade Dutin, C.; Mangan, B. J.; Wheeler, N. V.; Benabid, F.

    2012-03-01

    We report on progress in different hollow core photonic crystal fiber (HC-PCF) design and fabrication for atomic vapor based applications. We have fabricated a Photonic bandgap (PBG) guiding HC-PCF with a record loss of 107dB/km at 785nm in this class of fiber. A double photonic bandgap (DPBG) guiding HC-PCF with guidance bands centred at 780nm and 1064nm is reported. A 7-cell 3-ring Kagome HC-PCF with hypocycloid core is reported, the optical loss at 780nm has been reduced to 70dB/km which to the best of our knowledge is the lowest optical loss reported at this wavelength using HC-PCF. Details on experimental loading of alkali metal vapours using a far off red detuned laser are reported. This optical loading has been shown to decrease the necessary loading time for Rb into the hollow core of a fiber. The quantity of Rb within the fiber core has been enhanced by a maximum of 14% through this loading procedure.

  4. Structure analyses using X-ray photoelectron spectroscopy and X-ray absorption near edge structure for amorphous MS3 (M: Ti, Mo) electrodes in all-solid-state lithium batteries

    Science.gov (United States)

    Matsuyama, Takuya; Deguchi, Minako; Mitsuhara, Kei; Ohta, Toshiaki; Mori, Takuya; Orikasa, Yuki; Uchimoto, Yoshiharu; Kowada, Yoshiyuki; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2016-05-01

    Electronic structure changes of sulfurs in amorphous TiS3 and MoS3 for positive electrodes of all-solid-state lithium batteries are examined by X-ray photoelectron spectroscopy (XPS) and the X-ray absorption near edge structure (XANES). The all-solid-state cell with amorphous TiS3 electrode shows the reversible capacity of about 510 mAh g-1 for 10 cycles with sulfur-redox in amorphous TiS3 during charge-discharge process. On the other hand, the cell with amorphous MoS3 shows the 1st reversible capacity of about 720 mAh g-1. The obtained capacity is based on the redox of both sulfur and molybdenum in amorphous MoS3. The irreversible capacity of about 50 mAh g-1 is observed at the 1st cycle, which is attributed to the irreversible electronic structure change of sulfur during the 1st cycle. The electronic structure of sulfur in amorphous MoS3 after the 10th charge is similar to that after the 1st charge. Therefore, the all-solid-state cell with amorphous MoS3 electrode shows relatively good cyclability after the 1st cycle.

  5. Research Progress in 3D All-Solid-State Thin Film Lithium Battery%全固态3D薄膜锂离子电池的研究进展

    Institute of Scientific and Technical Information of China (English)

    邓亚锋; 钱怡; 崔艳华; 刘效疆

    2012-01-01

    全固态三维薄膜锂离子电池能量密度高、自放电率低、充放电循环性能优良、安全可靠,可以设计成任意形状集成至微电子器件中,是最具前景的微电池之一.从电池构架角度,对全固态3D薄膜锂电池进行分类并概述其发展现状,分析了不同构架3D电池的优势和存在的问题,同时展望了薄膜电池的发展方向和应用前景.%All-solid-state thin film lithium battery is the one of the most promising micro-batteries because of it's high density,low self-discharge rate,good point cycle,safe and reliable,it can design any shape into microelectronic devices. The research progress, in some concepts of 3D all-solid-state lithium micro-batteries and preparation technology is reviewed. And the advantages and problems of different architecture of 3D batteries are analysised. Furthermore, the future development of the 3D all-solid-state film lithium batteries is expected.

  6. Intensity-measurement bend sensors based on periodically tapered soft glass fibers

    OpenAIRE

    Wang, Y.; Richardson, D. J.; Brambilla, G; Feng, X.; Petrovich, M.N.; Ding, M.; Song, Z.(Central China Normal University, Wuhan, China)

    2011-01-01

    We demonstrate a novel technique for tapering periodically an all-solid soft glass fiber, consisting of two types of lead silicate glasses, by the use of a focused CO2 laser beam and investigate the bend sensing applications of the periodically-tapered soft glass fiber. Such a soft glass fiber with periodic microtapers could be used to develop promising bend sensors with a sensitivity of -27.75 ?W/m^-1 by means of measuring the bend-induced change of light intensity. The proposed bend sensor ...

  7. Dietary fiber.

    Science.gov (United States)

    Madar, Z; Thorne, R

    1987-01-01

    Studies done on dietary fiber (DF) over the past five years are presented in this Review. The involvement of dietary fiber in the control of plasma glucose and lipid levels is now established. Two dietary fiber sources (soybean and fenugreek) were studied in our laboratory and are discussed herein. These sources were found to be potentially beneficial in the reduction of plasma glucose in non-insulin dependent diabetes mellitus subjects. They are shown to be acceptable by human subjects and are easy to use either in a mixture of milk products and in cooking. The mechanism by which dietary fiber alters the nutrient absorption is also discussed. The effect of DF on gastric emptying, transit time, adsorption and glucose transport may contribute to reducing plasma glucose and lipid levels. DF was found to be effective in controlling blood glucose and lipid levels of pregnant diabetic women. Dietary fiber may also be potentially beneficial in the reduction of exogenous insulin requirements in these subjects. However, increased consumption of DF may cause adverse side effects; the binding capabilities of fiber may affect nutrient availability, particularly that of minerals and prolonged and high DF dosage supplementation must be regarded cautiously. This is particularly true when recommending such a diet for pregnant or lactating women, children or subjects with nutritional disorders. Physiological effects of DF appear to depend heavily on the source and composition of fiber. Using a combination of DF from a variety of sources may reduce the actual mass of fiber required to obtain the desired metabolic effects and will result in a more palatable diet. Previously observed problems, such as excess flatus, diarrhea and mineral malabsorption would also be minimized.

  8. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    Science.gov (United States)

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-01

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

  9. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    Science.gov (United States)

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-01

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries. PMID:27511442

  10. 303.5 nm cw Pr:BYF-BBO laser emission under 447 nm all-solid-state Nd:GdVO4-BiBO blue laser pumping

    Science.gov (United States)

    Chen, X.; Shao, Y.; Yuan, J. L.; Zhang, D.; Wang, A. G.

    2013-06-01

    An all-solid-state blue laser-pumped Pr:BaY2F5 (Pr:BYF) laser at 607 nm has been demonstrated. With an incident 447 nm pump power of 1.04 W, the maximum orange output power was 337 mW. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a maximum UV power of 76 mW by using a β-BaB2O4 (BBO) nonlinear crystal. To the best of our knowledge, this is the first report on continuous-wave (cw) UV generation by an intracavity frequency doubling Pr:BYF laser.

  11. Preparation of thick-film LiNi1/3Co1/3Mn1/3O2 electrodes by aerosol deposition and its application to all-solid-state batteries

    Science.gov (United States)

    Iwasaki, Shinya; Hamanaka, Tadashi; Yamakawa, Tomohiro; West, William C.; Yamamoto, Kazuo; Motoyama, Munekazu; Hirayama, Tsukasa; Iriyama, Yasutoshi

    2014-12-01

    We prepared thick and dense-crystalline LiNi1/3Co1/3Mn1/3O2 (NMC) composite films at room temperature that can work well as cathodes in all-solid-state battery cells. The thick films were fabricated by aerosol deposition using NMC powder (D50 = 10.61 μm) as a source material. Commercially-obtained NMC powder did not form films at all on silicon wafer substrates, and cracking of the substrates was observed. However, a few tens of nanometer coating with amorphous niobium oxide resulted in the deposition of 7 μm-thick crystalline dense composite films. The films were successfully fabricated also on Li+-conductive glass-ceramic sheets with 150 μm in thickness, and all-solid-state batteries were fabricated. The solid-state battery provided a cathode-basis discharge capacity of 152 mAh g-1 (3.0-4.2 V, 0.025 C, 333 K) and repeated charge-discharge cycles for 20 cycles.

  12. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  13. Nanostructure Core Fiber With Enhanced Performances: Design, Fabrication and Devices

    DEFF Research Database (Denmark)

    Yu, X.; Yan, Min; Ren, G.B.;

    2009-01-01

    We report a new type of silica-based all-solid fiber with a 2-D nanostructure core. The nanostructure core fiber (NCF) is formed by a 2-D array of high-index rods of sub-wavelength dimensions. We theoretically study the birefringence property of such fibers over a large wavelength range. Large......-mode-area (LMA) structure with a typical high birefringence in the order of 10(-4) can be easily realized. The attenuation of the fabricated NCF is as low as 3.5 dB/km at 1550 nm. Higher macro- and micro-bending losses compared with those of the single-mode fiber (SMF) due to the reduced index difference have...... been observed experimentally, which suggests that the NCF is potentially useful for curvature and strain sensing applications. A fiber Bragg grating (FBG) inscribed in such a novel fiber is side-polished to make use of its evanescent field for refractive index sensing. The refractive index sensitivity...

  14. Sapphire optical fiber sensors

    OpenAIRE

    Feth, Shari

    1991-01-01

    Fiber optic sensors offer many advantages over conventional sensors, including; small size, low weight, high strength and durability. Standard silica optical fibers are limited by the material properties of silica. Temperatures above 700°C and other harsh environments are incompatible with standard optical fiber sensors. Sapphire fiber sensors offer another option for fiber optic sensing. Sapphire fibers are limited by the material properties of sapphire, which include high...

  15. Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  16. All-solid-state Lithium Ion Battery: Research and Industrial Prospects%全固态锂离子电池的研究及产业化前景

    Institute of Scientific and Technical Information of China (English)

    刘晋; 徐俊毅; 林月; 李劼; 赖延清; 袁长福; 张锦; 朱凯

    2013-01-01

    All-solid-state lithium ion battery has become an important focus due to higher safety,higher energy density and wider operating temperature compared to the commercial lithium ion battery with liquid organic electrolyte.Research and development of solid electrolyte are the keys for the successful market penetration of all-solid-state lithium ion battery.Nowadays,three kinds of solid electrolytes,polyethylene-oxide (PEO) as well as its derivatives based polymer electrolyte,LiPON thin film electrolyte,and glassy sulfide electrolyte,are widely studied and open very interesting new application prospects of all-solid-state lithium ion battery.Three major parameters of ionic conductivity,compatibility with elecμrodes,and manufacμuring cosμs are used μo evaluaμe μhe applicaμion prospecμs of μhe elecμrolyμe.Based on μhaμ,PEO and iμs derivatives have low fabricating cost and good compatibility with electrodes.However,because of low lithium ionic conductivity at ambient temperature,the batteries using this electrolyte needs to work at high temperatures with a temperature control system.LiPON is most suitable for ultra-thin-battery and micro-battery,which present long cycle life and good rate performance.But,it is difficult for large-scale production of the batteries due to high cost and complex manufacturing processes.Glassy sulfide electrolyte exhibits the highest lithium ion conductivity (10-3~ 10-2 S/cm at 25 ℃) among the three electrolytes,which is close to the level of liquid organic electrolyte and meet the requirement in industrial application.However,advanced manufacturing technologies of the battery are required for the improvement of contacts at electrolyte/electrodes interface.In recent years,all-solid-state battery samples and pilot production lines are available on the market.In this review,we summarize the research progresses and production technologies of batteries based on the three solid electrolytes,and attempt to explore the commercial

  17. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    . Such micro-structured fibers are the ones most often trated in literature concerning micro-structured fibers. These micro-structured fibers offer a whole range of novel wave guiding characteristics, including the possibility of fibers that guide only one mode irrespective of the frequency of light....... The thesis focuses on understanding the basic mechanisms controlling the modal properties of micro-structured fibers. One important sub-class of micro-structured fibers are fibers that guide light by index effects similar to those index effects that ensure guidance of light in standard optical fibers...... complicated to manufacture, compared to micro-structured fibers that guide light by simple index effects, because of stringent requirements concerning the periodicity of the cladding structure of the fibers. The theoretical investigation of these fibers is also more complex, than the investigation of micro...

  18. LBO晶体长度对全固态473nm蓝光激光器效率的影响%LBO Crystal Length on the Efficiency of All Solid-State 473 nm Blue Laser

    Institute of Scientific and Technical Information of China (English)

    李业秋; 刘艳娟; 李勇; 岱钦

    2012-01-01

    报道了结构紧凑、输出稳定的473 nm连续全固态蓝光激光器.模拟分析了LBO晶体长度与激光输出效率的关系,选择了最佳长度为10 mm的Ⅰ类相位匹配的LBO晶体.当抽运功率为3W时,获得了210 mW的473 nm蓝光激光输出功率,光-光转换效率为7%,激光输出功率起伏小于3%.%A compact and stable 473 nm continuous all-solid-state blue laser is reported. Simulation analysis of the relationship between the LBO crystal length and the laser output efficiency is done. An optimal length of 10 mm type I phase-matching LBO crystal is chosen. Under the pump power of 3 W, 210 mW of the blue laser at 473 nm is obtained. The optical-to-optical conversion efficiency is up to 7% . The fluctuation of laser output power is less than 3%.

  19. All-solid-state quasi-continuous-wave Nd:YAG/LBO green laser through harmonic generation%全固态准连续Nd:YAG/LBO绿光激光器

    Institute of Scientific and Technical Information of China (English)

    孙玲; 李平雪; 杨文是

    2011-01-01

    An all-solid-state quasi-continuous-wave (QCW) green laser was developed by use of plane-plane cavity with tow-rod birefringence compensation technology,LBO crystal was used for second harmonic generation. Two orthogonal acousto-optic Q-switches were used to sustain fully holding of the pump gain. 120 W at 1064 nm wavelength was achieved when the repetition rate was 15 kHz, and the 532 nm average output power is 71W with a pulse width of 250 ns and a conversion efficiency of 57.5% from the 1064 nm light to the green laser. The 532 nm average output power is 69W at a repetition rate of 10 kHz and a pulse width of 200 ns.%采用双Nd:YAG棒串接加90°旋光器补偿热致双折射,双声光Q开关调制,LBO晶体腔内倍频,实现了532 nm准连续绿光输出.重复频率10 kHz时,532 nm绿光输出功率达69 W,脉宽200 ns.重复频率15 kHz时,532 nm绿光输出功率达71 W,脉宽250 ns,倍频转换效率57.5%.

  20. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  1. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D;

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  2. High-fiber foods

    Science.gov (United States)

    Dietary fiber - self-care ... Dietary fiber adds bulk to your diet. Because it makes you feel full faster, it can help you ... Grains are another important source of dietary fiber. Eat more: ... Whole-grain breads Brown rice Popcorn High-fiber cereals, such ...

  3. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo Beom Eom; Hokyung Kim; Jinchae Kim; Un-Chul Paek; Byeong Ha Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  4. Fiber optic temperature sensor

    Science.gov (United States)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  5. High power fiber lasers

    Institute of Scientific and Technical Information of China (English)

    LOU Qi-hong; ZHOU Jun

    2007-01-01

    In this review article, the development of the double cladding optical fiber for high power fiber lasers is reviewed. The main technology for high power fiber lasers, including laser diode beam shaping, fiber laser pumping techniques, and amplification systems, are discussed in de-tail. 1050 W CW output and 133 W pulsed output are ob-tained in Shanghai Institute of Optics and Fine Mechanics, China. Finally, the applications of fiber lasers in industry are also reviewed.

  6. Effects of calcination treatment on the morphology, crystallinity, and photoelectric properties of all-solid-state dye-sensitized solar cells assembled by TiO2 nanorod arrays.

    Science.gov (United States)

    Sun, Xianmiao; Sun, Qiong; Li, Yang; Sui, Lina; Dong, Lifeng

    2013-11-14

    TiO2 has been extensively investigated due to its unique photoelectric properties. In this study, oriented single-crystal rutile TiO2 nanorod arrays were synthesized and then calcined at different temperatures in the atmosphere. The morphology and crystalline characterization indicated that the length of TiO2 nanorods increased rapidly and the nanorods became aggregated and fragile after calcination, yet the sintering treatment seemed to have almost no effect on the crystallinity. To obtain the all-solid-state, dye-sensitized solar cells (DSSCs), a newly reported solid inorganic semiconductor, CsSnI2.95F0.05, was employed as the electrolyte, and the Pt deposited on the conductive side of the fluorine-doped tin oxide (FTO) glass substrate was used as the counter-electrode. The effects of the calcination treatment on the photoelectric properties of the solar cells, including external quantum efficiency (EQE), open circuit voltage (V(OC)), short-circuit current (J(SC)), and photoelectric conversion efficiency (η), were investigated under the illumination of a solar simulator. As a result, all of the EQE, V(OC), J(SC), and η values of the cells first increased and then declined with the increase of calcination temperatures, and the highest η of 2.81% was obtained by the cell assembled with its TiO2 electrode sintered at 450 °C for 3 h, a value almost 2.5 times that of the non-sintered sample (1.1%).

  7. LD-pumped high efficiency all-solid-state Low noise green laser%LD泵浦的高效率全固体低噪声绿激光器

    Institute of Scientific and Technical Information of China (English)

    郑权; 檀慧明; 钱龙生; 赵岭

    2001-01-01

    介绍了一种LD泵浦的高效率全固体Nd:YVO4/LBO低噪声绿激光器。使用LBO晶体腔内倍频避免了KTP易出现的灰线问题;用三镜折叠腔结构可减少Nd:YVO4对绿光的吸收;满足了基模光斑与泵浦光斑的模匹配条件;使LBO在高的基频光功率密度下可得到较高的倍频效率。实验证明,该结构能够实现高效率的稳定绿光输出。在泵浦光功率为1.6W时,稳定输出功率达258mW,光光转换效率达16.1%。%A design of LD-pumped all-solid-state Nd:YVO4/LBO low noise green laser was reported in this paper.KTP crystal that is easy to produce gray tracks was replaced with LBO for intracavity frequency doubling.The green laser absorption by Nd:YVO4 was eliminated by using a V-shaped folded resonator.The mode matching was easy to obtain and the SHG efficiency was high.It was proved by the experiment that the design was very effective.With 1.6W pumped laser,258mW low noise stable green laser output was obtained.The optical conversion efficiency reached to 16.1%.

  8. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter;

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  9. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  10. Specialty optical fibers: revisited

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper contains description of chosen aspects of analysis and design of tailored optical fibers. By specialty optical fibers we understand here the fibers which have complex construction and which serve for the functional processing of optical signal rather than long distance transmission. Thus, they are called also instrumentation optical fibers. The following issues are considered: transmission properties, transformation of optical signal, fiber characteristics, fiber susceptibility to external reactions. The technology of tailored optical fibers offers a wider choice of the design tools for the fiber itself, and then various devices made from these fiber, than classical technology of communication optical fibers. The consequence is different fiber properties, nonstandard dimensions and different metrological problems. The price to be paid for wider design possibilities are bigger optical losses of these fibers and weaker mechanical properties, and worse chemical stability. These fibers find their applications outside the field of telecommunications. The applications of instrumentation optical fibers combine other techniques apart from the photonics ones like: electronic, chemical and mechatronic.

  11. Ion Transport and All-Solid Battery Characterization Studies on Mg2+-ION Conducting Nano-Composite Polymer Electrolyte (NCPEs):. (75PEO: 25MgSO4) + x MgO

    Science.gov (United States)

    Agrawal, R. C.; Mahipal, Y. K.; Sahu, Dinesh; Keshrawani, Priyanka

    2013-07-01

    Characterization of ion transport property on Mg2+-ion conducting Nano Composite Polymer Electrolytes (NCPEs): (75PEO: 25MgSO4) + x MgO, where x = 0, 1, 2, 3, 4, 5, 6, 8, 10, 12 wt. (%) has been reported. Solid Polymer Electrolyte (SPE) composition: [75PEO: 25MgSO4)], identified as the highest conducting film in an earlier study with room temperature conductivity σ ˜ 3.38 × 10-7 S /cm, has been used as Ist-phase host matrix and active filler MgO particles (micro / nano-dimension) as IInd - phase dispersoid. NCPE films have been prepared by a novel hot-press technique in place of the traditional solution cast method. Hot-press technique is recently receiving wider acceptability to cast polymeric electrolyte films due to the fact that it is a completely dry/solvent free/rapid/inexpensive procedure as compared to solution cast method. The Optimum Conducting Composition (OCC) of NCPE film has been identified from the filler-dependent conductivity measurements. As a consequence of dispersal of nano-size particles, the room temperature conductivity (σ) in NCPE OCC film increased by an order of magnitude i.e. σ ˜ 2.29 × 10-6 Scm-1. The quality of the film also improved substantially. The total ionic transference number (tion) and the cationic (Mg2+) transport number (t+) have been determined using dc polarization and a combined ac/dc technique respectively. A considerable increase in t+ could be achieved with the dispersal of nanoparticles. The confirmation of the salt-complexation in PEO polymer was done by FTIR spectroscopic studies. The temperature dependent conductivity measurements were carried out in NCPE OCC film and the activation energy (Ea) has been computed from `log σ - 1/T' Arrhenius plot. All-solid-state battery has been fabricated in the cell configuration: Mg (anode) // NCPE OCC film// MnO2 + C + Electrolyte (cathode), in which both the cathode and anode were in the form of thin pellet. The Open Circuit Voltage (OCV) ˜ 1.82 V was obtained. The

  12. LD泵浦全固态355nm紫外皮秒脉冲激光器%LD-pumped all-solid-state 355 nm ultraviolet picosecond pulse laser

    Institute of Scientific and Technical Information of China (English)

    白振岙; 白振旭; 陈檬; 李港

    2012-01-01

    利用激光二极管(LD)端面抽运Nd:YVO4激光晶体皮秒三倍频355nm全固态紫外激光器,采用半导体可饱和吸收镜(SESAM)锁模技术及皮秒再生放大技术,对1064 nm基波采用Ⅰ类相位匹配Li3 B3 O5 (LBO)晶体二倍频和Ⅱ类相位匹配LBO晶体三倍频,获得了稳定性好、倍频效率较高的355 nm紫外激光输出.当二极管泵浦功率为5W时,获得了脉宽为17 ps、重复频率为1 Hz、单脉冲能量为129.6μJ的稳定三倍额紫外激光输出,基频光到二倍额光和三倍频光的转换效率分别达到60.3%和16.6%,3h输出单脉冲能量的抖动在0.58%以下.%A laser diode (LD) end-pumped Nd :YVO4 all-solid-state ultraviolet picosecond(PS) pulse laser was demonstrated under the semiconductor saturable absorption mirror(SESAM) mode-locking technology and the PS pulse laser regeneration amplifier technology, by using the type I phase-matched LiB3O5 (LBO) as the second harmonic generation (SHG) crystal and the type II phase-matched LBO as the third harmonic generation(THG) crystal. Finally, the 355 nm UV laser was obtained with 129. 6 μJ single pulse energy, 17 ps pulse width at 1Hz repetition rate while the pump power was 5 W. The third harmonics were up to 60. 3% conversion to 532nm and 16. 6% to 355nm and the single pulse energy fluctuation was less than 0. 58% in 3h operation.

  13. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  14. Fiber optic chemical sensors

    Science.gov (United States)

    Jung, Chuck C.; McCrae, David A.; Saaski, Elric W.

    1998-09-01

    This paper provides a broad overview of the field of fiber optic chemical sensors. Several different types of fiber optic sensors and probes are described, and references are cited for each category discussed.

  15. Analysis of photonic crystal fiber sensor character

    Institute of Scientific and Technical Information of China (English)

    GUO Xuan; LIU Feng; BI Wei-hong

    2007-01-01

    The special character of a PCF which is used as a gas or liquid sensor is discussed. The field distribution is analyzed when the solid core PCF is injected with different medium that has different relative dielectric constant (or refractive index). And the experiential formulas of the relation between refractive index of some kinds of liquid and their concentration are given,in order to measure the concentration of the relative liquid. At the same time, the effect of propagation constant on PCF sensor character is also discussed. Furthermore, the photonic band-gap (PBG) ofPCF (PBG-PCF) is calculated at different medium relative dielectric constant, when it is injected with different medium. That is the principle basis for this kind of PCF sensors.

  16. Rayleigh fiber optics gyroscope

    OpenAIRE

    Kung, A.; Budin, J.; Thévenaz, Luc; Robert, P. A.

    1997-01-01

    A novel kind of fiber-optic gyroscope based on Rayleigh backscattering in a fiber-ring resonator is presented in this letter. Information on the rotation rate is obtained from the composed response of the fiber ring to an optical time-domain reflectometry (OTDR) instrument. The developed model based on the coherence properties of the Rayleigh scattering yields a polarization-insensitive and low-cost gyroscope

  17. Helical Fiber Amplifier

    Science.gov (United States)

    Koplow, Jeffrey P.; Kliner, Dahy; Goldberg, Lew

    2002-12-17

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  18. Fundamentals of fiber lasers and fiber amplifiers

    CERN Document Server

    Ter-Mikirtychev, Valerii (Vartan)

    2014-01-01

    This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, main operational laser regimes, and practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professionals who work with lasers, in the optical communications, chemical and biological industries, etc.

  19. Fiber Singular Optics

    OpenAIRE

    A. V. Volyar

    2002-01-01

    The present review is devoted to the optical vortex behavior both in free space and optical fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed on the base of the operator of the spin – orbit interaction in order to forecast the possible ways of manufacturing the vortex preserving fibers and their applications in supersensitive optical devices.

  20. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind; P.; Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..

  1. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind P. Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..

  2. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin;

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  3. The Fiber Optic Connection.

    Science.gov (United States)

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  4. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes;

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser ...

  5. Fiber optic laser rod

    Science.gov (United States)

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  6. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    , leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...

  7. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  8. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes;

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...... monolithic 350 W cw fiber laser system with an M2 of less than 1.1. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE)....

  9. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes;

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...... W CW fiber laser system with an M2 of less than 1.1. Finally, we briefly touch upon the subject of photo darkening and its origin....

  10. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  11. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes;

    2008-01-01

    systems require specially designed fibers with large cores and good power handling capabilities – requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... W CW fiber laser system with an M2 of less than 1.1. Finally, we briefly touch upon the subject of photo darkening and its origin....

  12. Oriented Fiber Filter Media

    OpenAIRE

    Bharadwaj, R; A. Patel, S. Chokdeepanich, Ph.D.; G.G. Chase, Ph.D.

    2008-01-01

    Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a t...

  13. Fiber composite flywheel rim

    Science.gov (United States)

    Davis, Donald E.; Ingham, Kenneth T.

    1987-01-01

    A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

  14. Agave Americana Leaf Fibers

    OpenAIRE

    Ashish Hulle; Pradyumkumar Kadole; Pooja Katkar

    2015-01-01

    The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant i...

  15. Development of Fiber Laser

    OpenAIRE

    Zhang, Yang; HUANG, Guoqing

    2013-01-01

    In recent years, fiber lasers have been focused as research topic in the field of laser. It is widely applicable in the field of modern optical communication, optical sensing, materials technology, life sciences and precision mechanics, national defence science ,etc. Fiber laser is typical representative of the third generation lasers. Fiber lasers have great ad-vantages compare to any other lasers, such as long lifetime, small size, high efficiency, compact structure, etc. This repor...

  16. Radio over fiber systems

    OpenAIRE

    Ghafoor, Salman

    2012-01-01

    The three main types of Radio Over Fiber (ROF)communication systems, namely analogue ROF, baseband ROF and digitized ROF are investigated. Optical fibers are increasingly replacing copper wires. In long-haul, high-bit-rate communication systems optical fiber has already become the dominant mode of transmission due to its enormous bandwidth and low loss. ROF facilitate the seamless integration of optical and wireless communication systems. Since the RF spectrum is limited, wireless systems rel...

  17. Applications of chalcogenide fiber

    OpenAIRE

    Hewak, D. W.; Khan, K.; Huang, C. C.

    2011-01-01

    Chalcogenide glass optical fibers have been extensively studied since 1967, when sulphide based fibers and their potential applications were first proposed. While high quality fiber drawn from alloys containing a variety of chalcogen elements have been realized, their delicate nature, complicated fabrication methodology and expense has restricted widespread application and commercial acceptance. In this paper we describe our current work on the fabrication and application of chalcogenide fibe...

  18. Optical fiber technology 2012

    OpenAIRE

    Romaniuk, Ryszard S.; Wójcik, Waldemar

    2013-01-01

    The Conference on Optical Fibers and Their Applications, Nał˛eczów 2012, in its 14th edition, which has been organized since more than 35 years, has summarized the achievements of the local optical fiber technology community, for the last year and a half. The conference specializes in developments of optical fiber technology, glass and polymer, classical and microstructured, passive and active. The event gathered around 100 participants. There were shown 60 presentations ...

  19. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  20. Oriented Fiber Filter Media

    Directory of Open Access Journals (Sweden)

    R. Bharadwaj

    2008-06-01

    Full Text Available Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a thick layered media can improve performance by about 40%. The results also show the improved performance is not monotonically correlated to the average fiber angle of the medium.

  1. Applications of monolithic fiber interferometers and actively controlled fibers

    OpenAIRE

    Rugeland, Patrik

    2013-01-01

    The objective of this thesis was to develop applications of monolithic fiber devices and actively controlled fibers. A special twin-core fiber known as a ‘Gemini’ fiber was used to construct equal arm-length fiber interferometers, impervious to temperature and mechanical perturbations. A broadband add/drop multiplexer was constructed by inscribing fiber Bragg gratings in the arms of a Gemini Mach-Zehnder interferometer. A broadband interferometric nanosecond switch was constructed from a micr...

  2. Soliton mode fiber direction couplers

    Directory of Open Access Journals (Sweden)

    T. L. Andrushko

    1987-12-01

    Full Text Available The possibility of working towards fiber couplers in the nonlinear regime. The results can be used in the design of the main lines on the optical fibers and fiber optic sensors to create physical quantities.

  3. A Novel Polarization Maintaining Fiber

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    It introduces a novel elliptical jacket polarization maintaining fiber, whose SAP is like numeral "1". One preform can be drawn over 8km. Fiber's performances show that it is fit for fiber gyroscope and other sensors.

  4. A Novel Polarization Maintaining Fiber

    Institute of Scientific and Technical Information of China (English)

    Benjamin Xue

    2003-01-01

    It introduces a novel elliptical jacket polarization maintaining fiber, whose SAP is like numeral "1" One preform can be drawn over 8km. Fiber's performances show that it is fit for fiber gyroscope and other sensors.

  5. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  6. Ultra-low transmission loss (7.7 dB/km at 750 nm) inhibited-coupling guiding hollow-core photonic crystal fibers with a single ring of tubular lattice cladding

    CERN Document Server

    Debord, B; Chafer, M; Baz, A; Maurel, M; Blondy, J M; Hugonnot, E; Scol, F; Vincetti, L; Gerome, F; Benabid, F

    2016-01-01

    The advent of photonic bandgap (PBG) guiding hollow- core photonic crystal fiber (HC-PCF) sparked the hope of guiding light with attenuation below the fundamental silica Rayleigh scattering limit (SRSL) of conventional step-index fibers. Unfortunately, the combination of the strong core-cladding optical-overlap, the surface roughness at the silica cladding struts and the presence of interface-modes limited the lowest reported transmission-loss to 1.2 dB/km at 1550 nm. This hope is recently revived by the introduction of hypocycloid core- contour (i.e. negative curvature) in inhibited-coupling (IC) guiding HC-PCF, and the reduction of their confinement loss to a level that makes them serious contenders for light transmission below the SRSL in UV- VIS-NIR spectral range. Here, we report on several IC guiding HC-PCFs with a hypocycloid core-contour and a cladding structure made of a single ring from a tubular lattice. The fibers guide in the UV-VIS and NIR, and among which we list one with a record transmission ...

  7. Contact fiber bundles

    OpenAIRE

    Lerman, Eugene

    2003-01-01

    We define contact fiber bundles and investigate conditions for the existence of contact structures on the total space of such a bundle. The results are analogous to minimal coupling in symplectic geometry. The two applications are construction of K-contact manifolds generalizing Yamazaki's fiber join construction and a cross-section theorem for contact moment maps

  8. Fiber Bragg grating sensors

    NARCIS (Netherlands)

    Cheng, L.K.; Nieuwland, R.A.; Toet, P.M.; Agovic, K.

    2010-01-01

    A brief overview of fiber Bragg grating based sensor technology from sensor head, read out unit and commercial applications is given. Fiber Bragg grating based sensor systems are becoming mature rapidly. Components for commercial pressure sensors and temperature sensors are available and slowly gett

  9. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.;

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  10. 全固化三明治结构Nd:YVO4与Nd:GdVO4激光器的特性研究%THE RESEARCH ON ALL-SOLID Nd: YVO4 AND Nd: GdVO4 LASER WITH SANDWICH-STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    张阳德; 陈长水; 刘蔚东; 龚传波; 吴边; 罗湘建

    2002-01-01

    Objective:The properties of Nd:GdVO4 laser crystals were studied in application of all-solid laser with LD pumped.Method:We adopted sand wich structural Nd:YVO4 laser crystals experimental devices separately.Results:As to Nd:YVO4 crystal,1.2W continuous laser output at 1064nm was ac-quired with the optical-to-optical transition efficiency of 30%.And as to Nd:GdVO4,1.8W continuous laser out-put at 1064nm was acquired with the optical-to-optical efficiency of 47.2%.Conclusion:All-solid laser is of simple and compact structure,long lifetime,low cost and high efficiency that it will be extensively applied to laser bioengineering,laser environmental monitoring and so on.And comparing the properties of Nd:GdVO4 to that of Nd:YVO4,Nd:GdVO4 would be a more promising all-solid laser crystal.

  11. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  12. Fluorescent fiber diagnostics

    Science.gov (United States)

    Toeppen, John S.

    1994-01-01

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  13. Python fiber optic seal

    Energy Technology Data Exchange (ETDEWEB)

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-08-01

    Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  14. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  15. Specially fibers and relevant technologies for fiber optic sensing

    International Nuclear Information System (INIS)

    Fiber optic sensing is one of the most important technologies in phonic sensing. Novel specially fibers and relevant technologies have been developed for various application fields, such as avionics, infrastructures, atomic plants and oil and gas industries. In this paper, recent progress in the fiber optic sensing is reviewed with a focus on the specialty fibers. (author)

  16. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    OpenAIRE

    Patcharat Wongsriraksa; Kohsuke Togashi; Asami Nakai; Hiroyuki Hamada

    2013-01-01

    Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fib...

  17. Fiber Pulling Apparatus

    Science.gov (United States)

    Workman, Gary L.; Smith, Guy A.; OBrien, Sue; Adcock, Leonard

    1998-01-01

    The fiber optics industry has grown into a multi-billion marketplace that will continue to grow into the 21st century. Optical fiber communications is currently dominated by silica glass technology. Successful efforts to improve upon the low loss transmission characteristics of silica fibers have propelled the technology into the forefront of the communications industry. However, reaching the theoretical transmission capability of silica fiber through improved processing has still left a few application areas in which other fiber systems can provide an influential role due to specific characteristics of high theoretical transmission in the 2 - 3 micron wavelength region. One of the other major materials used for optical fibers is the systems based upon Heavy Metal Fluoride Glass (HMFG). Commercial interest is driven primarily by the potential for low loss repeaterless infrared fibers. An example of the major communications marketplace which would benefit from the long distance repeaterless capability of infrared fibers is the submarine cables which link the continents. When considering commercial interests, optical fiber systems provide a healthy industrial position which continues to expand. Major investments in the systems used for optical fiber communications have continued to increase each year and are predicted to continue well into the next century. Estimates of 8.5% compounded annually are predicted through 1999 for the North American market and 1 1 % worldwide. The growth for the optical fiber cable itself is expected to continue between 44 and 50 per cent of the optical fiber communications budget through 1999. The total budget in 1999 world-wide is expected to be in the neighborhood of $9 billion. Another survey predicts that long haul telecommunications represents 15% of a world-wide fiber optics market in 1998. The actual amount allotted to cable was not specified. However, another market research had predicted that the cable costs alone represents more

  18. Random Fiber Laser

    CERN Document Server

    de Matos, Christiano J S; Brito-Silva, Antônio M; Gámez, M A Martinez; Gomes, Anderson S L; de Araújo, Cid B

    2007-01-01

    We investigate the effects of two dimensional confinement on the lasing properties of a classical random laser system operating in the incoherent feedback (diffusive) regime. A suspension of 250nm rutile (TiO2) particles in a Rhodamine 6G solution was inserted into the hollow core of a photonic crystal fiber (PCF) generating the first random fiber laser and a novel quasi-one-dimensional RL geometry. Comparison with similar systems in bulk format shows that the random fiber laser presents an efficiency that is at least two orders of magnitude higher.

  19. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  20. Random Fiber Laser

    OpenAIRE

    Christiano J. S. de Matos; Menezes, Leonardo de S.; Brito-Silva, Antônio M.; Gámez, M. A. Martinez; Gomes, Anderson S. L.; de Araújo, Cid B.

    2007-01-01

    We investigate the effects of two dimensional confinement on the lasing properties of a classical random laser system operating in the incoherent feedback (diffusive) regime. A suspension of 250nm rutile (TiO2) particles in a Rhodamine 6G solution was inserted into the hollow core of a photonic crystal fiber (PCF) generating the first random fiber laser and a novel quasi-one-dimensional RL geometry. Comparison with similar systems in bulk format shows that the random fiber laser presents an e...

  1. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  2. Jilin Chemical Fiber Group Launches Its Largest Carbon Fiber Preject

    Institute of Scientific and Technical Information of China (English)

    Flora

    2011-01-01

    China's carbon fiber precursor production line with 5,000 tons of annual output was put into operation in Jilin Chemical Fiber Group on November 18th this year, creating the maximum production capacity currently in China, for which Jilin Chemical Fiber Group become China's largest carbon fiber precursor production base, The smooth operation of the project has laid a solid foundation for promoting China's carbon fiber industry steady, rapid, and healthy development,

  3. Fiber optic data transmission

    Science.gov (United States)

    Shreve, Steven T.

    1987-01-01

    The Ohio University Avionics Engineering Center is currently developing a fiber optic data bus transmission and reception system that could eventually replace copper cable connections in airplanes. The original form of the system will transmit information from an encoder to a transponder via a fiber optic cable. An altimeter and an altitude display are connected to a fiber optic transmitter by copper cable. The transmitter converts the altimetry data from nine bit parallel to serial form and send these data through a fiber optic cable to a receiver. The receiver converts the data using a cable similar to that used between the altimeter and display. The transmitting and receiving ends also include a display readout. After completion and ground testing of the data bus, the system will be tested in an airborne environment.

  4. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  5. Fiber based optofluidic biosensors

    Science.gov (United States)

    Lismont, M.; Vandewalle, N.; Joris, B.; Dreesen, L.

    2014-09-01

    Medicinal diagnosis requires the development of innovative devices allowing the detection of small amounts of biological species. Among the large variety of available biosensors, the ones based on fluorescence phenomenon are really promising. Here, we show a prototype of the basic unit of a multi-sensing biosensor combining optics and microfluidics benefits. This unit makes use of two crossed optical fibers: the first fiber is used to carry small probe molecules droplets and excite fluorescence, while the second one is devoted to target molecules droplets transport and fluorescence detection. Within this scheme, the interaction takes place in each fiber node. The main benefits of this detection setup are the absence of fibers functionalization, the use of microliter volumes of target and probe species, their separation before interaction, and a better detection limit compared to cuvettes setups.

  6. Fiber Optics: No Illusion.

    Science.gov (United States)

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  7. Tapered GRIN fiber microsensor.

    Science.gov (United States)

    Beltrán-Mejía, Felipe; Biazoli, Claudecir R; Cordeiro, Cristiano M B

    2014-12-15

    The sensitivity of an optical fiber microsensor based on inter-modal interference can be considerably improved by tapering a short extension of the multimode fiber. In the case of Graded Index fibers with a parabolic refractive index profile, a meridional ray exhibits a sinusoidal path. When these fibers are tapered, the period of the propagated beam decrease down-taper and increase up-taper. We take advantage of this modulation -along with the enhanced overlap between the evanescent field and the external medium- to substantially increase the sensitivity of these devices by tuning the sensor's maximum sensitivity wavelength. Moreover, the extension of this device is reduced by one order of magnitude, making it more propitious for reduced space applications. Numerical and experimental results demonstrate the success and feasibility of this approach. PMID:25606989

  8. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H

    1997-01-01

    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  9. Fiber optics engineering

    CERN Document Server

    Azadeh, Mohammad

    2009-01-01

    Covering fiber optics from an engineering perspective, this text emphasizes data conversion between electrical and optical domains. Techniques to improve the fidelity of this conversion (from electrical to optical domain, and vice versa) are also covered.

  10. [Carbohydrates and fiber].

    Science.gov (United States)

    Lajolo, F M; de Menezes, E W; Filisetti-Cozzi, T M

    1988-09-01

    Dietary carbohydrates comprise two fractions that may be classified as digestible, and which are useful as energy sources (simple and complex carbohydrates) and fiber, which is presumed to be of no use to the human body. There are insufficient epidemiologic data on the metabolic effects of simple carbohydrates and it is not advisable to make quantitative recommendations of intake. It is questionable to recommend in developing countries that a fixed proportion of dietary energy be derived from simple sugars, due to the high prevalence of deficient energy intake, cultural habits, and regional differences in food intake and physical activity. In relation to recommendations of complex carbohydrates, it should be considered that their absorption is influenced by many factors inherent to the individual and to the foods. Fiber is defined as a series of different substances derived from tissue structures, cellular residues and undigested chemical substances that may be partially utilized after intestinal bacteria have acted on them. There is not a clear definition of the chemical composition of fiber, but it consists mainly of polysaccharides (such as cellulose, hemicellulose and pectins), lignin and end products of the interactions of various food components. The effects of fiber, such as control of food intake, regulation of gastrointestinal transit, post-prandial blood concentrations of cholesterol, glucose and insulin, flatulence and alterations in nutrient bioavailability are due to various physical properties inherent to its chemical components. Impairment of nutrient absorption may be harmful, mainly among populations whose food intake is lower than their energy needs, and with a high fiber content. This may be particularly important in pregnant women, growing children and the elderly, and should be considered when making nutrient recommendations. A precise knowledge of fiber is also important to calculate the real energy value of foods, mainly for two reasons: 1

  11. Fiber optic detector

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  12. Electrospun Amplified Fiber Optics

    OpenAIRE

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-01-01

    A lot of research is focused on all-optical signal processing, aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for an efficient signal transmission. However, the complex fabrication methods, involving high-temperature processes performed in highly pure environment, slow down the fabrication and make amplified components expensive with respect to an ideal, ...

  13. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  14. Dark Soliton Fiber Laser

    OpenAIRE

    Zhang, H.; Tang, D. Y.; L.M. Zhao; Wu, X; Bao, Q. L.; Loh, K. P.

    2009-01-01

    We report on the experimental observation of stable dark solitons in an all normal dispersion fiber laser. We found experimentally that dark soliton formation is a generic feature of the fiber laser under strong continuous wave (CW) emission. However, only under appropriate pump strength and negative cavity feedback, stable single or multiple dark soliton could be achieved. Furthermore, we show that the features of the observed dark solitons could be well understood based on the nonlinear Sch...

  15. Chiral fiber optical isolator

    Science.gov (United States)

    Kopp, Victor I.; Zhang, Guoyin; Zhang, Sheng; Genack, Azriel Z.; Neugroschl, Dan

    2009-02-01

    We propose an in-fiber chiral optical isolator based on chiral fiber polarizer technology and calculate its performance by incorporating the magnetic field into the scattering matrix. The design will be implemented in a special preform, which is passed through a miniature heat zone as it is drawn and twisted. The birefringence of the fiber is controlled by adjusted the diameter of a dual-core optical fiber. By adjusting the twist, the fiber can convert linear to circular polarization and reject one component of circular polarization. In the novel central portion of the isolator, the fiber diameter is large. The effective birefringence of the circular central core with high Verdet constant embedded in an outer core of slightly smaller index of refraction is small. The central potion is a non-reciprocal polarization converter which passes forward traveling left circularly polarized (LCP) light as LCP, while converting backward propagating LCP to right circularly polarized (RCP) light. Both polarizations of light traveling backwards are scattered out of the isolator. Since it is an all-glass structure, we anticipate that the isolator will be able to handle several watts of power and will be environmentally robust.

  16. Emergence of fiber supercapacitors.

    Science.gov (United States)

    Yu, Dingshan; Qian, Qihui; Wei, Li; Jiang, Wenchao; Goh, Kunli; Wei, Jun; Zhang, Jie; Chen, Yuan

    2015-02-01

    Supercapacitors (SCs) are energy storage devices which have high power density and long cycle life. Conventional SCs have two-dimensional planar structures. As a new family of SCs, fiber SCs utilize one-dimensional cylindrically shaped fibers as electrodes. They have attracted significant interest since 2011 and have shown great application potential either as micro-scale devices to complement or even replace micro-batteries in miniaturized electronics and microelectromechanical systems or as macro-scale devices for wearable electronics or smart textiles. This tutorial review provides an essential introduction to this new field. We first introduce the basics of performance evaluation for fiber SCs as a foundation to understand different research approaches and the diverse performance metrics reported in the literature. Next, we summarize the current state-of-the-art progress in structure design and electrode fabrication of fiber SCs. This is followed by a discussion on the integration of multiple fiber SCs and the combination with other energy harvesting or storage devices. Last, we present our perspectives on the future development of fiber SCs and highlight key technical challenges with the hope of stimulating further research progress. PMID:25420877

  17. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  18. Development of Fiber Lasers and Their Applications

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chong-guang; QU Zhou; LIU Yang; WANG Ji; WANG Li-jun

    2006-01-01

    Development of fiber lasers, especially the latest progress in high power fiber lasers, and the problems of the commercialization of high power fiber lasers, are discussed. Research on other kinds of fiber lasers, such as microstructure fiber laser, ultrashort pulse fiber lasers, Raman fiber lasers are also involved.

  19. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda;

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  20. FIBER-OPTIC GYROSCOPES BASED ON PHOTONIC-CRYSTAL FIBERS

    OpenAIRE

    Haider, Ali

    2015-01-01

    Over the last few decades optical fibers have been widely deployed in navigation industries owing to their special performance as the best light guidance. Fiber-optic gyroscope is one of the applications of optical fibers dependent mainly on the Sagnac effect. It is of important applications in the field of space navigation. In the Fiber-optic gyroscope, an optical fiber is used as the medium of propagation for the light. A long fiber cable is winded into loops in order to increase the effect...

  1. Fiber-diffraction Interferometer using Coherent Fiber Optic Taper

    OpenAIRE

    Kihm, Hagyong; Lee, Yun-Woo

    2010-01-01

    We present a fiber-diffraction interferometer using a coherent fiber optic taper for optical testing in an uncontrolled environment. We use a coherent fiber optic taper and a single-mode fiber having thermally-expanded core. Part of the measurement wave coming from a test target is condensed through a fiber optic taper and spatially filtered from a single-mode fiber to be reference wave. Vibration of the cavity between the target and the interferometer probe is common to both reference and me...

  2. Self Similar Optical Fiber

    Science.gov (United States)

    Lai, Zheng-Xuan

    This research proposes Self Similar optical fiber (SSF) as a new type of optical fiber. It has a special core that consists of self similar structure. Such a structure is obtained by following the formula for generating iterated function systems (IFS) in Fractal Theory. The resulted SSF can be viewed as a true fractal object in optical fibers. In addition, the method of fabricating SSF makes it possible to generate desired structures exponentially in numbers, whereas it also allows lower scale units in the structure to be reduced in size exponentially. The invention of SSF is expected to greatly ease the production of optical fiber when a large number of small hollow structures are needed in the core of the optical fiber. This dissertation will analyze the core structure of SSF based on fractal theory. Possible properties from the structural characteristics and the corresponding applications are explained. Four SSF samples were obtained through actual fabrication in a laboratory environment. Different from traditional conductive heating fabrication system, I used an in-house designed furnace that incorporated a radiation heating method, and was equipped with automated temperature control system. The obtained samples were examined through spectrum tests. Results from the tests showed that SSF does have the optical property of delivering light in a certain wavelength range. However, SSF as a new type of optical fiber requires a systematic research to find out the theory that explains its structure and the associated optical properties. The fabrication and quality of SSF also needs to be improved for product deployment. As a start of this extensive research, this dissertation work opens the door to a very promising new area in optical fiber research.

  3. A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics

    Science.gov (United States)

    Zhou, Qianlong; Jia, Chunyang; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan

    2016-09-01

    At present, the topic of building high-performance, miniaturized and mechanically flexible energy storage modules which can be directly integrated into textile based wearable electronics is a hotspot in the wearable technology field. In this paper, we reported a highly flexible fiber-shaped electrode fabricated through a one-step convenient hydrothermal process. The prepared graphene hydrogels/multi-walled carbon nanotubes-cotton thread derived from natural cotton thread is electrochemically active and mechanically strong. Fiber-shaped supercapacitor based on the prepared fiber electrodes and polyvinyl alcohol-H3PO4 gel electrolyte exhibits good capacitive performance (97.73 μF cm-1 at scan rate of 2 mV s-1), long cycle life (95.51% capacitance retention after 8000 charge-discharge cycles) and considerable stability (90.75% capacitance retention after 500 continuous bending cycles). Due to its good mechanical and electrochemical properties, the graphene hydrogels/multi-walled carbon nanotubes-cotton thread based all-solid fiber-shaped supercapacitor can be directly knitted into fabrics and maintain its original capacitive performance. Such a low-cost textile thread based versatile energy storage device may hold great potential for future wearable electronics applications.

  4. Enhanced radiation resistant fiber optics

    Science.gov (United States)

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  5. Fiber-optic technology review

    International Nuclear Information System (INIS)

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 μm and development of wavelengths multiplexers for simultaneous system operation at several wavelengths

  6. Nonlinear effects in optical fibers

    CERN Document Server

    Ferreira, Mario F

    2011-01-01

    Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber

  7. Continuous fiber thermoplastic prepreg

    Science.gov (United States)

    Wilson, Maywood L. (Inventor); Johnson, Gary S. (Inventor)

    1993-01-01

    A pultrusion machine employing a corrugated impregnator vessel to immerse multiple, continuous strand, fiber tow in an impregnating material, and an adjustable metered exit orifice for the impregnator vessel to control the quantity of impregnating material retained by the impregnated fibers, is provided. An adjustable height insert retains transverse rod elements within each depression of the corrugated vessel to maintain the individual fiber tows spread and in contact with the vessel bottom. A series of elongated heating dies, transversely disposed on the pultrusion machine and having flat heating surfaces with radiused edges, ensure adequate temperature exposed dwell time and exert adequate pressure on the impregnated fiber tows, to provide the desired thickness and fiber/resin ratio in the prepreg formed. The prepreg passing through the pulling mechanism is wound on a suitable take-up spool for subsequent use. A formula is derived for determining the cross sectional area opening of the metering device. A modification in the heating die system employs a heated nip roller in lieu of one of the pressure applying flat dies.

  8. Congenital fiber type disproportion.

    Science.gov (United States)

    Kissiedu, Juliana; Prayson, Richard A

    2016-04-01

    Type I muscle fiber atrophy in childhood can be encountered in a variety of neuromuscular disorders. Congenital fiber type disproportion (CFTD) is one such condition which presents as a nonprogressive muscle weakness. The diagnosis is often made after excluding other differential diagnostic considerations. We present a 2-year-9-month-old full term boy who presented at 2 months with an inability to turn his head to the right. Over the next couple of years, he showed signs of muscle weakness, broad based gait and a positive Gower's sign. He had normal levels of creatine kinase and normal electromyography. A biopsy of the vastus lateralis showed a marked variation in muscle fiber type. The adenosine triphosphate (ATP)-ase stains highlighted a marked type I muscle atrophy with rare scattered atrophic type II muscle fibers. No abnormalities were observed on the nicotinamide adenine dinucleotide (NADH), succinate dehydrogenase (SDH) or cytochrome oxidase stained sections. Ragged red fibers were not present on the trichrome stain. Abnormalities of glycogen or lipid deposition were not observed on the periodic acid-Schiff or Oil-Red-O stains. Immunostaining for muscular dystrophy associated proteins showed normal staining. Ultrastructural examination showed a normal arrangement of myofilaments, and a normal number and morphology for mitochondria. A diagnosis of CFTD was made after excluding other causes of type I atrophy including congenital myopathy. The lack of specific clinical and genetic disorder associated with CFTD suggests that it is a spectrum of a disease process and represents a diagnosis of exclusion. PMID:26526626

  9. Automatic Fiber Orientation Detection for Sewed Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Automatic production and precise positioning of carbon fiber reinforced plastics (FRP) require precise detection of the fiber orientations. This paper presents an automatic method for detecting fiber orientations of sewed carbon fibers in the production of FRP. Detection was achieved by appropriate use of regional filling, edge detection operators, autocorrelation methods, and the Hough transformation. Regional filling was used to reduce the influence of the sewed regions, autocorrelation was used to clarify the fiber directions, edge detection operators were used to extract the edge features for the fiber orientations, and the Hough transformation was used to calculate the angles. Results for two kinds of carbon fiber materials show that the method is relatively quick and precise for detecting carbon fiber orientations.

  10. Polydimethylsiloxane fibers for optical fiber sensor of displacement

    Science.gov (United States)

    Martincek, Ivan; Pudis, Dusan; Gaso, Peter

    2013-09-01

    The paper describes the preparation of polydimethylsiloxane (PDMS) fiber integrated on the conventional optical fibers and their use for optical fiber displacement sensor. PDMS fiber was made of silicone elastomer Sylgard 184 (Dow Corning) by drawing from partially cured silicone. Optical fiber displacement sensor using PDMS fiber is based on the measurement of the local minimum of optical signal in visible spectral range generated by intermodal interference of circularly symmetric modes. Position of the local minimum in spectral range varies by stretching the PDMS fiber of 230 μm in the wavelength range from 688 to 477 nm. In the stretched PDMS fiber is possible to determine the longitudinal displacement with an accuracy of approximately 1 micrometer.

  11. Optical fiber networks for remote fiber optic sensors

    OpenAIRE

    Montserrat Fernandez-Vallejo; Manuel Lopez-Amo

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challeng...

  12. Fiber Length and Orientation in Long Carbon Fiber Thermoplastic Composites

    OpenAIRE

    Hanhan, Imad; Sullivan, Connor; Sharma, Bhisham; Sangid, Michael

    2014-01-01

    Carbon fiber composites have become popular in aerospace applications because of their lightweight yet strong material properties. The injection molding process can be used to produce discontinuous fiber composites using less time and resources than traditional methods, thereby broadening carbon fiber composites’ applications in different industries. Utilization of longer fibers offers more load carrying capability and superior strength properties for injected molded composites. Since the fib...

  13. Femtosecond Fiber Lasers

    Science.gov (United States)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  14. Carbon Fiber Composites

    Science.gov (United States)

    1997-01-01

    HyComp(R), Inc. development a line of high temperature carbon fiber composite products to solve wear problems in the harsh environment of steel and aluminum mills. WearComp(R), self-lubricating composite wear liners and bushings, combines carbon graphite fibers with a polyimide binder. The binder, in conjunction with the fibers, provides the slippery surface, one that demands no lubrication, yet wears at a very slow rate. WearComp(R) typically lasts six to ten times longer than aluminum bronze. Unlike bronze, WearComp polishes the same surface and imparts a self-lube film for years of service. It is designed for continuous operation at temperatures of 550 degrees Fahrenheit and can operate under high compressive loads.

  15. Fiber optic calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, C.; Bayliss, S.; Bracken, D. [Los Alamos National Lab., NM (United States); Bush, J.; Davis, P. [Optiphase, Inc., Van Nuys, CA (United States)

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian ({mu}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  16. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microrad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  17. Fiber Optic Calorimetry

    International Nuclear Information System (INIS)

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian (microrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  18. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian (μrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  19. Fiber Optic Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-12-12

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian ({micro}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  20. Fiber optic calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, C.R.; Bayliss, S.C.; Bracken, D.S. [Los Alamos National Lab., NM (United States); Bush, I.J.; Davis, P.G. [Optiphase, Inc., Van Nuys, CA (United States)

    1998-12-31

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 {micro}rad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  1. Fiber optic hydrogen sensor

    Science.gov (United States)

    Jung, Chuck C.; Saaski, Elric W.; McCrae, David A.

    1998-09-01

    This paper describes a novel fiber optic-based hydrogen sensor. The sensor consists of a thin-film etalon, constructed on the distal end of a fiber optic. The exterior mirror of the etalon is palladium or a palladium-alloy, which undergoes an optical change upon exposure to hydrogen. Data is presented on fiber optic sensors constructed with palladium and several alloys of palladium. The linearity of the optical response of these sensors to hydrogen is examined. Etalons made with pure palladium are found to be desirable for sensing low concentrations of hydrogen, or for one-time exposure to high concentrations of hydrogen. Etalons made from palladium alloys are found to be more desirable in applications were repeated cycling in high concentrations of hydrogen occurs.

  2. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber-laser...... cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  3. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes inter

  4. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  5. Optical fiber telecommunications IIIb

    CERN Document Server

    Koch, Thomas L

    2012-01-01

    Updated to include the latest information on light wave technology, Optical Fiber Telecommunication III, Volumes A & B are invaluable for scientists, students, and engineers in the modern telecommunications industry. This two-volume set includes the most current research available in optical fiber telecommunications, light wave technology, and photonics/optoelectronics. The authors cover important background concepts such as SONET, coding device technology, andWOM components as well as projecting the trends in telecommunications for the 21st century.Key Features* One of the hottest subjects of

  6. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  7. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul

    1993-01-01

    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  8. Fused-Polished Fiber Couplers

    Institute of Scientific and Technical Information of China (English)

    Sien; Chi; Shiao-Min; Tseng

    2003-01-01

    We report on fused-polished fiber couplers with a new fabrication method. This structure so fabricated is promising while achieving high-performance all-fiber WDM devices. Potential advantages and prospects of our works are presented.

  9. Fiber MOPA for Ascends Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CO2 sensing using absorption bands near 1570nm is very attractive by taking advantage of the mature fiber-amplifier technology derived from fiber-optic telecom...

  10. Fiber and Prebiotics: Mechanisms and Health Benefits

    OpenAIRE

    Joanne Slavin

    2013-01-01

    The health benefits of dietary fiber have long been appreciated. Higher intakes of dietary fiber are linked to less cardiovascular disease and fiber plays a role in gut health, with many effective laxatives actually isolated fiber sources. Higher intakes of fiber are linked to lower body weights. Only polysaccharides were included in dietary fiber originally, but more recent definitions have included oligosaccharides as dietary fiber, not based on their chemical measurement as dietary fiber b...

  11. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  12. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper;

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  13. Development of all-solid coherent Doppler wind lidar

    Institute of Scientific and Technical Information of China (English)

    Xiaopeng Zhu; Jiqiao Liu; Decang Bi; Jun Zhou; Weifeng Diao; Weibiao Chen

    2012-01-01

    A 1064-nm pulsed coherent Doppler lidar (CDL) prototype is developed to measure short range wind speed in the lower altitude troposphere layer The CDL system adopts an injection seeded Nd:YAG laser with the pulse duration of 80 ns,single pulse energy of 0.5 m J,and pulse repetition rate of 200 Hz.Speed calibration experiments are implemented to obtain a speed accuracy of 0.3 m/s using a hard target.Data analysis results show that the CDL system can obtain a line-of-sight wind velocity at a range of 30 to 500m with the range resolution of 40 m and 38 pulses accumulation.

  14. All solid-state high power visible laser

    Science.gov (United States)

    Grossman, William M.

    1993-01-01

    The overall objective of this Phase 2 effort was to develop and deliver to NASA a high repetition rate laser-diode-pumped solid-state pulsed laser system with output in the green portion of the spectrum. The laser is for use in data communications, and high efficiency, short pulses, and low timing jitter are important features. A short-pulse 1 micron laser oscillator, a new multi-pass amplifier to boost the infrared power, and a frequency doubler to take the amplified infrared pulsed laser light into the green. This produced 1.5 W of light in the visible at a pulse repetition rate of 20 kHz in the laboratory. The pulses have a full-width at half maximum of near 1 ns. The results of this program are being commercialized.

  15. Polyacrylate microspheres composite for all-solid-state reference electrodes.

    Science.gov (United States)

    Kisiel, Anna; Donten, Mikołaj; Mieczkowski, Józef; Rius-Ruiz, F Xavier; Maksymiuk, Krzysztof; Michalska, Agata

    2010-09-01

    A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane. PMID:20652191

  16. All-solid-state proton battery using gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kuldeep, E-mail: mishkuldeep@gmail.com [Department of Applied Science and Humanities, ABES Engineering College, Ghaziabad-201009, India and Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307 (India); Pundir, S. S.; Rai, D. K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307 (India)

    2014-04-24

    A proton conducting gel polymer electrolyte system; PMMA+NH{sub 4}SCN+EC/PC, has been prepared. The highest ionic conductivity obtained from the system is 2.5 × 10−4 S cm{sup −1}. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO{sub 4}⋅7H{sub 2}O anode and MnO{sub 2} cathode. The open circuit voltage of the battery is 1.4 V and the highest energy density is 5.7 W h kg−1 for low current drain.

  17. High-density, stretchable, all-solid-state microsupercapacitor arrays.

    Science.gov (United States)

    Hong, Soo Yeong; Yoon, Jangyeol; Jin, Sang Woo; Lim, Yein; Lee, Seung-Jung; Zi, Goangseup; Ha, Jeong Sook

    2014-09-23

    We report on the successful fabrication of stretchable microsupercapacitor (MSC) arrays on a deformable polymer substrate that exhibits high electrochemical performance even under mechanical deformation such as bending, twisting, and uniaxial strain of up to 40%. We designed the deformable substrate to minimize the strain on MSCs by adopting a heterogeneous structure consisting of stiff PDMS islands (on which MSCs are attached) and a soft thin film (mixture of Ecoflex and PDMS) between neighboring PDMS islands. Finite element method analysis of strain distribution showed that an almost negligible strain of 0.47% existed on the PDMS islands but a concentrated strain of 107% was present on the soft thin film area under a uniaxial strain of 40%. The use of an embedded interconnection of the liquid metal Galinstan helped simplify the fabrication and provided mechanical stability under deformation. Furthermore, double-sided integration of MSCs increased the capacitance to twice that of MSCs on a conventional planar deformable substrate. In this study, planar-type MSCs with layer-by-layer assembled hybrid thin film electrodes of MWNT/Mn3O4 and PVA-H3PO4 electrolyte were fabricated; when they are integrated into a circuit, these MSCs increase the output voltage beyond the potential of the electrolyte used. Therefore, various LEDs that require high voltages can be operated under a high uniaxial strain of 40% without any decrease in their brightness. The results obtained in this study demonstrate the high potential of our stretchable MSC arrays for their application as embedded stretchable energy storage devices in bioimplantable and future wearable nanoelectronics. PMID:25137479

  18. Compact All Solid State Oceanic Inherent Optical Property Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Light propagation in the sea and the consequent remote sensing signals seen by aircraft and spacecraft is fundamentally governed by the inherent optical properties...

  19. Compact All Solid State Oceanic Inherent Optical Property Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work concerns the development of a prototype of a Volume Scattering Function (VSF) sensor for measurement of this inherent optical property(IOP) of seawater....

  20. All-solid-state batteries : an overview for bio applications

    OpenAIRE

    Sousa, R; Ribeiro, J. F.; Sousa, J.A.; Gonçalves, L.M.; Correia, J. H.

    2013-01-01

    Batteries are crucial for most of bio applications. Batteries based on a liquid or polymer electrolyte needs a weight protective packaging which decreases their energy density and increases their size. This paper aims to identify, on the one hand, the efforts performed in thin-film batteries until now, and on the other hand, to provide an overview about the future perspectives in integration of batteries with flexible electronic circuits and energy harvesting systems. The overview highlights ...

  1. Direct spinning of fiber supercapacitor.

    Science.gov (United States)

    Xu, Tong; Ding, Xiaoteng; Liang, Yuan; Zhao, Yang; Chen, Nan; Qu, Liangti

    2016-06-16

    A direct wet spinning approach is demonstrated for facile and continuous fabrication of a whole fiber supercapacitor using a microfluidic spinneret. The resulting fiber supercapacitor shows good electrochemical properties and possesses high flexibility and mechanical stability. This strategy paves the way for large-scale continuous production of fiber supercapacitors for weavable electronics.

  2. Aerogel-clad optical fiber

    Science.gov (United States)

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  3. Fabrication of Optical Fiber Devices

    Science.gov (United States)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  4. Neuroanatomic Fiber Orientation Maps (FOMs)

    DEFF Research Database (Denmark)

    Axer, Hubertus; Jantzen, Jan; Grässel, David;

    2002-01-01

    A new neuroanatomic method is described which allows to map the orientation of central nervous fibers in gross histological sections. Polarised light is used to calculate the angle of inclination and direction of the fibers in each pixel. Serial fiber orientation maps (FOMs) can be aligned and 3D...

  5. Microstructured Fibers: Design and Applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes

    2006-01-01

    Holey fibers, in which airholes are introduced in the cladding region and extended in the axial direction of the fiber, have been known since the early days of silica waveguide research. Early work demonstrated the first low-loss fibers, which featured very small silica cores held in air by thin ...

  6. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  7. Mid-infrared fiber lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Jackson, Stuart D.; Sorokina, I.T.; Vodopyanov, K.L.

    2003-01-01

    The current state of the art in mid-infrared fiber lasers is reviewed in this chapter. The relevant fiber-host materials such as silicates, fluorides, chalcogenides, and ceramics, the fiber, pump, and resonator geometries, and the spectroscopic properties of rare-earth ions are introduced. Lasers at

  8. Short fiber reinforced thermoplastic blends

    NARCIS (Netherlands)

    Malchev, P.G.

    2008-01-01

    The present thesis investigates the potential of short fiber reinforced thermoplastic blends, a combination of an immiscible polymer blend and a short fiber reinforced composite, to integrate the easy processing solutions available for short fiber reinforced composites with the high mechanical perfo

  9. Fiber Optics and Library Technology.

    Science.gov (United States)

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  10. Buying Fiber-Optic Networks.

    Science.gov (United States)

    Fickes, Michael

    2003-01-01

    Describes consortia formed by college and university administrators to buy, manage, and maintain their own fiber-optic networks with the goals of cutting costs of leasing fiber-optic cable and planning for the future. Growth capacity is the real advantage of owning fiber-optic systems. (SLD)

  11. Shedding Light on Fiber Optics.

    Science.gov (United States)

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  12. Fiber-Optic Bend Sensor Based on Double Cladding Fiber

    OpenAIRE

    Ivanov, Oleg V.; Alexey A. Chertoriyskiy

    2015-01-01

    We develop and investigate fiber-optic bend sensor, which is formed by a section of double cladding SM630 fiber between standard SMF-28 fibers. The principle of operation of the sensor is based on coupling of the fiber core and cladding modes at the splices of fibers having different refractive index profiles. We use two sources with wavelengths 1328 and 1545 nm to interrogate the sensor. The dependences of transmission on curvature at these wavelengths are significantly different. We show th...

  13. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness......This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the matrix and the fibers....

  14. The dentate mossy fibers

    DEFF Research Database (Denmark)

    Blaabjerg, Morten; Zimmer, Jens

    2007-01-01

    and taking interesting turns, the mossy fibers display a number of unique features with regard to axonal projections, terminal structures and synaptic contacts, development and variations among species and strains, as well as to normal occurring and lesion-induced plasticity and neural transplantation...

  15. Interferometric Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Hae Young Choi

    2012-02-01

    Full Text Available Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  16. Fiber and Your Child

    Science.gov (United States)

    ... a fiber-rich sandwich with whole-grain bread, peanut butter, and bananas. Serve whole-grain rolls with dinner ... cookies and muffins. Top whole-wheat crackers with peanut butter or low-fat cheese. Offer air-popped popcorn — ...

  17. Drying of fiber webs

    Science.gov (United States)

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  18. Multimetallic Electrodeposition on Carbon Fibers

    Science.gov (United States)

    Böttger-Hiller, F.; Kleiber, J.; Böttger, T.; Lampke, T.

    2016-03-01

    Efficient lightweight design requires intelligent materials that meet versatile functions. One approach is to extend the range of properties of carbon fiber reinforced plastics (CFRP) by plating the fiber component. Electroplating leads to metalized layers on carbon fibers. Herein only cyanide-free electrolytes where used. Until now dendrite-free layers were only obtained using current densities below 1.0 A dm-2. In this work, dendrite-free tin and copper coatings were achieved by pre-metalizing the carbon fiber substrates. Furthermore, applying a combination of two metals with different sized thermal expansion coefficient lead to a bimetallic coating on carbon fiber rovings, which show an actuatory effect.

  19. Improved Optical Fiber Chemical Sensors

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  20. Transmission Properties of Fiber Probes

    Institute of Scientific and Technical Information of China (English)

    XUE Chun-rong; ZHU Sheng-xiang; XIAO Zhi-gang

    2004-01-01

    Transmission properties of tapered fiber including right cone fiber and bend optical fiber are discussed. The transmission efficiency of the tapered fiber is measured. The curve of transmission efficiency versus taper cone angle is given. By the scalar wave equation and Gaussian approximation, transmission properties of the two kinds of tapered fibers are analyzed, the power losses caused by taper cone angle and by the bending are also calculated. From the experiments and theoretical analysis, it could come to a conclusion that the wider the taper cone angle is, the higher the transmission efficiency will be.

  1. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    Science.gov (United States)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  2. Optical fiber communications

    CERN Document Server

    Keiser, Gerd

    2008-01-01

    The fourth edition of this popular text and reference book presents the fundamental principles for understanding and applying optical fiber technology to sophisticated modern telecommunication systems. Optical-fiber-based telecommunication networks have become a major information-transmission-system, with high capacity links encircling the globe in both terrestrial and undersea installations. Numerous passive and active optical devices within these links perform complex transmission and networking functions in the optical domain, such as signal amplification, restoration, routing, and switching. Along with the need to understand the functions of these devices comes the necessity to measure both component and network performance, and to model and stimulate the complex behavior of reliable high-capacity networks.

  3. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...... in the weld causing expulsion of the melt pool. Trailing beams were applied to melt additional material and ensure a melt pool. The method showed good results for increasing tolerances to impurities and reduction of scrapped parts from blowouts during laser welding....

  4. Fiber optic geophysical sensors

    Science.gov (United States)

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  5. FIBER OPTIC LIGHTING SYSTEMS

    OpenAIRE

    Munir BATUR; Parali, Ufuk; Osman Nuri UCAN

    2013-01-01

    Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target p...

  6. Carbohydrates and dietary fiber.

    Science.gov (United States)

    Suter, P M

    2005-01-01

    The most widely spread eating habit is characterized by a reduced intake of dietary fiber, an increased intake of simple sugars, a high intake of refined grain products, an altered fat composition of the diet, and a dietary pattern characterized by a high glycemic load, an increased body weight and reduced physical activity. In this chapter the effects of this eating pattern on disease risk will be outlined. There are no epidemiological studies showing that the increase of glucose, fructose or sucrose intake is directly and independently associated with an increased risk of atherosclerosis or coronary heart disease (CHD). On the other hand a large number of studies has reported a reduction of fatal and non-fatal CHD events as a function of the intake of complex carbohydrates--respectively 'dietary fiber' or selected fiber-rich food (e.g., whole grain cereals). It seems that eating too much 'fast' carbohydrate [i.e., carbohydrates with a high glycemic index (GI)] may have deleterious long-term consequences. Indeed the last decades have shown that a low fat (and consecutively high carbohydrate) diet alone is not the best strategy to combat modern diseases including atherosclerosis. Quantity and quality issues in carbohydrate nutrient content are as important as they are for fat. Multiple lines of evidence suggest that for cardiovascular disease prevention a high sugar intake should be avoided. There is growing evidence of the high impact of dietary fiber and foods with a low GI on single risk factors (e.g., lipid pattern, diabetes, inflammation, endothelial function etc.) as well as also the development of the endpoints of atherosclerosis especially CHD. PMID:16596802

  7. Stable fiber interferometer

    International Nuclear Information System (INIS)

    The problem of construction the long-base Michelson interferometer for gravitational wave detection is discussed. Possible sources of noise and instability are considered. It is shown that evacuation of fiber interferometer, the winding of its arms on the glass ceramic bases, stabilization of radiation source frequency and seismic isolation of the base allow one to reduce its instability to the level, typical of mirror interferometer with the comparable optical base. 10 refs.; 2 figs

  8. Hydrophobic photonic crystal fibers.

    Science.gov (United States)

    Xiao, Limin; Birks, T A; Loh, W H

    2011-12-01

    We propose and demonstrate hydrophobic photonic crystal fibers (PCFs). A chemical surface treatment for making PCFs hydrophobic is introduced. This repels water from the holes of PCFs, so that their optical properties remain unchanged even when they are immersed in water. The combination of a hollow core and a water-repellent inner surface of the hydrophobic PCF provides an ultracompact dissolved-gas sensor element, which is demonstrated for the sensing of dissolved ammonia gas. PMID:22139276

  9. Vector Soliton Fiber Lasers

    OpenAIRE

    Zhang, Han

    2011-01-01

    Solitons, as stable localized wave packets that can propagate long distance in dispersive media without changing their shapes, are ubiquitous in nonlinear physical systems. Since the first experimental realization of optical bright solitons in the anomalous dispersion single mode fibers (SMF) by Mollenauer et al. in 1980 and optical dark solitons in the normal dispersion SMFs by P. Emplit et al. in 1987, optical solitons in SMFs had been extensively investigated. In reality a SMF always suppo...

  10. Piezoelectric ceramic fibers for active fiber composites: a comparative study

    Science.gov (United States)

    Kornmann, Xavier; Huber, Christian; Elsener, Hans-Rudolf

    2003-08-01

    The morphology and the free strain performances of three different piezoelectric ceramic fibers used for the manufacture of active fiber composites (AFCs) have been investigated. The morphology of the fibers has a direct influence on the manufacture of the AFCs. Fibers with non-uniform diameters are more difficult to contact with the interdigitated electrodes and can be the cause of irreparable damages in AFCs. An indirect method requiring the use of a simple analytical model is proposed to evaluate the free strain of active fiber composites. This indirect method presents a relatively good agreement with direct free strain measurements performed with strain gages glued on both sides of an AFC. The results show a systematic difference of ca. 20 % between the indirect and the direct methods. However, the indirect method did not permit to see differences of piezoelectric performance between the types of fibers.

  11. Homogenization of long fiber reinforced composites including fiber bending effects

    Science.gov (United States)

    Poulios, Konstantinos; Niordson, Christian F.

    2016-09-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization of the matrix and the fibers.

  12. Comparisons of methods measuring fiber maturity and fineness of Upland cotton fibers containing different degree of fiber cell wall development.

    Science.gov (United States)

    Fiber maturity and fineness are important physical properties of cotton fibers affecting qualities of fibers and yarns. A number of direct and indirect methods are used for measuring fiber maturity and fineness from mature fibers that are thick secondary cell walls composed of almost pure cellulose....

  13. FIBER ORIENTATION IN INJECTION MOLDED LONG CARBON FIBER THERMOPLASTIC COMPOSITES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin; Nguyen, Ba Nghiep; Mathur, Raj N.; Sharma, Bhisham; Sangid, Michael D.; Costa, Franco; Jin, Xiaoshi; Tucker III, Charles L.; Fifield, Leonard S.

    2015-03-23

    A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the anisotropic rotary diffusion and the reduced strain closure models. The phenomenological parameters of the orientation models were carefully identified by fitting to the measured orientation data. The fiber orientation predictions show very good agreement with the experimental data.

  14. Advances in fiber combined pump modules for fiber lasers

    Science.gov (United States)

    Crum, Trevor; Romero, Oscar; Li, Hanxuan; Jin, Xu; Towe, Terry; Chyr, Irving; Truchan, Tom; Liu, Daming; Cutillas, Serge; Johnson, Kelly; Park, Sang-Ki; Wolak, Ed; Miller, Robert; Bullock, Robert; Mott, Jeff; Fidric, Bernard; Harrison, James

    2009-02-01

    Fiber combining multiple pump sources for fiber lasers has enabled the thermal and reliability advantages of distributed architectures. Recently, mini-bar based modules have been demonstrated which combine the advantages of independent emitter failures previously shown in single-stripe pumps with improved brightness retention yielding over 2 MW/cm2Sr in compact economic modules. In this work multiple fiber-coupled mini-bars are fiber combined to yield an output of over 400 W with a brightness exceeding 1 MW/cm2Sr in an economic, low loss architecture.

  15. Optical Fiber Embedded in Epoxy Glass Unidirectional Fiber Composite System

    OpenAIRE

    Irina Severin; Rochdi El Abdi; Guillaume Corvec; Mihai Caramihai

    2013-01-01

    We aimed to embed silica optical fibers in composites (epoxy vinyl ester matrix reinforced with E-glass unidirectional fibers in mass fraction of 60%) in order to further monitor the robustness of civil engineering structures (such as bridges). A simple system was implemented using two different silica optical fibers (F1—double coating of 172 µm diameter and F2—single coating of 101.8 µm diameter respectively). The optical fibers were dynamically tensile tested and Weibull plots were traced. ...

  16. Investigation of Solute-Fiber Affinity and Orientational Ordering of Norbornadiene Interacting with Two-Polypeptide Chiral Liquid Crystalline Solvents by Natural Abundance Deuterium (NAD) NMR.

    Science.gov (United States)

    Serhan, Zeinab; Aroulanda, Christie; Lesot, Philippe

    2016-08-01

    A prochiral bridged compound of C2v symmetry, the norbornadiene (NBD), oriented in a chiral liquid crystal composed of various mixtures of poly-γ-benzyl-l-glutamate (PBLG) and poly-ε-carboxy-l-lysine (PCBLL), two chiral homopolypeptides, is investigated using natural abundance deuterium 2D-NMR (NAD 2D-NMR) spectroscopy. In such chiral oriented solvents, enantiotopic directions are spectrally nonequivalent, and two distinct (2)H quadrupolar doublets associated with enantioisotopomeric pairs of NBD are detected. As the two homopolypeptides have the same absolute configuration but distinct chemical functions in their side chains, the variation of residual quadrupolar couplings (RQC's) allows the determination of the relative solute-fiber affinities toward the two polypeptides in these lyotropic bipolymeric systems. Besides the experimental measurement of RQC's and the determination of their signs at each inequivalent (2)H site, the elements of the second-rank order tensor, Sαβ, are calculated by assuming a modeled structure. The variations of RQC's and diagonalized order parameters, Sα'α', are followed versus the relative proportion of two polypeptides in the chiral oriented mixture. The influence of the solute mass fraction in the two-homopolypeptide oriented samples is also examined as well as the case of homogeneous and uniform achiral mesophases "PBG-PCBL" made of two pairs of mirror-image homopolypeptides (PBLG/PBDG and PCBLL/PCBDL). In the latter, the solute ordering is modulated by the proportion of each type of homopolypeptide (chemical nature and absolute configuration), leading to eliminate the enantiodiscrimination mechanisms on the average. In the frame of a model, new insights on the solute-homopolypeptide fiber interactions are discussed. PMID:27383731

  17. Selenium semiconductor core optical fibers

    Directory of Open Access Journals (Sweden)

    G. W. Tang

    2015-02-01

    Full Text Available Phosphate glass-clad optical fibers containing selenium (Se semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  18. Direct spinning of fiber supercapacitor

    Science.gov (United States)

    Xu, Tong; Ding, Xiaoteng; Liang, Yuan; Zhao, Yang; Chen, Nan; Qu, Liangti

    2016-06-01

    A direct wet spinning approach is demonstrated for facile and continuous fabrication of a whole fiber supercapacitor using a microfluidic spinneret. The resulting fiber supercapacitor shows good electrochemical properties and possesses high flexibility and mechanical stability. This strategy paves the way for large-scale continuous production of fiber supercapacitors for weavable electronics.A direct wet spinning approach is demonstrated for facile and continuous fabrication of a whole fiber supercapacitor using a microfluidic spinneret. The resulting fiber supercapacitor shows good electrochemical properties and possesses high flexibility and mechanical stability. This strategy paves the way for large-scale continuous production of fiber supercapacitors for weavable electronics. Electronic supplementary information (ESI) available: Design of the microfluidic spinneret and operation of the spinneret (movie). See DOI: 10.1039/c6nr03116a

  19. Drop impact on a fiber

    Science.gov (United States)

    Kim, Sung-Gil; Kim, Wonjung

    2016-04-01

    We present the results of a combined experimental and theoretical investigation of drop impact on a thin fiber. Using high-speed videography, we analyze the dynamics of droplet collision with a fiber. Based on the systematic experiments, we identify three outcomes of collision: capturing, single drop falling, and splitting. The outcomes are presented in a regime map, where the regime boundaries are explained through a scale analysis of forces. We also measure the liquid retention on the fiber after the droplet impact. By considering a liquid film on the fiber, we develop a mechanical model that predicts the residual water mass. Our model reveals that the residual mass depends critically on the fiber thickness and less on the impact speed. Our study can be extended to predicting the remaining droplet, critical problems in air filtration, water collection, and fiber coating.

  20. Fiber laser development for LISA

    CERN Document Server

    Numata, Kenji; Camp, Jordan

    2010-01-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  1. Fiber optic sensor and method for making

    Energy Technology Data Exchange (ETDEWEB)

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  2. Narrow-linewidth and tunable fiber lasers

    OpenAIRE

    Morkel, P.R.

    1993-01-01

    1. Introduction 2. Line-narrowed fiber laser devices Integral fiber reflective Bragg grating lasers Intra-cavity etalon laser 3. Tunable, line narrowed fiber laser devices Ring lasers using wavelength selective couplers Tunable lasers using bulk-optic components a) Mechanical tuning b) Electronic tuning 4. Single frequency fiber lasers Integral fiber reflective Bragg grating laser Interferometric cavity laser Injection locked laser Travellin...

  3. Performance of the Bean-protein Fiber

    Institute of Scientific and Technical Information of China (English)

    韩光亭; 杜宁; 孙亚宁

    2003-01-01

    The methods in testing the bean-protein fiber and the standards used were simply introduced. The fiber's mechanical and chemical performances were further analyzed. And the correlative performance of the bean-protein fibers and other natural fibers have been compared, then full knowledge of the fiber's performance was concluded.

  4. Optical coatings for fiber lasers

    Institute of Scientific and Technical Information of China (English)

    HONG Dong-mei; ZHU Zhen; YUE Wei

    2005-01-01

    Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.

  5. Fiber laser development for LISA

    OpenAIRE

    Numata, Kenji; Chen, Jeffrey R.; Camp, Jordan

    2010-01-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequen...

  6. Photonic crystal fibers in biophotonics

    Science.gov (United States)

    Tuchin, Valery V.; Skibina, Julia S.; Malinin, Anton V.

    2011-12-01

    We observed recent experimental results in area of photonic crystal fibers appliance. Possibility of creation of fiberbased broadband light sources for high resolution optical coherence tomography is discussed. Using of femtosecond pulse laser allows for generation of optical radiation with large spectral width in highly nonlinear solid core photonic crystal fibers. Concept of exploitation of hollow core photonic crystal fibers in optical sensing is demonstrated. The use of photonic crystal fibers as "smart cuvette" gives rise to efficiency of modern optical biomedical analysis methods.

  7. A Breather in Birefringent Fibers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The propagation properties of the breather in birefringent fibers are investigated. The breather can propagate stably in strongly birefringent fibers. The propagation law can be expected. However, random birefringence makes the propagation of the breather more complex. The breather will partly disappear and partly appear, even may split into two smaller breathers. In addition, the varying range of relative time displacement between two components of the breather becomes narrower with the effect of third-order dispersion. If third-order dispersion is too strong, the breather behavior will disappear gradually during the transmission. The breather can exist in random birefringent fiber with dispersion management rather than in strongly birefringent fiber.

  8. Fiber-coupled microsphere laser

    OpenAIRE

    Cai, M.; Painter, O.; Vahala, K. J.; Sercel, P. C.

    2000-01-01

    We demonstrate a 1.5-mm-wavelength fiber laser formed by placement of glass microsphere resonators along a fiber taper. The fiber taper serves the dual purpose of transporting optical pump power into the spheres and extracting the resulting laser emission. A highly doped erbium:ytterbium phosphate glass was used to form microsphere resonant cavities with large gain at 1.5 mm. Laser threshold pump powers of 60 mW and fiber-coupled output powers as high as 3 mW with single-mode operation were o...

  9. Influence of fiber type, fiber mat orientation, and process time on the properties of a wood fiber/polymer composite

    DEFF Research Database (Denmark)

    Plackett, David; Torgilsson, R.; Løgstrup Andersen, T.

    2002-01-01

    rapidly and showed changes in thickness with fluctuations in relative humidity. Porosity was higher in composites containing mechanically refined (MDF) fibers than in composites containing bleached chemi-thermomechanically refined (CTMP) fibers. Tensile test results suggessted that fiber wetting...

  10. DEMAND FOR HIGH FIBER AND LOW FIBER CEREALS

    OpenAIRE

    Binkley, James K.; Eales, James S.

    2000-01-01

    Nutritional considerations are of increasing importance in some foods. To address demand for nutrition, we estimate a demand system for cereals of different nutrient types, concentrating on fiber and focussing on five Kellogg's cereals with marked differences in fiber content. Results shed light on the role of price in who demands "healthy" foods.

  11. Scintillating fiber detector

    CERN Document Server

    Vozak, Matous

    2016-01-01

    NA61 is one of the physics experiments at CERN dedicated to study hadron states coming from interactions of SPS beams with various targets. To determine the position of a secondary beam, three proportional chambers are placed along the beamline. However, these chambers tend to have slow response. In order to obtain more precise time information, use of another detector is being considered. Fast response and compact size is making scintillation fiber (SciFi) with silicon photomultiplier (Si-PM) read out a good candidate. This report is focused on analysing data from SciFi collected in a test beam at the beginning of July 2016.

  12. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren;

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  13. Actively doped solid core Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Broeng, Jes; Olausson, Christina Bjarnal Thulin; Lyngsøe, Jens Kristian;

    2010-01-01

    Solid photonic bandgap fibers offer distributed spectral filtering with extraordinary high suppression. This opens new possibilities of artificially tailoring the gain spectrum of fibers. We present record-performance of such fibers and outline their future applications....

  14. Coating Carbon Fibers With Platinum

    Science.gov (United States)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  15. 基于有机金属卤化物钙钛矿材料的全固态太阳能电池研究进展∗%Research progress of all-solid-state solar cells based on organometal halide perovskite materials

    Institute of Scientific and Technical Information of China (English)

    邵景珍; 董伟伟; 邓赞红; 陶汝华; 方晓东

    2014-01-01

    作为太阳能电池的光吸收剂,有机金属卤化物钙钛矿材料不仅具有高效的光吸收能力和载流子迁移率,还具有独特的双极性特征,能同时传输电子和空穴,使其成为优异的光伏材料,掀起了基于钙钛矿材料太阳能电池的研究热潮。介绍了近几年来基于有机金属卤化物钙钛矿材料的全固态太阳能电池的发展情况,总结了有机金属卤化物钙钛矿材料的结构和特性,对目前几类典型的钙钛矿太阳能电池进行了讨论,并展望了全固态钙钛矿太阳能电池的产业化应用前景。%The organometal halide perovskite as high-efficiency light sensitizers in solar cells can not only act as a high efficiency light absorber but also possess excellent charge carrier mobility.The perovskite has unique am-bipolar properties to transport both photogenerated holes and electrons.All properties are perfectly suitable for use as prospective photovoltaic materials.The researches of the all-solid-state solar cells based on organometal halide perovskite materials have excited great interest.The paper introduced the main research progress the all-solid-state solar cells based on organometal halide perovskite materials.The structure and properties of the or-ganometal halide perovskite were reviewed.The several typical types of the perovskite solar cells were dis-cussed.And prospects of commercial perovskite solar cells were assessed.

  16. Monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling.

    Science.gov (United States)

    Zhou, Xuanfeng; Chen, Zilun; Wang, Zefeng; Hou, Jing

    2016-05-20

    In this paper, we present the design, construction, and testing of a monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling applications. The collimator is based on a large-sized fiber end cap and a spherical lens design on the output facet. Values of the spot size and working distance are theoretically analyzed based on Gaussian approximation and ABCD transmission matrix. The free-space fiber-fiber coupling process is also analyzed for different lens curvature radii and coupling distances. In the experiment, a collimated laser beam is obtained with Rayleigh length of about 400 mm. A high-power laser with 1.1 kW output is tested on the end cap collimator, which only heats up by 7°C at the output facet without active cooling. Free-space fiber-fiber coupling between two 20/400 μm fibers is achieved based on these collimators, with measured coupling loss lower than 0.3 dB. PMID:27411125

  17. Optical Fiber Embedded in Epoxy Glass Unidirectional Fiber Composite System

    Directory of Open Access Journals (Sweden)

    Irina Severin

    2013-12-01

    Full Text Available We aimed to embed silica optical fibers in composites (epoxy vinyl ester matrix reinforced with E-glass unidirectional fibers in mass fraction of 60% in order to further monitor the robustness of civil engineering structures (such as bridges. A simple system was implemented using two different silica optical fibers (F1—double coating of 172 µm diameter and F2—single coating of 101.8 µm diameter respectively. The optical fibers were dynamically tensile tested and Weibull plots were traced. Interfacial adhesion stress was determined using pull-out test and stress values were correlated to fracture mechanisms based on SEM observations. In the case of the optical fiber (OF (F1/resin system and OF (F1/composite system, poor adhesion was reported that may be correlated to interface fracture at silica core level. Relevant applicable results were determined for OF (F2/composite system.

  18. Photonic crystal fiber modelling and applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Libori, Stig E. Barkou;

    2001-01-01

    Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented.......Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented....

  19. Polyamide 6 - long glass fiber injection moldings

    OpenAIRE

    Bijsterbosch, H.; Gaymans, R.J.

    1995-01-01

    The injection molding ability of long glass fiber reinforced polyamide pellets was studied. The injection moldable materials were produced by a melt impregnation process of continuous fiber rovings. The rovings were chopped to pellets of 9 mm length. Chopped pellets with a variation in the degree of impregnation and fiber concentration were studied. The injection molded samples were analyzed for fiber concentration, fiber length, and fiber orientation. Dumbbell-shaped tensile bars were made t...

  20. Continuous method of producing silicon carbide fibers

    Science.gov (United States)

    Barnard, Thomas Duncan (Inventor); Nguyen, Kimmai Thi (Inventor); Rabe, James Alan (Inventor)

    1999-01-01

    This invention pertains to a method for production of polycrystalline ceramic fibers from silicon oxycarbide (SiCO) ceramic fibers wherein the method comprises heating an amorphous ceramic fiber containing silicon and carbon in an inert environment comprising a boron oxide and carbon monoxide at a temperature sufficient to convert the amorphous ceramic fiber to a polycrystalline ceramic fiber. By having carbon monoxide present during the heating of the ceramic fiber, it is possible to achieve higher production rates on a continuous process.

  1. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik;

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  2. Photonic crystal fibers: fundamentals to emerging applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard

    2005-01-01

    A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers.......A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers....

  3. Quantitive DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  4. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  5. Nanomechanics of electrospun phospholipid fiber

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Nikogeorgos, Nikolaos; Lee, Seunghwan;

    2015-01-01

    . At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip...

  6. New Development in Fiber Technologies

    OpenAIRE

    Thai, Luan Thanh

    2013-01-01

    Optical fiber technologies has gone through tremendous developmentssince its first installation in the 1970s. Three decadeslater it has become the backbone of the global telecommunicationsnetwork, providing high speed internet access to homesand offices, and instant communications through telephones allaround the world. In present day internet service provider, cabletelevision providers, telephone providers and power providershas established their own fiber optic network. Compared tocopper wi...

  7. Broadband terahertz fiber directional coupler

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd;

    2010-01-01

    We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber...

  8. Safety Precautions in Fiber Arts.

    Science.gov (United States)

    Hamilton, Marcia

    1979-01-01

    The author discusses the potential hazards of working with fibers, dyes, and wax in textile art projects: bacteria, dust, poisons, allergies, and fumes. Safety precautions for working with dyes are listed. This article is one of seven in this issue on fiber arts. (SJL)

  9. Fiber Bundles and Parseval Frames

    OpenAIRE

    Agrawal, Devanshu; Knisley, Jeff

    2015-01-01

    Continuous frames over a Hilbert space have a rich and sophisticated structure that can be represented in the form of a fiber bundle. The fiber bundle structure reveals the central importance of Parseval frames and the extent to which Parseval frames generalize the notion of an orthonormal basis.

  10. Soluble and insoluble fiber (image)

    Science.gov (United States)

    Dietary fiber is the part of food that is not affected by the digestive process in the body. Only a small amount of ... grains. Fiber is very important to a healthy diet and can be a ... legumes, the group of food containing dried peas and beans.

  11. Quantum cryptography using optical fibers.

    Science.gov (United States)

    Franson, J D; Lives, H

    1994-05-10

    Quantum cryptography permits the transmission of secret information whose security is guaranteed by the uncertainty principle. An experimental system for quantum crytography is implemented based on the linear polarization of single photons transmitted by an optical fiber. Polarization-preserving optical fiber and a feedback loop are employed to maintain the state of polarization. Error rates of less than 0.5% are obtained.

  12. Development of novel fibers for telecoms application

    Science.gov (United States)

    Mukasa, Kazunori; Imamura, Katsunori; Takahashi, Masanori; Yagi, Takeshi

    2010-12-01

    This paper reviews the current situations of optical fibers used for terrestrial and submarine transmission systems as well as up-to-date R&D on these fibers. The current fibers include standard single mode fibers (SMFs), non-zero dispersion shifted fibers (NZ-DSFs), and dispersion managed lines (DMLs). Even though these fibers show quite high and matured properties, the internet traffic is continuously growing, and around 2015-2020, it is expected that the current transmission fibers would become inadequate. To prepare for the future ultra high-capacity transmission, there are three important R&D directions for transmission fibers. (1) Reducing non-linearity by means of enlarging Aeff and/or reducing attenuation loss. It is very important in the case of transmission systems using new multi-level signal formats. (2) Expanding the transmission band more than the current C- and/or L-Band by utilizing new transmission fibers. For example, holey fibers (HFs), which have an endlessly single mode (ESM) property, are one of the interesting candidates of the new transmission fibers. (3) Using Space Division Multiplexing (SDM) by using multi-core fibers. The multi-core fiber literally multiples the core number within a fiber dimension, which enables multiple transmission capacity per one fiber. In addition to the developments of transmission fibers, component fibers have also been studied and developed. Examples of R&D on these component fibers will be also discussed in the latter part of this paper.

  13. Handbook of fiber optics theory and applications

    CERN Document Server

    Yeh, Chai

    2013-01-01

    Dr. Yeh supplies a firm theoretical foundation in such topics as propagation of light through fibers, fiber fabrication, loss mechanisms, and dispersion properties. He then expands from this into such practical areas as fiber splicing, measuring loss in fibers, fiber-based communications networks, remote fiber sensors, and integrated optics. Whether involved in fiber optics research, design, or practical implementation of systems, this handbook will be extremely useful.Key Features* Here is a comprehensive, ""one-stop"" reference with state-of-the-art information on fiber optics Included is da

  14. Multimode optical fiber based spectrometers

    CERN Document Server

    Redding, Brandon; Cao, Hui

    2013-01-01

    A standard multimode optical fiber can be used as a general purpose spectrometer after calibrating the wavelength dependent speckle patterns produced by interference between the guided modes of the fiber. A transmission matrix was used to store the calibration data and a robust algorithm was developed to reconstruct an arbitrary input spectrum in the presence of experimental noise. We demonstrate that a 20 meter long fiber can resolve two laser lines separated by only 8 pm. At the other extreme, we show that a 2 centimeter long fiber can measure a broadband continuous spectrum generated from a supercontinuum source. We investigate the effect of the fiber geometry on the spectral resolution and bandwidth, and also discuss the additional limitation on the bandwidth imposed by speckle contrast reduction when measuring dense spectra. Finally, we demonstrate a method to reduce the spectrum reconstruction error and increase the bandwidth by separately imaging the speckle patterns of orthogonal polarizations. The mu...

  15. Oxide Fiber Targets at ISOLDE

    CERN Document Server

    Köster, U; Carminati, D; Catherall, R; Cederkäll, J; Correia, J G; Crepieux, B; Dietrich, M; Elder, K; Fedosseev, V; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Georg, U; Giles, T; Joinet, A; Jonsson, O C; Kirchner, R; Lau, C; Lettry, Jacques; Maier, H J; Mishin, V I; Oinonen, M; Peräjärvi, K; Ravn, H L; Rinaldi, T; Santana-Leitner, M; Wahl, U; Weissman, L

    2003-01-01

    Many elements are rapidly released from oxide matrices. Some oxide powder targets show a fast sintering, thus losing their favorable release characteristics. Loosely packed oxyde fiber targets are less critical since they may maintain their open structure even when starting to fuse together at some contact points. The experience with various oxyde fiber targets (titania, zirconia, ceria and thoria) used in the last years at ISOLDE is reviewed. For short-lived isotopes of Cu, Ga and Xe the zirconia and ceria targets respectively provided significantly higher yields than any other target (metal foils, oxide powders, etc.) tested before. Titania fibers, which were not commercially available, were produced in a relic process by impregnation of a rayon felt in a titanium chloride solution and subsequent calcination by heating the dried felt in air. Thoria fibers were obtained either by the same process or by burning commercial gas lantern mantle cloth. In the future a beryllia fiber target could be used to produce...

  16. The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S-P2S5 glass-ceramics

    Science.gov (United States)

    Visbal, Heidy; Aihara, Yuichi; Ito, Seitaro; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang

    2016-05-01

    There have been several reports on improvements of the performance of all solid-state battery using lithium metal oxide coatings on the cathode active material. However, the mechanism of the performance improvement remains unclear. To better understand the effect of the surface coating, we studied the impact of diamond-like carbon (DLC) coating on LiNi0.8Co0.15Al0.05O2 (NCA) by chemical vapor deposition (CVD). The DLC coated NCA showed good cycle ability and rate performance. This result is further supported by reduction of the interfacial resistance of the cathode and electrolyte observed in impedance spectroscopy. The DLC layer was analyzed by transmission electron microscopy electron energy loss spectroscopy (TEM-EELS). After 100 cycles the sample was analyzed by X-ray photo spectroscopy (XPS), and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). These analyses showed that the thickness of the coating layer was around 4 nm on average, acting to hinder the side reactions between the cathode particle and the solid electrolyte. The results of this study will provide useful insights for understanding the nature of the buffer layer for the cathode materials.

  17. Autotract: automatic cleaning and tracking of fibers

    Science.gov (United States)

    Prieto, Juan C.; Yang, Jean Y.; Budin, François; Styner, Martin

    2016-03-01

    We propose a new tool named Autotract to automate fiber tracking in diffusion tensor imaging (DTI). Autotract uses prior knowledge from a source DTI and a set of corresponding fiber bundles to extract new fibers for a target DTI. Autotract starts by aligning both DTIs and uses the source fibers as seed points to initialize a tractography algorithm. We enforce similarity between the propagated source fibers and automatically traced fibers by computing metrics such as fiber length and fiber distance between the bundles. By analyzing these metrics, individual fiber tracts can be pruned. As a result, we show that both bundles have similar characteristics. Additionally, we compare the automatically traced fibers against bundles previously generated and validated in the target DTI by an expert. This work is motivated by medical applications in which known bundles of fiber tracts in the human brain need to be analyzed for multiple datasets.

  18. Fiber optic hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.A.; Sanchez, R.; Dulleck, G.R.

    1996-05-01

    This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

  19. Ceramic fiber filter technology

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  20. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  1. Photonic bandgap fiber bundle spectrometer

    CERN Document Server

    Hang, Qu; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim

    2010-01-01

    We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our work is equivalent in its function to a set of 100 optical filters densely packed in the area of ~1cm2. Black and white CCD camera is then used to capture spectrally "binned" image of the incoming light at the output facet of a fiber bundle. To reconstruct the test spectrum from a single CCD image we developed an algorithm based on pseudo-inversion of the spectrometer transmission matrix. We then study resolution limit of this spectroscopic system by testing its performance using spectrally narrow test peaks (FWHM 5nm-25nm) centered at va...

  2. Optical fiber-based photocathode

    Science.gov (United States)

    Cǎsǎndruc, Albert; Bücker, Robert; Kassier, Günther; Dwayne Miller, R. J.

    2016-08-01

    We present the design of a back-illuminated photocathode for electron diffraction experiments based on an optical fiber, and experimental characterization of emitted electron bunches. Excitation light is guided through the fiber into the experimental vacuum chamber, eliminating typical alignment difficulties between the emitter metal and the optical trigger and position instabilities, as well as providing reliable control of the laser spot size and profile. The in-vacuum fiber end is polished and coated with a 30 nm gold (Au) layer on top of 3 nm of chromium (Cr), which emits electrons by means of single-photon photoemission when femtosecond pulses in the near ultraviolet (257 nm) are fed into the fiber on the air side. The emission area can be adjusted to any value between a few nanometers (using tapered fibers) and the size of a multi-mode fiber core (100 μm or larger). In this proof-of-principle experiment, two different types of fibers were tested, with emission spot diameters of 50 μm and 100 μm, respectively. The normalized thermal electron beam emittance (TE) was measured by means of the aperture scan technique, and a TE of 4.0 π nm was measured for the smaller spot diameter. Straightforward enhancements to the concept allowed to demonstrate operation in an electric field environment of up to 7 MV/m.

  3. All-Fiber Components for Micro-Structured Fibers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose new concepts for developing components for high performance space based Lidar systems. While it is generally recognized that photonic crystal fiber...

  4. Nozzle for superconducting fiber production

    Science.gov (United States)

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  5. Using a Fiber Loop and Fiber Bragg Grating as a Fiber Optic Sensor to Simultaneously Measure Temperature and Displacement

    OpenAIRE

    Hsu-Chih Cheng; Yue-Shiun Wu; Chih-Ta Yen; Yao-Tang Chang

    2013-01-01

    This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning) and a fiber Bragg grating (FBG) to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in th...

  6. Wedged Fibers Suppress Feedback of Laser Beam

    Science.gov (United States)

    Ladany, I.

    1986-01-01

    When injected laser is coupled into optical fiber, emission instabilities arise because of optical feedback losses from fiber into laser. Coupling efficiencies as high as 80 percent, however, obtained by shaping end of multimode fiber into obtuse-angled wedge. Because slanted sides eliminate back reflection, such wedged fiber achieves high coupling efficiency.

  7. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  8. Apollo applications of beta fiber glass

    Science.gov (United States)

    Naimer, J.

    1971-01-01

    The physical characteristics of Beta fiber glass are discussed. The application of Beta fiber glass for fireproofing the interior of spacecraft compartments is described. Tests to determine the flammability of Beta fiber glass are presented. The application of Beta fiber glass for commercial purposes is examined.

  9. A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    OpenAIRE

    Costanzo, Giovanni Antonio; Pizzocaro, Marco; Clivati, Cecilia

    2013-01-01

    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about (10-8 rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical fi...

  10. A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    OpenAIRE

    Clivati, Cecilia; Calonico, Davide; Giovanni A. Costanzo; Mura, Alberto; Pizzocaro, Marco; Levi, Filippo

    2012-01-01

    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km^2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about 1e-8 (rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow-linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical f...

  11. Soft capacitor fibers for electronic textiles

    Science.gov (United States)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-09-01

    A highly flexible, conductive polymer-based fiber with high electric capacitance is reported. The fiber is fabricated using fiber drawing method, where a multimaterial macroscopic preform is drawn into a submillimeter capacitor microstructured fiber. A typical measured capacitance per unit length of our fibers is 60-100 nF/m which is about 3 orders magnitude higher than that of a coaxial cable of a comparable diameter. The fiber has a transverse resistivity of 5 kΩ m. Softness, lightweight, absence of liquid electrolyte, and ease of scalability to large production volumes make the fibers interesting for various smart textile applications.

  12. Ethanol extraction of phytosterols from corn fiber

    Science.gov (United States)

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  13. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    Science.gov (United States)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  14. Nanomechanics of electrospun phospholipid fiber

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana C., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk; Chronakis, Ioannis S., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk [Technical University of Denmark, DTU-Food, Søltofts Plads B227, DK-2800, Kgs. Lyngby (Denmark); Nikogeorgos, Nikolaos; Lee, Seunghwan [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-06-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 ± 2.7 μm. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 ± 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h.

  15. Application of Fiber Optic Instrumentation

    Science.gov (United States)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  16. Temperature level fiber sensor network

    OpenAIRE

    López Higuera, José Miguel; Rodríguez Cobo, Luis; Castrellón Uribe, Jesús; Quintela Incera, Antonio; Lomer Barboza, Mauro Matías

    2013-01-01

    A temperature level fiber sensor network is proposed and demonstrated. Each inline transducer is based on a FBG-SMA wire structure working as an on/off optical device being interrogated using a time domain technique.

  17. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  18. Fiber Optics: A Bright Future.

    Science.gov (United States)

    Rice, James, Jr.

    1980-01-01

    Presents an overview of the impact of fiber optics on telecommunications and its application to information processing and library services, including information retrieval, news services, remote transmission of library services, and library networking. (RAA)

  19. Holey fibers: fundamentals and applications

    OpenAIRE

    Richardson, D J; Belardi, W.; Furusawa, K.; Price, J.H.V.; Malinowski, A.; Monro, T.M.

    2002-01-01

    We explain the physical operating principles of holey fibers, review some of their unique optical properties and go on to describe a number of ultrafast applications of this rapidly developing technology.

  20. Heat Treatment of the Photonic Crystal Fiber

    Institute of Scientific and Technical Information of China (English)

    Joo; Beom; Eom; Seongwoo; Yoo; Jinchae; Kim; Hokyung; Kim; Un-Chul; Paek; Byeong; Ha; Lee

    2003-01-01

    We report heat treatment of the photonic crystal fiber. As the temperature was increased, the transmission of the photonic crystal fiber was increased, unlike conventional single mode fiber. The transmission increase at short wavelength region was larger than long wavelength region for the various temperatures. After crystallization of the silica glass, the spectra of the photonic crystal fiber were just decreased at all wavelength regions, but, in case of the single mode fiber, the absorption in visibl...

  1. SYNTHESIS AND APPLICATION OF IMINOCARBOXYLIC CHELATING FIBERS

    Institute of Scientific and Technical Information of China (English)

    LiHangqiu; ZhouShaoji

    1997-01-01

    In this paper,fibrous chelating exchangers with-N(CH2COOH)2 group have been prepared for the first time by a weakly basic anion exchange fiber (aminated fiber)as the starting materials.The fibers were quite effective for the adsorption of heavy metal ion such as Cu2+.In addition,IR spectrum of the structure of fibers confirms that it is feasible to prepare iminocarboxylic chelating fiber through direct carboxylation reaction.

  2. Increased Functionality Porous Optical Fiber Structures

    OpenAIRE

    Wooddell, Michael Gary

    2007-01-01

    A novel fiber optic structure, termed stochastic ordered hole fibers, has been developed that contains an ordered array of six hollow tubes surrounding a hollow core, combined with a nanoporous glass creating a unique fully three dimensional pore/fiber configuration. The objective of this study is to increase the functionality of these stochastic ordered hole fibers, as well as porous clad fibers, by integrating electronic device components such as conductors, and semiconductor...

  3. Failure properties of fiber bundle models

    OpenAIRE

    Pradhan, Srutarshi; Chakrabarti, Bikas K.

    2003-01-01

    We study the failure properties of fiber bundles when continuous rupture goes on due to the application of external load on the bundles. We take the two extreme models: equal load sharing model (democratic fiber bundles) and local load sharing model. The strength of the fibers are assumed to be distributed randomly within a finite interval. The democratic fiber bundles show a solvable phase transition at a critical stress (load per fiber). The dynamic critical behavior is obtained analyticall...

  4. Small Business Innovations (Fiber Optics)

    Science.gov (United States)

    1991-01-01

    Foster-Miller, Inc. Waltham, MA developed the In-Situ Fiber Optic Polymer Reaction Monitor which could lead to higher yields and lower costs in complex composite manufacturing. The monitor, developed under a Small Business Innovation Research (SBIR) contract with Langley Research Center, uses an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. It is the first analytical system capable of directly measuring the chemistry of advanced composite materials.

  5. Fiber Sensing of Micro -Crack

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Optical fiber sensors are used for sensing micro-cracking in composite and metal materials in aerospace applications. The sensing mechanism is based on the detection of acoustic emission signals, which are known to emanate from micro-cracks when they grow under further loading. The sensor head consists of a fiber Bragg grating that is capable of detecting acoustic emission signals generated by pencil lead breaking, of frequencies up to 200 kHz.

  6. Fiber Sensing of Micro -Crack

    Institute of Scientific and Technical Information of China (English)

    Hong-Liang Cui

    2003-01-01

    Optical fiber sensors are used for sensing micro -cracking in composite and metal materials in aerospace applications.The sensing mechanism is based on the detection of acoustic emission signals, which are known to emanate from micro-cracks when they grow under further loading. The sensor head consists of a fiber Bragg grating that is capable of detecting acoustic emission signals generated by pencil lead breaking, of frequencies up to 200 kHz.

  7. Intrusive growth of sclerenchyma fibers

    OpenAIRE

    Snegireva, A.V.; Ageeva, M.V.; Amenitskii, S.I.; Chernova, T.E.; Ebskamp, M.; Gorshkova, T.A.

    2010-01-01

    Intrusive growth is a type of cell elongation when the rate of its longitudinal growth is higher than that of surrounding cells; therefore, these cells intrude between the neighboring cells penetrating the middle lamella. The review considers the classical example of intrusive growth, e.g., elongation of sclerenchyma fibers when the cells achieve the length of several centimeters. We sum the published results of investigations of plant fiber intrusive growth and present some features of intru...

  8. Fiber-reinforced tough hydrogels

    OpenAIRE

    Illeperuma, Widusha Ruwangi Kaushalya; Sun, Jeong-Yun; Suo, Zhigang; Vlassak, Joost J.

    2014-01-01

    Using strong fibers to reinforce a hydrogel is highly desirable but difficult. Such a composite would combine the attributes of a solid that provides strength and a liquid that transports matter. Most hydrogels, however, are brittle, allowing the fibers to cut through the hydrogel when the composite is loaded. Here we circumvent this problem by using a recently developed tough hydrogel. We fabricate a composite using an alginate-polyacrylamide hydrogel reinforced with a random network of stai...

  9. Damage in Fiber Bundle Models

    OpenAIRE

    Kun, Ferenc; Zapperi, Stefano; Herrmann, Hans J.

    1999-01-01

    We introduce a continuous damage fiber bundle model that gives rise to macroscopic plasticity and compare its behavior with that of dry fiber bundles. Several interesting constitutive behaviors are found in this model depending on the value of the damage parameter and on the form of the disorder distribution. In addition, we compare the behavior of global load transfer models with local load transfer models and study in detail the damage evolution before failure. We emphasize the analogies be...

  10. Fiber networks amplify active stress

    OpenAIRE

    Ronceray, Pierre; Broedersz, Chase; Lenz, Martin

    2015-01-01

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in th...

  11. Fundamentals of plastic optical fibers

    CERN Document Server

    Koike, Yasuhiro

    2014-01-01

    Polymer photonics is an interdisciplinary field which demands excellence both in optics (photonics) and materials science (polymer). However, theses disciplines have developed independently, and therefore the demand for a comprehensive work featuring the fundamentals of photonic polymers is greater than ever.This volume focuses on Polymer Optical Fiber and their applications. The first part of the book introduces typical optical fibers according to their classifications of material, propagating mode, and structure. Optical properties, the high bandwidth POF and transmission loss are discussed,

  12. Suppresion of Self-Phase Modulation in a Laser Transfer System using Optical Fiber on the Subaru Telescope

    CERN Document Server

    Ito, Meguru; Saito, Yoshihiko; Takami, Hideki; Saito, Norihito; Akagawa, Kazuyuki; Iye, Masanori

    2012-01-01

    We are developing the Laser Guide Star Adaptive Optics (LGS/AO188) system for the Subaru Telescope at Mauna Kea, Hawaii. This system utilizes a combination of an all-solid-state mode-locked sum-frequency generation (SFG) laser (1.7-GHz bandwidth, 0.7-ns pulse width) as a light source and a single-mode optical fiber for beam transference. However, optical fibers induce nonlinear effects, especially self-phase modulation (SPM). We studied SPM in our photonic crystal fiber (PCF). SPM broadens the spectrum of a laser beam and decrease the efficiency of bright laser guide star generation. We measured the spectrum width using a spectrum analyzer. We found a spectrum width of 8.4 GHz at full width at half maximum (FWHM). The original FWHM of our laser spectrum was 1.4 GHz. This was equivalent to a 70 % loss in laser energy. We also measured the brightness of the sodium cell and evaluated its performance as a function of laser wavelength. The cell's brightness showed a peculiar tendency; specifically, it did not exti...

  13. Fiber coupler end face wavefront surface metrology

    Science.gov (United States)

    Compertore, David C.; Ignatovich, Filipp V.; Marcus, Michael A.

    2015-09-01

    Despite significant technological advances in the field of fiber optic communications, one area remains surprisingly `low-tech': fiber termination. In many instances it involves manual labor and subjective visual inspection. At the same time, high quality fiber connections are one of the most critical parameters in constructing an efficient communication link. The shape and finish of the fiber end faces determines the efficiency of a connection comprised of coupled fiber end faces. The importance of fiber end face quality becomes even more critical for fiber connection arrays and for in the field applications. In this article we propose and demonstrate a quantitative inspection method for the fiber connectors using reflected wavefront technology. The manufactured and polished fiber tip is illuminated by a collimated light from a microscope objective. The reflected light is collected by the objective and is directed to a Shack-Hartmann wavefront sensor. A set of lenses is used to create the image of the fiber tip on the surface of the sensor. The wavefront is analyzed by the sensor, and the measured parameters are used to obtain surface properties of the fiber tip, and estimate connection loss. For example, defocus components in the reflected light indicate the presence of bow in the fiber end face. This inspection method provides a contact-free approach for quantitative inspection of fiber end faces and for estimating the connection loss, and can potentially be integrated into a feedback system for automated inspection and polishing of fiber tips and fiber tip arrays.

  14. Cells on foam and fiber

    Energy Technology Data Exchange (ETDEWEB)

    Clyde, R. [Clyde Engineering, New Orleans, LA (United States)

    1996-12-31

    Cells grow on high area foam and, when a screen is put around the foam, it is made heavier so it can be fluidized. When foam is rotated in a half full RBC (rotary biological contactor), drops are formed and mass transfer of oxygen to drops is much faster. Most fungi and some mammalian cells need oxygen. Corrugated fibers with holes in the valleys also produce drops. White rot fungus needs oxygen and it degrades many chlorine compounds, azo dyes, PAHs (polycyclic aromatic hydrocarbons), and TNT. Old cardboard boxes are readily available and when buried in soil, oxygen is entrapped. In a lake, the boxes expose high area. Celite entrapped in fibers provides even more area. Fibers have high surface area for immobilizing cells and, when the fibers are rotated, fast reactions occur, converting one chemical to another. Sugar has been fermented to alcohol in 10--15 minutes. Ethanol has high octane and does not need lead. Old cars and trucks still use lead, and high levels have been found in the drinking water of several large cities. Bacteria on fibers can remove lead in a few seconds. When an RBC of plain fiber discs is rotated and a light shone in the tope, the light hits a thin moving film to degrade chlorine compounds and sterilize water. Titania can be fused to the fiberglass discs. Microbes and light remove sulfur from oil. Calcium magnesium acetate is a non-corrosive road deicer. Salt on roads causes millions of dollars damage to bridges and cars.

  15. 40 CFR 414.30 - Applicability; description of the other fibers subcategory.

    Science.gov (United States)

    2010-07-01

    ... those fibers and fiber groups listed below. Product groups are indicated with an asterisk (*). *Acrylic...) *Polyaramid (Kevlar) Resin-Fibers *Polyaramid (Nomex) Resin-Fibers *Polyester Fibers *Polyethylene...

  16. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.;

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  17. Passive and Active Fiber Optic Components

    Science.gov (United States)

    Digonnet, Michel Jean-Francois

    This thesis is concerned with the development and characterization of both passive and active fiber-optic components for applications in single-mode fiber systems, in particular in the new technology of fiber sensors and signal processors. These components include single-mode fiber directional couplers, vital to many optical fiber systems, all-fiber wavelength multiplexers, with potential applications in communication systems and active fiber devices, and single-crystal fiber lasers and amplifiers as miniature light sources and signal regenerators. The fiber directional couplers involved in this work, fabricated by a polishing process, are described in detail. Experimental characterization of their coupling, loss and unique tuning properties, and their respective dependence on the coupler geometrical parameters, are reported. A theoretical model of fiber-to-fiber coupling is also developed and shown to be a very useful and accurate tool in the design and study of this type of fiber couplers. The dependence of the coupling properties of fiber couplers on the signal wavelength is studied both theoretically and experimentally for applications in wavelength division multiplexing. All-fiber multiplexers exhibiting a good wavelength selectivity and unique tunability are described and shown to operate according to the coupler model. Work on active fiber devices explores the potential of the new technology of single-crystal fibers grown by the laser-heated floating-zone technique. The status of crystal fiber growth is reported, together with the basic physical and optical characteristics of these fibers. A theoretical model of the effects of fiber model structure on the gain and laser operation of active fibers is also developed to predict the performance of lasers and amplifiers in a fiber form. Several conceptual pumping schemes are described which offer solutions to the difficult problem of optically pumping small diameter fiber amplifiers. The experimental

  18. Hybrid femtosecond fiber laser outcrossing Er-doped fiber and Yb-doped fiber

    Science.gov (United States)

    Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo

    2014-07-01

    A hybridized scheme of a fiber femtosecond pulse laser was devised with the aim of grafting the frequency comb of an Er-doped fiber oscillator, stabilized around a 1.550 μm center wavelength, onto the 1.0 μm emission range of an Yb-doped fiber amplifier. Test results showed that the frequency comb is successfully transferred to a new 1.034 μm center wavelength with a spectral bandwidth of 21 nm, upholding an original frequency stability of 3.71 × 10-13 at 10 s averaging. This work demonstrates the feasibility of outcrossing different kinds of fibers to shift the spectral range of the frequency comb over a large operating span without loss of stability.

  19. Fiber reinforced hybrid phenolic foam

    Science.gov (United States)

    Desai, Amit

    Hybrid composites in recent times have been developed by using more than one type of fiber reinforcement to bestow synergistic properties of the chosen filler and matrix and also facilitating the design of materials with specific properties matched to end use. However, the studies for hybrid foams have been very limited because of problems related to fiber dispersion in matrix, non uniform mixing due to presence of more than one filler and partially cured foams. An effective approach to synthesize hybrid phenolic foam has been proposed and investigated here. Hybrid composite phenolic foams were reinforced with chopped glass and aramid fibers in varied proportions. On assessing mechanical properties in compression and shear several interesting facts surfaced but overall hybrid phenolic foams exhibited a more graceful failure, greater resistance to cracking and were significantly stiffer and stronger than foams with only glass and aramid fibers. The optimum fiber ratio for the reinforced hybrid phenolic foam system was found to be 1:1 ratio of glass to aramid fibers. Also, the properties of hybrid foam were found to deviate from rule of mixture (ROM) and thus the existing theories of fiber reinforcement fell short in explaining their complex behavior. In an attempt to describe and predict mechanical behavior of hybrid foams a statistical design tool using analysis of variance technique was employed. The utilization of a statistical model for predicting foam properties was found to be an appropriate tool that affords a global perspective of the influence of process variables such as fiber weight fraction, fiber length etc. on foam properties (elastic modulus and strength). Similar approach could be extended to study other fiber composite foam systems such as polyurethane, epoxy etc. and doing so will reduce the number of experimental iterations needed to optimize foam properties and identify critical process variables. Diffusivity, accelerated aging and flammability

  20. Development of Manila Hemp Fiber Epoxy Composite with High Tensile Properties Through Handpicking Fiber Fragments

    Science.gov (United States)

    Liu, Ke; Takagi, Hitoshi; Yang, Zhimao

    Manila hemp fibers are separated to several sequent fragments from single fiber. The tensile strength of each fiber fragments and their epoxy composite are measured, followed by scanning electronic microscopic (SEM) analysis. The results show that the tensile strength of fiber fragments is almost constant along fiber. For composite, the tensile strength first increases and then decreases at the position near to root. The Young's modulus presents increasing with location from root to top for fiber and composite. Microstructure analysis indicates that the difference of tensile properties between fiber fragments derive from the difference of fiber diameter.

  1. Theoretical analysis of novel fiber grating pair

    Science.gov (United States)

    Wang, Liao; Jia, Hongzhi; Fang, Liang; You, Bei

    2016-06-01

    A novel fiber grating pair that consists of a conventional long-period fiber grating and a fiber Bragg cladding grating (FBCG) is proposed. The FBCG is a new type of fiber grating in which refractive index modulation is formed in the cladding. Through the coupled-mode theory, we accurately calculate the coupling coefficients between modes supported in the fibers. And some other mode coupling features in the fiber cladding gratings are analyzed in detail. The calculation of the modes involved in this paper is based on a model of three-layer step-index fiber geometry. Then, we have investigated the sensitivity characteristics for variation of the modulation strengths of the fiber Bragg cladding gratings' resonance peaks and the long-period cladding gratings' (LPCGs) dual resonant peaks. Finally, the modulation strength sensitivity of the grating pair's three resonant peaks is demonstrated, and the results indicate that these grating pairs may find potential applications in optical fiber sensing.

  2. Liquid Flow in Shaped Fiber Bundle

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; WANG Hua-ping; CHEN Yue-hua

    2006-01-01

    By computation and comparison of the critical spreading coefficient parameter, it was found that shaped fiber bundle is better for wetting. Liquid-air interface tension of liquid arising the shaped fiber bundle body is considered as one critical factor besides liquid viscosity, inertia force and liquid-fiber interface tension. Experimental result simulation demonstrated that the liquid-air interface tension is correlated with the geometric size of the liquid arising in body, φ0 (x) and which is affected by the cross sectional shape of fiber and the radius of single fiber. The shaped fiber bundle model is introduced to investigate liquid flow in fiber assembly. The model is generated based on a random function for stochastic forming of fibers in bundle and it is necessary to combine this fundamental model with physical explanation for investigation of liquid flow in fiber assembly.

  3. Underutilized sources of dietary fiber: a review.

    Science.gov (United States)

    McKee, L H; Latner, T A

    2000-01-01

    Interest in the fiber content of foods has decreased in recent years as concerns about fat intake have increased. Fiber, however, remains an important component of the diet. Soluble dietary fiber, including pectic substances and hydrocolloids, is found naturally in foods such as fruits, vegetables, legumes and oat bran. Insoluble fiber, including cellulose and hemicellulose, is found in foods such as whole grains. Fiber supplementation has been used to enhance the fiber content of a variety of foods ranging from cereal-based products to meats, imitation cheeses and sauces. Products used to enhance fiber content of foods have traditionally come from cereals such as wheat, corn and oats. There are a variety of other products, however, such as fruits, vegetables, legumes and less commonly used cereals such as barley, which are potential sources of dietary fiber supplements. This article reviews research on some of these underutilized sources of dietary fiber. PMID:11086873

  4. Fiber optic fire detection technology

    International Nuclear Information System (INIS)

    Electrostatic application of paint was, and still is, the most technically feasible method of reducing VOC (volatile organic compounds) emissions, while reducing the cost to apply the coatings. Prior to the use of electrostatics, only two sides of the traditional fire triangle were normally present in the booth, fuel (solvent), and oxygen (air). Now the third leg (the ignition source) was present at virtually all times during the production operation in the form of the electrostatic charge and the resulting energy in the system. The introduction of fiber optics into the field of fire detection was for specific application to the electrostatic painting industry, but specifically, robots used in the application of electrostatic painting in the automotive industry. The use of fiber optics in this hazard provided detection for locations that have been previously prohibited or inaccessible with the traditional fire detection systems. The fiber optic technology that has been adapted to the field of fire detection operates on the principle of transmission of photons through a light guide (optic fiber). When the light guide is subjected to heat, the cladding on the light guide melts away from the core and allows the light (photons) to escape. The controller, which contains the emitter and receiver is set-up to distinguish between partial loss of light and a total loss of light. Glass optical fibers carrying light offer distinct advantages over wires or coaxial cables carrying electricity as a transmission media. The uses of fiber optic detection will be expanded in the near future into such areas as aircraft, cable trays and long conveyor runs because fiber optics can carry more information and deliver it with greater clarity over longer distances with total immunity to all kinds of electrical interference

  5. 大功率空间全固态激光器高效传导冷却技术研究%Study of High-Efficiency Conduction Cooling Technique for High Power Space-Based All-Solid-State Lasers

    Institute of Scientific and Technical Information of China (English)

    刘丹; 谢可迪; 马秀华; 朱小磊; 陈卫标

    2011-01-01

    The novel high power micro-gravity heat pipes are applied for the conduction cooling of a high power and high repetition space-based all-solid-state laser. The waste heat of laser amplifiers can be dissipated effectively and thereby the laser output with high beam quality and high power is obtained. In view of the pumping laser diode (LD) stacks and slab gain medium being major thermal sources in slab amplifiers, the novel amplifier structures for heat dissipating are designed. In the experiment, the heat-sinking capability of two stage simulated amplifiers in series is measured with the single-channel micro-gravity heat pipe and the two-channel micro-gravity heat pipe, respectively. The experimental results show that the temperature of both stage pre-amplifiers stabilizes in the range of operating temperature for the laser diode array. In the end, the average output power more than 20 W, magnification times greater than 20, Ml of 1.42 and M\\ of 1.31 are achieved successfully.%采用全新设计的大功率微重力热管,对大功率空间全固态激光器实施高效传导冷却,实现了对激光放大器废热的有效耗散,获得高光束质量、高功率的激光输出.鉴于激光板条放大器的主要热源为抽运激光二极管(LD)叠层及板条增益介质,实验设计了新型放大器散热结构,分别采用单通道和并行双通道微重力热管对两级串接放大器进行散热实验.结果表明,两级放大器热沉的温度均可稳定在设定的LD工作温度范围内,获得平均功率大于20 W,放大倍数大于20倍,光束质量因子M_x~2,M_y~2控制在1.42和1.31的激光脉冲输出.

  6. Tunable All-Solid-State Continuous Wave Intra-Cavity Frequency-Doubled Nd∶YVO4/LBO 671 nm Ring Laser%可调谐全固态Nd∶YVO4/LBO倍频连续671nm环形激光器

    Institute of Scientific and Technical Information of China (English)

    孙桂侠; 刘涛; 钱金宁; 苏新军; 张晓卫; 张志忠

    2013-01-01

    A tunable all-solid-state Nd∶ YVO4 ring laser,intra-cavity frequency doubled by a type-Ⅰ matched LBO crystal with 671 nm laser output,is demonstrated in this paper.The laser resonator is designed with a four-mirror ring configuration.The YVO4-Nd∶YVO4 composite crystal is end-pumped by a 880 nm laser diode (LD).A Faraday optical diode consisted with TGG rotator and half-wave plate is placed inside the resonator for forcing the laser to operate unidirectionally.A solid Fabry-Perot etalon and a piezoelectric-ceramic are inserted into the cavity for tuning the wavelength.The single-frequency output power of 1.08 W at 671 nm is obtained under the pumping power of 23 W (the absorbed pumping power of 14.5 W),the optical-optical conversion efficiency is about 7.4%.With the etalon tuning,a maximal output power of 738 mW is obtained.%描述了一种可调谐全固态Nd∶ YVO4/LBO倍频连续671 nm环形激光器的结构参数和相关实验研究.激光器采用四镜环形腔结构,利用880 nm激光二极管(LD)端面抽运YVO4-Nd∶ YVO4复合晶体和Ⅰ类相位匹配的LBO倍频方式,加入TGG旋光器和λ/2波片组成的光学单向器实现单向运转,通过对法布里-珀罗(F-P)标准具角度和腔镜压电晶体电压的调节实现了激光输出波长671 nm附近的调频.在抽运功率为23 W,吸收抽运功率为14.5W时,输出单频671 nm连续红光最高功率为1.08W,光-光转换效率为7.4%;加标准具调谐时,获得了最高功率为738 mW的可调谐红光输出.

  7. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  8. Preliminary characterization of glass fiber sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl;

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus...... the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had...

  9. Blood glucose response to pea fiber

    DEFF Research Database (Denmark)

    Hamberg, O; Rumessen, J J; Gudmand-Høyer, E

    1989-01-01

    Two new fiber types, pea fiber (PF) and sugar beet fiber (BF), were compared with wheat bran (WB) to investigate the effect on postprandial blood glucose and serum insulin responses in normal subjects. The control meal consisted of 150 g ground beef mixed with 50 g glucose and 20 g lactulose. Only...... addition of PF (15 g pure fiber) reduced the area under the incremental blood glucose curve significantly (by 65%, p less than 0.05). None of the fibers affected the area under the insulin-response curve significantly although it was reduced by all fibers. Mouth-to-cecum transit time, assessed...

  10. Enzymatic surface modification of Kevlar fibers

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Jingchan; FAN; Guoning; GUO; Zhian; ZHANG; Yongke; W

    2005-01-01

    Horseradish peroxidase catalyzed grafting of acrylamide (AM) onto Kevlar fibers has been studied. The modified fiber has been characterized with scanning electron microscopy (SEM), elemental analysis and the grafting yield. From the SEM micrographs, the surface of the grafted Kevlar fiber is rougher than that of the untreated fiber, and the elemental analysis indicated that the nitrogen content of the treated fibers is higher than that of the untreated fiber. All the results suggested that AM must have been grafted onto the Kevlar surface through HRP-mediated radical initiated grafting reaction. The probably mechanism of HRP catalyzed grafting of AM onto Kevlar surface is proposed.

  11. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  12. All-fiber sensor of angular velocity

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.TS.; Vlasenko, O.A.; Dianov, E.M.; Diankov, G.L.; Zafirova, B.S.

    1989-06-01

    The paper reports the construction of an all-fiber optical sensor of angular velocity whose operation is based on the Sagnac effect in a fiber ring interferometer. An all-fiber system does not require the use of external discrete optical elements; division, polarization, and modulation functions are performed by the fiber waveguide itself. The fiber elements and sensor are constructed on the basis of slightly anisotropic fiber waveguides. The sensitivity of the device was 0.0077 deg/sq rt hr, while the zero drift was 0.5 deg/hr. 6 refs.

  13. Polyacrylonitrile fibers containing graphene oxide nanoribbons.

    Science.gov (United States)

    Chien, An-Ting; Liu, H Clive; Newcomb, Bradley A; Xiang, Changsheng; Tour, James M; Kumar, Satish

    2015-03-11

    Graphene oxide nanoribbon (GONR) made by the oxidative unzipping of multiwalled carbon nanotube was dispersed in dimethylformamide and mixed with polyacrylonitrile (PAN) to fabricate continuous PAN/GONR composite fibers by gel spinning. Subsequently, PAN/GONR composite fibers were stabilized and carbonized in a batch process to fabricate composite carbon fibers. Structure, processing, and properties of the composite precursor and carbon fibers have been studied. This study shows that GONR can be used to make porous precursor and carbon fibers. In addition, GONR also shows the potential to make higher mechanical property carbon fibers than that achieved from PAN precursor only. PMID:25671488

  14. Oxide fiber targets at ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Koester, U. E-mail: ulli.koster@cern.ch; Bergmann, U.C.; Carminati, D.; Catherall, R.; Cederkaell, J.; Correia, J.G.; Crepieux, B.; Dietrich, M.; Elder, K.; Fedoseyev, V.N.; Fraile, L.; Franchoo, S.; Fynbo, H.; Georg, U.; Giles, T.; Joinet, A.; Jonsson, O.C.; Kirchner, R.; Lau, Ch.; Lettry, J.; Maier, H.J.; Mishin, V.I.; Oinonen, M.; Peraejaervi, K.; Ravn, H.L.; Rinaldi, T.; Santana-Leitner, M.; Wahl, U.; Weissman, L

    2003-05-01

    Many elements are rapidly released from oxide matrices. Some oxide powder targets show a fast sintering, thus losing their favorable release characteristics. Loosely packed oxide fiber targets are less critical since they may maintain their open structure even when starting to fuse together at some contact points. The experience with various oxide fiber targets (titania, zirconia, ceria and thoria) used in the last years at ISOLDE is reviewed. For short-lived isotopes of Cu, Ga and Xe the zirconia and ceria targets respectively provided significantly higher yields than any other target (metal foils, oxide powders, etc.) tested before. Titania fibers, which were not commercially available, were produced in a relic process by impregnation of a rayon felt in a titanium chloride solution and subsequent calcination by heating the dried felt in air. Thoria fibers were obtained either by the same process or by burning commercial gas lantern mantle cloth. In the future a beryllia fiber target could be used to produce very intense {sup 6}He beams (order of 10{sup 13} ions per second) via the {sup 9}Be(n,{alpha}) reaction using spallation neutrons.

  15. Fiber optic evanescent wave biosensor

    Science.gov (United States)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  16. Cellulose nanofibers from Curaua fibers

    International Nuclear Information System (INIS)

    Curaua is a plant from Amazon region whose leaves were used by the indians of the region to make nets, ropes, fishing wires, etc., due to their high mechanical resistance. Nowadays, some industries, mainly textile and automobile, have increased their interest on these fibers to prepare polymer composites, because their properties could be compared to composites with glass fibers. In this work, cellulose nanofibers were obtained from curaua fibers, which were submitted to alkaline treatment with a solution of NaOH 5%. Nanofibers, in watery suspension, were characterized morphologically by TEM and AFM, and they show needle like format and the ratio L/D of 14. The suspension was dried by freeze dried process, in vacuum and air circulation oven, and these nanofibers were analyzed by x-ray diffraction, presenting high crystalline index, and by thermogravimetric analysis (TGA), which showed that nanofibers have poorer thermal stability than the treated fiber, but they can reach values next to the ones of the original fibers, depending on the drying process of the suspension. (author)

  17. Continuous Fiber Ceramic Composites (CFCC)

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Wagner

    2002-12-18

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  18. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    OpenAIRE

    I. Lujo; Klokoc, P.; Komljenovic, T.; M. Bosiljevac; Z. Sipus

    2008-01-01

    The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam), a multimode laser in visible range as a light source, a length of mul...

  19. Modal noise impact in radio over fiber multimode fiber links.

    Science.gov (United States)

    Gasulla, I; Capmany, J

    2008-01-01

    A novel analysis is given on the statistics of modal noise for a graded-index multimode fiber (MMF) link excited by an analog intensity modulated laser diode. We present the speckle contrast as a function of the power spectrum of the modulated source and the transfer function of the MMF which behaves as an imperfect transversal microwave photonic filter. The theoretical results confirm that the modal noise is directly connected with the coherence properties of the optical source and show that the performance of high-frequency Radio Over Fiber (ROF) transmission through MMF links for short and middle reach distances is not substantially degraded by modal noise. PMID:18521139

  20. Identifying practical solutions to meet America's fiber needs: proceedings from the Food & Fiber Summit.

    Science.gov (United States)

    Mobley, Amy R; Jones, Julie Miller; Rodriguez, Judith; Slavin, Joanne; Zelman, Kathleen M

    2014-07-08

    Fiber continues to be singled out as a nutrient of public health concern. Adequate intakes of fiber are associated with reduced risk for cardiovascular disease, cancer, diabetes, certain gastrointestinal disorders and obesity. Despite ongoing efforts to promote adequate fiber through increased vegetable, fruit and whole-grain intakes, average fiber consumption has remained flat at approximately half of the recommended daily amounts. Research indicates that consumers report increasingly attempting to add fiber-containing foods, but there is confusion around fiber in whole grains. The persistent and alarmingly low intakes of fiber prompted the "Food & Fiber Summit," which assembled nutrition researchers, educators and communicators to explore fiber's role in public health, current fiber consumption trends and consumer awareness data with the objective of generating opportunities and solutions to help close the fiber gap. The summit outcomes highlight the need to address consumer confusion and improve the understanding of sources of fiber, to recognize the benefits of various types of fibers and to influence future dietary guidance to provide prominence and clarity around meeting daily fiber recommendations through a variety of foods and fiber types. Potential opportunities to increase fiber intake were identified, with emphasis on meal occasions and food categories that offer practical solutions for closing the fiber gap.

  1. Multisoliton complexes in fiber lasers

    Science.gov (United States)

    Korobko, D. A.; Gumenyuk, R.; Zolotovskii, I. O.; Okhotnikov, O. G.

    2014-12-01

    The formation of stationary and non-stationary pulse groups is regularly observed in multiple pulse soliton fiber lasers. The environment developed in this study for the flexible investigation of this phenomenon is based on the cavity comprising a semiconductor saturable absorber mirror (SESAM) with complex dynamics of absorption recovery and all-fiber dispersion management. The detailed experimental and theoretical considerations show that multiple pulsing in fiber systems offers numerous embodiments ranging from stationary bound states to chaotic bunches. The pulse interaction through the dispersive waves was found to produce a principal impact on the bound state formation. The stability and transformation of stationary bound states and bunch propagation have been also addressed.

  2. Electrospinning of micro spiral fibers

    International Nuclear Information System (INIS)

    We describe an easy way to form micro spiral structures resulting from buckling instabilities of an electro jet of a nanoscale polymer fiber of polyvinglpyrrolidone-Cu(NO3)2 (PVP-Cu(NO3)2) sol) and discuss the formation process. We control the morphologies of the fibers into spiral fibers, and free-standing hollow cylinders by connecting an opposite high voltage supply (−5 to −10 kV) on the collector. The microstructured surfaces were observed by scanning electron microscope (SEM). SEM analysis revealed the presence of spirals with diameters of approximately 20 to 30 μm. The structures formed by the nanofibers could be used in diverse fields of nanotechnology, such as micro planar inductor and nanochannels. (papers)

  3. All-Fiber Raman Probe

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara

    The design and development of an all-in-fiber probe for Raman spectroscopy are presented in this Thesis. Raman spectroscopy is an optical technique able to probe a sample based on the inelastic scattering of monochromatic light. Due to its high specificity and reliability and to the possibility...... to perform real-time measurements with little or no sample preparation, Raman spectroscopy is now considered an invaluable analytical tool, finding application in several fields including medicine, defense and process control. When combined with fiber optics technology, Raman spectroscopy allows...... for the realization of flexible and minimally-invasive devices, able to reach remote or hardly accessible samples, and to perform in-situ analyses in hazardous environments. The work behind this Thesis focuses on the proof-of-principle demonstration of a truly in-fiber Raman probe, where all parts are realized...

  4. Optical fiber meta-tips

    Science.gov (United States)

    Principe, Maria; Micco, Alberto; Crescitelli, Alessio; Castaldi, Giuseppe; Consales, Marco; Esposito, Emanuela; La Ferrara, Vera; Galdi, Vincenzo; Cusano, Andrea

    2016-04-01

    We report on the first example of a "meta-tip" configuration that integrates a metasurface on the tip of an optical fiber. Our proposed design is based on an inverted-Babinet plasmonic metasurface obtained by patterning (via focused ion beam) a thin gold film deposited on the tip of an optical fiber, so as to realize an array of rectangular aperture nanoantennas with spatially modulated sizes. By properly tuning the resonances of the aperture nanoantennas, abrupt variations can be impressed in the field wavefront and polarization. We fabricated and characterized several proof-of-principle prototypes operating an near-infrared wavelengths, and implementing the beam-steering (with various angles) of the cross-polarized component, as well as the excitation of surface waves. Our results pave the way to the integration of the exceptional field-manipulation capabilities enabled by metasurfaces with the versatility and ubiquity of fiber-optics technological platforms.

  5. Scalar - vector soliton fiber lasers

    CERN Document Server

    Wu, Zhichao; Li, Lei; Luo, Yiyang; Tang, Dingyuan; Shen, Deyuan; Tang, Ming; Fu, Songnian; Zhao, Luming

    2016-01-01

    Rapid progress in passively mode-locked fiber lasers is currently driven by the recent discovery of vector feature of mode-locking pulses, namely, the group velocity-locked vector solitons, the phase locked vector solitons, and the high-order vector solitons. Those vector solitons are fundamentally different from the previously known scalar solitons. Here, we report a fiber laser where the mode-locked pulse evolves as a vector soliton in the strong birefringent segment and is transformed into a regular scalar soliton after the polarizer within the laser cavity. The existence of solutions in a polarization-dependent cavity comprising a periodic combination of two distinct nonlinear waves is novel and likely to be applicable to various other nonlinear systems. For very large local birefringence, our laser approaches the working regime of vector soliton lasers, while it approaches scalar soliton fiber lasers under the conditions of very small birefringence.

  6. Fiber-optic color synthesizer.

    Science.gov (United States)

    Jeong, Y; Lee, D; Lee, Jhang W; Oh, K

    2006-07-15

    Full-color synthesis was achieved, for what we believe is the first time, utilizing a novel 3x1 hard polymer-clad fiber coupler along with red, green, and blue (RGB) LED primaries. By using RGB LEDs that are coupled to three input ports, the device rendered full color from the output port with a circular emitting pixel of 135 microm in diameter with an extended color gamut. The proposed fiber-optic color synthesizer can provide a compact waveguide solution for the beam scanning display and the tunable pure white source for LED backlighting.

  7. Fiber Optic Particle Concentration Sensor

    Science.gov (United States)

    Boiarski, Anthony A.

    1986-01-01

    A particle concentration sensor would be useful in many industrial process monitoring applications where in situ measurements are required. These applications include determination of butterfat content of milk, percent insolubles in engine oil, and cell concentration in a bioreactor. A fiber optic probe was designed to measure particle concentration by monitoring the scattered light from the particle-light interaction at the end of a fiber-optic-based probe tip. Linear output was obtained from the sensor over a large range of particle loading for a suspension of 1.7 μm polystyrene microspheres in water and E. coli bacteria in a fermenter.

  8. PROGRESS ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  9. Lab-on-fiber technology

    CERN Document Server

    Cusano, Andrea; Crescitelli, Alessio; Ricciardi, Armando

    2014-01-01

    This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established 'lab on-a-chip' concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications.Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate de

  10. Fiber Bragg Grating Based Thermometry

    CERN Document Server

    Ahmed, Zeeshan; Guthrie, William; Quintavalle, John

    2016-01-01

    In recent years there has been considerable interest in developing photonic temperature sensors such as the Fiber Bragg gratings (FBG) as an alternative to resistance thermometry. In this study we examine the thermal response of FBGs over the temperature range of 233 K to 393 K. We demonstrate, in a hermetically sealed dry Argon environment, that FBG devices show a quadratic dependence on temperature with expanded uncertainties (k = 2) of ~500 mK. Our measurements indicate that the combined measurement uncertainty is dominated by uncertainty in determining the peak center fitting and by thermal aging of polyimide coated fibers.

  11. Polarization-preserving holey fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Mogilevtsev, Dmitri; Libori, Stig E. Barkou;

    2001-01-01

    In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization......In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization...

  12. Quality of chemically modified hemp fibers.

    Science.gov (United States)

    Kostic, Mirjana; Pejic, Biljana; Skundric, Petar

    2008-01-01

    Hemp fibers are very interesting natural material for textile and technical applications now. Applying hemp fibers to the apparel sector requires improved quality fibers. In this paper, hemp fibers were modified with sodium hydroxide solutions (5% and 18% w/v), at room and boiling temperature, for different periods of time, and both under tension and slack, in order to partially extract noncellulosic substances, and separate the fiber bundles. The quality of hemp fibers was characterised by determining their chemical composition, fineness, mechanical and sorption properties. The modified hemp fibers were finer, with lower content of lignin, increased flexibility, and in some cases tensile properties were improved. An original method for evaluation of tensile properties of hemp fibers was developed.

  13. Feasibility of giant fiber-optic gyroscopes

    OpenAIRE

    Schiller, Stephan

    2013-01-01

    The availability of long-distance, underground fiber-optic links opens a perspective of implementing interferometric fiber-optic gyroscopes embracing very large areas. We discuss the potential sensitivity, some disturbances and approaches to overcome them.

  14. Novel Bandwidth Sensor Based Fiber Grating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, the basic principle and the design method of the bandwidth sensing of fiber grating are expounded, respectively. Several novel bandwidth sensor based fiber grating are analyzed and discussed.

  15. The Coupling Waves of Multicore-Fiber

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Multicore-fiber as gain medium for fiber laser is introduced. The cores are coupled via evanescent waves. Analysis of the coupling waves is agree with the numerical simulations and experimental results.

  16. Photonic crystal fibers, devices, and applications

    Institute of Scientific and Technical Information of China (English)

    Wei JIN; Jian JU; Hoi Lut HO; Yeuk Lai HOO; Ailing ZHANG

    2013-01-01

    This paper reviews different types of air-silica photonic crystal fibers (PCFs), discusses their novel properties, and reports recent advances in PCF components and sensors as well as techniques for splicing PCFs to standard telecomm fibers.

  17. Advanced Carbon Fiber Nears Broad Automotive Use

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    General Motors and Teijin Limited, a leader in the carbon fiber and composites industry, will co-develop advanced carbon fiber composite technologies for potential high-volume use globally in GM cars, trucks and crossovers.

  18. When Polypropylene Fiber Can Be Dyed

    Institute of Scientific and Technical Information of China (English)

    By Tom Xue

    2008-01-01

    @@ What if polypropylene fiber can be dyed someday? That means fiber offers immense production possibilities,means manufacturers will benefit from increasing their operational effectiveness,reducing the inventory of colored yarns,means streamline production process,means……

  19. Dietary Fiber - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Dietary Fiber URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Dietary Fiber - Multiple Languages To use the sharing features on ...

  20. Photonics and Fiber Optics Processor Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Photonics and Fiber Optics Processor Lab develops, tests and evaluates high speed fiber optic network components as well as network protocols. In addition, this...

  1. Recent Progress of Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    Katsusuke; Tajima

    2003-01-01

    Photonic crystal fibers are attractive since we can realize a wide variety of unique features in the PCFs, which cannot be realized in conventional single-mode fibers. We describe recent progress in the PCF.

  2. Attenuation in silica-based optical fibers

    DEFF Research Database (Denmark)

    Wandel, Marie Emilie

    2006-01-01

    absorption peaks in order to investigate the cause of an unusual high attenuation in a series of transmission fibers. Strong indications point to Ni2+ in octahedral coordination as being the cause of the high attenuation. The attenuation of fibers having a high core refractive index is analyzed and the cause...... well as the viscosity profile a lower attenuation of high index fibers can be obtained. The design of dispersion compensating fibers using the super mode approach is described, the object being to design dispersion compensating fibers for dispersion compensating fiber modules having a low attenuation......, described by a high figure of merit. The major trade offs encountered when designing dispersion compensating fibers with high figure of merit are to obtain a very negative dispersion, low attenuation and low micro bend loss at the same time. The model for predicting the attenuation of high index fibers is...

  3. Erbium doped tellurite photonic crystal optical fiber

    Science.gov (United States)

    Osorio, Sergio P.; Fernandez, Enver; Rodriguez, Eugenio; Cesar, Carlos L.; Barbosa, Luiz C.

    2005-04-01

    In this work we present the fabrication of tellurite glass photonic crystal fiber doped with a very large erbium concentration. Tellurite glasses are important hosts for rare earth ions due to its very high solubility, which allows up to 10,000 ppm Er3+ concentrations. The photonic crystal optical fibers and tellurite glasses can be, therefore, combined in an efficient way to produce doped fibers for large bandwidth optical amplifiers. The preform was made of a 10 mm external diameter tellurite tube filled with an array of non-periodic tellurite capillaries and an erbium-doped telluride rod that constitute the fiber core. The preform was drawn in a Heathway Drawing Tower, producing fibers with diameters between 120 - 140 μm. We show optical microscope photography of the fiber"s transverse section. The ASE spectra obtained with a spectra analyzer show a red shift as the length of the optical fiber increases.

  4. Fiber Acousto-Electro-Optic Modulator

    Institute of Scientific and Technical Information of China (English)

    Anen; Jiang

    2003-01-01

    A new kind of fiber acousto-electro-optic modulator is made by using Lithium Niobate crystal. This kind of modulator can be used in fiber communication, and its center frequency can be changed by directed current voltages.

  5. Enhanced nonlinear effects in photonic crystal fibers

    Institute of Scientific and Technical Information of China (English)

    LI Yan-feng; HU Ming-lie; CHAI Lu; WANG Ching-yue

    2006-01-01

    Photonic crystal fibers are a new class of single-material optical fibers with wavelength-scale air holes running down the entire fiber length.Photonic crystal fibers were first developed in 1996 and have subsequently been the focus of increasing scientific and technological interest in the field of fiber optics.The manufacturing,principles,basic properties,and some applications of photonic crystal fibers are briefly described in this paper.A review of our recent work on the nonlinear effects in photonic crystal fibers is presented,and special emphasis is placed on such effects as supercontinuum generation,frequency conversion, and solitons observed when femtosecond light pulses propagate in these fibers.

  6. Optical Fiber Devices in WDM Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Crystal optics and fiber grating technology are two of the most important optical fiber device technologies. In this paper, we report several new devices developed in Accelink for WDM networks application.

  7. 16 CFR 303.23 - Textile fiber products containing superimposed or added fibers.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Textile fiber products containing... UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.23 Textile fiber products containing superimposed or added fibers. Where a textile...

  8. Experimental Study of Fiber Length and Orientation in Injection Molded Natural Fiber/Starch Acetate Composites

    Directory of Open Access Journals (Sweden)

    Heidi Peltola

    2011-01-01

    Full Text Available Composite compounds based on triethyl citrate plasticized starch acetate and hemp and flax fibers were prepared by melt processing. Plasticizer contents from 20 to 35 wt% and fiber contents of 10 and 40 wt% were used. The compounded composites were injection molded to tensile test specimens. The effect of processing, melt viscosity and fiber type on the fiber length was investigated. The lengths of fully processed fibers were determined by dissolving the matrix and measuring the length of the remaining fibers by microscope analysis. A clear reductive effect of the processing on the fiber length was noticed. A reduction of fiber length along the increasing fiber content and the decreasing plasticizer content was also detected. This reduction originated from the increasing shear forces during compounding, which again depended on the increased viscosity of the material. Hemp fibers were shown to remain longer and fibrillate more than flax fibers, leading to higher aspect ratio. Thus, the reinforcement efficiency of hemp fibers by the processing was improved, in contrast with flax fibers. In addition, the analysis of fiber dispersion and orientation showed a good dispersion of fibers in the matrix, and a predominant orientation of the fibers in the melt flow direction.

  9. Analysis of New Q-switched Erbium Doped Fiber Laser Based on Fiber Grating Loop Mirror

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An all-fiber wavelength selective Q-switching modulator based on fiber grating loop mirror is proposed. A newly configured Q-switched erbium doped fiber laser using this all-fiber modulator is numerically analyzed taking into account the effects of the spontaneous emission.

  10. Simultaneous demodulation of polarization mode coupling and fiber Bragg grating within a polarization maintaining fiber

    Science.gov (United States)

    Zhao, Yanshuang; Liu, Yanlei; Zhang, Jianzhong; Yang, Jun; Canning, John; Peng, G. D.; Chen, Yujin; Yuan, Libo

    2015-09-01

    We propose a simultaneous demodulation scheme of polarization mode coupling and fiber Bragg grating in a polarization maintaining fiber based on a white light interferometer. A polarization maintaining fiber with two inscribed fiber Bragg gratings is used to demonstrate the feasibility.

  11. Applications of fiber optics in physical protection

    International Nuclear Information System (INIS)

    The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors

  12. Sustainable Development in Chemical Fiber Industry

    Institute of Scientific and Technical Information of China (English)

    Flora Zhao

    2012-01-01

    The 18th China International Man-Made Fiber Conference (Xiaoshan 2012), themed on "How does Chemical Fiber Industry to Realize Sustainable Development against the Background of High-cost Era?", kicked off in Hangzhou on September 6th, 2012. More than 600 representatives from nearly 20 major chemical fiber manufacturing countries and regions all over the world were gathered together to discuss the sustainable development strategies of international chemical fiber industry in the context of the current compficated environment from different perspectives.

  13. Polypropylene matrix composites reinforced with coconut fibers

    OpenAIRE

    Maria Virginia Gelfuso; Pedro Vieira Gurgel da Silva; Daniel Thomazini

    2011-01-01

    Polypropylene matrix composites reinforced with treated coconut fibers were produced. Fibers chemically treated (alkalization-CCUV samples) or mechanically treated (ultrasonic shockwave-CMUV samples) were dried using UV radiation. The goal was to combine low cost and eco-friendly treatments to improve fiber-matrix adhesion. Composite samples containing up to 20 vol. (%) of untreated and treated coconut fibers were taken from boxes fabricated by injection molding. Water absorption and mechanic...

  14. High Power Performance of Rod Fiber Amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Michieletto, Mattia; Kristensen, Torben;

    2015-01-01

    An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W.......An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W....

  15. Reflection losses from imperfectly broken fiber ends.

    Science.gov (United States)

    Marcuse, D

    1975-12-01

    This paper presents an approximate theory for determining the reflection losses in multimode fibers that terminate in end surfaces that are not strictly perpendicular to the fiber axis. This theory is also applicable to tilts and covers step index as well as parabolic index fibers. The cross section of the step index fiber is assumed to have square geometry. This assumption simplifies the theory and is not expected to influ-ence the obtained results.

  16. Polarization properties of photonic bandgap fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard

    2000-01-01

    We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components.......We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components....

  17. Fibrillogenesis in Continuously Spun Synthetic Collagen Fiber

    OpenAIRE

    Caves, Jeffrey M.; Kumar, Vivek A.; Wen, Jing; Cui, Wanxing; Martinez, Adam; Apkarian, Robert; Coats, Julie E.; Berland, Keith; Chaikof, Elliot L.

    2010-01-01

    The universal structural role of collagen fiber networks has motivated the development of collagen gels, films, coatings, injectables, and other formulations. However, reported synthetic collagen fiber fabrication schemes have either culminated in short, discontinuous fiber segments at unsuitably low production rates, or have incompletely replicated the internal fibrillar structure that dictates fiber mechanical and biological properties. We report a continuous extrusion system with an off-li...

  18. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  19. Catching Attention in Fiber Optics Class

    CERN Document Server

    Kezerashvili, G Ya

    2004-01-01

    Following a brief review on the history and the current development of fiber optics, the significance of teaching fiber optics for science and non-science major college students is addressed. Several experimental demonstrations designed to aid the teaching and learning process in fiber optics lectures are presented. Sample laboratory projects are also proposed to help the students to understand the physical principles of fiber optics.

  20. A fiber inclinometer using a fiber microtaper with an air-gap microcavity fiber interferometer

    Science.gov (United States)

    Feng, Zhongyao; Gang, Tingting; Hu, Manli; Qiao, Xueguang; Liu, Nan; Rong, Qiangzhou

    2016-04-01

    A micro-inclinometer is proposed and demonstrated experimentally; the device consists of a micro-fiber taper followed by an air-gap microcavity. A part of the core mode can couple to cladding modes via the taper. These cladding modes and residual core modes transmitted to downstream of the Fabry-Perot (FP) interferometer. A fraction of these modes are reflected back to the SMF by two surfaces of the FP cavity and eventually recoupled to the leading-in SMF, resulting in a well-defined interference spectrum. The fringe contrast of the interferometer is highly sensitive to fiber bending with direction-independence and thus is capable of measuring tilt angles in high resolution. In addition, the interference wavelength always remains unchanged during the fiber bending.