WorldWideScience

Sample records for all-sky x-ray image

  1. Next generation x-ray all-sky monitor

    International Nuclear Information System (INIS)

    Priedhorsky, W. C.; Peele, A. G.; Nugent, K. A.

    1997-01-01

    We set forth a conceptual design for x-ray all-sky monitor based on lobster-eye wide-field telescopes. This instrument, suitable for a small satellite, would monitor the flux of objects as faint as 2x10 -15 W/m 2 (0.5-2.4 keV) on a daily basis with a signal-to-noise of 5. Sources would be located to 1-2 arc-minutes. Detailed simulations show that crosstalk from the cruciform lobster images would not significantly compromise performance. At this sensitivity limit, we could monitor not just x-ray binaries but fainter classes of x-ray sources. Hundreds of active galactic nuclei, coronal sources, and cataclysmic variables could be tracked on a daily basis. Large numbers of fast transients should be visible, including gamma-ray bursts and the soft x-ray breakout of nearby type II supernovae. Long-term x-ray measurements will advance our understanding of the geometries and perhaps masses of AGN, and coronal energy sources in stars

  2. The 105-Month Swift-BAT All-sky Hard X-Ray Survey

    Science.gov (United States)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; Ricci, Claudio; Lien, Amy; Trakhtenbrot, Benny

    2018-03-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 90% of the sky and 7.24× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 50% of the sky in the 14–195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14–195 keV band above the 4.8σ significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (zBAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  3. The 105-Month Swift-BAT All-Sky Hard X-Ray Survey

    Science.gov (United States)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; hide

    2018-01-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40 x 10(exp -12) erg s(exp -1) cm(exp -2) over 90% of the sky and 7.24 x 10(exp -12) erg s(exp -1) cm(exp -2) over 50% of the sky in the 14-195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14-195 keV band above the 4.8 sigma significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (z < 0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  4. THE 22 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    International Nuclear Information System (INIS)

    Tueller, J.; Baumgartner, W. H.; Markwardt, C. B.; Skinner, G. K.; Mushotzky, R. F.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Holland, S.; Ajello, M.; Beardmore, A.; Evans, P.; Godet, O.; Brandt, W. N.; Burrows, D.; Grupe, D.; Chincarini, G.; Campana, S.; Cusumano, G.; Fenimore, E.

    2010-01-01

    We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14-195 keV) conducted with the Burst Alert Telescope (BAT) coded mask imager on the Swift satellite. The catalog contains 461 sources detected above the 4.8σ level with BAT. High angular resolution X-ray data for every source from Swift-XRT or archival data have allowed associations to be made with known counterparts in other wavelength bands for over 97% of the detections, including the discovery of ∼30 galaxies previously unknown as active galactic nuclei and several new Galactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z ∼ 0.03) or blazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoing survey is the first uniform all-sky hard X-ray survey since HEAO-1 in 1977. Since the publication of the nine-month BAT survey we have increased the number of energy channels from four to eight and have substantially increased the number of sources with accurate average spectra. The BAT 22 month catalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity (4.8σ) of 2.2 x 10 -11 erg cm -2 s -1 (1 mCrab) over most of the sky in the 14-195 keV band.

  5. X-RAY-EMITTING STARS IDENTIFIED FROM THE ROSAT ALL-SKY SURVEY AND THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Newsom, Emily R.; Anderson, Scott F.; Hawley, Suzanne L.; Silvestri, Nicole M.; Szkody, Paula; Covey, Kevin R.; Posselt, Bettina; Margon, Bruce; Voges, Wolfgang

    2009-01-01

    The ROSAT All-Sky Survey (RASS) was the first imaging X-ray survey of the entire sky. Combining the RASS Bright and Faint Source Catalogs yields an average of about three X-ray sources per square degree. However, while X-ray source counterparts are known to range from distant quasars to nearby M dwarfs, the RASS data alone are often insufficient to determine the nature of an X-ray source. As a result, large-scale follow-up programs are required to construct samples of known X-ray emitters. We use optical data produced by the Sloan Digital Sky Survey (SDSS) to identify 709 stellar X-ray emitters cataloged in the RASS and falling within the SDSS Data Release 1 footprint. Most of these are bright stars with coronal X-ray emission unsuitable for SDSS spectroscopy, which is designed for fainter objects (g > 15 [mag]). Instead, we use SDSS photometry, correlations with the Two Micron All Sky Survey and other catalogs, and spectroscopy from the Apache Point Observatory 3.5 m telescope to identify these stellar X-ray counterparts. Our sample of 707 X-ray-emitting F, G, K, and M stars is one of the largest X-ray-selected samples of such stars. We derive distances to these stars using photometric parallax relations appropriate for dwarfs on the main sequence, and use these distances to calculate L X . We also identify a previously unknown cataclysmic variable (CV) as a RASS counterpart. Separately, we use correlations of the RASS and the SDSS spectroscopic catalogs of CVs and white dwarfs (WDs) to study the properties of these rarer X-ray-emitting stars. We examine the relationship between (f X /f g ) and the equivalent width of the Hβ emission line for 46 X-ray-emitting CVs and discuss tentative classifications for a subset based on these quantities. We identify 17 new X-ray-emitting DA (hydrogen) WDs, of which three are newly identified WDs. We report on follow-up observations of three candidate cool X-ray-emitting WDs (one DA and two DB (helium) WDs); we have not

  6. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    Science.gov (United States)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  7. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    International Nuclear Information System (INIS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-01-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population

  8. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.; Skinner, G. K.; Barthelmy, S.; Gehrels, N. [NASA/Goddard Space Flight Center, Astrophysics Science Division, Greenbelt, MD 20771 (United States); Mushotzky, R. F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Evans, P. A., E-mail: whbaumga@alum.mit.edu [X-Ray and Observational Astronomy Group/Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom)

    2013-08-15

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8{sigma}, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 50% of the sky and 1.34 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site.

  9. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    International Nuclear Information System (INIS)

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.; Skinner, G. K.; Barthelmy, S.; Gehrels, N.; Mushotzky, R. F.; Evans, P. A.

    2013-01-01

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8σ, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 × 10 –11 erg s –1 cm –2 over 50% of the sky and 1.34 × 10 –11 erg s –1 cm –2 over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site

  10. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  11. (an)isotropy of the X-ray sky

    International Nuclear Information System (INIS)

    Shafer, R.A.; Fabian, A.C.

    1983-01-01

    An assessment is made of the extent to which the study of the isotropy of the X-ray sky has contributed to the present understanding of the structure of the universe at moderate redshifts. It is, of course, the anisotropic character of the sky flux that is valuable in this context. Although it is not currently possible to undertake measurements with the precision and small solid angles that are typically achieved in the microwave range, the comparatively crude limits from the X-ray fluctuations place limits on the largest scale structure of the universe. After indicating the nature of measurements made, with the HEAO 1 A-2 experiment, of the X-ray sky and its anisotropies, it is shown how these place limits on the origin of the X-ray sky and on any large scale structure of the universe. 40 references

  12. Reflective all-sky thermal infrared cloud imager.

    Science.gov (United States)

    Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino

    2018-04-30

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

  13. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    Science.gov (United States)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  14. Exploring transient X-ray sky with Einstein Probe

    Science.gov (United States)

    Yuan, W.; Zhang, C.; Ling, Z.; Zhao, D.; Chen, Y.; Lu, F.; Zhang, S.

    2017-10-01

    The Einstein Probe is a small satellite in time-domain astronomy to monitor the soft X-ray sky. It is a small mission in the space science programme of the Chinese Academy of Sciences. It will carry out systematic survey and characterisation of high-energy transients at unprecedented sensitivity, spatial resolution, Grasp and monitoring cadence. Its wide-field imaging capability is achieved by using established technology of micro-pore lobster-eye X-ray focusing optics. Complementary to this is X-ray follow-up capability enabled by a narrow-field X-ray telescope. It is capable of on-board triggering and real time downlink of transient alerts, in order to trigger fast follow-up observations at multi-wavelengths. Its scientific goals are concerned with discovering and characterising diverse types of X-ray transients, including tidal disruption events, supernova shock breakouts, high-redshift GRBs, and of particular interest, X-ray counterparts of gravitational wave events.

  15. Einstein pictures the x-ray sky

    International Nuclear Information System (INIS)

    Hartline, B.K.

    1979-01-01

    The second High Energy Astronomy Observatory (HEAO-2, Einstein) is revolutionizing x-ray astronomy just as its namesake revolutionized physics. Earlier x-ray observatories, including HEAO-1, were designed to scan the sky for x-ray emitters. With Einstein, the challenge has shifted from discovering x-ray sources to understanding the processes producing the x-rays. But having 500 times the sensitivity of previous detectors, Einstein makes more than its share of discoveries, too. For example, it sees distant quasars and clusters of galaxies that can barely be detected by the largest optical telescopes

  16. Variable X-ray sky with Lobster Eye Telescopes

    International Nuclear Information System (INIS)

    Hudec, R.; Pina, L.; Inneman, A.; Sveda, L.

    2004-01-01

    The variable X-ray sky requires wide-field monitoring with high sensitivity. We refer on novel X-ray telescopes with high sensitivity as well as large field of view. The results are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, GRBs, X-ray flashes, galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc

  17. Pixel detectors for x-ray imaging spectroscopy in space

    International Nuclear Information System (INIS)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L

    2009-01-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  18. Pixel detectors for x-ray imaging spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, D-81739 Munich (Germany)], E-mail: jft@hll.mpg.de

    2009-03-15

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  19. Pixel detectors for x-ray imaging spectroscopy in space

    Science.gov (United States)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  20. Candidate isolated neutron stars and other optically blank x-ray fields identified from the rosat all-sky and sloan digital sky surveys

    Energy Technology Data Exchange (ETDEWEB)

    Agueros, Marcel A.; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Margon, Bruce; /Baltimore, Space Telescope Sci.; Haberl, Frank; Voges, Wolfgang; /Garching,; Annis, James; /Fermilab; Schneider, Donald P.; /Penn State U., Astron. Astrophys.; Brinkmann, Jonathan; /Apache Point Observ.

    2005-11-01

    Only seven radio-quiet isolated neutron stars (INSs) emitting thermal X rays are known, a sample that has yet to definitively address such fundamental issues as the equation of state of degenerate neutron matter. We describe a selection algorithm based on a cross-correlation of the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS) that identifies X-ray error circles devoid of plausible optical counterparts to the SDSS g {approx} 22 magnitudes limit. We quantitatively characterize these error circles as optically blank; they may host INSs or other similarly exotic X-ray sources such as radio-quiet BL Lacs, obscured AGN, etc. Our search is an order of magnitude more selective than previous searches for optically blank RASS error circles, and excludes the 99.9% of error circles that contain more common X-ray-emitting subclasses. We find 11 candidates, nine of which are new. While our search is designed to find the best INS candidates and not to produce a complete list of INSs in the RASS, it is reassuring that our number of candidates is consistent with predictions from INS population models. Further X-ray observations will obtain pinpoint positions and determine whether these sources are entirely optically blank at g {approx} 22, supporting the presence of likely isolated neutron stars and perhaps enabling detailed follow-up studies of neutron star physics.

  1. Finding counterparts for all-sky X-ray surveys with NWAY: a Bayesian algorithm for cross-matching multiple catalogues

    Science.gov (United States)

    Salvato, M.; Buchner, J.; Budavári, T.; Dwelly, T.; Merloni, A.; Brusa, M.; Rau, A.; Fotopoulou, S.; Nandra, K.

    2018-02-01

    We release the AllWISE counterparts and Gaia matches to 106 573 and 17 665 X-ray sources detected in the ROSAT 2RXS and XMMSL2 surveys with |b| > 15°. These are the brightest X-ray sources in the sky, but their position uncertainties and the sparse multi-wavelength coverage until now rendered the identification of their counterparts a demanding task with uncertain results. New all-sky multi-wavelength surveys of sufficient depth, like AllWISE and Gaia, and a new Bayesian statistics based algorithm, NWAY, allow us, for the first time, to provide reliable counterpart associations. NWAY extends previous distance and sky density based association methods and, using one or more priors (e.g. colours, magnitudes), weights the probability that sources from two or more catalogues are simultaneously associated on the basis of their observable characteristics. Here, counterparts have been determined using a Wide-field Infrared Survey Explorer (WISE) colour-magnitude prior. A reference sample of 4524 XMM/Chandra and Swift X-ray sources demonstrates a reliability of ∼94.7 per cent (2RXS) and 97.4 per cent (XMMSL2). Combining our results with Chandra-COSMOS data, we propose a new separation between stars and AGN in the X-ray/WISE flux-magnitude plane, valid over six orders of magnitude. We also release the NWAY code and its user manual. NWAY was extensively tested with XMM-COSMOS data. Using two different sets of priors, we find an agreement of 96 per cent and 99 per cent with published Likelihood Ratio methods. Our results were achieved faster and without any follow-up visual inspection. With the advent of deep and wide area surveys in X-rays (e.g. SRG/eROSITA, Athena/WFI) and radio (ASKAP/EMU, LOFAR, APERTIF, etc.) NWAY will provide a powerful and reliable counterpart identification tool.

  2. A lobster-eye on the x-ray sky

    International Nuclear Information System (INIS)

    Peele, A. G.; Zhang, W.; Gendreau, K. C.; Petre, R.; White, N. E.

    1999-01-01

    We propose an x-ray all-sky monitor for the International Space Station (ISS) that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1 -3.0 keV) for study. Taking advantage of the power telemetry and space available on the ISS we can use a telescope geometry and detectors that will provide better than 4 arc minute resolution of the entire sky in a 1.5 hr duty cycle. To achieve this sensitivity and resolution we use focusing optics based on the lobster-eye geometry. We propose two approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates: this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. A simultaneous development of both approaches with selection of the superior candidate at the end of the development phase is suggested. The instrument is made of a number of modules based on a 2x2 cooled CCD detector array that covers an area of 6x6 cm 2 at the focal plane. Using optics with a radius of curvature of 0.75 m this gives each module a field of view of 9 deg. x 9 deg. The modular approach gives us enormous flexibility in terms of physical arrangement on the ISS so that we may take advantage of clear lines of sight and also in terms of built-in redundancy. We estimate that ∼50 such modules give us instantaneous coverage of 1/10 of the sky. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of

  3. AN EXTENDED AND MORE SENSITIVE SEARCH FOR PERIODICITIES IN ROSSI X-RAY TIMING EXPLORER/ALL-SKY MONITOR X-RAY LIGHT CURVES

    International Nuclear Information System (INIS)

    Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto; Corbet, Robin H. D.; Harris, Robert J.

    2011-01-01

    We present the results of a systematic search in ∼14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listed in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the ∼3.9 day orbital period of LMC X-1 and the ∼3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.

  4. Second ROSAT all-sky survey (2RXS) source catalogue

    Science.gov (United States)

    Boller, Th.; Freyberg, M. J.; Trümper, J.; Haberl, F.; Voges, W.; Nandra, K.

    2016-04-01

    Aims: We present the second ROSAT all-sky survey source catalogue, hereafter referred to as the 2RXS catalogue. This is the second publicly released ROSAT catalogue of point-like sources obtained from the ROSAT all-sky survey (RASS) observations performed with the position-sensitive proportional counter (PSPC) between June 1990 and August 1991, and is an extended and revised version of the bright and faint source catalogues. Methods: We used the latest version of the RASS processing to produce overlapping X-ray images of 6.4° × 6.4° sky regions. To create a source catalogue, a likelihood-based detection algorithm was applied to these, which accounts for the variable point-spread function (PSF) across the PSPC field of view. Improvements in the background determination compared to 1RXS were also implemented. X-ray control images showing the source and background extraction regions were generated, which were visually inspected. Simulations were performed to assess the spurious source content of the 2RXS catalogue. X-ray spectra and light curves were extracted for the 2RXS sources, with spectral and variability parameters derived from these products. Results: We obtained about 135 000 X-ray detections in the 0.1-2.4 keV energy band down to a likelihood threshold of 6.5, as adopted in the 1RXS faint source catalogue. Our simulations show that the expected spurious content of the catalogue is a strong function of detection likelihood, and the full catalogue is expected to contain about 30% spurious detections. A more conservative likelihood threshold of 9, on the other hand, yields about 71 000 detections with a 5% spurious fraction. We recommend thresholds appropriate to the scientific application. X-ray images and overlaid X-ray contour lines provide an additional user product to evaluate the detections visually, and we performed our own visual inspections to flag uncertain detections. Intra-day variability in the X-ray light curves was quantified based on the

  5. All-sky x-ray ampersand gamma-ray monitor (AXGAM)

    International Nuclear Information System (INIS)

    Tuemer, T.O.; O'Neill, T.J.; Hurley, K.

    1996-01-01

    A wide field-of-view, arcsecond imaging, high energy resolution x-ray and low energy gamma ray detector is proposed for a future space mission. It is specifically designed to detect and find counterparts at other wavelengths for Gamma Ray Bursts (GRBs). Detection of GRBs require wide field-of-view (π to 2 π field-of-view) and high sensitivity. This will be achieved by using high quantum efficiency CdZnTe pixel detectors, low energy threshold (few keV) to observe larger flux levels that may be possible at lower energies and large effective area (625 to 1,000 cd) per coded aperture imaging module. Counterpart searches can only be done with ultra high angular resolution (10 to 30 arcsecond FWHM) which gives 1 to 5 arcsecond position determination especially for strong GRBs. A few arcsecond resolution error box is expected to contain only one counterpart observed at another wavelength. This will be achieved by using ultra high spatial resolution pixel detectors (50 x 50 to 100 X 100 micron) and a similar resolution coded aperture to achieve the required angular resolution. AXGAM also has two other important advantages over similar detectors: (1) excellent low energy response (> 1 keV) and (2) high energy resolution (<6% at sign 5.9 keV, <3% at sign 14 keV, <4% at sign 122 keV). The low energy range may provide important new information on their cause and the high energy resolution is expected to help in the observation and identification of emission and absorption lines in the GRB spectrum. The effective energy range is planned to be 2 to 200 keV which is exceptionally wide for such a detector. AXGAM will be built in the form of a open-quotes Bucky Ballclose quotes using a coded aperture mask in a semi geodesic dome arrangement placed over a two-dimensional, high resolution CdZnTe pixel detector array using newly developed p-i-n detector technology. The p-i-n structure decreases the electron and hole trapping effect and increases energy resolution significantly

  6. Proton irradiation experiment for x-ray charge-coupled devices of the monitor of all-sky x-ray image mission onboard the international space station. 2. Degradation of dark current and identification of electron trap level

    CERN Document Server

    Miyata, E; Kamiyama, D

    2003-01-01

    We have investigated the radiation damage effects on a charge-coupled device (CCD) to be used for the Japanese X-ray mission, the monitor of all-sky X-ray image (MAXI), onboard the international space station (ISS). A temperature dependence of the dark current as a function of incremental dose is studied. We found that the protons having energy of >292 keV seriously increased the dark current of the devices. In order to improve the radiation tolerance of the devices, we have developed various device architectures to minimize the radiation damage in orbit. Among them, nitride oxide enables us to reduce the dark current significantly and therefore we adopted nitride oxide for the flight devices. We also compared the dark current of a device in operation and that out of operation during the proton irradiation. The dark current of the device in operation became twofold that out of operation, and we thus determined that devices would be turned off during the passage of the radiation belt. The temperature dependenc...

  7. Rossi X-Ray Timing Explorer All-Sky Monitor Localization of SGR 1627-41

    Science.gov (United States)

    Smith, Donald A.; Bradt, Hale V.; Levine, Alan M.

    1999-07-01

    The fourth unambiguously identified soft gamma repeater (SGR), SGR 1627-41, was discovered with the BATSE instrument on 1998 June 15. Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6° segment of a narrow (19") annulus. We present two bursts from this source observed by the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer. We use the ASM data to further constrain the source location to a 5' long segment of the BATSE/IPN error box. The ASM/IPN error box lies within 0.3 arcmin of the supernova remnant G337.0-0.1. The probability that a supernova remnant would fall so close to the error box purely by chance is ~5%.

  8. Digital all-sky polarization imaging of partly cloudy skies.

    Science.gov (United States)

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  9. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Matsuoka, Y.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K. [Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502 (Japan); Kurosawa, S. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, 980-8579 (Japan); Miuchi, K. [Department of Physics, Kobe University, Kobe, Hyogo, 658-8501 (Japan); Sawano, T., E-mail: komura@cr.scphys.kyoto-u.ac.jp [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa, 920-1192 (Japan)

    2017-04-10

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.

  10. VizieR Online Data Catalog: Wisconsin soft X-ray diffuse background all-sky Survey (McCammon+ 1983)

    Science.gov (United States)

    McCammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.

    1997-10-01

    The catalog contains all-sky survey of the soft X-ray diffuse background and the count-rate data from which the maps were made for the ten flights included in the survey. It contains 40 files in the machine-readable version and includes documentation and utility subroutines. The data files contain different band maps (B, C, M, M1, M2, I, J, 2-6 keV) in a 0 degree-centered Aitoff projection, in a 180-degree-centered Aitoff projection, in a north polar projection, and in a south polar projection. Lookup tables in the form of FITS images are provided for conversion between pixel coordinates and Galactic coordinates for the various projections. The bands are: B = 130-188eV C = 160-284eV M1 = 440-930eV M2 = 600-1100eV I = 770-1500eV J = 1100-2200eV 2-6keV = 1800-6300eV (51 data files).

  11. International spring school observing the X-and gamma-ray sky

    International Nuclear Information System (INIS)

    Paul, J.; Longair, M.; Von Ballmoos, P.; Daigne, F.; Baring, M.; Gudel, M.; King, A.; Dotani, T.; Arnaud, M.; Gudel, M.; Malzac, J.; Servillat, M.; Soldi, S.; Corbel, S.; Beckmann, V.; Rodriguez, J.; Erlund, M.; Bodaghee, A.; Graham, J.; Ruiz, A.; Corbel, S.; Fabian, A.; Tagger, M.; Grenier, I.; Bernard, R.; Jackson, N.; Eckart, A.; Grenier, I.; Belloni, T.; Stella, L.; Vink, J.; KnodLseder, J.; Hermsen, W.; Ferrando, Ph.; Ibragimov, A.

    2006-01-01

    This school, dedicated to young researchers, will clarify our present knowledge of the X-ray sky and give the opportunity to learn about the observatories and tools which are available. The contributions have been organized into 3 issues: -) fundamental physics, -) X-ray and Gamma-ray instruments and analysis techniques, and -) astrophysical objects. This document gathers only the slides of the presentations

  12. International spring school observing the X-and gamma-ray sky

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J; Longair, M; Von Ballmoos, P; Daigne, F; Baring, M; Gudel, M; King, A; Dotani, T; Arnaud, M; Gudel, M; Malzac, J; Servillat, M; Soldi, S; Corbel, S; Beckmann, V; Rodriguez, J; Erlund, M; Bodaghee, A; Graham, J; Ruiz, A; Corbel, S; Fabian, A; Tagger, M; Grenier, I; Bernard, R; Jackson, N; Eckart, A; Grenier, I; Belloni, T; Stella, L; Vink, J; KnodLseder, J; Hermsen, W; Ferrando, Ph; Ibragimov, A

    2006-07-01

    This school, dedicated to young researchers, will clarify our present knowledge of the X-ray sky and give the opportunity to learn about the observatories and tools which are available. The contributions have been organized into 3 issues: -) fundamental physics, -) X-ray and Gamma-ray instruments and analysis techniques, and -) astrophysical objects. This document gathers only the slides of the presentations.

  13. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    NARCIS (Netherlands)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M.A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G.L.; Hanke, M.; Kühnel, M.; Markoff, S.; Pooley, G.G.; Rothschild, R.E.; Tomsick, J.A.; Wilson-Hodge, C.A.; Wilms, J.

    2013-01-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different

  14. XIPE, the X-ray imaging polarimetry explorer: Opening a new window in the X-ray sky

    Science.gov (United States)

    Soffitta, Paolo; XIPE Collaboration

    2017-11-01

    XIPE, the X-ray Imaging Polarimetry Explorer, is a candidate ESA fourth medium size mission, now in competitive phase A, aimed at time-spectrally-spatially-resolved X-ray polarimetry of a large number of celestial sources as a breakthrough in high energy astrophysics and fundamental physics. Its payload consists of three X-ray optics with a total effective area larger than one XMM mirror but with a low mass and of three Gas Pixel Detectors at their focus. The focal length is 4 m and the whole satellite fits within the fairing of the Vega launcher without the need of an extendable bench. XIPE will be an observatory with 75% of the time devoted to a competitive guest observer program. Its consortium across Europe comprises Italy, Germany, Spain, United Kingdom, Switzerland, Poland, Sweden Until today, thanks to a dedicated experiment that dates back to the '70, only the Crab Nebula showed a non-zero polarization with large significance [1] in X-rays. XIPE, with its innovative detector, promises to make significative measurements on hundreds of celestial sources.

  15. SuperAGILE: The hard X-ray imager for the AGILE space mission

    International Nuclear Information System (INIS)

    Feroci, M.; Costa, E.; Soffitta, P.; Del Monte, E.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Frutti, M.; Lapshov, I.; Lazzarotto, F.; Mastropietro, M.; Morelli, E.; Pacciani, L.; Porrovecchio, G.; Rapisarda, M.; Rubini, A.; Tavani, M.; Argan, A.

    2007-01-01

    SuperAGILE is a coded mask experiment based on silicon microstrip detectors. It operates in the 15-45 keV nominal energy range, providing crossed one-dimensional images of the X-ray sky with an on-axis angular resolution of 6 arcmin, over a field of view in excess of 1 sr. It was designed as the hard X-ray monitor of the AGILE space mission, a small satellite of the Italian Space Agency devoted to image the gamma-ray sky in the 30 MeV-50 GeV energy band. The AGILE mission was launched in a low-earth orbit on 23rd April 2007. In this paper we describe the SuperAGILE experiment, its construction and test processes, and its performance before flight, based on the on-ground test and calibrations

  16. SuperAGILE: The Hard X-ray Imager of AGILE

    International Nuclear Information System (INIS)

    Feroci, M.; Costa, E.; Barbanera, L.; Del Monte, E.; Di Persio, G.; Frutti, M.; Lapshov, I.; Lazzarotto, F.; Pacciani, L.; Porrovecchio, G.; Preger, B.; Rapisarda, M.; Rubini, A.; Soffitta, P.; Tavani, M.; Mastropietro, M.; Morelli, E.; Argan, A.; Ghirlanda, G.; Mereghetti, S.

    2004-01-01

    SuperAGILE is the hard X-ray (10-40 keV) imager for the gamma-ray mission AGILE, currently scheduled for launch in mid-2005. It is based on 4 Si-microstrip detectors, with a total geometric area of 1444 cm 2 (max effective about 300 cm 2 ), equipped with one-dimensional coded masks. The 4 detectors are perpendicularly oriented, in order to provide pairs of orthogonal one-dimensional images of the X-ray sky. The field of view of each 1-D detector is 107 deg. x 68 deg., at zero response, with an overlap in the central 68 deg. x 68 deg. area. The angular resolution on axis is 6 arcmin (pixel size). We present here the current status of the hardware development and the scientific potential for GRBs, for which an onboard trigger and imaging system will allow distributing locations through a fast communication telemetry link from AGILE to the ground

  17. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard ...

    Indian Academy of Sciences (India)

    M. C. RAMADEVI

    MS received 1 September 2017; accepted 19 December 2017; published online 10 February 2018. Abstract. Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the ..... 31(2–3), 99. Ramadevi M. C., Seetha S., Babu V. C., Ashoka B. N., Sreeku- mar P. 2006, Optimization of Gas Proportional Coun-.

  18. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  19. The Sondrestrom Research Facility All-sky Imagers

    Science.gov (United States)

    Kendall, E. A.; Grill, M.; Gudmundsson, E.; Stromme, A.

    2010-12-01

    The Sondrestrom Upper Atmospheric Research Facility is located near Kangerlussuaq, Greenland, just north of the Arctic Circle and 100 km inland from the west coast of Greenland. The facility is operated by SRI International in Menlo Park, California, under the auspices of the U.S. National Science Foundation. Operating in Greenland since 1983, the Sondrestrom facility is host to more than 20 instruments, the majority of which provide unique and complementary information about the arctic upper atmosphere. Together these instruments advance our knowledge of upper atmospheric physics and determine how the tenuous neutral gas interacts with the charged space plasma environment. The suite of instrumentation supports many disciplines of research - from plate tectonics to auroral physics and space weather. The Sondrestrom facility has recently acquired two new all-sky imagers. In this paper, we present images from both new imagers, placing them in context with other instruments at the site and detailing to the community how to gain access to this new data set. The first new camera replaces the intensified auroral system which has been on site for nearly three decades. This new all-sky imager (ASI), designed and assembled by Keo Scientific Ltd., employs a medium format 180° fisheye lens coupled to a set of five 3-inch narrowband interference filters. The current filter suite allows operation at the following wavelengths: 750 nm, 557.7 nm, 777.4 nm, 630.0 nm, and 732/3 nm. Monochromatic images from the ASI are acquired at a specific filter and integration time as determined by a unique configuration file. Integrations as short as 0.5 sec can be commanded for exceptionally bright features. Preview images are posted to the internet in near real-time, with final images posted weeks later. While images are continuously collected in a "patrol mode," users can request special collection sequences for targeted experiments. The second new imager installed at the Sondrestrom

  20. Imaging escape gated MPWC for hard X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.

    1983-11-15

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm/sup 2/.

  1. The Einstein All-Sky IPC slew survey

    Science.gov (United States)

    Elvis, Martin; Plummer, David; Fabbiano, G.

    1989-01-01

    The construction of the Einstein All-Sky Imaging Proportional Counter (IPC) slew survey is considered. It contains approximately 1000 sources between 10(exp -12) and 10(exp -10) erg/sq cm/s with a concentration toward the ecliptic poles and away from the galactic plane. Several sizable samples of bright soft X-ray selected objects for follow-up ROSAT and ASTRO-D observations and statistical study are presented. The survey source list is expected to be available by late 1989. Both paper and remote access online data base versions are to be available. An identification program is considered.

  2. Novel X-ray telescopes for wide-field X-ray monitoring

    International Nuclear Information System (INIS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.

    2005-01-01

    We report on fully innovative very wide-field of view X-ray telescopes with high sensitivity as well as large field of view. The prototypes are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. The Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  3. 'Taking X-ray phase contrast imaging into mainstream applications' and its satellite workshop 'Real and reciprocal space X-ray imaging'.

    Science.gov (United States)

    Olivo, Alessandro; Robinson, Ian

    2014-03-06

    A double event, supported as part of the Royal Society scientific meetings, was organized in February 2013 in London and at Chicheley Hall in Buckinghamshire by Dr A. Olivo and Prof. I. Robinson. The theme that joined the two events was the use of X-ray phase in novel imaging approaches, as opposed to conventional methods based on X-ray attenuation. The event in London, led by Olivo, addressed the main roadblocks that X-ray phase contrast imaging (XPCI) is encountering in terms of commercial translation, for clinical and industrial applications. The main driver behind this is the development of new approaches that enable XPCI, traditionally a synchrotron method, to be performed with conventional laboratory sources, thus opening the way to its deployment in clinics and industrial settings. The satellite meeting at Chicheley Hall, led by Robinson, focused on the new scientific developments that have recently emerged at specialized facilities such as third-generation synchrotrons and free-electron lasers, which enable the direct measurement of the phase shift induced by a sample from intensity measurements, typically in the far field. The two events were therefore highly complementary, in terms of covering both the more applied/translational and the blue-sky aspects of the use of phase in X-ray research. 

  4. X-ray diagnostic installation for X-ray tomographic images

    International Nuclear Information System (INIS)

    Haendle, J.; Sklebitz, H.

    1984-01-01

    An exemplary embodiment includes at least one x-ray tube for the generation of an x-ray beam, a patient support, an image detector, and a control generator-connected with the x-ray tube and the image detector-for the purpose of moving the x-ray beam, and in opposition thereto, the image field of the image detector. There is connected to the control generator a layer height computer which calculates the enlargement from the geometric data for the tomogram. The image detector has a circuit-connected with the layer height computer-for the purpose of fading-in a marking for the dimensions in the layer plane

  5. An imaging escape gated MPWC for hard X-ray astronomy

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.; Butler, R.C.; Di Cocco, G.; Spada, G.; Charalambous, P.; Dean, A.J.; Stephen, J.B.

    1983-01-01

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm 2 . (orig.)

  6. Phase-contrast X-ray imaging using an X-ray interferometer for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi; Koyama, Ichiro [Tokyo Univ., Dept. of Applied Physics, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Inst. of Clinical Medicine, Tsukuba, Ibaraki (Japan); Yoneyama, Akio [Hitachi Ltd., Advanced Research Laboratory, Saitama (Japan)

    2002-04-01

    The potential of phase-contrast X-ray imaging using an X-ray interferometer is discussed comparing with other phase-contrast X-ray imaging methods, and its principle of contrast generation is presented including the case of phase-contrast X-ray computed tomography. The status of current instrumentation is described and perspectives for practical applications are discussed. (author)

  7. Simbol-X: Imaging The Hard X-ray Sky with Unprecedented Spatial Resolution and Sensitivity

    Science.gov (United States)

    Tagliaferri, Gianpiero; Simbol-X Joint Scientific Mission Group

    2009-01-01

    Simbol-X is a hard X-ray mission, with imaging capability in the 0.5-80 keV range. It is based on a collaboration between the French and Italian space agencies with participation of German laboratories. The launch is foreseen in late 2014. It relies on a formation flight concept, with two satellites carrying one the mirror module and the other one the focal plane detectors. The mirrors will have a 20 m focal length, while the two focal plane detectors will be put one on top of the other one. This combination will provide over two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non-focusing techniques. The Simbol-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics such as those related to black-holes accretion physics and census, and to particle acceleration mechanisms. We will give an overall description of the mission characteristics, performances and scientific objectives.

  8. Alaskan Auroral All-Sky Images on the World Wide Web

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  9. Traditional x-ray imaging

    International Nuclear Information System (INIS)

    Hay, G.A.

    1982-01-01

    Methods of imaging x-rays, with particular reference to medicine, are reviewed. The history and nature of x-rays, their production and spectra, contrast, shapes and fine structure, image transducers, including fluorescent screens, radiography, fluoroscopy, and image intensifiers, image detection, perception and enhancement and clinical applications are considered. (U.K.)

  10. Image formation in diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    Boer, J.A. den.

    1983-01-01

    This thesis deals with a physical description of the image formation in static radiographic shadow image X-ray equipment and an analysis of the optimization of such systems. For the latter criteria have been developed that take into account all relevant physical phenomena that relate to properties of the image and the radiation exposure of the patient. The discussion of image formation results in a number of relations between the X-ray system parameters on the one hand and properties of the X-ray image on the other. The three principal aspects considered are energy transfer, modulation transfer and noise. (Auth./C.F.)

  11. X-Ray Astronomy--A New View of the Sky From Space

    Science.gov (United States)

    Gursky, Herbert

    1973-01-01

    Objects and energy sources are detected whose existence was only hinted at a few years ago. The X-Ray sky has a large number of sources along the Milky Way, most of which lie within 30 degrees of the galactic center, plus a number of faint sources associated with external galaxies. (DF)

  12. X-ray image intensifier photography

    International Nuclear Information System (INIS)

    Richter, K.; Angerstein, W.; Steinhardt, L.

    1980-01-01

    The present treatise on X-ray image intensifier photography starts with introductory remarks on the history of X-ray imaging and image intensifiers. In the physical-technological part especially the quality of image and the methods of its measurement are discussed in detail. The relevant equipment such as image intensifier cameras, X-ray television, video recorder and devices of display and evaluation of images are presented as well as problems of radiation doses and radiation protection. Based on 25,000 examinations of the digestive, the biliary and the urinary tract, resp., as well as of the blood vessels the applicability of the X-ray image intensifier photography and its diagnostic value are demonstrated in the medical part of the book

  13. Tests of lobster eye optics for small space X-ray telescope

    Czech Academy of Sciences Publication Activity Database

    Tichý, V.; Barbera, M.; Collura, A.; Hromčík, M.; Hudec, René; Inneman, A.; Jakůbek, J.; Maršík, J.; Maršíková, V.; Pína, L.; Varisco, S.

    2011-01-01

    Roč. 633, č. 1 (2011), S169-S171 ISSN 0168-9002. [International Workshop on Radiation Imaging Detectors /11./. Praha, 29.06.2009-03.07.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : X-ray optics * X-ray telescope * all-sky monitor Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.207, year: 2011

  14. X-ray image subtracting system

    International Nuclear Information System (INIS)

    Wesbey, W.H.; Keyes, G.S.; Georges, J.-P.J.

    1982-01-01

    An X-ray image subtracting system for making low contrast structures in the images more conspicuous is described. An X-ray source projects successive high and low energy X-ray beam pulses through a body and the resultant X-ray images are converted to optical images. Two image pick-up devices such as TV cameras that have synchronously operated shutters receive the alternate images and convert them to corresponding analog video signals. In some embodiments, the analog signals are converted to a matrix of digital pixel signals that are variously processed and subtracted and converted to signals for driving a TV monitor display and analog storage devices. In other embodiments the signals are processed and subtracted in analog form for display. The high and low energy pulses can follow each other immediately so good registration between subtracted images is obtainable even though the anatomy is in motion. The energy levels of the X-ray pulses are chosen to maximize the difference in attenuation between the anatomical structure which is to be subtracted out and that which remains. (author)

  15. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Grenier, Isabelle

    2009-01-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  16. Benchtop phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Nirgianaki, E.; Che Ismail, E.; Jenneson, P.M.; Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-12-15

    Clinical radiography has traditionally been based on contrast obtained from absorption when X-rays pass through the body. The contrast obtained from traditional radiography can be rather poor, particularly when it comes to soft tissue. A wide range of media of interest in materials science, biology and medicine exhibit very weak absorption contrast, but they nevertheless produce significant phase shifts with X-rays. The use of phase information for imaging purposes is therefore an attractive prospect. Some of the X-ray phase-contrast imaging methods require highly monochromatic plane wave radiation and sophisticated X-ray optics. However, the propagation-based phase-contrast imaging method adapted in this paper is a relatively simple method to implement, essentially requiring only a microfocal X-ray tube and electronic detection. In this paper, we present imaging results obtained from two different benchtop X-ray sources employing the free space propagation method. X-ray phase-contrast imaging provides higher contrast in many samples, including biological tissues that have negligible absorption contrast.

  17. On the morphology of outbursts of accreting millisecond X-ray pulsar Aquila X-1

    Science.gov (United States)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.

    2017-10-01

    We present the X-ray light curves of the last two outbursts - 2014 & 2016 - of the well known accreting millisecond X-ray pulsar (AMXP) Aquila X-1 using the monitor of all sky X-ray image (MAXI) observations in the 2-20 keV band. After calibrating the MAXI count rates to the all-sky monitor (ASM) level, we report that the 2016 outburst is the most energetic event of Aql X-1, ever observed from this source. We show that 2016 outburst is a member of the long-high class according to the classification presented by Güngör et al. with ˜ 68 cnt/s maximum flux and ˜ 60 days duration time and the previous outburst, 2014, belongs to the short-low class with ˜ 25 cnt/s maximum flux and ˜ 30 days duration time. In order to understand differences between outbursts, we investigate the possible dependence of the peak intensity to the quiescent duration leading to the outburst and find that the outbursts following longer quiescent episodes tend to reach higher peak energetic.

  18. The WATCH All-Sky Monitor for the Granat Project

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Rao, A. R.

    1990-01-01

    The Watch X-ray all-sky monitor, which is designed to localize strong X-ray sources and follow their development, is examined, focusing on the addition of four Watch units to the Granat satellite project. The components of the Watch instrument are described and the capabilities and potential...... scientific returns of the Granat project are discussed. The applications of the Watch monitor are given, including the study of time variations of known sources and the detection and localization of new, transient sources....

  19. Tests of lobster eye optics for small space X-ray telescope

    International Nuclear Information System (INIS)

    Tichy, Vladimir; Barbera, Marco; Collura, Alfonso; Hromcik, Martin; Hudec, Rene; Inneman, Adolf; Jakubek, Jan; Marsik, Jiri; Marsikova, Veronika; Pina, Ladislav; Varisco, Salvatore

    2011-01-01

    The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it can be a convenient approach for the construction of space all-sky X-ray monitors. We present preliminary results of tests of prototype lobster eye X-ray optics in quasi parallel beam full imaging mode conducted using the 35 m long X-ray beam-line of INAF-OAPA in Palermo (Italy). X-ray images at the focal plane have been taken with a microchannel plate (MCP) detector at several energy values from 0.3 to 8 keV. The gain, the field of view and the angular resolution have been measured and compared with theoretical values.

  20. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  1. Dilation x-ray imager a new∕faster gated x-ray imager for the NIF.

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Barrios, M A; Felker, B; Smith, R F; Collins, G W; Jones, O S; Kilkenny, J D; Chung, T; Piston, K; Raman, K S; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2012-10-01

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ∼7 × 10(18) neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  2. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    Science.gov (United States)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M. A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G. L.; Hanke, M.; Kühnel, M.; Markoff, S. B.; Pooley, G. G.; Rothschild, R. E.; Tomsick, J. A.; Wilson-Hodge, C. A.; Wilms, J.

    2013-06-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.

  3. X-ray image intensifier tube

    International Nuclear Information System (INIS)

    1981-01-01

    An improved real-time x-ray image intensifier tube of the proximity type used for medical x-ray fluoroscopy is described. It is claimed that this intensifier is of sufficient gain and resolution whilst remaining convenient to use and that the design is such that the patient dosage is minimized whilst the x-ray image information content at the scintillator-photocathode screen is maximized. (U.K.)

  4. Dilation x-ray imager a new/faster gated x-ray imager for the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Barrios, M. A.; Felker, B.; Smith, R. F.; Collins, G. W.; Jones, O. S.; Piston, K.; Raman, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2012-10-15

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for {approx}7 Multiplication-Sign 10{sup 18} neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  5. Ten years of Vela x-ray observations

    International Nuclear Information System (INIS)

    Terrell, J.; Priedhorsky, W.C.

    1983-01-01

    The Vela spacecraft, particularly Vela 5B, produced all-sky X-ray data of unprecedented length and completeness. The data led to the discovery of X-ray bursts and numerous transient outbursts. Recent re-analysis has put the data in the form of 10-day skymaps covering a 7-year period, which have led to the discovery or confirmation of a number of long-term periodicities, and have made possible a time-lapse movie of the X-ray sky

  6. Dilation x-ray imager a new/faster gated x-ray imager for the NIF [DIXI (Dilation x-ray imager) a new/faster gated x-ray imager for the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hilsabeck, T. J.; Bell, P. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ayers, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Felker, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, G. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Chung, T. [General Atomics, San Diego, CA (United States); Piston, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Raman, K. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sammuli, B. [General Atomics, San Diego, CA (United States); Hares, J. D. [Kentech Instruments Ltd., Wallingford, Oxfordshire (United Kingdom); Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire (United Kingdom)

    2012-07-19

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ~7 1018 neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for DIXI, which utilizes pulse-dilation technology [1] to achieve x-ray imaging with temporal gate times below 10 ps. Lastly, the measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  7. The Imaging X-ray Polarimetry Explorer (IXPE

    Directory of Open Access Journals (Sweden)

    Martin C. Weisskopf

    Full Text Available The Imaging X-ray Polarimetry Explorer (IXPE expands observation space by simultaneously adding polarization to the array of X-ray source properties currently measured (energy, time, and location. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially in systems under extreme physical conditions. Keywords: X-ray astronomy, X-ray polarimetry, X-ray imaging

  8. The one square meter hard X-ray (15-200 KeV) sky survey

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.D.; Polcaro, V.F.

    1981-01-01

    A long term program was started at I.A.S. since 1979 to perform a survey of the hard X-ray sky using multiwire high pressure Xenon filled Spectroscopic Proportional Counters (SPC). The first payload consisting of two very large area SPC (2,700 cm 2 each) was flown during summer 1980 from the Milo Base (Sicily, Italy). The instrument duplicated to reach 10,800 cm 2 geometric area is expected to fly from northern (1981), southern (1982) and equatorial (1983) bases to perform a deep sky survey

  9. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  10. Using All-Sky Imaging to Improve Telescope Scheduling (Abstract)

    Science.gov (United States)

    Cole, G. M.

    2017-12-01

    (Abstract only) Automated scheduling makes it possible for a small telescope to observe a large number of targets in a single night. But when used in areas which have less-than-perfect sky conditions such automation can lead to large numbers of observations of clouds and haze. This paper describes the development of a "sky-aware" telescope automation system that integrates the data flow from an SBIG AllSky340c camera with an enhanced dispatch scheduler to make optimum use of the available observing conditions for two highly instrumented backyard telescopes. Using the minute-by-minute time series image stream and a self-maintained reference database, the software maintains a file of sky brightness, transparency, stability, and forecasted visibility at several hundred grid positions. The scheduling software uses this information in real time to exclude targets obscured by clouds and select the best observing task, taking into account the requirements and limits of each instrument.

  11. A wide field X-ray camera

    International Nuclear Information System (INIS)

    Sims, M.; Turner, M.J.L.; Willingale, R.

    1980-01-01

    A wide field of view X-ray camera based on the Dicke or Coded Mask principle is described. It is shown that this type of instrument is more sensitive than a pin-hole camera, or than a scanning survey of a given region of sky for all wide field conditions. The design of a practical camera is discussed and the sensitivity and performance of the chosen design are evaluated by means of computer simulations. The Wiener Filter and Maximum Entropy methods of deconvolution are described and these methods are compared with each other and cross-correlation using data from the computer simulations. It is shown that the analytic expressions for sensitivity used by other workers are confirmed by the simulations, and that ghost images caused by incomplete coding can be substantially eliminated by the use of the Wiener Filter and the Maximum Entropy Method, with some penalty in computer time for the latter. The cyclic mask configuration is compared with the simple mask camera. It is shown that when the diffuse X-ray background dominates, the simple system is more sensitive and has the better angular resolution. When sources dominate the simple system is less sensitive. It is concluded that the simple coded mask camera is the best instrument for wide field imaging of the X-ray sky. (orig.)

  12. LOBSTER - New Space X-Ray telescopes

    International Nuclear Information System (INIS)

    Hudec, R.; Pina, L.; Simon, V.; Sveda, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2007-01-01

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  13. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  14. A LIMIT ON THE NUMBER OF ISOLATED NEUTRON STARS DETECTED IN THE ROSAT ALL-SKY-SURVEY BRIGHT SOURCE CATALOG

    International Nuclear Information System (INIS)

    Turner, Monica L.; Rutledge, Robert E.; Letcavage, Ryan; Shevchuk, Andrew S. H.; Fox, Derek B.

    2010-01-01

    Using new and archival observations made with the Swift satellite and other facilities, we examine 147 X-ray sources selected from the ROSAT All-Sky-Survey Bright Source Catalog (RASS/BSC) to produce a new limit on the number of isolated neutron stars (INSs) in the RASS/BSC, the most constraining such limit to date. Independent of X-ray spectrum and variability, the number of INSs is ≤48 (90% confidence). Restricting attention to soft (kT eff < 200 eV), non-variable X-ray sources-as in a previous study-yields an all-sky limit of ≤31 INSs. In the course of our analysis, we identify five new high-quality INS candidates for targeted follow-up observations. A future all-sky X-ray survey with eROSITA, or another mission with similar capabilities, can be expected to increase the detected population of X-ray-discovered INSs from the 8-50 in the BSC, to (for a disk population) 240-1500, which will enable a more detailed study of neutron star population models.

  15. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  16. X-ray imaging: Status and trends

    International Nuclear Information System (INIS)

    Ryon, R.W.; Martz, H.E.; Hernandez, J.M.; Haskins, J.J.; Day, R.A.; Brase, J.M.; Cross, B.; Wherry, D.

    1987-08-01

    There is a veritable renaissance occurring in x-ray imaging. X-ray imaging by radiography has been a highly developed technology in medicine and industry for many years. However, high resolution imaging has not generally been practical because sources have been relatively dim and diffuse, optical elements have been nonexistent for most applications, and detectors have been slow and of low resolution. Materials analysis needs have therefore gone unmet. Rapid progress is now taking place because we are able to exploit developments in microelectronics and related material fabrication techniques, and because of the availability of intense x-ray sources. This report describes the methods and uses of x-ray imaging along with a discussion of technology advances in these areas

  17. Imaging plate, a new type of x-ray area detector

    International Nuclear Information System (INIS)

    Kamiya, Nobuo; Amemiya, Yoshiyuki; Miyahara, Junji.

    1986-01-01

    In respective fields of X-ray crystallography, for the purpose of the efficient collection of reciprocal space information, two-dimensional X-ray detectors such as multiwire proportional chambers and X-ray television sets have been used together with conventional X-ray films. X-ray films are characterized by uniform sensitivity and high positional resolution over a wide area, but the sensitivity is low, and the range of action and the linearity of the sensitivity is problematic. They require the development process, accordingly lack promptitude. The MWPCs and X-ray television sets are superior in the sensitivity, its linearity, the range of action and promptitude, but interior in the uniformity and resolution to the films. Imaging plate is a new X-ray area detector developed by Fuji Photo Film Co., Ltd., for digital X-ray medical image diagnosis. This detector is superior in all the above mentioned performances, and it seems very useful also for X-ray crystallography. In this paper, the system composed of an imaging plate and its reader is described, and the basic performance as an X-ray area detector and the results of having recorded the diffraction images of protein crystals as the example of applying it to X-ray crystallography are reported. The imaging plate is that the crystalline fluorescent powder of BaFBr doped with Eu 2+ ions is applied on plastic films. (Kako, I.)

  18. Lobster eye X-ray optics: Data processing from two 1D modules

    Science.gov (United States)

    Nentvich, O.; Urban, M.; Stehlikova, V.; Sieger, L.; Hudec, R.

    2017-07-01

    The X-ray imaging is usually done by Wolter I telescopes. They are suitable for imaging of a small part of the sky, not for all-sky monitoring. This monitoring could be done by a Lobster eye optics which can theoretically have a field of view up to 360 deg. All sky monitoring system enables a quick identification of source and its direction. This paper describes the possibility of using two independent one-dimensional Lobster Eye modules for this purpose instead of Wolter I and their post-processing into an 2D image. This arrangement allows scanning with less energy loss compared to Wolter I or two-dimensional Lobster Eye optics. It is most suitable especially for very weak sources.

  19. Diffraction enhanced x-ray imaging

    International Nuclear Information System (INIS)

    Thomlinson, W.; Zhong, Z.; Johnston, R.E.; Sayers, D.

    1997-09-01

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography

  20. Panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Wang, S.P.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray diagnostic is disclosed. It has all linear components and yet a high brightness gain, in the range of 500 to 20,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window of full size output display screen, an alkaline-halide scintillator photocathode screen suspended on insulators within the envelope and in between the input window and the output screen, and a high Z glass output window to reduce X-ray backscatter inside and outside of the tube. An X-ray sensitive photographic camera for medical diagnostic use is also disclosed which includes an X-ray sensitive image intensifier means of the proximity type and a reduction type optical system having an effective foral length in excess of 100mm for focusing the emage generated on the output display screen of the image intensifier tube onto a small size but directly viewable photographic film. The parameters of the image intensifier, the optics and the film are specified and linked to each other in a manner which maximizes the image quality for a camera system of this type and at the same time restricts the system speed of the camera to a range of 500 to 5,000 R -1 for the film to achieve a net density of 1.0. (Auth.)

  1. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Honda, Chika; Ohara, Hiromu; Ishisaka, Akira; Shimada, Fumio

    2002-01-01

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  2. Recent developments in X-ray imaging detectors

    CERN Document Server

    Moy, J P

    2000-01-01

    The replacement of the radiographic film in medical imaging has been the driving force in X-ray imaging developments. It requires a approx 40 cm wide detector to cover all examinations, an equivalent noise level of 1-5 X-ray quanta per pixel, and spatial resolution in the range 100-150 mu m. The need for entirely electronic imaging equipments has fostered the development of many X-ray detectors, most of them based on an array of amorphous silicon pixels, which is the only technology capable to achieve such large areas. Essentially, two concepts have been implemented: - intermediate conversion of X-rays to light by a scintillator, detected by an array of light sensitive pixels, comprising a photodiode and a switching device, either a TFT or a diode. - conversion into electron-hole pairs in a photoconductor, collected by an array of electrodes and switches. In both cases, charge amplifiers read the generated charges line by line. Scintillator and photoconductor-based systems are now close to production. They ac...

  3. Apparatus and method X-ray image processing

    International Nuclear Information System (INIS)

    1984-01-01

    The invention relates to a method for X-ray image processing. The radiation passed through the object is transformed into an electric image signal from which the logarithmic value is determined and displayed by a display device. Its main objective is to provide a method and apparatus that renders X-ray images or X-ray subtraction images with strong reduction of stray radiation. (Auth.)

  4. Multilayer X-ray imaging systems

    Science.gov (United States)

    Shealy, D. L.; Hoover, R. B.; Gabardi, D. R.

    1986-01-01

    An assessment of the imaging properties of multilayer X-ray imaging systems with spherical surfaces has been made. A ray trace analysis was performed to investigate the effects of using spherical substrates (rather than the conventional paraboloidal/hyperboloidal contours) for doubly reflecting Cassegrain telescopes. These investigations were carried out for mirrors designed to operate at selected soft X-ray/XUV wavelengths that are of significance for studies of the solar corona/transition region from the Stanford/MSFC Rocket X-Ray Telescope. The effects of changes in separation of the primary and secondary elements were also investigated. These theoretical results are presented as well as the results of ray trace studies to establish the resolution and vignetting effects as a function of field angle and system parameters.

  5. X-ray diffraction imaging of material microstructures

    KAUST Repository

    Varga, Laszlo

    2016-10-20

    Various examples are provided for x-ray imaging of the microstructure of materials. In one example, a system for non-destructive material testing includes an x-ray source configured to generate a beam spot on a test item; a grid detector configured to receive x- rays diffracted from the test object; and a computing device configured to determine a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the test object. In another example, a method for determining a microstructure of a material includes illuminating a beam spot on the material with a beam of incident x-rays; detecting, with a grid detector, x-rays diffracted from the material; and determining, by a computing device, a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the material.

  6. Image Analysis for X-ray Imaging of Food

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur

    for quality and safety evaluation of food products. In this effort the fields of statistics, image analysis and statistical learning are combined, to provide analytical tools for determining the aforementioned food traits. The work demonstrated includes a quantitative analysis of heat induced changes......X-ray imaging systems are increasingly used for quality and safety evaluation both within food science and production. They offer non-invasive and nondestructive penetration capabilities to image the inside of food. This thesis presents applications of a novel grating-based X-ray imaging technique...... and defect detection in food. Compared to the complex three dimensional analysis of microstructure, here two dimensional images are considered, making the method applicable for an industrial setting. The advantages obtained by grating-based imaging are compared to conventional X-ray imaging, for both foreign...

  7. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  8. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    Science.gov (United States)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  9. X-ray imaging with compound refractive lens and microfocus X-ray tube

    OpenAIRE

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-01-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a...

  10. Study of x-ray CCD image sensor and application

    Science.gov (United States)

    Wang, Shuyun; Li, Tianze

    2008-12-01

    In this paper, we expounded the composing, specialty, parameter, its working process, key techniques and methods for charge coupled devices (CCD) twice value treatment. Disposal process for CCD video signal quantification was expatiated; X-ray image intensifier's constitutes, function of constitutes, coupling technique of X-ray image intensifier and CCD were analyzed. We analyzed two effective methods to reduce the harm to human beings when X-ray was used in the medical image. One was to reduce X-ray's radiation and adopt to intensify the image penetrated by X-ray to gain the same effect. The other was to use the image sensor to transfer the images to the safe area for observation. On this base, a new method was presented that CCD image sensor and X-ray image intensifier were combined organically. A practical medical X-ray photo electricity system was designed which can be used in the records and time of the human's penetrating images. The system was mainly made up with the medical X-ray, X-ray image intensifier, CCD vidicon with high resolution, image processor, display and so on. Its characteristics are: change the invisible X-ray into the visible light image; output the vivid images; short image recording time etc. At the same time we analyzed the main aspects which affect the system's resolution. Medical photo electricity system using X-ray image sensor can reduce the X-ray harm to human sharply when it is used in the medical diagnoses. At last we analyzed and looked forward the system's application in medical engineering and the related fields.

  11. ASHI: An All Sky Heliospheric Imager for Viewing Thomson-Scattered Light

    Science.gov (United States)

    Buffington, A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Bisi, M. M.

    2017-12-01

    We have developed, and are now making a detailed design for an All-Sky Heliospheric Imager (ASHI), to fly on future deep-space missions. ASHI's principal long-term objective is acquisition of a precision photometric map of the inner heliosphere as viewed from deep space. Photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) upon the Coriolis satellite, and the Heliospheric Imagers (HIs) upon the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all indicate an optimum instrument design for visible-light Thomson-scattering observations. This design views a hemisphere of sky starting a few degrees from the Sun. Two imagers can cover almost all of the whole sky. A key photometric specification for ASHI is 0.1% differential photometry: this enables the three dimensional reconstruction of density starting from near the Sun and extending outward. SMEI analyses have demonstrated the success of this technique: when employed by ASHI, this will provide an order of magnitude better resolution in 3-D density over time. We augment this analysis to include velocity, and these imagers deployed in deep space can thus provide high-resolution comparisons both of direct in-situ density and velocity measurements to remote observations of solar wind structures. In practice we find that the 3-D velocity determinations provide the best tomographic timing depiction of heliospheric structures. We discuss the simple concept behind this, and present recent progress in the instrument design, and its expected performance specifications. A preliminary balloon flight of an ASHI prototype is planned to take place next Summer.

  12. High-speed image converter x-ray studies

    International Nuclear Information System (INIS)

    Bryukhnevitch, G.I.; Kas'yanov, Yu.S.; Korobkin, V.V.; Prokhorov, A.M.; Stepanov, B.M.; Chevokin, V.K.; Schelev, M.Ya.

    1975-01-01

    Two X-ray high-speed image-converter cameras (ICC) have been developed. In the first one a soft X-ray radiation is converted into visible light with the aid of a 0.5ns response time, plastic scintillator. The second camera incorporates a photocathode which is sensitive to visible and X-ray radiation. Its calculated temporal resolution approaches 5 to 7ps. Both developed cameras were employed for studies of X-ray radiation emitted by laser plasma. For the smooth nanosecond excited laser pulses, a noticeable amplitude modulation was recorded in all laser pulses reflected by plasma as well as in each third pulse of X-ray plasma radiation. It was also observed that the duration of X-ray plasma radiation is 20 to 40% shorter than that of the incident nanosecond laser pulses and this duration being 3 to 6 times longer than that of the picosecond irradiating pulses. The half-width of the recorded X-ray plasma pulses was 30 to 60ps. (author)

  13. Soft x-ray Planetary Imager

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...

  14. The ROSAT All-Sky Survey view of the Large Magellanic Cloud (LMC)

    Science.gov (United States)

    Pietsch, W.; Denner, K.; Kahabka, P.; Pakull, M.; Schaeidt, S.

    1996-01-01

    During the Rosat all sky survey, centered on the Large Magellanic Cloud (LMC), 516 X-ray sources were detected. The field was covered from July 1990 to January 1991. The X-ray parameters of the sources, involving position, count rates, hardness ratios, extent, and time variability during the observations, are discussed. Identifications with objects from optical, radio and infrared wavelength allow the LMC candidates to be separated from the foreground stars and the background objects.

  15. Hard X-ray imaging with a slat collimated telescope

    International Nuclear Information System (INIS)

    Lu Zhuguo; Kotov, Yu.D.; Suslov, A.Yu.

    1995-01-01

    Imaging experiments with a slat collimated hard X-ray telescope are described in this paper demonstrating the feasibility of the direct demodulation imaging method used in hard X-ray scanning modulation experiments. On 25 September 1993 an X-ray raster scan observation of Cyg X-1 was performed in a balloon flight with the hard X-ray telescope HAPI-4. An experiment to image radioactive X-ray sources was performed in the laboratory before. In both experiments the expected X-ray images were obtained, confirming the imaging capability of this method. (orig.)

  16. Understanding X-ray cargo imaging

    International Nuclear Information System (INIS)

    Chen Gongyin

    2005-01-01

    Cargo imaging is the field of imaging large objects, usually cargo containers, trains, trucks or boats. Transmission imaging with photons, especially X-rays of up to 9 MV is the dominant current technique, providing compelling details of the contents of objects this large. This paper discusses the physics aspects of a good X-ray cargo imaging system. The basic performance requirements, such as penetration, contrast and resolution and the components of a cargo imaging system are introduced. The imaging process is divided in this paper into three stages: forming information (probing the object), recording information and presenting information (image display). Their impact on performance is analyzed

  17. TU-G-207-00: Emerging Applications of X-Ray Imaging

    International Nuclear Information System (INIS)

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  18. Imaging properties and its improvements of scanning/imaging x-ray microscope

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination

  19. X-ray detectors in medical imaging

    International Nuclear Information System (INIS)

    Spahn, Martin

    2013-01-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd 2 O 2 S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications

  20. ESASky: All the sky you need

    Science.gov (United States)

    De Marchi, Guido; ESASky Team

    2018-06-01

    ESASky is a discovery portal giving to all astronomers, professional and amateur alike, an easy way to access high-quality scientific data from their computer, tablet, or mobile device. It includes over half a million images, 300,000 spectra, and more than a billion catalogue sources. From gamma rays to radio wavelengths, it allows users to explore the cosmos with data from a dozen space missions from the astronomical archives of ESA, NASA, and JAXA and does not require prior knowledge of any particular mission. ESASky features an all-sky exploration interface, letting users easily zoom in for stars as single targets or as part of a whole galaxy, visualise them and retrieve the relevant data taken in an area of the sky with just a few clicks. Users can easily compare observations of the same source obtained by different space missions at different times and wavelengths. They can also use ESASky to plan future observations with the James Webb Space Telescope, comparing the relevant portion of the sky as observed by Hubble and other missions. We will illustrate the many options to visualise and access astronomical data: interactive footprints for each instrument, tree-maps, filters, and solar-system object trajectories can all be combined and displayed. The most recent version of ESASky, released in February, also includes access to scientific publications, allowing users to visualise on the sky all astronomical objects with associated scientific publications and to link directly back to the papers in the NASA Astrophysics Data System.

  1. Wavelength dispersive X-ray absorption fine structure imaging by parametric X-ray radiation

    International Nuclear Information System (INIS)

    Inagaki, Manabu; Sakai, Takeshi; Sato, Isamu; Hayakawa, Yasushi; Nogami, Kyoko; Tanaka, Toshinari; Hayakawa, Ken; Nakao, Keisuke

    2008-01-01

    The parametric X-ray radiation (PXR) generator system at Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University is a monochromatic and coherent X-ray source with horizontal wavelength dispersion. The energy definition of the X-rays, which depends on the horizontal size of the incident electron beam on the generator target crystal, has been investigated experimentally by measuring the X-ray absorption near edge structure (XANES) spectra on Cu and CuO associated with conventional X-ray absorption imaging technique. The result demonstrated the controllability of the spectrum resolution of XANES by adjusting of the horizontal electron beam size on the target crystal. The XANES spectra were obtained with energy resolution of several eV at the narrowest case, which is in qualitative agreement with the energy definition of the PXR X-rays evaluated from geometrical consideration. The result also suggested that the wavelength dispersive X-ray absorption fine structure measurement associated with imaging technique is one of the promising applications of PXR. (author)

  2. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi E-mail: momose@exp.t.u-tokyo.ac.jp; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-21

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mmx20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  3. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  4. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1982-01-01

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  5. Development of Image Analysis Software of MAXI

    Science.gov (United States)

    Eguchi, S.; Ueda, Y.; Hiroi, K.; Isobe, N.; Sugizaki, M.; Suzuki, M.; Tomida, H.; Maxi Team

    2010-12-01

    Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor, attached to the Japanese experiment module Kibo on the International Space Station. The main scientific goals of the MAXI mission include the discovery of X-ray novae followed by prompt alerts to the community (Negoro et al., in this conference), and production of X-ray all-sky maps and new source catalogs with unprecedented sensitivities. To extract the best capabilities of the MAXI mission, we are working on the development of detailed image analysis tools. We utilize maximum likelihood fitting to a projected sky image, where we take account of the complicated detector responses, such as the background and point spread functions (PSFs). The modeling of PSFs, which strongly depend on the orbit and attitude of MAXI, is a key element in the image analysis. In this paper, we present the status of our software development.

  6. Future of X-ray phase imaging in medical imaging technology

    International Nuclear Information System (INIS)

    Momose, Atsushi

    2007-01-01

    Weakly absorbing materials, such as biological, soft tissues, can be imaged by generating contrast due to the phase shift of X-rays. In the past decade, several methods for X-ray phase imaging were proposed and demonstrated. The performance of X-ray phase imaging is attractive in the field of medical imaging technology, and its development for practical use is expected. Many methods, however, have been developed under the assumption of the use of synchrotron radiation, which is an obstacle to practical use. The method based on Talbot (-Lau) interferometry enables us to use a compact X-ray source, and its development is expected as a breakthrough for medical applications. (author)

  7. Healing X-ray scattering images

    Directory of Open Access Journals (Sweden)

    Jiliang Liu

    2017-07-01

    Full Text Available X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  8. Direct comparison of soft x-ray images of organelles with optical fluorescence images

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Kado, Masataka; Kishimoto, Maki; Nishikino, Masaharu; Ohba, Toshiyuki; Kaihori, Takeshi; Kawachi, Tetsuya; Tamotsu, Satoshi; Yasuda, Keiko; Mikata, Yuji; Shinohara, Kunio

    2011-01-01

    Soft x-ray microscopes operating in the water window region are capable of imaging living hydrated cells. Up to now, we have been able to take some soft x-ray images of living cells by the use of a contact x-ray microscope system with laser produced plasma soft x-ray source. Since the soft x-ray images are different from the optical images obtained with an ordinary microscope, it is very important to identify what is seen in the x-ray images. Hence, we have demonstrated the direct comparison between the images of organelles obtained with a fluorescence microscope and those with a soft x-ray microscope. Comparing the soft x-ray images to the fluorescence images, the fine structures of the organelles could be identified and observed. (author)

  9. X-ray image coding

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at decreasing the effect of stray radiation in X-ray images. This is achieved by putting a plate between source and object with parallel zones of alternating high and low absorption coefficients for X-radiation. The image is scanned with the help of electronic circuits which decode the signal space coded by the plate, thus removing the stray radiation

  10. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    International Nuclear Information System (INIS)

    Coello, Eduardo; Sperl, Jonathan I.; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-01-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  11. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Coello, Eduardo, E-mail: eduardo.coello@tum.de [GE Global Research, Garching (Germany); Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Sperl, Jonathan I.; Bequé, Dirk [GE Global Research, Garching (Germany); Benz, Tobias [Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Scherer, Kai; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Sztrókay-Gaul, Anikó; Hellerhoff, Karin [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Cozzini, Cristina [GE Global Research, Garching (Germany); Grandl, Susanne [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany)

    2017-04-15

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  12. Automated processing of X-ray images in medicine

    International Nuclear Information System (INIS)

    Babij, Ya.S.; B'yalyuk, Ya.O.; Yanovich, I.A.; Lysenko, A.V.

    1991-01-01

    Theoretical and practical achievements in application of computing technology means for processing of X-ray images in medicine were generalized. The scheme of the main directions and tasks of processing of X-ray images was given and analyzed. The principal problems appeared in automated processing of X-ray images were distinguished. It is shown that for interpretation of X-ray images it is expedient to introduce a notion of relative operating characteristic (ROC) of a roentgenologist. Every point on ROC curve determines the individual criteria of roentgenologist to put a positive diagnosis for definite situation

  13. Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.

    Science.gov (United States)

    Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi

    2017-12-01

    Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Phosphor Scanner For Imaging X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  15. Comparing neutron and X-ray images from NIF implosions

    Directory of Open Access Journals (Sweden)

    Wilson D.C.

    2013-11-01

    Full Text Available Directly laser driven and X-radiation driven DT filled capsules differ in the relationship between neutron and X-ray images. Shot N110217, a directly driven DT-filled glass micro-balloon provided the first neutron images at the National Ignition Facility. As seen in implosions on the Omega laser, the neutron image can be enclosed inside time integrated X-ray images. HYDRA simulations show the X-ray image is dominated by emission from the hot glass shell while the neutron image arises from the DT fuel it encloses. In the absence of mix or jetting, X-ray images of a cryogenically layered THD fuel capsule should be dominated by emission from the hydrogen rather than the cooler plastic shell that is separated from the hot core by cold DT fuel. This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core neutrons. Germanium X-ray emission spectra and Ross pair filtered X-ray energy resolved images suggest that germanium doped plastic emits in the torus shaped hot spot, probably reducing the neutron yield.

  16. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.

  17. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    International Nuclear Information System (INIS)

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons

  18. Video x-ray progressive scanning: new technique for decreasing x-ray exposure without decreasing image quality during cardiac catheterization

    International Nuclear Information System (INIS)

    Holmes, D.R. Jr.; Bove, A.A.; Wondrow, M.A.; Gray, J.E.

    1986-01-01

    A newly developed video x-ray progressive scanning system improves image quality, decreases radiation exposure, and can be added to any pulsed fluoroscopic x-ray system using a video display without major system modifications. With use of progressive video scanning, the radiation entrance exposure rate measured with a vascular phantom was decreased by 32 to 53% in comparison with a conventional fluoroscopic x-ray system. In addition to this substantial decrease in radiation exposure, the quality of the image was improved because of less motion blur and artifact. Progressive video scanning has the potential for widespread application to all pulsed fluoroscopic x-ray systems. Use of this technique should make cardiac catheterization procedures and all other fluoroscopic procedures safer for the patient and the involved medical and paramedical staff

  19. Image analysis in x-ray cinefluorography

    Energy Technology Data Exchange (ETDEWEB)

    Ikuse, J; Yasuhara, H; Sugimoto, H [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1979-02-01

    For the cinefluorographic image in the cardiovascular diagnostic system, the image quality is evaluated by means of MTF (Modulation Transfer Function), and object contrast by introducing the concept of x-ray spectrum analysis. On the basis of these results, further investigation is made of optimum X-ray exposure factors set for cinefluorography and the cardiovascular diagnostic system.

  20. SENSITIVITY OF STACKED IMAGING DETECTORS TO HARD X-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Muleri, Fabio; Campana, Riccardo, E-mail: fabio.muleri@iaps.inaf.it [INAF-IAPS, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2012-06-01

    The development of multi-layer optics which allow to focus photons up to 100 keV and more promises an enormous jump in sensitivity in the hard X-ray energy band. This technology is already planned to be exploited by future missions dedicated to spectroscopy and imaging at energies >10 keV, e.g., Astro-H and NuSTAR. Nevertheless, our understanding of the hard X-ray sky would greatly benefit from carrying out contemporaneous polarimetric measurements, because the study of hard spectral tails and of polarized emission are often two complementary diagnostics of the same non-thermal and acceleration processes. At energies above a few tens of keV, the preferred technique to detect polarization involves the determination of photon directions after a Compton scattering. Many authors have asserted that stacked detectors with imaging capabilities can be exploited for this purpose. If it is possible to discriminate those events which initially interact in the first detector by Compton scattering and are subsequently absorbed by the second layer, then the direction of scattering is singled out from the hit pixels in the two detectors. In this paper, we give the first detailed discussion of the sensitivity of such a generic design to the X-ray polarization. The efficiency and the modulation factor are calculated analytically from the geometry of the instruments and then compared with the performance as derived by means of Geant4 Monte Carlo simulations.

  1. X-ray imaging with toroidal mirror

    International Nuclear Information System (INIS)

    Aoki, Sadao; Sakayanagi, Yoshimi

    1978-01-01

    X-ray imaging is made with a single toroidal mirror or two successive toroidal mirrors. Geometrical images at the Gaussian image plane are described by the ray trace. Application of a single toroidal mirror to small-angle scattering is presented. (author)

  2. Design of a normal incidence multilayer imaging X-ray microscope

    Science.gov (United States)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  3. X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

    International Nuclear Information System (INIS)

    Ikeda, Kenichi; Kotaki, Hideyuki; Nakajima, Kazuhisa

    2002-01-01

    We have developed laser-produced plasma X-ray sources using femtosecond laser pulses at 10Hz repetition rate in a table-top size in order to investigate basic mechanism of X-ray emission from laser-matter interactions and its application to a X-ray microscope. In a soft X-ray region over 5 nm wavelength, laser-plasma X-ray emission from a solid target achieved an intense flux of photons of the order of 1011 photons/rad per pulse with duration of a few 100 ps, which is intense enough to make a clear imaging in a short time exposure. As an application of laser-produced plasma X-ray source, we have developed a soft X-ray imaging microscope operating in the wavelength range around 14 nm. The microscope consists of a cylindrically ellipsoidal condenser mirror and a Schwarzshird objective mirror with highly-reflective multilayers. We report preliminary results of performance tests of the soft X-ray imaging microscope with a compact laser-produced plasma X-ray source

  4. The Imaging X-Ray Polarimetry Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Ramsey, Brian; O’Dell, Stephen; Tennant, Allyn; Elsner, Ronald; Soffita, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffery; Kaspi, Victoria; hide

    2016-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is an exciting international collaboration for a scientific mission that dramatically brings together the unique talents of the partners to expand observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE uniquely brings to the table polarimetric imaging. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions-such as neutron stars and black holes. Polarization singularly probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.

  5. Tomographic image reconstruction using x-ray phase information

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  6. A ROTSE-I/ROSAT Survey of X-ray Emission from Contact Binary Stars

    Science.gov (United States)

    Geske, M.; McKay, T.

    2005-05-01

    Using public data from the ROSAT All Sky Survey (RASS) and the ROTSE-I Sky Patrols, the incidence of strong x-ray emissions from contact binary systems was examined. The RASS data was matched to an expanded catalog of contact binary systems from the ROTSE-I data, using a 35 arc second radius. X-ray luminosities for matching objects were then determined. This information was then used to evaluate the total x-ray emissions from all such objects, in order to determine their contribution to the galactic x-ray background.

  7. Feasibility study on X-ray source with pinhole imaging method

    International Nuclear Information System (INIS)

    Qiu Rui; Li Junli

    2007-01-01

    In order to verify the feasibility of study on X-ray source with pinhole imaging method, and optimize the design of X-ray pinhole imaging system, an X-ray pinhole imaging equipment was set up. The change of image due to the change of the position and intensity of X-ray source was estimated with mathematical method and validated with experiment. The results show that the change of the spot position and gray of the spot is linearly related with the change of the position and intensity of X-ray source, so it is feasible to study X-ray source with pinhole imaging method in this application. The results provide some references for the design of X-ray pinhole imaging system. (authors)

  8. Observation of the Coma cluster of galaxies with ROSAT during the all-sky survey

    Science.gov (United States)

    Briel, U. G.; Henry, J. P.; Boehringer, H.

    1992-01-01

    The Coma cluster of galaxies was observed with the position sensitive proportional counter (PSPC) during the ROSAT all sky survey. We find evidence for substructure in this cluster. Diffuse X-ray emission is detected from the regions of the NGC 4839 and 4911 subgroups at 6 percent and 1 percent of the total cluster emission respectively. There may be emission associated with the NGC 4874 and 4889 subgroups as well. The NGC 4839 group appears to be in the process of merging with the cluster. These X-ray data show that at least some of the groups previously found in projection are in fact physical objects possessing potential wells deep enough to trap their own X-ray gas. Because of the unlimited field of view of the all sky survey and the low background of the PSPC, we were able to measure the azimuthally averaged surface brightness of Coma out to approximately 100 arcmin, twice as far as was previously possible. Given the validity of our mass models, these new X-ray data imply that within 5/h(50) Mpc the binding mass of the Coma cluster is 1.8 +/- 0.6 x 10 exp 15/h(50) solar mass, and the fraction of cluster mass contained in hot gas is 0.30 +/- 0.14h(50) exp -3/2. Furthermore, the binding mass is more centrally concentrated than is the X-ray gas.

  9. X-ray backscatter imaging with a spiral scanner

    International Nuclear Information System (INIS)

    Bossi, R.H.; Cline, J.L.; Friddell, K.D.

    1989-01-01

    X-ray backscatter imaging allows radiographic inspections to be performed with access to only one side of the object. A collimated beam of radiation striking an object will scatter x-rays by Compton scatter and x-ray fluorescence. A detector located on the source side of the part will measure the backscatter signal. By plotting signal strength as gray scale intensity vs. beam position on the object, an image of the object can be constructed. A novel approach to the motion of the collimated incident beam is a spiral scanner. The spiral scanner approach, described in this paper, can image an area of an object without the synchronized motion of the object or detector, required by other backscatter imaging techniques. X-ray backscatter is particularly useful for flaw detection in light element materials such as composites. The ease of operation and the ability to operate non-contact from one side of an object make x-ray backscatter imaging of increasing interest to industrial inspection problems

  10. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Flesher, A.C.; Bryant, C.J.; Lincoln, A.D.; Tucker, P.A.; Swanton, S.W.

    1986-08-01

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described:- the Mark I and the Mark II. Both use a bidimensionally sensitive Multiwire proportional counter as the basic X-ray image transducer coupled to a digital microcomputer system. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multi-frame exposures. (author)

  11. Phase-contrast tomographic imaging using an X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Momose, A. [Hitachi Ltd, Advanced Research Lab., Saitama (Japan); Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Ibaraki (Japan); Yoneyama, A. [Hitachi Ltd, Central Resarch Lab., Tokyo (Japan); Hirano, K. [High Energy Accelerator Research Organization, Inst. of Materials Structure Science, Ibaraki (Japan)

    1998-05-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays. 35 refs.

  12. Phase-contrast tomographic imaging using an X-ray interferometer

    International Nuclear Information System (INIS)

    Momose, A.; Takeda, T.; Itai, Y.; Yoneyama, A.; Hirano, K.

    1998-01-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays

  13. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.

    1982-01-01

    The invention provides a method of producing visible difference images derived from an X-ray image of an anatomical subject, comprising the steps of directing X-rays through the anatomical subject for producing an image, converting the image into television fields comprising trains of on-going video signals, digitally storing and integrating the on-going video signals over a time interval corresponding to several successive television fields and thereby producing stored and integrated video signals, recovering the video signals from storage and producing integrated video signals, producing video difference signals by performing a subtraction between the integrated video signals and the on-going video signals outside the time interval, and converting the difference signals into visible television difference images representing on-going changes in the X-ray image

  14. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  15. Electronic roentgenographic images in presurgical X-ray diagnostics

    International Nuclear Information System (INIS)

    Haendle, J.; Hohmann, D.; Maass, W.; Siemens A.G., Erlangen

    1981-01-01

    An essential part of radiation exposure in surgery is due to devices and results from the required radiation time interval for continuous X-ray play-back up to the point at which all diagnostically relevant information can be retrieved from the screening image. With single-image storage and short exposure times as well as instant image play-back, this superfluous i.e. redundant radiation can be avoided. The electronic X-ray image is realized by means of a laboratory prototype and evaluated in hospitals. There is a report on clinical results and new technical developments. Remarkable are: the high radiation reduction that could be obtained, the problem - free instant image technique, and especially the advantages of automated exposure in direct film settings. The positive results yield the basis for the product development. (orig./MG) [de

  16. X-ray volume imaging in bladder radiotherapy verification

    International Nuclear Information System (INIS)

    Henry, Ann M.; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-01-01

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology

  17. X-ray imaging with the PILATUS 100k detector

    DEFF Research Database (Denmark)

    Bech, Martin; Bunk, O.; David, C.

    2008-01-01

    We report on the application of the PILATUS 100K pixel detector for medical imaging. Experimental results are presented in the form of X-ray radiographs using standard X-ray absorption contrast and a recently developed phase contrast imaging method. The results obtained with the PILATUS detector...... are compared to results obtained with a conventional X-ray imaging system consisting of an X-ray scintillation screen, lens optics, and a charge coupled device. Finally, the results for both systems are discussed more quantitatively based on an image power spectrum analysis. Udgivelsesdato: April...

  18. JEM-X: The X-ray monitor on INTEGRAL

    DEFF Research Database (Denmark)

    Lund, Niels; Budtz-Jørgensen, Carl; Westergaard, Niels Jørgen Stenfeldt

    1999-01-01

    and identification of gamma ray sources as well as in the analysis and scientific interpretation of the combined X-ray and gamma ray data. JEM-X is a coded aperture X-ray telescope consisting of two identical detectors. Each detector has a sensitive area of 500 cm(2), and views the sky (6.6 deg FOV, FWHM) through...

  19. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won [Wonkwang University School of Medicine, Iksan (Korea, Republic of); Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man [Jeonbuk Technopark, Iksan (Korea, Republic of); Park, Mi-Ran; Cho, Seung-Ryong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chon, Kwon-Su [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-12-15

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

  20. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    International Nuclear Information System (INIS)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won; Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man; Park, Mi-Ran; Cho, Seung-Ryong; Chon, Kwon-Su

    2014-01-01

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics

  1. Energy weighted x-ray dark-field imaging.

    Science.gov (United States)

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  2. The model of illumination-transillumination for image enhancement of X-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Kwang Yeul [Shingu College, Sungnam (Korea, Republic of); Rhee, Sang Min [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2001-06-01

    In digital image processing, the homomorphic filtering approach is derived from an illumination - reflectance model of the image. It can also be used with an illumination-transillumination model X-ray film. Several X-ray images were applied to enhancement with histogram equalization and homomorphic filter based on an illumination-transillumination model. The homomorphic filter has proven theoretical claim of image density range compression and balanced contrast enhancement, and also was found a valuable tool to process analog X-ray images to digital images.

  3. Advanced imaging technology using carbon nanotube x ray source

    International Nuclear Information System (INIS)

    Choi, Hae Young; Seol, Seung Kown; Kim, Jaehoon; Yoo, Seung Hoon; Kim, Jong Uk

    2008-01-01

    Recently, X ray imaging technology is a useful and leading medical diagnostic tool for healthcare professionals to diagnose disease in human body. CNTs(i.e. carbon nanotubes)are used in many applications like FED, Micro wave amplifier, X ray source, etc. because of its suitable electrical, chemical and physical properties. Specially, CNTs are well used electron emitters for x ray source. Conventionally, thermionic type of tungsten filament x ray tube is widely employed in the field of bio medical and industrial application fields. However, intrinsic problems such as, poor emission efficiency and low imaging resolution cause the limitation of use of the x ray tube. To fulfill the current market requirement specifically for medical diagnostic field, we have developed rather a portable and compact CNT based x ray source in which high imaging resolution is provided. Electron sources used in X ray tubes should be well focused to the anode target for generation of high quality x ray. In this study, Pierce type x ray generation module was tested based its simulation results using by OPERA 3D code. Pierce type module is composed of cone type electrical lens with its number of them and inner angles of them that shows different results with these parameters. And some preliminary images obtained using the CNT x ray source were obtained. The represented images are the finger bone and teeth in human body. It is clear that the trabeculation shape is observed in finger bone. To obtain the finger bone image, tube currents of 250A at 42kV tube voltage was applied. The human tooth image, however, is somewhat unclear because the supplied voltage to the tube was limited to max. 50kV in the system developed. It should be noted that normally 60∼70kV of tube voltage is supplied in dental imaging. Considering these it should be emphasized that if the tube voltage is over 60kV then clearer image is possible. In this paper, we are discussed comparing between these experiment results and

  4. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    Science.gov (United States)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  5. Ultrafast secondary emission x-ray imaging detectors

    International Nuclear Information System (INIS)

    Akkerman, A.; Gibrekhterman, A.; Majewski, S.

    1991-07-01

    Fast high accuracy, x-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electron emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantage of solid x-ray detectors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanoseconds) response. These x-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation,with a reduced dE/dx background. We present experimental results on the operation of the secondary emission x-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors based on CsI transition radiation convertors. (author)

  6. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1979-01-01

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  7. Real-time soft x-ray imaging on composite materials

    International Nuclear Information System (INIS)

    Polichar, R.

    1985-01-01

    The increased use of composite materials in aircraft structures has emphasized many of the unique and difficult aspects of the inspection of such components. Ultrasound has been extensively applied to certain configurations since it is relatively sensitive to laminar discontinuities in structure. Conversely, the use of conventional x-ray examination has been severely hampered by the fact that these composite materials are virtually transparent to the x-ray energies commonly encountered in industrial radiography (25 kv and above). To produce images with contrast approaching conventional radiography, one must use x-ray beams with average energies below 10 KEV where the absorption coefficients begin to rise rapidly for these low atomic number materials. This new regime of soft x-rays presents a major challenge to real-time imaging components. Special screen and window technology is required if these lower energy x-rays are to be effectively detected. Moreover, conventional x-ray tubes become very inefficient for generating the required x-ray flux at potentials much below 29 kv and the increased operating currents put significant limitations on conventional power sources. The purpose of this paper is to explore these special problems related to soft x-ray real-time imaging and to define the optimal technologies. Practical results obtained with the latest commerical and developmental instruments for real-time imaging will be shown. These instruments include recently developed imaging systems, new x-ray tubes and various approaches to generator design. The measured results convincingly demonstrate the effectiveness practicality of real-time soft x-ray imaging. They also indicate the major changes in technology and approach that must be taken for practical systems to be truly effective

  8. Image processing for x-ray inspection of pistachio nuts

    Science.gov (United States)

    Casasent, David P.

    2001-03-01

    A review is provided of image processing techniques that have been applied to the inspection of pistachio nuts using X-ray images. X-ray sensors provide non-destructive internal product detail not available from other sensors. The primary concern in this data is detecting the presence of worm infestations in nuts, since they have been linked to the presence of aflatoxin. We describe new techniques for segmentation, feature selection, selection of product categories (clusters), classifier design, etc. Specific novel results include: a new segmentation algorithm to produce images of isolated product items; preferable classifier operation (the classifier with the best probability of correct recognition Pc is not best); higher-order discrimination information is present in standard features (thus, high-order features appear useful); classifiers that use new cluster categories of samples achieve improved performance. Results are presented for X-ray images of pistachio nuts; however, all techniques have use in other product inspection applications.

  9. Infrared Sky Imager (IRSI) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Victor R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing a real-time display of sky conditions.

  10. Equatorial All Sky Imager Images from the Seychelles during the March 17th, 2015 geomagnetic storm.

    Science.gov (United States)

    Curtis, B.

    2015-12-01

    An all sky imager was installed in the Seychelles earlier this year. The Seychelles islands are located northeast of Madagascar and east of Somalia in the equatorial Indian Ocean. The all sky imager is located on the island of Mahe (4.6667°S, 55.4667°E geographic), (10.55°S, 127.07°E geomagnetic), with filters of 557.7, 620.0, 630.0, 765.0 and 777.4 nm. Images with a 90 second exposure from Seychelles in 777.4nm and 630.0nm from the night before and night of the March 17th geomagnetic storm are discussed in comparison to solar wind measurements at ACE and the disturbance storm time (Dst) index. These images show line-of-sight intensities of photons received dependent on each filters wavelength. A time series of these images sometimes will show the movement of relatively dark areas, or depletions, in each emission. The depletion regions are known to cause scintillation in GPS signals. The direction and speed of movement of these depletions are related to changes observed in the solar wind.

  11. New intraoral x-ray fluorographic imaging for dentistry

    International Nuclear Information System (INIS)

    Higashi, T.; Osada, T.; Aoyama, W.; Iguchi, M.; Suzuki, S.; Kanno, M.; Moriya, K.; Yoshimura, M.; Tusuda, M.

    1983-01-01

    A new dental x-ray fluorographic unit has been developed. This unit is composed of small intraoral x-ray tube, a compact x-ray image intensifier, and a high-resolution TV system. The purposes for developing this equipment were to (1) directly observe the tooth during endodontic procedures and (2) reduce x-ray exposure to the patient and the dentist. The radiation exposure can be reduced to about 1/600 the exposure used with conventional dental film. In clinical trials, a satisfactory fluorographic dental image for endodontic treatment was obtained with this new device

  12. Planck early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    All-sky data from the Planck survey and the Meta-Catalogue of X-ray detected Clusters of galaxies (MCXC) are combined to investigate the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity. The sample comprises ~1600 X-ray clusters with redshifts up to ~1 and spans...

  13. MMX-I: data-processing software for multimodal X-ray imaging and tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Antoine, E-mail: antoine.bergamaschi@synchrotron-soleil.fr; Medjoubi, Kadda [Synchrotron SOLEIL, BP 48, Saint-Aubin, 91192 Gif sur Yvette (France); Messaoudi, Cédric; Marco, Sergio [Université Paris-Saclay, CNRS, Université Paris-Saclay, F-91405 Orsay (France); Institut Curie, INSERM, PSL Reseach University, F-91405 Orsay (France); Somogyi, Andrea [Synchrotron SOLEIL, BP 48, Saint-Aubin, 91192 Gif sur Yvette (France)

    2016-04-12

    The MMX-I open-source software has been developed for processing and reconstruction of large multimodal X-ray imaging and tomography datasets. The recent version of MMX-I is optimized for scanning X-ray fluorescence, phase-, absorption- and dark-field contrast techniques. This, together with its implementation in Java, makes MMX-I a versatile and friendly user tool for X-ray imaging. A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors’ knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments.

  14. The Fermi All-Sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in our Galaxy

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G; Bastieri, D.; Bechtol, K.; hide

    2013-01-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope.For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  15. Image quality assessment and medical physics evaluation of different portable dental X-ray units.

    Science.gov (United States)

    Pittayapat, Pisha; Oliveira-Santos, Christiano; Thevissen, Patrick; Michielsen, Koen; Bergans, Niki; Willems, Guy; Debruyckere, Deborah; Jacobs, Reinhilde

    2010-09-10

    Recently developed portable dental X-ray units increase the mobility of the forensic odontologists and allow more efficient X-ray work in a disaster field, especially when used in combination with digital sensors. This type of machines might also have potential for application in remote areas, military and humanitarian missions, dental care of patients with mobility limitation, as well as imaging in operating rooms. To evaluate radiographic image quality acquired by three portable X-ray devices in combination with four image receptors and to evaluate their medical physics parameters. Images of five samples consisting of four teeth and one formalin-fixed mandible were acquired by one conventional wall-mounted X-ray unit, MinRay 60/70 kVp, used as a clinical standard, and three portable dental X-ray devices: AnyRay 60 kVp, Nomad 60 kVp and Rextar 70 kVp, in combination with a phosphor image plate (PSP), a CCD, or a CMOS sensor. Three observers evaluated images for standard image quality besides forensic diagnostic quality on a 4-point rating scale. Furthermore, all machines underwent tests for occupational as well as patient dosimetry. Statistical analysis showed good quality imaging for all system, with the combination of Nomad and PSP yielding the best score. A significant difference in image quality between the combination of the four X-ray devices and four sensors was established (p1m: Rextar <0.2 microGy, MinRay <0.1 microGy). The present study demonstrated the feasibility of three portable X-ray systems to be used for specific indications, based on acceptable image quality and sufficient accuracy of the machines and following the standard guidelines for radiation hygiene. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  16. X-ray images in primary bone chondrosarcoma

    International Nuclear Information System (INIS)

    Syrtmadzhieva, S.; Andreev, I.; Velichkov, L.

    1982-01-01

    The X-ray images of primary bone chondrosarcomas in 76 patients are reviewed. The tumors have been localized largely in the long tubular bones - in some patients centrally or excentrically, in others superficially. The X-ray images presented with osteolytic, osteoplastic and mixed changes, intratumor calcifications and reactive bone and periosteal changes. The presence of any of these changes and their combinations, depending on the localization and the influence of a variety of other factors, resembled much many other primary and metastatic malignant bone tumors, benign bone tumors and tumor-like diseases. The X-ray images showed a major complexity in the development of the primary chondrosarcoma and its relations with the bone as organ. (author)

  17. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Flesher, A.C.; Tucker, P.A.; Swanton, S.W.

    1987-01-01

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described: the Mark I and the Mark II. Both use a bidimensionally sensitive multiwire proportional counter (MWPC) as the basic X-ray image transducer coupled, in the case of the Mark I to a Digital LSI 11-23 microcomputer system via CAMAC, and in the case of the Mark II to a Digital LSI 11-73 microcomputer system via custom-built data acquisition hardware mounted directly on the Q-bus of the microcomputer. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multiframe exposures. The dedicated digital memories have a resolution of 512x512 pixels of 16 bits, matching well to the spatial resolution of the xenon-filled MWPC (0.5 mm fwhm over an aperture of 200 mm x 200 mm). A 512x512x4 bit video graphics system displays the images in grey scales or colour. (orig.)

  18. EXTraS: Exploring the X-ray Transient and variable Sky

    Science.gov (United States)

    De Luca, A.; Salvaterra, R.; Tiengo, A.; D'Agostino, D.; Watson, M.; Haberl, F.; Wilms, J.

    2017-10-01

    The EXTraS project extracted all temporal domain information buried in the whole database collected by the EPIC cameras onboard the XMM-Newton mission. This included a search and characterisation of variability, both periodic and aperiodic, in hundreds of thousands of sources spanning more than eight orders of magnitude in time scale and six orders of magnitude in flux, as well as a search for fast transients, missed by standard image analysis. Phenomenological classification of variable sources, based on X-ray and multiwavelength information, has also been performed. All results and products of EXTraS are made available to the scientific community through a web public data archive. A dedicated science gateway will allow scientists to apply EXTraS pipelines on new observations. EXTraS is the most comprehensive analysis of variability, on the largest ever sample of soft X-ray sources. The resulting archive and tools disclose an enormous scientific discovery space to the community, with applications ranging from the search for rare events to population studies, with impact on the study of virtually all astrophysical source classes. EXTraS, funded within the EU/FP7 framework, is carried out by a collaboration including INAF (Italy), IUSS (Italy), CNR/IMATI (Italy), University of Leicester (UK), MPE (Germany) and ECAP (Germany).

  19. X-ray images in the digital mode

    International Nuclear Information System (INIS)

    Buchmann, F.; Balter, S.

    1981-01-01

    In addition to computed tomography which presents actually the most important processing and transfer procedure of digital X-ray images, application of real time addition and substraction of X-ray images in a digital mode has found considerable interest. An estimation of the information contents of both digital and analog images is made in close relation to applications. As example of an image processing system on digital base a recently developed system for intravenous arteriography is described: the Philips-DVI. (orig.) [de

  20. X-ray diagnostic device with an X-ray image amplifier, whose output image is fed into a movie camera, as well as a brightness control

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, H

    1978-02-09

    The X-ray relief appearing behind a patient is immediately or with amplificating foils converted into a latent film image. By using a X-ray image amplifier the X-ray relief is then converted into a reduced and brighter optical image and fed into a photographic or movie camera and shot. To avoid a reduction in the image quality by quantum noise and a too large patient and physician dose a brightness control is provided for the X-ray diagnostic device. The control only dims as far as a brightness per image is produced that avoids quantum noise. On the other side it opens more by strongly beam absorbing patients or a smaller imaging ratio of the X-ray image amplifier to obtain a desired irradiation.

  1. X-ray phase imaging-From static observation to dynamic observation-

    International Nuclear Information System (INIS)

    Momose, A.; Yashiro, W.; Olbinado, M. P.; Harasse, S.

    2012-01-01

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase images and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.

  2. Analyser-based x-ray imaging for biomedical research

    International Nuclear Information System (INIS)

    Suortti, Pekka; Keyriläinen, Jani; Thomlinson, William

    2013-01-01

    Analyser-based imaging (ABI) is one of the several phase-contrast x-ray imaging techniques being pursued at synchrotron radiation facilities. With advancements in compact source technology, there is a possibility that ABI will become a clinical imaging modality. This paper presents the history of ABI as it has developed from its laboratory source to synchrotron imaging. The fundamental physics of phase-contrast imaging is presented both in a general sense and specifically for ABI. The technology is dependent on the use of perfect crystal monochromator optics. The theory of the x-ray optics is developed and presented in a way that will allow optimization of the imaging for specific biomedical systems. The advancement of analytical algorithms to produce separate images of the sample absorption, refraction angle map and small-angle x-ray scattering is detailed. Several detailed applications to biomedical imaging are presented to illustrate the broad range of systems and body sites studied preclinically to date: breast, cartilage and bone, soft tissue and organs. Ultimately, the application of ABI in clinical imaging will depend partly on the availability of compact sources with sufficient x-ray intensity comparable with that of the current synchrotron environment. (paper)

  3. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    Science.gov (United States)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  4. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    International Nuclear Information System (INIS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation

  5. X-ray image processing software for computing object size and object location coordinates from acquired optical and x-ray images

    International Nuclear Information System (INIS)

    Tiwari, Akash; Tiwari, Shyam Sunder; Tiwari, Railesha; Panday, Lokesh; Panday, Jeet; Suri, Nitin

    2004-01-01

    X-ray and Visible image data processing software has been developed in Visual Basic for real time online and offline image information processing for NDT and Medical Applications. Software computes two dimension image size parameters from its sharp boundary lines by raster scanning the image contrast data. Code accepts bit map image data and hunts for multiple tumors of different sizes that may be present in the image definition and then computes size of each tumor and locates its approximate center for registering its location coordinates. Presence of foreign metal and glass balls industrial product such as chocolate and other food items imaged out using x-ray imaging technique are detected by the software and their size and position co-ordinates are computed by the software. Paper discusses ways and means to compute size and coordinated of air bubble like objects present in the x-ray and optical images and their multiple existences in image of interest. (author)

  6. The Chaotic Long-term X-ray Variability of 4U 1705-44

    Science.gov (United States)

    Phillipson, R. A.; Boyd, P. T.; Smale, A. P.

    2018-04-01

    The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a timescale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from December 1995 through May 2014. The combined ASM-MAXI data provide a continuous time series over fifty times the length of the timescale of interest. Topological analysis can help us identify 'fingerprints' in the phase-space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled nonlinear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.

  7. THE FERMI ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Albert, A. [Department of Physics, Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Antolini, E.; Bonamente, E. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bouvier, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica ' ' M. Merlin' ' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: majello@slac.stanford.edu, E-mail: allafort@stanford.edu, E-mail: rolf.buehler@desy.de [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2013-07-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 Degree-Sign and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  8. THE FERMI ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Antolini, E.; Bonamente, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bregeon, J.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P.

    2013-01-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10° and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  9. Information extracting and processing with diffraction enhanced imaging of X-ray

    International Nuclear Information System (INIS)

    Chen Bo; Chinese Academy of Science, Beijing; Chen Chunchong; Jiang Fan; Chen Jie; Ming Hai; Shu Hang; Zhu Peiping; Wang Junyue; Yuan Qingxi; Wu Ziyu

    2006-01-01

    X-ray imaging at high energies has been used for many years in many fields. Conventional X-ray imaging is based on the different absorption within a sample. It is difficult to distinguish different tissues of a biological sample because of their small difference in absorption. The authors use the diffraction enhanced imaging (DEI) method. The authors took images of absorption, extinction, scattering and refractivity. In the end, the authors presented pictures of high resolution with all these information combined. (authors)

  10. THE FERMI –GBM THREE-YEAR X-RAY BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, P. A. [CSPAR, SPA University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Connaughton, V.; Camero-Arranz, A.; Finger, M. H. [Universities Space Research Association, Huntsville, AL 35805 (United States); Beklen, E. [Department of Physics, Suleyman Demirel University, 32260, Isparta (Turkey); Wilson-Hodge, C. A. [Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2016-08-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.

  11. X-ray scatter signatures for enhanced breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kidane, Ghirmay; Speller, Robert; Royle, Gary [Medical Physics and Bioengineering Department, University College Landon, 11-20 Capper Street, London WC1E 6JA (United Kingdom)

    1999-12-31

    Conventional mammographic imaging suffers from a low specificity. The main cause is the small difference in the x-ray attenuation properties of healthy and diseased tissue leading to poor contrast in the image. It has been observed that additional information on breast tissue type can be obtained from x-ray diffraction effects. A study of excised normal and neoplastic breast tissue samples using x-ray diffraction apparatus has been observed that significant differences exist in the measured spectra between carcinoma and healthy tissue adjacent to the carcinoma. Such a difference allows tissue type to be characterised according to is diseased state. Furthermore the information can be applied to improve diagnosis. It is proposed that collection and analysis of the scattered x-rays present during a mammographic procedure can supply the additional information and be used to improve the image contrast. The ultimate aim of the project is to improve the specificity of x-ray mammography. (authors) 10 refs., 3 figs.

  12. Magnetic imaging by dichroic x-ray holography

    International Nuclear Information System (INIS)

    Eisebitt, S.; Loergen, M.; Eberhardt, W.; Luening, M.; Schlotter, W.F.; Stoehr, J.; Hellwig, O.

    2004-01-01

    Full text: While holography has evolved to a powerful technique in the visible spectral range, it is difficult to apply at shorter wavelength as no intrinsically coherent (soft) x-ray laser is available as a light source. The progression from visible light towards shorter wavelength is motivated by the increase in spatial resolution that can be achieved. Of equal importance is the possibility to exploit special contrast mechanisms provided by scattering in resonance with transitions between electronic core and valence levels. These contrast mechanisms can be utilized in x-ray holography to form a spectroscopic image of the sample, in analogy to spectromicroscopy. So far, successful x-ray spectroholography has not been reported due to the experimental difficulties associated with the short wavelength and the limited coherent photon flux available. We present images of magnetic domain patterns forming in thin film Co-Pt multilayers, obtained by spectroholography at a wavelength of 1.59 nm. At this wavelength, we exploit x ray magnetic dichroism at the Co 2p 3/2 level in a Fourier transform holography experiment. Holography at this wavelength was made possible by combining nanostructured masks with coherence l tered synchrotron radiation from an undulator source in the experimental setup. The magnetic multilayers have perpendicular anisotropy and are probed using circular polarized x-rays. Dichroic holograms are recorded by combining measurements with positive and negative helicities. The spectroholograms can be numerically inverted to show the pure magnetic sample structure, such as labyrinth or stripe domains. Currently, we achieve a spatial resolution of 100 nm in the magnetic image. The advantages and limitations of this technique will be compared to other lensless imaging techniques such as over sampling phasing. The future prospects of imaging techniques based on coherent scattering are discussed in the context of the current development of free electron x-ray

  13. X-ray diagnostic device with an X-ray image amplifier, whose output image is fed into a movie camera, as well as a brightness control

    International Nuclear Information System (INIS)

    Lutz, H.

    1978-01-01

    The X-ray relief appearing behind a patient is immediately or with amplificating foils converted into a latent film image. By using a X-ray image amplifier the X-ray relief is then converted into a reduced and brighter optical image and fed into a photographic or movie camera and shot. To avoid a reduction in the image quality by quantum noise and a too large patient and physician dose a brightness control is provided for the X-ray diagnostic device. The control only dims as far as a brightness per image is produced that avoids quantum noise. On the other side it opens more by strongly beam absorbing patients or a smaller imaging ratio of the X-ray image amplifier to obtain a desired irradiation. (DG) [de

  14. The X-ray imager on AXO

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Westergaard, Niels Jørgen Stenfeldt

    2001-01-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated....... Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X-ray...... Observatory (AXO), which is a mission proposed to the Danish Small Satellite Program and is dedicated to observations of X-ray generating processes in the Earth's atmosphere. Of special interest will be simultaneous optical and X-ray observations of sprites that are flashes appearing directly above an active...

  15. Improved image alignment method in application to X-ray images and biological images.

    Science.gov (United States)

    Wang, Ching-Wei; Chen, Hsiang-Chou

    2013-08-01

    Alignment of medical images is a vital component of a large number of applications throughout the clinical track of events; not only within clinical diagnostic settings, but prominently so in the area of planning, consummation and evaluation of surgical and radiotherapeutical procedures. However, image registration of medical images is challenging because of variations on data appearance, imaging artifacts and complex data deformation problems. Hence, the aim of this study is to develop a robust image alignment method for medical images. An improved image registration method is proposed, and the method is evaluated with two types of medical data, including biological microscopic tissue images and dental X-ray images and compared with five state-of-the-art image registration techniques. The experimental results show that the presented method consistently performs well on both types of medical images, achieving 88.44 and 88.93% averaged registration accuracies for biological tissue images and X-ray images, respectively, and outperforms the benchmark methods. Based on the Tukey's honestly significant difference test and Fisher's least square difference test tests, the presented method performs significantly better than all existing methods (P ≤ 0.001) for tissue image alignment, and for the X-ray image registration, the proposed method performs significantly better than the two benchmark b-spline approaches (P < 0.001). The software implementation of the presented method and the data used in this study are made publicly available for scientific communities to use (http://www-o.ntust.edu.tw/∼cweiwang/ImprovedImageRegistration/). cweiwang@mail.ntust.edu.tw.

  16. Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-04-01

    The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction

  17. The hard x-ray imager onboard IXO

    Science.gov (United States)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Limousin, Olivier; Kokubun, Motohide; Watanabe, Shin; Laurent, Philippe; Arnaud, Monique; Tajima, Hiroyasu

    2010-07-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard International X-ray Observatory (IXO), to be launched into orbit in 2020s. It covers the energy band of 10-40 keV, providing imaging-spectroscopy with a field of view of 8 x 8 arcmin2. The HXI is attached beneath the Wide Field Imager (WFI) covering 0.1-15 keV. Combined with the super-mirror coating on the mirror assembly, this configuration provides observation of X-ray source in wide energy band (0.1-40.0 keV) simultaneously, which is especially important for varying sources. The HXI sensor part consists of the semiconductor imaging spectrometer, using Si in the medium energy detector and CdTe in the high energy detector as its material, and an active shield covering its back to reduce background in orbit. The HXI technology is based on those of the Japanese-lead new generation X-ray observatory ASTRO-H, and partly from those developed for Simbol-X. Therefore, the technological development is in good progress. In the IXO mission, HXI will provide a major assets to identify the nature of the object by penetrating into thick absorbing materials and determined the inherent spectral shape in the energy band well above the structure around Fe-K lines and edges.

  18. Spectral and imaging characterization of tabletop X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.; Osterheld, A.L.; Moon, S.J.; Fournier, K.B.; Nilsen, J. [Lawrence Livermore National Lab., CA (United States); Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I. [Lawrence Livermore National Lab., CA (United States); MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Shlyaptsev, V.N. [Lawrence Livermore National Lab., CA (United States); California Univ., Davis, CA (United States). DAS

    2001-07-01

    We have performed L-shell spectroscopy and one-dimensional (1-D) imaging of a line focus plasma from a laser-heated Fe polished slab using the tabletop COMET laser system at the Lawrence Livermore National Laboratory. These plasmas are used to generate a Ne-like Fe transient gain X-ray laser that is recorded simultaneously. A spherically-curved crystal spectrometer gives high resolution X-ray spectra of the n=3-2 and n=4-2 resonance lines with 1-D spatial resolution along the line focus. Spectra are presented for different laser pulse conditions. In addition, a variety of X-ray imaging techniques are described. We discuss imaging results from a double-slit X-ray camera with a spherically-curved crystal spectrometer. We show a high resolution Fe K-{alpha} spectrum from the X-ray laser target that indicates the presence of hot electrons in the X-ray laser plasma. (orig.)

  19. A soft X-ray image of the Moon

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Predehl, P.; Truemper, J.; Snowden, S.L.; Wisconsin Univ., Madison, WI

    1991-01-01

    A soft X-ray image of the Moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the Moon's X-ray luminosity arises from backscattering of solar X-rays. The Moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one per cent that of the bright side; this emission very probably results from energetic solar-wind electrons striking the Moon's surface. (author)

  20. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Chen, Dongmei; Zhu, Shouping; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-01-01

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging

  1. X-ray phase contrast imaging at MAMI

    International Nuclear Information System (INIS)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-01-01

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation σ h =(8.6±0.1) μm in the horizontal and σ v =(7.5±0.1) μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σ v =(0.50±0.05) μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 μm 2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σ f =(1.2±0.4) μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σ v =(1.2±0.3)μm and a

  2. X-ray phase contrast imaging at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany)

    2006-05-15

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 {mu}m, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation {sigma}{sub h}=(8.6{+-}0.1) {mu}m in the horizontal and {sigma}{sub v}=(7.5{+-}0.1) {mu}m in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size {sigma}{sub v}=(0.50{+-}0.05) {mu}m in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 {mu}m{sup 2} provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be {sigma}{sub f}=(1.2{+-}0.4) {mu}m, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size

  3. Diagnosing and mapping pulmonary emphysema on X-ray projection images: incremental value of grating-based X-ray dark-field imaging.

    Science.gov (United States)

    Meinel, Felix G; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F; Pfeiffer, Franz; Nikolaou, Konstantin

    2013-01-01

    To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, pemphysema provides color-coded parametric maps, which show the best correlation with histopathology. In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections.

  4. Attenuation correction of myocardial SPECT images with X-ray CT. Effects of registration errors between X-ray CT and SPECT

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Murase, Kenya; Mochizuki, Teruhito; Motomura, Nobutoku

    2002-01-01

    Attenuation correction with an X-ray CT image is a new method to correct attenuation on SPECT imaging, but the effect of the registration errors between CT and SPECT images is unclear. In this study, we investigated the effects of the registration errors on myocardial SPECT, analyzing data from a phantom and a human volunteer. Registerion (fusion) of the X-ray CT and SPECT images was done with standard packaged software in three dimensional fashion, by using linked transaxial, coronal and sagittal images. In the phantom study, and X-ray CT image was shifted 1 to 3 pixels on the x, y and z axes, and rotated 6 degrees clockwise. Attenuation correction maps generated from each misaligned X-ray CT image were used to reconstruct misaligned SPECT images of the phantom filled with 201 Tl. In a human volunteer, X-ray CT was acquired in different conditions (during inspiration vs. expiration). CT values were transferred to an attenuation constant by using straight lines; an attenuation constant of 0/cm in the air (CT value=-1,000 HU) and that of 0.150/cm in water (CT value=0 HU). For comparison, attenuation correction with transmission CT (TCT) data and an external γ-ray source ( 99m Tc) was also applied to reconstruct SPECT images. Simulated breast attenuation with a breast attachment, and inferior wall attenuation were properly corrected by means of the attenuation correction map generated from X-ray CT. As pixel shift increased, deviation of the SPECT images increased in misaligned images in the phantom study. In the human study, SPECT images were affected by the scan conditions of the X-ray CT. Attenuation correction of myocardial SPECT with an X-ray CT image is a simple and potentially beneficial method for clinical use, but accurate registration of the X-ray CT to SPECT image is essential for satisfactory attenuation correction. (author)

  5. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    Directory of Open Access Journals (Sweden)

    Chang-Chieh Cheng

    Full Text Available A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.

  6. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    Science.gov (United States)

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.

  7. Correction method and software for image distortion and nonuniform response in charge-coupled device-based x-ray detectors utilizing x-ray image intensifier

    International Nuclear Information System (INIS)

    Ito, Kazuki; Kamikubo, Hironari; Yagi, Naoto; Amemiya, Yoshiyuki

    2005-01-01

    An on-site method of correcting the image distortion and nonuniform response of a charge-coupled device (CCD)-based X-ray detector was developed using the response of the imaging plate as a reference. The CCD-based X-ray detector consists of a beryllium-windowed X-ray image intensifier (Be-XRII) and a CCD as the image sensor. An image distortion of 29% was improved to less than 1% after the correction. In the correction of nonuniform response due to image distortion, subpixel approximation was performed for the redistribution of pixel values. The optimal number of subpixels was also discussed. In an experiment with polystyrene (PS) latex, it was verified that the correction of both image distortion and nonuniform response worked properly. The correction for the 'contrast reduction' problem was also demonstrated for an isotropic X-ray scattering pattern from the PS latex. (author)

  8. A Chandra High-Resolution X-ray Image of Centaurus A.

    Science.gov (United States)

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  9. From Relativistic Electrons to X-ray Phase Contrast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Garson, A. B. [Washington U., St. Louis; Anastasio, M. A. [Washington U., St. Louis

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  10. X-ray phase contrast imaging at MAMI

    Science.gov (United States)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-05-01

    Experiments have been performed to explore the potential of the low emittance 855MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40keV. The electron beam spot size had standard deviation σh = (8.6±0.1)μm in the horizontal and σv = (7.5±0.1)μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv = (0.50±0.05)μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13×13μm^2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf = (1.2±0.4)μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv = (1.2±0.3)μm and a geometrical

  11. Femtosecond X-ray Fourier holography imaging of freeflying nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken R.; Bucher, Max; Maia, Filipe R.N.C.; Bielecki, Johan; Ekeberg, Tomas; Hantke, Max F.; Daurer, Benedikt J.; Bostedt, Christoph

    2018-02-26

    Ultrafast X-ray imaging on individual fragile specimens such as aerosols1, metastable particles2, superfluid quantum systems3 and live biospecimen4 provides high resolution information, which is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imag- 2 ing, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely-defined4, 5. Here, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers in order to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond time scale.

  12. Development of the water window imaging x-ray microscope

    International Nuclear Information System (INIS)

    Hoover, R.B.; Shealy, D.L.; Baker, P.C.; Barbee, T.W. Jr.; Walker, A.B.C. Jr.

    1991-01-01

    This paper reports on the Water Window Imaging X-ray Microscopy which is currently being developed by a consortium from the Marshall Space Flight Center, the University of Alabama at Birmingham, Baker Consulting, the Lawrence Livermore National Laboratory, and Stanford University. The high quality solar images achieved during the Stanford/MSFC/LLNL Rocket X-ray Spectroheliograph flight conclusively established that excellent imaging could be obtained with doubly reflecting multilayer optical systems. Theoretical studies carried out as part of the MSFC X-ray Microscopy Program, demonstrated that high quality, high resolution multilayer x-ray imaging microscopes could be achieved with spherical optics in the Schwarzschild configuration and with Aspherical optical systems. Advanced Flow Polishing methods have been used to fabricate substrates for multilayer optics. On hemlite grade Sapphire, the authors have achieved microscopy mirror substrates on concave and convex spherical surfaces with 0.5 Angstrom rms surface smoothness, as measured by the Zygo profilometer. In this paper the authors report on the current status of fabrication and testing of the optical and mechanical subsystems for the Water Window Imaging X-ray Microscope

  13. Cephalometric landmark detection in dental x-ray images using convolutional neural networks

    Science.gov (United States)

    Lee, Hansang; Park, Minseok; Kim, Junmo

    2017-03-01

    In dental X-ray images, an accurate detection of cephalometric landmarks plays an important role in clinical diagnosis, treatment and surgical decisions for dental problems. In this work, we propose an end-to-end deep learning system for cephalometric landmark detection in dental X-ray images, using convolutional neural networks (CNN). For detecting 19 cephalometric landmarks in dental X-ray images, we develop a detection system using CNN-based coordinate-wise regression systems. By viewing x- and y-coordinates of all landmarks as 38 independent variables, multiple CNN-based regression systems are constructed to predict the coordinate variables from input X-ray images. First, each coordinate variable is normalized by the length of either height or width of an image. For each normalized coordinate variable, a CNN-based regression system is trained on training images and corresponding coordinate variable, which is a variable to be regressed. We train 38 regression systems with the same CNN structure on coordinate variables, respectively. Finally, we compute 38 coordinate variables with these trained systems from unseen images and extract 19 landmarks by pairing the regressed coordinates. In experiments, the public database from the Grand Challenges in Dental X-ray Image Analysis in ISBI 2015 was used and the proposed system showed promising performance by successfully locating the cephalometric landmarks within considerable margins from the ground truths.

  14. X-ray diffraction imaging of material microstructures

    KAUST Repository

    Varga, Laszlo; Varga, Bonbien; Calo, Victor

    2016-01-01

    Various examples are provided for x-ray imaging of the microstructure of materials. In one example, a system for non-destructive material testing includes an x-ray source configured to generate a beam spot on a test item; a grid detector configured

  15. Short-Duration X-ray Transients Observed with WATCH on Granat

    DEFF Research Database (Denmark)

    Castro-Tirado, Alberto J.; Brandt, Søren; Lund, Niels

    1995-01-01

    During 1990–92, the WATCH all-sky X-ray monitor on GRANAT has discovered 6 short-duration X-ray transients. We discuss their possible relationship to peculiar stars. Only one source, GRS 1100-77 seems to be related to a T Tauri star....

  16. Observation of parametric X-ray radiation by an imaging plate

    International Nuclear Information System (INIS)

    Takabayashi, Y.; Shchagin, A.V.

    2012-01-01

    We have demonstrated experimentally the application of an imaging plate for registering the angular distribution of parametric X-ray radiation. The imaging plate was used as a two-dimensional position-sensitive X-ray detector. High-quality images of the fine structure in the angular distributions of the yield around the reflection of the parametric X-ray radiation produced in a silicon crystal by a 255-MeV electron beam from a linear accelerator have been observed in the Laue geometry. A fairly good agreement between results of measurements and calculations by the kinematic theory of parametric X-ray radiation is shown. Applications of the imaging plates for the observation of the angular distribution of X-rays produced by accelerated particles in a crystal are also discussed.

  17. Application of simple all-sky imagers for the estimation of aerosol optical depth

    Science.gov (United States)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Nikitidou, Efterpi; Salamalikis, Vasileios; Wilbert, Stefan; Prahl, Christoph

    2017-06-01

    Aerosol optical depth is a key atmospheric constituent for direct normal irradiance calculations at concentrating solar power plants. However, aerosol optical depth is typically not measured at the solar plants for financial reasons. With the recent introduction of all-sky imagers for the nowcasting of direct normal irradiance at the plants a new instrument is available which can be used for the determination of aerosol optical depth at different wavelengths. In this study, we are based on Red, Green and Blue intensities/radiances and calculations of the saturated area around the Sun, both derived from all-sky images taken with a low-cost surveillance camera at the Plataforma Solar de Almeria, Spain. The aerosol optical depth at 440, 500 and 675nm is calculated. The results are compared with collocated aerosol optical measurements and the mean/median difference and standard deviation are less than 0.01 and 0.03 respectively at all wavelengths.

  18. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    Science.gov (United States)

    Bachmann, B.; Hilsabeck, T.; Field, J.; Masters, N.; Reed, C.; Pardini, T.; Rygg, J. R.; Alexander, N.; Benedetti, L. R.; Döppner, T.; Forsman, A.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L.

    2016-11-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  19. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, B., E-mail: bachmann2@llnl.gov; Field, J.; Masters, N.; Pardini, T.; Rygg, J. R.; Benedetti, L. R.; Döppner, T.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hilsabeck, T.; Reed, C.; Alexander, N.; Forsman, A. [General Atomics, San Diego, California 92186 (United States)

    2016-11-15

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  20. Resolving hot spot microstructure using x-ray penumbral imaging (invited).

    Science.gov (United States)

    Bachmann, B; Hilsabeck, T; Field, J; Masters, N; Reed, C; Pardini, T; Rygg, J R; Alexander, N; Benedetti, L R; Döppner, T; Forsman, A; Izumi, N; LePape, S; Ma, T; MacPhee, A G; Nagel, S; Patel, P; Spears, B; Landen, O L

    2016-11-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  1. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    International Nuclear Information System (INIS)

    Bachmann, B.; Field, J.; Masters, N.; Pardini, T.; Rygg, J. R.; Benedetti, L. R.; Döppner, T.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L.; Hilsabeck, T.; Reed, C.; Alexander, N.; Forsman, A.

    2016-01-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  2. Development of a compact x-ray particle image velocimetry for measuring opaque flows.

    Science.gov (United States)

    Lee, Sang Joon; Kim, Guk Bae; Yim, Dae Hyun; Jung, Sung Yong

    2009-03-01

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  3. Development of a compact x-ray particle image velocimetry for measuring opaque flows

    International Nuclear Information System (INIS)

    Lee, Sang Joon; Kim, Guk Bae; Yim, Dae Hyun; Jung, Sung Yong

    2009-01-01

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  4. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  5. Applications of Novel X-Ray Imaging Modalities in Food Science

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Schou

    science for understanding and designing food products. In both of these aspects, X-ray imaging methods such as radiography and computed tomography provide a non-destructive solution. However, since the conventional attenuation-based modality suers from poor contrast in soft matter materials, modalities...... with improved contrast are needed. Two possible candidates in this regard are the novel X-ray phase-contrast and X-ray dark-eld imaging modalities. The contrast in phase-contrast imaging is based on dierences in electron density which is especially useful for soft matter materials whereas dark-eld imaging....... Furthermore, the process of translating the image in image analysis was addressed. For improved handling of multimodal image data, a multivariate segmentation scheme of multimodal X-ray tomography data was implemented. Finally, quantitative data analysis was applied for treating the images. Quantitative...

  6. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    Science.gov (United States)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet-Thet; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  7. Characterizing Complexity of Containerized Cargo X-ray Images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guangxing [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Harry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Birrer, Nat [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-19

    X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.

  8. Characterizing Complexity of Containerized Cargo X-ray Images

    International Nuclear Information System (INIS)

    Wang, Guangxing; Martz, Harry; Glenn, Steven; Divin, Charles; Birrer, Nat

    2016-01-01

    X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.

  9. Matrix inversion tomosynthesis improvements in longitudinal x-ray slice imaging

    International Nuclear Information System (INIS)

    Dobbines, J.T. III.

    1990-01-01

    This patent describes a tomosynthesis apparatus. It comprises: an x-ray tomography machine for producing a plurality of x-ray projection images of a subject including an x-ray source, and detection means; and processing means, connected to receive the plurality of projection images, for: shifting and reconstructing the projection x-ray images to obtain a tomosynthesis matrix of images T; acquiring a blurring matrix F having components which represent out-of-focus and in-focus components of the matrix T; obtaining a matrix P representing only in-focus components of the imaged subject by solving a matrix equation including the matrix T and the matrix F; correcting the matrix P for low spatial frequency components; and displaying images indicative of contents of the matrix P

  10. X-ray astronomy 2000: Wide field X-ray monitoring with lobster-eye telescopes

    International Nuclear Information System (INIS)

    Inneman, A.; Hudec, R.; Pina, L.; Gorenstein, P.

    2001-01-01

    The recently available first prototypes of innovative very wide field X-ray telescopes of Lobster-Eye type confirm the feasibility to develop such flight instruments in a near future. These devices are expected to allow very wide field (more than 1000 square degrees) monitoring of the sky in X-rays (up to 10 keV and perhaps even more) with faint limits. We will discuss the recent status of the development of very wide field X-ray telescopes as well as related scientific questions including expected major contributions such as monitoring and study of X-ray afterglows of Gamma Ray Bursts

  11. The Swift BAT Hard X-ray Survey - A New Window on the Local AGN Universe

    Science.gov (United States)

    Mushotzky, Richard

    2009-01-01

    The Swift Burst and Transient telescope (BAT) has surveyed the entire sky for the last 3.5 years obtaining the first sensitive all sky survey of the 14-195 keV sky. At high galactic latitudes the vast majority of the detected sources are AGN. Since hard x-rays penetrate all but Compton thick obscuring material (Column densities of 1.6E24 atms/cm2) this survey is unbiased with respect to obscuration, host galaxy type, optical , radio or IR properties. We will present results on the broad band x-ray properties, the nature of the host galaxies, the luminosity function and will discuss a few of the optical, IR and x-ray results in detail.

  12. Noise reduction in real time x-ray images

    International Nuclear Information System (INIS)

    Tsuda, Motohisa; Kimura, Yutaro

    1986-01-01

    The signal-to-noise ratio of real-time digital X-ray imaging systems consisting of an X-ray image intensifer-television chain was investigated while concentrating on the effect of the X-ray quantum nature. Along with conventional signal accumulation, logarithmic conversion and subtraction, a new technique called the peak hold method is introduced. Theoretical and simulational studies were made with practical parameters. Theory and simulation showed good agreement. An accumulation of signal is most effective for improving the signal-to-noise ratio; the peak-hold method comes next. The peak hold method, however, offers a new image-display mode. Moreover, this method is superior to signal accumulation for specific conditions. (author)

  13. X-ray observations of the 5 March 1979. gamma. -burst field

    Energy Technology Data Exchange (ETDEWEB)

    Helfand, D J; Long, K S [Columbia Univ., New York (USA). Columbia Astrophysics Lab.

    1979-12-06

    On 5 March 1979 an extremely intense burst of hard X-rays and ..gamma..-rays was recorded by the nine interplanetary spacecraft of the burst sensor network and localised by time-of-flight determinations to a position coincident with the supernova remnant N49 in the Large Magellanic Cloud. Several times, both before and after the ..gamma..-ray event, this region of the sky was observed with the soft X-ray imaging instruments aboard the Einstein Observatory. Coupled with optical plate material, the soft x-ray data are used here to place severe constraints on models for the origin of this remarkable transient phenomenon.

  14. Novel X-ray imaging diagnostics of high energy nanosecond pulse accelerators

    International Nuclear Information System (INIS)

    Smith, Graham W.; Gallegos, Roque Rosauro; Hohlfelder, Robert James; Beutler, David Eric; Dudley, John; Seymour, Calvin L.G.; Bell, John D.

    2004-01-01

    Pioneering x-ray imaging has been undertaken on a number of AWE's and Sandia National Laboratories radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

  15. X-ray imaging with monochromatic synchrotron radiation. Fluorescent and phase-contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-05-01

    To obtain the high sensitive x-ray images of biomedical object, new x-ray imaging techniques using fluorescent x-ray and phase-contrast x-ray are being developed in Japan. Fluorescent x-ray CT can detect very small amounts of specific elements in the order of ppm at one pixel, whereas phase-contrast x-ray imaging with interferometer can detect minute differences of biological object. Here, our recent experimental results are presented. (author)

  16. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Science.gov (United States)

    2010-04-01

    ... fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Image-intensified fluoroscopic x-ray system. 892... equipment, patient and equipment supports, component parts, and accessories. (b) Classification. Class II...

  17. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  18. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An electrostatic x-ray imaging system is a device intended for medical... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrostatic x-ray imaging system. 892.1630... visible image. This generic type of device may include signal analysis and display equipment, patient and...

  19. Ghost imaging with paired x-ray photons

    Science.gov (United States)

    Schori, A.; Borodin, D.; Tamasaku, K.; Shwartz, S.

    2018-06-01

    We report the experimental observation of ghost imaging with paired x-ray photons, which are generated by parametric downconversion. We use the one-to-one relation between the photon energies and the emission angles and the anticorrelation between the k -vectors of the signal and the idler photons to reconstruct the images of slits with nominally zero background levels. Further extension of our procedure can be used for the observation of various quantum phenomena at x-ray wavelengths.

  20. X-ray phase contrast imaging: From synchrotrons to conventional sources

    International Nuclear Information System (INIS)

    Olivo, A.; Castelli, E.

    2014-01-01

    Phase-based approaches can revolutionize X-ray imaging and remove its main limitation: poor image contrast arising from low attenuation differences. They exploit the unit decrement of the real part of the refractive index, typically 1000 times larger than the imaginary part driving attenuation. This increases the contrast of all details, and enables the detection of features classically considered 'X-ray invisible'. Following pioneering experiments dating back to the mid-sixties, X-ray phase contrast imaging 'exploded' in the mid-nineties, when third generation synchrotron sources became more widely available. Applications were proposed in fields as diverse as material science, palaeontology, biology, food science, cultural heritage preservation, and many others. Among these applications, medicine has been constantly considered the most important; among medical applications, mammography is arguably the one that attracted most attention. Applications to mammography were pioneered by the SYRMEP (SYnchrotron Radiation for MEdical Physics) group in Trieste, which was already active in the area through a combination of innovative ways to do imaging at synchrotrons and development of novel X-ray detectors. This pioneering phase led to the only clinical experience of phase contrast mammography on human patients, and spawned a number of ideas as to how these advances could be translated into clinical practice.

  1. Differences of X-ray exposure between X-ray diagnostics with a conventional X-ray screen-system and with an image-intensifier-television-unit

    International Nuclear Information System (INIS)

    Loehr, H.; Vogel, H.; Reinhart, J.; Jantzen, R.

    1977-01-01

    During X-ray diagnostics of patients in the II. Medizinische Poliklinik the X-ray exposure was determined. It corresponded to the data described in literature. Two groups were compared: 518 patients examined with a conventional X-ray screen-system and 642 patients examined with an image-intensifier-television-system. The results demonstrated that with exception of thoracical X-ray examination the replacing of the old system by the television system brought a remarkable increase of the X-ray exposure. The doses depended of the patients constitution to a high degree. (orig.) [de

  2. Soft X-ray images of krypton gas-puff Z-pinches

    International Nuclear Information System (INIS)

    Qiu Mengtong; Kuai Bin; Zeng Zhengzhong; Lu Min; Wang Kuilu; Qiu Aici; Zhang Mei; Luo Jianhui

    2002-01-01

    A series of experiments has been carried out on Qiang-guang I generator to study the dynamics of krypton gas-puff Z-pinches. The generator was operated at a peak current of 1.5 MA with a rise-time of 80 ns. The specific linear mass of gas liner was about 20 μg/cm in these experiments. In the diagnostic system, a four-frame x-ray framing camera and a pinhole camera were employed. A novel feature of this camera is that it can give time-resolved x-ray images with four frames and energy-resolved x-ray images with two different filters and an array of 8 pinholes integrated into one compact assemble. As a typical experimental result, an averaged radial imploding velocity of 157 km/s over 14 ns near the late phase of implosion was measured from the time-resolved x-ray images. From the time-integrated x-ray image an averaged radial convergence of 0.072 times of the original size was measured. An averaged radial expansion velocity was 130 km/s and the maximum radial convergence of 0.04 times of the original size were measured from the time-resolved x-ray images. The dominant axial wavelengths of instabilities in the plasma were between 1 and 2 mm. The change in average photons energy was observed from energy spectrum- and time-resolved x-ray images

  3. Soft X-ray Images of Krypton Gas-Puff Z-Pinches

    Institute of Scientific and Technical Information of China (English)

    邱孟通; 蒯斌; 曾正中; 吕敏; 王奎禄; 邱爱慈; 张美; 罗建辉

    2002-01-01

    A series of experiments has been carried out on Qiang-guang Ⅰ generator to study the dynamics of krypton gas-puff Z-pinches. The generator was operated at a peak current of 1.5 MA with a rise-time of 80 ns. The specific linear mass of gas liner was about 20 μg/cm in these experiments. In the diagnostic system, a four-frame x-ray framing camera and a pinhole camera were employed. A novel feature of this camera is that it can give time-resolved x-ray images with four frames and energy-resolved x-ray images with two different filters and an array of 8 pinholes integrated into one compact assemble. As a typical experimental result, an averaged radial imploding velocity of 157 km/s over 14 ns near the late phase of implosion was measured from the time-resolved x-ray images. From the time-integrated x-ray image an averaged radial convergence of 0.072 times of the original size was measured. An averaged radial expansion velocity was 130 km/s and the maximum radial convergence of 0.04 times of the original size were measured from the time-resolved x-ray images. The dominant axial wavelengths of instabilities in the plasma were between 1 and 2 mm. The change in average photons energy was observed from energy spectrum- and time-resolved x-ray images.

  4. Translate rotate scanning method for X-ray imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Kwog Cheong Tam.

    1990-01-01

    Rapid x-ray inspection of objects larger than an x-ray detector array is based on a translate rotate scanning motion of the object related to the fan beam source and detector. The scan for computerized tomography imaging is accomplished by rotating the object through 360 degrees at two or more positions relative to the source and detector array, in moving to another position the object is rotated and the object or source and detector are translated. A partial set of x-ray data is acquired at every position which are combined to obtain a full data set for complete image reconstruction. X-ray data for digital radiography imaging is acquired by scanning the object vertically at a first position at one view angle, rotating and translating the object relative to the source and detector to a second position, scanning vertically, and so on to cover the object field of view, and combining the partial data sets. (author)

  5. MMX-I: data-processing software for multimodal X-ray imaging and tomography.

    Science.gov (United States)

    Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea

    2016-05-01

    A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors' knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments.

  6. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    Science.gov (United States)

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.

  7. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A novel three-dimensional X-ray microtomographic micro-imaging system which enables simultaneous measurement of differential phase contrast and absorption contrast has been developed. The optical system consists of a scanning microscope with one-dimensional focusing device and an imaging microscope with one-dimensional objective. A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown

  8. Exposure reduction in general dental practice using digital x-ray imaging system for intraoral radiography with additional x-ray beam filter

    International Nuclear Information System (INIS)

    Shibuya, Hitoshi; Mori, Toshimichi; Hayakawa, Yoshihiko; Kuroyanagi, Kinya; Ota, Yoshiko

    1997-01-01

    To measure exposure reduction in general dental practice using digital x-ray imaging systems for intraoral radiography with additional x-ray beam filter. Two digital x-ray imaging systems, Pana Digital (Pana-Heraus Dental) and CDR (Schick Technologies), were applied for intraoral radiography in general dental practice. Due to the high sensitivity to x-rays, additional x-ray beam filters for output reduction were used for examination. An Orex W II (Osada Electric Industry) x-ray generator was operated at 60 kVp, 7 mA. X-ray output (air-kerma; Gy) necessary for obtaining clinically acceptable images was measured at 0 to 20 cm in 5 cm steps from the cone tip using an ionizing chamber type 660 (Nuclear Associates) and compared with those for Ektaspeed Plus film (Eastman Kodak). The Pana Digital system was used with the optional filter supplied by Pana-Heraus Dental which reduced the output to 38%. The exposure necessary to obtain clinically acceptable images was only 40% of that for the film. The CDR system was used with the Dental X-ray Beam Filter Kit (Eastman Kodak) which reduced the x-ray output to 30%. The exposure necessary to obtain clinically acceptable images was only 20% of that for the film. The two digital x-ray imaging systems, Pana Digital and CDR, provided large dose savings (60-80%) compared with Ektaspeed Plus film when applied for intraoral radiography in general dental practice. (author)

  9. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Science.gov (United States)

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  10. Multiflash X ray with Image Detanglement for Single Image Isolation

    Science.gov (United States)

    2017-08-31

    known and separated into individual images. A proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes...Popular Science article.2 For decades, that basic concept dominated the color television market . Those were the days when a large color television...proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes that allowed development of the required image

  11. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    Science.gov (United States)

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  12. Phase contrast imaging using a micro focus x-ray source

    Science.gov (United States)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  13. Noise removal for medical X-ray images in wavelet domain

    International Nuclear Information System (INIS)

    Wang, Ling; Lu, Jianming; Li, Yeqiu; Yahagi, Takashi; Okamoto, Takahide

    2006-01-01

    Many important problems in engineering and science are well-modeled by Poisson noise, the noise of medical X-ray image is Poisson noise. In this paper, we propose a method of noise removal for degraded medical X-ray image using improved preprocessing and improved BayesShrink (IBS) method in wavelet domain. Firstly, we pre-process the medical X-ray image, Secondly, we apply the Daubechies (db) wavelet transform to medical X-ray image to acquire scaling and wavelet coefficients. Thirdly, we apply the proposed IBS method to process wavelet coefficients. Finally, we compute the inverse wavelet transform for the thresholded coefficeints. Experimental results show that the proposed method always outperforms traditional methods. (author)

  14. Bio-medical X-ray imaging with spectroscopic pixel detectors

    CERN Document Server

    Butler, A P H; Tipples, R; Cook, N; Watts, R; Meyer, J; Bell, A J; Melzer, T R; Butler, P H

    2008-01-01

    The aim of this study is to review the clinical potential of spectroscopic X-ray detectors and to undertake a feasibility study using a novel detector in a clinical hospital setting. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allowing for routine use of spectroscopic bio-medical imaging. We have coined the term MARS (Medipix All Resolution System) for bio-medical images that provide spatial, temporal, and energy information. The full clinical significance of spectroscopic X-ray imaging is difficult to predict but insights can be gained by examining both image reconstruction artifacts and the current uses of dual-energy techniques. This paper reviews the known uses of energy information in vascular imaging and mammography, clinically important fields. It then presents initial results from using Medipix-2, to image human tissues within a clinical radiology department. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allo...

  15. Correction of ring artifacts in X-ray tomographic images

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Johnson, G.; Tafforeau, P.

    2011-01-01

    Ring artifacts are systematic intensity distortions located on concentric circles in reconstructed tomographic X-ray images. When using X-ray tomography to study for instance low-contrast grain boundaries in metals it is crucial to correct for the ring artifacts in the images as they may have...... the same intensity level as the grain boundaries and thus make it impossible to perform grain segmentation. This paper describes an implementation of a method for correcting the ring artifacts in tomographic X-ray images of simple objects such as metal samples where the object and the background...... are separable. The method is implemented in Matlab, it works with very little user interaction and may run in parallel on a cluster if applied to a whole stack of images. The strength and robustness of the method implemented will be demonstrated on three tomographic X-ray data sets: a mono-phase β...

  16. TU-G-207-03: High Spatial Resolution and High Sensitivity X-Ray Fluorescence Imaging

    International Nuclear Information System (INIS)

    Xing, L.

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  17. The Gamma-Ray Imager GRI

    Science.gov (United States)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  18. Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia

    2016-07-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE ( 2000 refereed publications). We describe the results of a study, recently completed by the MSFC Advanced Concepts Office, that demonstrates that such a mission is feasible within a NASA probe-class mission budget.

  19. Comparison of x-ray computed tomography, through-transmission ultrasound, and low-kV x-ray imaging for characterizing green-state ceramics

    International Nuclear Information System (INIS)

    Roberts, R.A.; Ellingson, W.A.; Vannier, M.W.

    1985-06-01

    Green-state MgAl 2 O 4 compact disk specimens have been studied by x-ray computed tomography (CT), through-transmission pulsed ultrasound, and low-kV x-ray imaging to compare the abilities of these nondestructive evaluation (NDE) methods to detect flaws and density variations. X-ray computed tomographic images were obtained from a 125-kV (peak) imaging system with a 512 x 512 matrix and a pixel size of 100 μm. A 3- to 10- MHz focused-beam ultrasonic transducer was used, together with special immersion techniques, to obtain topographical maps of acoustic attenuation and phase velocity; a 30 x 30 matrix was used in the ultrasonic scans. A 35-kV x-ray system with high-resolution type RR film was used to obtain conventional radiographs. Large-scale nonuniform density gradients were detected with CT and ultrasonics in supposedly uniform ceramic disks. In addition, inclusions in the green-state samples were detected by all three methods, with each method providing certain advantages. The influence of grain structure and other ceramic powder characteristics will be examined in the future. 5 refs., 9 figs

  20. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  1. Transmission X-ray microscopy for full-field nano-imaging of biomaterials

    Science.gov (United States)

    ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO

    2010-01-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414

  2. Transmission X-ray microscopy for full-field nano imaging of biomaterials.

    Science.gov (United States)

    Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero

    2011-07-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. Copyright © 2010 Wiley-Liss, Inc.

  3. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

    1988-01-01

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  4. Development of a Wolter Optic X-ray Imager on Z

    Science.gov (United States)

    Fein, Jeffrey R.; Ampleford, David J.; Vogel, Julia K.; Kozioziemski, Bernie; Walton, Christopher C.; Wu, Ming; Ayers, Jay; Ball, Chris J.; Bourdon, Chris J.; Maurer, Andrew; Pivovaroff, Mike; Ramsey, Brian; Romaine, Suzanne

    2017-10-01

    A Wolter optic x-ray imager is being developed for the Z Machine to study the dynamics of warm x-ray sources with energies above 10 keV. The optic is adapted from observational astronomy and uses multilayer-coated, hyperbolic and parabolic x-ray mirrors to form a 2D image with predicted 100- μm resolution over a 5x5-mm field of view. The imager is expected to have several advantages over a simple pinhole camera. In particular, it can form quasi mono-energetic images due to the inherent band-pass nature of the x-ray mirrors from Bragg diffraction. As well, its larger collection solid angle can lead to an overall increase in efficiency for the x-rays in the desirable energy band. We present the design of the imaging system, which is initially optimized to view Mo K-alpha x-rays (17.5 keV). In addition, we will present preliminary measurements of the point-spread function as well as the spectral sensitivity of the instrument. Sandia National Laboratories is a multimission laboratory managed and operated by NTESS, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's NNSA under contract DE-NA-0003525.

  5. Investigation of the hard x-ray background in backlit pinhole imagers

    Energy Technology Data Exchange (ETDEWEB)

    Fein, J. R., E-mail: jrfein@umich.edu; Holloway, J. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143 (United States); Peebles, J. L. [Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States); Keiter, P. A.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Drake, R. P. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143 (United States)

    2014-11-15

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  6. Multifrequency observations of KAZ 102 during the ROSAT all-sky survey

    Science.gov (United States)

    Treves, A.; Fink, H. H.; Malkan, M.; Wilkes, B. J.; Baganoff, F.; Heidt, J.; Pian, E.; Sadun, A.; Schaeidt, S.; Bonnell, J. T.

    1995-01-01

    The bright quasar Kaz 102, which lies in the vicinity of the North Ecliptic Pole, was monitored during the ROSAT All Sky Survey for 121.5 days from 1990 July 30 to 1991 January 25. In the course of the survey, optical photometry with various filters was peformed at several epochs, together with UV (IUE) and optical spectrophotometry. The spectral energy distribution in the 3 x 10(exp 14) -3 x 10(exp 17) Hz range is obtained simultaneously among the various frequencies to less than or = 1 day. No clear case of variability can be made in the X-rays, while in the optical and UV variability of 10%-20% is apparent. An analysis of IUE and Einstein archives indicates a doubling timescale of years for the UV and soft X-ray flux. The X-ray photon index, which in 1979 was rather flat (Gamma = 0.8(+0.6 -0.4), in 1990/1991 was found to be Gamma = 2.22 +/- 0.13, a typical value for radio-quiet quasars in this energy range. The overall energy distribution and the variability are discussed.

  7. Fast X-ray imaging of cavitating flows

    Energy Technology Data Exchange (ETDEWEB)

    Khlifa, Ilyass; Fuzier, Sylvie; Roussette, Olivier [Arts et Metiers ParisTech, Lille (France); Vabre, Alexandre [CEA Saclay, Gif-sur-Yvette (France); Hocevar, Marko [Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana (Slovenia); Fezzaa, Kamel [Argonne National Laboratory, Advanced Photon Source, Lemont, IL (United States); Coutier-Delgosha, Olivier [Virginia Tech, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Blacksburg, VA (United States)

    2017-11-15

    A new method based on ultra-fast X-ray imaging was developed in this work for the investigation of the dynamics and the structures of complex two-phase flows. In this paper, cavitation was created inside a millimetric 2D Venturi-type test section, while seeding particles were injected into the flow. Thanks to the phase-contrast enhancement technique provided by the APS (Advanced Photon Source) synchrotron beam, high definition X-ray images of the complex cavitating flows were obtained. These images contain valuable information about both the liquid and the gaseous phases. By means of image processing, the two phases were separated, and velocity fields of each phase were, therefore, calculated using image cross-correlations. The local vapour volume fractions were also obtained, thanks to the local intensity levels within the recorded images. These simultaneous measurements, provided by this new technique, afford more insight into the structure and the dynamic of two-phase flows as well as the interactions between them, and hence enable to improve our understanding of their behaviour. In the case of cavitating flows inside a Venturi-type test section, the X-ray measurements demonstrate, for the first time, the presence of significant slip velocities between the phases within sheet cavities for both steady and unsteady flow configurations. (orig.)

  8. Human genome sequencing with direct x-ray holographic imaging

    International Nuclear Information System (INIS)

    Rhodes, C.K.

    1993-01-01

    Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization

  9. Direct view panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Yang, S.-P.; Robbins, C.D.; Merrit, E.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray fluoroscopy use is described. It has all linear components and yet a high brightness gain, in excess of 4,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window, a directly viewable full size output display screen, and a scintillator-photocathode screen having a thickness of at least 200 microns for a high X-ray photon utilization ability as well as X-ray stopping power, the scintillator-photocathode screen being suspended on insulators within the envelope and in between the input window and the output screen. The scintillator-photocathode screen is spaced from the output screen by at least 8mm to allow the application of a high negative potential at the scintillator-photocathode screen with respect to the output screen for high gain with low field emission, since all of the remaining components within the tube envelope are at neutral potential with respect to the output display screen. (Auth.)

  10. Fast and robust ray casting algorithms for virtual X-ray imaging

    International Nuclear Information System (INIS)

    Freud, N.; Duvauchelle, P.; Letang, J.M.; Babot, D.

    2006-01-01

    Deterministic calculations based on ray casting techniques are known as a powerful alternative to the Monte Carlo approach to simulate X- or γ-ray imaging modalities (e.g. digital radiography and computed tomography), whenever computation time is a critical issue. One of the key components, from the viewpoint of computing resource expense, is the algorithm which determines the path length travelled by each ray through complex 3D objects. This issue has given rise to intensive research in the field of 3D rendering (in the visible light domain) during the last decades. The present work proposes algorithmic solutions adapted from state-of-the-art computer graphics to carry out ray casting in X-ray imaging configurations. This work provides an algorithmic basis to simulate direct transmission of X-rays, as well as scattering and secondary emission of radiation. Emphasis is laid on the speed and robustness issues. Computation times are given in a typical case of radiography simulation

  11. Fast and robust ray casting algorithms for virtual X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: Nicolas.Freud@insa-lyon.fr; Duvauchelle, P. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Letang, J.M. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2006-07-15

    Deterministic calculations based on ray casting techniques are known as a powerful alternative to the Monte Carlo approach to simulate X- or {gamma}-ray imaging modalities (e.g. digital radiography and computed tomography), whenever computation time is a critical issue. One of the key components, from the viewpoint of computing resource expense, is the algorithm which determines the path length travelled by each ray through complex 3D objects. This issue has given rise to intensive research in the field of 3D rendering (in the visible light domain) during the last decades. The present work proposes algorithmic solutions adapted from state-of-the-art computer graphics to carry out ray casting in X-ray imaging configurations. This work provides an algorithmic basis to simulate direct transmission of X-rays, as well as scattering and secondary emission of radiation. Emphasis is laid on the speed and robustness issues. Computation times are given in a typical case of radiography simulation.

  12. Images of the laser entrance hole from the static x-ray imager at NIF.

    Science.gov (United States)

    Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K

    2010-10-01

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  13. Improvements in x-ray image converters and phosphors

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1981-01-01

    Improvements to an X-ray image converter comprising crystals of rare earth phosphor admixtures are described. The phosphor admixtures utilize thulium-activated lanthanum and/or gadolinium oxyhalide phosphor material to increase the relative speed and resolution of an X-ray image compared with conventional rare earth phosphors. Examples of various radiographic screens containing one or more of the phosphor materials are given. (U.K.)

  14. Functional imaging - a new tool for X-ray functional diagnostics

    International Nuclear Information System (INIS)

    Boehm, M.; Erbe, W.; Sonne, B.; Hoehne, K.H.; Nicolae, G.C.; Pfeiffer, G.

    1978-05-01

    The method of functional imaging is applied to X-ray angiograms. Functional images are generated by inserting at each point of an X-ray image a computed grey value proportional to a dynamic parameter (such as blood velocity) instead of the recorded X-ray absorption value. For this purpose a new system for angiographic image processing has been developed. First results show that the method is a tool to extract more information about the blood dynamics in organs in an easier and faster way than with the conventional angiographic technique. (orig.)

  15. Comparative analysis of partial imaging performance parameters of home and imported X-ray machines

    International Nuclear Information System (INIS)

    Cao Yunxi; Wang Xianyun; Liu Huiqin; Guo Yongxin

    2002-01-01

    Objective: To compare and analyze the performance indexes and the imaging quality of the home and imported X-ray machines through testing their partial imaging performance parameters. Methods: By separate sampling from 10 home and 10 imported X-ray machines, the parameters including tube current, time of exposure, machine total exposure, and repeatability were tested, and the imaging performance was evaluated according to the national standard. Results: All the performance indexes met the standard of GB4505-84. The first sampling tests showed the maximum changing coefficient of imaging performance repeatability of the home X-ray machines was Δmax1 = 0.025, while that of the imported X-ray machine was Δmax1 = 0.016. In the second sampling tests, the maximum changing coefficients of the two were Δmax2 = 0.048 and Δmax2 = 0.022, respectively. Conclusion: The 2 years' follow-up tests indicate that there is no significant difference between the above-mentioned parameters of the elaborately adjusted home X-ray machines and imported ones, but the home X-ray machines are no better than the imported X-ray machines in stability and consistency

  16. Directional x-ray dark-field imaging of strongly ordered systems

    Science.gov (United States)

    Jensen, Torben Haugaard; Bech, Martin; Zanette, Irene; Weitkamp, Timm; David, Christian; Deyhle, Hans; Rutishauser, Simon; Reznikova, Elena; Mohr, Jürgen; Feidenhans'L, Robert; Pfeiffer, Franz

    2010-12-01

    Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.

  17. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    observatories around the world were pointing their instruments at this mysterious source in the sky, named GRB 031203, in the attempt to decipher its nature. Also ESA's X-ray observatory, XMM-Newton, joined the hunt and observed the source in detail, using its on-board European Photon Imaging Camera (EPIC). The fading X-ray emission from GRB 031203 - called the `afterglow' - is clearly seen in XMM-Newton's images. But much more stunning are the two rings, centred on the afterglow, which appear to expand thousand times faster than the speed of light. Dr. Simon Vaughan, of the University of Leicester, United Kingdom, leads an international team of scientists studying GRB 031203. He explains that these rings are what astronomers call an `echo'. They form when the X-rays from the distant gamma-ray burst shine on a layer of dust in our own Galaxy. "The dust scatters some of the X-rays, causing XMM-Newton to observe these rings, much in the same way as fog scatters the light from a car's headlights," said Vaughan. Although the afterglow is the brightest feature seen in XMM-Newton's images, the expanding echo is much more spectacular. "It is like a shout in a cathedral," Vaughan said. "The shout of the gamma-ray burst is louder, but the Galactic reverberation, seen as the rings, is much more beautiful." The rings seem to expand because the X-rays scattered by dust farther from the direction of GRB 031203 take longer to reach us than those hitting the dust closer to the line of sight. However, nothing can move faster than light. "This is precisely what we expect because of the finite speed of light," said Vaughan. "The rate of expansion that we see is just a visual effect." He and his colleagues explain that we see two rings because there are two thin sheets of dust between the source of the gamma-ray burst and Earth, one closer to us creating the wider ring and one further away where the smaller ring is formed. Since they know precisely at what speed the X-ray light travels in space

  18. Imaging efficiency of an X-ray contrast agent-incorporated polymeric microparticle.

    Science.gov (United States)

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-01-01

    Biocompatible polymeric encapsulants have been widely used as a delivery vehicle for a variety of drugs and imaging agents. In this study, X-ray contrast agent (iopamidol) is encapsulated into a polymeric microparticle (polyvinyl alcohol) as a particulate flow tracer in synchrotron X-ray imaging system. The physical properties of the designed microparticles are investigated and correlated with enhancement in the imaging efficiency by experimental observation and theoretical interpretation. The X-ray absorption ability of the designed microparticle is assessed by Beer-Lambert-Bouguer law. Particle size, either in dried state or in solvent, primarily dominates the X-ray absorption ability under the given condition, thus affecting imaging efficiency of the designed X-ray contrast flow tracers. Copyright © 2011 John Wiley & Sons, Ltd.

  19. The present state and future development of X-ray imaging technology

    International Nuclear Information System (INIS)

    Gou Liang; Wang Xuben; Cao Hui

    2002-01-01

    Medical imaging has long been the hot topic of clinical medical sciences, the X-ray imaging equipment is a popular device of current medical imaging, and the digital imaging technology has become a challenge to the conventional plane imaging. The author first discusses that the key of X-ray-based imaging is the generator and detector of X-ray and the improvement of imaging software, and then points out that the future development of medical imaging will aim at the capability of reducing radiation and handling more efficient and accurate data capacity

  20. Medical imaging: Material change for X-ray detectors

    Science.gov (United States)

    Rowlands, John A.

    2017-10-01

    The X-ray sensitivity of radiology instruments is limited by the materials used in their detectors. A material from the perovskite family of semiconductors could allow lower doses of X-rays to be used for medical imaging. See Letter p.87

  1. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  2. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wilson, Matthew D.; Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-01-01

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm"2 with one of the 80×80 pixels imaging an area equivalent to 13µm"2. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  3. Monitoring and Detecting X-ray Transients with the Swift Observatory

    Science.gov (United States)

    Markwardt, Craig

    2002-01-01

    Swift is a multi-wavelength observatory specifically designed to detect transients sources in the gamma-ray energy band 15-200 keV. The primary goals of the mission involve gamma ray burst (GRB) astronomy, namely to determine the origin of GRBs and their afterglows, and use bursts to probe the early Universe. However, Swift will also discover new X-ray transient sources, and it will be possible to bring Swift's considerable multi-wavelength capabilities to bear on these sources, and those discovered by other means. The Burst Alert Telescope (BAT) is a coded mask instrument sensitive to 15-200 keV gamma rays, and has a field of view which covers approximately 1/8th of the sky in a single pointing. Over a typical observing day, the almost the entire sky will be observed and monitored for new transient sources. Sources will be detected within several hours of observation. The two narrow field instruments, the X-ray Telescope and Ultra-Violet Optical Telescope, can provide sensitive simultaneous imaging and spectroscopy observations in the optical through soft X-ray bands. The Swift science operations team will entertain requests for targets of opportunity for sources which are astrophysically significant. Swift will be ideally suited for the detection of transients which produce hard X-rays, such as black hole binaries and some neutron star systems.

  4. Operation of a separated-type x-ray interferometer for phase-contrast x-ray imaging

    Science.gov (United States)

    Yoneyama, Akio; Momose, Atsushi; Seya, Eiichi; Hirano, Keiichi; Takeda, Tohoru; Itai, Yuji

    1999-12-01

    Aiming at large-area phase-contrast x-ray imaging, a separated-type x-ray interferometer system was designed and developed to produce 25×20 mm interference patterns. The skew-symmetric optical system was adopted because of the feasibility of alignment. The rotation between the separated crystal blocks was controlled within a drift of 0.06 nrad using a feedback positioning system. This interferometer generated a 25×15 mm interference pattern with 0.07 nm synchrotron x-rays. A slice of a rabbit's kidney was observed, and its tubular structure could be revealed in a measured phase map.

  5. Soft X-ray imaging with axisymmetry microscope and electronic readout

    International Nuclear Information System (INIS)

    Sauneuf, A.; Cavailler, C.; Henry, Ph.; Launspach, J.; Mascureau, J. de; Rostaing, M.

    1984-11-01

    An axisymmetric microscope with 10 X magnification has been constructed; its resolution has been measured using severals grids, backlighted by an X-ray source and found to be near 25 μm. So it could be used to make images of laser driven plasmas in the soft X-ray region. In order to see rapidly those images we have associated it with a new detector. It is a small image converter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a CCD working in the spectral range. An electronic image readout chain, which is identical to those we use with streak cameras, then processes automatically and immediatly the images given by the microscope

  6. Panel discussion on: Data analysis trends in X-ray and γ-ray astronomy

    International Nuclear Information System (INIS)

    Ozel, M.F.; Buccheri, R.; Scarsi, L.

    1985-01-01

    This article is a panel discussion that included several participants. The problems of data analysis in x- and gamma-ray astronomy are discussed. Improvements achieved by consecutive gamma-ray experiments since the 1960's are reviewed. The presentation of gamma-ray data in terms of two-dimensional sky maps is examined and different representations of galactic anticenter gamma-ray sky are shown

  7. Registration of Vibro-acoustography Images and X-ray Mammography.

    Science.gov (United States)

    Gholam Hosseini, H; Fatemi, M; Alizad, A

    2005-01-01

    Image registration has been widely used for generating more diagnostic and clinical values in medical imaging. On the other hand, inaccurate image registration and incorrect localization of region of interest risks a potential impact on patients. Vibro-acoustography (VA) is a new imaging modality that has been applied to both medical and industrial imaging. Combining unique diagnostic information of VA with other medical imaging is one of our research interests. In this work, we studied the VA and x-ray image pairs and adopted a flexible control-point selection technique for image registration. A modified second-order polynomial, which leads to a scale/rotation/translation invariant registration, was used. The results of registration were used to spatially transform the breast VA images to map with the x-ray mammography with a registration error of less than 1.65 mm. These two completely different modalities were combined to generate an image including a ratio of each image pixel value. Therefore, the proposed technique allows clinicians to maximize their insight by combining the information from x-ray mammogram and VA modalities into a single image.

  8. Full-field x-ray nano-imaging at SSRF

    Science.gov (United States)

    Deng, Biao; Ren, Yuqi; Wang, Yudan; Du, Guohao; Xie, Honglan; Xiao, Tiqiao

    2013-09-01

    Full field X-ray nano-imaging focusing on material science is under developing at SSRF. A dedicated full field X-ray nano-imaging beamline based on bending magnet will be built in the SSRF phase-II project. The beamline aims at the 3D imaging of the nano-scale inner structures. The photon energy range is of 5-14keV. The design goals with the field of view (FOV) of 20μm and a spatial resolution of 20nm are proposed at 8 keV, taking a Fresnel zone plate (FZP) with outermost zone width of 25 nm. Futhermore, an X-ray nano-imaging microscope is under developing at the SSRF BL13W beamline, in which a larger FOV will be emphasized. This microscope is based on a beam shaper and a zone plate using both absorption contrast and Zernike phase contrast, with the optimized energy set to 10keV. The detailed design and the progress of the project will be introduced.

  9. X-ray Observation of XTE J2012+381 during the 1998 Outburst

    Indian Academy of Sciences (India)

    The outburst of X-ray transient source XTE J2012+381 was detected by the RXTE All-Sky Monitor on 1998 May 24th. Following the outburst, X-ray observations of the source were made in the 2-18keV energy band with the Pointed Proportional Counters of the Indian X-ray Astronomy Experiment (IXAE) on-board the Indian ...

  10. Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources

    Science.gov (United States)

    Šimon, V.

    2017-07-01

    We show the astrophysical aspects of observing the X-ray sky with the planned lobster-eye telescope. This instrument is important because it is able to provide wide-field X-ray imaging. For the testing observations, we propose to include also X-ray binaries in which matter transfers onto the compact object (mostly the neutron star). We show the typical features of the long-term X-ray activity of such objects. Observing in the soft X-ray band is the most promising because their X-ray intensity is the highest in this band. Since these X-ray sources tend to concentrate toward the center of our Galaxy, several of them can be present in the field of view of the tested instrument.

  11. Detection of soft X-rays from α Lyrae and eta Bootis with an imaging X-ray telescope

    International Nuclear Information System (INIS)

    Topka, K.; Fabricant, D.; Harnden, F.R. Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Two nearby stars have been detected in the soft X-ray band with an imaging X-ray telescope flown aboard two sounding rockets. The exposure times were 4.8 and 4.5 s for the images of the AO V star α Lyrae (Vega) and the GO IV star eta Bootis, respectively. Laboratory measurements rule out the possibility that the observed signals were due to UV contamination. These X-ray observations imply luminosities of L/sub X/(0.2--0.8 keV) approx. =3 x 10 28 ergs s -1 for Vega and L/sub X/(0.15--1.5 keV) approx. =1 x 10 29 ergs s -1 for eta Boo. A coronal interpretation of the X-rays from Vega is in serious conflict with simple convective models for early-type main-sequence stars. Magnetic field activity may be responsible for heating the corona, as has been suggested for the Sun. In the case of eta Boo, a coronal interpretation is also favored; however, if the unseen companion of eta Boo is degenerate, the X-ray emission may instead originate in a stellar wind accreting upon a white dwarf or neutron star

  12. Recent developments in detectors/phantoms for dosimetry, X-ray quality assurance and imaging

    International Nuclear Information System (INIS)

    Sankaran, A.

    2009-01-01

    During the past years, many new developments have taken place in detectors/phantoms for high energy photon and electron dosimetry (for radiotherapy), protection monitoring, X-ray quality assurance and X-ray imaging (for radiodiagnosis). A variety of detectors and systems, quality assurance (QA) gadgets and special phantoms have been developed for diverse applications. This paper discusses the important developments with some of which the author was actively associated in the past. For dosimetry and QA of 60 Co and high energy X-ray units, state-of-the-art radiation field analyzers, matrix ion chambers, MOSFET devices and Gafchromic films are described. OSL detectors find wide use in radiotherapy dosimetry and provide a good alternative for personnel monitoring. New systems introduced for QA/dosimetry of X-ray units and CT scanners include: multi-function instruments for simultaneous measurement of kVp, dose, time, X-ray waveform and HVT on diagnostic X-ray units; pencil chamber with head and body phantoms for CTDI check on CT scanners. Examples of phantoms used for dosimetry and imaging are given. Advancements in the field of diagnostic X-ray imaging (with applications in portal imaging/dosimetry of megavoltage X-ray units) have led to emergence of: film-replacement systems employing CCD-scintillator arrays, computed radiography (CR) using storage phosphor plate; digital radiography (DR), using a pixel-matrix of amorphous selenium, or amorphous silicon diode coupled to scintillator. All these provide (a) in radiotherapy, accurate dose delivery to tumour, saving the surrounding tissues and (b) in radiodiagnosis, superior image quality with low patient exposure. Lastly, iPODs and flash drives are utilized for storage of gigabyte-size images encountered in medical and allied fields. Although oriented towards medical applications, some of these have been of great utility in other fields, such as industrial radiography as well as a host of other research areas. (author)

  13. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    Science.gov (United States)

    Xie, Yaoqin; Xing, Lei; Gu, Jia; Liu, Wu

    2013-06-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow.

  14. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    International Nuclear Information System (INIS)

    Xie Yaoqin; Gu Jia; Xing Lei; Liu Wu

    2013-01-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow. (paper)

  15. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Science.gov (United States)

    2010-04-01

    ... fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Non-image-intensified fluoroscopic x-ray system... display equipment, patient and equipment supports, component parts, and accessories. (b) Classification...

  16. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  17. Two-energy twin image removal in atomic-resolution x-ray holography

    International Nuclear Information System (INIS)

    Nishino, Y.; Ishikawa, T.; Hayashi, K.; Takahashi, Y.; Matsubara, E.

    2002-01-01

    We propose a two-energy twin image removal algorithm for atomic-resolution x-ray holography. The validity of the algorithm is shown in a theoretical simulation and in an experiment of internal detector x-ray holography using a ZnSe single crystal. The algorithm, compared to the widely used multiple-energy algorithm, allows efficient measurement of holograms, and is especially important when the available x-ray energies are fixed. It enables twin image free holography using characteristic x rays from laboratory generators and x-ray pulses of free-electron lasers

  18. A catalogue of clusters of galaxies identified from all sky surveys of 2MASS, WISE, and SuperCOSMOS

    Science.gov (United States)

    Wen, Z. L.; Han, J. L.; Yang, F.

    2018-03-01

    We identify 47 600 clusters of galaxies from photometric data of Two Micron All Sky Survey (2MASS), Wide-field Infrared Survey Explorer (WISE), and SuperCOSMOS, among which 26 125 clusters are recognized for the first time and mostly in the sky outside the Sloan Digital Sky Survey (SDSS) area. About 90 per cent of massive clusters of M500 > 3 × 1014 M⊙ in the redshift range of 0.025 < z < 0.3 have been detected from such survey data, and the detection rate drops down to 50 per cent for clusters with a mass of M500 ˜ 1 × 1014 M⊙. Monte Carlo simulations show that the false detection rate for the whole cluster sample is less than 5 per cent. By cross-matching with ROSAT and XMM-Newton sources, we get 779 new X-ray cluster candidates which have X-ray counterparts within a projected offset of 0.2 Mpc.

  19. X-ray image intensifier tube and radiographic camera incorporating same

    International Nuclear Information System (INIS)

    1981-01-01

    An X-ray sensitive image intensifier tube is described. It has an input window comprising at least one of iron, chromium and nickel for receiving an X-ray image. There is a flat scintillator screen adjacent for converting the X-ray image into a light pattern image. Adjacent to this is a flat photocathode layer for emitting photoelectrons in a pattern corresponding to the light pattern image. Parallel to this and spaced from it is a flat phosphor display screen. Electrostatic voltage is applied to the display screen and the photocathode layer to create an electric field between them to accelerate the photoelectrons towards the display screen. The paths of such parallel straight trajectories are governed solely by the electrostatic voltage applied, the image at the display screen being substantially equal in size to that of the X-ray image received at the input window. The tube envelope is preferably metallic to enable the basic components to be kept at a neutral potential and avoid spurious emissions. A radiographic camera with such an intensifier tube is also described. (U.K.)

  20. Use of a priori information in incomplete data x-ray CT imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Hedengren, K.H.

    1988-01-01

    A new technique for utilizing a priori information is presented which uses CAD electronic part models to make use of effectively all the information which is available in the blueprint of a selected industrial part. Significant improvements in x-ray image quality are demonstrated using the technique in the image enhancement of the model of an exhaust nozzle actuation ring for the F110 aircraft. Three approaches were evaluated: a projection data approach, an iterative reconstruction approach, and an image processing and analysis approach. Results for these approaches are included. X-ray CT images of the simulated part image reconstructed with several choices of available angular range are shown

  1. X-ray imaging device for one-dimensional and two-dimensional radioscopy

    International Nuclear Information System (INIS)

    1978-01-01

    The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)

  2. FIRST IMAGES FROM THE FOCUSING OPTICS X-RAY SOLAR IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, Säm; Glesener, Lindsay; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; Lin, Robert [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA (United States); Christe, Steven [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Ishikawa, Shin-nosuke [National Astronomical Observatory, Mitaka (Japan); Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee [NASA Marshall Space Flight Center, Huntsville, AL (United States); Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya [Institute of Space and Astronautical Science (ISAS)/JAXA, Sagamihara (Japan); Tajima, Hiroyasu [Solar-Terrestial Environment Laboratory, Nagoya University, Nagoya (Japan); Tanaka, Takaaki [Department of Physics, Kyoto University, Kyoto (Japan); White, Stephen [Air Force Research Laboratory, Albuquerque, NM (United States)

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  3. The feasibility of independent observations/detections of GRBs in X-rays

    International Nuclear Information System (INIS)

    Hudec, R.; Skulinova, M.; Pina, L.; Sveda, L.; Semencova, V.; Inneman, A.

    2009-01-01

    According to the observational statistics a large majority of all GRBs exhibit X-ray emission. In addition, a dedicated separate group of GRB, the XRFs, exists which emission dominates in the X-ray spectral range. And the third group of GRB related objects (yet hypothetical) are the group of off-axis observed GRBs (orphan afterglows). These facts justify the consideration of an independent experiment for monitoring, detection and analyses of GRBs and others fast X-ray transients in X-rays. We will present and discuss such experiment based on wide-field X-ray telescopes of Lobster Eye type. The wide field and fine sensitivity of Lobster Eye X-ray All-Sky Monitor make such instruments important tools in study of GRBs and related objects.

  4. X-ray image signal generator

    International Nuclear Information System (INIS)

    Dalton, B.L.; Lill, B.H.

    1981-01-01

    This patent claim on behalf on EMI Ltd. relates to a flat plate X-ray detector which uses a plate detector exhibiting so-called permanent induced electric polarization in response to a pattern of radiation emergent from a patient to generate a polarization pattern which is scanned by means of a laser to cause discharge of the polarization through the plate and so generate electric signals representative of the X-ray image of the patient. In addition a second laser operating at a different wavelength e.g. infra-red, also scans or floods the plate detector to move 'dark polarisation'. The plate detector may be a phosphor screen or a phosphor screen in combination with a scintillator. (author)

  5. Characterization of Polycrystalline Materials Using Synchrotron X-ray Imaging and Diffraction Techniques

    DEFF Research Database (Denmark)

    Ludwig, Wolfgang; King, A.; Herbig, M.

    2010-01-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using...... propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray...

  6. Objective for EUV microscopy, EUV lithography, and x-ray imaging

    Science.gov (United States)

    Bitter, Manfred; Hill, Kenneth W.; Efthimion, Philip

    2016-05-03

    Disclosed is an imaging apparatus for EUV spectroscopy, EUV microscopy, EUV lithography, and x-ray imaging. This new imaging apparatus could, in particular, make significant contributions to EUV lithography at wavelengths in the range from 10 to 15 nm, which is presently being developed for the manufacturing of the next-generation integrated circuits. The disclosure provides a novel adjustable imaging apparatus that allows for the production of stigmatic images in x-ray imaging, EUV imaging, and EUVL. The imaging apparatus of the present invention incorporates additional properties compared to previously described objectives. The use of a pair of spherical reflectors containing a concave and convex arrangement has been applied to a EUV imaging system to allow for the image and optics to all be placed on the same side of a vacuum chamber. Additionally, the two spherical reflector segments previously described have been replaced by two full spheres or, more precisely, two spherical annuli, so that the total photon throughput is largely increased. Finally, the range of permissible Bragg angles and possible magnifications of the objective has been largely increased.

  7. ASSESSMENT OF RESTORATION METHODS OF X-RAY IMAGES WITH EMPHASIS ON MEDICAL PHOTOGRAMMETRIC USAGE

    Directory of Open Access Journals (Sweden)

    S. Hosseinian

    2016-06-01

    Full Text Available Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  8. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  9. Hard-x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating

    International Nuclear Information System (INIS)

    Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-01-01

    We report on a hard-x-ray imaging microscope consisting of a lens, a sample, and a transmission grating. After the theoretical framework of self-imaging phenomenon by the grating in the system is presented, equations for the electric field on the image plane are derived for ideal and real lenses and an equation for the intensity on the image plane for partially coherent illumination is derived. The equations are simple and similar to those applying to a projection microscope consisting of a transmission grating except that there is no defocusing effect, regardless of whether the grating is in front of or behind the lens. This means that x-ray phase-imaging microscopy can be done without the defocusing effect. It is also shown that, by resolving the self-image on the image plane, high-sensitive x-ray phase-imaging microscopy can be attained without degradation in the spatial resolution due to diffraction by the grating. Experimental results obtained using partially coherent illumination from a synchrotron x-ray source confirm that hard-x-ray phase-imaging microscopy can be quantitatively performed with high sensitivity and without the spatial resolution degradation.

  10. Enhancement of dental x-ray images by two channel image processing

    International Nuclear Information System (INIS)

    Mitra, S.; Yu, T.H.

    1991-01-01

    In this paper, the authors develop a new algorithm for the enhancement of low-contrast details of dental X-ray images using a two channel structure. The algorithm first decomposes an input image in the frequency domain into two parts by filtering: one containing the low frequency components and the other containing the high frequency components. Then these parts are enhanced separately using a transform magnitude modifier. Finally a contrast enhanced image is formed by combining these two processed pats. The performance of the proposed algorithm is illustrated through enhancement of dental X-ray images. The algorithm can be easily implemented on a personal computer

  11. Suitable post processing algorithms for X-ray imaging using oversampled displaced multiple images

    International Nuclear Information System (INIS)

    Thim, J; Reza, S; Nawaz, K; Norlin, B; O'Nils, M; Oelmann, B

    2011-01-01

    X-ray imaging systems such as photon counting pixel detectors have a limited spatial resolution of the pixels, based on the complexity and processing technology of the readout electronics. For X-ray imaging situations where the features of interest are smaller than the imaging system pixel size, and the pixel size cannot be made smaller in the hardware, alternative means of resolution enhancement require to be considered. Oversampling with the usage of multiple displaced images, where the pixels of all images are mapped to a final resolution enhanced image, has proven a viable method of reaching a sub-pixel resolution exceeding the original resolution. The effectiveness of the oversampling method declines with the number of images taken, the sub-pixel resolution increases, but relative to a real reduction of imaging pixel sizes yielding a full resolution image, the perceived resolution from the sub-pixel oversampled image is lower. This is because the oversampling method introduces blurring noise into the mapped final images, and the blurring relative to full resolution images increases with the oversampling factor. One way of increasing the performance of the oversampling method is by sharpening the images in post processing. This paper focus on characterizing the performance increase of the oversampling method after the use of some suitable post processing filters, for digital X-ray images specifically. The results show that spatial domain filters and frequency domain filters of the same type yield indistinguishable results, which is to be expected. The results also show that the effectiveness of applying sharpening filters to oversampled multiple images increase with the number of images used (oversampling factor), leaving 60-80% of the original blurring noise after filtering a 6 x 6 mapped image (36 images taken), where the percentage is depending on the type of filter. This means that the effectiveness of the oversampling itself increase by using sharpening

  12. Arcsecond and Sub-arcsedond Imaging with X-ray Multi-Image Interferometer and Imager for (very) small sattelites

    Science.gov (United States)

    Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.

    2017-10-01

    The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.

  13. X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU

    Science.gov (United States)

    Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.

    2017-12-01

    We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical

  14. History of x-ray transients as seen by Vela, 1969-1979

    International Nuclear Information System (INIS)

    Terrell, J.; Priedhorsky, W.C.; Belian, R.D.; Conner, J.P.; Evans, W.D.

    1984-01-01

    Vela spacecraft 5A and 5B, launched into orbit in May 1969, were among the first to be capable of x-ray astronomy. The x-ray counters aboard Vela 5B operated for an unprecedented length of time, observing the entire x-ray sky for 10 years, until June 1979. These spacecraft, monitoring for nuclear tests in space with various detectors, were put into very high orbits at 118,000 km radius. Collimated NaI detectors, sensitive to 3-12 keV x-rays, scanned the sky at 90 0 to the earth-spacecraft axis over a 6.1 0 FWHM (full width at half-maximum) square field of view. Any given source, when in view, was scanned every 64 s as the spacecraft rotated, with 1-second count accumulations in two energy channels. The entire sky was observed every 56 hours, half of the orbital period. During the 10-year lifetime of the x-ray detectors, the Vela spacecraft provided data on many new types of sources. Cen X-4, an exceedingly bright x-ray transient, was observed in the summer of 1969, shortly after launch, and did not return to the x-ray sky until May 1979, when it was again observed by Vela 5B. This source also produced the first of many x-ray bursts detected by Vela, the bright, hard, precursor observed on 7 July 1969. The Vela gamma-ray detectors revealed the new phenomenon of gamma-ray bursts. It has recently been found that at least two gamma-ray bursts were also detected by the x-ray counters. 11 references

  15. X-ray volumetric imaging in image-guided radiotherapy: The new standard in on-treatment imaging

    International Nuclear Information System (INIS)

    McBain, Catherine A.; Henry, Ann M.; Sykes, Jonathan; Amer, Ali; Marchant, Tom; Moore, Christopher M.; Davies, Julie; Stratford, Julia; McCarthy, Claire; Porritt, Bridget; Williams, Peter; Khoo, Vincent S.; Price, Pat

    2006-01-01

    Purpose: X-ray volumetric imaging (XVI) for the first time allows for the on-treatment acquisition of three-dimensional (3D) kV cone beam computed tomography (CT) images. Clinical imaging using the Synergy System (Elekta, Crawley, UK) commenced in July 2003. This study evaluated image quality and dose delivered and assessed clinical utility for treatment verification at a range of anatomic sites. Methods and Materials: Single XVIs were acquired from 30 patients undergoing radiotherapy for tumors at 10 different anatomic sites. Patients were imaged in their setup position. Radiation doses received were measured using TLDs on the skin surface. The utility of XVI in verifying target volume coverage was qualitatively assessed by experienced clinicians. Results: X-ray volumetric imaging acquisition was completed in the treatment position at all anatomic sites. At sites where a full gantry rotation was not possible, XVIs were reconstructed from projection images acquired from partial rotations. Soft-tissue definition of organ boundaries allowed direct assessment of 3D target volume coverage at all sites. Individual image quality depended on both imaging parameters and patient characteristics. Radiation dose ranged from 0.003 Gy in the head to 0.03 Gy in the pelvis. Conclusions: On-treatment XVI provided 3D verification images with soft-tissue definition at all anatomic sites at acceptably low radiation doses. This technology sets a new standard in treatment verification and will facilitate novel adaptive radiotherapy techniques

  16. Design of MiSolFA Hard X-Ray Imager

    Science.gov (United States)

    Lastufka, Erica; Casadei, Diego

    2017-08-01

    Advances in the study of coronal electron-accelerating regions have so far been limited by the dynamic range of X-ray instruments. A quick and economical alternative to desirable focusing optics technology is stereo observation. The micro-satellite MiSolFA (Micro Solar-Flare Apparatus) is designed both as a stand-alone X-ray imaging spectrometer and a complement to the Spectrometer/Telescope for Imaging X-rays (STIX) mission. These instruments will be the first pair of cross-calibrated X-ray imaging spectrometers to look at solar flares from very different points of view. MiSolFA will achieve indirect imaging between 10 and 60 keV and provide spectroscopy up to 100 keV, equipped with grids producing moiré patterns in a similar way to STIX. New manufacturing techniques produce gold gratings on a graphite or silicon substrate, with periods ranging from 15 to 225 micrometers, separated by a distance of 15.47 cm, to achieve a spatial resolutions from 10" to 60" (as compared to RHESSI's separation of 150 cm and 1" resolution). We present the progress of the imager design, the performance of the first prototypes, and reach out to the community for further scientific objectives to consider in optimizing the final design.

  17. Real time 2 dimensional detector for charged particle and soft X-ray images

    International Nuclear Information System (INIS)

    Ishikawa, M.; Ito, M.; Endo, T.; Oba, K.

    1995-01-01

    The conventional instruments used in experiments for the soft X-ray region such as X-ray diffraction analysis are X-ray films or imaging plates. However, these instruments are not suitable for real time observation. In this paper, newly developed imaging devices will be presented, which have the capability to take X-ray images in real time with a high detection efficiency. Also, another capability, to take elementary particle tracking images, is described. (orig.)

  18. Calibrating the Regolith X-ray Imaging Spectrometer (REXIS)

    OpenAIRE

    McIntosh, Missy; Hong, Jaesub; Allen, Branden; Grindlay, Jonathan

    2014-01-01

    This paper describes the onboard calibration process of REXIS (the Regolith X-ray Imaging Spectrometer), an instrument on OSIRIS-REx. OSIRIS-REx, scheduled to be launched in 2016, is a planetary mission intending to return a regolith sample from a near Earth asteroid called Bennu. REXIS, a student-led collaboration between Harvard and MIT, is a soft X-ray (0.5-7.5 keV) coded-aperture telescope with four X-ray CCDs and a gold coated stainless steel mask. REXIS will measure the surface elementa...

  19. On the image formation in x-ray radiography using aligned carbon nanofibers

    International Nuclear Information System (INIS)

    Okuyama, F.

    2017-01-01

    Evidence is presented that field electrons emitted from vertically-aligned carbon nanofibers (CNFs) yield clearer x-ray images than do thermionic electrons, under the identical electron-optical condition. Specifically, the same sample, an LSI circuit, mounted on the same x-ray chamber could be imaged far more sharply with a CNF emitter than with a thermionic one. It is hypothesized that electrons discharged from CNF tips hit the target to form “discrete focal points” thereon, thereby generating multiple x-ray beams that interplay to form a brilliant, sharply-delineated x-ray image. This hypothesis may stimulate open discussion on how to define the “focal point” for the x-ray imaging using nano-structured electron sources. Also, the improved resolution attained with CNFs might indicate that the heat generation originating in electron-target interactions is not so serious in the present field-emission mode. - Highlights: • Field-emission (FE) x-ray radiography (XR) is based on nanotechnology. • FE-XR surpasses thermionic XR in image resolution and brilliance. • Highly-resolved FE-XR images are due possibly to a discrete array of x-ray spots. • This hypothesis stimulates open discussion on how to define the focal-point in FE-XR.

  20. On the image formation in x-ray radiography using aligned carbon nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, F., E-mail: okuya@mui.biglobe.ne.jp

    2017-04-11

    Evidence is presented that field electrons emitted from vertically-aligned carbon nanofibers (CNFs) yield clearer x-ray images than do thermionic electrons, under the identical electron-optical condition. Specifically, the same sample, an LSI circuit, mounted on the same x-ray chamber could be imaged far more sharply with a CNF emitter than with a thermionic one. It is hypothesized that electrons discharged from CNF tips hit the target to form “discrete focal points” thereon, thereby generating multiple x-ray beams that interplay to form a brilliant, sharply-delineated x-ray image. This hypothesis may stimulate open discussion on how to define the “focal point” for the x-ray imaging using nano-structured electron sources. Also, the improved resolution attained with CNFs might indicate that the heat generation originating in electron-target interactions is not so serious in the present field-emission mode. - Highlights: • Field-emission (FE) x-ray radiography (XR) is based on nanotechnology. • FE-XR surpasses thermionic XR in image resolution and brilliance. • Highly-resolved FE-XR images are due possibly to a discrete array of x-ray spots. • This hypothesis stimulates open discussion on how to define the focal-point in FE-XR.

  1. Submicron hard X-ray fluorescence imaging of synthetic elements.

    Science.gov (United States)

    Jensen, Mark P; Aryal, Baikuntha P; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E

    2012-04-13

    Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L(3) or L(2)-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope (242)Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm(2) cell is 1.4 fg Pu or 2.9×10(-20) moles Pu μm(-2), which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its L(α) X-ray emission. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  3. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  4. Image quality analysis of vibration effects In C-arm-flat panel X-ray imaging

    NARCIS (Netherlands)

    Snoeren, R.M.; Kroon, J.N.; With, de P.H.N.

    2011-01-01

    The motion of C-arm scanning X-ray systems may result in vibrations of the imaging sub-system. In this paper, we connect C-arm system vibrations to Image Quality (IQ) deterioration for 2D angiography and 3D cone beam X-ray imaging, using large Flat Panel detectors. Vibrations will affect the

  5. Ancient administrative handwritten documents: X-ray analysis and imaging

    International Nuclear Information System (INIS)

    Albertin, F.; Astolfo, A.; Stampanoni, M.; Peccenini, Eva; Hwu, Y.; Kaplan, F.; Margaritondo, G.

    2015-01-01

    The heavy-element content of ink in ancient administrative documents makes it possible to detect the characters with different synchrotron imaging techniques, based on attenuation or refraction. This is the first step in the direction of non-interactive virtual X-ray reading. Handwritten characters in administrative antique documents from three centuries have been detected using different synchrotron X-ray imaging techniques. Heavy elements in ancient inks, present even for everyday administrative manuscripts as shown by X-ray fluorescence spectra, produce attenuation contrast. In most cases the image quality is good enough for tomography reconstruction in view of future applications to virtual page-by-page ‘reading’. When attenuation is too low, differential phase contrast imaging can reveal the characters from refractive index effects. The results are potentially important for new information harvesting strategies, for example from the huge Archivio di Stato collection, objective of the Venice Time Machine project

  6. Ancient administrative handwritten documents: X-ray analysis and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Albertin, F., E-mail: fauzia.albertin@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Astolfo, A. [Paul Scherrer Institut (PSI), Villigen (Switzerland); Stampanoni, M. [Paul Scherrer Institut (PSI), Villigen (Switzerland); ETHZ, Zürich (Switzerland); Peccenini, Eva [University of Ferrara (Italy); Technopole of Ferrara (Italy); Hwu, Y. [Academia Sinica, Taipei, Taiwan (China); Kaplan, F. [Ecole Polytechnique Fédérale de Lausanne (EPFL) (Switzerland); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-01-30

    The heavy-element content of ink in ancient administrative documents makes it possible to detect the characters with different synchrotron imaging techniques, based on attenuation or refraction. This is the first step in the direction of non-interactive virtual X-ray reading. Handwritten characters in administrative antique documents from three centuries have been detected using different synchrotron X-ray imaging techniques. Heavy elements in ancient inks, present even for everyday administrative manuscripts as shown by X-ray fluorescence spectra, produce attenuation contrast. In most cases the image quality is good enough for tomography reconstruction in view of future applications to virtual page-by-page ‘reading’. When attenuation is too low, differential phase contrast imaging can reveal the characters from refractive index effects. The results are potentially important for new information harvesting strategies, for example from the huge Archivio di Stato collection, objective of the Venice Time Machine project.

  7. Pick up screens for x-ray image intensifier tubes employing evaporated activated scintillator layer

    International Nuclear Information System (INIS)

    Spicer, W.E.

    1976-01-01

    The present invention relates in general to methods for making pick-up screens for x-ray image intensifier tubes and, more particularly, to an improved method wherein the x-ray fluorescent phosphor screen element is formed by evaporation of an alkali metal halide material in vacuum and condensing the evaporated material on an x-ray transparent portion of the x-ray intensifier tube, whereby a curved x-ray image pick-up screen is formed which has improved quantum efficiency and resolution. Such improved x-ray image intensifier tubes are especially useful for, but not limited in use to x-ray systems and for intensifying gamma ray images obtained in applications of nuclear medicine. 7 claims, 5 drawing figures

  8. The Wide Field Imager of the International X-ray Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Stefanescu, A., E-mail: astefan@hll.mpg.d [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Johannes Gutenberg-Universitaet, Inst. f. anorganische und analytische Chemie, 55099 Mainz (Germany); Bautz, M.W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Burrows, D.N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bombelli, L.; Fiorini, C. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano (Italy); INFN Sezione di Milano, Milano (Italy); Fraser, G. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Heinzinger, K. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Herrmann, S. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Kuster, M. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstr. 9, 64289 Darmstadt (Germany); Lauf, T. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Lechner, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Lutz, G. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Majewski, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Meuris, A. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Murray, S.S. [Harvard/Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2010-12-11

    The International X-ray Observatory (IXO) will be a joint X-ray observatory mission by ESA, NASA and JAXA. It will have a large effective area (3 m{sup 2} at 1.25 keV) grazing incidence mirror system with good angular resolution (5 arcsec at 0.1-10 keV) and will feature a comprehensive suite of scientific instruments: an X-ray Microcalorimeter Spectrometer, a High Time Resolution Spectrometer, an X-ray Polarimeter, an X-ray Grating Spectrometer, a Hard X-ray Imager and a Wide-Field Imager. The Wide Field Imager (WFI) has a field-of-view of 18 ftx18 ft. It will be sensitive between 0.1 and 15 keV, offer the full angular resolution of the mirrors and good energy resolution. The WFI will be implemented as a 6 in. wafer-scale monolithical array of 1024x1024 pixels of 100x100{mu}m{sup 2} size. The DEpleted P-channel Field-Effect Transistors (DEPFET) forming the individual pixels are devices combining the functionalities of both detector and amplifier. Signal electrons are collected in a potential well below the transistor's gate, modulating the transistor current. Even when the device is powered off, the signal charge is collected and kept in the potential well below the gate until it is explicitly cleared. This makes flexible and fast readout modes possible.

  9. Development of multi-color scintillator based X-ray image intensifier

    International Nuclear Information System (INIS)

    Nittoh, Koichi; Konagai, Chikara; Noji, Takashi

    2004-01-01

    A multi-color scintillator based high-sensitive, wide dynamic range and long-life X-ray image intensifier has been developed. An europium activated Y 2 O 2 S scintillator, emitting red, green and blue photons of different intensities, is utilized as the output fluorescent screen of the intensifier. By combining this image intensifier with a suitably tuned high sensitive color CCD camera, it is possible for a sensitivity of the red color component to become six times higher than that of the conventional image intensifier. Simultaneous emission of a moderate green color and a weak blue color covers different sensitivity regions. This widens the dynamic range, by nearly two orders of ten. With this image intensifier, it is possible to image simultaneously complex objects containing various different X-ray transmission from paper, water or plastic to heavy metals. This high sensitivity intensifier, operated at lower X-ray exposure, causes less degradation of scintillator materials and less colorization of output screen glass, and thus helps achieve a longer lifetime. This color scintillator based image intensifier is being introduced for X-ray inspection in various fields

  10. Optimization of X-ray phase-contrast imaging based on in-line holography

    International Nuclear Information System (INIS)

    Wu Xizeng; Liu Hong; Yan Aimin

    2005-01-01

    This paper introduces a newly conceived formalism for clinical in-line phase-contrast X-ray imaging. The new formalism applies not only to ideal 'thin' objects analyzed in previous studies, but also applies to the real-world tissues used in actual clinical practice. Moreover we have identified the four clinically important factors that affect phase-contrast characteristics. These factors are: (1) body part attenuation (2) the spatial coherence of incident X-rays from an X-ray tube (3) the polychromatic nature of the X-ray source and (4) radiation dose to patients for clinical applications. Techniques of phase image-reconstruction based on the new X-ray in-line holography theory are discussed. Numerical simulations are described which were used to validate the theory. The design parameters of an optimal clinical phase-contrast mammographic imaging system which were determined based on the new theory, and validated in the simulations, are presented. The theory, image reconstruction algorithms, and numerical simulation techniques presented in this paper can be applied widely to clinical diagnostic X-ray imaging applications

  11. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  12. 3D elemental sensitive imaging using transmission X-ray microscopy.

    Science.gov (United States)

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.

  13. X-ray image intensifier/television systems for digital skeletal radiography

    International Nuclear Information System (INIS)

    Rowlands, J.A.; Hynes, D.M.; Edmonds, E.W.; Porter, A.J.; Toth, B.J.

    1987-01-01

    The imaging criteria for skeletal radiography (high resolution and low noise) relevant to the use of x-ray image intensifier/TV digital systems are discussed. It is shown from the modulation transfer function (MTF), noise, and phantom evaluations that conventional x-ray image intensifiers in conjunction with a 1,000-line Plumbicon or Saticon TV camera are in most respects suitable for skeletal radiography. The optimum focal spot size depends on a trade-off with motion blurring through the x-ray exposure time and so is a function of the clinical problem. Since the skeletal system is readily immobilized, a 0.3-mm focal spot size is nearly optimum

  14. Phase-contrast x-ray computed tomography for biological imaging

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1997-10-01

    We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.

  15. Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.

    Science.gov (United States)

    Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V

    2010-10-01

    The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.

  16. Soft x-ray imaging by a commercial solid-state television camera

    International Nuclear Information System (INIS)

    Matsushima, I.; Koyama, K.; Tanimoto, M.; Yano, M.

    1987-01-01

    A commerical, solid-state television camera has been used to record images of soft x radiation (0.8--12 keV). The performance of the camera is theoretically analyzed and experimentally evaluated compared with an x-ray photographic film (Kodak direct exposure film). In the application, the camera has been used to provide image patterns of x rays from laser-produced plasmas. It is demonstrated that the camera has several advantages over x-ray photographic film

  17. Deepest Wide-Field Colour Image in the Southern Sky

    Science.gov (United States)

    2003-01-01

    LA SILLA CAMERA OBSERVES CHANDRA DEEP FIELD SOUTH ESO PR Photo 02a/03 ESO PR Photo 02a/03 [Preview - JPEG: 400 x 437 pix - 95k] [Normal - JPEG: 800 x 873 pix - 904k] [HiRes - JPEG: 4000 x 4366 pix - 23.1M] Caption : PR Photo 02a/03 shows a three-colour composite image of the Chandra Deep Field South (CDF-S) , obtained with the Wide Field Imager (WFI) camera on the 2.2-m MPG/ESO telescope at the ESO La Silla Observatory (Chile). It was produced by the combination of about 450 images with a total exposure time of nearly 50 hours. The field measures 36 x 34 arcmin 2 ; North is up and East is left. Technical information is available below. The combined efforts of three European teams of astronomers, targeting the same sky field in the southern constellation Fornax (The Oven) have enabled them to construct a very deep, true-colour image - opening an exceptionally clear view towards the distant universe . The image ( PR Photo 02a/03 ) covers an area somewhat larger than the full moon. It displays more than 100,000 galaxies, several thousand stars and hundreds of quasars. It is based on images with a total exposure time of nearly 50 hours, collected under good observing conditions with the Wide Field Imager (WFI) on the MPG/ESO 2.2m telescope at the ESO La Silla Observatory (Chile) - many of them extracted from the ESO Science Data Archive . The position of this southern sky field was chosen by Riccardo Giacconi (Nobel Laureate in Physics 2002) at a time when he was Director General of ESO, together with Piero Rosati (ESO). It was selected as a sky region towards which the NASA Chandra X-ray satellite observatory , launched in July 1999, would be pointed while carrying out a very long exposure (lasting a total of 1 million seconds, or 278 hours) in order to detect the faintest possible X-ray sources. The field is now known as the Chandra Deep Field South (CDF-S) . The new WFI photo of CDF-S does not reach quite as deep as the available images of the "Hubble Deep Fields

  18. Monte Carlo Investigation of Phosphor Screens for X-ray Imaging

    International Nuclear Information System (INIS)

    Lim, Chang Hwy; Cheong, Min Ho; Cho, Min Kook; Shon, Choel Soon; Kim, Ho Kyung

    2006-01-01

    In order to detect X rays with pixel detectors, there are two technical methods; a direct detection using photoconductive material that permits the conversion of the incident X rays into the signal charges, and an indirect detection using scintillation material that converts the incident X rays into the optical photons. Therefore, two-dimensional (2D) photosensitive pixel array is necessary for the indirect-detection scheme. Terbium-doped gadolinium oxysulfide (Gd 2 O 2 S:Tb) phosphor screen is the most popular X-ray converter, and often employed to the digital radiographic system owing to its well-known technology and easy handling in size, thickness, and flexibility. Furthermore, the cost is effective. In cascaded imaging chains of the indirect-detection system, the phosphor screen is served as the first stage. Since the image signal-to-noise ratio (SNR) is irreversible through the cascaded system, the phosphor screen is largely responsible for the eventual image quality. For the various radiation qualities suggested by IEC (International Electrotechnical Commission, Report 1267), we have investigated important physical quantities of Gd 2 O 2 S:Tb screen with a wide range of coverages (34 . 135 mg/cm 2 ) by using Monte Carlo calculations. The results will be useful for the optimal design of digital X-ray imaging systems

  19. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    Science.gov (United States)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Gburek, S.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Schwartz, R.; Steslicki, M.; Turin, P.; Ryan, D.; Warmuth, A.; Veronig, A.; Vilmer, N.; White, S. M.; Woods, T. N.

    2017-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a Small Explorer (SMEX) Heliophysics mission that is currently undergoing a Phase A concept study. FOXSI will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis-stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of a pair of x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This mission concept is made possible by past experience with similar instruments on two FOXSI sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI's hard X-ray imager has a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 up to 50-70 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  20. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X-ray

  1. Registration of SPECT, PET and/or X-ray CT images in patients with lung cancer

    International Nuclear Information System (INIS)

    Uemura, K.; Toyama, H.; Miyamoto, T.; Yoshikawa, K.; Mori, Y.

    2002-01-01

    found to be possible to evaluate the therapeutic gain of heavy particle therapy sequentially by using the same ROI. Conclusion: This method is useful for evaluating the therapeutic gain of heavy particle therapy performed on patients with lung cancer quantitatively and sequentially. Registration of chest SPECT, PET and/or X-ray CT images by using AMIR method got good result for all of the registrations

  2. Spatial power-spectra from Yohkoh soft X-ray images

    Science.gov (United States)

    Martens, Petrus C. H.; Gomez, Daniel O.

    1992-01-01

    We analyze three sequences of images from active regions, and a full disk image obtained by Yohkoh's Soft X-ray Telescope. Two sequences are from a region at center disk observed through different filters, and one sequence is from the limb. After Fourier-transforming the X-ray intensity of the images we find nearly isotropic power-spectra with an azimuthally integrated slope of -2.1 for the center disk, and -2.8 for the limb images. The full-disk picture yields a spectrum of -2.4. These results are different from the active region spectra obtained with the Normal Incidence X-ray Telescope which have a slope of the order of -3.0, and we ascribe this to the difference in temperature response between the instruments. However, both the SXT and NIXT results are consistent with coronal heating as the end result of a downward quasistatic cascade (in lengthscales) of free magnetic energy in the corona, driven by footpoint motions in the photosphere.

  3. Performance limitations of imaging microscopes for soft x-ray applications

    International Nuclear Information System (INIS)

    Lewotsky, K.L.; Kotha, A.; Harvey, J.E.

    1993-01-01

    Recent advances in the fabrication of nanometer-scale multilayer structures have yielded high-reflectance mirrors operating at near-normal incidence for soft X-ray wavelengths. These developments have stimulated renewed interest in high-resolution soft X-ray microscopy. The design of a Schwarzschild imaging microscope for soft X-ray applications has been reported by Hoover and Shealy. Based upon a geometrical ray-trace analysis of the residual design errors, diffraction-limited performance at a wavelength of 100 angstrom was predicted over an object size (diameter) of 0.4 mm. In this paper the authors expand upon the previous analysis of the Schwarzschild X-ray microscope design by determining the total image degradation due to diffraction, geometrical aberrations, alignment errors, and realistic assumptions concerning optical fabrication errors. NASA's Optical Surface Analysis Code (OSAC) is used to model the image degradation effects of residual surface irregularities over the entire range of relevant spatial frequencies. This includes small angle scattering effects due to mid spatial frequency surface errors falling between the traditional figure and finish specifications. Performance predictions are presented parametrically to provide some insight into the optical fabrication and alignment tolerances necessary to meet a particular image quality requirement

  4. On the limitations and optimisation of high-resolution 3D medical X-ray imaging systems

    International Nuclear Information System (INIS)

    Zhou Shuang; Brahme, Anders

    2011-01-01

    Based on a quantitative analysis of both attenuation and refractive properties of X-ray propagation in human body tissues and the introduction of a mathematical model for image quality analysis, some limitations and optimisation of high-resolution three-dimensional (3D) medical X-ray imaging techniques are studied. A comparison is made of conventional attenuation-based X-ray imaging methods with the phase-contrast X-ray imaging modalities that have been developed recently. The results indicate that it is theoretically possible through optimal design of the X-ray imaging system to achieve high spatial resolution (<100 μm) in 3D medical X-ray imaging of the human body at a clinically acceptable dose level (<10 mGy) by introducing a phase-contrast X-ray imaging technique.

  5. X-ray transients as seen by Vela, 1969-1979

    International Nuclear Information System (INIS)

    Terrell, J.; Priedhorsky, W.C.; Belian, R.D.; Conner, J.P.; Evans, W.D.

    1982-01-01

    Vela spacecraft 5A and 5B were launched into orbit in May 1969, to monitor for nuclear tests in space. These spacecraft were among the first to be capable of x-ray astronomy. One of these, Vela 5B, monitored the entire x-ray sky for the unprecedented period of 10 years, from May 1969 to June 1979. Over the last several years the data produced have been re-analyzed to produce a series of skymaps. These have now been made into a movie, in color, showing the changes in the x-ray sky over the period 1969-1976

  6. Soft X-ray imaging techniques for calculating the Earth's dayside boundaries

    Science.gov (United States)

    Connor, Hyunju; Kuntz, Kip; Sibeck, David; Collier, Michael; Aryan, Homayon; Branduardi-Raymont, Graziella; Collado-Vega, Yaireska; Porter, Frederick; Purucker, Michael; Snowden, Steven; Raeder, Joachim; Thomas, Nicholas; Walsh, Brian

    2016-04-01

    Charged particles and neutral atoms exchange electrons in many space plasma venues. Soft X-rays are emitted when highly charged solar wind ions, such as C6+. O7+, and Fe13+, interact with Hydrogen and Helium atoms. Soft X-ray images can be a powerful technique to remotely probe the plasma and neutral density structures created when the solar wind interacts with planetary exospheres, such as those at the Earth, Moon, Mars, Venus, and comets. The recently selected ESA-China joint spacecraft mission, "Solar wind - Magnetosphere - Ionosphere Link Explorer (SMILE)" will have a soft X-ray imager on board and provide pictures of the Earth's dayside system after its launch in 2021. In preparation for this future mission, we simulate soft X-ray images of the Earth's dayside system, using the OpenGGCM global magnetosphere MHD model and the Hodges model of the Earth's exosphere. Then, we discuss techniques to determine the location of the Earth's dayside boundaries (bow shock and magnetopause) from the soft X-ray images.

  7. High resolution x-ray lensless imaging by differential holographic encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  8. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  9. K-edge subtraction synchrotron X-ray imaging in bio-medical research.

    Science.gov (United States)

    Thomlinson, W; Elleaume, H; Porra, L; Suortti, P

    2018-05-01

    High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Weather and atmosphere observation with the ATOM all-sky camera

    Directory of Open Access Journals (Sweden)

    Jankowsky Felix

    2015-01-01

    Full Text Available The Automatic Telescope for Optical Monitoring (ATOM for H.E.S.S. is an 75 cm optical telescope which operates fully automated. As there is no observer present during observation, an auxiliary all-sky camera serves as weather monitoring system. This device takes an all-sky image of the whole sky every three minutes. The gathered data then undergoes live-analysis by performing astrometric comparison with a theoretical night sky model, interpreting the absence of stars as cloud coverage. The sky monitor also serves as tool for a meteorological analysis of the observation site of the the upcoming Cherenkov Telescope Array. This overview covers design and benefits of the all-sky camera and additionally gives an introduction into current efforts to integrate the device into the atmosphere analysis programme of H.E.S.S.

  11. Evaluating fracture healing using digital x-ray image analysis

    African Journals Online (AJOL)

    2011-03-02

    Mar 2, 2011 ... with intensive imaging and modelling.6 dual energy X-ray ... techniques due to their high-quality digital output in ... the bone in the loaded X-ray is at an angular offset due to .... The research described in this article was carried ...

  12. A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.

    Science.gov (United States)

    Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu

    2015-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup.

  13. X-ray imaging characterization of active edge silicon pixel sensors

    International Nuclear Information System (INIS)

    Ponchut, C; Ruat, M; Kalliopuska, J

    2014-01-01

    The aim of this work was the experimental characterization of edge effects in active-edge silicon pixel sensors, in the frame of X-ray pixel detectors developments for synchrotron experiments. We produced a set of active edge pixel sensors with 300 to 500 μm thickness, edge widths ranging from 100 μm to 150 μm, and n or p pixel contact types. The sensors with 256 × 256 pixels and 55 × 55 μm 2 pixel pitch were then bump-bonded to Timepix readout chips for X-ray imaging measurements. The reduced edge widths makes the edge pixels more sensitive to the electrical field distribution at the sensor boundaries. We characterized this effect by mapping the spatial response of the sensor edges with a finely focused X-ray synchrotron beam. One of the samples showed a distortion-free response on all four edges, whereas others showed variable degrees of distortions extending at maximum to 300 micron from the sensor edge. An application of active edge pixel sensors to coherent diffraction imaging with synchrotron beams is described

  14. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    Science.gov (United States)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  15. X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image

    International Nuclear Information System (INIS)

    Davis, G.R.; London Univ.; Elliott, J.C.; London Univ.

    1997-01-01

    Most X-ray microtomography scanners work on the same principle as third-generation medical CT scanners, that is, the same point in each projection is measured by the same detector element. This leads to ring artefacts in the reconstructed image if the X-ray sensitivities of the individual detector elements, after any analytical correction, are not all identical. We have developed an X-ray microtomography scanner which uses the time-delay integration method of imaging with a CCD detector to average the characteristics of all the detector elements in each linear projection together. This has the added advantage of allowing specimens which are larger than the detector and X-ray field to be scanned. The device also uses a novel mechanical stage to ''average out'' inhomogeneities in the X-ray field. The results show that ring artefacts in microtomographic images are eliminated using this technique. (orig.)

  16. Trends in NOAA Solar X-ray Imager Performance

    Science.gov (United States)

    Hill, Steven M.; Darnell, John A.; Seaton, Daniel B.

    2016-05-01

    NOAA has provided operational soft X-ray imaging of the sun since the early 2000’s. After 15 years of observations by four different telescopes, it is appropriate to examine the data in terms of providing consistent context for scientific missions. In particular, this presentation examines over 7 million GOES Solar X-ray Imager (SXI) images for trends in performance parameters including dark current, response degradation, and inter-calibration. Because observations from the instrument have overlapped not only with each other, but also with research observations like Yohkoh SXT and Hinode XRT, relative performance comparisons can be made. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh’s SXT and Hinode’s XRT, the SUVI instruments will be similar to SOHO’s EIT and SDO’s AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. While NOAA’s principal use of these observations is real-time space weather forecasting, they will continue to provide a reliable context measurement for researchers for decades to come.

  17. Application of Image Texture Analysis for Evaluation of X-Ray Images of Fungal-Infected Maize Kernels

    DEFF Research Database (Denmark)

    Orina, Irene; Manley, Marena; Kucheryavskiy, Sergey V.

    2018-01-01

    The feasibility of image texture analysis to evaluate X-ray images of fungal-infected maize kernels was investigated. X-ray images of maize kernels infected with Fusarium verticillioides and control kernels were acquired using high-resolution X-ray micro-computed tomography. After image acquisition...... developed using partial least squares discriminant analysis (PLS-DA), and accuracies of 67 and 73% were achieved using first-order statistical features and GLCM extracted features, respectively. This work provides information on the possible application of image texture as method for analysing X-ray images......., homogeneity and contrast) were extracted from the side, front and top views of each kernel and used as inputs for principal component analysis (PCA). The first-order statistical image features gave a better separation of the control from infected kernels on day 8 post-inoculation. Classification models were...

  18. Soft X-ray Foucault test: A path to diffraction-limited imaging

    Science.gov (United States)

    Ray-Chaudhuri, A. K.; Ng, W.; Liang, S.; Cerrina, F.

    1994-08-01

    We present the development of a soft X-ray Foucault test capable of characterizing the imaging properties of a soft X-ray optical system at its operational wavelength and its operational configuration. This optical test enables direct visual inspection of imaging aberrations and provides real-time feedback for the alignment of high resolution soft X-ray optical systems. A first application of this optical test was carried out on a Mo-Si multilayer-coated Schwarzschild objective as part of the MAXIMUM project. Results from the alignment procedure are presented as well as the possibility for testing in the hard X-ray regime.

  19. X-ray beam splitting design for concurrent imaging at hard X-ray FELs and synchrotron facilities

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Mokso, R.

    2013-01-01

    Roč. 729, NOV (2013), s. 85-89 ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffractive-refractive optics * hard X-ray FEL * X-ray imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013 http://www.sciencedirect.com/science/article/pii/S0168900213009613

  20. Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage

    Science.gov (United States)

    Huda, Walter; Ogden, Kent M.

    2004-05-01

    The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults

  1. Development of X-ray radiography examination technology by image processing method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Duck Kee; Koo, Dae Seo; Kim, Eun Ka [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    Because the dimension of nuclear fuel rods was measured with rapidity and accuracy by X-ray radiography examination, the set-up of image processing system which was composed of 979 CCD-L camera, image processing card and fluorescent lighting was carried out, and the image processing system enabled image processing to perform. The examination technology of X-ray radiography, which enabled dimension measurement of nuclear fuel rods to perform, was developed by image processing method. The result of dimension measurement of standard fuel rod by image processing method was 2% reduction in relative measuring error than that of X-ray radiography film, while the former was better by 100 {approx} 200 {mu}m in measuring accuracy than the latter. (author). 9 refs., 22 figs., 3 tabs.

  2. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  3. CMOS-sensors for energy-resolved X-ray imaging

    International Nuclear Information System (INIS)

    Doering, D.; Amar-Youcef, S.; Deveaux, M.; Linnik, B.; Müntz, C.; Stroth, Joachim; Baudot, J.; Dulinski, W.; Kachel, M.

    2016-01-01

    Due to their low noise, CMOS Monolithic Active Pixel Sensors are suited to sense X-rays with a few keV quantum energy, which is of interest for high resolution X-ray imaging. Moreover, the good energy resolution of the silicon sensors might be used to measure this quantum energy. Combining both features with the good spatial resolution of CMOS sensors opens the potential to build ''color sensitive' X-ray cameras. Taking such colored images is hampered by the need to operate the CMOS sensors in a single photon counting mode, which restricts the photon flux capability of the sensors. More importantly, the charge sharing between the pixels smears the potentially good energy resolution of the sensors. Based on our experience with CMOS sensors for charged particle tracking, we studied techniques to overcome the latter by means of an offline processing of the data obtained from a CMOS sensor prototype. We found that the energy resolution of the pixels can be recovered at the expense of reduced quantum efficiency. We will introduce the results of our study and discuss the feasibility of taking colored X-ray pictures with CMOS sensors

  4. Sky Detection in Hazy Image.

    Science.gov (United States)

    Song, Yingchao; Luo, Haibo; Ma, Junkai; Hui, Bin; Chang, Zheng

    2018-04-01

    Sky detection plays an essential role in various computer vision applications. Most existing sky detection approaches, being trained on ideal dataset, may lose efficacy when facing unfavorable conditions like the effects of weather and lighting conditions. In this paper, a novel algorithm for sky detection in hazy images is proposed from the perspective of probing the density of haze. We address the problem by an image segmentation and a region-level classification. To characterize the sky of hazy scenes, we unprecedentedly introduce several haze-relevant features that reflect the perceptual hazy density and the scene depth. Based on these features, the sky is separated by two imbalance SVM classifiers and a similarity measurement. Moreover, a sky dataset (named HazySky) with 500 annotated hazy images is built for model training and performance evaluation. To evaluate the performance of our method, we conducted extensive experiments both on our HazySky dataset and the SkyFinder dataset. The results demonstrate that our method performs better on the detection accuracy than previous methods, not only under hazy scenes, but also under other weather conditions.

  5. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    Science.gov (United States)

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  6. The Hard X-ray Sky: Recent Observational Progress

    International Nuclear Information System (INIS)

    Gehrels, Neil; Cannizzo, John K.

    2009-01-01

    The last fifty years have witnessed the birth, development, and maturation to full potential of hard X-ray astrophysics. The primary force driving the history of the field has been the development of space-based instrumentation optimized for getting the maximum science out of observations of high-energy photons from astrophysical sources. Hard X-ray telescopes are leading research in areas such as galactic diffuse emission, galactic transients, and active galactic nuclei.

  7. Guidelines on best practice in the X-ray imaging of children. A manual for all X-ray departments

    International Nuclear Information System (INIS)

    Cook, J.; Pettett, A.; Shah, K.

    1998-01-01

    When we were first asked to participate in a CEC project looking at best practice in paediatric radiology, we did not appreciate how much our own practice could be improved. The department already had high standards of radiography. However, despite our initial reservations we found that by reassessing all our practices, including choice of screen/film systems, use of filters, grids and exposure factors we were able to standardise our techniques and reduce our doses in many areas by over 50%, while still maintaining diagnostic quality. The published European Guidelines on Quality Criteria for Diagnostic Radiographic Images in Paediatrics (1996) was our initiative. They provide a combination of positioning and visibility criteria. Radiographs which do not meet these criteria are not thought to be diagnostic and alternatively aesthetically high quality radiographs which exceed these criteria are not deemed necessary. The reference dose levels in the European Guidelines are those above which corrective action should be taken. The dose measurements in our guidelines are much lower and represent what is achievable with the available equipment at QMHC, while still meeting the European Quality Criteria. A new age of Digital radiography is replacing conventional radiography. However, as digital techniques can mask high doses, careful observation of quality criteria and recommended technique is even more important to obtain the most benefit from these technical advances. Despite the time consuming nature of the initial study the whole department has benefited and we encourage all those involved in the X-ray imaging of children to consider re-evaluating their own practices using these guidelines as a reference for comparison. We recognise that all the recommendations given are entirely dependent on the range of equipment available and pathology expected but can be modified to meet individual departmental needs. If practices/ techniques; diagnostic quality of radiographs or

  8. X-ray and gamma-ray transmission computed tomographic imaging of archaeological objects

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Susan Maria Sipaun

    2004-01-01

    X-ray or gamma-ray transmission computed tomography (CT) is a powerful non-destructive evaluation (NDE) technique that produces two-dimensional cross-section images of an object without the need to physically section it. CT is also known by the acronym CAT, for computerised axial tomography or computed-aided tomography. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper presents a brief overview of X-ray or gamma-ray transmission tomography. It is not intended to be a technical treatise but is hoped that it would raise awareness and promote opportunities for further collaboration amongst the nuclear research community, including archaeologists and those in the conservation profession. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. In addition, a few examples of CT images for archaeological objects are presented. The examples were purposely chosen to illustrate clearly and precisely the fundamental concepts of this sophisticated field. (Author)

  9. NASA Unveils First Images From Chandra X-Ray Observatory

    Science.gov (United States)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  10. Fast Fiber-Coupled Imaging of X-rays Events, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — HyperV Technologies Corp. proposes to construct a long-record-length, fiber-coupled, fast imaging diagnostic for recording X-ray back-lit material flows and X-ray...

  11. Polarized X-ray excitation for scatter reduction in X-ray fluorescence computed tomography.

    Science.gov (United States)

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    reconstruction showed that for a scatter magnitude decrease by a factor of 2.4, the molecular sensitivity could almost be doubled. Scatter reduction lowers the amount of noise in the projection datasets and reconstructed images which enhances molecular sensitivity at equal dose. The results support the use of linear polarized X-rays to reduce scatter in XFCT imaging. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Image fusion in x-ray differential phase-contrast imaging

    Science.gov (United States)

    Haas, W.; Polyanskaya, M.; Bayer, F.; Gödel, K.; Hofmann, H.; Rieger, J.; Ritter, A.; Weber, T.; Wucherer, L.; Durst, J.; Michel, T.; Anton, G.; Hornegger, J.

    2012-02-01

    Phase-contrast imaging is a novel modality in the field of medical X-ray imaging. The pioneer method is the grating-based interferometry which has no special requirements to the X-ray source and object size. Furthermore, it provides three different types of information of an investigated object simultaneously - absorption, differential phase-contrast and dark-field images. Differential phase-contrast and dark-field images represent a completely new information which has not yet been investigated and studied in context of medical imaging. In order to introduce phase-contrast imaging as a new modality into medical environment the resulting information about the object has to be correctly interpreted. The three output images reflect different properties of the same object the main challenge is to combine and visualize these data in such a way that it diminish the information explosion and reduce the complexity of its interpretation. This paper presents an intuitive image fusion approach which allows to operate with grating-based phase-contrast images. It combines information of the three different images and provides a single image. The approach is implemented in a fusion framework which is aimed to support physicians in study and analysis. The framework provides the user with an intuitive graphical user interface allowing to control the fusion process. The example given in this work shows the functionality of the proposed method and the great potential of phase-contrast imaging in medical practice.

  13. Frameless image registration of X-ray CT and SPECT by volume matching

    International Nuclear Information System (INIS)

    Tanaka, Yuko; Kihara, Tomohiko; Yui, Nobuharu; Kinoshita, Fujimi; Kamimura, Yoshitsugu; Yamada, Yoshifumi.

    1998-01-01

    Image registration of functional (SPECT) and morphological (X-ray CT/MRI) images is studied in order to improve the accuracy and the quantity of the image diagnosis. We have developed a new frameless registration method of X-ray CT and SPECT image using transmission CT image acquired for absorption correction of SPECT images. This is the automated registration method and calculates the transformation matrix between the two coordinate systems of image data by the optimization method. This registration method is based on the similar physical property of X-ray CT and transmission CT image. The three-dimensional overlap of the bone region is used for image matching. We verified by a phantom test that it can provide a good result of within two millimeters error. We also evaluated visually the accuracy of the registration method by the application study of SPECT, X-ray CT, and transmission CT head images. This method can be carried out accurately without any frames. We expect this registration method becomes an efficient tool to improve image diagnosis and medical treatment. (author)

  14. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    International Nuclear Information System (INIS)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-01-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm. - Highlights: • We investigated a small plasma focus as pulsed x-ray source for radiography applications. • The image quality was studied by several parameters such as image contrast, LSF and MTF. • The x-ray source focal spot was obtained to be ∼0.6 mm using the penumbra imaging method. • The x-ray dose measurement showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. • The profiles of LSF and MTF showed that the cut-off frequency is about 1.5 cycles/mm

  15. The Growth of Interest in Astronomical X-Ray Polarimetry

    Directory of Open Access Journals (Sweden)

    Frédéric Marin

    2018-03-01

    Full Text Available Astronomical X-ray polarimetry was first explored in the end of the 1960s by pioneering rocket instruments. The craze arising from the first discoveries of stellar and supernova remnant X-ray polarization led to the addition of X-ray polarimeters to early satellites. Unfortunately, the inadequacy of the diffraction and scattering technologies required to measure polarization with respect to the constraints driven by X-ray mirrors and detectors, coupled with long integration times, slowed down the field for almost 40 years. Thanks to the development of new, highly sensitive, compact X-ray polarimeters in the beginning of the 2000s, observing astronomical X-ray polarization has become feasible, and scientists are now ready to explore our high-energy sky thanks to modern X-ray polarimeters. In the forthcoming years, several X-ray missions (rockets, balloons, and satellites will create new observational opportunities. Interest in astronomical X-ray polarimetry field has thus been renewed, and this paper presents for the first time a quantitative assessment, all based on scientific literature, of the growth of this interest.

  16. X-ray fluorescence holography and multiple-energy x-ray holography: A critical comparison of atomic images

    International Nuclear Information System (INIS)

    Len, P.M.; Gog, T.; Fadley, C.S.; Materlik, G.

    1997-01-01

    We compare x-ray fluorescence holography (XFH) and multiple-energy x-ray holography (MEXH), two techniques that have recently been used to obtain experimental three-dimensional atomic images. For single-energy holograms, these methods are equivalent by virtue of the optical reciprocity theorem. However, XFH can only record holographic information at the characteristic fluorescence energies of the emitting species, while MEXH can record holographic information at any energy above the fluorescent edge of the emitter, thus enabling the suppression of real-twin overlaps and other aberrations and artifacts in atomic images. copyright 1997 The American Physical Society

  17. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  18. Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management

    Science.gov (United States)

    Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony; hide

    2018-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.

  19. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  20. Dual-energy x-ray image decomposition by independent component analysis

    Science.gov (United States)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  1. Image quality of medical X-ray systems

    International Nuclear Information System (INIS)

    Hoen, P.J. 't.

    1980-01-01

    The quality of images made by medical X-ray systems can only be properly described if the visual system is also taken into account. In this thesis, the visual threshold contrast of edges, bars and disks has been chosen as the criterion. Since these objects resemble medical objects like tumour-mass outlines, blood vessels and micro-calcifications, a correlation with X-ray practice is possible. Only the conventional X-ray systems are considered, but a brief analysis of computerized tomography is given. Considerable attention is paid to unsharpness and the minimization of its influence on the threshold contrast, to the influence of the noise on the threshold contrast, and to the contrast formation as such. The consequences for the dose administered to the patient are also briefly analysed. (Auth.)

  2. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    International Nuclear Information System (INIS)

    Lafford, T A; Villanova, J; Plassat, N; Dubois, S; Camel, D

    2013-01-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  3. New developments in simulating X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Peterzol, A.; Berthier, J.; Duvauchelle, P.; Babot, D.; Ferrero, C.

    2007-01-01

    A deterministic algorithm simulating phase contrast (PC) x-ray images for complex 3- dimensional (3D) objects is presented. This algorithm has been implemented in a simulation code named VXI (Virtual X-ray Imaging). The physical model chosen to account for PC technique is based on the Fresnel-Kirchhoff diffraction theory. The algorithm consists mainly of two parts. The first one exploits the VXI ray-tracing approach to compute the object transmission function. The second part simulates the PC image due to the wave front distortion introduced by the sample. In the first part, the use of computer-aided drawing (CAD) models enables simulations to be carried out with complex 3D objects. Differently from the VXI original version, which makes use of an object description via triangular facets, the new code requires a more 'sophisticated' object representation based on Non-Uniform Rational B-Splines (NURBS). As a first step we produce a spatial high resolution image by using a point and monochromatic source and an ideal detector. To simulate the polychromatic case, the intensity image is integrated over the considered x-ray energy spectrum. Then, in order to account for the system spatial resolution properties, the high spatial resolution image (mono or polychromatic) is convolved with the total point spread function of the imaging system under consideration. The results supplied by the presented algorithm are examined with the help of some relevant examples. (authors)

  4. X-ray framing cameras for > 5 keV imaging

    International Nuclear Information System (INIS)

    Landen, O.L.; Bell, P.M.; Costa, R.; Kalantar, D.H.; Bradley, D.K.

    1995-01-01

    Recent and proposed improvements in spatial resolution, temporal resolution, contrast, and detection efficiency for x-ray framing cameras are discussed in light of present and future laser-plasma diagnostic needs. In particular, improvements in image contrast above hard x-ray background levels is demonstrated by using high aspect ratio tapered pinholes

  5. Nanoscale X-Ray Microscopic Imaging of Mammalian Mineralized Tissue

    OpenAIRE

    Andrews, Joy C.; Almeida, Eduardo; van der Meulen, Marjolein C.H.; Alwood, Joshua S.; Lee, Chialing; Liu, Yijin; Chen, Jie; Meirer, Florian; Feser, Michael; Gelb, Jeff; Rudati, Juana; Tkachuk, Andrei; Yun, Wenbing; Pianetta, Piero

    2010-01-01

    A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Light-source operating from 5 to 15 keV X-ray energy with 14 to 30 µm2 field of view has been used for high-resolution (30–40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 µm), untreated samples that preserve tissue micro- and nanostructure. To test this...

  6. Device for congruent X-ray images of teeth

    International Nuclear Information System (INIS)

    Wegner, H.; Zeumer, H.

    1987-01-01

    This invention has to do with a device for congruent X-ray images of teeth by means of the long-tube parallel technique and the long-tube semi-angle technique. The aim is to have no disturbing lever forces in order to avoid mechanical tensions between patient and X-ray tube assembly and to achieve a true projection of teeth and jaw-bone part also under unfavourable anatomical conditions

  7. Modern X-ray spectroscopy 3. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi

    2008-01-01

    X-ray fluorescence holography (XFH) provides three dimensional atomic images around specified elements. The XFH uses atoms as a wave source or monitor of interference field within a crystal sample, and therefore it can record both intensity and phase of scattered X-rays. Its current performance makes it possible to apply to ultra thin film, impurity and quasicrystal. In this article, I show the theory including solutions for twin image problem, advanced measuring system, data processing for reconstruction of the atomic images and for obtaining accurate atomic positions, applications using resonant X-ray scattering and X-ray excited optical luminescence, and an example of XFH result on the local structure around copper in silicon steal. (author)

  8. The MicroAnalysis Toolkit: X-ray Fluorescence Image Processing Software

    International Nuclear Information System (INIS)

    Webb, S. M.

    2011-01-01

    The MicroAnalysis Toolkit is an analysis suite designed for the processing of x-ray fluorescence microprobe data. The program contains a wide variety of analysis tools, including image maps, correlation plots, simple image math, image filtering, multiple energy image fitting, semi-quantitative elemental analysis, x-ray fluorescence spectrum analysis, principle component analysis, and tomographic reconstructions. To be as widely useful as possible, data formats from many synchrotron sources can be read by the program with more formats available by request. An overview of the most common features will be presented.

  9. Novelty detection of foreign objects in food using multi-modal X-ray imaging

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Emerson, Monica Jane; Clemmensen, Line Katrine Harder

    2016-01-01

    In this paper we demonstrate a method for novelty detection of foreign objects in food products using grating-based multimodal X-ray imaging. With this imaging technique three modalities are available with pixel correspondence, enhancing organic materials such as wood chips, insects and soft...... plastics not detectable by conventional X-ray absorption radiography. We conduct experiments, where several food products are imaged with common foreign objects typically found in the food processing industry. To evaluate the benefit from using this multi-contrast X-ray technique over conventional X......-ray absorption imaging, a novelty detection scheme based on well known image- and statistical analysis techniques is proposed. The results show that the presented method gives superior recognition results and highlights the advantage of grating-based imaging....

  10. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    Science.gov (United States)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  11. THE X-RAY PROPERTIES OF THE OPTICALLY BRIGHTEST MINI-BAL QUASARS FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Wu Jianfeng; Brandt, W. N.; Comins, M. L.; Garmire, Gordon P.; Schneider, Donald P.; Gibson, Robert R.; Shemmer, Ohad

    2010-01-01

    We have compiled a sample of 14 of the optically brightest radio-quiet quasars (m i ≤ 17.5 and z ≥ 1.9) in the Sloan Digital Sky Survey Data Release 5 quasar catalog that have C IV mini-broad absorption lines (mini-BALs) present in their spectra. X-ray data for 12 of the objects were obtained via a Chandra snapshot survey using ACIS-S, while data for the other two quasars were obtained from archival XMM-Newton observations. Joint X-ray spectral analysis shows that the mini-BAL quasars have a similar average power-law photon index (Γ ∼ 1.9) and level of intrinsic absorption (N H ∼ 21 cm -2 ) as non-BMB (neither BAL nor mini-BAL) quasars. Mini-BAL quasars are more similar to non-BMB quasars than to BAL quasars in their distribution of relative X-ray brightness (assessed with Δα ox ). Relative colors indicate mild dust reddening in the optical spectra of mini-BAL quasars. Significant correlations between Δα ox and UV absorption properties are confirmed for a sample of 56 sources combining mini-BAL and BAL quasars with high signal-to-noise ratio rest-frame UV spectra, which generally supports models in which X-ray absorption is important in enabling driving of the UV absorption-line wind. We also propose alternative parameterizations of the UV absorption properties of mini-BAL and BAL quasars, which may better describe the broad absorption troughs in some respects.

  12. All-sky brightness monitoring of light pollution with astronomical methods.

    Science.gov (United States)

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Control of the Low-energy X-rays by Using MCNP5 and Numerical Analysis for a New Concept Intra-oral X-ray Imaging System

    Science.gov (United States)

    Huh, Jangyong; Ji, Yunseo; Lee, Rena

    2018-05-01

    An X-ray control algorithm to modulate the X-ray intensity distribution over the FOV (field of view) has been developed by using numerical analysis and MCNP5, a particle transport simulation code on the basis of the Monte Carlo method. X-rays, which are widely used in medical diagnostic imaging, should be controlled in order to maximize the performance of the X-ray imaging system. However, transporting X-rays, like a liquid or a gas is conveyed through a physical form such as pipes, is not possible. In the present study, an X-ray control algorithm and technique to uniformize the Xray intensity projected on the image sensor were developed using a flattening filter and a collimator in order to alleviate the anisotropy of the distribution of X-rays due to intrinsic features of the X-ray generator. The proposed method, which is combined with MCNP5 modeling and numerical analysis, aimed to optimize a flattening filter and a collimator for a uniform distribution of X-rays. Their size and shape were estimated from the method. The simulation and the experimental results both showed that the method yielded an intensity distribution over an X-ray field of 6×4 cm2 at SID (source to image-receptor distance) of 5 cm with a uniformity of more than 90% when the flattening filter and the collimator were mounted on the system. The proposed algorithm and technique are not only confined to flattening filter development but can also be applied for other X-ray related research and development efforts.

  14. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    International Nuclear Information System (INIS)

    Hönnicke, M.G.; Delben, G.J.; Godoi, W.C.; Swinka-Filho, V.

    2014-01-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films

  15. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    Science.gov (United States)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  16. X-ray detectors based on image sensors

    International Nuclear Information System (INIS)

    Costa, A.P.R.

    1983-01-01

    X-ray detectors based on image sensors are described and a comparison is made between the advantages and the disadvantages of such a kind of detectors with the position sensitive detectors. (L.C.) [pt

  17. Quantitative Phase Imaging Using Hard X Rays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Gureyev, T.E.; Cookson, D.J.; Paganin, D.; Barnea, Z.

    1996-01-01

    The quantitative imaging of a phase object using 16keV xrays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. We find that our phase image is in quantitative agreement with independent measurements of the object. copyright 1996 The American Physical Society

  18. Knot detection in X-ray images of wood planks using dictionary learning

    DEFF Research Database (Denmark)

    Hansson, Nils Mattias; Enescu, Alexandru; Brandt, Sami Sebastian

    2015-01-01

    This paper considers a novel application of x-ray imaging of planks, for the purpose of detecting knots in high quality furniture wood. X-ray imaging allows the detection of knots invisible from the surface to conventional cameras. Our approach is based on texture analysis, or more specifically, ......, discriminative dictionary learning. Experiments show that the knot detection and segmentation can be accurately performed by our approach. This is a promising result and can be directly applied in industrial processing of furniture wood.......This paper considers a novel application of x-ray imaging of planks, for the purpose of detecting knots in high quality furniture wood. X-ray imaging allows the detection of knots invisible from the surface to conventional cameras. Our approach is based on texture analysis, or more specifically...

  19. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  20. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  1. Development of a fluorescent x-ray source for medical imaging

    Science.gov (United States)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  2. Imaging x-ray sources at a finite distance in coded-mask instruments

    International Nuclear Information System (INIS)

    Donnarumma, Immacolata; Pacciani, Luigi; Lapshov, Igor; Evangelista, Yuri

    2008-01-01

    We present a method for the correction of beam divergence in finite distance sources imaging through coded-mask instruments. We discuss the defocusing artifacts induced by the finite distance showing two different approaches to remove such spurious effects. We applied our method to one-dimensional (1D) coded-mask systems, although it is also applicable in two-dimensional systems. We provide a detailed mathematical description of the adopted method and of the systematics introduced in the reconstructed image (e.g., the fraction of source flux collected in the reconstructed peak counts). The accuracy of this method was tested by simulating pointlike and extended sources at a finite distance with the instrumental setup of the SuperAGILE experiment, the 1D coded-mask x-ray imager onboard the AGILE (Astro-rivelatore Gamma a Immagini Leggero) mission. We obtained reconstructed images of good quality and high source location accuracy. Finally we show the results obtained by applying this method to real data collected during the calibration campaign of SuperAGILE. Our method was demonstrated to be a powerful tool to investigate the imaging response of the experiment, particularly the absorption due to the materials intercepting the line of sight of the instrument and the conversion between detector pixel and sky direction

  3. Present status and future prospect of x-ray microscopes. Is it possible to realize x-ray 1 nm imaging?

    International Nuclear Information System (INIS)

    Aoki, Sadao

    2010-01-01

    High resolution X-ray imaging has been developed by using various optical elements and optical systems. In the soft X-ray region (∼3 nm) about 20 nm spatial resolution has been obtained, while in the hard X-ray (∼0.1 nm) about 50 nm. In the research frontier the spatial resolution better than 10 nm has been reported. The possibility to approach 1 nm spatial resolution is presented. (author)

  4. Spectral and dual-energy X-ray imaging for medical applications

    Science.gov (United States)

    Fredenberg, Erik

    2018-01-01

    Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Spectral imaging is not new, but has gained interest in recent years because of rapidly increasing availability of spectral and dual-energy CT and the dawn of energy-resolved photon-counting detectors. This review examines the current technological status of spectral and dual-energy imaging and a number of practical applications of the technology in medicine.

  5. Imaging and etching, soft x-ray microscopy on whole wet cells

    International Nuclear Information System (INIS)

    Gilbert, J.R.; Pine, J.

    1993-01-01

    The authors have produced images of whole wet tissue culture cells with the Stony Brook/BNL scanning transmission x-ray microscope (STXM). For fixed cells the authors have taken images at theoretical resolutions of ∼50-75nm, and in practice have measured FWHM of features down to near 100nm, without any exotic image processing. For unfixed (i.e., initially live) cells the authors have imaged with 100nm pixels and measured features down to 250nm. In order to do this the authors have developed, tested and used a wet cell for maintaining fixed or live cells on the STXM stage during imaging. The design of the wet cell and the culture substrates that go with it make the STXM compatible with almost all standard systems for surface adherent tissue culture. The authors will show some new images of whole wet fixed and unfixed cells, with visible sub-micron features. The authors will also report data that helps to characterize the tissue damage due to x-ray absorption during STXM imaging

  6. Material specific X-ray imaging using an energy-dispersive pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Egan, Christopher K., E-mail: christopher.egan@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul [STFC Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0QX (United Kingdom); Jacques, Simon D.M.; Cernik, Robert J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  7. Evaluation of moisture content distribution in wood by soft X-ray imaging

    International Nuclear Information System (INIS)

    Tanaka, T.; Avramidis, S.; Shida, S.

    2009-01-01

    A technique for nondestructive evaluation of moisture content distribution of Japanese cedar (sugi) during drying using a newly developed soft X-ray digital microscope was investigated. Radial, tangential, and cross-sectional samples measuring 100 x 100 x 10 mm were cut from green sugi wood. Each sample was dried in several steps in an oven and upon completion of each step, the mass was recorded and a soft X-ray image was taken. The relationship between moisture content and the average grayscale value of the soft X-ray image at each step was linear. In addition, the linear regressions overlapped each other regardless of the sample sections. These results showed that soft X-ray images could accurately estimate the moisture content. Applying this relationship to a small section of each sample, the moisture content distribution was estimated from the image differential between the soft X-ray pictures obtained from the sample in question and the same sample in the oven-dried condition. Moisture content profiles for 10-mm-wide parts at the centers of the samples were also obtained. The shapes of the profiles supported the evaluation method used in this study

  8. Infrared Radiography: Modeling X-ray Imaging without Harmful Radiation

    Science.gov (United States)

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the…

  9. Multiframe, Single Line-of-Sight X-Ray Imager for Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Kevin L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-28

    The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR or OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.

  10. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    International Nuclear Information System (INIS)

    Rau, A.W.; Bakueva, L.; Rowlands, J.A.

    2005-01-01

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/μm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S 0 ) of the a-Se layers was 63±2 nC cm -2 cGy -1 . It was found that S decreases to 30% of S 0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25±0.1x10 22 ehp m -3 s -1 and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a

  11. Development of x-ray laminography under an x-ray microscopic condition

    International Nuclear Information System (INIS)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-01-01

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

  12. Visual detection of particulates in x-ray images of processed meat products

    Science.gov (United States)

    Schatzki, Thomas F.; Young, Richard; Haff, Ron P.; Eye, J.; Wright, G.

    1996-08-01

    A study was conducted to test the efficacy of detecting particulate contaminants in processed meat samples by visual observation of line-scanned x-ray images. Six hundred field- collected processed-product samples were scanned at 230 cm2/s using 0.5 X 0.5-mm resolution and 50 kV, 13 mA excitation. The x-ray images were image corrected, digitally stored, and inspected off-line, using interactive image enhancement. Forty percent of the samples were spiked with added contaminants to establish the visual recognition of contaminants as a function of sample thickness (1 to 10 cm), texture of the x-ray image (smooth/textured), spike composition (wood/bone/glass), size (0.1 to 0.4 cm), and shape (splinter/round). The results were analyzed using a maximum likelihood logistic regression method. In packages less than 6 cm thick, 0.2-cm-thick bone chips were easily recognized, 0.1-cm glass splinters were recognized with some difficulty, while 0.4-cm-thick wood was generally missed. Operational feasibility in a time-constrained setting was confirmed. One half percent of the samples arriving from the field contained bone slivers > 1 cm long, 1/2% contained metallic material, while 4% contained particulates exceeding 0.3 cm in size. All of the latter appeared to be bone fragments.

  13. Refraction angle and edge visibility in X-ray diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Chen Yu; Jia Quanjie; Li Gang; Wang Yuzhu; Xue Xianying; Jiang Xiaoming

    2007-01-01

    Diffraction-enhanced X-ray imaging could extract accurately the refraction angles of the sample, which is very important to increase the image contrast of low Z samples. In this paper, the DEI experiments with X-rays of different energies were performed both on wedge-shaped and rounded model samples. Refraction angles of the two samples were all obtained accurately, and the results agreed well with the calculations. Quantitative analyses based on Edge Visibility were performed for the wedge-shaped model sample. The results revealed that the calculated positions for the Best Edge Visibility of the slope with fixed refraction angle were calculable in good agreement with the experimental results. A quantitative research on the Edge Visibility of real tissues sample was carried out and the optimal condition for best contrast of DEI images were discussed. (authors)

  14. New amorphous-silicon image sensor for x-ray diagnostic medical imaging applications

    Science.gov (United States)

    Weisfield, Richard L.; Hartney, Mark A.; Street, Robert A.; Apte, Raj B.

    1998-07-01

    This paper introduces new high-resolution amorphous Silicon (a-Si) image sensors specifically configured for demonstrating film-quality medical x-ray imaging capabilities. The devices utilizes an x-ray phosphor screen coupled to an array of a-Si photodiodes for detecting visible light, and a-Si thin-film transistors (TFTs) for connecting the photodiodes to external readout electronics. We have developed imagers based on a pixel size of 127 micrometer X 127 micrometer with an approximately page-size imaging area of 244 mm X 195 mm, and array size of 1,536 data lines by 1,920 gate lines, for a total of 2.95 million pixels. More recently, we have developed a much larger imager based on the same pixel pattern, which covers an area of approximately 406 mm X 293 mm, with 2,304 data lines by 3,200 gate lines, for a total of nearly 7.4 million pixels. This is very likely to be the largest image sensor array and highest pixel count detector fabricated on a single substrate. Both imagers connect to a standard PC and are capable of taking an image in a few seconds. Through design rule optimization we have achieved a light sensitive area of 57% and optimized quantum efficiency for x-ray phosphor output in the green part of the spectrum, yielding an average quantum efficiency between 500 and 600 nm of approximately 70%. At the same time, we have managed to reduce extraneous leakage currents on these devices to a few fA per pixel, which allows for very high dynamic range to be achieved. We have characterized leakage currents as a function of photodiode bias, time and temperature to demonstrate high stability over these large sized arrays. At the electronics level, we have adopted a new generation of low noise, charge- sensitive amplifiers coupled to 12-bit A/D converters. Considerable attention was given to reducing electronic noise in order to demonstrate a large dynamic range (over 4,000:1) for medical imaging applications. Through a combination of low data lines capacitance

  15. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland FHNW, 5210 Windisch (Switzerland)

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  16. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Science.gov (United States)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  17. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Reischig, P.

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes....... A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape...

  18. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    Science.gov (United States)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  19. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R. [Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Romano, P. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Kennea, J. A. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720-3411 (United States); Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Palmer, D. M. [Los Alamos National Laboratory, B244, Los Alamos, NM 87545 (United States); Sakamoto, T. [Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258 (Japan); Stamatikos, M. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States)

    2013-11-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  20. The Swift/BAT Hard X-ray Transient Monitor

    Science.gov (United States)

    Krimm, H. A.; Holland, S. T.; Corbet, R.H.D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; hide

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as ne as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the ux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Since 2005 February, 242 sources have been detected in the monitor, 149 of them persistent and 93 detected only in outburst. Among these sources, 16 were previously unknown and discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and ltering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries and present basic data analysis and interpretations for those sources with previously unpublished results.

  1. The Swift-BAT Hard X-Ray Transient Monitor

    Science.gov (United States)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; hide

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  2. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    International Nuclear Information System (INIS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations

  3. X-ray imaging in the laser-fusion program

    International Nuclear Information System (INIS)

    McCall, G.H.

    1977-01-01

    Imaging devices which are used or planned for x-ray imaging in the laser-fusion program are discussed. Resolution criteria are explained, and a suggestion is made for using the modulation transfer function as a uniform definition of resolution for these devices

  4. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  5. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  6. Optimisation in X-ray and Molecular Imaging 2015

    International Nuclear Information System (INIS)

    Baath, Magnus; Hoeschen, Christoph; Mattsson, Soeren; Mansson, Lars Gunnar

    2016-01-01

    This issue of Radiation Protection Dosimetry is based on contributions to Optimisation in X-ray and Molecular Imaging 2015 - the 4. Malmoe Conference on Medical Imaging (OXMI 2015). The conference was jointly organised by members of former and current research projects supported by the European Commission EURATOM Radiation Protection Research Programme, in cooperation with the Swedish Society for Radiation Physics. The conference brought together over 150 researchers and other professionals from hospitals, universities and industries with interests in different aspects of the optimisation of medical imaging. More than 100 presentations were given at this international gathering of medical physicists, radiologists, engineers, technicians, nurses and educational researchers. Additionally, invited talks were offered by world-renowned experts on radiation protection, spectral imaging and medical image perception, thus covering several important aspects of the generation and interpretation of medical images. The conference consisted of 13 oral sessions and a poster session, as reflected by the conference title connected by their focus on the optimisation of the use ionising radiation in medical imaging. The conference included technology-specific topics such as computed tomography and tomosynthesis, but also generic issues of interest for the optimisation of all medical imaging, such as image perception and quality assurance. Radiation protection was covered by e.g. sessions on patient dose benchmarking and occupational exposure. Technically-advanced topics such as modelling, Monte Carlo simulation, reconstruction, classification, and segmentation were seen taking advantage of recent developments of hardware and software, showing that the optimisation community is at the forefront of technology and adapts well to new requirements. These peer-reviewed proceedings, representing a continuation of a series of selected reports from meetings in the field of medical imaging

  7. GOES-12 Solar X-ray Imager Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GOES Solar X-ray Imager is integrated into the GOES-12 satellite, whose primary mission is to provide Earth-weather monitoring. The SXI is operated by NOAA's...

  8. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  9. Lifting the veil on the X-ray universe

    Science.gov (United States)

    1999-11-01

    . A multi-spectral space telescope The spacecraft carries three sets of science instruments, not only capable of making images of an X-ray source but also able to precisely distinguish the "colour" of the X-rays being viewed. At the prime focus of each of the telescopes are three European Photon Imaging Cameras. With silicon chips that can register extremely weak X-ray radiation, these advanced cameras are capable of detecting rapid variations in the intensity of a source. Grating structures at the exit of two mirror modules will reflect about half the incoming rays to a secondary focus, with its own cameras. This Reflection Grating Spectrometer will "fan out" the various wavelengths (much like a prism with visible light), and indicate in more detail the presence of individual elements, such as oxygen and iron. The third instrument aboard XMM is a conventional but very sensitive optical telescope. It will observe simultaneously the same regions as the X-ray telescopes but in the ultraviolet and visible wavelengths, giving astronomers complementary data about the X-ray sources being studied. In orbit, this 30-cm telescope will be as sensitive as a 4-m instrument on the Earth's surface. The mysteries of the X-ray sky XMM will explore the hidden depths of the Universe, its violent hotspots where stars and galaxies are formed, and where worlds and matter itself disappear. Much as the colour of a street lamp can indicate which gas it uses, the science instruments on board XMM will reveal the deepest secrets of X-ray objects, their chemical composition and temperatures - clues to the physical processes that are taking place. Astronomers will use XMM to resolve the mysteries of stars that exploded long ago as supernovae and whose remnants, glowing with X-rays, may be supplying material for new planets and stars. They will study regions of supernova remnants that are still hot and may hold the key to understanding the origin of the enigmatic cosmic rays that pervade the

  10. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of ~200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  11. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Science.gov (United States)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka; Toshito, Toshiyuki

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of 200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  12. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    International Nuclear Information System (INIS)

    Cha, Bo Kyung; Jeon, Seongchae; Seo, Chang-Woo

    2016-01-01

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 µm 1-poly/4-metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd_2O_2S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  13. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Bo Kyung, E-mail: goldrain99@kaist.ac.kr [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Jeon, Seongchae [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Seo, Chang-Woo [Department of Radiological Science, Yonsei University, Gangwon-do 220-710 (Korea, Republic of)

    2016-09-21

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 µm 1-poly/4-metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd{sub 2}O{sub 2}S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  14. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin; Zhang Qi; Zheng Futang

    2000-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images are presented. The software for object separating, mass calculating, 3D positioning, speed determining and cavity reconstruction are described

  15. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin

    2003-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images of terminal ballistics are presented. The software for object separating, profile calculating and 3D cavity reconstruction are described

  16. Microfocus X-ray imaging of Brazil nuts for quality control

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Margareth Kazuyo Kobayashi Dias, E-mail: mkfranco@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Yokaichiya, Fabiano, E-mail: fabiano.yokaichiya@helmholtz-berlin.de [Department Quantum Phenomena in Novel Materials, Helmholtz Zentrum Berlim für Materialien und Energie GmbH, Berlin (Germany); Kardjilov, Nikolay, E-mail: kardjilov@helmholtz-berlim.de [Institut Angewandte Materialforschung, Helmholtz Zentrum Berlim für Materialien und Energie GmbH, Berlin (Germany); Ferraz, Antonio Carlos de Oliveira, E-mail: carlos@feagri.unicamp.br [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Faculdade de Engenharia Agricola

    2015-07-15

    Non-destructive quality assessment of food prior to processing is desirable in commercial facilities due to its non-invasive nature, for economic reasons and for its safety appeals. Grading Brazil nuts in this way allows for the separation of undesirable nuts to avoid contamination during the automatic nut shelling process. The aim of this study was to evaluate the feasibility of X-ray phase contrast enhanced imaging in assessing nut quality. For this goal, details of the imaging technique are described and phase contrast X-ray and microtomography imaging of nut samples are investigated. Both high quality (i.e. 'sound' nuts as well as treated nuts were examined. It was concluded that both the X-ray imaging and tomography techniques have the potential to discriminate morphological features of the nut and to identify 'sound' kernels from atypical ones. Larger nuts and nuts with a larger gap area between shell and kernel were concluded to have more atypical formations. Both techniques also seemed promising for use in automatic sorting lines. However, by using microtomography, the visualization of finer formations not noticeable in the X-ray images was possible. Further studies shall be carried out to investigate the nature of these formations, how they affect nut quality and their evolution with storage time. (author)

  17. Microfocus X-ray imaging of Brazil nuts for quality control

    International Nuclear Information System (INIS)

    Franco, Margareth Kazuyo Kobayashi Dias; Yokaichiya, Fabiano; Kardjilov, Nikolay; Ferraz, Antonio Carlos de Oliveira

    2015-01-01

    Non-destructive quality assessment of food prior to processing is desirable in commercial facilities due to its non-invasive nature, for economic reasons and for its safety appeals. Grading Brazil nuts in this way allows for the separation of undesirable nuts to avoid contamination during the automatic nut shelling process. The aim of this study was to evaluate the feasibility of X-ray phase contrast enhanced imaging in assessing nut quality. For this goal, details of the imaging technique are described and phase contrast X-ray and microtomography imaging of nut samples are investigated. Both high quality (i.e. 'sound' nuts as well as treated nuts were examined. It was concluded that both the X-ray imaging and tomography techniques have the potential to discriminate morphological features of the nut and to identify 'sound' kernels from atypical ones. Larger nuts and nuts with a larger gap area between shell and kernel were concluded to have more atypical formations. Both techniques also seemed promising for use in automatic sorting lines. However, by using microtomography, the visualization of finer formations not noticeable in the X-ray images was possible. Further studies shall be carried out to investigate the nature of these formations, how they affect nut quality and their evolution with storage time. (author)

  18. Optimized polychromatic x-ray imaging with asymmetrically cut bent crystals

    Czech Academy of Sciences Publication Activity Database

    Podorov, S. G.; Renner, Oldřich; Wehrhan, O.; Förster, E.

    2001-01-01

    Roč. 34, - (2001), s. 2363-2368 ISSN 0022-3727 Grant - others:-(DE) B508-99027; CZ-DE Bilateral Corporation in Science(XC) CZE-00-008 Institutional research plan: CEZ:AV0Z1010921 Keywords : x-ray imaging * x-ray diffraction * ray-tracing simulations Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.260, year: 2001

  19. SCANDI – an all-sky Doppler imager for studies of thermospheric spatial structure

    Directory of Open Access Journals (Sweden)

    A. L. Aruliah

    2010-02-01

    Full Text Available A new all-sky Fabry-Perot Interferometer called the Scanning Doppler Imager (SCANDI was built and installed at Longyearbyen in December 2006. Observations have been made of the Doppler shifts and Doppler broadening of the 630 nm airglow and aurora, from which upper thermospheric winds and temperatures are calculated. SCANDI allows measurements over a field-of-view (FOV with a horizontal radius of nearly 600 km for observations at an altitude of 250 km using a time resolution of 8 min. The instrument provides the ability to observe thermospheric spatial structure within a FOV which overlaps that of the EISCAT Svalbard radar and CUTLASS SuperDARN radars. Coordinating with these instruments provides an important opportunity for studying ion-neutral coupling. The all-sky image is divided into several sectors to provide a horizontal spatial resolution of between 100–300 km. This is a powerful extension in observational capability but requires careful calibration and data analysis, as described here. Two observation modes were used: a fixed and a scanning etalon gap. SCANDI results are corroborated using the Longyearbyen single look direction FPI, and ESR measurements of the ion temperatures. The data show thermospheric temperature gradients of a few Kelvins per kilometre, and a great deal of meso-scale variability on spatial scales of several tens of kilometres.

  20. An investigation of infection control for x-ray cassettes in a diagnostic imaging department

    International Nuclear Information System (INIS)

    Fox, Matthew; Harvey, Jane M.

    2008-01-01

    Introduction: This research was conducted to investigate if X-ray cassettes could be a possible source of pathogens capable of causing nosocomial infections, and if they could be a possible vector for cross infection within the hospital environment. Method: The research involved the swabbing of X-ray cassettes in a Diagnostic Imaging Department of a large hospital in the east of England. Two areas of the Diagnostic Imaging Department were included in the study. Research concentrated on X-ray cassettes used for mobile radiography, accident and emergency and inpatient use. Forty cassettes were swabbed in total specifically for general levels of bacterial contamination, also for the presence or absence of methicillin-resistant Staphylococcus aureus (MRSA). A mapping exercise was completed following the location of an X-ray cassette typically used in mobile radiography. The exercise noted the level of direct contact with patient's skin and other possible routes of infection. Results: The results demonstrated that there were large levels of growth of samples taken from cassettes and developed in the Microbiology Department. Coagulase-negative Staphylococcus, Micrococci, Diptheroids and species of Bacillus were all identified. The mapping exercise in which the journey of a 35/43 cm cassette used for mobile radiography was tracked found that contact with patient's skin and potential pathogens or routes of cross infection was a common occurrence whilst undertaking mobile radiography. Conclusion: The research has identified the presence of bacterial contamination on cassettes. The research established that X-ray cassettes/imaging plates are often exposed to pathogens and possible routes of cross infection; also that patient's skin often comes directly in contact with the X-ray cassette/imaging plate. The research also shows that as cassettes/imaging plates are a potential source of cross infection, the Diagnostic Imaging Department may be partly responsible for adding to

  1. Testing an inversion method for estimating electron energy fluxes from all-sky camera images

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2004-06-01

    Full Text Available An inversion method for reconstructing the precipitating electron energy flux from a set of multi-wavelength digital all-sky camera (ASC images has recently been developed by tomografia. Preliminary tests suggested that the inversion is able to reconstruct the position and energy characteristics of the aurora with reasonable accuracy. This study carries out a thorough testing of the method and a few improvements for its emission physics equations. We compared the precipitating electron energy fluxes as estimated by the inversion method to the energy flux data recorded by the Defense Meteorological Satellite Program (DMSP satellites during four passes over auroral structures. When the aurorae appear very close to the local zenith, the fluxes inverted from the blue (427.8nm filtered ASC images or blue and green line (557.7nm images together give the best agreement with the measured flux values. The fluxes inverted from green line images alone are clearly larger than the measured ones. Closer to the horizon the quality of the inversion results from blue images deteriorate to the level of the ones from green images. In addition to the satellite data, the precipitating electron energy fluxes were estimated from the electron density measurements by the EISCAT Svalbard Radar (ESR. These energy flux values were compared to the ones of the inversion method applied to over 100 ASC images recorded at the nearby ASC station in Longyearbyen. The energy fluxes deduced from these two types of data are in general of the same order of magnitude. In 35% of all of the blue and green image inversions the relative errors were less than 50% and in 90% of the blue and green image inversions less than 100%. This kind of systematic testing of the inversion method is the first step toward using all-sky camera images in the way in which global UV images have recently been used to estimate the energy fluxes. The advantages of ASCs, compared to the space-born imagers, are

  2. Individual GaAs nanorods imaged by coherent X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Ullrich; Biermanns, Andreas; Davydok, Anton [Universitaet Siegen (Germany); Paetzelt, Hendrik [Universitaet Leipzig (Germany); IOM Leipzig (Germany); Diaz, Ana; Metzger, Hartmut [ID01 Beamline, ESRF (France); Gottschalch, Volker [Universitaet Leipzig (Germany)

    2010-07-01

    Semiconductor nanorods are of particular interest for new semiconductor devices because the nanorod approach can be used to form heterostructures of materials with a large lattice mismatch and to define nanorod arrays with tailored inter-rod distance. However, all applications require objects with uniform physical properties based on uniform morphology. Complementary to electron microscopy techniques, destruction free X-ray diffraction techniques can be used to determine structural and morphological details. Using scanning X-ray diffraction microscopy with a spot size of 220 x 600 nm{sup 2} we were able to inspect individual GaAs nanorods grown by seed-free MOVPE through circular openings in a SiN{sub x} mask in a periodic array with 3 {mu}m spacing on GaAs[111]B. The focussed X-ray beam allows the determination of the strain state of individual rods and in combination with coherent diffraction imaging, we were able to characterize also morphological details. Rods grown at different positions in the array show significant differences in shape, size and strain state.

  3. Development of a digital panoramic X-ray imaging system of adaptive image layers for dental applications

    International Nuclear Information System (INIS)

    Choi, S.I.; Park, Y.O.; Cho, H.S.; Oh, J.E.; Cho, H.M.; Hong, D.K.; Lee, M.S.; Yang, Y.J.; Je, U.K.; Kim, D.S.; Lee, H.K.

    2011-01-01

    As a continuation of our digital radiographic sensor R and D, we have developed a prototyped digital panoramic X-ray imaging system for dental applications. The imaging system consists of a slit-collimated X-ray generator with a 0.4 mm focal spot size and a 3.5 mm Al filtration, a linear-array typed CMOS imager with a 48x48 μm 2 pixel size and a 128 (in the scan direction)x3072 (in the vertical direction) pixel format, a series of microstep motors for the precise motion control of the imaging system, and the designed sequences for the motion control and pixel readout required to make a specific plane of interest (POI) to be focused. With the several test phantoms we designed, we obtained useful digital panoramic X-ray images by moving the X-ray generator and the CMOS imager along a continuously sliding rotational center. In this study, we demonstrated that the prototype system can be applicable to any shaped POI or multi-POIs simultaneously to be focused, provided that adequate sequences for motion control and pixel readout are designed. We expect that the imaging system will be useful for our ongoing applications of dental panoramic radiography and nondestructive testing.

  4. A general theory of interference fringes in x-ray phase grating imaging

    International Nuclear Information System (INIS)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2015-01-01

    Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers

  5. A general theory of interference fringes in x-ray phase grating imaging.

    Science.gov (United States)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2015-06-01

    The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.

  6. X-ray investigations of the hot ISM

    Science.gov (United States)

    Sanders, W. T.

    1993-01-01

    At energies less than one keV, the intensity of the galactic x-ray background dominates that of the extragalactic background in almost every direction on the sky. Below 1/4 keV, the galactic x-ray background has a galactic stellar component, but the dominant emitter seems to be hot interstellar matter. The origin of the general 3/4 keV x-ray background remains uncertain, but one component must also be the contribution from hot interstellar matter. An overview is given of recent x-ray investigations of the hot interstellar medium using data from the ROSAT X-ray Telescope/Position-Sensitive Proportional Counter (XRT/PSPC) instrument. Several prominent features in the low energy x-ray background that are interpreted as fossil supernova remnants are discussed.

  7. Compact x-ray microradiograph for in situ imaging of solidification processes: Bringing in situ x-ray micro-imaging from the synchrotron to the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rakete, C.; Baumbach, C.; Goldschmidt, A.; Samberg, D.; Schroer, C. G. [Institut fuer Strukturphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Breede, F.; Stenzel, C. [Astrium-Space Transportation, Department: TO 611, Claude-Dornier-Strasse, D-88039 Friedrichshafen (Germany); Zimmermann, G.; Pickmann, C. [ACCESS e.V., Intzestrasse 5, D-52072 Aachen (Germany); Houltz, Y.; Lockowandt, C. [Science Services Division, SSC, Box 4207, SE-17104 Solna (Sweden); Svenonius, O.; Wiklund, P. [Scint-X AB, Torshamnsgatan 35, SE-164 40 Kista (Sweden); Mathiesen, R. H. [Inst. for Fysikk, NTNU, N-7491 Trondheim (Norway)

    2011-10-15

    A laboratory based high resolution x-ray radiograph was developed for the investigation of solidification dynamics in alloys. It is based on a low-power microfocus x-ray tube and is potentially appropriate for x-ray diagnostics in space. The x-ray microscope offers a high spatial resolution down to approximately 5 {mu}m. Dynamic processes can be resolved with a frequency of up to 6 Hz. In reference experiments, the setup was optimized to yield a high contrast for AlCu-alloys. With samples of about 150 {mu}m thickness, high quality image sequences of the solidification process were obtained with high resolution in time and space.

  8. Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method

    International Nuclear Information System (INIS)

    Dilmanian, F.A.; Ren, B.; Wu, X.Y.; Orion, I.; Zhong, Z.; Thomlinson, W.C.; Chapman, L.D.

    2000-01-01

    Diffraction enhanced imaging (DEI) is a new, synchrotron-based, x-ray radiography method that uses monochromatic, fan-shaped beams, with an analyser crystal positioned between the subject and the detector. The analyser allows the detection of only those x-rays transmitted by the subject that fall into the acceptance angle (central part of the rocking curve) of the monochromator/analyser system. As shown by Chapman et al , in addition to the x-ray attenuation, the method provides information on the out-of-plane angular deviation of x-rays. New images result in which the image contrast depends on the x-ray index of refraction and on the yield of small-angle scattering, respectively. We implemented DEI in the tomography mode at the National Synchrotron Light Source using 22 keV x-rays, and imaged a cylindrical acrylic phantom that included oil-filled, slanted channels. The resulting 'refraction CT image' shows the pure image of the out-of-plane gradient of the x-ray index of refraction. No image artefacts were present, indicating that the CT projection data were a consistent set. The 'refraction CT image' signal is linear with the gradient of the refractive index, and its value is equal to that expected. The method, at the energy used or higher, has the potential for use in clinical radiography and in industry. (author)

  9. Coding aperture applied to X-ray imaging

    International Nuclear Information System (INIS)

    Brunol, J.; Sauneuf, R.; Gex, J.P.

    1980-05-01

    We present some X-ray images of grids and plasmas. These images were obtained by using a single circular slit (annular code) as coding aperture and a computer decoding process. The experimental resolution is better than 10μm and it is expected to be in the order of 2 or 3 μm with the same code and an improved decoding process

  10. Photoelectron and x-ray holography by contrast: enhancing image quality and dimensionality

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, C.S.; Zhao, L. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, University of California, Davis, CA (United States); Hove, M.A. van [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, University of California, Davis, CA (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Kaduwela, A.; Marchesini, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Omori, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Institute of Industrial Science, University of Tokyo, Tokyo (Japan); Sony Corporation Semiconductor Network Company, Asahi-cho, Atsugi, Kanagawa (Japan)

    2001-11-26

    Three forms of electron or x-ray holography 'by contrast' are discussed: they all exploit small changes in diffraction conditions to improve image quality and/or extract additional information. Spin-polarized photoelectron holography subtracts spin-down from spin-up holograms so as to image the relative orientations of atomic magnetic moments around an emitter atom. Differential photoelectron holography subtracts holograms taken at slightly different energies so as to overcome the forward-scattering problem that normally degrades the three-dimensional imaging of atoms, particularly for emitter atoms that are part of a bulk substrate environment. Resonant x-ray fluorescence holography also subtracts holograms at slightly different energies, these being chosen above and below an absorption edge of a constituent atom, thus allowing the selective imaging of that type of atom, or what has been referred to as imaging 'in true colour'. (author)

  11. Printable organometallic perovskite enables large-area, low-dose X-ray imaging

    Science.gov (United States)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-01

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGyair-1 cm-2) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  12. Printable organometallic perovskite enables large-area, low-dose X-ray imaging.

    Science.gov (United States)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-04

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGy air -1 cm -2 ) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  13. Prospects for γ-ray imaging telescopes

    International Nuclear Information System (INIS)

    Carter, J.N.; Dean, A.J.; Ramsden, D.

    1981-01-01

    Apart from the requirement for a new, high angular-resolution gamma-ray telescope for the more precise location of known COS-B gamma-ray sources, there is also a need for another instrument that can be used in a search for the gamma-ray emission from specific X-ray-emitting objects. If there is to be any hope of relating gamma ray emission to specific candidate X-ray objects, then an angular resolution of typically a few minutes of arc is required to resolve adjacent sources in crowded regions of the sky such as the galactic centre. Efforts to improve the angular resolution of track-chamber telescopes are compared. For energies close to 1 MeV telescopes have either used collimators to restrict the field of view or have made use of the kinematics of the Compton scattering process to determine the direction of the incident photon. The use of coded aperture techniques in high angular resolution X-ray astronomy telescopes is reviewed. A practical telescope for astronomy at high energies described by Carter is mentioned. At low energies an imaging telescope could be constructed by making use of position-sensitive detectors initially developed for use in medical physics. Such a telescope is outlined in general terms and its benefits and uses given. (U.K.)

  14. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    International Nuclear Information System (INIS)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-01-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  15. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, Peter, E-mail: pr20@cornell.edu [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States); Temnykh, Alexander B. [Cornell University, Laboratory for Elem-Particle Physics, Ithaca 14850, NY (United States); Pauling, Alan K. [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States)

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  16. Development of an X-ray imaging system with SOI pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Ryutaro, E-mail: ryunishi@post.kek.jp [School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Arai, Yasuo; Miyoshi, Toshinobu [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK-IPNS), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hirano, Keiichi; Kishimoto, Shunji; Hashimoto, Ryo [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK-IMSS), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-09-21

    An X-ray imaging system employing pixel sensors in silicon-on-insulator technology is currently under development. The system consists of an SOI pixel detector (INTPIX4) and a DAQ system based on a multi-purpose readout board (SEABAS2). To correct a bottleneck in the total throughput of the DAQ of the first prototype, parallel processing of the data taking and storing processes and a FIFO buffer were implemented for the new DAQ release. Due to these upgrades, the DAQ throughput was improved from 6 Hz (41 Mbps) to 90 Hz (613 Mbps). The first X-ray imaging system with the new DAQ software release was tested using 33.3 keV and 9.5 keV mono X-rays for three-dimensional computerized tomography. The results of these tests are presented. - Highlights: • The X-ray imaging system employing the SOI pixel sensor is currently under development. • The DAQ of the first prototype has the bottleneck in the total throughput. • The new DAQ release solve the bottleneck by parallel processing and FIFO buffer. • The new DAQ release was tested using 33.3 keV and 9.5 keV mono X-rays.

  17. Scintillating Quantum Dots for Imaging X-rays (SQDIX) for Aircraft Inspection

    Science.gov (United States)

    Burke, Eric (Principal Investigator); Williams, Phillip (Principal Investigator); Dehaven, Stan

    2015-01-01

    Scintillation is the process currently employed by conventional x-ray detectors to create x-ray images. Scintillating quantum dots or nano-crystals (StQDs) are a novel, nanometer-scale material that upon excitation by x-rays, re-emit the absorbed energy as visible light. StQDs theoretically have higher output efficiency than conventional scintillating materials and are more environmental friendly. This paper will present the characterization of several critical elements in the use of StQDs that have been performed along a path to the use of this technology in wide spread x-ray imaging. Initial work on the SQDIX system has shown great promise to create state-of-the-art sensors using StQDs as a sensor material. In addition, this work also demonstrates a high degree of promise using StQDs in microstructured fiber optics. Using the microstructured fiber as a light guide could greatly increase the capture efficiency a StQDs based imaging sensor.

  18. X-ray energy selected imaging with Medipix II

    International Nuclear Information System (INIS)

    Ludwig, J.; Zwerger, A.; Benz, K.-W.; Fiederle, M.; Braml, H.; Fauler, A.; Konrath, J.-P.

    2004-01-01

    Two different X-ray tube accelerating voltages (60 and 70 kV) are used for diagnosis of front teeth and molars. Different energy ranges are necessary as function of tooth thickness to obtain similar contrast for imaging. This technique drives the costs for the X-ray tube up and allows for just two optimized settings. Energy range selection for the detection of the penetrating X-rays would overcome these severe setbacks. The single photon counting chip MEDIPIX2 http://www.cern.ch/medipix exhibits exactly this feature. First simulations and measurements have been carried out using a dental X-ray source. As a demonstrator a real tooth has been used with different cavities and filling materials. Simulations showed in general larger improvements as compared to measurements regarding SNR and contrast: A beneficial factor of 4% wrt SNR and 25% for contrast, measurements showed factors of 2.5 and up to 10%, respectively

  19. X-ray energy selected imaging with Medipix II

    Science.gov (United States)

    Ludwig, J.; Zwerger, A.; Benz, K.-W.; Fiederle, M.; Braml, H.; Fauler, A.; Konrath, J.-P.

    2004-09-01

    Two different X-ray tube accelerating voltages (60 and 70kV) are used for diagnosis of front teeth and molars. Different energy ranges are necessary as function of tooth thickness to obtain similar contrast for imaging. This technique drives the costs for the X-ray tube up and allows for just two optimized settings. Energy range selection for the detection of the penetrating X-rays would overcome these severe setbacks. The single photon counting chip MEDIPIX2 http://www.cern.ch/medipix exhibits exactly this feature.First simulations and measurements have been carried out using a dental X-ray source. As a demonstrator a real tooth has been used with different cavities and filling materials. Simulations showed in general larger improvements as compared to measurements regarding SNR and contrast: A beneficial factor of 4% wrt SNR and 25% for contrast, measurements showed factors of 2.5 and up to 10%, respectively.

  20. The Imaging X-Ray Polarimetry Explorer (IXPE): Overview

    Science.gov (United States)

    O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.; hide

    2017-01-01

    Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.

  1. Quantitative phase imaging using quadri-wave lateral shearing interferometry. Application to X-ray domain

    International Nuclear Information System (INIS)

    Rizzi, Julien

    2013-01-01

    Since Roentgen discovered X-rays, X-ray imaging systems are based on absorption contrast. This technique is inefficient for weakly absorbing objects. As a result, X-ray standard radiography can detect bones lesions, but cannot detect ligament lesions. However, phase contrast imaging can overcome this limitation. Since the years 2000, relying on former works of opticians, X-ray scientists are developing phase sensitive devices compatible with industrial applications such as medical imaging or non destructive control. Standard architectures for interferometry are challenging to implement in the X-ray domain. This is the reason why grating based interferometers became the most promising devices to envision industrial applications. They provided the first x-ray phase contrast images of living human samples. Nevertheless, actual grating based architectures require the use of at least two gratings, and are challenging to adapt on an industrial product. So, the aim of my thesis was to develop a single phase grating interferometer. I demonstrated that such a device can provide achromatic and propagation invariant interference patterns. I used this interferometer to perform quantitative phase contrast imaging of a biological fossil sample and x-ray at mirror metrology. (author)

  2. The MAXIM Pathfinder Mission: X-Ray Imaging at 100 Micro-Arcseconds

    Science.gov (United States)

    Cash, Webster; White, Nick; Joy, Marshall

    2000-01-01

    We present the results of a study to show how it is possible to build a super high resolution x-ray imaging mission based on the principles of x-ray interferometry. The mission concept uses today's technology to specify a 1.4 meter baseline interferometer that will resolve features as fine as 100 micro-arcsecond imaging at 1keV. This resolution is sufficient to produce high quality images of the coronae of other stars.

  3. X-ray penumbral imaging diagnostic developments at the National Ignition Facility

    Science.gov (United States)

    Bachmann, B.; Abu-Shawareb, H.; Alexander, N.; Ayers, J.; Bailey, C. G.; Bell, P.; Benedetti, L. R.; Bradley, D.; Collins, G.; Divol, L.; Döppner, T.; Felker, S.; Field, J.; Forsman, A.; Galbraith, J. D.; Hardy, C. M.; Hilsabeck, T.; Izumi, N.; Jarrot, C.; Kilkenny, J.; Kramer, S.; Landen, O. L.; Ma, T.; MacPhee, A.; Masters, N.; Nagel, S. R.; Pak, A.; Patel, P.; Pickworth, L. A.; Ralph, J. E.; Reed, C.; Rygg, J. R.; Thorn, D. B.

    2017-08-01

    X-ray penumbral imaging has been successfully fielded on a variety of inertial confinement fusion (ICF) capsule implosion experiments on the National Ignition Facility (NIF). We have demonstrated sub-5 μm resolution imaging of stagnated plasma cores (hot spots) at x-ray energies from 6 to 30 keV. These measurements are crucial for improving our understanding of the hot deuterium-tritium fuel assembly, which can be affected by various mechanisms, including complex 3-D perturbations caused by the support tent, fill tube or capsule surface roughness. Here we present the progress on several approaches to improve x-ray penumbral imaging experiments on the NIF. We will discuss experimental setups that include penumbral imaging from multiple lines-of-sight, target mounted penumbral apertures and variably filtered penumbral images. Such setups will improve the signal-to-noise ratio and the spatial imaging resolution, with the goal of enabling spatially resolved measurements of the hot spot electron temperature and material mix in ICF implosions.

  4. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zeniya, T.; Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T

    2001-07-21

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  5. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Science.gov (United States)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  6. Magnetic resonance imaging of the central nervous system. Comparison with X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kajima, Toshio; Kagawa, Yoshihiro; Katsuta, Shizutomo.

    1987-06-01

    Magnetic resonance imaging (MRI) and X-ray computed tomography (X-ray CT) have been performed in 169 consecutive patients with central nervous system diseases. The findings from the two methods were compared for the capacity to defect lesions. Magnetic resonance imaging was more sensitive than or equivalent to X-ray CT in detecting lesions - especially detecting. Arnold-Chiari malformation, syringomyelia, spinal cord injury, and pituitary adenoma - in 158 patients (94 %). In six patients (10 %), lesion detection was possible only by MRI. Magnetic resonance imaging was inferior to X-ray CT in 11 patients (7 %) in detecting calcified lesions, meningioma, and cavernous hemangioma. (Namekawa, K.).

  7. X-ray optics and X-ray microscopes: new challenges

    International Nuclear Information System (INIS)

    Susini, J.

    2004-01-01

    Soon after the discovery of X-rays in 1895 by W. Roentgen, it became rapidly clear that the methods traditionally used in the visible light regime, namely refraction, diffraction and reflection were difficult to apply for X-ray optics. The physical origins of these difficulties are closely linked to the very nature of interaction of X-rays with matter. The small deviation δ of the refractive index of condensed matter from unity makes it difficult to extend refraction-based optics from the optical spectral region to the X-ray region because the refraction angle is proportional to δ. Similarly it is very challenging to extend diffraction-based focusing techniques to X-rays because the diffraction angle scales inversely with wavelength. Finally, the use of reflection-based optics is also limited by the very small critical angle for total reflection. All those fundamental limitations prevented for almost one century, the development of X-ray microscopy whereas electron microscopy became a standard tool. In the past twenty years, interests for X-ray microscopy revived, mainly because of several major advances in X-ray sources and X-ray optics. X-ray microscopy techniques are now emerging as powerful and complementary tools for submicron investigations. Soft X-ray microscopes offer traditionally the possibility to form direct images of thick hydrated biological material in near-native environment, at a spatial resolution well beyond that achievable with visible light microscopy. Natural contrast is available in the soft X-ray region, in the so-called ''water-window'', due to the presence of absorption edges of the major constituents (C,N,O). Recent advances in manufacturing techniques have enlarged the accessible energy range of micro-focussing optics and offer new applications in a broad range of disciplines. X-ray microscopy in the 1 - 30 keV energy range is better suited for fluorescence to map trace elements, tomography for 3D imaging and micro-diffraction. The

  8. Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?

    Science.gov (United States)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-01-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."

  9. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography.

    Directory of Open Access Journals (Sweden)

    Torben Haugaard Jensen

    Full Text Available Invasive cancer causes a change in density in the affected tissue, which can be visualized by x-ray phase-contrast tomography. However, the diagnostic value of this method has so far not been investigated in detail. Therefore, the purpose of this study was, in a blinded manner, to investigate whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years diagnosed with invasive ductal carcinomas were analyzed by X-ray phase-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations to obtain information regarding lymph node involvement previously inaccessible with standard absorption x-ray imaging.

  10. X-ray cardiovascular examination apparatus

    International Nuclear Information System (INIS)

    1977-01-01

    An X-ray source is mounted in an enclosure for angulating longitudinally about a horizontal axis. An X-ray-permeable, patient-supporting table is mounted on the top of the enclosure for executing lateral and longitudinal movements. An X-ray image-receiving device such as an X-ray image intensifier is mounted above the table on a vertically movable arm which is on a longitudinally movable carriage. Electric control means are provided for angulating the X-ray source and image intensifier synchronously as the image intensifier system is shifted longitudinally or vertically such that the central ray from the X-ray source is kept intensifier

  11. In-line X-ray phase-contrast imaging of murine liver microvasculature ex vivo

    International Nuclear Information System (INIS)

    Li Beilei; Xu Min; Shi Hongcheng; Chen Shaoliang; Wu Weizhong; Peng Guanyun; Zhang Xi; Peng Yifeng

    2012-01-01

    Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors. Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method. Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility. Barium sulfate and physiological saline were used as contrast agents for the blood vessels. Blood vessels of <Φ20 μm could be detected by replacing resident blood with physiological saline or barium sulfate. An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image. It is demonstrated that selective angiography based on phase contrast X-ray imaging, with a physiological material of low Z elements (such as saline) being the contrast agent, is a viable imaging strategy. Further efforts will be focused on using the technique to image tumor angiogenesis. (authors)

  12. X-ray micro-tomography system for small-animal imaging with zoom-in imaging capability

    International Nuclear Information System (INIS)

    Chun, In Kon; Cho, Myung Hye; Lee, Sang Chul; Cho, Min Hyoung; Lee, Soo Yeol

    2004-01-01

    Since a micro-tomography system capable of μm-resolution imaging cannot be used for whole-body imaging of a small laboratory animal without sacrificing its spatial resolution, it is desirable for a micro-tomography system to have local imaging capability. In this paper, we introduce an x-ray micro-tomography system capable of high-resolution imaging of a local region inside a small animal. By combining two kinds of projection data, one from a full field-of-view (FOV) scan of the whole body and the other from a limited FOV scan of the region of interest (ROI), we have obtained zoomed-in images of the ROI without any contrast anomalies commonly appearing in conventional local tomography. For experimental verification of the zoom-in imaging capability, we have integrated a micro-tomography system using a micro-focus x-ray source, a 1248 x 1248 flat-panel x-ray detector, and a precision scan mechanism. The mismatches between the two projection data caused by misalignments of the scan mechanism have been estimated with a calibration phantom, and the mismatch effects have been compensated in the image reconstruction procedure. Zoom-in imaging results of bony tissues with a spatial resolution of 10 lp mm -1 suggest that zoom-in micro-tomography can be greatly used for high-resolution imaging of a local region in small-animal studies

  13. Wavelet based Image Registration Technique for Matching Dental x-rays

    OpenAIRE

    P. Ramprasad; H. C. Nagaraj; M. K. Parasuram

    2008-01-01

    Image registration plays an important role in the diagnosis of dental pathologies such as dental caries, alveolar bone loss and periapical lesions etc. This paper presents a new wavelet based algorithm for registering noisy and poor contrast dental x-rays. Proposed algorithm has two stages. First stage is a preprocessing stage, removes the noise from the x-ray images. Gaussian filter has been used. Second stage is a geometric transformation stage. Proposed work uses two l...

  14. Grating-based X-ray phase contrast for biomedical imaging applications

    International Nuclear Information System (INIS)

    Pfeiffer, Franz; Willner, Marian; Chabior, Michael; Herzen, Julia; Helmholtz-Zentrum Geesthacht, Geesthacht; Auweter, Sigrid; Reiser, Maximilian; Bamberg, Fabian

    2013-01-01

    In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography. (orig.)

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  16. Evaluation of the GSO:Ce scintillator in the X-ray energy range from 40 to 140 kV for possible applications in medical X-ray imaging

    International Nuclear Information System (INIS)

    Nikolopoulos, D.; Valais, I.; Kandarakis, I.; Cavouras, D.; Linardatos, D.; Sianoudis, I.; Louizi, A.; Dimitropoulos, N.; Vattis, D.; Episkopakis, A.; Nomicos, C.; Panayiotakis, G.

    2006-01-01

    The purpose of the present study was to evaluate, under X-ray medical imaging conditions, the X-ray luminescence efficiency (XLE) and the optical quantum gain (OQG) of the Gd 2 SiO 5 :Ce scintillator in single crystal form, suitable for tomographic applications. Intrinsic physical properties and light emission characteristics of the Gd 2 SiO 5 :Ce scintillator, were also studied. Both experimental and Monte Carlo techniques were used. Various X-ray tube voltages (40-140 kV), currently employed in X-ray imaging applications, were used. XLE was found to vary slowly with X-ray tube voltage from (0.021±0.003) to (0.017±0.003). OQG varied from (317±18) to (466±23) light photons per incident X-ray. These values were adequately high for imaging applications using the particular energy range. Additionally, it was found by Monte Carlo simulations that for crystal thicknesses higher than 0.5 cm both XLE and OQG reached saturation levels, indicating that higher thickness crystals are of no practical use in X-ray medical imaging

  17. Detection of pulmonary nodules on lung X-ray images. Studies on multi-resolutional filter and energy subtraction images

    International Nuclear Information System (INIS)

    Sawada, Akira; Sato, Yoshinobu; Kido, Shoji; Tamura, Shinichi

    1999-01-01

    The purpose of this work is to prove the effectiveness of an energy subtraction image for the detection of pulmonary nodules and the effectiveness of multi-resolutional filter on an energy subtraction image to detect pulmonary nodules. Also we study influential factors to the accuracy of detection of pulmonary nodules from viewpoints of types of images, types of digital filters and types of evaluation methods. As one type of images, we select an energy subtraction image, which removes bones such as ribs from the conventional X-ray image by utilizing the difference of X-ray absorption ratios at different energy between bones and soft tissue. Ribs and vessels are major causes of CAD errors in detection of pulmonary nodules and many researches have tried to solve this problem. So we select conventional X-ray images and energy subtraction X-ray images as types of images, and at the same time select ∇ 2 G (Laplacian of Guassian) filter, Min-DD (Minimum Directional Difference) filter and our multi-resolutional filter as types of digital filters. Also we select two evaluation methods and prove the effectiveness of an energy subtraction image, the effectiveness of Min-DD filter on a conventional X-ray image and the effectiveness of multi-resolutional filter on an energy subtraction image. (author)

  18. Searching for Primordial Black Holes in the Radio and X-Ray Sky.

    Science.gov (United States)

    Gaggero, Daniele; Bertone, Gianfranco; Calore, Francesca; Connors, Riley M T; Lovell, Mark; Markoff, Sera; Storm, Emma

    2017-06-16

    We model the accretion of gas onto a population of massive primordial black holes in the Milky Way and compare the predicted radio and x-ray emission with observational data. We show that, under conservative assumptions on the accretion process, the possibility that O(10)M_{⊙} primordial black holes can account for all of the dark matter in the Milky Way is excluded at 5σ by a comparison with a Very Large Array radio catalog at 1.4 GHz and at ≃40σ by a comparison with a Chandra x-ray catalog (0.5-8 keV). We argue that this method can be used to identify such a population of primordial black holes with more sensitive future radio and x-ray surveys.

  19. In-line X-ray lensless imaging with lithium fluoride film detectors

    International Nuclear Information System (INIS)

    Bonfigli, F.; Cecilia, A.; Bateni, S. Heidari; Nichelatti, E.; Pelliccia, D.; Somma, F.; Vagovic, P.; Vincenti, M.A.; Baumbach, T.; Montereali, R.M.

    2013-01-01

    In this work, we present preliminary in-line X-ray lensless projection imaging results at a synchrotron facility by using novel solid-state detectors based on non-destructive readout of photoluminescent colour centres in lithium fluoride thin films. The peculiarities of LiF radiation detectors are high spatial resolution on a large field of view, wide dynamic range, versatility and simplicity of use. These properties offered the opportunity to test a broadband X-ray synchrotron source for lensless projection imaging experiments at the TopoTomo beamline of the ANKA synchrotron facility by using a white beam spectrum (3–40 keV). Edge-enhancement effects were observed for the first time on a test object; they are discussed and compared with simulations, on the basis of the colour centre photoluminescence linear response found in the investigated irradiation conditions. -- Highlights: ► We performed broadband X-ray imaging at synchrotron by novel LiF imaging detectors. ► X-ray phase contrast experiments on LiF crystals and thin films were performed. ► Photoluminescent high-quality X-images on a LiF film only 1 μm thick were obtained. ► Edge-enhancement effects were detected and compared with simulations. ► A linearity of colour centre fluorescence response of LiF film was found

  20. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Maccarone, Thomas J.; Chakrabarty, Deepto; Gendreau, Keith C.; Arzoumanian, Zaven; Jenke, Peter; Ballantyne, David; Bozzo, Enrico; Brandt, Soren; Brenneman, Laura; Christophersen, Marc; DeRosa, Alessandra; Feroci, Marco; Goldstein, Adam; Hartmann, Dieter; Hernanz, Margarita; McDonald, Michael; Phlips, Bernard; Remillard, Ronald; Stevens, Abigail; Tomsick, John; Watts, Anna; Wood, Kent S.; Zane, Silvia; STROBE-X Collaboration

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. We include updated instrument designs resulting from the GSFC IDL run in November 2017.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO/Virgo and neutrino events. Extragalactic science, such as constraining bulk metalicity

  1. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.; hide

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of

  2. GBM Observations of Be X-Ray Binary Outbursts

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  3. Design of a compact high-energy setup for x-ray phase-contrast imaging

    Science.gov (United States)

    Schüttler, Markus; Yaroshenko, Andre; Bech, Martin; Potdevin, Guillaume; Malecki, Andreas; Chabior, Michael; Wolf, Johannes; Tapfer, Arne; Meiser, Jan; Kunka, Danays; Amberger, Maximilian; Mohr, Jürgen; Pfeiffer, Franz

    2014-03-01

    The main shortcoming of conventional biomedical x-ray imaging is the weak soft-tissue contrast caused by the small differences in the absorption coefficients between different materials. This issue can be addressed by x-ray phasesensitive imaging approaches, e.g. x-ray Talbot-Lau grating interferometry. The advantage of the three-grating Talbot-Lau approach is that it allows to acquire x-ray phase-contrast and dark-field images with a conventional lab source. However, through the introduction of the grating interferometer some constraints are imposed on the setup geometry. In general, the grating pitch and the mean x-ray energy determine the setup dimensions. The minimal length of the setup increases linearly with energy and is proportional to p2, where p is the grating pitch. Thus, a high-energy (100 keV) compact grating-based setup for x-ray imaging can be realized only if gratings with aspect-ratio of approximately 300 and a pitch of 1-2 μm were available. However, production challenges limit the availability of such gratings. In this study we consider the use of non-binary phase-gratings as means of designing a more compact grating interferometer for phase-contrast imaging. We present simulation and experimental data for both monochromatic and polychromatic case. The results reveal that phase-gratings with triangular-shaped structures yield visibilities that can be used for imaging purposes at significantly shorter distances than binary gratings. This opens the possibility to design a high-energy compact setup for x-ray phase-contrast imaging. Furthermore, we discuss different techniques to achieve triangular-shaped phase-shifting structures.

  4. High-speed videography combined with an x-ray image intensifier for dynamic radiography

    International Nuclear Information System (INIS)

    Bryant, L.E. Jr.

    1983-01-01

    The Spin Physics SP-2000 high-speed video system can be combined with an x-ray source, a dynamic event having internal (not directly visible) movement and an x-ray image intensifier to perform dynamic radiography. The cesium iodide input fluor and P-20 output fluor of the image intensifier have rapid decay to allow x-ray imaging up to 12,000 pictures per second. Applications of this technique include internal functioning of a compressor, turbulent-water action, and other mechanical actions

  5. CCD-based X-ray detectors for X-ray diffraction studies

    International Nuclear Information System (INIS)

    Ito, K.; Amemiya, Y.

    1999-01-01

    CCD-based X-ray detectors are getting to be used for X-ray diffraction studies especially in the studies where real time (automated) measurements and time-resolved measurements are required. Principles and designs of two typical types of CCD-based detectors are described; one is ths system in which x-ray image intensifiers are coupled to maximize the detective quantum efficiency for time-resolved measurements, and the other is the system in which tapered optical fibers are coupled for the reduction of the image into the CCD, which is optimized for automated measurements for protein crystallography. These CCD-based X-ray detectors have an image distortion and non-uniformity of response to be corrected by software. Correction schemes which we have developed are also described. (author)

  6. REgolith X-Ray Imaging Spectrometer (REXIS) Aboard NASA’s OSIRIS-REx Mission

    Science.gov (United States)

    Hong, JaeSub; Allen, Branden; Grindlay, Jonathan E.; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K; Chodas, Mark; Smith, Matthew W; Bautz, Mark W.; Kissel, Steven E; Villasenor, Jesus Noel; Oprescu, Antonia

    2014-06-01

    The REgolith X-Ray Imaging Spectrometer (REXIS) is a student-led instrument being designed, built, and operated as a collaborative effort involving MIT and Harvard. It is a part of NASA's OSIRIS-REx mission, which is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of the primitive carbonaceous chondrite-like asteroid 101955 Bennu in 2019. REXIS will determine spatial variations in elemental composition of Bennu's surface through solar-induced X-ray fluorescence. REXIS consists of four X-ray CCDs in the detector plane and an X-ray mask. It is the first coded-aperture X-ray telescope in a planetary mission, which combines the benefit of high X-ray throughput of wide-field collimation with imaging capability of a coded-mask, enabling detection of elemental surface distributions at approximately 50-200 m scales. We present an overview of the REXIS instrument and the expected performance.

  7. X-ray photon-in/photon-out methods for chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Matthew A.

    2010-03-24

    Most interesting materials in nature are heterogeneous, so it is useful to have analytical techniques with spatial resolution sufficient to resolve these heterogeneities.This article presents the basics of X-ray photon-in/photon-out chemical imaging. This family of methods allows one to derive images reflectingthe chemical state of a given element in a complex sample, at micron or deep sub-micron scale. X-ray chemical imaging is relatively non-destructiveand element-selective, and requires minimal sample preparation. The article presents the basic concepts and some considerations of data takingand data analysis, along with some examples.

  8. The pin pixel detector--X-ray imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a soft X-ray gas pixel detector, which uses connector pins for the anodes is reported. Based on a commercial 100 pin connector block, a prototype detector of aperture 25.4 mm centre dot 25.4 mm can be economically fabricated. The individual pin anodes all show the expected characteristics of small gas detectors capable of counting rates reaching 1 MHz per pin. A 2-dimensional resistive divide readout system has been developed to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics.

  9. Design of a prototype tri-electrode ion-chamber for megavoltage X-ray imaging

    International Nuclear Information System (INIS)

    Samant, Sanjiv S.; Gopal, Arun; Jain, Jinesh; Xia Junyi; DiBianca, Frank A.

    2007-01-01

    High-energy (megavoltage) X-ray imaging is widely used in industry (e.g., aerospace, construction, material sciences) as well as in health care (radiation therapy). One of the fundamental problems with megavoltage imaging is poor contrast and spatial resolution in the detected images due to the dominance of Compton scattering at megavoltage X-ray energies. Therefore, although megavoltage X-rays can be used to image highly attenuating objects that cannot be imaged at kilovoltage energies, the former does not provide the high image quality that is associated with the latter. A high contrast and spatial resolution detector for high-energy X-ray fields called the kinestatic charge detector (KCD) is presented here. The KCD is a tri-electrode ion-chamber based on highly pressurized noble gas. The KCD operates in conjunction with a strip-collimated X-ray beam (for high scatter rejection) to scan across the imaging field. Its thick detector design and unique operating principle provides enhanced charge signal integration for high quality imaging (quantum efficiency ∼50%) despite the unfavorable implications of high-energy X-ray interactions on image quality. The proposed design for a large-field prototype KCD includes a cylindrical pressure chamber along with 576 signal-collecting electrodes capable of resolving at 2 mm -1 . The collecting electrodes are routed out of the chamber through the flat end-cap, thereby optimizing the mechanical strength of the chamber. This article highlights the simplified design of the chamber using minimal components for simple assembly. In addition, fundamental imaging measurements and estimates of ion recombination that were performed on a proof-of-principle test chamber are presented. The imaging performance of the prototype KCD was found to be an order-of-magnitude greater than commercial phosphor screen based flat-panel systems, demonstrating the potential for high-quality megavoltage imaging for a variety of industrial applications

  10. Automated analysis of hot spot X-ray images at the National Ignition Facility

    Science.gov (United States)

    Khan, S. F.; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Kyrala, G. A.; Springer, P.; Bradley, D. K.; Town, R. P. J.

    2016-11-01

    At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ˜4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.

  11. Automated analysis of hot spot X-ray images at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S. F., E-mail: khan9@llnl.gov; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Springer, P.; Bradley, D. K.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ∼4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.

  12. Using x-ray mammograms to assist in microwave breast image interpretation.

    Science.gov (United States)

    Curtis, Charlotte; Frayne, Richard; Fear, Elise

    2012-01-01

    Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR) imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.

  13. A new streaked soft x-ray imager for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Benstead, J., E-mail: james.benstead@awe.co.uk; Morton, J.; Guymer, T. M.; Garbett, W. J.; Rubery, M. S.; Skidmore, J. W. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Moore, A. S.; Ahmed, M. F.; Soufli, R.; Pardini, T.; Hibbard, R. L.; Bailey, C. G.; Bell, P. M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bedzyk, M.; Shoup, M. J.; Reagan, S.; Agliata, T.; Jungquist, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Schmidt, D. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); and others

    2016-05-15

    A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.

  14. Extending the methodology of X-ray crystallography to allow X-ray microscopy without X-ray optics

    International Nuclear Information System (INIS)

    Miao Jianwei; Kirz, Janos; Sayre, David; Charalambous, Pambos

    2000-01-01

    We demonstrate that the soft X-ray diffraction pattern from a micron-size noncrystalline specimen can be recorded and inverted to form a high-resolution image. The phase problem is overcome by oversampling the diffraction pattern. The image is obtained using an iterative algorithm. The technique provides a method for X-ray microscopy requiring no high-resolution X-ray optical elements or detectors. In the present work, a resolution of approximately 60 nm was obtained, but we believe that considerably higher resolution can be achieved

  15. Microchannel plates as detectors and amplifiers of x-ray images

    International Nuclear Information System (INIS)

    Wiedwald, J.D.

    1992-08-01

    Two decades of development driven largely by military night vision applications has led to the availability of a wide selection of microchannel plates for use by the scientific community. Microchannel plates (MCPs) are electron multipliers which retain a high degree of spatial resolution making it possible to amplify electron images by factors of 1,000 or more. Plates having 40 mm diameter and intrinsic spatial resolution of 8 μm are readily available. By coating the front surface of a microchannel plate with an x-ray sensitive photocathode material, x-ray images can be detected and amplified. While the detective quantum efficiency is relatively low, the low noise of the MCP (including the ability to construct images by single photon detection) and its high dynamic range make it suitable for some x-ray microscopy applications. The principles of MCP operation and typical performance are discussed. Examples of related applications and commercial capabilities are also presented

  16. Application of X-ray CCD camera in X-ray spot diagnosis of rod-pinch diode

    International Nuclear Information System (INIS)

    Song Yan; Zhou Ming; Song Guzhou; Ma Jiming; Duan Baojun; Han Changcai; Yao Zhiming

    2015-01-01

    The pinhole imaging technique is widely used in the measurement of X-ray spot of rod-pinch diode. The X-ray CCD camera, which was composed of film, fiber optic taper and CCD camera, was employed to replace the imaging system based on scintillator, lens and CCD camera in the diagnosis of X-ray spot. The resolution of the X-ray CCD camera was studied. The resolution is restricted by the film and is 5 lp/mm in the test with Pb resolution chart. The frequency is 1.5 lp/mm when the MTF is 0.5 in the test with edge image. The resolution tests indicate that the X-ray CCD camera can meet the requirement of the diagnosis of X-ray spot whose scale is about 1.5 mm when the pinhole imaging magnification is 0.5. At last, the image of X-ray spot was gained and the restoration was implemented in the diagnosis of X-ray spot of rod-pinch diode. (authors)

  17. X-ray crystal imagers for inertial confinement fusion experiments (invited)

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Pawley, C.; Brown, C.M.; Seely, J.

    1999-01-01

    We report on our continued development of high resolution monochromatic x-ray imaging system based on spherically curved crystals. This system can be extensively used in the relevant experiments of the inertial confinement fusion (ICF) program. The system is currently used, but not limited to diagnostics of the targets ablatively accelerated by the Nike KrF laser. A spherically curved quartz crystal (2d=6.68703 Angstrom, R=200mm) has been used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. Another quartz crystal (2d=8.5099 Angstrom, R=200mm) with the H-like Mg resonance line (1473 eV) has been used for backlit imaging with higher contrast. The spatial resolution of the x-ray optical system is 1.7 μm in selected places and 2 - 3 μm over a larger area. A second crystal with a separate backlighter was added to the imaging system. This makes it possible to make use of all four strips of the framing camera. Time resolved, 20x magnified, backlit monochromatic images of CH planar targets driven by the Nike facility have been obtained with spatial resolution of 2.5 μm in selected places and 5 μm over the focal spot of the Nike laser. We are exploring the enhancement of this technique to the higher and lower backlighter energies. copyright 1999 American Institute of Physics

  18. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  19. Ptychographic x-ray imaging of surfaces on crystal truncation rod

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chenhui; Barbour, Andi; Liu, Yaohua; You, Hoydoo, E-mail: hyou@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Harder, Ross; Xu, Ruqing [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Diaz, Ana; Menzel, Andreas [Paul Scherrer Institut, Villigen PSI 5232 (Switzerland); Komanicky, Vladimir [Faculty of Sciences, Safarik University, Kosice 04154 (Slovakia); Huang, Xiaojing [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Pierce, Michael S. [School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623 (United States)

    2015-03-09

    Ptychography is a high-resolution imaging technique, which does not require lenses for image magnification and which provides phase contrast with high sensitivity. Here, we propose to use x-ray ptychography for the imaging of surface structure in crystalline samples. We show that ptychography can be used to image atomic step structures using coherent diffraction patterns recorded along the crystal truncation rod of a crystal surface. In a proof-of-concept experiment on a Pt (111) sample, we present ptychographic reconstructions showing features consistent with surface steps. Due to the penetration power of x-rays, this method could find interesting applications for the study of surface structures under buried interfaces or in harsh environments.

  20. Ptychographic x-ray imaging of surfaces on crystal truncation rod

    International Nuclear Information System (INIS)

    Zhu, Chenhui; Barbour, Andi; Liu, Yaohua; You, Hoydoo; Harder, Ross; Xu, Ruqing; Diaz, Ana; Menzel, Andreas; Komanicky, Vladimir; Huang, Xiaojing; Pierce, Michael S.

    2015-01-01

    Ptychography is a high-resolution imaging technique, which does not require lenses for image magnification and which provides phase contrast with high sensitivity. Here, we propose to use x-ray ptychography for the imaging of surface structure in crystalline samples. We show that ptychography can be used to image atomic step structures using coherent diffraction patterns recorded along the crystal truncation rod of a crystal surface. In a proof-of-concept experiment on a Pt (111) sample, we present ptychographic reconstructions showing features consistent with surface steps. Due to the penetration power of x-rays, this method could find interesting applications for the study of surface structures under buried interfaces or in harsh environments

  1. An update on carbon nanotube-enabled X-ray sources for biomedical imaging.

    Science.gov (United States)

    Puett, Connor; Inscoe, Christina; Hartman, Allison; Calliste, Jabari; Franceschi, Dora K; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2018-01-01

    A new imaging technology has emerged that uses carbon nanotubes (CNT) as the electron emitter (cathode) for the X-ray tube. Since the performance of the CNT cathode is controlled by simple voltage manipulation, CNT-enabled X-ray sources are ideal for the repetitive imaging steps needed to capture three-dimensional information. As such, they have allowed the development of a gated micro-computed tomography (CT) scanner for small animal research as well as stationary tomosynthesis, an experimental technology for large field-of-view human imaging. The small animal CT can acquire images at specific points in the respiratory and cardiac cycles. Longitudinal imaging therefore becomes possible and has been applied to many research questions, ranging from tumor response to the noninvasive assessment of cardiac output. Digital tomosynthesis (DT) is a low-dose and low-cost human imaging tool that captures some depth information. Known as three-dimensional mammography, DT is now used clinically for breast imaging. However, the resolution of currently-approved DT is limited by the need to swing the X-ray source through space to collect a series of projection views. An array of fixed and distributed CNT-enabled sources provides the solution and has been used to construct stationary DT devices for breast, lung, and dental imaging. To date, over 100 patients have been imaged on Institutional Review Board-approved study protocols. Early experience is promising, showing an excellent conspicuity of soft-tissue features, while also highlighting technical and post-acquisition processing limitations that are guiding continued research and development. Additionally, CNT-enabled sources are being tested in miniature X-ray tubes that are capable of generating adequate photon energies and tube currents for clinical imaging. Although there are many potential applications for these small field-of-view devices, initial experience has been with an X-ray source that can be inserted into the

  2. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  3. X-ray emission from comets

    International Nuclear Information System (INIS)

    Dennerl, Konrad

    1999-01-01

    When comet Hyakutake (C/1996 B2) encountered Earth in March 1996 at a minimum distance of only 15 million kilometers (40 times the distance of the moon), x-ray and extreme ultraviolet emission was discovered for the first time from a comet. The observations were performed with the astronomy satellites ROSAT and EUVE. A systematic search for x-rays from comets in archival data, obtained during the ROSAT all-sky survey in 1990/91, resulted in the discovery of x-ray emission from four additional comets. They were detected at seven occasions in total, when they were optically 300 to 30 000 times fainter than Hyakutake. These findings indicated that comets represent a new class of celestial x-ray sources. Subsequent detections of x-ray emission from additional comets with the satellites ROSAT, EUVE, and BeppoSAX confirmed this conclusion. The x-ray observations have obviously revealed the presence of a process in comets which had escaped attention until recently. This process is most likely charge exchange between highly charged heavy ions in the solar wind and cometary neutrals. The solar wind, a stream of particles continuously emitted from the sun with ≅ 400 km s -1 , consists predominantly of protons, electrons, and alpha particles, but contains also a small fraction (≅0.1%) of highly charged heavier ions, such as C 6+ ,O 6+ ,Ne 8+ ,Si 9+ ,Fe 11+ . When these ions capture electrons from the cometary gas, they attain highly excited states and radiate a large fraction of their excitation energy in the extreme ultraviolet and x-ray part of the spectrum. Charge exchange reproduces the intensity, the morphology and the spectrum of the observed x-ray emission from comets very well

  4. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    Science.gov (United States)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  5. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  6. Novel x-ray imaging methods at the Nova Laser Facility

    International Nuclear Information System (INIS)

    Ress, D.; DaSilva, L.B.; London, R.A.; Trebes, J.E.; Lerche, R.A.; Bradley, D.K.

    1994-01-01

    We are pursuing several novel x-ray imaging schemes to measure plasma parameters in inertial-confinement fusion experiments. This paper will review two quite successful approaches, the soft x-ray moire deflectometer, and the annular (ring) coded-aperture microscope. The deflectometer is the newer diagnostic, and this paper will concentrate on this topic. We will describe the operating principles of moire deflectometry, give the motivations for soft x-ray probing, describe the physical apparatus in detail, and present some sample images and results. The ring coded-aperture microscope has been described previously, so here we will only briefly review the principle of the instrument. We will concentrate on the signal-to-noise ratio calculations that motivate the use of annular coded apertures, and describe recent work to predict and measure the resolution of the instrument

  7. Fine-pitch glass GEM for high-resolution X-ray imaging

    International Nuclear Information System (INIS)

    Fujiwara, T.; Toyokawa, H.; Mitsuya, Y.

    2016-01-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm 2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm 2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  8. Automated materials discrimination using 3D dual energy X ray images

    International Nuclear Information System (INIS)

    Wang, Ta Wee

    2002-01-01

    The ability of a human observer to identify an explosive device concealed in complex arrangements of objects routinely encountered in the 2D x-ray screening of passenger baggage at airports is often problematic. Standard dual-energy x-ray techniques enable colour encoding of the resultant images in terms of organic, inorganic and metal substances. This transmission imaging technique produces colour information computed from a high-energy x-ray signal and a low energy x-ray signal (80keV eff ≤ 13) to be automatically discriminated from many layers of overlapping substances. This is achieved by applying a basis materials subtraction technique to the data provided by a wavelet image segmentation algorithm. This imaging technique is reliant upon the image data for the masking substances to be discriminated independently of the target material. Further work investigated the extraction of depth data from stereoscopic images to estimate the mass density of the target material. A binocular stereoscopic dual-energy x-ray machine previously developed by the Vision Systems Group at The Nottingham Trent University in collaboration with The Home Office Science and Technology Group provided the image data for the empirical investigation. This machine utilises a novel linear castellated dual-energy x-ray detector recently developed by the Vision Systems Group. This detector array employs half the number of scintillator-photodiode sensors in comparison to a conventional linear dual-energy sensor. The castellated sensor required the development of an image enhancement algorithm to remove the spatial interlace effect in the resultant images prior to the calibration of the system for materials discrimination. To automate the basis materials subtraction technique a wavelet image segmentation and classification algorithm was developed. This enabled overlapping image structures in the x-rayed baggage to be partitioned. A series of experiments was conducted to investigate the

  9. XIPE the X-Ray Imaging Polarimetry Explorer

    Science.gov (United States)

    Soffitta, Paolo; Barcons, Xavier; Bellazzini, Ronaldo; Braga, Joao; Costa, Enrico; Fraser, George W.; Gburek, Szymon; Huovelin, Juhani; Matt, Giorgio; Pearce, Mark; hide

    2013-01-01

    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 in the 210 keV band in 105 s for pointed observations, and 0.6 for an X10 class solar flare in the 1535 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14

  10. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    DEFF Research Database (Denmark)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally...... resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1-4.4 MK and emission...

  11. Trends and Technological Developments in Medical X-ray Imaging

    International Nuclear Information System (INIS)

    Iacobovici, E.; Ben-Shlomo, A.

    2004-01-01

    Since the very beginning of X-rays discovery, about one hundred years ago, there has been an ongoing development of technological means, focusing on image quality and imaging capabilities improvement, as well as on awareness and radiation dosage reduction

  12. Probing the Mysteries of the X-Ray Binary 4U 1210-64 with ASM, MAXI and Suzaku

    Science.gov (United States)

    Coley, Joel B.; Corbet, R.; Mukai, K.; Pottschmidt, K.

    2013-01-01

    Optical and X-ray observations of 4U 1210-64 (1ES 1210-646) suggest that the source is a High Mass X-ray Binary (HMXB) probably powered by the Be mechanism. Data acquired by the RXTE All Sky Monitor (ASM), the ISS Monitor of All-sky X-ray Image (MAXI) and Suzaku provide a detailed temporal and spectral description of this poorly understood source. Long-term data produced by ASM and MAXI indicate that the source shows two distinct high and low states. A 6.7-day orbital period of the system was found in folded light curves produced by both ASM and MAXI. A two day Suzaku observation in Dec. 2010 took place during a transition from the minimum to the maximum of the folded light curve. The two day Suzaku observation reveals large variations in flux indicative of strong orbit to orbit variability. Flares in the Suzaku light curve can reach nearly 1.4 times the mean count rate. From a spectral analysis of the Suzaku data, emission lines in the Fe K alpha region were detected at 6.4 keV, 6.7 keV and 6.97 keV interpreted as FeI, FeXXV and FeXXVI. In addition, emission lines were observed at approximately 1.0 and 2.6 keV, corresponding to NeX and SXVI respectively. Thermal bremsstrahlung or power law models both modified by interstellar and partially covering absorption provide a good fit to the continuum data. This source is intriguing for these reasons: i) No pulse period was observed; ii) 6.7 day orbital period is much less than typical orbital periods seen in Be/X-ray Binaries; iii) The optical companion is a B5V--an unusual spectral class for an HMXB; iv) There are extended high and low X-ray states.

  13. X-ray directional dark-field contrast for sub-pixel resolution imaging of bone microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Biernath, Thomas; Malecki, Andreas; Potdevin, Guillaume; Bech, Martin; Pfeiffer, Franz [Department of Physics (E17) and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen (Germany); Jensen, Torben [Niels Bohr Institute, University of Copenhagen (Denmark)

    2011-07-01

    The basic principles of X-ray image formation in radiography have remained essentially unchanged since Roentgen first discovered X-rays over a hundred years ago. The conventional approach relies on X-ray absorption as the sole source of contrast and thus gives an information about the density changes in the sample. The recently introduced X-ray dark field imaging technique (DFI) yields a fundamentally different signal: DFI is a measure of the sample small angle scattering signal and thus yields information about the sample microstructure. Such measurements can be effectively performed thanks to a Laue-Talbot grating interferometer. This presentation shows recent experimental directional dark-field imaging results of various samples both from synchrotron and classical X-ray tube sources.

  14. X-ray imaging bilinear staggered GaAs detectors

    Energy Technology Data Exchange (ETDEWEB)

    Achmadullin, R.A.; Dvoryankin, V.F. E-mail: vfd217@ire216.msk.su; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A

    2004-09-21

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 {mu}A min/(Gy cm{sup 2}). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received.

  15. X-ray imaging bilinear staggered GaAs detectors

    International Nuclear Information System (INIS)

    Achmadullin, R.A.; Dvoryankin, V.F.; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A.

    2004-01-01

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 μA min/(Gy cm 2 ). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received

  16. X-ray study of a sample of FR0 radio galaxies: unveiling the nature of the central engine

    Science.gov (United States)

    Torresi, E.; Grandi, P.; Capetti, A.; Baldi, R. D.; Giovannini, G.

    2018-06-01

    Fanaroff-Riley type 0 radio galaxies (FR0s) are compact radio sources that represent the bulk of the radio-loud active galactic nuclei (AGN) population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first X-ray study of a sample of 19 FR0 radio galaxies selected from the Sloan Digital Sky Survey/NRAO VLA Sky Survey/Faint Images of the Radio Sky at Twenty-cm sample of Best & Heckman, with redshift ≤0.15, radio size ≤10 kpc, and optically classified as low-excitation galaxies. The X-ray spectra are modelled with a power-law component absorbed by Galactic column density with, in some cases, a contribution from thermal extended gas. The X-ray photons are likely produced by the jet as attested by the observed correlation between X-ray (2-10 keV) and radio (5 GHz) luminosities, similar to Fanaroff-Riley type I radio galaxies (FRIs). The estimated Eddington-scaled luminosities indicate a low accretion rate. Overall, we find that the X-ray properties of FR0s are indistinguishable from those of FRIs, thus adding another similarity between AGN associated with compact and extended radio sources. A comparison between FR0s and low-luminosity BL Lacs rules out important beaming effects in the X-ray emission of the compact radio galaxies. FR0s have different X-ray properties with respect to young radio sources (e.g. gigahertz-peaked spectrum/compact steep spectrum sources), generally characterized by higher X-ray luminosities and more complex spectra. In conclusion, the paucity of extended radio emission in FR0s is probably related to the intrinsic properties of their jets that prevent the formation of extended structures, and/or to intermittent activity of their engines.

  17. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  18. An investigation of infection control for x-ray cassettes in a diagnostic imaging department

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Matthew [School of Allied Health Professions and Science, Faculty of Health, Wellbeing and Science, University Campus Suffolk, Rope Walk, Ipswich, Suffolk, IP4 1LT (United Kingdom); Harvey, Jane M. [School of Allied Health Professions and Science, Faculty of Health, Wellbeing and Science, University Campus Suffolk, Rope Walk, Ipswich, Suffolk, IP4 1LT (United Kingdom)], E-mail: j.harvey@ucs.ac.uk

    2008-11-15

    Introduction: This research was conducted to investigate if X-ray cassettes could be a possible source of pathogens capable of causing nosocomial infections, and if they could be a possible vector for cross infection within the hospital environment. Method: The research involved the swabbing of X-ray cassettes in a Diagnostic Imaging Department of a large hospital in the east of England. Two areas of the Diagnostic Imaging Department were included in the study. Research concentrated on X-ray cassettes used for mobile radiography, accident and emergency and inpatient use. Forty cassettes were swabbed in total specifically for general levels of bacterial contamination, also for the presence or absence of methicillin-resistant Staphylococcus aureus (MRSA). A mapping exercise was completed following the location of an X-ray cassette typically used in mobile radiography. The exercise noted the level of direct contact with patient's skin and other possible routes of infection. Results: The results demonstrated that there were large levels of growth of samples taken from cassettes and developed in the Microbiology Department. Coagulase-negative Staphylococcus, Micrococci, Diptheroids and species of Bacillus were all identified. The mapping exercise in which the journey of a 35/43 cm cassette used for mobile radiography was tracked found that contact with patient's skin and potential pathogens or routes of cross infection was a common occurrence whilst undertaking mobile radiography. Conclusion: The research has identified the presence of bacterial contamination on cassettes. The research established that X-ray cassettes/imaging plates are often exposed to pathogens and possible routes of cross infection; also that patient's skin often comes directly in contact with the X-ray cassette/imaging plate. The research also shows that as cassettes/imaging plates are a potential source of cross infection, the Diagnostic Imaging Department may be partly responsible

  19. Imaging and mapping the impact of clouds on skyglow with all-sky photometry.

    Science.gov (United States)

    Jechow, Andreas; Kolláth, Zoltán; Ribas, Salvador J; Spoelstra, Henk; Hölker, Franz; Kyba, Christopher C M

    2017-07-27

    Artificial skyglow is constantly growing on a global scale, with potential ecological consequences ranging up to affecting biodiversity. To understand these consequences, worldwide mapping of skyglow for all weather conditions is urgently required. In particular, the amplification of skyglow by clouds needs to be studied, as clouds can extend the reach of skyglow into remote areas not affected by light pollution on clear nights. Here we use commercial digital single lens reflex cameras with fisheye lenses for all-sky photometry. We track the reach of skyglow from a peri-urban into a remote area on a clear and a partly cloudy night by performing transects from the Spanish town of Balaguer towards Montsec Astronomical Park. From one single all-sky image, we extract zenith luminance, horizontal and scalar illuminance. While zenith luminance reaches near-natural levels at 5 km distance from the town on the clear night, similar levels are only reached at 27 km on the partly cloudy night. Our results show the dramatic increase of the reach of skyglow even for moderate cloud coverage at this site. The powerful and easy-to-use method promises to be widely applicable for studies of ecological light pollution on a global scale also by non-specialists in photometry.

  20. A phase-contrast X-ray imaging system--with a 60x30 mm field of view--based on a skew-symmetric two-crystal X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio E-mail: a-yoneya@rd.hitachi.co.jp; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu Jin; Lwin, T.-T.; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    A phase-contrast X-ray imaging system - with a 60x30 mm field of view - for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60x30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples.