WorldWideScience

Sample records for all-sky infrared sasir

  1. The Synoptic All-Sky Infrared (SASIR) Survey

    CERN Document Server

    Bloom, Joshua S; Lee, William; González, J Jesús; Ramírez-Ruiz, Enrico; Bolte, Michael; Franco, José; Guichard, José; Carramiñana, Alberto; Avila-Reese, Vladimir; Bernstein, Rebecca; Bigelow, Bruce; Brodwin, Mark; Burgasser, Adam; Butler, Nat; Chávez, Miguel; Cobb, Bethany; Cook, Kem; Cruz-González, Irene; de Diego, José Antonio; Farah, Alejandro; Georgiev, Leonid; Girard, Julien; Hernández-Toledo, Hector; Jiménez-Bailón, Elena; Krongold, Yair; Mayya, Divakara; Meza, Juan; Miyaji, Takamitsu; Mújica, Raúl; Nugent, Peter; Porras, Alicia; Poznanski, Dovi; Raga, Alejandro; Richer, Michael; Rodríguez, Lino; Rosa, Daniel; Stanford, Adam; Szentgyorgyi, Andrew; Tenorio-Tagle, Guillermo; Thomas, Rollin; Valenzuela, Octavio; Watson, Alan M

    2009-01-01

    We are proposing to conduct a multicolor, synoptic infrared (IR) imaging survey of the Northern sky with a new, dedicated 6.5-meter telescope at San Pedro M\\'artir (SPM) Observatory. This initiative is being developed in partnership with astronomy institutions in Mexico and the University of California. The 4-year, dedicated survey, planned to begin in 2017, will reach more than 100 times deeper than 2MASS. The Synoptic All-Sky Infrared (SASIR) Survey will reveal the missing sample of faint red dwarf stars in the local solar neighborhood, and the unprecedented sensitivity over such a wide field will result in the discovery of thousands of z ~ 7 quasars (and reaching to z > 10), allowing detailed study (in concert with JWST and Giant Segmented Mirror Telescopes) of the timing and the origin(s) of reionization. As a time-domain survey, SASIR will reveal the dynamic infrared universe, opening new phase space for discovery. Synoptic observations of over 10^6 supernovae and variable stars will provide better dista...

  2. The infrared all-sky survey mission AKARI

    Science.gov (United States)

    Murakami, Hiroshi

    The AKARI, Japanese infrared astronomical satellite, was launched on 2006 February 21 and started the observation in May of the same year. It has performed the all-sky survey at 6 wavelength bands in the midand far-infrared, as well as more than 5,000 pointing observations, during the main mission period lasted until the liquid helium exhaustion on 2007 August 26. The all-sky survey covered more than 90 % of the entire sky with much higher spatial resolution than the IRAS catalogues. First version of AKARI infrared source catalogue will be released in 2009. In the pointing observation, a wide variety of objects, from the solar-system objects to the cosmologically distant galaxies, were observed systematically in near to far infrared. The early results of the pointing observations has been published recently. We are now preparing the post-helium mission where the pointing observations only in the near-infrared wavelength range are be performed with the cooling by the Stirling-cycle coolers. It has been confirmed that the sensitivity of the near-infrared array is kept high, although its operation temperature is higher than that in the liquid-helium cooling. Here we report the overview of the mission, and highlights of the scientific results as well as the observation plan of the post-helium mission planned to start from April 2008.

  3. The $AKARI$ Far-Infrared All-Sky Survey Maps

    CERN Document Server

    Doi, Yasuo; Ootsubo, Takafumi; Arimatsu, Ko; Tanaka, Masahiro; Kitamura, Yoshimi; Kawada, Mitsunobu; Matsuura, Shuji; Nakagawa, Takao; Morishima, Takahiro; Hattori, Makoto; Komugi, Shinya; White, Glenn J; Ikeda, Norio; Kato, Daisuke; Chinone, Yuji; Etxaluze, Mireya; Figueredo, Elysandra

    2015-01-01

    We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese $AKARI$ satellite. The survey covers $> 99$% of the sky in four photometric bands centred at 65 $\\mu$m, 90 $\\mu$m, 140 $\\mu$m, and 160 $\\mu$m with spatial resolutions ranging from 1 to 1.5 arcmin. These data provide crucial information for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since significant portion of its energy is emitted between $\\sim$50 and 200 $\\mu$m. The large-scale distribution of interstellar clouds, their thermal dust temperatures and column densities, can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use by the astronomical community.

  4. The AKARI far-infrared all-sky survey maps

    Science.gov (United States)

    Doi, Yasuo; Takita, Satoshi; Ootsubo, Takafumi; Arimatsu, Ko; Tanaka, Masahiro; Kitamura, Yoshimi; Kawada, Mitsunobu; Matsuura, Shuji; Nakagawa, Takao; Morishima, Takahiro; Hattori, Makoto; Komugi, Shinya; White, Glenn J.; Ikeda, Norio; Kato, Daisuke; Chinone, Yuji; Etxaluze, Mireya; Cypriano, Elysandra F.

    2015-06-01

    We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese AKARI satellite. The survey covers > 99% of the sky in four photometric bands centred at 65 μm, 90 μm, 140 μm, and 160 μm, with spatial resolutions ranging from 1' to 1{^''.}5. These data provide crucial information on the investigation and characterisation of the properties of dusty material in the interstellar medium (ISM), since a significant portion of its energy is emitted between ˜ 50 and 200 μm. The large-scale distribution of interstellar clouds, their thermal dust temperatures, and their column densities can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use in the astronomical community.

  5. AKARI Far-Infrared All-Sky Survey Maps

    CERN Document Server

    Doi, Yasuo; Kawada, Mitsunobu; Takita, Satoshi; Arimatsu, Ko; Ikeda, Norio; Kato, Daisuke; Kitamura, Yoshimi; Nakagawa, Takao; Ootsubo, Takafumi; Morishima, Takahiro; Hattori, Makoto; Tanaka, Masahiro; White, Glenn J; Etxaluze, Mireya; Shibai, Hiroshi

    2012-01-01

    Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~100 and 200 um. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range 50 -- 180 um. Covering >99% of the sky in four photometric bands with four filters centred at 65 um, 90 um, 140 um, and 160 um wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of <10 MJy sr-1, with absolute and relative photometric accuracies of <20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostar...

  6. Ultraluminous infrared galaxies in the AKARI all-sky survey

    Energy Technology Data Exchange (ETDEWEB)

    Kilerci Eser, E., E-mail: ecekilerci@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Goto, T. [National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Doi, Y., E-mail: tomo@phys.nthu.edu.tw, E-mail: doi@ea.c.u-tokyo.ac.jp [The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902 (Japan)

    2014-12-10

    We present a new catalog of 118 ultraluminous infrared galaxies (ULIRGs) and one hyperluminous infrared galaxy (HLIRG) by cross-matching the AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the final data release of the Two-Degree Field Galaxy Redshift Survey. Forty of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing or postmergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the active galactic nucleus fraction and infrared luminosity. We show that ULIRGs have a large offset from the main sequence up to z ∼ 1; their offset from the z ∼ 2 'main sequence' is relatively smaller. We find a result consistent with the previous studies showing that, compared to local star-forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We demonstrate for the first time that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex-0.5 dex) is comparable to the scatter of z ∼ 2-3 galaxies. We provide the largest local (0.050

  7. Ultraluminous Infrared Galaxies in the AKARI All Sky Survey

    CERN Document Server

    Eser, E Kilerci; Doi, Y

    2014-01-01

    We present a new catalog of 118 Ultraluminous Infrared Galaxies (ULIRGs) and one Hyperluminous Infrared Galaxy (HLIRG) by crossmatching AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the Final Data Release of the Two-Degree Field Galaxy Redshift Survey (2dFGRS). 40 of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing/post mergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the AGN fraction and IR luminosity. We show that ULIRGs have a large off-set from the 'main sequence' up to z~1; their off-set from the z~2 'main sequence' is relatively smaller. We find a consistent result with the previous studies showing that compared to local star forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We for the first time demonstrate that ULIRGs follow the fundamental metallicity relation (...

  8. Total infrared luminosity estimation from local galaxies in AKARI all sky survey

    CERN Document Server

    Solarz, A; Pollo, A

    2016-01-01

    We aim to use the a new and improved version of AKARI all sky survey catalogue of far-infrared sources to recalibrate the formula to derive the total infrared luminosity. We cross-match the faint source catalogue (FSC) of IRAS with the new AKARI-FIS and obtained a sample of 2430 objects. Then we calculate the total infrared (TIR) luminosity $L_{\\textrm{TIR}}$ from the Sanders at al. (1996) formula and compare it with total infrared luminosity from AKARI FIS bands to obtain new coefficients for the general relation to convert FIR luminosity from AKARI bands to the TIR luminosity.

  9. A Radiometric All-Sky Infrared Camera (RASICAM) for DES/CTIO

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Peter M.; Rogers, Howard; Schindler, Rafe H.; /SLAC

    2010-08-25

    A novel radiometric all-sky infrared camera [RASICAM] has been constructed to allow automated real-time quantitative assessment of night sky conditions for the Dark Energy Camera [DECam] located on the Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is optimized to detect the position, motion and optical depth of thin, high (8-10km) cirrus clouds and contrails by measuring their apparent temperature above the night sky background. The camera system utilizes a novel wide-field equiresolution catadioptic mirror system that provides sky coverage of 2{pi} azimuth and 14-90{sup o} from zenith. Several new technological and design innovations allow the RASICAM system to provide unprecedented cloud detection and IR-based photometricity quantification. The design of the RASICAM system is presented.

  10. Star-galaxy separation strategies for WISE-2MASS all-sky infrared galaxy catalogues

    Science.gov (United States)

    Kovács, András; Szapudi, István

    2015-04-01

    We combine photometric information of the Wide-Field Infrared Survey Explorer (WISE) and Two Micron All Sky Survey (2MASS) all-sky infrared data bases, and demonstrate how to produce clean and complete galaxy catalogues for future analyses. Adding 2MASS colours to WISE photometry improves star-galaxy separation efficiency substantially at the expense of losing a small fraction of the galaxies. We find that 93 per cent of the WISE objects within W1 training set from the Sloan Digital Sky Survey PhotoObj table with known star-galaxy separation, and determined redshift distribution of our sample from the Galaxy and Mass Assembly spectroscopic survey. Varying the combination of photometric parameters input into our algorithm we show that W1WISE - J2MASS is a simple and effective star-galaxy separator, capable of producing results comparable to the multidimensional SVM classification. We present a detailed description of our star-galaxy separation methods, and characterize the robustness of our tools in terms of contamination, completeness, and accuracy. We explore systematics of the full sky WISE-2MASS galaxy map, such as contamination from moon glow. We show that the homogeneity of the full sky galaxy map is improved by an additional J2MASS galaxy catalogue we present in this paper covers 21 200 deg2 with dusty regions masked out, and has an estimated stellar contamination of 1.2 per cent and completeness of 70.1 per cent among 2.4 million galaxies with zmed ≈ 0.14. WISE-2MASS galaxy maps with well controlled stellar contamination will be useful for spatial statistical analyses, including cross-correlations with other cosmological random fields, such as the cosmic microwave background. The same techniques also yield a statistically controlled sample of stars as well.

  11. The AKARI/IRC Mid-Infrared All-Sky Survey

    CERN Document Server

    Ishihara, Daisuke; Kataza, Hirokazu; Salama, Alberto; Alfageme, Carlos; Cassatella, Angelo; Cox, Nick; Garcia-Lario, Pedro; Stephenson, Craig; Cohen, Martin; Fujishiro, Naofumi; Fujiwara, Hideaki; Hasegawa, Sunao; Ita, Yoshifusa; Kim, Woojung; Matsuhara, Hideo; Murakami, Hiroshi; Muller, Thomas G; Nakagawa, Takao; Ohyama, Youichi; Oyabu, Shinki; Pyo, Jeonghyun; Sakon, Itsuki; Shibai, Hiroshi; Takita, Satoshi; Tanabe, Toshihiko; Uemizu, Kazunori; Ueno, Munetaka; Usui, Fumihiko; Wada, Takehiko; Watarai, Hiden ori; Yamamura, Issei; Yamauchi, Chisato

    2010-01-01

    Context : AKARI is the first Japanese astronomical satellite dedicated to infrar ed astronomy. One of the main purposes of AKARI is the all-sky survey performed with six infrared bands between 9 and 200um during the period from 2006 May 6 to 2007 August 28. In this paper, we present the mid-infrared part (9um and 18um b ands) of the survey carried out with one of the on-board instruments, the Infrar ed Camera (IRC). Aims : We present unprecedented observational results of the 9 and 18um AKARI al l-sky survey and detail the operation and data processing leading to the point s ource detection and measurements. Methods : The raw data are processed to produce small images for every scan and point sources candidates, above the 5-sigma noise level per single scan, are der ived. The celestial coordinates and fluxes of the events are determined statisti cally and the reliability of their detections is secured through multiple detect ions of the same source within milli-seconds, hours, and months from each other. Resu...

  12. The Great Observatories All-Sky LIRG Survey: Comparison of Ultraviolet and Far-Infrared Properties

    CERN Document Server

    Howell, Justin H; Mazzarella, Joseph M; Evans, Aaron S; Surace, Jason A; Sanders, David B; Petric, Andreea; Appleton, Phil; Bothun, Greg; Bridge, Carrie; Chan, Ben H P; Charmandaris, Vassilis; Frayer, David T; Haan, Sebastian; Inami, Hanae; Kim, Dong-Chan; Lord, Steven; Madore, Barry F; Melbourne, Jason; Schulz, Bernhard; U, Vivian; Vavilkin, Tatjana; Veilleux, Sylvain; Xu, Kevin

    2010-01-01

    The Great Observatories All-sky LIRG Survey (GOALS) consists of a complete sample of 202 Luminous Infrared Galaxies (LIRGs) selected from the IRAS Revised Bright Galaxy Sample (RBGS). The galaxies span the full range of interaction stages, from isolated galaxies to interacting pairs to late stage mergers. We present a comparison of the UV and infrared properties of 135 galaxies in GOALS observed by GALEX and Spitzer. For interacting galaxies with separations greater than the resolution of GALEX and Spitzer (2-6"), we assess the UV and IR properties of each galaxy individually. The contribution of the FUV to the measured SFR ranges from 0.2% to 17.9%, with a median of 2.8% and a mean of 4.0 +/- 0.4%. The specific star formation rate of the GOALS sample is extremely high, with a median value (3.9*10^{-10} yr^{-1}) that is comparable to the highest specific star formation rates seen in the Spitzer Infrared Nearby Galaxies Survey sample. We examine the position of each galaxy on the IR excess-UV slope (IRX-beta) ...

  13. WISE-2MASS all-sky infrared galaxy catalog for large scale structure

    CERN Document Server

    Kovács, András

    2014-01-01

    We combine photometric information of the WISE and 2MASS infrared all-sky surveys to produce a clean galaxy sample for large-scale structure research. Adding 2MASS colors improves star-galaxy separation substantially at the expense of loosing a small fraction of the galaxies: 93% of the WISE objects within the W1<15.2 mag limit have 2MASS observation as well. We use a class of supervised machine learning algorithms, Support Vector Machines (SVM), to classify objects in our large data set. We used SDSS PhotoObj table with known star-galaxy separation for a training set on classification, and the GAMA spectroscopic survey for determining the redshift distribution of our sample. Varying the combination of photometric parameters input into our algorithm revealed that W1-J is a simple and effective star-galaxy separator, capable of producing results comparable to the multi-dimensional SVM classification. The final catalog has an estimated ~2% stellar contamination among 5 million galaxies with median redshift o...

  14. A New All-Sky Catalogue of Candidate Protoplanetary Disks from Aggregated Optical and Infrared Surveys

    Science.gov (United States)

    Horenstein, Daniel; Lepine, Sebastien

    2017-01-01

    We present a catalogue of 199,460 sources with optical and infrared colors that are consistent with protoplanetary disks. First, a list of known protoplanetary disks is compiled from the literature, and lists of field stars are selected from regions presumed to have little ongoing star formation. Optical and infrared magnitudes from multiple photometric surveys, covering up to 14 different bands, are then combined for these sources and used to define color-color cuts that reliably distinguish stars with known disks from other field objects. These cuts are applied in an all-sky search of the AllWISE catalogue. Of the sources returned by this query, 11.4% are listed in SIMBAD; their classifications and aggregated magnitudes are used to define additional color-color cuts that efficiently distinguish known young stellar objects from sources of various other types. These further cuts are applied to all targets either not listed in SIMBAD or with inconclusive SIMBAD types to form the new catalogue of 199,460 stars with likely warm circumstellar disks. An estimated false positive rate of 36.1% implies the detection of approximately 127,000 heretofore unidentified protoplanetary disks. The positions of these candidates on the sky are largely consistent with a spatial distribution in the young Galactic disk, showing a high density of sources in the Galactic plane and a low density in the Galactic bulge and at high Galactic latitudes. In addition, a number of nearby star-forming regions are successfully recovered through this process, and they include many sources not previously reported to be young stellar objects.

  15. The Discovery of Infrared Rings in the Planetary Nebula NGC 1514 During the WISE All-Sky Survey

    CERN Document Server

    Ressler, Michael E; Wachter, Stefanie; Hoard, D W; Mainzer, Amy K; Wright, Edward L; 10.1088/0004-6256/140/6/1882

    2010-01-01

    We report the discovery of a pair of infrared, axisymmetric rings in the planetary nebula NGC 1514 during the course of the WISE all-sky mid-infrared survey. Similar structures are seen at visible wavelengths in objects such as the "Engraved Hourglass Nebula" (MyCn 18) and the "Southern Crab Nebula" (Hen 2-104). However, in NGC 1514 we see only a single pair of rings and they are easily observed only in the mid-infrared. These rings are roughly 0.2 pc in diameter, are separated by 0.05 pc, and are dominated by dust emission with a characteristic temperature of 160 K. We compare the morphology and color of the rings to the other nebular structures seen at visible, far-infrared, and radio wavelengths, and close with a discussion of a physical model and formation scenario for NGC 1514.

  16. All sky imaging observations in visible and infrared waveband for validation of satellite cloud and aerosol products

    Science.gov (United States)

    Lu, Daren; Huo, Juan; Zhang, W.; Liu, J.

    A series of satellite sensors in visible and infrared wavelengths have been successfully operated on board a number of research satellites, e.g. NOAA/AVHRR, the MODIS onboard Terra and Aqua, etc. A number of cloud and aerosol products are produced and released in recent years. However, the validation of the product quality and accuracy are still a challenge to the atmospheric remote sensing community. In this paper, we suggest a ground based validation scheme for satellite-derived cloud and aerosol products by using combined visible and thermal infrared all sky imaging observations as well as surface meteorological observations. In the scheme, a visible digital camera with a fish-eye lens is used to continuously monitor the all sky with the view angle greater than 180 deg. The digital camera system is calibrated for both its geometry and radiance (broad blue, green, and red band) so as to a retrieval method can be used to detect the clear and cloudy sky spatial distribution and their temporal variations. A calibrated scanning thermal infrared thermometer is used to monitor the all sky brightness temperature distribution. An algorithm is developed to detect the clear and cloudy sky as well as cloud base height by using sky brightness distribution and surface temperature and humidity as input. Based on these composite retrieval of clear and cloudy sky distribution, it can be used to validate the satellite retrievals in the sense of real-simultaneous comparison and statistics, respectively. What will be presented in this talk include the results of the field observations and comparisons completed in Beijing (40 deg N, 116.5 deg E) in year 2003 and 2004. This work is supported by NSFC grant No. 4002700, and MOST grant No 2001CCA02200

  17. MODELING OF THE ZODIACAL EMISSION FOR THE AKARI/IRC MID-INFRARED ALL-SKY DIFFUSE MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Toru; Ishihara, Daisuke; Kaneda, Hidehiro; Nakamichi, Keichiro; Takaba, Sachi; Kobayashi, Hiroshi [Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Ootsubo, Takafumi [Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902 (Japan); Pyo, Jeonghyun [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Onaka, Takashi, E-mail: kondo@u.phys.nagoya-u.ac.jp, E-mail: ishihara@u.phys.nagoya-u.ac.jp [Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-03-15

    The zodiacal emission, which is the thermal infrared (IR) emission from the interplanetary dust (IPD) in our solar system, has been studied for a long time. Nevertheless, accurate modeling of the zodiacal emission has not been successful to reproduce the all-sky spatial distribution of the zodiacal emission, especially in the mid-IR where the zodiacal emission peaks. Therefore, we aim to improve the IPD cloud model based on Kelsall et al., using the AKARI 9 and 18 μm all-sky diffuse maps. By adopting a new fitting method based on the total brightness, we have succeeded in reducing the residual levels after subtraction of the zodiacal emission from the AKARI data and thus in improving the modeling of the zodiacal emission. Comparing the AKARI and the COBE data, we confirm that the changes from the previous model to our new model are mostly due to model improvements, but not temporal variations between the AKARI and the COBE epoch, except for the position of the Earth-trailing blob. Our results suggest that the size of the smooth cloud, a dominant component in the model, is about 10% more compact than previously thought, and that the dust sizes are not large enough to emit blackbody radiation in the mid-IR. Furthermore, we detect a significant isotropically distributed IPD component, owing to an accurate baseline measurement with AKARI.

  18. THE INFRARED PROPERTIES OF SOURCES MATCHED IN THE WISE ALL-SKY AND HERSCHEL ATLAS SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P. [Cosmology Laboratory (Code 665), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Amblard, Alexandre [Astrophysics Branch, NASA/Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Fleuren, Simone [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Blain, Andrew W. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Dunne, Loretta; Maddox, Steve J.; Hoyos, Carlos; Bourne, Nathan [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Smith, Daniel J. B.; Bonfield, David [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bridge, Carrie [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Buttiglione, Sara; De Zotti, Gianfranco [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Cava, Antonio [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, David [Imperial College, Astrophysics Group, Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dariush, Ali [Physics Department, Imperial College London, South Kensington Campus, SW7 2AZ (United Kingdom); and others

    2012-05-01

    We describe the infrared properties of sources detected over {approx}36 deg{sup 2} of sky in the GAMA 15 hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5{sigma} point-source depths of 34 and 0.048 mJy at 250 {mu}m and 3.4 {mu}m, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of {approx}630 deg{sup -2}. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 {mu}m and that at 250 {mu}m, with {+-}50% scatter over {approx}1.5 orders of magnitude in luminosity, {approx}10{sup 9}-10{sup 10.5} L{sub Sun }. By contrast, the matched sources without previously measured redshifts (r {approx}> 20.5) have 250-350 {mu}m flux density ratios which suggest either high-redshift galaxies (z {approx}> 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T {approx}< 20). Their small 3.4-250 {mu}m flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large active galactic nucleus fraction ({approx}30%) in a 12 {mu}m flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.

  19. Mid- and far-infrared properties of Spitzer Galactic bubbles revealed by the AKARI all-sky surveys

    CERN Document Server

    Hattori, Yasuki; Ishihara, Daisuke; Fukui, Yasuo; Torii, Kazufumi; Hanaoka, Misaki; Kokusho, Takuma; Kondo, Akino; Shichi, Kazuyuki; Ukai, Sota; Yamagishi, Mitsuyoshi; Yamaguchi, Yuta

    2016-01-01

    We have carried out a statistical study on the mid- and far-infrared (IR) properties of Galactic IR bubbles observed by Spitzer. Using the Spitzer 8 ${\\mu}{\\rm m}$ images, we estimated the radii and covering fractions of their shells, and categorized them into closed, broken and unclassified bubbles with our data analysis method. Then, using the AKARI all-sky images at wavelengths of 9, 18, 65, 90, 140 and 160 ${\\mu}{\\rm m}$, we obtained the spatial distributions and the luminosities of polycyclic aromatic hydrocarbon (PAH), warm and cold dust components by decomposing 6-band spectral energy distributions with model fitting. As a result, 180 sample bubbles show a wide range of the total IR luminosities corresponding to the bolometric luminosities of a single B-type star to many O-type stars. For all the bubbles, we investigated relationships between the radius, luminosities and luminosity ratios, and found that there are overall similarities in the IR properties among the bubbles regardless of their morpholog...

  20. ASPIRE: A Data Reduction Project for the Japanese Astro-F Far-Infrared All-Sky Survey; its value to SIRTF, SOFIA, FIRST and other missions

    Science.gov (United States)

    Freund, M. M.; Moseley, S. H.; Nakagawa, T.; Matsumoto, T.; Shibai, H.; ASPIRE Collaboration

    1999-12-01

    The ASPIRE mission will provide the international astronomical community with data from an unbiased all-sky survey by the Far Infrared Surveyer (FIS) onboard the Japanese Astro-F (IRIS) satellite. An all-sky survey is very efficient in producing scientific results. It allows to detect intrinsically rare objects that would be missed by limited sky surveys. ASPIRE will provide target lists in time for efficient follow-up pointed observations with narrow field-of-view telescopes like SIRTF, SOFIA and FIRST at a low cost to the US community. The Astro-F satellite contains a 70 cm telescope cooled to 6 K with super-fluid liquid helium and Stirling-cycle coolers. The FIS instrument uses state-of-the-art 2D stressed and unstressed Ge:Ge detector arrays and cold readout electronics. Astro-F is scheduled to be launched in August 2003 by an ISAS M-V rocket into a sun-synchronous polar orbit at an altitude of 750 km. The FIS operates between 50-200μm at a diffraction limited spatial resolution of 30-50 " in four bands at sensitivities of approximately 18, 25, 110, and 90 mJy between 50-70, 50-110, 150-200, and 110-200 μm . These sensitivities are up to 20x higher than IRAS. The final data products will consist of point source catalogs, images and small scale maps. We expect to detect in excess of 10 million far-IR sources, from solar system objects to ultra-luminous galaxies at cosmological distances. The science objectives include important astrophysical topics, like large scale structure, evolution of galaxies, systematic investigation of the star formation process, and the evolution of planets and brown dwarfs.

  1. A quality check of the $AKARI$ mid-infrared all-sky diffuse map toward the massive star-forming regions NGC 6334 and NGC 6357

    CERN Document Server

    Sano, Hidetoshi; Kondo, Toru; Nakamichi, Keichiro; Yamagishi, Mitsuyoshi; Ishihara, Daisuke; Oyabu, Shinki; Kaneda, Hidehiro; Tachihara, Kengo; Fukui, Yasuo

    2016-01-01

    We present a comparative study of CO and polycyclic aromatic hydrocarbon (PAH) emission toward a region including the massive star-forming regions of NGC 6334 and NGC 6357. We use the NANTEN $^{12}$CO($J$ = 1--0) data and the $AKARI$ 9 $\\mu$m All-Sky diffuse map in order to evaluate the calibration accuracy of the $AKARI$ data. We confirm that the overall CO distribution shows a good spatial correspondence with the PAH emission, and their intensities exhibit a good power-law correlation with a spatial resolution down to 4$'$ over the region of 10$^\\circ$$\\times$10$^\\circ$. We also reveal poorer correlation for small scale structures between the two quantities toward NGC 6357, due to strong UV radiation from local sources. Larger scatter in the correlation toward NGC 6357 indicates higher ionization degree and/or PAH excitation than that of NGC 6334.

  2. Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey: Report of a Community Workshop Examining Extragalactic, Galactic, Stellar and Planetary Science

    CERN Document Server

    Doré, Olivier; Ashby, Matt; Banerjee, Pancha; Battaglia, Nick; Bauer, James; Benjamin, Robert A; Bleem, Lindsey E; Bock, Jamie; Boogert, Adwin; Bull, Philip; Capak, Peter; Chang, Tzu-Ching; Chiar, Jean; Cohen, Seth H; Cooray, Asantha; Crill, Brendan; Cushing, Michael; de Putter, Roland; Driver, Simon P; Eifler, Tim; Feng, Chang; Ferraro, Simone; Finkbeiner, Douglas; Gaudi, B Scott; Greene, Tom; Hillenbrand, Lynne; Höflich, Peter A; Hsiao, Eric; Huffenberger, Kevin; Jansen, Rolf A; Jeong, Woong-Seob; Joshi, Bhavin; Kim, Duho; Kim, Minjin; Kirkpatrick, J Davy; Korngut, Phil; Krause, Elisabeth; Kriek, Mariska; Leistedt, Boris; Li, Aigen; Lisse, Carey M; Mauskopf, Phil; Mechtley, Matt; Melnick, Gary; Mohr, Joseph; Murphy, Jeremiah; Neben, Abraham; Neufeld, David; Nguyen, Hien; Pierpaoli, Elena; Pyo, Jeonghyun; Rhodes, Jason; Sandstrom, Karin; Schaan, Emmanuel; Schlaufman, Kevin C; Silverman, John; Su, Kate; Stassun, Keivan; Stevens, Daniel; Strauss, Michael A; Tielens, Xander; Tsai, Chao-Wei; Tolls, Volker; Unwin, Stephen; Viero, Marco; Windhorst, Rogier A; Zemcov, Michael

    2016-01-01

    SPHEREx is a proposed SMEX mission selected for Phase A. SPHEREx will carry out the first all-sky spectral survey and provide for every 6.2" pixel a spectra between 0.75 and 4.18 $\\mu$m [with R$\\sim$41.4] and 4.18 and 5.00 $\\mu$m [with R$\\sim$135]. The SPHEREx team has proposed three specific science investigations to be carried out with this unique data set: cosmic inflation, interstellar and circumstellar ices, and the extra-galactic background light. It is readily apparent, however, that many other questions in astrophysics and planetary sciences could be addressed with the SPHEREx data. The SPHEREx team convened a community workshop in February 2016, with the intent of enlisting the aid of a larger group of scientists in defining these questions. This paper summarizes the rich and varied menu of investigations that was laid out. It includes studies of the composition of main belt and Trojan/Greek asteroids; mapping the zodiacal light with unprecedented spatial and spectral resolution; identifying and stud...

  3. Monitoring All Sky for Variability

    CERN Document Server

    Paczynski, B

    2000-01-01

    A few percent of all stars are variable, yet over 90% of variables brighter than 12 magnitude have not been discovered yet. There is a need for an all sky search and for the early detection of any unexpected events: optical flashes from gamma-ray bursts, novae, dwarf novae, supernovae, `killer asteroids'. The ongoing projects like ROTSE, ASAS, TASS, and others, using instruments with just 4 inch aperture, have already discovered thousands of new variable stars, a flash from an explosion at a cosmological distance, and the first partial eclipse of a nearby star by its Jupiter like planet. About one million variables may be discovered with such small instruments, and many more with larger telescopes. The critical elements are software and full automation of the hardware. A complete census of the brightest eclipsing binaries is needed to select objects for a robust empirical calibration of the the accurate distance determination to the Magellanic Clouds, the first step towards the Hubble constant. An archive to ...

  4. Cosmology with all-sky surveys

    CERN Document Server

    Bilicki, Maciej

    2015-01-01

    Various aspects of cosmology require comprehensive all-sky mapping of the cosmic web to considerable depths. In order to probe the whole extragalactic sky beyond 100 Mpc, one must draw on multiwavelength datasets and state-of-the-art photometric redshift techniques. Here I summarize our dedicated program that employs the largest photometric all-sky surveys -- 2MASS, WISE and SuperCOSMOS -- to obtain accurate redshift estimates of millions of galaxies. The first outcome of these efforts -- the 2MASS Photometric Redshift catalog (2MPZ) -- was publicly released in 2013 and includes almost 1 million galaxies with a median redshift of z~0.1. I discuss how this catalog was constructed and how it is being used for various cosmological tests. I also present how combining the WISE mid-infrared survey with SuperCOSMOS optical data allowed us to push to depths over 1 Gpc on unprecedented angular scales. These photometric redshift samples, with about 20 million sources in total, provide access to volumes large enough to ...

  5. Cosmology with all-sky surveys

    Science.gov (United States)

    Bilicki, Maciej

    2016-06-01

    Various aspects of cosmology require comprehensive all-sky mapping of the cosmic web to considerable depths. In order to probe the whole extragalactic sky beyond 100 Mpc, one must draw on multiwavelength datasets and state-of-the-art photometric redshift techniques. Here I summarize our dedicated program that employs the largest photometric all-sky surveys - 2MASS, WISE and SuperCOSMOS - to obtain accurate redshift estimates of millions of galaxies. The first outcome of these efforts - the 2MASS Photometric Redshift catalog (2MPZ) - was publicly released in 2013 and includes almost 1 million galaxies with a median redshift of z˜0.1. I discuss how this catalog was constructed and how it is being used for various cosmological tests. I also present how combining the WISE mid-infrared survey with SuperCOSMOS optical data allowed us to push to depths over 1 Gpc on unprecedented angular scales. These photometric redshift samples, with about 20 million sources in total, provide access to volumes large enough to study observationally the Copernican Principle of universal homogeneity and isotropy, as well as to probe various aspects of dark energy and dark matter through cross-correlations with other data such as the cosmic microwave or gamma-ray backgrounds. Last but not least, they constitute a test-bed for forthcoming wide-angle multi-million galaxy samples expected from such instruments as the SKA, Euclid, or LSST.

  6. The ADS All Sky Survey

    Science.gov (United States)

    Goodman, Alyssa

    We will create the first interactive sky map of astronomers' understanding of the Universe over time. We will accomplish this goal by turning the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a literature resource, into a data resource. GIS and GPS systems have made it commonplace to see and explore information about goings-on on Earth in the context of maps and timelines. Our proposal shows an example of a program that lets a user explore which countries have been mentioned in the New York Times, on what dates, and in what kinds of articles. By analogy, the goal of our project is to enable this kind of exploration-on the sky-for the full corpus of astrophysical literature available through ADS. Our group's expertise and collaborations uniquely position us to create this interactive sky map of the literature, which we call the "ADS All-Sky Survey." To create this survey, here are the principal steps we need to follow. First, by analogy to "geotagging," we will "astrotag," the ADS literature. Many "astrotags" effectively already exist, thanks to curation efforts at both CDS and NED. These efforts have created links to "source" positions on the sky associated with each of the millions of articles in the ADS. Our collaboration with ADS and CDS will let us automatically extract astrotags for all existing and future ADS holdings. The new ADS Labs, which our group helps to develop, includes the ability for researchers to filter article search results using a variety of "facets" (e.g. sources, keywords, authors, observatories, etc.). Using only extracted astrotags and facets, we can create functionality like what is described in the Times example above: we can offer a map of the density of positions' "mentions" on the sky, filterable by the properties of those mentions. Using this map, researchers will be able to interactively, visually, discover what regions have been studied for what reasons, at what times, and by whom. Second, where

  7. SPHEREx: An All-Sky Spectral Survey

    CERN Document Server

    Doré, Olivier; Capak, Peter; de Putter, Roland; Eifler, Tim; Hirata, Chris; Korngut, Phil; Krause, Elisabeth; Masters, Daniel; Raccanelli, Alvise; Zemcov, Mike; Cooray, Asantha; Flagey, Nicolas; Gong, Yan; Katti, Raj; Melnick, Gary; Mennesson, Bertrand; Unwin, Steve; Viero, Marco; Werner, Mike; Ashby, Matthew; Habib, Salman; Heitmann, Katrin; Lee, Dae-Hee; Jeong, Woong-Seob; Mauskopf, Phil; Nguyen, Hien; Öberg, Karin; Smith, Roger; Song, Yong-Seon; Tolls, Volker; Venumadhav, Tejaswi

    2014-01-01

    SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) is a proposed all-sky spectroscopic survey satellite designed to address all three science goals in NASA's Astrophysics Division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. SPHEREx will scan a series of Linear Variable Filters systematically across the entire sky. The SPHEREx data-set will contain R=40 spectra spanning the near infrared (0.75$\\mu$m$<\\lambda<$ 4.83$\\mu$m) for every 6.2 arcsecond pixel over the the entire-sky. In this paper, we detail the extra-galactic and cosmological studies SPHEREx will enable and present detailed systematic effect evaluations.

  8. SPHEREx: An All-Sky Spectral Survey

    Science.gov (United States)

    Bock, James; SPHEREx Science Team

    2016-01-01

    SPHEREx, a mission in NASA's Small Explorer (SMEX) program that was selected for Phase A in July 2015, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division, in a single survey, with a single instrument. We will probe the physics of inflation by measuring non-Gaussianity by studying large-scale structure, surveying a large cosmological volume at low redshifts, complementing high-z surveys optimized to constrain dark energy. The origin of water and biogenic molecules will be investigated in all phases of planetary system formation - from molecular clouds to young stellar systems with protoplanetary disks - by measuring ice absorption spectra. We will chart the origin and history of galaxy formation through a deep survey mapping large-scale spatial power. Finally, SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra (0.75 - 4.8 um at R = 41.5 and 150) with high sensitivity using a cooled telescope with large mapping speed.SPHEREx will observe from a sun-synchronous low-earth orbit, covering the entire sky in a manner similar to IRAS, COBE and WISE. During its two-year mission, SPHEREx will produce four complete all-sky maps for constraining the physics of inflation. These same maps contain numerous high signal-to-noise absorption spectra to study water and biogenic ices. The orbit naturally covers two deep regions at the celestial poles, which we use for studying galaxy evolution. All aspects of the SPHEREx instrument and spacecraft have high heritage. SPHEREx requires no new technologies and carries large technical and resource margins on every aspect of the design. The projected instrument sensitivity, based on conservative performance estimates, meets the driving point source sensitivity requirement with 300 % margin.SPHEREx is a partnership between Caltech and JPL, following the successful management structure of the NuSTAR and GALEX SMEX missions. The spacecraft

  9. Hyperspectral all-sky imaging of auroras.

    Science.gov (United States)

    Sigernes, Fred; Ivanov, Yuriy; Chernouss, Sergey; Trondsen, Trond; Roldugin, Alexey; Fedorenko, Yury; Kozelov, Boris; Kirillov, Andrey; Kornilov, Ilia; Safargaleev, Vladimir; Holmen, Silje; Dyrland, Margit; Lorentzen, Dag; Baddeley, Lisa

    2012-12-03

    A prototype auroral hyperspectral all-sky camera has been constructed and tested. It uses electro-optical tunable filters to image the night sky as a function of wavelength throughout the visible spectrum with no moving mechanical parts. The core optical system includes a new high power all-sky lens with F-number equal to f/1.1. The camera has been tested at the Kjell Henriksen Observatory (KHO) during the auroral season of 2011/2012. It detects all sub classes of aurora above ~½ of the sub visual 1kR green intensity threshold at an exposure time of only one second. Supervised classification of the hyperspectral data shows promise as a new method to process and identify auroral forms.

  10. All Sky Survey Mission Observing Scenario Strategy

    CERN Document Server

    Spangelo, Sara C; Unwin, Stephen C; Bock, Jamie J

    2014-01-01

    This paper develops a general observing strategy for missions performing all-sky surveys, where a single spacecraft maps the celestial sphere subject to realistic constraints. The strategy is flexible such that targeted observations and variable coverage requirements can be achieved. This paper focuses on missions operating in Low Earth Orbit, where the thermal and stray-light constraints due to the Sun, Earth, and Moon result in interacting and dynamic constraints. The approach is applicable to broader mission classes, such as those that operate in different orbits or that survey the Earth. First, the instrument and spacecraft configuration is optimized to enable visibility of the targeted observations throughout the year. Second, a constraint-based high-level strategy is presented for scheduling throughout the year subject to a simplified subset of the constraints. Third, a heuristic-based scheduling algorithm is developed to assign the all-sky observations over short planning horizons. The constraint-based...

  11. All-sky homogeneity of precipitable water vapour over Paranal

    CERN Document Server

    Querel, Richard R

    2014-01-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (~10 {\\mu}m) for cloud detection. We present, for the first time, a statistical analysis of the homogeneity of all-sky PWV using 21 months of periodic (every 6 hours) all-sky scans from the radiometer. These data provide unique insight into the spatial and temporal variation of atmospheric conditions relevant for astronomical observations, particularly in the infrared. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5{\\deg} el...

  12. Cool Companions to White Dwarf Stars from the Two Micron All Sky Survey All Sky Data Release

    CERN Document Server

    Hoard, D W; Sturch, L K; Widhalm, A M; Weiler, K P; Pretorius, M L; Wellhouse, J W; Gibiansky, M; Sturch, Laura K.; Widhalm, Allison M.; Weiler, Kevin P.; Pretorius, Magaretha L.; Wellhouse, Joseph W.; Gibiansky, Maxsim

    2007-01-01

    We present the culmination of our near-infrared survey of the optically spectroscopically identified white dwarf stars from the McCook & Sion catalog, conducted using photometric data from the Two Micron All Sky Survey final All Sky Data Release. The color-selection technique, which identifies candidate binaries containing a white dwarf and a low mass stellar (or sub-stellar) companion via their distinctive locus in the near-infrared color-color diagram, is demonstrated to be simple to apply and to yield candidates with a high rate of subsequent confirmation. We recover 105 confirmed binaries, and identify 28 firm candidates (20 of which are new to this work) and 21 tentative candidates (17 of which are new to this work) from the 2MASS data. Only a small number of candidates from our survey have likely companion spectral types later than M5, none of which is an obvious L type (i.e., potential brown dwarf) companion. Only one previously known WD + brown dwarf binary is detected. This result is discussed in...

  13. The SCUBA-2 "All-Sky" Survey

    CERN Document Server

    Thompson, M A; Jenness, T; Scott, D; Ashdown, M; Brunt, C; Butner, H; Chapin, E; Chrysostomou, A C; Clark, J S; Clements, D; Collett, J L; Coppin, K; Coulson, I M; Dent, W R F; Economou, F; Evans, A; Friberg, P; Fuller, G A; Gibb, A G; Greaves, J; Hatchell, J; Holland, W S; Hudson, M; Ivison, R J; Jaffe, A; Joncas, G; Jones, H R A; Knapen, J H; Leech, J; Mann, R; Matthews, H E; Moore, T J T; Mortier, A; Negrello, M; Nutter, D; Pestalozzi, M P; Pope, A; Richer, J; Shipman, R; Urquhart, J S; Vaccari, M; Van Waerbeke, L; Viti, S; Weferling, B; White, G J; Wouterloot, J; Zhu, M

    2007-01-01

    The sub-millimetre wavelength regime is perhaps the most poorly explored over large areas of the sky, despite the considerable effort that has been expended in making deep maps over small regions. As a consequence the properties of the sub-millimetre sky as a whole, and of rare bright objects in particular, remains largely unknown. Here we describe a forthcoming survey (the SCUBA-2 ``All-Sky'' Survey, or SASSy) designed to address this issue by making a large-area map of approximately one-fifth of the sky visible from the JCMT (4800 square degrees) down to a 1 sigma noise level of 30 mJy/beam. This map forms the pilot for a much larger survey, which will potentially map the remaining sky visible from the JCMT, with the region also visible to ALMA as a priority. SASSy has been awarded 500 hours for the 4800 square degree pilot phase and will commence after the commissioning of SCUBA-2, expected in early 2008.

  14. An All Sky Transmission Monitor: ASTMON

    CERN Document Server

    Aceituno, J; Aceituno, F J; Galadi-Enriquez, D; Negro, J J; Soriguer, R C; Gomez, G Sanchez

    2011-01-01

    We present here the All Sky Transmission MONitor (ASTMON), designed to perform a continuous monitoring of the surface brightness of the complete night-sky in several bands. The data acquired are used to derive, in addition, a subsequent map of the multiband atmospheric extinction at any location in the sky, and a map of the cloud coverage. The instrument has been manufactured to afford extreme weather conditions, and remain operative. Designed to be fully robotic, it is ideal to be installed outdoors, as a permanent monitoring station. The preliminary results based on two of the currently operative units (at Do\\~nana National Park - Huelva- and at the Calar Alto Observatory - Almer\\'ia -, in Spain), are presented here. The parameters derived using ASTMON are in good agreement with previously reported ones, what illustrates the validity of the design and the accuracy of the manufacturing. The information provided by this instrument will be presented in forthcoming articles, once we have accumulated a statistic...

  15. Results from BASS, the BANYAN All-Sky Survey

    CERN Document Server

    Gagné, Jonathan; Doyon, René; Faherty, Jacqueline K; Malo, Lison; Artigau, Étienne

    2014-01-01

    We present results from the BANYAN All-Sky Survey (BASS), a systematic all-sky survey for brown dwarf candidates in young moving groups. We describe a cross-match of the 2MASS and AllWISE catalogs that provides a list of 98 970 potential nearby dwarfs with spectral types later than M5 with measurements of proper motion at precisions typically better than 15 mas yr$^{-1}$, as well as the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II) which we use to build the BASS catalog from this 2MASS-AllWISE cross-match, consisting of more than 300 candidate members of young moving groups. We present the first results of a spectroscopic follow-up of those candidates, which allowed us to identify several new low-mass stars and brown dwarfs displaying signs of low gravity. We use the BASS catalog to show tentative evidence for mass segregation in AB Doradus and Argus, and reveal a new $\\sim$ 13 M$_{Jup}$ co-moving companion to a young low-mass star in BASS. We obtain a moderate-resolution near-infrared s...

  16. Results from BASS, the BANYAN All-Sky Survey

    Science.gov (United States)

    Gagne, Jonathan; Lafreniere, David; Doyon, Rene; Faherty, Jacqueline K.; Malo, Lison; Artigau, Etienne

    2015-01-01

    We present results from the BANYAN All-Sky Survey (BASS), a systematic all-sky survey for brown dwarf candidates in young moving groups. We describe a cross-match of the 2MASS and ALLWISE catalogs that provides a list of 98 970 potential nearby dwarfs with spectral types later than M5 with measurements of proper motion at precisions typically better than 15 masyr, as well as the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II) which we use to build the BASS catalog from this 2MASS-ALLWISE cross-match, consisting of more than 300 candidate members of young moving groups. We present the first results of a spectroscopic follow-up of those candidates, which allowed us to identify several new low-mass stars and brown dwarfs displaying signs of low gravity. We use the BASS catalog to show tentative evidence for mass segregation in AB Doradus and Argus, and reveal a new ˜ 13 Mjup\\ co-moving companion to a young low-mass star in BASS. We obtain a moderate-resolution near-infrared spectrum for the companion, which reveals typical signs of youth and a spectral type L4γ.

  17. The SPHEREx All-Sky Spectroscopic Survey

    Science.gov (United States)

    Unwin, Stephen C.; SPHEREx Science Team, SPHEREx Project Team

    2016-06-01

    SPHEREx is a mission to conduct an optical-near-IR survey of the entire sky with a spectrum at every pixel location. It was selected by NASA for a Phase A study in its Small Explorer Program; if selected, development would begin in 2016, and the observatory would start a 2-year prime mission in 2020. An all-sky spectroscopic survey can be used to tackle a wide range of science questions. The SPHEREx science team is focusing on three: (1) Probing the physics of inflation through measuring non-Gaussianity from the study of large-scale structure; (2) Studying the origin of water and biogenic molecules in a wide range of physical and chemical environments via ice absorption spectra; (3) Charting the history of star formation in the universe through intensity mapping of the large-scale spatial power. The instrument is a small wide-field telescope operating in the range of 0.75 - 4.8 µm at a spectral resolution of 41.5 in the optical and 150 at the long-wavelength end. It observes in a sun-sync low-earth orbit, covering the sky like WISE and COBE. SPHEREx is a simple instrument that requires no new technology. The Phase A design has substantial technical and resource margins and can be built with low risk. It is a partnership between Caltech and JPL, with Ball Aerospace and the Korea Astronomy and Space Science Institute as major partners. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  18. An All-Sky Catalog of Bright M Dwarfs

    CERN Document Server

    Lépine, Sébastien

    2011-01-01

    We present an all-sky catalog of M dwarf stars with apparent infrared magnitude J40 mas/yr, supplemented on the bright end with the TYCHO-2 catalog. Completeness tests which account for kinematic (proper motion) bias suggest that our catalog represents ~75% of the estimated ~11,900 M dwarfs with J<10 expected to populate the entire sky. Our catalog is, however, significantly more complete for the Northern sky (~90%) than it is for the South (~60%). Stars are identified as cool, red M dwarfs from a combination of optical and infrared color cuts, and are distinguished from background M giants and highly-reddened stars using either existing parallax measurements or, if such measurements are lacking, on their location in an optical-to-infrared reduced proper motion diagram. These bright M dwarfs are all prime targets for exoplanet surveys using the Doppler radial velocity or transit methods; the combination of low-mass and bright apparent magnitude should make possible the detection of Earth-size planets on sh...

  19. The Status of the NASA All Sky Fireball Network

    Science.gov (United States)

    Cooke, William J.; Moser, Danielle E.

    2011-01-01

    Established by the NASA Meteoroid Environment Office, the NASA All Sky Fireball Network consists of 6 meteor video cameras in the southern United States, with plans to expand to 15 cameras by 2013. As of mid-2011, the network had detected 1796 multi-station meteors, including meteors from 43 different meteor showers. The current status of the NASA All Sky Fireball Network is described, alongside preliminary results.

  20. The AGN Content of the Micron all Sky Survey

    Science.gov (United States)

    Cutri, R. M.

    2000-01-01

    The Two Micron All Sky Survey (2MASS) began routine operations from its northern facility on Mt. Hopkins, AZ in June of 1997, and from its southern facility on Cerro Tololo, Chile in March of 1998. At each site, highly automated 1.3 m telescopes equipped with identical 3-channel cameras, are systematically imaging the sky in three near infrared wavelength bands, J (1.25 um), H (1.65 um) and K-s (2.17 um). The Survey will ultimately produce an Image Atlas containing nearly two million 512 x 1024 pixel images (1 arcsec/pix) in the three colors, a highly complete and reliable catalog containing approx. 300 million point sources having SNR greater than 10 photometry at J less or = 15.8, H less or = 15.1 and K-s less or = 14.3 mag. and an astrometric accuracy greater than 0.511 RMS, and a catalog of 1-2 million resolved sources, primarily galaxies, having SNR greater than 10 photometric accuracy at J less than or = 15.5, H less than or = 14.8 and K-s less than or = 13.5 mag. The 2MASS Sampler, an introductory set of data, was released to the community in December of 1998 (see http://www.ipac.caltech.edu/2mass/). We review the near IR and optical/IR properties of "conventional" QSOs from UV and optical samples, and estimate the number that will be detected by 2MASS. We also discuss 2MASS's ability to test for for new populations of extremely red AGN that have been missed by UV and Visual surveys, as suggested by from IRAS and radio studies. Results of spectroscopic follow-up of 2MASS-selected new AGN candidates will also be presented.

  1. C-BASS: The C-Band All Sky Survey

    Science.gov (United States)

    Pearson, Timothy J.; C-BASS Collaboration

    2016-06-01

    The C-Band All Sky Survey (C-BASS) is a project to image the whole sky at a wavelength of 6 cm (frequency 5 GHz), measuring both the brightness and the polarization of the sky. Correlation polarimeters are mounted on two separate telescopes, one at the Owens Valley Observatory (OVRO) in California and another in South Africa, allowing C-BASS to map the whole sky. The OVRO instrument has completed observations for the northern part of the survey. We are working on final calibration of intensity and polarization. The southern instrument has recently started observations for the southern part of the survey from its site at Klerefontein near Carnarvon in South Africa. The principal aim of C-BASS is to allow the subtraction of polarized Galactic synchrotron emission from the data produced by CMB polarization experiments, such as WMAP, Planck, and dedicated B-mode polarization experiments. In addition it will contribute to studies of: (1) the local (region close to the Galactic plane. Observations at many wavelengths from radio to infrared are needed to fully understand the foregrounds. At 5 GHz, C-BASS maps synchrotron polarization with minimal corruption by Faraday rotation, and complements the full-sky maps from WMAP and Planck. I will present the project status, show results of component separation in selected sky regions, and describe the northern survey data products.C-BASS (http://www.astro.caltech.edu/cbass/) is a collaborative project between the Universities of Oxford and Manchester in the UK, the California Institute of Technology (supported by the National Science Foundation and NASA) in the USA, the Hartebeesthoek Radio Astronomy Observatory (supported by the Square Kilometre Array project) in South Africa, and the King Abdulaziz City for Science and Technology (KACST) in Saudi Arabia.

  2. The NASA Fireball Network All-Sky Cameras

    Science.gov (United States)

    Suggs, Rob M.

    2011-01-01

    The construction of small, inexpensive all-sky cameras designed specifically for the NASA Fireball Network is described. The use of off-the-shelf electronics, optics, and plumbing materials results in a robust and easy to duplicate design. Engineering challenges such as weather-proofing and thermal control and their mitigation are described. Field-of-view and gain adjustments to assure uniformity across the network will also be detailed.

  3. All Sky Cloud Coverage Monitoring for SONG-China Project

    Science.gov (United States)

    Tian, J. F.; Deng, L. C.; Yan, Z. Z.; Wang, K.; Wu, Y.

    2016-05-01

    In order to monitor the cloud distributions at Qinghai station, a site selected for SONG (Stellar Observations Network Group)-China node, the design of the proto-type of all sky camera (ASC) applied in Xinglong station is adopted. Both hardware and software improvements have been made in order to be more precise and deliver quantitative measurements. The ARM (Advanced Reduced Instruction Set Computer Machine) MCU (Microcontroller Unit) instead of PC is used to control the upgraded version of ASC. A much higher reliability has been realized in the current scheme. Independent of the positions of the Sun and Moon, the weather conditions are constantly changing, therefore it is difficult to get proper exposure parameters using only the temporal information of the major light sources. A realistic exposure parameters for the ASC can actually be defined using a real-time sky brightness monitor that is also installed at the same site. The night sky brightness value is a very sensitive function of the cloud coverage, and can be accurately measured by the sky quality monitor. We study the correlation between the exposure parameter and night sky brightness value, and give the mathematical relation. The images of the all sky camera are inserted into database directly. All sky quality images are archived in FITS format which can be used for further analysis.

  4. An All-Sky Sample of Intermediate-Mass Star-Forming Regions

    CERN Document Server

    Lundquist, Michael J; Alexander, Michael J; Kerton, Charles R; Arvidsson, Kim

    2014-01-01

    We present an all-sky sample of 984 candidate intermediate-mass Galactic star-forming regions color-selected from the Infrared Astronomical Satellite (IRAS) Point Source Catalog and morphologically classify each object using mid-infrared Wide-field Infrared Survey Explorer (WISE) images. Of the 984 candidates, 616 are probable star-forming regions (62.6%), 128 are filamentary structures (13.0%), 39 are point-like objects of unknown nature (4.0%), and 201 are galaxies (20.4%). We conduct a study of four of these regions, IRAS 00259+5625, IRAS 00420+5530, IRAS 01080+5717, and IRAS 05380+2020, at Galactic latitudes |b| > 5 degrees using optical spectroscopy from the Wyoming Infrared Observatory along with near-infrared photometry from the Two-Micron All Sky Survey to investigate their stellar content. New optical spectra, color-magnitude diagrams, and color-color diagrams reveal their extinctions, spectrophotometric distances, and the presence of small stellar clusters containing 20-78 solar masses of stars. The...

  5. The SuperCOSMOS all-sky galaxy catalogue

    Science.gov (United States)

    Peacock, J. A.; Hambly, N. C.; Bilicki, M.; MacGillivray, H. T.; Miller, L.; Read, M. A.; Tritton, S. B.

    2016-10-01

    We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UK Schmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasi-all-sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.

  6. The Einstein All-Sky IPC slew survey

    Science.gov (United States)

    Elvis, Martin; Plummer, David; Fabbiano, G.

    1989-01-01

    The construction of the Einstein All-Sky Imaging Proportional Counter (IPC) slew survey is considered. It contains approximately 1000 sources between 10(exp -12) and 10(exp -10) erg/sq cm/s with a concentration toward the ecliptic poles and away from the galactic plane. Several sizable samples of bright soft X-ray selected objects for follow-up ROSAT and ASTRO-D observations and statistical study are presented. The survey source list is expected to be available by late 1989. Both paper and remote access online data base versions are to be available. An identification program is considered.

  7. The WATCH All-Sky Monitor for the Granat Project

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Rao, A. R.

    1990-01-01

    The Watch X-ray all-sky monitor, which is designed to localize strong X-ray sources and follow their development, is examined, focusing on the addition of four Watch units to the Granat satellite project. The components of the Watch instrument are described and the capabilities and potential...... scientific returns of the Granat project are discussed. The applications of the Watch monitor are given, including the study of time variations of known sources and the detection and localization of new, transient sources....

  8. Hexapod Design For All-Sky Sidereal Tracking

    CERN Document Server

    Pál, András; Jaskó, Attila; Mező, György; Csépány, Gergely; Vida, Krisztián; Oláh, Katalin

    2016-01-01

    In this paper we describe a hexapod-based telescope mount system intended to provide sidereal tracking for the Fly's Eye Camera project -- an upcoming moderate, 21"/pixel resolution all-sky survey. By exploiting such a kind of meter-sized telescope mount, we get a device which is both capable of compensating for the apparent rotation of the celestial sphere and the same design can be used independently from the actual geographical location. Our construction is the sole currently operating hexapod telescope mount performing dedicated optical imaging survey with a sub-arcsecond tracking precision.

  9. All Sky Camera instrument for night sky monitoring

    CERN Document Server

    Mandat, Dusan; Hrabovsky, Miroslav; Schovanek, Petr; Palatka, Miroslav; Travnicek, Petr; Prouza, Michael; Ebr, Jan

    2014-01-01

    The All Sky Camera (ASC) was developed as an universal device for a monitoring of the night sky quality and night sky background measurement. ASC system consists of an astronomical CCD camera, a fish eye lens, a control computer and associated electronics. The measurement is carried out during astronomical twilight. The analysis results are the cloud fraction (the percentage of the sky covered by clouds), night sky brightness (in mag/arcsec2) and light background in the field of view of the camera. The analysis of the cloud fraction is based on the astrometry (comparison to catalogue positions) of the observed stars.

  10. GAME: Grb and All-sky Monitor Experiment

    CERN Document Server

    Amati, L; Frontera, F; Labanti, C; Feroci, M; Hudec, R; Gomboc, A; Ruffini, R; Santangelo, A; Vacchi, A; Campana, R; Evangelista, Y; Fuschino, F; Salvaterra, R; Stratta, G; Tagliaferri, G; Guidorzi, C; Rosati, P; Titarchuk, L; Penacchioni, A; Izzo, L; Zampa, N; Rodic, T

    2014-01-01

    We describe the GRB and All-sky Monitor Experiment (GAME) mission submitted by a large international collaboration (Italy, Germany, Czech Repubblic, Slovenia, Brazil) in response to the 2012 ESA call for a small mission opportunity for a launch in 2017 and presently under further investigation for subsequent opportunities. The general scientific objective is to perform measurements of key importance for GRB science and to provide the wide astrophysical community of an advanced X-ray all-sky monitoring system. The proposed payload was based on silicon drift detectors (~1-50 keV), CdZnTe (CZT) detectors (~15-200 keV) and crystal scintillators in phoswich (NaI/CsI) configuration (~20 keV-20 MeV), three well established technologies, for a total weight of ~250 kg and a required power of ~240 W. Such instrumentation allows a unique, unprecedented and very powerful combination of large field of view (3-4 sr), a broad energy energy band extending from ~1 keV up to ~20 MeV, an energy resolution as good as ~300 eV in ...

  11. The SuperCOSMOS all-sky galaxy catalogue

    CERN Document Server

    Peacock, J A; Bilicki, M; MacGillivray, H T; Miller, L; Read, M A; Tritton, S B

    2016-01-01

    We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UKST and POSS2 surveys. The photographic photometry is calibrated using SDSS data, with results that are linear to 2% or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero points that are uniform to 0.03 mag. or better. The typical AB depths achieved are B_J<21, R_F<19.5 and I_N<18.5, with little difference between hemispheres. In practice, the I_N plates are shallower than the B_J & R_F plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90% complete with 5% stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the s...

  12. The ROSAT All-Sky Survey Bright Source Catalogue

    CERN Document Server

    Voges, W; Boller, T; Bräuninger, H; Briel, U G; Burkert, W K A; Dennerl, K; Englhauser, J; Gruber, R; Haberl, F; Hartner, G; Hasinger, G; Pfeffermann, E; Pietsch, W; Predehl, P; Rosso, C; Schmitt, J H M M; Trümper, J E; Zimmermann, H U; Voges, Wolfgang; Aschenbach, Bernd; Boller, Thomas; Braeuninger, Heinrich; Briel, Ulrich; Burkert, Wolfgang; Dennerl, Konrad; Englhauser, Jakob; Gruber, Rainer; Haberl, Frank; Hartner, Gisela; Hasinger, Guenther; Pfeffermann, Elmar; Pietsch, Wolfgang; Predehl, Peter; Rosso, Cristina; Schmitt, Juergen H.M.M.; Truemper, Joachim; Zimmermann, Hans-Ulrich

    1999-01-01

    We present the ROSAT All-Sky Survey Bright Source Catalogue (RASS-BSC, revision 1RXS) derived from the all-sky survey performed during the first half year (1990/91) of the ROSAT mission. 18,811 sources are catalogued (i) down to a limiting ROSAT PSPC count-rate of 0.05 cts/s in the 0.1-2.4 keV energy band, (ii) with a detection likelihood of at least 15 and (iii) at least 15 source counts. The 18,811 sources underwent both an automatic validation and an interactive visual verification process in which for 94% of the sources the results of the standard processing were confirmed. The remaining 6% have been analyzed using interactive methods and these sources have been flagged. Flags are given for (i) nearby sources; (ii) sources with positional errors; (iii) extended sources; (iv) sources showing complex emission structures; and (v) sources which are missed by the standard analysis software. Broad band (0.1-2.4 keV) images are available for sources flagged by (ii), (iii) and (iv). For each source the ROSAT name...

  13. Second ROSAT all-sky survey (2RXS) source catalogue

    CERN Document Server

    Boller, Th; Truemper, J; Haberl, F; Voges, W; Nandra, K

    2016-01-01

    We present the second ROSAT all-sky survey source catalogue, hereafter referred to as the 2RXS catalogue. This is the second publicly released ROSAT catalogue of point-like sources obtained from the ROSAT all-sky survey (RASS) observations performed with the PSPC between June 1990 and August 1991, and is an extended and revised version of the bright and faint source catalogues. We used the latest version of the RASS processing to produce overlapping X-ray images of 6.4x6.4 degrees sky regions. To create a source catalogue, a likelihood-based detection algorithm was applied to these, which accounts for the PSF across the PSPC field of view. Improvements in the background determination compared to 1RXS were also implemented. We obtained about 135,000 X-ray detections in the 0.1-2.4 keV energy band down to a likelihood threshold of 6.5. Our simulations show that the expected spurious content of the catalogue is a strong function of detection likelihood, and the full catalogue is expected to contain about 30% spu...

  14. MAXI: all-sky observation from the International Space Station

    CERN Document Server

    Mihara, Tatehiro; Matsuoka, Masaru; Tomida, Hiroshi; Ueno, Shiro; Negoro, Hitoshi; Yoshida, Atsumasa; Tsunemi, Hiroshi; Nakajima, Motoki; Ueda, Yoshihiro; Yamauchi, Makoto

    2014-01-01

    Monitor of All-sky X-ray Image (MAXI) is mounted on the International Space Station (ISS). Since 2009 it has been scanning the whole sky in every 92 minutes with ISS rotation. Due to high particle background at high latitude regions the carbon anodes of three GSC cameras were broken. We limit the GSC operation to low-latitude region around equator. GSC is suffering a double high background from Gamma-ray altimeter of Soyuz spacecraft. MAXI issued the 37-month catalog with 500 sources above ~0.6 mCrab in 4-10 keV. MAXI issued 133 to Astronomers Telegram and 44 to Gammaray burst Coordinated Network so far. One GSC camera had a small gas leak by a micrometeorite. Since 2013 June, the 1.4 atm Xe pressure went down to 0.6 atm in 2014 May 23. By gradually reducing the high voltage we keep using the proportional counter. SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble and north polar spur, as well as it found a fast soft X-ray nova MAXI J0158-744. Although we operate C...

  15. A deep all-sky census of the Hyades

    CERN Document Server

    Roeser, S; Piskunov, A E; Kharchenko, N V; Scholz, R -D

    2011-01-01

    On the basis of the PPMXL catalogue we perform an all-sky census of the Hyades down to masses of about 0.2 m_sun in a region up to 30 pc from the cluster centre. We use the proper motions from PPMXL in the convergent point method to determine probable kinematic members. From 2MASS photometry and CMC14 r'-band photometry, we derive empirical colour-absolute magnitude diagrams and, finally, determine photometric membership for all kinematic candidates. This is the first deep (r' < 17) all-sky survey of the Hyades allowing a full three-dimensional analysis of the cluster. The survey is complete down to at least M_{K_s} = 7.3 or 0.25 m_sun. We find 724 stellar systems co-moving with the bulk Hyades space velocity, which represent a total mass of 435 m_sun. The tidal radius is about 9 pc, and 275 m_sun (364 systems) are gravitationally bound. This is the cluster proper. Its mass density profile is perfectly fitted by a Plummer model with a central density of 2.21 m_sun*pc^-3 and a core radius of r_co = 3.10 pc,...

  16. Feasibility of polarized all-sky imaging for aerosol characterization

    Directory of Open Access Journals (Sweden)

    A. Kreuter

    2013-07-01

    Full Text Available In this study, we investigate the method of polarized all-sky imaging with respect to aerosol characterization. As a technical frame work for image processing and analysis, we propose Zernike polynomials to decompose the relative Stokes parameter distributions. This defines a suitable and efficient feature vector which is also appealing because it is independent of calibration, circumvents overexposure problems and is robust against pixel noise. We model the polarized radiances of realistic aerosol scenarios and construct the feature vector space of the key aerosol types in terms of the first two principal components describing the maximal variances. We show that, using this representation, aerosol types can be clearly distinguished with respect to fine and coarse mode dominated size distribution and index of refraction. We further investigate the individual influences of varying aerosol properties and solar zenith angle. This suggests that polarized all-sky imaging may improve aerosol characterization in combination with sky scanning radiometers of the existing Aerosol Robotic Network (AERONET especially at low aerosol optical depths and low solar zenith angles.

  17. An all-sky sample of intermediate-mass star-forming regions

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, Michael J.; Kobulnicky, Henry A.; Alexander, Michael J. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Kerton, Charles R. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Arvidsson, Kim [Trull School of Sciences and Mathematics, Schreiner University, 2100 Memorial Boulevard, Kerrville, TX 78028 (United States)

    2014-04-01

    We present an all-sky sample of 984 candidate intermediate-mass Galactic star-forming regions that are color selected from the Infrared Astronomical Satellite (IRAS) Point Source Catalog and morphologically classify each object using mid-infrared Wide-field Infrared Survey Explorer (WISE) images. Of the 984 candidates, 616 are probable star-forming regions (62.6%), 128 are filamentary structures (13.0%), 39 are point-like objects of unknown nature (4.0%), and 201 are galaxies (20.4%). We conduct a study of four of these regions, IRAS 00259+5625, IRAS 00420+5530, IRAS 01080+5717, and IRAS 05380+2020, at Galactic latitudes |b| > 5° using optical spectroscopy from the Wyoming Infrared Observatory, along with near-infrared photometry from the Two-Micron All Sky Survey, to investigate their stellar content. New optical spectra, color-magnitude diagrams, and color-color diagrams reveal their extinctions, spectrophotometric distances, and the presence of small stellar clusters containing 20-78 M {sub ☉} of stars. These low-mass diffuse star clusters contain ∼65-250 stars for a typical initial mass function, including one or more mid-B stars as their most massive constituents. Using infrared spectral energy distributions we identify young stellar objects near each region and assign probable masses and evolutionary stages to the protostars. The total infrared luminosity lies in the range 190-960 L {sub ☉}, consistent with the sum of the luminosities of the individually identified young stellar objects.

  18. All-sky reconstruction of the primordial scalar potential & implications

    Science.gov (United States)

    Dorn, Sebastian; Greiner, Maksim; Ensslin, Torsten A.

    2015-08-01

    An essential quantity required to understand the physics of the early Universe is the primordial scalar potential and its statistics. We present an inexpensive all-sky reconstruction of the potential from CMB temperature data as well as an extension including polarization data. This has been achieved by applying a fully parallelized Bayesian inference method that separates the whole inverse problem into many, each of them solved by an optimal linear filter. Once explicitly having the potential, its statistics and underlying physics can be directly obtained avoiding expensive CMB analyses. This reconstruction, for instance, allows to infer the spatial structure of magnetic fields within the recombination epoch, the potential seeds of large-scale magnetic fields nowadays.

  19. All-Sky Interferometry with Spherical Harmonic Transit Telescopes

    CERN Document Server

    Shaw, J Richard; Pen, Ue-Li; Stebbins, Albert; Sitwell, Michael

    2014-01-01

    In this paper we describe the spherical harmonic transit telescope, a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved sky complications of traditional interferometry and so is particularly well suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics that allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loeve transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor twenty below the 21cm signal even in highly contaminated regions of the sky. This is despite the presence of the angle-frequency mode mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints ...

  20. All-Sky Video Orbits of Lyrids 2009

    CERN Document Server

    Tóth, Juraj; Vereš, Peter; Šilha, Jiří; Kalmančok, Dušan; Zigo, Pavol; Világi, Jozef

    2011-01-01

    We report observational results of the Lyrid meteor shower observed by the double station all-sky video system in the night of April 21/22, 2009 at the Astronomical and Geophysical Observatory of the Comenius University in Modra and Arboretum, Tes\\'arske Mly\\v{n}any, Slovakia. This observation was the first test of the double stations and orbit determination method within the frame of the new Slovak Video Meteor Network (SVMN). We present the whole set of 17 observed orbits of Lyrids as well as the five most precise orbits in detail form. The comparison with the known datasets, precise photographic IAU MDC and SonotaCo video orbits, demonstrate quite good consistency and similar quality.

  1. The AARTFAAC All Sky Monitor: System Design and Implementation

    CERN Document Server

    Prasad, Peeyush; Kooistra, Eric; van der Schuur, Daniel; Gunst, Andre; Romein, John; Kuiack, Mark; Molenaar, Gijs; Rowlinson, Antonia; Swinbank, John D; Wijers, Ralph A M J

    2016-01-01

    The Amsterdam-ASTRON Radio Transients Facility And Analysis Center (AARTFAAC) all sky monitor is a sensitive, real time transient detector based on the Low Frequency Array (LOFAR). It generates images of the low frequency radio sky with spatial resolution of 10s of arcmin, MHz bandwidths, and a time cadence of a few seconds, while simultaneously but independently observing with LOFAR. The image timeseries is then monitored for short and bright radio transients. On detection of a transient, a low latency trigger will be generated for LOFAR, which can interrupt its schedule to carry out follow-up observations of the trigger location at high sensitivity and resolutions. In this paper, we describe our heterogeneous, hierarchical design to manage the 240 Gbps raw data rate, and large scale computing to produce real-time images with minimum latency. We discuss the implementation of the instrumentation, its performance, and scalability.

  2. A-STAR: The All-Sky Transient Astrophysics Reporter

    CERN Document Server

    Osborne, J P; Evans, P; Fraser, G W; Martindale, A; Atteia, J -L; Cordier, B; Mereghetti, S

    2013-01-01

    The small mission A-STAR (All-Sky Transient Astrophysics Reporter) aims to locate the X-ray counterparts to ALIGO and other gravitational wave detector sources, to study the poorly-understood low luminosity gamma-ray bursts, and to find a wide variety of transient high-energy source types, A-STAR will survey the entire available sky twice per 24 hours. The payload consists of a coded mask instrument, Owl, operating in the novel low energy band 4-150 keV, and a sensitive wide-field focussing soft X-ray instrument, Lobster, working over 0.15-5 keV. A-STAR will trigger on ~100 GRBs/yr, rapidly distributing their locations.

  3. All Sky Imager Network for Science and Education

    Science.gov (United States)

    Bhatt, A.; Kendall, E. A.; Zalles, D. R.; Baumgardner, J. L.; Marshall, R. A.; Kaltenbacher, E.

    2012-12-01

    A new all sky imager network for space weather monitoring and education outreach has been developed by SRI International. The goal of this program is to install sensitive, low-light all-sky imagers across the continental United States to observe upper atmospheric airglow and aurora in near real time. While aurora borealis is often associated with the high latitudes, during intense geomagnetic storms it can extend well into the continental United States latitudes. Observing auroral processes is instrumental in understanding the space weather, especially in the times of increasing societal dependence on space-based technologies. Under the THEMIS satellite program, Canada has installed a network of all-sky imagers across their country to monitor aurora in real-time. However, no comparable effort exists in the United States. Knowledge of the aurora and airglow across the entire United States in near real time would allow scientists to quickly assess the impact of a geomagnetic storm in concert with data from GPS networks, ionosondes, radars, and magnetometers. What makes this effort unique is that we intend to deploy these imagers at high schools across the country. Selected high-schools will necessarily be in rural areas as the instrument requires dark night skies. At the commencement of the school year, we plan to give an introductory seminar on space weather at each of these schools. Science nuggets developed by SRI International in collaboration with the Center for GeoSpace Studies and the Center for Technology in Learning will be available for high school teachers to use during their science classes. Teachers can use these nuggets as desired within their own curricula. We intend to develop a comprehensive web-based interface that will be available for students and scientific community alike to observe data across the network in near real time and also to guide students towards complementary space weather data sets. This interface will show the real time extent of

  4. Estimation of aerosol optical properties from all-sky imagers

    Science.gov (United States)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  5. MAXI: all-sky observation from the International Space Station

    Science.gov (United States)

    Mihara, Tatehiro; Sugizaki, Mutsumi; Matsuoka, Masaru; Tomida, Hiroshi; Ueno, Shiro; Negoro, Hitoshi; Yoshida, Atsumasa; Tsunemi, Hiroshi; Nakajima, Motoki; Ueda, Yoshihiro; Yamauchi, Makoto

    2014-07-01

    Monitor of All-sky X-ray Image (MAXI) is mounted on the International Space Station (ISS). Since 2009 it has been scanning the whole sky in every 92 minutes with ISS rotation. Due to high particle background at high latitude regions the carbon anodes of three GSC cameras were broken. We limit the GSC operation to low-latitude region around equator. GSC is suffering a double high background from Gamma-ray altimeter of Soyuz spacecraft. MAXI issued the 37-month catalog with 500 sources above ~0.6 mCrab in 4-10 keV. MAXI issued 133 to Astronomers Telegram and 44 to Gammaray burst Coordinated Network so far. One GSC camera had a small gas leak by a micrometeorite. Since 2013 June, the 1.4 atm Xe pressure went down to 0.6 atm in 2014 May 23. By gradually reducing the high voltage we keep using the proportional counter. SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble and north polar spur, as well as it found a fast soft X-ray nova MAXI J0158-744. Although we operate CCD with charge-injection, the energy resolution is degrading. In the 4.5 years of operation MAXI discovered 6 of 12 new black holes. The long-term behaviors of these sources can be classified into two types of the outbursts, 3 Fast Rise Exponential Decay (FRED) and 3 Fast Rise and Flat Top (FRFT). The cause of types is still unknown.

  6. Point source calibration of the AKARI/FIS all-sky survey maps for staking analysis

    CERN Document Server

    Arimatsu, Ko; Wada, Takehiko; Takita, Satoshi; Kawada, Mitsunobu; Matsuura, Shuji; Ootsubo, Takafumi; Kataza, Hirokazu

    2014-01-01

    Investigations of the point spread functions (PSFs) and flux calibrations for stacking analysis have been performed with the far-infrared (wavelengths range of 60 to 140 um all-sky maps taken by the Far-Infrared Surveyor (FIS) onboard the AKARI satellite. The PSFs are investigated by stacking the maps at the positions of standard stars with their fluxes of 0.02 -10 Jy. The derived full widths at the half maximum (FWHMs) of the PSFs are ~ 60 arcsec at 65 and 90 um and ~ 90 arcsec at 140 um, which are much smaller than that of the previous all-sky maps obtained with IRAS (~ 6 arcmin). Any flux dependence in the PSFs is not seen on the investigated flux range. By performing the flux calibrations, we found that absolute photometry for faint sources can be carried out with constant calibration factors, which range from 0.6 to 0.8. After applying the calibration factors, the photometric accuracies for the stacked sources in the 65, 90, and 140 um bands are 9, 3, and 21 %, respectively, even below the detection limi...

  7. All-Sky Observational Evidence for An Inverse Correlation Between Dust Temperature and Emissivity Spectral Index

    Science.gov (United States)

    Liang, Z.; Fixsen, D. J.; Gold, B.

    2012-01-01

    We show that a one-component variable-emissivity-spectral-index model (the free- model) provides more physically motivated estimates of dust temperature at the Galactic polar caps than one- or two-component fixed-emissivity-spectral-index models (fixed- models) for interstellar dust thermal emission at far-infrared and millimeter wavelengths. For the comparison we have fit all-sky one-component dust models with fixed or variable emissivity spectral index to a new and improved version of the 210-channel dust spectra from the COBE-FIRAS, the 100-240 micrometer maps from the COBE-DIRBE and the 94 GHz dust map from the WMAP. The best model, the free-alpha model, is well constrained by data at 60-3000 GHz over 86 per cent of the total sky area. It predicts dust temperature (T(sub dust)) to be 13.7-22.7 (plus or minus 1.3) K, the emissivity spectral index (alpha) to be 1.2-3.1 (plus or minus 0.3) and the optical depth (tau) to range 0.6-46 x 10(exp -5) with a 23 per cent uncertainty. Using these estimates, we present all-sky evidence for an inverse correlation between the emissivity spectral index and dust temperature, which fits the relation alpha = 1/(delta + omega (raised dot) T(sub dust) with delta = -.0.510 plus or minus 0.011 and omega = 0.059 plus or minus 0.001. This best model will be useful to cosmic microwave background experiments for removing foreground dust contamination and it can serve as an all-sky extended-frequency reference for future higher resolution dust models.

  8. A prototype for the PASS Permanent All Sky Survey

    Science.gov (United States)

    Deeg, H. J.; Alonso, R.; Belmonte, J. A.; Horne, K.; Alsubai, K.; Collier Cameron, A.; Doyle, L. R.

    2004-10-01

    A prototype system for the Permanent All Sky Survey (PASS) project is presented. PASS is a continuous photometric survey of the entire celestial sphere with a high temporal resolution. Its major objectives are the detection of all giant-planet transits (with periods up to some weeks) across stars up to mag 10.5, and to deliver continuously photometry that is useful for the study of any variable stars. The prototype is based on CCD cameras with short focal length optics on a fixed mount. A small dome to house it at Teide Observatory, Tenerife, is currently being constructed. A placement at the antarctic Dome C is also being considered. The prototype will be used for a feasibility study of PASS, to define the best observing strategies, and to perform a detailed characterization of the capabilities and scope of the survey. Afterwards, a first partial sky surveying will be started with it. That first survey may be able to detect transiting planets during its first few hundred hours of operation. It will also deliver a data set around which software modules dealing with the various scientific objectives of PASS will be developed. The PASS project is still in its early phase and teams interested in specific scientific objectives, in providing technical expertise, or in participating with own observations are invited to collaborate.

  9. A Prototype for the PASS Permanent All Sky Survey

    CERN Document Server

    Deeg, H J; Belmonte, J A; Horne, K; Alsubai, K; Cameron, A C; Doyle, L R; Horne, Keith

    2004-01-01

    A prototype system for the Permanent All Sky Survey (PASS) project is presented. PASS is a continuous photometric survey of the entire celestial sphere with a high temporal resolution. Its major objectives are the detection of all giant-planet transits (with periods up to some weeks) across stars up to mag 10.5, and to deliver continuously photometry that is useful for the study of any variable stars. The prototype is based on CCD cameras with short focal length optics on a fixed mount. A small dome to house it at Teide Observatory, Tenerife, is currently being constructed. A placement at the antarctic Dome C is also being considered. The prototype will be used for a feasibility study of PASS, to define the best observing strategies, and to perform a detailed characterization of the capabilities and scope of the survey. Afterwards, a first partial sky surveying will be started with it. That first survey may be able to detect transiting planets during its first few hundred hours of operation. It will also deli...

  10. Digital all-sky polarization imaging of partly cloudy skies.

    Science.gov (United States)

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  11. Progress on the Low Frequency All Sky Monitor

    Science.gov (United States)

    Murray, James; Jenet, Fredrick; Craig, Joseph; Creighton, Teviet David; Percy Dartez, Louis; Ford, Anthony J.; Hernandez, Andrés; Hicks, Brian; Hinojosa, Jesus; Jaramillo, Ricardo; Kassim, Namir E.; Lazio, Joseph; Lunsford, Grady; Miller, Rossina B.; Ray, Paul S.; Rivera, Jesus; Taylor, Gregory B.; Teitelbaum, Lawrence; CenterAdvanced Radio Astronomy, University of Texas at Brownsville, University of New Mexico, Naval Research Laboratory, Jet Propulsion Laborator

    2015-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a system of geographically separated radio arrays dedicated to the study of radio transients. LoFASM consists of four stations, each comprised of 12 cross-dipole antennas designed to operate between 10-88MHz. The antennas and front end electronics for LoFASM were designed by the Naval Research Laboratory for the Long Wavelength Array (LWA) project (cf. Hicks et al. PASP 124, 1090 (2012)). All four stations are currently operational and in the commissioning stage . Over the last 3 years, undergraduate and graduate students from the University of Texas at Brownsville's Center for Advanced Radio Astronomy have been establishing these stations around the continental US, consisting of sites located in Port Mansfield, Texas, the LWA North Arm site of the LWA1 Radio Observatory in New Mexico, adjacent to the North Arm of the Very Large Array, the Green Bank Radio Observatory, West Virginia, and the Goldstone Deep Space Communications Complex, California. In combination with the establishment of these sites was the development of the analog hardware, which consists of custom RF splitter/combiners and a custom amplifier and filter chain designed at Center for Advanced Radio Astronomy (CARA). This poster will expound on progress in site installation and the development of the analog signal chain, specifically the redesigned analog receiving system.

  12. All-Sky Interferometry with Spherical Harmonic Transit Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.Richard [Canadian Inst. Theor. Astrophys.; Sigurdson, Kris [British Columbia U.; Pen, Ue-Li [Canadian Inst. Theor. Astrophys.; Stebbins, Albert [Fermilab; Sitwell, Michael [British Columbia U.

    2013-02-01

    In this paper we describe the spherical harmonic transit telescope, a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved sky complications of traditional interferometry and so is particularly well suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics that allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loeve transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor twenty below the 21cm signal even in highly contaminated regions of the sky. This is despite the presence of the angle-frequency mode mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with twenty-first century 21cm science.

  13. Planck intermediate results XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2016-01-01

    . The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Sigma(Md), the dust optical extinction A(V), and the starlight intensity heating the bulk......We present all-sky modelling of the high resolution Planck, IRAS, andWISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling...... of the dust, parametrized by U-min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31...

  14. Maximizing the Performance of Automated Low Cost All-sky Cameras

    Science.gov (United States)

    Bettonvil, F.

    2011-01-01

    Thanks to the wide spread of digital camera technology in the consumer market, a steady increase in the number of active All-sky camera has be noticed European wide. In this paper I look into the details of such All-sky systems and try to optimize the performance in terms of accuracy of the astrometry, the velocity determination and photometry. Having autonomous operation in mind, suggestions are done for the optimal low cost All-sky camera.

  15. Discovery of a Second L Subdwarf in the Two Micron All Sky Survey

    CERN Document Server

    Burgasser, A J

    2004-01-01

    I report the discovery of the second L subdwarf identified in the Two Micron All Sky Survey, 2MASS J16262034+3925190. This high proper motion object (mu = 1.27+/-0.03 "/yr) exhibits near-infrared spectral features indicative of a subsolar metallicity L dwarf, including strong metal hydride and H2O absorption bands, pressure-broadened alkali lines, and blue near-infrared colors caused by enhanced collision-induced H2 absorption. This object is of later type than any of the known M subdwarfs, but does not appear to be as cool as the apparently late-type sdL 2MASS 0532+8246. The radial velocity (Vrad = -260+/-35 km/s) and estimated tangential velocity (Vtan ~ 90-210 km/s) of 2MASS 1626+3925 indicate membership in the Galactic halo, and this source is likely near or below the hydrogen burning minimum mass for a metal-poor star. L subdwarfs such as 2MASS 1626+3925 are useful probes of gas and condensate chemistry in low-temperature stellar and brown dwarf atmospheres, but more examples are needed to study these ob...

  16. Using the DIRBE/IRAS All-Sky Reddening Map To Select Low-Reddening Windows Near the Galactic Plane

    CERN Document Server

    Stanek, K Z

    1998-01-01

    Recently Schlegel, Finkbeiner & Davis published an all-sky reddening map based on the COBE/DIRBE and IRAS/ISSA infrared sky surveys. Using the reddening map of Baade's Window and sample of 19 low-latitude ($|b|<5\\deg$) Galactic globular clusters I find that the DIRBE/IRAS reddening map overestimates $E(B-V)$ at low galactic latitudes by a factor of $\\sim 1.35$. I also demonstrate the usefulness of this high resolution map for selecting low-reddening windows near the Galactic plane.

  17. The Great Observatories All-Sky LIRG Survey: Herschel Image Atlas and Aperture Photometry

    Science.gov (United States)

    Chu, Jason K.; Sanders, D. B.; Larson, K. L.; Mazzarella, J. M.; Howell, J. H.; Díaz-Santos, T.; Xu, K. C.; Paladini, R.; Schulz, B.; Shupe, D.; Appleton, P.; Armus, L.; Billot, N.; Chan, B. H. P.; Evans, A. S.; Fadda, D.; Frayer, D. T.; Haan, S.; Ishida, C. M.; Iwasawa, K.; Kim, D.-C.; Lord, S.; Murphy, E.; Petric, A.; Privon, G. C.; Surace, J. A.; Treister, E.

    2017-04-01

    Far-infrared images and photometry are presented for 201 Luminous and Ultraluminous Infrared Galaxies [LIRGs: log ({L}{IR}/{L}ȯ )=11.00{--}11.99, ULIRGs: log ({L}{IR}/{L}ȯ )=12.00{--}12.99], in the Great Observatories All-Sky LIRG Survey (GOALS), based on observations with the Herschel Space Observatory Photodetector Array Camera and Spectrometer (PACS) and the Spectral and Photometric Imaging Receiver (SPIRE) instruments. The image atlas displays each GOALS target in the three PACS bands (70, 100, and 160 μm) and the three SPIRE bands (250, 350, and 500 μm), optimized to reveal structures at both high and low surface brightness levels, with images scaled to simplify comparison of structures in the same physical areas of ∼100 × 100 kpc2. Flux densities of companion galaxies in merging systems are provided where possible, depending on their angular separation and the spatial resolution in each passband, along with integrated system fluxes (sum of components). This data set constitutes the imaging and photometric component of the GOALS Herschel OT1 observing program, and is complementary to atlases presented for the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory. Collectively, these data will enable a wide range of detailed studies of active galactic nucleus and starburst activity within the most luminous infrared galaxies in the local universe. Based on Herschel Space Observatory observations. Herschel is an ESA space observatory with science instruments provided by the European-led Principal Investigator consortia, and important participation from NASA.

  18. All-sky Observational Evidence for An Inverse Correlation between Dust Temperature and Emissivity Spectral Index

    CERN Document Server

    Liang, Z; Gold, B

    2012-01-01

    We show that a one-component variable-emissivity-spectral-index model (the free-{\\alpha} model) provides more physically motivated estimates of dust temperature at the Galactic polar caps than one- or two-component fixed-emissivity-spectral-index models (fixed-{\\alpha} models) for interstellar dust thermal emission at far-infrared and millimeter wavelengths. For the comparison we have fit all-sky one-component dust models with fixed or variable emissivity spectral index to a new and improved version of the 210-channel dust spectra from the COBE-FIRAS, the 100 - 240 {\\mu}m maps from the COBE-DIRBE and the 94 GHz dust map from the WMAP. The best model, the free-{\\alpha} model, is well constrained by data at 60-3000 GHz over 86 per cent of the total sky area. It predicts dust temperature (Tdust) to be 13.7-22.7 ({\\pm}1.3) K, the emissivity spectral index ({\\alpha}) to be 1.2 - 3.1 ({\\pm}0.3) and the optical depth ({\\tau}) to range 0.6 - 46 {\\times} 10^(-5) with a 23 per cent uncertainty. Using these estimates, w...

  19. Mapping the Cosmic Web with the largest all-sky surveys

    CERN Document Server

    Bilicki, Maciej; Jarrett, Thomas H; Cluver, Michelle E; Steward, Louise

    2014-01-01

    Our view of the low-redshift Cosmic Web has been revolutionized by galaxy redshift surveys such as 6dFGS, SDSS and 2MRS. However, the trade-off between depth and angular coverage limits a systematic three-dimensional account of the entire sky beyond the Local Volume (z<0.05). In order to reliably map the Universe to cosmologically significant depths over the full celestial sphere, one must draw on multiwavelength datasets and state-of-the-art photometric redshift techniques. We have undertaken a dedicated program of cross-matching the largest photometric all-sky surveys -- 2MASS, WISE and SuperCOSMOS -- to obtain accurate redshift estimates of millions of galaxies. The first outcome of these efforts -- the 2MASS Photometric Redshift catalog (2MPZ, Bilicki et al. 2014a) -- has been publicly released and includes almost 1 million galaxies with a mean redshift of z=0.08. Here we summarize how this catalog was constructed and how using the WISE mid-infrared sample together with SuperCOSMOS optical data allows ...

  20. AKARI-CAS --- Online Service for AKARI All-Sky Catalogues

    CERN Document Server

    Yamauchi, C; Ikeda, N; Inada, K; Katano, M; Kataza, H; Makiuti, S; Matsuzaki, K; Takita, S; Yamamoto, Y; Yamamura, I; 10.1086/660926

    2011-01-01

    The AKARI All-Sky Catalogues are an important infrared astronomical database for next-generation astronomy that take over the IRAS catalog. We have developed an online service, AKARI Catalogue Archive Server (AKARI-CAS), for astronomers. The service includes useful and attractive search tools and visual tools. One of the new features of AKARI-CAS is cached SIMBAD/NED entries, which can match AKARI catalogs with other catalogs stored in SIMBAD or NED. To allow advanced queries to the databases, direct input of SQL is also supported. In those queries, fast dynamic cross-identification between registered catalogs is a remarkable feature. In addition, multiwavelength quick-look images are displayed in the visualization tools, which will increase the value of the service. In the construction of our service, we considered a wide variety of astronomers' requirements. As a result of our discussion, we concluded that supporting users' SQL submissions is the best solution for the requirements. Therefore, we implemented...

  1. Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    CERN Document Server

    Ade, P A R; Alves, M I R; Aniano, G; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoit-Levy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, H C; Christensen, P R; Clements, D L; Colombi, S; Colombo, L P L; Couchot, F; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Dore, O; Douspis, M; Draine, B T; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Ensslin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Gjerlow, E; Gonzalez-Nuevo, J; Gorski, K M; Gregorio, A; Gruppuso, A; Guillet, V; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versille, S; Hernandez-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Holmes, W A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Keihanen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Levrier, F; Liguori, M; Lilje, P B; Linden-Vornle, M; Lopez-Caniego, M; Lubin, P M; Macias-Perez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martinez-Gonzalez, E; Masi, S; Matarrese, S; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Miville-Deschenes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Natoli, P; Norgaard-Nielsen, H U; Novikov, D; Novikov, I; Oxborrow, C A; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Pasian, F; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Ristorcelli, I; Rocha, G; Roudier, G; Rubio-Martin, J A; Rusholme, B; Sandri, M; Santos, D; Scott, D; Spencer, L D; Stolyarov, V; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Ysard, N; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    We present all-sky dust modelling of the high resolution Planck, IRAS and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL). We study the performance of this model and present implications for future dust modelling. The present work extends to the full sky the dust modelling carried out on nearby galaxies using Herschel and Spitzer data. We employ the DL dust model to generate maps of the dust mass surface density, the dust optical extinction AV, and the starlight intensity heating the bulk of the dust, parametrized by Umin. We test the model by comparing these maps with independent estimates of the dust optical extinction AV . In molecular clouds, we compare the DL AV estimates with maps generated from stellar optical observations from the 2MASS survey. The DL AV estimates are a factor of about 3 larger than values estimated from 2MASS observations. In the diffuse interstellar medium (ISM) we compare the DL optical extinction AV estimates with optical est...

  2. Planck 2013 results. XXI. All-sky Compton parameter power spectrum and high-order statistics

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Genova-Santos, R.T.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. These maps show an obvious galaxy cluster tSZ signal that is well matched with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales ($\\ell 500$) the clustered Cosmic Infrared Background (CIB) and residual point sources are the major contaminants. These foregrounds are carefully modelled and subtracted. We measure the tSZ power spectrum in angular scales, $0.17^{\\circ} \\lesssim \\theta \\lesssim 3.0^{\\circ}$, that were previously unexplored. The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with additional clear evidence of signal from unresolved clusters and, potentially, diffuse warm baryons. We use the tSZ power spectrum to ...

  3. An all-sky Support Vector Machine selection of WISE YSO Candidates

    CERN Document Server

    Marton, Gábor; Paladini, Roberta; Kun, Mária; Zahorecz, Sarolta; McGehee, Peregrine; Kiss, Csaba

    2016-01-01

    We explored the AllWISE catalogue of the Wide-field Infrared Survey Explorer mission and identified Young Stellar Object candidates. Reliable 2MASS and WISE photometric data combined with Planck dust opacity values were used to build our dataset and to find the best classification scheme. A sophisticated statistical method, the Support Vector Machine (SVM) is used to analyse the multi-dimensional data space and to remove source types identified as contaminants (extragalactic sources, main sequence stars, evolved stars and sources related to the interstellar medium). Objects listed in the SIMBAD database are used to identify the already known sources and to train our method. A new all-sky selection of 133,980 Class I/II YSO candidates is presented. The estimated contamination was found to be well below 1% based on comparison with our SIMBAD training set. We also compare our results to that of existing methods and catalogues. The SVM selection process successfully identified >90% of the Class I/II YSOs based on...

  4. Testing the COBE/IRAS All-Sky Reddening Map Using the Galactic Globular Clusters

    CERN Document Server

    Stanek, K Z

    1998-01-01

    We live in a dusty Universe, and correcting for the dust extinction and reddening affects almost all aspects of the optical astronomy. Recently Schlegel, Finkbeiner & Davis published an all-sky reddening map based on the COBE/DIRBE and IRAS/ISSA infrared sky surveys. Their map is intended to supersede the older Burstein & Heiles reddening estimates. In this paper I test this new reddening map by comparing the reddening values for a sample of 110 $|b|>5\\deg$ Galactic globular clusters selected from compilation of Harris. I find a good agreement for globular clusters with galactic latitude $|b|>20\\deg$ and fair overall agreement for globular clusters with $20>|b|>5\\deg$, but with several significant deviations. I discuss four individual clusters with largest deviations, NGC 6144, Terzan 3, NGC 6355 and IC 1276, in order to investigate the reasons for these large deviations. It seems that the new reddening map overestimates the reddening in some large extinction regions. However, with its high spatial re...

  5. Weather and atmosphere observation with the ATOM all-sky camera

    Directory of Open Access Journals (Sweden)

    Jankowsky Felix

    2015-01-01

    Full Text Available The Automatic Telescope for Optical Monitoring (ATOM for H.E.S.S. is an 75 cm optical telescope which operates fully automated. As there is no observer present during observation, an auxiliary all-sky camera serves as weather monitoring system. This device takes an all-sky image of the whole sky every three minutes. The gathered data then undergoes live-analysis by performing astrometric comparison with a theoretical night sky model, interpreting the absence of stars as cloud coverage. The sky monitor also serves as tool for a meteorological analysis of the observation site of the the upcoming Cherenkov Telescope Array. This overview covers design and benefits of the all-sky camera and additionally gives an introduction into current efforts to integrate the device into the atmosphere analysis programme of H.E.S.S.

  6. Retrieval of the optical depth using an all-sky CCD camera.

    Science.gov (United States)

    Olmo, Francisco J; Cazorla, Alberto; Alados-Arboledas, Lucas; López-Alvarez, Miguel A; Hernández-Andrés, Javier; Romero, Javier

    2008-12-01

    A new method is presented for retrieval of the aerosol and cloud optical depth using a CCD camera equipped with a fish-eye lens (all-sky imager system). In a first step, the proposed method retrieves the spectral radiance from sky images acquired by the all-sky imager system using a linear pseudoinverse algorithm. Then, the aerosol or cloud optical depth at 500 nm is obtained as that which minimizes the residuals between the zenith spectral radiance retrieved from the sky images and that estimated by the radiative transfer code. The method is tested under extreme situations including the presence of nonspherical aerosol particles. The comparison of optical depths derived from the all-sky imager with those retrieved with a sunphotometer operated side by side shows differences similar to the nominal error claimed in the aerosol optical depth retrievals from sunphotometer networks.

  7. Testing foundations of modern cosmology with SKA all-sky surveys

    CERN Document Server

    Schwarz, Dominik J; Chen, Song; Clarkson, Chris; Huterer, Dragan; Kunz, Martin; Maartens, Roy; Raccanelli, Alvise; Rubart, Matthias; Starck, Jean-Luc

    2015-01-01

    Continuum and HI surveys with the Square Kilometre Array (SKA) will allow us to probe some of the most fundamental assumptions of modern cosmology, including the Cosmological Principle. SKA all-sky surveys will map an enormous slice of space-time and reveal cosmology at superhorizon scales and redshifts of order unity. We illustrate the potential of these surveys and discuss the prospects to measure the cosmic radio dipole at high fidelity. We outline several potentially transformational tests of cosmology to be carried out by means of SKA all-sky surveys.

  8. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    Science.gov (United States)

    Goetz, E.; Riles, K.

    2016-04-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors.

  9. Lobster X-ray All Sky Monitor-Novel experiment for monitoring GRBs and XRFs

    Energy Technology Data Exchange (ETDEWEB)

    Sveda, L. [Czech Technical Univ., Prague (Czech Republic). Faculty of Nuclear Sciences and Physical Engineering; Hudec, R. [Astronomical Institute of Academy of Sciences, Onderjov (Czech Republic); Reflex s.r.o., Prague (Czech Republic); Inneman, A. [Reflez s.r.o., Prague (Czech Republic)

    2005-07-15

    We present a brief review of the X-ray All-Sky Monitor (ASM) based on Lobster Eye (LE) optics. The system will observe the whole sky in soft X-rays with the limiting flux up to two orders of magnitude better than current ASMs.

  10. Planck early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample

    DEFF Research Database (Denmark)

    Bucher, M.; Delabrouille, J.; Giraud-Héraud, Y.;

    2011-01-01

    We present the first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies. This early SZ (ESZ) sample is comprised of 189 candidates, which have a high signal-to-noise ratio ranging from 6 to 29. Its ...

  11. Photometric indicators of visual night sky quality derived from all-sky brightness maps

    Science.gov (United States)

    Duriscoe, Dan M.

    2016-09-01

    Wide angle or fisheye cameras provide a high resolution record of artificial sky glow, which results from the scattering of escaped anthropogenic light by the atmosphere, over the sky vault in the moonless nocturnal environment. Analysis of this record yields important indicators of the extent and severity of light pollution. The following indicators were derived through numerical analysis of all-sky brightness maps: zenithal, average all-sky, median, brightest, and darkest sky brightness. In addition, horizontal and vertical illuminance, resulting from sky brightness were computed. A natural reference condition to which the anthropogenic component may be compared is proposed for each indicator, based upon an iterative analysis of a high resolution natural sky model. All-sky brightness data, calibrated in the V band by photometry of standard stars and converted to luminance, from 406 separate data sets were included in an exploratory analysis. Of these, six locations representing a wide range of severity of impact from artificial sky brightness were selected as examples and examined in detail. All-sky average brightness is the most unbiased indicator of impact to the environment, and is more sensitive and accurate in areas of slight to moderate light pollution impact than zenith brightness. Maximum vertical illuminance provides an excellent indicator of impacts to wilderness character, as does measures of the brightest portions of the sky. Zenith brightness, the workhorse of field campaigns, is compared to the other indicators and found to correlate well with horizontal illuminance, especially at relatively bright sites. The median sky brightness describes a brightness threshold for the upper half of the sky, of importance to telescopic optical astronomy. Numeric indicators, in concert with all-sky brightness maps, provide a complete assessment of visual sky quality at a site.

  12. An All-Sky Search for Wide Binaries in the SUPERBLINK Proper Motion Catalog

    Science.gov (United States)

    Hartman, Zachary; Lepine, Sebastien

    2017-01-01

    We present initial results from an all-sky search for Common Proper Motion (CPM) binaries in the SUPERBLINK all-sky proper motion catalog of 2.8 million stars with proper motions greater than 40 mas/yr, which has been recently enhanced with data from the GAIA mission. We initially search the SUPERBLINK catalog for pairs of stars with angular separations up to 1 degree and proper motion difference less than 40 mas/yr. In order to determine which of these pairs are real binaries, we develop a Bayesian analysis to calculate probabilities of true companionship based on a combination of proper motion magnitude, angular separation, and proper motion differences. The analysis reveals that the SUPERBLINK catalog most likely contains ~40,000 genuine common proper motion binaries. We provide initial estimates of the distances and projected physical separations of these wide binaries.

  13. All-sky Relative Opacity Mapping Using Night Time Panoramic Images

    CERN Document Server

    Shamir, L; Shamir, Lior; Nemiroff, Roberj J.

    2005-01-01

    An all-sky cloud monitoring system that generates relative opacity maps over many of the world's premier astronomical observatories is described. Photometric measurements of numerous background stars are combined with simultaneous sky brightness measurements to differentiate thin clouds from sky glow sources such as air glow and zodiacal light. The system takes a continuous pipeline of all-sky images, and compares them to canonical images taken on other nights at the same sidereal time. Data interpolation then yields transmission maps covering almost the entire sky. An implementation of this system is currently operating through the Night Sky Live network of CONCAM3s located at Cerro Pachon (Chile), Mauna Kea (Hawaii), Haleakala (Hawaii), SALT (South Africa) and the Canary Islands (Northwestern Africa).

  14. Validation of spectral sky radiance derived from all-sky camera images – a case study

    Directory of Open Access Journals (Sweden)

    K. Tohsing

    2014-01-01

    Full Text Available Spectral sky radiance (380–760 nm is derived from measurements with a Hemispherical Sky Imager (HSI system. The HSI consists of a commercial compact CCD (charge coupled device camera equipped with a fish-eye lens and provides hemispherical sky images in three reference bands such as red, green and blue. To obtain the spectral sky radiance from these images non-linear regression functions for various sky conditions have been derived. The camera-based spectral sky radiance was validated by spectral sky radiance measured with a CCD spectroradiometer. The spectral sky radiance for complete distribution over the hemisphere between both instruments deviates by less than 20% at 500 nm for all sky conditions and for zenith angles less than 80°. The reconstructed spectra of the wavelength 380 nm to 760 nm between both instruments at various directions deviate by less then 20% for all sky conditions.

  15. Validation of spectral sky radiance derived from all-sky camera images – a case study

    Directory of Open Access Journals (Sweden)

    K. Tohsing

    2014-07-01

    Full Text Available Spectral sky radiance (380–760 nm is derived from measurements with a hemispherical sky imager (HSI system. The HSI consists of a commercial compact CCD (charge coupled device camera equipped with a fish-eye lens and provides hemispherical sky images in three reference bands such as red, green and blue. To obtain the spectral sky radiance from these images, non-linear regression functions for various sky conditions have been derived. The camera-based spectral sky radiance was validated using spectral sky radiance measured with a CCD spectroradiometer. The spectral sky radiance for complete distribution over the hemisphere between both instruments deviates by less than 20% at 500 nm for all sky conditions and for zenith angles less than 80°. The reconstructed spectra of the wavelengths 380–760 nm between both instruments at various directions deviate by less than 20% for all sky conditions.

  16. Alaskan Auroral All-Sky Images on the World Wide Web

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  17. WATCHDOG: A Comprehensive All-Sky Database of Galactic Black Hole X-ray Binaries

    CERN Document Server

    Tetarenko, B E; Heinke, C O; Gladstone, J C

    2015-01-01

    With the advent of more sensitive all-sky instruments, the transient Universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments aboard the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), Monitor of All-Sky X-ray Image (MAXI), Rossi X-ray Timing Explorer (RXTE), and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion ...

  18. Planck 2013 results. XI. All-sky model of thermal dust emission

    CERN Document Server

    Abergel, A; Aghanim, N; Alina, D; Alves, M I R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Cardoso, J -F; Catalano, A; Chamballu, A; Chary, R -R; Chiang, H C; Chiang, L -Y; Christensen, P R; Church, S; Clemens, M; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Ganga, K; Ghosh, T; Giard, M; Giardino, G; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Grenier, I A; Gruppuso, A; Guillet, V; Hansen, F K; Hanson, D; Harrison, D; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, A H; Jaffe, T R; Jewell, J; Joncas, G; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leonardi, R; León-Tavares, J; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Massardi, M; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Welikala, N; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    This paper presents an all-sky model of dust emission from the Planck 857, 545 and 353 GHz, and IRAS 100 micron data. Using a modified black-body fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a tight representation of the data at 5 arcmin. It shows variations of the order of 30 % compared with the widely-used model of Finkbeiner, Davis, and Schlegel. The Planck data allow us to estimate the dust temperature uniformly over the whole sky, providing an improved estimate of the dust optical depth compared to previous all-sky dust model, especially in high-contrast molecular regions. An increase of the dust opacity at 353 GHz, tau_353/N_H, from the diffuse to the denser interstellar medium (ISM) is reported. It is associated with a decrease in the observed dust temperature, T_obs, that could be due at least in part to the increased dust opacity. We also report an excess of dust emission at HI column densities lower than...

  19. X ray observations of late-type stars using the ROSAT all-sky survey

    Science.gov (United States)

    Linsky, Jeffrey L.; Fleming, Thomas A.

    1992-03-01

    The ROSAT mission made the first x ray survey of the entire sky using an imaging detector. Although ROSAT is a joint NASA/German project and involves direct American participation during its second phase of pointed observations, the all-sky survey remains the sole property of the German investigators. NASA grant represented the first use of ROSAT data analysis funds to support direct American participation in the ROSAT all-sky survey. The project involved a collaborative agreement between the Joint Institute for Laboratory Astrophysics (JILA) and the Max-Planck-Institut fur Extraterrestrische Physik (MPE) where JILA supplied MPE with a post-doctoral research associate with experience in the field of stellar (coronal) x ray emission to work within their ROSAT group. In return, members of the cool star research group at JILA were given the opportunity to collaborate on projects involving ROSAT all-sky survey data. Both sides have benefitted (and still benefit) from this arrangement since MPE suffers from a shortage of researchers who are interested in x ray emission from 'normal' stars and white dwarfs. MPE has also drawn upon experience in optical identification of x ray sources from the Einstein Extended Medium Sensitivity Survey in planning their own identification strategies for the ROSAT all-sky survey. The JILA cool stars group has benefitted since access to all-sky survey data has expanded the scope of their already extensive research programs involving multiwavelength observations of late-type stars. ROSAT was successfully launched on 1 June 1990 and conducted the bulk of the survey from 30 July 1990 to 25 January 1991. Data gaps in the survey have subsequently been made up. At the time of this writing (February 1992), the survey data have been processed once with the Standard Analysis Software System (SASS). A second processing will soon begin with improvements made to the SASS to correct errors and bugs found while carrying out scientific projects with data

  20. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C., E-mail: btetaren@ualberta.ca [Department of Physics, University of Alberta, CCIS 4-181, Edmonton, AB T6G 2E1 (Canada)

    2016-02-15

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.

  1. Spectral Classification of Optical Counterparts to ROSAT All-Sky Survey X-ray Sources

    CERN Document Server

    Dragomir, D; Rutledge, R E; Dragomir, Diana; Roy, Philippe; Rutledge, Robert E.

    2007-01-01

    Previous work statistically identified 5492 optical counterparts, with approximately 90% confidence, from among the approximately 18,000 X-ray sources appearing in the ROSAT All-Sky Survey Bright Source Catalog (RASS/BSC). Using low resolution spectra in the wavelength range 3700-7900 angstroms, we present spectroscopic classifications for 195 of these counterparts which have not previously been classified. Of these 195, we find 168 individual stars of F, G, K or M type, 6 individual stars of unknown type, 6 double stars, 6 AGN or galaxies and 7 unclassifiable objects; the spectra of the 2 remaining objects were saturated.

  2. Status of GRB Observations with the Suzaku Wideband All-sky Monitor

    CERN Document Server

    Tashiro, M S; Urata, Y; Onda, K; Kodaka, N; Endo, A; Suzuki, M; Morigami, K; Yamaoka, K; Nakagawa, Y E; Sugita, S; Fukazawa, Y; Ohno, M; Takahashi, T; Kira, C; Uehara, T; Tamagawa, T; Enoto, T; Miyawaki, R; Nakazawa, K; Makishima, K; Sonoda, E; Yamauchi, M; Maeno, S; Tanaka, H; Hara, R; Suzuki, M; Kokubun, M; Takahashi, T; Hong, S J; Murakami, T; Tajima, H

    2008-01-01

    The Wide-band All-sky Monitor (WAM) is a function of the large lateral BGO shield of the Hard X-ray Detector (HXD) onboard Suzaku. Its large geometrical area of 800 cm^2 per side, the large stopping power for the hard X-rays and the wide-field of view make the WAM an ideal detector for gamma-ray bursts (GRBs) observations in the energy range of 50-5000 keV. In fact, the WAM has observed 288 GRBs confirmed by other satellites, till the end of May 2007.

  3. All-sky upper limit for gravitational radiation from spinning neutron stars

    CERN Document Server

    Astone, P; Bassan, M; Borkowski, K M; Coccia, E; D'Antonio, S; Fafone, V; Giordano, G; Jaranowski, P; Królak, A; Marini, A; Modena, Y M I; Modestino, G; Moleti, A; Pallottino, G V; Pietka, M; Quintieri, G P L; Rocchi, A; Ronga, F; Terenzi, R; Visco, M

    2003-01-01

    We present results of the all-sky search for gravitational-wave signals from spinning neutron stars in the data of the EXPLORER resonant bar detector. Our data analysis technique was based on the maximum likelihood detection method. We briefly describe the theoretical methods that we used in our search. The main result of our analysis is an upper limit of ${\\bf 2\\times10^{-23}}$ for the dimensionless amplitude of the continuous gravitational-wave signals coming from any direction in the sky and in the narrow frequency band from 921.00 Hz to 921.76 Hz.

  4. All-Sky Search for Periodic Gravitational Waves in the Full S5 LIGO Data

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. S.; Araya, M. C.; Aston, S. M.; Blackburn, L.; Camp, J. B.; Cannizzo, J.

    2011-01-01

    We report on an all-sky search for periodic gravitational waves in the frequency band 50-800 Hz and with the frequency time derivative in the range of 0 through -6 x 10(exp -9) Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. After recent improvements in the search program that yielded a 10x increase in computational efficiency, we have searched in two years of data. collected during LIGO's fifth science run and have obtained the most sensitive all-sky upper limits on gravitational wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude h(sub 0) is 1 x 10(exp -24), while at the high end of our frequency ra.nge we achieve a worst-case upper limit of 3.8 x 10(exp -24) for all polarizations and sky locations. These results constitute a factor of two improvement upop. previously published data. A new detection pipeline utilizing a Loosely Coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long.period binary companion.

  5. Sharp Chandra View of ROSAT All-Sky Survey Bright Sources: I. Improvement of Positional Accuracy

    CERN Document Server

    Gao, Shuang; Liu, Jifeng

    2016-01-01

    The ROSAT All-Sky Survey (RASS) represents one of the most complete and sensitive soft X-ray all-sky surveys to date. However, the deficient positional accuracy of the RASS Bright Source Catalog (BSC) and subsequent lack of firm optical identifications affect the multi-wavelength studies of X-ray sources. The widely used positional errors $\\sigma_{pos}$ based on the Tycho Stars Catalog (Tycho-1) have previously been applied for identifying objects in the optical band. The considerably sharper Chandra view covers a fraction of RASS sources, whose $\\sigma_{pos}$ could be improved by utilizing the sub-arcsec positional accuracy of Chandra observations. We cross-match X-ray objects between the BSC and \\emph{Chandra} sources extracted from the Advanced CCD Imaging Spectrometer (ACIS) archival observations. A combined counterparts list (BSCxACIS) with \\emph{Chandra} spatial positions weighted by the X-ray flux of multi-counterparts is employed to evaluate and improve the former identifications of BSC with the other...

  6. Equatorial All Sky Imager Images from the Seychelles during the March 17th, 2015 geomagnetic storm.

    Science.gov (United States)

    Curtis, B.

    2015-12-01

    An all sky imager was installed in the Seychelles earlier this year. The Seychelles islands are located northeast of Madagascar and east of Somalia in the equatorial Indian Ocean. The all sky imager is located on the island of Mahe (4.6667°S, 55.4667°E geographic), (10.55°S, 127.07°E geomagnetic), with filters of 557.7, 620.0, 630.0, 765.0 and 777.4 nm. Images with a 90 second exposure from Seychelles in 777.4nm and 630.0nm from the night before and night of the March 17th geomagnetic storm are discussed in comparison to solar wind measurements at ACE and the disturbance storm time (Dst) index. These images show line-of-sight intensities of photons received dependent on each filters wavelength. A time series of these images sometimes will show the movement of relatively dark areas, or depletions, in each emission. The depletion regions are known to cause scintillation in GPS signals. The direction and speed of movement of these depletions are related to changes observed in the solar wind.

  7. The first long-term all-sky imager observation of lunar sodium tail

    Science.gov (United States)

    Nishino, Masaki N.; Shiokawa, Kazuo; Otsuka, Yuichi

    2016-12-01

    The Moon possesses a long tail of neutral sodium atoms that are emitted from the lunar surface and transported anti-sunward by the solar radiation pressure. Since the earth crosses the lunar sodium tail for a few days around the new moon, the resonant light emission from sodium atoms can be detected from the ground. Here we show the first long-term (16 years) observation of the lunar sodium tail, using an all-sky imager at Shigaraki Observatory (35°N, 136°E), Japan. We have surveyed our database of all-sky sodium images at a wavelength of 589.3 nm to find more than 20 events in which a bright spot emerges around the anti-lunar point during the new moon periods. We could not find any clear correlation between the sodium brightness and solar wind parameters (density, speed, dynamic pressure, and F10.7 index). In particular, no enhancement of the sodium spot brightness is detected even under very high density solar wind conditions (70 cm-3; an order-of-magnitude higher than usual), which means that solar wind sputtering is not a principal mechanism of the formation of the lunar sodium tail.

  8. All-sky Search for Periodic Gravitational Waves in the Full S5 LIGO Data

    CERN Document Server

    Abadie, J; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Affeldt, C; Ajith, P; Allen, B; Allen, G S; Ceron, E Amador; Amariutei, D; Amin, R S; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, D; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Beker, M G; Bell, A S; Belletoile, A; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brummit, A; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Burmeister, O; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cain, J; Calloni, E; Camp, J B; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, Y; Chincarini, A; Chiummo, A; Cho, H; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; Del Pozzo, W; del Prete, M; Dent, T; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Dorsher, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endrőczi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Farr, W; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Flanigan, M; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P J; Fyffe, M; Galimberti, M; Gammaitoni, L; Ganija, M R; Garcia, J; Garofoli, J A; Garufi, F; Gáspár, M E; Gemme, G; Geng, R; Genin, E; Gennai, A; Gergely, L Á; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Gray, N; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Guido, C; Gupta, R; Gustafson, E K; Gustafson, R; Ha, T; Hage, B; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Hayler, T; Heefner, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hong, T; Hooper, S; Hosken, D J; Hough, J; Howell, E J; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kamaretsos, I; Kandhasamy, S; Kang, G; Kanner, J B; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Keresztes, Z; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B; Kim, C; Kim, D; Kim, H; Kim, K; Kim, N; Kim, Y -M; King, P J; Kinsey, M; Kinzel, D L; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kumar, R; Kwee, P; Lam, P K; Landry, M; Lang, M; Lantz, B; Lastzka, N; Lawrie, C; Lazzarini, A; Leaci, P; Lee, C H; Lee, H M; Leindecker, N; Leong, J R; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Luan, J; Lubinski, M; Lück, H; Lundgren, A P; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marandi, A; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McKechan, D J A; Meadors, G D; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Menendez, D; Mercer, R A; Merill, L; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Moesta, P; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morgia, A; Mori, T; Mosca, S; Mossavi, K; Mours, B; Mow--Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Mytidis, A; Nash, T; Naticchioni, L; Nawrodt, R; Necula, V; Nelson, J; Newton, G; Nishida, E; Nishizawa, A; Nocera, F; Nolting, D; Nuttall, L; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Oldenburg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pathak, D; Pedraza, M; Peiris, P; Pekowsky, L; Penn, S; Peralta, C; Perreca, A; Persichetti, G; Phelps, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Pöld, J; Postiglione, F; Prato, M; Predoi, V; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Rakhmanov, M; Ramet, C R; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Redwine, K; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Ryll, H; Sainathan, P; Sakosky, M; Salemi, F; Sammut, L; de la Jordana, L Sancho; Sandberg, V; Sankar, S; Sannibale, V; Santamaría, L; Santiago-Prieto, I; Santostasi, G; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R L; Schilling, R; Schlamminger, S; Schnabel, R; Schofield, R M S; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D A; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Singer, L; Sintes, A M; Skelton, G; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Somiya, K; Sorazu, B; Soto, J; Speirits, F C; Sperandio, L; Stefszky, M; Stein, A J; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Taffarello, L; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thüring, A; Titsler, C; Tokmakov, K V; Toncelli, A; Tonelli, M; Torre, O; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Tseng, K; Turner, L; Ugolini, D; Urbanek, K; Vahlbruch, H; Vajente, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A E; Vinet, J -Y; Vitale, S; Vitale, S; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A; Waldman, S J; Wallace, L; Wan, Y; Wang, X; Wang, Z; Wanner, A; Ward, R L; Was, M; Wei, P; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wooley, R; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yang, H; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zadroźny, A; Zanolin, M; Zendri, J -P; Zhang, F; Zhang, L; Zhang, W; Zhang, Z; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J

    2011-01-01

    We report on an all-sky search for periodic gravitational waves in the frequency band 50-800 Hz and with the frequency time derivative in the range of 0 through -6e-9 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. After recent improvements in the search program that yielded a 10x increase in computational efficiency, we have searched in two years of data collected during LIGO's fifth science run and have obtained the most sensitive all-sky upper limits on gravitational wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude $h_0$ is 1e-24, while at the high end of our frequency range we achieve a worst-case upper limit of 3.8e-24 for all polarizations and sky locations. These results constitute a factor of two improvement upon previously published data. A new detection pipeline utilizing a Loosely Coherent algorithm was able to follow up weaker outliers, increasing the volume of space wher...

  9. AGN and QSOs in the eROSITA All-Sky Survey -- Part I: Statistical properties

    CERN Document Server

    Kolodzig, Alexander; Sunyaev, Rashid; Sazonov, Sergey; Brusa, Marcella

    2012-01-01

    Context. The main element of the observing program of the Spectrum-Roentgen-Gamma orbital observatory is a 4-years all-sky survey in the course of which the entire sky will be scanned eight times. Aims. We analyze statistical properties of AGN and QSOs to be detected in the course of the eROSITA all-sky survey (eRASS). Methods. Given the currently planned survey strategy, parameters of the galactic and extragalactic X-ray background and results of the recent calculations of the eROSITA instrumental background, we compute the sensitivity map of the eRASS. Using the best available redshift-dependent AGN X-ray luminosity function (XLF) we compute various characteristics of the eRASS AGN sample, such as the luminosity and redshift distributions and the brightness distributions of their optical counterparts. Results. After four years of the survey, the sky-average sensitivity of ~10^(-14) erg s^(-1) cm^(-2) will be achieved in the 0.5-2.0 keV band. With this sensitivity, eROSITA will detect about ~3 million of AGN...

  10. All-sky search for periodic gravitational waves in the full S5 LIGO data

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Del Prete, M.; Dent, T.; Dergachev, V.; Derosa, R.; Desalvo, R.; Dhurandhar, S.; di Fiore, L.; Diguglielmo, J.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.

    2012-01-01

    We report on an all-sky search for periodic gravitational waves in the frequency band 50-800 Hz and with the frequency time derivative in the range of 0 through -6×10-9Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. After recent improvements in the search program that yielded a 10× increase in computational efficiency, we have searched in two years of data collected during LIGO’s fifth science run and have obtained the most sensitive all-sky upper limits on gravitational-wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude h0 is 1×10-24, while at the high end of our frequency range we achieve a worst-case upper limit of 3.8×10-24 for all polarizations and sky locations. These results constitute a factor of 2 improvement upon previously published data. A new detection pipeline utilizing a loosely coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational-wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long-period binary companion.

  11. Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.

    2016-08-01

    We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of [-1.18 ,+1.00 ] ×1 0-8 Hz /s . Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7 ×1 0-25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 5.5 ×1 0-24 . Both cases refer to all sky locations and entire range of frequency derivative values.

  12. An all-sky catalogue of solar-type dwarfs for exoplanetary transit surveys

    Science.gov (United States)

    Nascimbeni, V.; Piotto, G.; Ortolani, S.; Giuffrida, G.; Marrese, P. M.; Magrin, D.; Ragazzoni, R.; Pagano, I.; Rauer, H.; Cabrera, J.; Pollacco, D.; Heras, A. M.; Deleuil, M.; Gizon, L.; Granata, V.

    2016-12-01

    Most future surveys designed to discover transiting exoplanets, including TESS and PLATO, will target bright (V ≲ 13) and nearby solar-type stars having a spectral type later than F5. In order to enhance the probability of identifying transits, these surveys must cover a very large area on the sky, because of the intrinsically low areal density of bright targets. Unfortunately, no existing catalogue of stellar parameters is both deep and wide enough to provide a homogeneous input list. As the first Gaia data release exploitable for this purpose is expected to be released not earlier than late 2017, we have devised an improved reduced-proper-motion (RPM) method to discriminate late field dwarfs and giants by combining the fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4) proper motions with AAVSO Photometric All-Sky Survey DR6 photometry, and relying on Radial Velocity Experiment DR4 as an external calibrator. The output, named UCAC4-RPM, is a publicly available, complete all-sky catalogue of solar-type dwarfs down to V ≃ 13.5, plus an extension to log g > 3.0 subgiants. The relatively low amount of contamination (defined as the fraction of false positives; TESS (that will map almost the entire sky) input catalogue and the input catalogue of PLATO, planned to survey more than half of the whole sky with exquisite photometric precision.

  13. Comprehensive All-sky Search for Periodic Gravitational Waves in the Sixth Science Run LIGO Data

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Zertuche, L Magana; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of $[-1.18, +1.00]\\times 10^{-8}$ Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from the Initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude $h_0$ is ${9.7}\\times 10^{-25}$ near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of ${5.5}\\times 10^{-24}$. Both cases refer to all sky locations and entire range of frequency derivative values.

  14. First low frequency all-sky search for continuous gravitational wave signals

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Andersen, M.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Ashton, G.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Branco, V.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Colombini, M.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Damjanic, M. D.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez, J.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammer, D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.

    2016-02-01

    In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0 ×10-10 and +1.5 ×10-11 Hz /s , and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 1 0-24 and 2 ×10-23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ˜2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.

  15. The MAXI Mission on the ISS: Science and Instruments for Monitoring All Sky X-Ray Images

    CERN Document Server

    Matsuoka, Masaru; Ueno, Shiro; Tomida, Hiroshi; Kohama, Mitsuhiro; Suzuki, Motoko; Adachi, Yasuki; Ishikawa, Masaki; Mihara, Tatehiro; Sugizaki, Mutsumi; Isobe, Naoki; Nakagawa, Yujin; Tsunemi, Hiroshi; Miyata, Emi; Kawai, Nobuyuki; Kataoka, Jun; Morii, Mikio; Yoshida, Atsumasa; Negoro, Hitoshi; Nakajima, Motoki; Ueda, Yoshihiro; Chujo, Hirotaka; Yamaoka, Kazutaka; Yamazaki, Osamu; Nakahira, Satoshi; You, Tetsuya; Ishiwata, Ryoji; Miyoshi, Sho; Eguchi, Satoshi; Hiroi, Kazuo; Katayama, Haruyoshi; Ebisawa, Ken

    2009-01-01

    The MAXI (Monitor of All-sky X-ray Image) mission is the first astronomical payload to be installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on the ISS. It is scheduled for launch in the middle of 2009 to monitor all-sky X-ray objects on every ISS orbit. MAXI will be more powerful than any previous X-ray All Sky Monitor (ASM) payloads, being able to monitor hundreds of AGN. MAXI will provide all sky images of X-ray sources of about 20 mCrab in the energy band of 2-30 keV from observation on one ISS orbit (90 min), about 4.5 mCrab for one day, and about 1 mCrab for one month. A final detectability of MAXI could be 0.2 mCrab for 2 year observations.

  16. Noctilucent Cloud Particle Size Determination based on Multi-Wavelength All-Sky Analysis

    CERN Document Server

    Ugolnikov, Oleg S; Pilgaev, Sergey V; Roldugin, Alexey V

    2016-01-01

    The article deals with the analysis of color distribution in noctilucent clouds (NLC) in the sky based on multi-wavelength (RGB) CCD-photometry provided with the all-sky camera in Lovozero in the north of Russia (68.0 deg N, 35.1 deg E) during the bright expanded NLC performance in the night of August 12, 2016. Insignificant changes in the NLC color across the sky are interpreted as the atmospheric extinction effect combined with the difference in the Mie scattering functions of NLC particles for the three color channels of the camera. The method described in this paper is used to find the effective radius of particles about 56 nm. The result of these simple and cost-effective measurements is in good agreement with previous estimations of comparable accuracy. Non-spherical particles and lognormal distribution of the particle size are also considered.

  17. All-sky signals from recombination to reionization with the SKA

    CERN Document Server

    Subrahmanyan, Ravi; Pritchard, Jonathan; Vedantham, Harish K

    2015-01-01

    Cosmic evolution in the hydrogen content of the Universe through recombination and up to the end of reionization is expected to be revealed as subtle spectral features in the uniform extragalactic cosmic radio background. The redshift evolution in the excitation temperature of the 21-cm spin flip transition of neutral hydrogen appears as redshifted emission and absorption against the cosmic microwave background. The precise signature of the spectral trace from cosmic dawn and the epoch of reionization are dependent on the spectral radiance, abundance and distribution of the first bound systems of stars and early galaxies, which govern the evolution in the spin-flip level populations. Redshifted 21 cm from these epochs when the spin temperature deviates from the temperature of the ambient relic cosmic microwave background results in an all-sky spectral structure in the 40-200 MHz range, almost wholly within the band of SKA-Low. Another spectral structure from gas evolution is redshifted recombination lines fro...

  18. All-sky brightness monitoring of light pollution with astronomical methods.

    Science.gov (United States)

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band.

  19. GASS: The Parkes Galactic All-Sky Survey. I. Survey Description, Goals, and Initial Data Release

    CERN Document Server

    McClure-Griffiths, N M; Calabretta, M R; Ford, H A; Lockman, F J; Staveley-Smith, L; Kalberla, P M W; Bailin, J; Dedes, L; Janowiecki, S; Gibson, B K; Murphy, T; Nakanishi, H; Newton-McGee, K

    2009-01-01

    The Parkes Galactic All-Sky Survey (GASS) is a survey of Galactic atomic hydrogen (HI) emission in the Southern sky covering declinations $\\delta \\leq 1^{\\circ}$ using the Parkes Radio Telescope. The survey covers $2\\pi$ steradians with an effective angular resolution of ~16', at a velocity resolution of 1.0 km/s, and with an rms brightness temperature noise of 57 mK. GASS is the most sensitive, highest angular resolution survey of Galactic HI emission ever made in the Southern sky. In this paper we outline the survey goals, describe the observations and data analysis, and present the first-stage data release. The data product is a single cube at full resolution, not corrected for stray radiation. Spectra from the survey and other data products are publicly available online.

  20. Imaging science at Amazon rainforest, Brazil, using an all-sky imager

    Science.gov (United States)

    Calderaro, G. L.; Pimenta, A. A.; Manzi, A. O.

    2015-12-01

    Near-simultaneous all-sky (160 degrees field of view) observations of the OI 630.0 nm, OI777.4 nm, OI557.7 nm and 589 nm nightglow emissions are being carried out on a routine basis at ZF-2 Cuireiras Biological Reserve (2.59 degrees S, 60.22 degrees W, altitude 87 m), Amazonas state, Brazil, since July 2015. In the thermosphere-ionosphere, three types of phenomena are studied using 630.0 nm and 777.4 nm observations: (1) brightness waves (BW) associated with the midnight temperature maximum (MTM), (2) electron density enhancement associated with plasma blobs and MSTID with characteristics matching a Perkins-instability. In the mesosphere we study gravity waves events, probably generated by lower atmospheric due to treetops of the Amazon rainforest.

  1. Planck 2013 results. XI. All-sky model of thermal dust emission

    DEFF Research Database (Denmark)

    Abergel, A.; Ade, P. A. R.; Aghanim, N.;

    2014-01-01

    resolution of 5 0, providing an improved estimate of the dust optical depth compared to previous all-sky dust model, especially in high-contrast molecular regions where the dust temperature varies strongly at small scales in response to dust evolution, extinction, and/or local production of heating photons......) variations of the radiation field strength. The implication is that in the di ff use high-latitude ISM Τ353 is not as reliable a tracer of dust column density as we conclude it is in molecular clouds where the correlation of Τ353 with dust extinction estimated using colour excess measurements on stars...... is strong. To estimate Galactic E (B-V) in extragalactic fields at high latitude we develop a new method based on the thermal dust radiance, instead of the dust optical depth, calibrated to E (B-V) using reddening measurements of quasars deduced from Sloan Digital Sky Survey data....

  2. Seedless clustering in all-sky searches for gravitational-wave transients

    CERN Document Server

    Thrane, Eric

    2014-01-01

    The problem of searching for unmodeled gravitational-wave bursts can be thought of as a pattern recognition problem: how to find statistically significant clusters in spectrograms of strain power when the precise signal morphology is unknown. In a previous publication, we showed how "seedless clustering" can be used to dramatically improve the sensitivity of searches for long-lived gravitational-wave transients. In order to manage the computational costs, this initial analysis focused on externally triggered searches where the source location and emission time are both known to some degree of precision. In this paper, we show how the principle of seedless clustering can be extended to facilitate computationally-feasible, all-sky searches where the direction and emission time of the source are entirely unknown. We further demonstrate that it is possible to achieve a considerable reduction in computation time by using graphical processor units (GPUs), thereby facilitating more sensitive searches.

  3. Estimating all-sky night brightness maps from finite sets of SQM measurements

    Science.gov (United States)

    Tilve Rúa, V.; Ling, J. F.; Bará, S.; Sánchez de Miguel, A.; Nievas, M.; Zamorano, J.

    2015-05-01

    The all-sky night brightness distributions recorded at observing sites with moderate to high levels of light pollution can be efficiently described by polynomial series or relatively low order. This opens the way for estimating these continuous distributions from discrete sets of measurements made in different directions of the sky with photometric detectors of low spatial resolution as, e.g. the Sky Quality Meter, SQM^{TM} (10° HWHM). Modal estimations of the night sky brightness can be obtained by expanding their equal-area projection maps as a series of orthonormal functions, in particular Zernike polynomials, and fitting the unknown modal coefficients to the measurements provided by the detector. Least squares and minimum variance estimators can be easily developed once the linear functional relationship between the measurements and the actual sky brightness distribution is established.

  4. All Sky Cameras for the characterization of the Cherenkov Telescope Array candidate sites

    CERN Document Server

    Mandát, Dušan; Ebr, Jan; Hrabovský, Miroslav; Prouza, Michael; Bulik, Tomasz; Allekotte, Ingomar

    2013-01-01

    The All Sky Camera (ASC) was developed as a universal device for the monitoring of the night sky quality. Eight ASCs are already installed and measure night sky parameters at eight of the candidate sites of the Cherenkov Telescope Array (CTA) gamma-ray observatory. The ACS system consists of an astronomical CCD camera, a fish eye lens, a control computer and associated electronics. The measurement is carried out during astronomical night. The images are automatically taken every 5 minutes and automatically processed using the control computer of the device. The analysis results are the cloud fraction (the percentage of the sky covered by clouds) and night sky brightness (in mag/arcsec$^{2}$)

  5. A Fast All-sky Radiation Model for Solar applications (FARMS): Algorithm and performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit; Dudhia, Jimy

    2016-10-01

    Radiative transfer (RT) models simulating broadband solar radiation have been widely used by atmospheric scientists to model solar resources for various energy applications such as operational forecasting. Due to the complexity of solving the RT equation, the computation under cloudy conditions can be extremely time-consuming, though many approximations (e.g., two-stream approach and delta-M truncation scheme) have been utilized. Thus, a more efficient RT model is crucial for model developers as a new option for approximating solar radiation at the land surface with minimal loss of accuracy. In this study, we developed a fast all-sky radiation model for solar applications (FARMS) using the simplified clear-sky RT model, REST2, and simulated cloud transmittances and reflectances from the Rapid Radiation Transfer Model (RRTM) with a 16-stream Discrete Ordinates Radiative Transfer (DISORT). Simulated lookup tables (LUTs) of cloud transmittances and reflectances are created by varying cloud optical thicknesses, cloud particle sizes, and solar zenith angles. Equations with optimized parameters are fitted to the cloud transmittances and reflectances to develop the model. The all-sky solar irradiance at the land surface can then be computed rapidly by combining REST2 with the cloud transmittances and reflectances. This new RT model is more than 1,000 times faster than those currently utilized in solar resource assessment and forecasting because it does not explicitly solve the RT equation for each individual cloud condition. Our results indicate that the accuracy of the fast radiative transfer model is comparable to or better than two-stream approximation in term of computing cloud transmittance and solar radiation.

  6. Calibration of an all-sky camera for obtaining sky radiance at three wavelengths

    Science.gov (United States)

    Román, R.; Antón, M.; Cazorla, A.; de Miguel, A.; Olmo, F. J.; Bilbao, J.; Alados-Arboledas, L.

    2012-08-01

    This paper proposes a method to obtain spectral sky radiances, at three wavelengths (464, 534 and 626 nm), from hemispherical sky images. Images are registered with the All-Sky Imager installed at the Andalusian Center for Environmental Research (CEAMA) in Granada (Spain). The methodology followed in this work for the absolute calibration in radiance of this instrument is based on the comparison of its output measurements with modelled sky radiances derived from the LibRadtran/UVSPEC radiative transfer code under cloud-free conditions. Previously, in order to check the goodness of the simulated radiances, these are compared with experimental values recorded by a CIMEL sunphotometer. In general, modelled radiances are in agreement with experimental data, showing mean differences lower than 20% except for the pixels located next to the Sun position that show larger errors. The relationship between the output signal of the All-Sky Imager and the modelled sky radiances provides a calibration matrix for each image. The variability of the matrix coefficients is analyzed, showing no significant changes along a period of 5 months. Therefore, a unique calibration matrix per channel is obtained for all selected images (a total of 705 images per channel). Camera radiances are compared with CIMEL radiances, finding mean absolute differences between 2% and 15% except for pixels near to the Sun and high scattering angles. We apply these calibration matrices to three images in order to study the sky radiance distributions for three different sky conditions: cloudless, overcast and partially cloudy. Horizon brightening under cloudless conditions has been observed together with the enhancement effect of individual clouds on sky radiance.

  7. Calibration of an all-sky camera for obtaining sky radiance at three wavelengths

    Directory of Open Access Journals (Sweden)

    R. Román

    2012-02-01

    Full Text Available This paper proposes a method to obtain spectral sky radiances, at three wavelengths (464, 534 and 626 nm, from hemispherical sky images. Images are registered with an All-Sky Imager installed at the Andalusian Center for Environmental Research (CEAMA in Granada (Spain. The methodology followed in this work for the absolute calibration in radiance of this instrument is based on the comparison of its output measurements with modelled sky radiances derived from the Libradtran/UVSPEC radiative transfer code under cloud-free conditions. Previously, in order to check the goodness of the simulated radiances, these are compared with experimental values recorded by a CIMEL sunphotometer. In general, modelled radiances are in agreement with experimental data, showing mean differences lower than 15% except for the pixels located next to the sun position that show larger errors.

    The comparison between the output signal of the All-Sky Imager and the modelled sky radiances provides a calibration matrix for each image. The variability of the matrix coefficients is analyzed, showing no significant changes along a period of 5 months. Therefore, a unique calibration matrix per channel is obtained for all selected images (a total of 705 images per channel. Camera radiances are compared with CIMEL radiances, finding mean absolute differences between 2% and 15% except for pixels near to the Sun and high zenith angles. We apply these calibration matrices to three images in order to study the sky radiance distributions for three different sky conditions: cloudless, overcast and partially cloudy. Horizon brightening under cloudless conditions has been observed together with the enhancement effect of individual clouds on sky radiance.

  8. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2012-06-01

    Full Text Available As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR. In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night.

    We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD and the relative root mean squared deviance (RMSD of the clear-sky global SDR scatter between between −2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations

  9. Evrystats for Evryplanets: planets from the first all-sky gigapixel scale telescope

    Science.gov (United States)

    Fors, Octavi; Law, Nicholas Michael; Ratzloff, Jeffrey; del Ser, Daniel; Wulfken, Philip J.; Kavanaugh, Dustin

    2015-08-01

    The Evryscope (Law et al. 2015) is a 24-camera hemispherical all-sky gigapixel telescope (8,000 sq.deg. FoV) with rapid cadence (2mins exposure, 4sec readout) deployed at CTIO May 2015. Ground-based single-station transiting surveys typically suffer from light curve sparsity and suboptimal efficiency because of their limited field of view (FoV), resulting in incomplete and biased detections. In contrast, the Evryscope offers 97% survey efficiency and one of the single-station most continuous and simultaneous monitoring of millions of stars (only limited by the day-night window). This unique facility is capable of addressing new and more extensive planetary populations, but brings with it new data analysis challenges. The system will:1) for the first time, continuously monitor every 2mins a set of ~1000 bright white dwarfs (WD). This will allow us to put constraints on the habitable planet fraction of Ceres-size planetesimals at the level of 30%, only in a survey timescales of a few weeks. 2) search for rocky planets in the habitable zone around ~5,000 bright, nearby M-dwarfs. 3) Synergies between Evryscope and upcoming exoplanets missions (e.g. TESS, PLATO) are also promising for target pre-imaging characterization, and increasing the giant planet yield by recovering multiple transits from objects seen as single eclipses from space. 4) all-sky 2-min cadence of rare microlensing events of nearby stars. 5) double the census of giant planets around ~70,000 nearby, bright (g<10) solar-type stars, whose atmospheres can be characterized by follow-up observations. We are developing new data analysis algorithms to address the above scientific goals: from detecting the extremely short and faint transits around WDs, to disentangle planetary signals from very bright stars, and to combine space-based light curves with the Evryscope's ones. We will present the first results from the Evryscope, achieved during first light in 2015.

  10. Testing an inversion method for estimating electron energy fluxes from all-sky camera images

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2004-06-01

    Full Text Available An inversion method for reconstructing the precipitating electron energy flux from a set of multi-wavelength digital all-sky camera (ASC images has recently been developed by tomografia. Preliminary tests suggested that the inversion is able to reconstruct the position and energy characteristics of the aurora with reasonable accuracy. This study carries out a thorough testing of the method and a few improvements for its emission physics equations.

    We compared the precipitating electron energy fluxes as estimated by the inversion method to the energy flux data recorded by the Defense Meteorological Satellite Program (DMSP satellites during four passes over auroral structures. When the aurorae appear very close to the local zenith, the fluxes inverted from the blue (427.8nm filtered ASC images or blue and green line (557.7nm images together give the best agreement with the measured flux values. The fluxes inverted from green line images alone are clearly larger than the measured ones. Closer to the horizon the quality of the inversion results from blue images deteriorate to the level of the ones from green images. In addition to the satellite data, the precipitating electron energy fluxes were estimated from the electron density measurements by the EISCAT Svalbard Radar (ESR. These energy flux values were compared to the ones of the inversion method applied to over 100 ASC images recorded at the nearby ASC station in Longyearbyen. The energy fluxes deduced from these two types of data are in general of the same order of magnitude. In 35% of all of the blue and green image inversions the relative errors were less than 50% and in 90% of the blue and green image inversions less than 100%.

    This kind of systematic testing of the inversion method is the first step toward using all-sky camera images in the way in which global UV images have recently been used to estimate the energy fluxes. The

  11. AGN and Starbursts in Dusty Galaxy Mergers: Insights from the Great Observatories All-sky LIRG Survey

    Science.gov (United States)

    Mazzarella, Joseph M.

    2014-07-01

    The Great Observatories All-sky LIRG Survey (GOALS) is combining imaging and spectroscopic data from the Herschel, Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes augmented with extensive ground-based observations in a multiwavelength study of approximately 180 Luminous Infrared Galaxies (LIRGs) and 20 Ultraluminous Infrared Galaxies (ULIRGs) that comprise a statistically complete subset of the 60μm-selected IRAS Revised Bright Galaxy Sample. The objects span the full range of galaxy environments (giant isolated spirals, wide and close pairs, minor and major mergers, merger remnants) and nuclear activity types (Seyfert 1, Seyfert 2, LINER, starburst/HII), with proportions that depend strongly on the total infrared luminosity. I will review the science motivations and present highlights of recent results selected from over 25 peer-reviewed journal articles published recently by the GOALS Team. Statistical investigations include detection of high-ionization Fe K emission indicative of deeply embedded AGN, comparison of UV and far-IR properties, investigations of the fraction of extended emission as a function of wavelength derived from mid-IR spectroscopy, mid-IR spectral diagnostics and spectral energy distributions revealing the relative contributions of AGN and starbursts to powering the bolometric luminosity, and quantitative structure analyses that delineate the evolution of stellar bars and nuclear stellar cusps during the merger process. Multiwavelength dissections of individual systems have unveiled large populations of young star clusters and heavily obscured AGN in early-stage (II Zw 96), intermediate-stage (Mrk 266, Mrk 273), and late-stage (NGC 2623, IC 883) mergers. A recently published study that matches numerical simulations to the observed morphology and gas kinematics in mergers has placed four systems on a timeline spanning 175-260 million years after their first passages, and modeling of additional (U)LIRGs is underway. A very

  12. All-sky search for periodic gravitational waves in LIGO S4 data

    CERN Document Server

    Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M A; Bayer, K; Belczynski, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Casey, M M; Castaldi, G; Cepeda, C; Chalkey, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Chin, D; Chin, E; Chow, J; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Colacino, C N; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coward, D; Coyne, D; Creighton, J D E; Creighton, T D; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; De Bra, D; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S; Daz, M; Dickson, J; Di Credico, A; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L M; González, G; Gossler, S; Grant, A; Gras, S; Gray, a C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Günther, M; Gustafson, R; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Howell, E; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Jackrel, D; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lee, B; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, a N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McNabb, J W C; McWilliams, S; Meier, T; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mudge, D; Müller, G; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Nash, T; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ramsunder, M; Rawlins, K; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Samidi, M; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Tarallo, M; Taylor, R; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D; Ungarelli, C; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R; Watts, K; Webber, D; Weidner, A; Weinert, M; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitbeck, D M; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, L; Willke, B; Wilmut, I; Winkler, W; Wipf, C C; Wise, S; Wiseman, A G; Woan, G; Woods, D; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Yunes, N; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M; Zur Muhlen, H; Zweizig, J

    2007-01-01

    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and with the frequency's time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO science run (S4) have been used in this search. Three different semi-coherent methods of transforming and summing strain power from Short Fourier Transforms (SFTs) of the calibrated data have been used. The first, known as "StackSlide", averages normalized power from each SFT. A "weighted Hough" scheme is also developed and used, and which also allows for a multi-interferometer search. The third method, known as "PowerFlux", is a variant of the StackSlide method in which the power is weighted before summing. In both the weighted Hough and PowerFlux methods, the weights are chosen according to the noise and detector antenna-pattern to maximize the signal-to-noise ratio. The respective advantages and disadvantages of these methods are discussed. Observing no evidence of periodic gravitationa...

  13. Solar Wind Charge Exchange contribution to the ROSAT All Sky Survey Maps

    CERN Document Server

    Uprety, Y; Collier, M R; Cravens, T; Galeazzi, M; Koutroumpa, D; Kuntz, K D; Lallement, R; Lepri, S T; Liu, W; McCammon, D; Morgan, K; Porter, F S; Prasai, K; Snowden, S L; Thomas, N E; Ursino, E; Walsh, B M

    2016-01-01

    DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background (DXB) and study the properties of the Local Hot Bubble (LHB). The detectors are large-area thin-window proportional counters with a spectral response similar to that of the PSPC used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky allowed us to quantify the SWCX contribution to all 6 RASS bands (R1-R7). We find that the SWCX contribution at l=140 deg, b=0 deg, where the DXL path crosses the Galactic plane is 32%+-12% (statistical)+-5%(systematic) for R1, 45%+-8%+-5% for R2, 22%+-11%+-4% for R4, 14%+-12%+-4% for R5, and negligible for R6 and R7 bands. We can also estimate the contribution to the whole sky. We find that the average SWCX contribution in the whole sky is 25%+-10%+-7% for R1, 30%+-6%+-6% for R2, 9%+-5%+-2% for R4, 7%+-5%+-1% for R5, and neg...

  14. New active galactic nuclei detected in ROSAT All Sky Survey galaxies - The complete dataset

    CERN Document Server

    Kollatschny, W; Pietsch, W; Bischoff, K; Zetzl, M

    2008-01-01

    The ROSAT ALL Sky Survey Bright Source Catalogue (RASS-BSC) has been correlated with the Catalogue of Principal Galaxies (PGC) to identify new extragalactic counterparts. 550 reliable optical counterparts have been detected. We took optical spectra of 176 X-ray candidates and companions at ESO, Calar Alto observatory and McDonald observatory. We discuss the redshift-, linewidth-, as well as optical and X-ray luminosity distribution of our ROSAT selected sample. 139 galaxies of our 166 X-ray counterparts have been identified as AGN with 93 being Seyfert 1 galaxies (61%). Eighteen of them (20%) are Narrow Line Seyfert 1 galaxies. 34 X-ray candidates (21%) are LINERs and only eight candidates (5%) are Seyfert 2. The ratio of the number of Seyfert 1 galaxies to Seyfert 2 galaxies is about 11/1. Optical surveys result in ratios of 1/1.4. The high fraction of detected Seyfert 1 galaxies is explained by the sensitivity of the ROSAT to soft X-rays which are heavily absorbed in type 2 AGN. Two X-ray candidates are HII...

  15. New AGN classifications in the Swift/BAT All-Sky Hard X-ray Survey

    CERN Document Server

    Parisi, Pietro

    2011-01-01

    Through an optical campaign performed at the San Pedro Martir (Mexico) Telescope and using the 6dF archive (http://www.aao.gov.au/local/www/6df, Jones et al. 2004), we determine or give a better classification for 8 newly discovered Active Galactic Nuclei (AGN) in the Swift/BAT 22-months All-sky Hard X-ray Survey (Baumgartner et al. 2008, Tueller et al. 2010). All these objects have observations taken with Swift/XRT or Chandra or XMM archival data which allowed us to pinpoint their optical counterpart thanks to the precise (better than a few arcsec) soft X-ray positions afforded by these observatories. This information enabled us to obtain optical spectra of all these counterparts, since only three spectra are available on-line, but not flux calibrated, allowing us to reveal their real nature (Baumgartner et al. 2008 give only a tentative classification based upon their X-ray properties). Here we present the spectra, along with the corresponding finding charts obtained from the DSS-II red survey, of these 8 s...

  16. Point Source Detection using the Spherical Mexican Hat Wavelet on simulated all-sky Planck maps

    CERN Document Server

    Vielva, P; Gallegos, J E; Toffolatti, L; Sanz, J L

    2003-01-01

    We present an estimation of the point source (PS) catalogue that could be extracted from the forthcoming ESA Planck mission data. We have applied the Spherical Mexican Hat Wavelet in simulated all-sky maps that include CMB, Galactic emission, thermal Sunyaev-Zel'dovich effect and PS emission, as well as instrumental white noise. We have developed an algorithm focused on a fast optimal scale determination, that is crucial to achieve a PS catologue with a large number of detections and a low flux limit. An important effort has been also done to reduce the CPU time processor for spherical harmonic trans formation, in order to perform the PS detection in a reasonable time. The presented algorithm is able to provide a PS catalogue above fluxes: 1.39 Jy (857 GHz), 0.84 Jy (545 GHz), 0.30 Jy (353 GHz), 0.16 Jy (217 GHz), 0.17 Jy (143 GHz), 0.19 Jy (100 GHz HFI), 0.22 Jy (100 GHz LFI), 0.28 Jy (70 GHz), 0.33 Jy (44 GHz) and 0.37 Jy (30 GHz). We detect around 36700 PS at the highest frequency Planck channel and 2200 a...

  17. A Pilot Study for the SCUBA-2 'All-Sky' Survey

    CERN Document Server

    Mackenzie, Todd; Gibb, Andy G; Scott, Douglas; Jenness, Tim; Serjeant, Stephen; Thompson, Mark; Berry, David; Brunt, Christopher M; Chapin, Edward; Chrysostomou, Antonio; Clements, Dave; Coppin, Kristen; Economou, Frossie; Evans, A; Friberg, Per; Greaves, Jane; Hill, T; Holland, Wayne; Ivison, R J; Knapen, Johan H; Jackson, Neal; Joncas, Gilles; Morgan, Larry; Pearson, Chris; Pestalozzi, Michele; Pope, Alexandra; Richer, John; Urquhart, J S; Vaccari, Mattia; Weferling, Bernd; White, Glenn; Zhu, Ming

    2010-01-01

    We have carried out a pilot study for the SCUBA-2 'All-Sky' Survey, SASSy, a wide and shallow mapping project at 850 microns, designed to find rare objects, both Galactic and extragalactic. Two distinct sets of exploratory observations were undertaken, and used to test the SASSy approach and data reduction pipeline. The first was a 0.5 by 0.5 degrees map around the nearby galaxy NGC 2559. The galaxy was easily detected at 156 mJy, but no other convincing sources are present in the map. Comparison with other galaxies with similar wavelength coverage indicates that NGC 2559 has relatively warm dust. The second observations cover 1 square degree around the W5-E HII region. As well as diffuse structure in the map, a filtering approach was able to extract 27 compact sources with signal-to-noise greater than 6. By matching with data at other wavelengths we can see that the SCUBA-2 data can be used to discriminate the colder cores. Together these observations show that the SASSy project will be able to meet its orig...

  18. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    CERN Document Server

    Aasi, J; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endr\\Hoczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J

    2014-01-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for ci...

  19. Planck Early Results: The all-sky Early Sunyaev-Zeldovich cluster sample

    CERN Document Server

    Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Balbi, A; Banday, A J; Barreiro, R B; Bartelmann, M; Bartlett, J G; Battaner, E; Battye, R; Benabed, K; Benoît, A; Bernard, J -P; Bersanelli, M; Bhatia, R; Bock, J J; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Brown, M L; Bucher, M; Burigana, C; Cabella, P; Cantalupo, C M; Cardoso, J -F; Carvalho, P; Catalano, A; Cayón, L; Challinor, A; Chamballu, A; Chary, R -R; Chiang, L -Y; Chiang, C; Chon, G; Christensen, P R; Churazov, E; Clements, D L; Colafrancesco, S; Colombi, S; Couchot, F; Coulais, A; Crill, B P; Cuttaia, F; Da Silva, A; Dahle, H; Danese, L; Davis, R J; de Bernardis, P; de Gasperis, G; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dolag, K; Dole, H; Donzelli, S; Doré, O; Dörl, U; Douspis, M; Dupac, X; Efstathiou, G; Eisenhardt, P; En\\sslin, T A; Feroz, F; Finelli, F; Flores, I; Forni, O; Fosalba, P; Frailis, M; Franceschi, E; Fromenteau, S; Galeotta, S; Ganga, K; Génova-Santos, R T; Giard, M; Giardino, G; Giraud-Héraud, Y; González-Nuevo, J; González-Riestra, R; Górski, K M; Grainge, K J B; Gratton, S; Gregorio, A; Gruppuso, A; Harrison, D; Heinämäki, P; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hovest, W; Hoyland, R J; Huffenberger, K M; Hurier, G; Hurley-Walker, N; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knox, L; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Jeune, M Le; Leach, S; Leonardi, R; Li, C; Liddle, A; Lilje, P B; Linden-V\\ornle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; MacTavish, C J; Maffei, B; Maino, D; Mandolesi, N; Mann, R; Maris, M; Marleau, F; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Mei, S; Meinhold, P R; Melchiorri, A; Melin, J -B; Mendes, L; Mennella, A; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; N\\orgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Olamie, M; Osborne, S; Pajot, F; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Piffaretti, R; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Rubi\; Rusholme, B; Saar, E; Sandri, M; Santos, D; Saunders, R D E; Savini, G; Schaefer, B M; Scott, D; Seiffert, M D; Shellard, P; Smoot, G F; Stanford, A; Starck, J -L; Stivoli, F; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Sygnet, J -F; Taburet, N; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Torre, J -P; Tristram, M; Tuovinen, J; Valenziano, L; Vibert, L; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Weller, J; White, S D M; White, M; Yvon, D; Zacchei, A; Zonca, A

    2011-01-01

    We present the first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies. This Early SZ (ESZ) sample of 189 candidates comprises high signal-to-noise clusters, from 6 to 29. Its high reliability (purity above 95%) is further insured by an extensive validation process based on Planck-internal quality assessments and external cross-identification and follow-up observations. Planck provides the first measured SZ signal for about 80% of the 169 ESZ known clusters. Planck further releases 30 new cluster candidates among which 20 are within the ESZ signal-to-noise selection criterion. Eleven of these 20 ESZ candidates are confirmed using XMM-Newton snapshot observations as new clusters, most of them with disturbed morphologies and low luminosities. The ESZ clusters are mostly at moderate redshifts (86% with z below 0.3) and span over a decade in mass, up to the rarest and most massive clusters with masses above 10^15 M...

  20. All-sky search for short gravitational-wave bursts in the first Advanced LIGO run

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-02-01

    We present the results from an all-sky search for short-duration gravitational waves in the data of the first run of the Advanced LIGO detectors between September 2015 and January 2016. The search algorithms use minimal assumptions on the signal morphology, so they are sensitive to a wide range of sources emitting gravitational waves. The analyses target transient signals with duration ranging from milliseconds to seconds over the frequency band of 32 to 4096 Hz. The first observed gravitational-wave event, GW150914, has been detected with high confidence in this search; the other known gravitational-wave event, GW151226, falls below the search's sensitivity. Besides GW150914, all of the search results are consistent with the expected rate of accidental noise coincidences. Finally, we estimate rate-density limits for a broad range of non-binary-black-hole transient gravitational-wave sources as a function of their gravitational radiation emission energy and their characteristic frequency. These rate-density upper limits are stricter than those previously published by an order of magnitude.

  1. GLEAM: The GaLactic and Extragalactic All-sky MWA survey

    CERN Document Server

    Wayth, R B; Bell, M E; Callingham, J R; Dwarakanath, K S; Franzen, T M O; For, B -Q; Gaensler, B; Hancock, P; Hindson, L; Hurley-Walker, N; Jackson, C A; Johnston-Hollitt, M; Kapinska, A D; McKinley, B; Morgan, J; Offringa, A R; Procopio, P; Staveley-Smith, L; Wu, C; Zheng, Q; Trott, C M; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Corey, B E; Deshpande, A A; Emrich, D; Goeke, R; Greenhill, L J; Hazelton, B J; Kaplan, D L; Kasper, J C; Kratzenberg, E; Lonsdale, C J; Lynch, M J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Rogers, A E E; Roshi, A; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L

    2015-01-01

    GLEAM, the GaLactic and Extragalactic All-sky MWA survey, is a survey of the entire radio sky south of declination +25 deg at frequencies between 72 and 231 MHz, made with the Murchison Widefield Array (MWA) using a drift scan method that makes efficient use of the MWA's very large field-of-view. We present the observation details, imaging strategies and theoretical sensitivity for GLEAM. The survey ran for two years, the first year using 40 kHz frequency resolution and 0.5 s time resolution; the second year using 10 kHz frequency resolution and 2 s time resolution. The resulting image resolution and sensitivity depends on observing frequency, sky pointing and image weighting scheme. At 154 MHz the image resolution is approximately 2.5 x 2.2/cos(DEC+26.7) arcmin with sensitivity to structures up to ~10 deg in angular size. We provide tables to calculate the expected thermal noise for GLEAM mosaics depending on pointing and frequency and discuss limitations to achieving theoretical noise in Stokes I images. We...

  2. Long term variability of Cygnus X-1 V. State definitions with all sky monitors

    CERN Document Server

    Grinberg, V; Pottschmidt, K; Böck, M; Nowak, M A; Rodriguez, J; Bodaghee, A; Bel, M Cadolle; Case, G L; Hanke, M; Kühnel, M; Markoff, S B; Pooley, G G; Rothschild, R E; Tomsick, J A; Wilson-Hodge, C A; Wilms, J

    2013-01-01

    We present a scheme to determine the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). State determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate state, which strongly differ in their spectral shape and short-term timing behavior, is only possible when monitor data in the soft X-rays (<5 keV) are available. A statistical analysis of the states confirms the different activity patterns of the source (e.g., months to years long hard state periods or phases during which numerous transitions occurs). It also shows the hard and soft states to be stable, with the probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85...

  3. C-Band All-Sky Survey: A First Look at the Galaxy

    CERN Document Server

    Irfan, M O; Davies, R D; Copley, C; Davis, R J; Ferreira, P G; Holler, C M; Jonas, J L; Jones, Michael E; King, O G; Leahy, J P; Leech, J; Leitch, E M; Muchovej, S J C; Pearson, T J; Peel, M W; Readhead, A C S; Stevenson, M A; Sutton, D; Taylor, Angela C; Zuntz, J

    2015-01-01

    We present an analysis of the diffuse emission at 5 GHz in the first quadrant of the Galactic plane using two months of preliminary intensity data taken with the C-Band All Sky Survey (C-BASS) northern instrument at the Owens Valley Radio Observatory, California. Combining C-BASS maps with ancillary data to make temperature-temperature plots we find synchrotron spectral indices of $\\beta = -2.65 \\pm 0.05$ between 0.408 GHz and 5 GHz and $ \\beta = -2.72 \\pm 0.09$ between 1.420 GHz and 5 GHz for $-10^{\\circ} < |b| < -4^{\\circ}$, $20^{\\circ} < l < 40^{\\circ}$. Through the subtraction of a radio recombination line (RRL) free-free template we determine the synchrotron spectral index in the Galactic plane ($ |b| < 4^{\\circ}$) to be $\\beta = -2.56 \\pm 0.07$ between 0.408 GHz and 5 GHz, with a contribution of $53 \\pm 8$ per cent from free-free emission at 5\\,GHz. These results are consistent with previous low frequency measurements in the Galactic plane. By including C-BASS data in spectral fits we dem...

  4. VizieR Online Data Catalog: AAVSO Photometric All Sky Survey (APASS) DR9 (Henden+, 2016)

    Science.gov (United States)

    Henden, A. A.; Templeton, M.; Terrell, D.; Smith, T. C.; Levine, S.; Welch, D.

    2016-01-01

    The AAVSO Photometric All Sky Survey (APASS) project is designed to bridge the gap between the shallow Tycho2 two-bandpass photometric catalog that is complete to V=11 and the deeper, but less spatially-complete catalogs like SDSS or PanSTARRS. It can be used for calibration of a specific field; for obtaining spectral information about single sources, determining reddening in a small area of the sky; or even obtaining current-epoch astrometry for rapidly moving objects. The survey is being performed at two locations: near Weed, New Mexico in the Northern Hemisphere; and at CTIO in the Southern Hemisphere. Each site consists of dual bore-sighted 20cm telescopes on a single mount, designed to obtain two bandpasses of information simultaneously. Each telescope covers 9 square degrees of sky with 2.5arcsec pixels, with the main survey taken with B,V,g',r',i' filters and covering the magnitude range 10Sciences Fund, with a follow-on grant from the National Science Foundation. (1 data file).

  5. All-sky census of Galactic high-latitude molecular intermediate-velocity clouds

    Science.gov (United States)

    Röhser, T.; Kerp, J.; Lenz, D.; Winkel, B.

    2016-12-01

    Context. The H i halo clouds of the Milky Way, and in particular the intermediate-velocity clouds (IVCs), are thought to be connected to Galactic fountain processes. Observations of fountain clouds are important for understanding the role of matter recycling and accretion onto the Galactic disk and subsequent star formation. Aims: Here, we quantify the amount of molecular gas in the Galactic halo. We focus on the rare class of molecular IVCs (MIVCs) and search for new objects. Methods: The H i-FIR correlation was studied across the entire northern and southern Galactic hemispheres at Galactic latitudes | b | > 20° to determine the amount and distribution of molecular gas in IVCs. We used the most recent large-scale H i and FIR data, the Effelsberg Bonn-H i Survey, the Parkes Galactic All-Sky Survey, and the Planck FIR surveys. Results: We present a catalogue of 239 MIVC candidates on the northern and southern Galactic hemispheres. Among these candidates, all previously known MIVCs are recovered except for one single source. The frequency of candidates differs significantly between the northern and southern Galactic hemispheres and between negative and positive LSR velocities as well. Conclusions: In our approach we analyse the local Galactic environment. Extrapolating our results to the entire Galaxy, the global inflow of atomic and molecular IVC gas onto the Milky Way may account for the major fraction of the gaseous mass that is required to sustain the current Galactic star formation rate.

  6. An all-sky census of Galactic high-latitude molecular intermediate-velocity clouds

    CERN Document Server

    Röhser, T; Lenz, D; Winkel, B

    2016-01-01

    The HI halo clouds of the Milky Way and in particular the intermediate-velocity clouds (IVCs) are thought to be connected to Galactic fountain processes. Observations of fountain clouds are important for understanding the role of matter recycling and accretion onto the Galactic disk and subsequent star formation. Here, we quantify the amount of molecular gas in the Galactic halo. We focus on the rare class of molecular IVCs (MIVCs) and search for new objects. The HI-FIR correlation is studied across the entire northern and southern Galactic hemispheres at Galactic latitudes $|b|>20^\\circ$ in order to determine the amount and distribution of molecular gas in IVCs. We use the most recent large-scale HI and FIR data, the Effelsberg Bonn-HI Survey, the Parkes Galactic All-Sky Survey, and the Planck FIR surveys. We present a catalogue of 239 MIVC candidates on the northern and southern Galactic hemispheres. Among these candidates all previously known MIVCs are recovered except for a single one only. The frequency ...

  7. All-sky Meteor Orbit System AMOS and preliminary analysis of three unusual meteor showers

    Science.gov (United States)

    Tóth, Juraj; Kornoš, Leonard; Zigo, Pavol; Gajdoš, Štefan; Kalmančok, Dušan; Világi, Jozef; Šimon, Jaroslav; Vereš, Peter; Šilha, Jiří; Buček, Marek; Galád, Adrián; Rusňák, Patrik; Hrábek, Peter; Ďuriš, František; Rudawska, Regina

    2015-12-01

    All-sky Meteor Orbit System (AMOS) is a semi-autonomous video observatory for detection of transient events on the sky, mostly the meteors. Its hardware and software development and permanent placement on several locations in Slovakia allowed the establishment of Slovak Video Meteor Network (SVMN) monitoring meteor activity above the Central Europe. The data reduction, orbital determination and additional results from AMOS cameras - the SVMN database - as well as from observational expeditions on Canary Islands and in Canada provided dynamical and physical data for better understanding of mutual connections between parent bodies of asteroids and comets and their meteoroid streams. We present preliminary results on exceptional and rare meteor streams such as September ɛ Perseids (SPE) originated from unknown long periodic comet on a retrograde orbit, suspected asteroidal meteor stream of April α Comae Berenicids (ACO) in the orbit of meteorites Příbram and Neuschwanstein and newly observed meteor stream Camelopardalids (CAM) originated from Jupiter family comet 209P/Linear.

  8. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys

    CERN Document Server

    DeMeo, Francesca

    2013-01-01

    The distribution of asteroids across the Main Belt has been studied for decades to understand the compositional distribution and what that tells us about the formation and evolution of our solar system. All-sky surveys now provide orders of magnitude more data than targeted surveys. We present a method to bias-correct the asteroid population observed in the Sloan Digital Sky Survey (SDSS) according to size, distance, and albedo. We taxonomically classify this dataset consistent with the Bus and Bus-DeMeo systems and present the resulting taxonomic distribution. The dataset includes asteroids as small as 5 km, a factor of three in diameter smaller than in previous works. Because of the wide range of sizes in our sample, we present the distribution by number, surface area, volume, and mass whereas previous work was exclusively by number. While the distribution by number is a useful quantity and has been used for decades, these additional quantities provide new insights into the distribution of total material. W...

  9. First low frequency all-sky search for continuous gravitational wave signals

    CERN Document Server

    Aasi, J; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Allen, B; Allocca, A; Amariutei, D V; Andersen, M; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Ashton, G; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Branco, V; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Colombini, M; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Damjanic, M D; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Edwards, M; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J M; Eikenberry, S S; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Gergely, L Á; Germain, V; Ghosh, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez, J; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammer, D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hoelscher-Obermaier, J; Hofman, D; Hollitt, S E; Holt, K; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Islas, G; Isler, J C; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jang, H; Jaranowski, P; Jawahar, S; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karlen, J L; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kerrigan, J; Key, J S; Khalili, F Y; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J T; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, A; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, J P; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Lewis, J B; Li, T G F; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lubinski, M J; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Madden-Fong, D X; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, A; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Newton, G; Nguyen, T T; Nielsen, A B; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okounkova, M; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W E; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C T; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Papa, M A; Paris, H R; Pasqualetti, A; Passaquieti, R; Passuello, D; Patrick, Z; Pedraza, M; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rodger, A S; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Saleem, M; Salemi, F; Sammut, L; Sanchez, E; Sandberg, V; Sanders, J R; Santiago-Prieto, I; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Sawadsky, A; Schale, P; Schilling, R; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Sevigny, A; Shaddock, D A; Shaffery, P; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, R; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Steplewski, S; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepanczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Tse, M; Turconi, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C van den; van der Schaaf, L; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, M; Wade, L E; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Williams, K J; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2015-01-01

    In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 Hz and 128 Hz with a range of spin-down between $-1.0 \\times 10^{-10}$ Hz/s and $+1.5 \\times 10^{-11}$ Hz/s, and was based on a hierarchical approach. The starting point was a set of short Fast Fourier Transforms (FFT), of length 8192 seconds, built from the calibrated strain data. Aggressive data cleaning, both in the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each dataset a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and...

  10. An all-sky search for long-duration gravitational wave transients with LIGO

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Allen, B; Allocca, A; Amariutei, D V; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Bork, R; Boschi, V; Bose, S; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J M; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, N; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E; Lee, C H; Lee, H K; Lee, H M; Lee, K; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; na-Sandoval, F Maga\\; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Pereira, R; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Saulson, P R; Sauter, O; Savage, R; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepanczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C van den; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2015-01-01

    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10 - 500 seconds in a frequency band of 40 - 1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also report upper limits on the source rate density per year per Mpc^3 for specific signal models. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.

  11. Proposal of a regressive model for the hourly diffuse solar radiation under all sky conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Arias, J.A.; Alsamamra, H.; Tovar-Pescador, J.; Pozo-Vazquez, D. [Department of Physics, Building A3-066, University of Jaen, 23071 Jaen (Spain)

    2010-05-15

    In this work, we propose a new regressive model for the estimation of the hourly diffuse solar irradiation under all sky conditions. This new model is based on the sigmoid function and uses the clearness index and the relative optical mass as predictors. The model performance was compared against other five regressive models using radiation data corresponding to 21 stations in the USA and Europe. In a first part, the 21 stations were grouped into seven subregions (corresponding to seven different climatic regions) and all the models were locally-fitted and evaluated using these seven datasets. Results showed that the new proposed model provides slightly better estimates. Particularly, this new model provides a relative root mean square error in the range 25-35% and a relative mean bias error in the range -15% to 15%, depending on the region. In a second part, the potential global character of the new model was evaluated. To this end, the model was fitted using the whole dataset. Results showed that the global fitting model provides overall better estimates that the locally-fitted models, with relative root mean square error values ranging 20-35% and a relative mean bias error ranging -5% to -12%. Additionally, the new proposed model showed some advantages compared to other evaluated models. Particularly, the sigmoid behaviour of this model is able to provide physically reliable estimates for extreme values of the clearness index even though using less parameter than other tested models. (author)

  12. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

    CERN Document Server

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adams, T; Addesso, P; Adhikari, R; Affeldt, C; Agathos, M; Agatsuma, K; Ajith, P; Allen, B; Allocca, A; Ceron, E Amador; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Ast, S; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Bao, Y; Barayoga, J C B; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Beck, D; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bhadbade, T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bond, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cagnoli, G; Calloni, E; Camp, J B; Campsie, P; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Charlton, P; Chassande-Mottin, E; Chen, W; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; Del Pozzo, W; Dent, T; Dergachev, V; DeRosa, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Dietz, A; Donovan, F; Dooley, K L; Doravari, S; Dorsher, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endrőczi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Farr, B F; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J -D; Franc, J; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M A; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fujimoto, M -K; Fulda, P J; Fyffe, M; Gair, J; Galimberti, M; Gammaitoni, L; Garcia, J; Garufi, F; Gáspár, M E; Gelencser, G; Gemme, G; Genin, E; Gennai, A; Gergely, L Á; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gupta, R; Gustafson, E K; Gustafson, R; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Heefner, J; Heidmann, A; Heitmann, H; Hello, P; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Hough, J; Howell, E J; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Izumi, K; Jacobson, M; James, E; Jang, Y J; Jaranowski, P; Jesse, E; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner}, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Keitel, D; Kelley, D; Kells, W; Keppel, D G; Keresztes, Z; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, H; Kim, K; Kim, N; Kim, Y M; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Lam, P K; Landry, M; Langley, A; Lantz, B; Lastzka, N; Lawrie, C; Lazzarini, A; Leaci, P; Lee, C H; Lee, H K; Lee, H M; Leong, J R; Leonor, I; Leroy, N; Letendre, N; Lhuillier, V; Li, J; Li, T G F; Lindquist, P E; Litvine, V; Liu, Y; Liu, Z; Lockerbie, N A; Lodhia, D; Logue, J; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meadors, G D; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morgia, A; Mori, T; Morriss, S R; Mosca, S; Mossavi, K; Mours, B; Mow--Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nash, T; Naticchioni, L; Necula, V; Nelson, J; Neri, I; Newton, G; Nguyen, T; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Oldenberg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Palladino, L; Palomba, C; Pan, Y; Paoletti, F; Paoletti, R; Papa, M A; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Persichetti, G; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pihlaja, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Pöld, J; Postiglione, F; Poux, C; Prato, M; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Rakhmanov, M; Ramet, C; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Roberts, M; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Rolland, L; Rollins, J G; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sankar, S; Sannibale, V; Santamaría, L; Santiago-Prieto, I; Santostasi, G; Saracco, E; Sathyaprakash, B S; Saulson, P R; Savage, R L; Schilling, R; Schnabel, R; Schofield, R M S; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sentenac, D; Sergeev, A; Shaddock, D A; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Somiya, K; Sorazu, B; Speirits, F C; Sperandio, L; Stefszky, M; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S E; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Taffarello, L; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thüring, A; Titsler, C; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Vahlbruch, H; Vajente, G; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Villar, A E; Vinet, J -Y; Vitale, S; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Wallace, L; Wan, Y; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wooley, R; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, F; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J; Anderson, D P

    2012-01-01

    This paper presents results of an all-sky searches for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative ranges of [-2 \\times 10^-9, 1.1 \\times 10^-10] Hz/s for the fifth LIGO science run (S5). The novelty of the search lies in the use of a non-coherent technique based on the Hough-transform to combine the information from coherent searches on timescales of about one day. Because these searches are very computationally intensive, they have been deployed on the Einstein@Home distributed computing project infrastructure. The search presented here is about a factor 3 more sensitive than the previous Einstein@Home search in early S5 LIGO data. The post-processing has left us with eight surviving candidates. We show that deeper follow-up studies rule each of them out. Hence, since no statistically significant gravitational wave signals have been detected, we report upper limits on the intrinsic gravitational wave amplitude h0. For example, in the 0.5 Hz-wide band at 15...

  13. All-sky search for long-duration gravitational wave transients with initial LIGO

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.

    2016-02-01

    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4 ×1 0-5 and 9.4 ×1 0-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.

  14. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

    Science.gov (United States)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.

    2013-02-01

    This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50,1190]Hz and with frequency derivative range of ˜[-20,1.1]×10-10Hzs-1 for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h0 greater than 7.6×10-25 at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data.

  15. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.

    2014-09-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ˜2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ˜0.6×10-3 ls to ˜6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3×10-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.

  16. All-sky search for short gravitational-wave bursts in the first Advanced LIGO run

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H -P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; 'Alvarez, M Dovale; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Galiana, A Fern'andez; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kr"amer, C; Kringel, V; Krishnan, B; Kr'olak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vas'uth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Vicer'e, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2016-01-01

    We present the results from an all-sky search for short-duration gravitational waves in the data of the first run of the Advanced LIGO detectors between September 2015 and January 2016. The search algorithms use minimal assumptions on the signal morphology, so they are sensitive to a wide range of sources emitting gravitational waves. The analyses target transient signals with duration ranging from milliseconds to seconds over the frequency band of 32 to 4096 Hz. The first observed gravitational-wave event, GW150914, has been detected with high confidence in this search; other known gravitational-wave events fall below the search's sensitivity. Besides GW150914, all of the search results are consistent with the expected rate of accidental noise coincidences. Finally, we estimate rate-density limits for a broad range of non-BBH transient gravitational-wave sources as a function of their gravitational radiation emission energy and their characteristic frequency. These rate-density upper-limits are stricter than...

  17. Machine-learning identification of galaxies in the WISExSuperCOSMOS all-sky catalogue

    CERN Document Server

    Krakowski, T; Bilicki, M; Pollo, A; Krupa, M; Kurcz, A

    2016-01-01

    The two currently largest all-sky photometric datasets, WISE and SuperCOSMOS, were cross-matched by Bilicki et al. (2016) (B16) to construct a novel photometric redshift catalogue on 70% of the sky. Galaxies were therein separated from stars and quasars through colour cuts, which may leave imperfections because of mixing different source types which overlap in colour space. The aim of the present work is to identify galaxies in the WISExSuperCOSMOS catalogue through an alternative approach of machine learning. This allows us to define more complex separations in the multi-colour space than possible with simple colour cuts, and should provide more reliable source classification. For the automatised classification we use the support vector machines learning algorithm, employing SDSS spectroscopic sources cross-matched with WISExSuperCOSMOS as the training and verification set. We perform a number of tests to examine the behaviour of the classifier (completeness, purity and accuracy) as a function of source appa...

  18. Data analysis of gravitational-wave signals from spinning neutron stars; 4, An all-sky search

    CERN Document Server

    Astone, P; Jaranowski, P; Królak, A; Astone, Pia; Borkowski, Kazimierz M.; Jaranowski, Piotr; Kr\\'olak, Andrzej

    2002-01-01

    We develop a set of data analysis tools for a realistic all-sky search for continuous gravitational-wave signals. The methods that we present apply to data from both the resonant bar detectors that are currently in operation and the laser interferometric detectors that are in the final stages of construction and commissioning. We show that with our techniques we shall be able to perform an all-sky 2-day long coherent search of the narrow-band data from the resonant bar EXPLORER with no loss of signals with the dimensionless amplitude greater than $2.8\\times10^{-23}$.

  19. The 60-month all-sky BAT Survey of AGN and the Anisotropy of Nearby AGN

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; /KIPAC, Menlo Park; Alexander, D.M.; /Durham U.; Greiner, J.; /Garching, Max Planck Inst., MPE; Madejski, G.M.; /KIPAC, Menlo Park; Gehrels, N.; /NASA, Goddard; Burlon, D.; /Garching, Max Planck Inst., MPE

    2012-04-02

    Surveys above 10 keV represent one of the the best resources to provide an unbiased census of the population of Active Galactic Nuclei (AGN). We present the results of 60 months of observation of the hard X-ray sky with Swift/BAT. In this timeframe, BAT detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGN, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of {approx}2 larger over similarly complete sets of AGN. Our sample contains (at least) 15 bona-fide Compton-thick AGN and 3 likely candidates. Compton-thick AGN represent a {approx}5% of AGN samples detected above 15 keV. We use the BAT dataset to refine the determination of the LogN-LogS of AGN which is extremely important, now that NuSTAR prepares for launch, towards assessing the AGN contribution to the cosmic X-ray background. We show that the LogN-LogS of AGN selected above 10 keV is now established to a {approx}10% precision. We derive the luminosity function of Compton-thick AGN and measure a space density of 7.9{sub -2.9}{sup +4.1} x 10{sup -5} Mpc{sup -3} for objects with a de-absorbed luminosity larger than 2 x 10{sup 42} erg s{sup -1}. As the BAT AGN are all mostly local, they allow us to investigate the spatial distribution of AGN in the nearby Universe regardless of absorption. We find concentrations of AGN that coincide spatially with the largest congregations of matter in the local ({le} 85 Mpc) Universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions.

  20. All-sky search for periodic gravitational waves in LIGO S4 data

    Science.gov (United States)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.

    2008-01-01

    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50 1000 Hz and with the frequency’s time derivative in the range -1×10-8Hzs-1 to zero. Data from the fourth LIGO science run (S4) have been used in this search. Three different semicoherent methods of transforming and summing strain power from short Fourier transforms (SFTs) of the calibrated data have been used. The first, known as StackSlide, averages normalized power from each SFT. A “weighted Hough” scheme is also developed and used, which also allows for a multi-interferometer search. The third method, known as PowerFlux, is a variant of the StackSlide method in which the power is weighted before summing. In both the weighted Hough and PowerFlux methods, the weights are chosen according to the noise and detector antenna-pattern to maximize the signal-to-noise ratio. The respective advantages and disadvantages of these methods are discussed. Observing no evidence of periodic gravitational radiation, we report upper limits; we interpret these as limits on this radiation from isolated rotating neutron stars. The best population-based upper limit with 95% confidence on the gravitational-wave strain amplitude, found for simulated sources distributed isotropically across the sky and with isotropically distributed spin axes, is 4.28×10-24 (near 140 Hz). Strict upper limits are also obtained for small patches on the sky for best-case and worst-case inclinations of the spin axes.

  1. Solar Wind Charge Exchange Contribution to the ROSAT All Sky Survey Maps

    Science.gov (United States)

    Uprety, Y.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; Liu, W.; McCammon, D.; Morgan, K.; Porter, F. S.; Prasai, K.; Snowden, S. L.; Thomas, N. E.; Ursino, E.; Walsh, B. M.

    2016-10-01

    DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of solar wind charge eXchange (SWCX) to the diffuse X-ray background and to help determine the properties of the Local Hot Bubble. The detectors are large area thin-window proportional counters with a spectral response that is similar to that of the PSPC used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky viewed from quite different vantage points in the solar system, and the assumption of approximate isotropy for the solar wind, allowed us to quantify the SWCX contribution to all six RASS bands (R1-R7, excluding R3). We find that the SWCX contribution at l=140^\\circ ,b=0^\\circ , where the DXL path crosses the Galactic plane, is 33 % +/- 6 % ({statistical})+/- 12 % ({systematic}) for R1, 44 % +/- 6 % +/- 5 % for R2, 18 % +/- 12 % +/- 11 % for R4, 14 % +/- 11 % +/- 9 % for R5, and negligible for the R6 and R7 bands. Reliable models for the distribution of neutral H and He in the solar system permit estimation of the contribution of interplanetary SWCX emission over the the whole sky and correction of the RASS maps. We find that the average SWCX contribution in the whole sky is 26 % +/- 6 % +/- 13 % for R1, 30 % +/- 4 % +/- 4 % for R2, 8 % +/- 5 % +/- 5 % for R4, 6 % +/- 4 % +/- 4 % for R5, and negligible for R6 and R7.

  2. Anisotropy in the all-sky distribution of galaxy morphological types

    Science.gov (United States)

    Javanmardi, Behnam; Kroupa, Pavel

    2017-01-01

    We present the first study of the isotropy of the all-sky distribution of morphological types of galaxies in the Local Universe out to around 200 Mpc using more than 60 000 galaxies from the HyperLeda database. We use a hemispherical comparison method where the sky is divided into two opposite hemispheres and the abundance distribution of the morphological types, T, are compared using the Kolmogorov-Smirnov (KS) test. By pointing the axis of symmetry of the hemisphere pairs to different directions in the sky, the KS statistic as a function of sky coordinates is obtained. For three samples of galaxies within around 100, 150, and 200 Mpc, we find a significant hemispherical asymmetry with a vanishingly small chance of occurring in an isotropic distribution. Astonishingly, regardless of this extreme significance, the observed hemispherical asymmetry for the three distance ranges is aligned with the celestial equator at the 97.1-99.8% confidence level and with the ecliptic at 94.6-97.6%, estimated using a Monte Carlo analysis. Shifting T values randomly within their uncertainties has a negligible effect on this result. When a magnitude limit of B ≤ 15 mag is applied to these samples, the galaxies within 100 Mpc show no significant anisotropy after randomization of T. However, the direction of the asymmetry in the samples within 150 and 200 Mpc and the same magnitude limit is found to be within an angular separation of 32 degrees from (l,b) = (123.7,24.6) with a 97.2% and 99.9% confidence level, respectively. This direction is only 2.6 degrees away from the celestial north pole. Unless the Local Universe has a significant anisotropic distribution of galaxy morphologies aligned with the orientation or the orbit of the Earth (which would be a challenge for the Cosmological Principle), our results show that there seems to be a systematic bias in the classification of galaxy morphological types between the data from the northern and the southern equatorial sky. Further

  3. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys

    Science.gov (United States)

    DeMeo, F. E.; Carry, B.

    2013-09-01

    The distribution of asteroids across the main belt has been studied for decades to understand the current compositional distribution and what that tells us about the formation and evolution of our Solar System. All-sky surveys now provide orders of magnitude more data than targeted surveys. We present a method to bias-correct the asteroid population observed in the Sloan Digital Sky Survey (SDSS) according to size, distance, and albedo. We taxonomically classify this dataset consistent with the Bus and Binzel (Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 146-177) and Bus-DeMeo et al. (DeMeo, F.E., Binzel, R.P., Slivan, S.M., Bus, S.J. [2009]. Icarus 202(July), 160-180) systems and present the resulting taxonomic distribution. The dataset includes asteroids as small as 5 km, a factor of three in diameter smaller than in previous work such as by Mothé-Diniz et al. (Mothé-Diniz, T., Carvano, J.M.Á., Lazzaro, D. [2003]. Icarus 162(March), 10-21). Because of the wide range of sizes in our sample, we present the distribution by number, surface area, volume, and mass whereas previous work was exclusively by number. While the distribution by number is a useful quantity and has been used for decades, these additional quantities provide new insights into the distribution of total material. We find evidence for D-types in the inner main belt where they are unexpected according to dynamical models of implantation of bodies from the outer Solar System into the inner Solar System during planetary migration (Levison, H.F., Bottke, W.F., Gounelle, M., Morbidelli, A., Nesvorný, D., Tsiganis, K. [2009]. Nature 460(July), 364-366). We find no evidence of S-types or other unexpected classes among Trojans and Hildas, albeit a bias favoring such a detection. Finally, we estimate for the first time the total amount of material of each class in the inner Solar System. The main belt’s most massive classes are C, B, P, V and S in decreasing order. Excluding the four most massive

  4. EUVE All-Sky Survey Observations of the Dwarf Nova VW Hydri

    Science.gov (United States)

    Mauche, C. W.; Warren, J. K.; Vallerga, J. V.; Mukai, K.; Mattei, J. A.

    1993-05-01

    The dwarf nova VW Hyi was observed from 1992 November 1 to 18 and from November 20 to 23 by the Extreme Ultraviolet Explorer (EUVE) satellite during its all-sky survey. The total time on source was 22 kiloseconds. During the first part of the scan, VW Hyi was in quiescence following a superoutburst and was not detected by EUVE above background. However, the source went into a narrow outburst on November 13.8 U.T., peaked at V ~ 10 on November 14.8 U.T., started to fade on November 15.9 U.T., and returned to quiescence on November 17.8 U.T. In contrast, the source did not turn on in the EUV until November 15.0 U.T., did not peak until November 15.3 U.T., and had returned to quiescence by November 16.3 U.T. Accounting for the different sensitivities in the two wavebands, we conclude that the EUV outburst was delayed relative to the optical outburst by ~ 0.5 day and that the EUV outburst was narrower than the optical outburst by ~ 1 day. During the peak of the EUV outburst, the source was detected at the 3sigma level in the Lex/B (50--180 Angstroms ) scanner with a count rate of ~ 0.03 s(-1) and at the 4sigma level in the Al/Ti/C (160--240 Angstroms ) scanner with a count rate of ~ 0.09 s(-1) . That the Al/Ti/C count rate is significantly higher than the Lex/B count rate, whereas the effective area of the Al/Ti/C filter is smaller than that of the Lex/B filter, strongly indicates that the source was very soft when it was on. We use the count rates in these two filters to constrain the temperature and luminosity of the source of the shortest wavelength radiation in VW Hyi: the inner disk and the boundary layer between the disk and the surface of the white dwarf.

  5. CALIPSO All-Sky Lidar L3 Data V1-00

    Data.gov (United States)

    National Aeronautics and Space Administration — Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) was launched on April 28, 2006 to study the impact of clouds and aerosols on the Earth’s...

  6. CALIPSO All-Sky Lidar L3 Data V1-30

    Data.gov (United States)

    National Aeronautics and Space Administration — Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) was launched on April 28, 2006 to study the impact of clouds and aerosols on the Earth’s...

  7. A Limit on the Number of Isolated Neutron Stars Detected in the ROSAT All-Sky Survey Bright Source Catalog

    CERN Document Server

    Turner, Monica L; Letcavage, Ryan; Shevchuk, Andrew S H; Fox, Derek B

    2010-01-01

    Using new and archival observations made with the Swift satellite and other facilities, we examine 147 X-ray sources selected from the ROSAT All-Sky-Survey Bright Source Catalog (RASS/BSC) to produce a new limit on the number of isolated neutron stars (INSs) in the RASS/BSC, the most constraining such limit to-date. Independent of X-ray spectrum and variability, the number of INSs is <=48 (90% confidence). Restricting attention to soft (having an effective temperature of < 200 eV), non-variable X-ray sources -- as in a previous study -- yields an all-sky limit of <=31 INSs. In the course of our analysis, we identify five new high-quality INS candidates for targeted follow-up observations. A future all-sky X-ray survey with eROSITA, or another mission with similar capabilities, can be expected to increase the detected population of X-ray-discovered INSs from the 8 to 50 in the BSC, to (for a disk population) 240 to 1500, which will enable a more detailed study of neutron star population models.

  8. GASS: The Parkes Galactic All-Sky Survey. II. Stray-Radiation Correction and Second Data Release

    CERN Document Server

    Kalberla, P M W; Pisano, D J; Calabretta, M R; Ford, H Alyson; Lockman, Felix J; Staveley-Smith, L; Kerp, J; Winkel, B; Murphy, T; Newton-McGee, K

    2010-01-01

    The Parkes Galactic All-Sky Survey (GASS) is a survey of Galactic atomic hydrogen (HI) emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release was published by McClure-Griffiths et al. (2009). We remove instrumental effects that affect the GASS and present the second data release. We calculate the stray-radiation by convolving the all-sky response of the Parkes antenna with the brightness temperature distribution from the Leiden/Argentine/Bonn (LAB) all sky 21-cm line survey, with major contributions from the 30-m dish of the Instituto Argentino de Radioastronomia (IAR) in the southern sky. Remaining instrumental baselines are corrected using the LAB data for a first guess of emission-free baseline regions. Radio frequency interference is removed by median filtering. After applying these corrections to the GASS we find an excellent agreement with the Leiden/Argentine/Bonn (LAB) survey. The GASS is the highest spatial resolution, most sensitive, and is currently the m...

  9. Excitation Mechanisms for HCN (1-0) and HCO+ (1-0) in Galaxies from the Great Observatories All-sky LIRG Survey

    CERN Document Server

    Privon, G C; Evans, A S; Iwasawa, K; Perez-Torres, M A; Armus, L; Diaz-Santos, T; Murphy, E J; Stierwalt, S; Aalto, S; Mazzarella, J M; Barcos-Munoz, L; Borish, H J; Inami, H; Kim, D -C; Treister, E; Surace, J A; Lord, S; Conway, J; Frayer, D T; Alberdi, A

    2015-01-01

    We present new IRAM 30m spectroscopic observations of the $\\sim88$ GHz band, including emission from the CCH (n=1-0) multiplet, HCN (1-0), HCO+ (1-0), and HNC (1-0), for a sample of 58 local luminous and ultraluminous infrared galaxies from the Great Observatories All-sky LIRG Survey (GOALS). By combining our new IRAM data with literature data and Spitzer/IRS spectroscopy, we study the correspondence between these putative tracers of dense gas and the relative contribution of active galactic nuclei (AGN) and star formation to the mid-infrared luminosity of each system. We find the HCN (1-0) emission to be enhanced in AGN-dominated systems ($\\langle$L'$_{HCN (1-0)}$/L'$_{HCO^+ (1-0)}\\rangle=1.84$), compared to composite and starburst-dominated systems ($\\langle$L'$_{HCN (1-0)}$/L'$_{HCO^+ (1-0)}\\rangle=1.14$, and 0.88, respectively). However, some composite and starburst systems have L'$_{HCN (1-0)}$/L'$_{HCO^+ (1-0)}$ ratios comparable to those of AGN, indicating that enhanced HCN emission is not uniquely ass...

  10. On How to Extend the NIR Tully-Fisher Relation to be Truly All-Sky

    CERN Document Server

    Said, K; Jarrett, T H

    2014-01-01

    Dust extinction and stellar confusion by the Milky Way reduce the efficiency of detecting galaxies at low Galactic latitudes, creating the so-called Zone of Avoidance. This stands as a stumbling block in charting the distribution of galaxies and cosmic flow fields, and therewith our understanding of the local dynamics in the Universe (CMB dipole, convergence radius of bulk flows). For instance, ZoA galaxies are generally excluded from the whole-sky Tully-Fisher Surveys ($|b| \\leq 5^\\circ$) even if catalogued. We show here that by fine-tuning the near-infrared TF relation, there is no reason not to extend peculiar velocity surveys deeper into the ZoA. Accurate axial ratios ($b/a$) are crucial to both the TF sample selection and the resulting TF distances. We simulate the effect of dust extinction on the geometrical properties of galaxies. As expected, galaxies appear rounder with increasing obscuration level, even affecting existing TF samples. We derive correction models and demonstrate that we can reliably r...

  11. Planck 2013 results. XXI. Power spectrum and high-order statistics of the Planck all-sky Compton parameter map

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2014-01-01

    We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. This map shows an obvious galaxy cluster tSZ signal that is well matched w......-Gaussianity of the Compton parameter map is further characterized by computing its 1D probability distribution function and its bispectrum. The measured tSZ power spectrum and high order statistics are used to place constraints on sigma(8)....

  12. Characterization of clear sky conditions over El Leoncito Observatory from an all-sky imager designed for upper atmosphere studies.

    OpenAIRE

    Martinis, C.; Wilson, J.; Zablowski, P.; Baumgardner, J.; Aballay, Jose Luis; Garcia, Beatriz Elena; Ristori, Pablo Roberto; Otero, Lidia Ana

    2015-01-01

    A method for determining cloud cover fraction over El Leoncito Observatory (31.8°S, 69.3°W) is presented. Data from an all-sky imaging system, designed to measure nightglow originating from the mesosphere and thermosphere, is used to determine the fraction of the sky covered by clouds. More than 9,000 hr of observations from May 2006 to December 2010 are used to show that El Leoncito is clear approximately 75–80% of the time. No significant seasonal variations are observed. The optical ground...

  13. Stereoscopic determination of all-sky altitude map of aurora using two ground-based Nikon DSLR cameras

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2013-09-01

    Full Text Available A new stereoscopic measurement technique is developed to obtain an all-sky altitude map of aurora using two ground-based digital single-lens reflex (DSLR cameras. Two identical full-color all-sky cameras were set with an 8 km separation across the Chatanika area in Alaska (Poker Flat Research Range and Aurora Borealis Lodge to find localized emission height with the maximum correlation of the apparent patterns in the localized pixels applying a method of the geographical coordinate transform. It is found that a typical ray structure of discrete aurora shows the broad altitude distribution above 100 km, while a typical patchy structure of pulsating aurora shows the narrow altitude distribution of less than 100 km. Because of its portability and low cost of the DSLR camera systems, the new technique may open a unique opportunity not only for scientists but also for night-sky photographers to complementarily attend the aurora science to potentially form a dense observation network.

  14. Stereoscopic determination of all-sky altitude map of aurora using two ground-based Nikon DSLR cameras

    Science.gov (United States)

    Kataoka, R.; Miyoshi, Y.; Shigematsu, K.; Hampton, D.; Mori, Y.; Kubo, T.; Yamashita, A.; Tanaka, M.; Takahei, T.; Nakai, T.; Miyahara, H.; Shiokawa, K.

    2013-09-01

    A new stereoscopic measurement technique is developed to obtain an all-sky altitude map of aurora using two ground-based digital single-lens reflex (DSLR) cameras. Two identical full-color all-sky cameras were set with an 8 km separation across the Chatanika area in Alaska (Poker Flat Research Range and Aurora Borealis Lodge) to find localized emission height with the maximum correlation of the apparent patterns in the localized pixels applying a method of the geographical coordinate transform. It is found that a typical ray structure of discrete aurora shows the broad altitude distribution above 100 km, while a typical patchy structure of pulsating aurora shows the narrow altitude distribution of less than 100 km. Because of its portability and low cost of the DSLR camera systems, the new technique may open a unique opportunity not only for scientists but also for night-sky photographers to complementarily attend the aurora science to potentially form a dense observation network.

  15. Probing the Dark Ages at Z~20: The SCI-HI 21 cm All-Sky Spectrum Experiment

    CERN Document Server

    Voytek, Tabitha C; Jauregui-Garcia, Jose Miguel; Peterson, Jeffrey B; Lopez-Cruz, Omar

    2013-01-01

    We present first results from the SCI-HI experiment, which we used to measure the all-sky-averaged \\cm brightness temperature in the redshift range 14.8

  16. First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform

    CERN Document Server

    Abbott, B; Adhikari, R; Ageev, A; Agresti, J; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; Daw, E; De Bra, D; Delker, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Díaz, M; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; Goggin, L; González, G; Gossler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, G; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Luna, M; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mandic, V; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, E; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswaran, A J; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robinson, C; Robison, L; Roddy, S; Rodríguez, A; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sellers, D; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Spjeld, O; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sung, M; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov,K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ward, R; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Woods, D; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J

    2005-01-01

    We perform a wide parameter space search for continuous gravitational waves over the whole sky and over a large range of values of the frequency and the first spin-down parameter. Our search method is based on the Hough transform, which is a semi-coherent, computationally efficient, and robust pattern recognition technique. We apply this technique to data from the second science run of the LIGO detectors and our final results are all-sky upper limits on the strength of gravitational waves emitted by unknown isolated spinning neutron stars on a set of narrow frequency bands in the range 200-$400 $Hz. The best upper limit on the gravitational wave strain amplitude that we obtain in this frequency range is $4.43\\times 10^{-23}$.

  17. Banks of templates for all-sky narrow-band searches of gravitational waves from spinning neutron stars

    CERN Document Server

    Pisarski, Andrzej

    2013-01-01

    We construct efficient banks of templates suitable for all-sky narrow-band searches of almost monochromatic gravitational waves originating from spinning neutron stars in our Galaxy in data collected by interferometric detectors. We thus assume that both the position of the gravitational-wave source in the sky and the wave's frequency together with spindown parameters are unknown. In the construction we employ simplified model of the signal with constant amplitude and phase which is a linear function of unknown parameters. All our template banks enable usage of the fast Fourier transform algorithm in the computation of the maximum-likelihood $\\mathcal{F}$-statistic for nodes of the grids defining the bank and fulfill an additional constraint needed to resample the data to barycentric time efficiently. Our template banks are suitable for larger range of search parameters than the banks previously proposed and compared to them they have smaller thicknesses for certain values of search parameters.

  18. GASS: The Parkes Galactic All-Sky Survey. Update: improved correction for instrumental effects and new data release

    CERN Document Server

    Kalberla, Peter M W

    2015-01-01

    The Galactic All-Sky Survey is a survey of Galactic atomic hydrogen emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release (GASS I) concerned survey goals and observing techniques, the second release (GASS II) focused on stray radiation and instrumental corrections. We seek to remove the remaining instrumental effects and present a third data release. We use the HEALPix tessellation concept to grid the data on the sphere. Individual telescope records are compared with averages on the nearest grid position for significant deviations. All averages are also decomposed into Gaussian components with the aim of segregating unacceptable solutions. Improved priors are used for an iterative baseline fitting and cleaning. In the last step we generate 3-D FITS data cubes and examine them for remaining problems. We have removed weak, but systematic baseline offsets with an improved baseline fitting algorithm. We have unraveled correlator failures that cause time dependent oscil...

  19. All-sky radiance simulation of Megha-Tropiques SAPHIR microwave sensor using multiple scattering radiative transfer model for data assimilation applications

    Indian Academy of Sciences (India)

    A Madhulatha; John P George; E N Rajagopal

    2017-03-01

    Incorporation of cloud- and precipitation-affected radiances from microwave satellite sensors in data assimilation system has a great potential in improving the accuracy of numerical model forecasts over the regions of high impact weather. By employing the multiple scattering radiative transfer model RTTOVSCATT,all-sky radiance (clear sky and cloudy sky) simulation has been performed for six channel microwave SAPHIR (Sounder for Atmospheric Profiling of Humidity in the Inter-tropics by Radiometry) sensors of Megha-Tropiques (MT) satellite. To investigate the importance of cloud-affected radiance data in severe weather conditions, all-sky radiance simulation is carried out for the severe cyclonic storm ‘Hudhud’ formed over Bay of Bengal. Hydrometeors from NCMRWF unified model (NCUM) forecasts are used as input to the RTTOV model to simulate cloud-affected SAPHIR radiances. Horizontal and vertical distribution of all-sky simulated radiances agrees reasonably well with the SAPHIR observed radiancesover cloudy regions during different stages of cyclone development. Simulated brightness temperatures of six SAPHIR channels indicate that the three dimensional humidity structure of tropical cyclone is well represented in all-sky computations. Improved correlation and reduced bias and root mean squareerror against SAPHIR observations are apparent. Probability distribution functions reveal that all-sky simulations are able to produce the cloud-affected lower brightness temperatures associated with cloudy regions. The density scatter plots infer that all-sky radiances are more consistent with observed radiances.Correlation between different types of hydrometeors and simulated brightness temperatures at respective atmospheric levels highlights the significance of inclusion of scattering effects from different hydrometeors in simulating the cloud-affected radiances in all-sky simulations. The results are promisingand suggest that the inclusion of multiple scattering

  20. All-sky radiance simulation of Megha-Tropiques SAPHIR microwave sensor using multiple scattering radiative transfer model for data assimilation applications

    Science.gov (United States)

    Madhulatha, A.; George, John P.; Rajagopal, E. N.

    2017-03-01

    Incorporation of cloud- and precipitation-affected radiances from microwave satellite sensors in data assimilation system has a great potential in improving the accuracy of numerical model forecasts over the regions of high impact weather. By employing the multiple scattering radiative transfer model RTTOV-SCATT, all-sky radiance (clear sky and cloudy sky) simulation has been performed for six channel microwave SAPHIR (Sounder for Atmospheric Profiling of Humidity in the Inter-tropics by Radiometry) sensors of Megha-Tropiques (MT) satellite. To investigate the importance of cloud-affected radiance data in severe weather conditions, all-sky radiance simulation is carried out for the severe cyclonic storm `Hudhud' formed over Bay of Bengal. Hydrometeors from NCMRWF unified model (NCUM) forecasts are used as input to the RTTOV model to simulate cloud-affected SAPHIR radiances. Horizontal and vertical distribution of all-sky simulated radiances agrees reasonably well with the SAPHIR observed radiances over cloudy regions during different stages of cyclone development. Simulated brightness temperatures of six SAPHIR channels indicate that the three dimensional humidity structure of tropical cyclone is well represented in all-sky computations. Improved correlation and reduced bias and root mean square error against SAPHIR observations are apparent. Probability distribution functions reveal that all-sky simulations are able to produce the cloud-affected lower brightness temperatures associated with cloudy regions. The density scatter plots infer that all-sky radiances are more consistent with observed radiances. Correlation between different types of hydrometeors and simulated brightness temperatures at respective atmospheric levels highlights the significance of inclusion of scattering effects from different hydrometeors in simulating the cloud-affected radiances in all-sky simulations. The results are promising and suggest that the inclusion of multiple scattering

  1. AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system

    Directory of Open Access Journals (Sweden)

    Chun Yang

    2016-06-01

    Full Text Available A method to assimilate all-sky radiances from the Advanced Microwave Scanning Radiometer 2 (AMSR2 was developed within the Weather Research and Forecasting (WRF model's data assimilation (WRFDA system. The four essential elements are: (1 extending the community radiative transform model's (CRTM interface to include hydrometeor profiles; (2 using total water Qt as the moisture control variable; (3 using a warm-rain physics scheme for partitioning the Qt increment into individual increments of water vapour, cloud liquid water and rain; and (4 adopting a symmetric observation error model for all-sky radiance assimilation.Compared to a benchmark experiment with no AMSR2 data, the impact of assimilating clear-sky or all-sky AMSR2 radiances on the analysis and forecast of Hurricane Sandy (2012 was assessed through analysis/forecast cycling experiments using WRF and WRFDA's three-dimensional variational (3DVAR data assimilation scheme. With more cloud/precipitation-affected data being assimilated around tropical cyclone (TC core areas in the all-sky AMSR2 assimilation experiment, better analyses were obtained in terms of the TC's central sea level pressure (CSLP, warm-core structure and cloud distribution. Substantial (>20 % error reduction in track and CSLP forecasts was achieved from both clear-sky and all-sky AMSR2 assimilation experiments, and this improvement was consistent from the analysis time to 72-h forecasts. Moreover, the all-sky assimilation experiment consistently yielded better track and CSLP forecasts than the clear-sky did for all forecast lead times, due to a better analysis in the TC core areas. Positive forecast impact from assimilating AMSR2 radiances is also seen when verified against the European Center for Medium-Range Weather Forecasts (ECMWF analysis and the Stage IV precipitation analysis, with an overall larger positive impact from the all-sky assimilation experiment.

  2. Hydrogen and the First Stars: First Results from the SCI-HI 21-cm all-sky spectrum experiment

    Science.gov (United States)

    Voytek, Tabitha; Peterson, Jeffrey; Lopez-Cruz, Omar; Jauregui-Garcia, Jose-Miguel; SCI-HI Experiment Team

    2015-01-01

    The 'Sonda Cosmologica de las Islas para la Deteccion de Hidrogeno Neutro' (SCI-HI) experiment is an all-sky 21-cm brightness temperature spectrum experiment studying the cosmic dawn (z~15-35). The experiment is a collaboration between Carnegie Mellon University (CMU) and Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in Mexico. Initial deployment of the SCI-HI experiment occurred in June 2013 on Guadalupe; a small island about 250 km off of the Pacific coast of Baja California in Mexico. Preliminary measurements from this deployment have placed the first observational constraints on the 21-cm all-sky spectrum around 70 MHz (z~20), see Voytek et al (2014).Neutral Hydrogen (HI) is found throughout the universe in the cold gas that makes up the intergalactic medium (IGM). HI can be observed through the spectral line at 21 cm (1.4 GHz) due to hyperfine structure. Expansion of the universe causes the wavelength of this spectral line to stretch at a rate defined by the redshift z, leading to a signal which can be followed through time.Now the strength of the 21-cm signal in the IGM is dependent only on a small number of variables; the temperature and density of the IGM, the amount of HI in the IGM, the UV energy density in the IGM, and the redshift. This means that 21-cm measurements teach us about the history and structure of the IGM. The SCI-HI experiment focuses on the spatially averaged 21-cm spectrum, looking at the temporal evolution of the IGM during the cosmic dawn before reionization.Although the SCI-HI experiment placed first constraints with preliminary data, this data was limited to a narrow frequency regime around 60-85 MHz. This limitation was caused by instrumental difficulties and the presence of residual radio frequency interference (RFI) in the FM radio band (~88-108 MHz). The SCI-HI experiment is currently undergoing improvements and we plan to have another deployment soon. This deployment would be to Socorro and Clarion, two

  3. Machine-learning identification of galaxies in the WISE × SuperCOSMOS all-sky catalogue

    Science.gov (United States)

    Krakowski, T.; Małek, K.; Bilicki, M.; Pollo, A.; Kurcz, A.; Krupa, M.

    2016-11-01

    Context. The two currently largest all-sky photometric datasets, WISE and SuperCOSMOS, have been recently cross-matched to construct a novel photometric redshift catalogue on 70% of the sky. Galaxies were separated from stars and quasars through colour cuts, which may leave imperfections because different source types may overlap in colour space. Aims: The aim of the present work is to identify galaxies in the WISE × SuperCOSMOS catalogue through an alternative approach of machine learning. This allows us to define more complex separations in the multi-colour space than is possible with simple colour cuts, and should provide a more reliable source classification. Methods: For the automatised classification we used the support vector machines (SVM) learning algorithm and employed SDSS spectroscopic sources that we cross-matched with WISE × SuperCOSMOS to construct the training and verification set. We performed a number of tests to examine the behaviour of the classifier (completeness, purity, and accuracy) as a function of source apparent magnitude and Galactic latitude. We then applied the classifier to the full-sky data and analysed the resulting catalogue of candidate galaxies. We also compared the resulting dataset with the one obtained through colour cuts. Results: The tests indicate very high accuracy, completeness, and purity (>95%) of the classifier at the bright end; this deteriorates for the faintest sources, but still retains acceptable levels of 85%. No significant variation in the classification quality with Galactic latitude is observed. When we applied the classifier to all-sky WISE × SuperCOSMOS data, we found 15 million galaxies after masking problematic areas. The resulting sample is purer than the one produced by applying colour cuts, at the price of a lower completeness across the sky. Conclusions: The automatic classification is a successful alternative approach to colour cuts for defining a reliable galaxy sample. The identifications we

  4. First Results from the HI Jodrell All Sky Survey Inclination-Dependent Selection Effects in a 21-cm Blind Survey

    CERN Document Server

    Lang, R H; Kilborn, V A; Minchin, R F; Disney, M J; Jordan, C A; Grossi, M; García, D A; Freeman, K C; Phillipps, S; Wright, A E

    2003-01-01

    Details are presented of the HI Jodrell All Sky Survey (HIJASS). HIJASS is a blind neutral hydrogen (HI) survey of the northern sky, being conducted using the multibeam receiver on the Lovell Telescope at Jodrell Bank. HIJASS covers the velocity range -3500 km/s to 10000 km/s with a velocity resolution of 18.1 km/s and a spatial positional accuracy of ~2.5 arcmin. Thus far about 1115 sq deg have been surveyed. We describe the methods of detecting galaxies within the HIJASS data and of measuring their HI parameters. The properties of the resulting HI-selected sample of galaxies are described. Of the 222 sources so far confirmed, 170 (77 per cent) are clearly associated with a previously catalogued galaxy. A further 23 sources (10 percent) lie close (within 6 arcmin) to a previously catalogued galaxy for which no previous redshift exists. A further 29 sources (13 per cent) do not appear to be associated with any previously catalogued galaxy. The distributions of peak flux, integrated flux, HI mass and cz are di...

  5. An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set

    CERN Document Server

    Zhu, X -J; Wen, L; Coles, W A; Wang, J -B; Shannon, R M; Manchester, R N; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Kerr, M; Levin, Y; Madison, D R; Osłowski, S; Ravi, V; Toomey, L; van Straten, W

    2014-01-01

    We present results of an all-sky search in the Parkes Pulsar Timing Array (PPTA) Data Release 1 data set for continuous gravitational waves (GWs) in the frequency range from $5\\times 10^{-9}$ to $2\\times 10^{-7}$ Hz. Such signals could be produced by individual supermassive binary black hole systems in the early stage of coalescence. We phase up the pulsar timing array data set to form, for each position on the sky, two data streams that correspond to the two GW polarizations and then carry out an optimal search for GW signals on these data streams. Since no statistically significant GWs were detected, we place upper limits on the intrinsic GW strain amplitude $h_0$ for a range of GW frequencies. For example, at $10^{-8}$ Hz our analysis has excluded with $95\\%$ confidence the presence of signals with $h_0\\geqslant 1.7\\times 10^{-14}$. Our new limits are about a factor of four more stringent than those of Yardley et al. (2010) based on an earlier PPTA data set and a factor of two better than those reported in...

  6. Cloud Screening and Quality Control Algorithm for Star Photometer Data: Assessment with Lidar Measurements and with All-sky Images

    Science.gov (United States)

    Ramirez, Daniel Perez; Lyamani, H.; Olmo, F. J.; Whiteman, D. N.; Navas-Guzman, F.; Alados-Arboledas, L.

    2012-01-01

    This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  7. Implementation of an F-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data

    CERN Document Server

    Aasi, J; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Borkowski, K; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dorosh, O; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J

    2014-01-01

    We present an implementation of the $\\mathcal{F}$-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars. We searched a frequency $f_0$ range from 100 Hz to 1 kHz and the frequency dependent spindown $f_1$ range from $-1.6\\,(f_0/100\\,{\\rm Hz}) \\times 10^{-9}\\,$ Hz/s to zero. A large part of this frequency - spindown space was unexplored by any of the all-sky searches published so far. Our method consisted of a coherent search over two-day periods using the $\\mathcal{F}$-statistic, followed by a search for coincidences among the candidates from the two-day segments. We have introduced a number of novel techniques and algorithms that allow the use of the Fast Fourier Transform (FFT) algorithm in the coherent part of the search resulting in a fifty-fold speed-up in computation of the $\\mathcal{F}$-statistic with respect to the algorithm used in the other pipelines. No ...

  8. Cloud screening and quality control algorithm for star photometer data: assessment with lidar measurements and with all-sky-images

    Directory of Open Access Journals (Sweden)

    D. Pérez-Ramírez

    2012-02-01

    Full Text Available This paper present the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. This kind of algorithms is necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, δAe(λ, and precipitable water vapor content, W, at night-time. This cloud screening procedure consists of calculating moving averages of δAe(λ and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable δAe(λ and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16° N, 3.60° W, 680 m a.s.l.; South-East of Spain for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  9. Cloud screening and quality control algorithm for star photometer data: assessment with lidar measurements and with all-sky images

    Directory of Open Access Journals (Sweden)

    D. Pérez-Ramírez

    2012-07-01

    Full Text Available This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, δAe(λ, and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of δAe(λ and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable δAe(λ and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16° N, 3.60° W, 680 m a.s.l.; South-East of Spain for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  10. Concept of a small satellite for sub-MeV and MeV all sky survey: the CAST mission

    Science.gov (United States)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Ichinohe, Yuto; Takeda, Shin'ichiro; Tajima, Hiroyasu; Kamae, Tuneyoshi; Kokubun, Motohide; Takashima, Takeshi; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Nomachi, Masaharu; Fukazawa, Yasushi; Makishima, Kazuo; Mizuno, Tsunefumi; Mitani, Takefumi; Yoshimitsu, Tetsuo; Watanabe, Shin

    2012-09-01

    MeV and sub-MeV energy band from ~200 keV to ~2 MeV contains rich information of high-energy phenomena in the universe. The CAST (Compton Telescope for Astro and Solar Terrestrial) mission is planned to be launched at the end of 2010s, and aims at providing all-sky map in this energy-band for the first time. It is made of a semiconductor Compton telescope utilizing Si as a scatterer and CdTe as an absorber. CAST provides allsky sub-MeV polarization map for the first time, as well. The Compton telescope technology is based on the design used in the Soft Gamma-ray Detector (SGD) onboard ASTRO-H, characterized by its tightly stacked semiconductor layers to obtain high Compton reconstruction efficiency. The CAST mission is currently planned as a candidate for the small scientific satellite series in ISAS/JAXA, weighting about 500 kg in total. Scalable detector design enables us to consider other options as well. Scientific outcome of CAST is wide. It will provide new information from high-energy sources, such as AGN and/or its jets, supernova remnants, magnetors, blackhole and neutron-star binaries and others. Polarization map will tell us about activities of jets and reflections in these sources, as well. In addition, CAST will simultaneously observe the Sun, and depending on its attitude, the Earth.

  11. LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station

    Science.gov (United States)

    Fraser, George W.; Brunton, Adam N.; Bannister, Nigel P.; Pearson, James F.; Ward, Martin; Stevenson, Tim J.; Watson, D. J.; Warwick, Bob; Whitehead, S.; O'Brian, Paul; White, Nicholas; Jahoda, Keith; Black, Kevin; Hunter, Stanley D.; Deines-Jones, Phil; Priedhorsky, William C.; Brumby, Steven P.; Borozdin, Konstantin N.; Vestrand, T.; Fabian, A. C.; Nugent, Keith A.; Peele, Andrew G.; Irving, Thomas H.; Price, Steve; Eckersley, Steve; Renouf, Ian; Smith, Mark; Parmar, Arvind N.; McHardy, I. M.; Uttley, P.; Lawrence, A.

    2002-01-01

    We describe the design of Lobster-ISS, an X-ray imaging all-sky monitor (ASM) to be flown as an attached payload on the International Space Station. Lobster-ISS is the subject of an ESA Phase-A study which will begin in December 2001. With an instantaneous field of view 162 x 22.5 degrees, Lobster-ISS will map almost the complete sky every 90 minute ISS orbit, generating a confusion-limited catalogue of ~250,000 sources every 2 months. Lobster-ISS will use focusing microchannel plate optics and imaging gas proportional micro-well detectors; work is currently underway to improve the MCP optics and to develop proportional counter windows with enhanced transmission and negligible rates of gas leakage, thus improving instrument throughput and reducing mass. Lobster-ISS provides an order of magnitude improvement in the sensitivity of X-ray ASMs, and will, for the first time, provide continuous monitoring of the sky in the soft X-ray region (0.1-3.5 keV). Lobster-ISS provides long term monitoring of all classes of variable X-ray source, and an essential alert facility, with rapid detection of transient X-ray sources such as Gamma-Ray Burst afterglows being relayed to contemporary pointed X-ray observatories. The mission, with a nominal lifetime of 3 years, is scheduled for launch on the Shuttle c.2009.

  12. All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Cardoso, V.; Caride, S.; Casebolt, T.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Clark, D.; Clark, J.; Clayton, J. H.; Cokelaer, T.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cutler, R. M.; Danzmann, K.; Daudert, B.; Davies, G.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Duke, I.; Dumas, J.-C.; Dwyer, J.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Ely, G.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harstad, E. D.; Haughian, E.; Hayama, K.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Holt, K.; Hosken, D.; Hough, J.; Huttner, S. H.; Ingram, D.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamat, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Ya.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kocsis, B.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee, P.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leonor, I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D.; McKenzie, K.; Mehmet, M.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.; Miller, A.; Miller, J.; Minelli, J.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Moreno, G.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; Ochsner, E.; O'Dell, J.; Ogin, G.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perraca, A.; Petrie, T.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaria, L.; Saraf, S.; Sarin, P.

    2009-03-01

    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1100 Hz and with the frequency’s time derivative in the range -5×10-9-0Hzs-1. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semicoherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 10-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 10-6, the search is sensitive to distances as great as 500 pc.

  13. All Sky Camera, LIDAR and Electric Field Meter: auxiliary instruments for the ASTRI SST-2M prototype

    CERN Document Server

    Leto, Giuseppe; Bellassai, Giancarlo; Bruno, Pietro; Maccarone, Maria Concetta; Martinetti, Eugenio

    2015-01-01

    ASTRI SST-2M is the end-to-end prototype telescope of the Italian National Institute of Astro- physics, INAF, designed to investigate the 10-100 TeV band in the framework of the Cherenkov Telescope Array, CTA. The ASTRI SST-2M telescope has been installed in Italy in September 2014, at the INAF ob- serving station located at Serra La Nave on Mount Etna. The telescope is foreseen to be completed and fully operative in spring 2015 including auxiliary instrumentation needed to support both operations and data anal- ysis. In this contribution we present the current status of a sub-set of the auxiliary instruments that are being used at the Serra La Nave site, namely an All Sky Camera, an Electric Field Meter and a Raman Lidar devoted, together with further instrumentation, to the monitoring of the atmospheric and environmental conditions. The data analysis techniques under development for these instruments could be applied at the CTA sites, where similar auxiliary instrumentation will be installed.

  14. GMOSS: All-sky model of spectral radio brightness based on physical components and associated radiative processes

    CERN Document Server

    Rao, Mayuri Sathyanarayana; Shankar, N Udaya; Chluba, Jens

    2016-01-01

    We present Global MOdel for the radio Sky Spectrum (GMOSS) -- a novel, physically motivated model of the low-frequency radio sky from 22 MHz to 23 GHz. GMOSS invokes different physical components and associated radiative processes to describe the sky spectrum over 3072 pixels of $5^{\\circ}$ resolution. The spectra are allowed to be convex, concave or of more complex form with contributions from synchrotron emission, thermal emission and free-free absorption included. Physical parameters that describe the model are optimized to best fit four all-sky maps at 150 MHz, 408 MHz, 1420 MHz and 23 GHz and two maps at 22 MHz and 45 MHz generated using the Global Sky Model of de Oliveira-Costa et al. (2008). The fractional deviation of model to data has a median value of $6\\%$ and is less than $17\\%$ for $99\\%$ of the pixels. Though aimed at modeling of foregrounds for the global signal arising from the redshifted 21-cm line of Hydrogen during Cosmic Dawn and Epoch of Reionization (EoR) - over redshifts $150\\lesssim z ...

  15. Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search

    CERN Document Server

    Astone, Pia; Jaranowski, Piotr; Królak, Andrzej; Pietka, Maciej

    2010-01-01

    We present theory and algorithms to perform an all-sky coherent search for periodic signals of gravitational waves in narrow-band data of a detector. Our search is based on a statistic, commonly called the $\\mathcal{F}$-statistic, derived from the maximum-likelihood principle in Paper I of this series. We briefly review the response of a ground-based detector to the gravitational-wave signal from a rotating neuron star and the derivation of the $\\mathcal{F}$-statistic. We present several algorithms to calculate efficiently this statistic. In particular our algorithms are such that one can take advantage of the speed of fast Fourier transform (FFT) in calculation of the $\\mathcal{F}$-statistic. We construct a grid in the parameter space such that the nodes of the grid coincide with the Fourier frequencies. We present interpolation methods that approximately convert the two integrals in the $\\mathcal{F}$-statistic into Fourier transforms so that the FFT algorithm can be applied in their evaluation. We have impl...

  16. Hard X-ray luminosity function and absorption distribution of nearby AGN: INTEGRAL all-sky survey

    CERN Document Server

    Sazonov, S; Krivonos, R; Churazov, E; Sunyaev, R A

    2006-01-01

    Using the INTEGRAL all-sky hard X-ray survey, we study the hard X-ray luminosity function and absorption distribution of local (z5 sigma) on the average IBIS/ISGRI map and 32 are detected only during single observations. Among the former there are 66 non-blazar AGN located at |b|>5 deg, which we use for the calculation of the AGN luminosity function and X-ray absorption distribution. In broad agreement with previous studies, we find that the fraction of obscured (logNH>22) objects is much higher (~70%) among the low-luminosity AGN (Lx10^43.6 erg/s), ~25%, where Lx is the luminosity in the 17-60 keV band. We also find that locally the fraction of Compton-thick AGN is less than 20%. The constructed hard X-ray luminosity function has a canonical smoothly connected two power-law shape in the range 4040 is (1.4+/-0.3) 10^39 erg/s/Mpc^3 (17-60 keV). We show that the spectral shape and amplitude of the CXB can be explained in the simple scenario in which at all redshifts for a given Lx/L*(z) the NH distribution of A...

  17. GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey I: A low-frequency extragalactic catalogue

    CERN Document Server

    Hurley-Walker, Natasha; Hancock, Paul J; Franzen, Thomas M O; Hindson, Luke; Kapinska, Anna D; Morgan, John; Offringa, Andre R; Wayth, Randall B; Wu, Chen; Zheng, Q; Murphy, Tara; Bell, Martin E; Dwarakanath, K S; For, Bi-Qing; Gaensler, Bryan M; Johnston-Hollitt, Melanie; Lenc, Emil; Procopio, Pietro; Staveley-Smith, Lister; Ekers, Ron; Bowman, Judd D; Briggs, Frank; Cappallo, R J; Deshpande, Avinash A; Greenhill, Lincoln; Hazelton, Brynah J; Kaplan, David L; Lonsdale, Colin J; McWhirter, S R; Mitchell, Daniel A; Morales, Miguel F; Morgan, Edward; Oberoi, Divya; Ord, Stephen M; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, Ravi; Tingay, Steven J; Webster, Rachel L; Williams, Andrew; Williams, Christopher L

    2016-01-01

    Using the Murchison Widefield Array (MWA), the low-frequency Square Kilometre Array (SKA1 LOW) precursor located in Western Australia, we have completed the GaLactic and Extragalactic All-sky MWA (GLEAM) survey, and present the resulting extragalactic catalogue, utilising the first year of observations. The catalogue covers 24,831 square degrees, over declinations south of $+30^\\circ$ and Galactic latitudes outside $10^\\circ$ of the Galactic plane, excluding some areas such as the Magellanic Clouds. It contains 307,455 radio sources with 20 separate flux density measurements across 72--231MHz, selected from a time- and frequency- integrated image centred at 200MHz, with a resolution of $\\approx 2$'. Over the catalogued region, we estimate that the catalogue is 90% complete at 170mJy, and 50% complete at 55mJy, and large areas are complete at even lower flux density levels. Its reliability is 99.97% above the detection threshold of $5\\sigma$, which itself is typically 50mJy. These observations constitute the w...

  18. Medium-Scale Traveling Ionospheric Disturbances and Plasma Bubbles Observed by an All-Sky Airglow Imager at Yonaguni, Japan

    Directory of Open Access Journals (Sweden)

    Tadahiko Ogawa

    2009-01-01

    Full Text Available We report on night time air glow imaging observations of the low latitude ionosphere by means of a 630-m all-sky imager in stalled in March 2006 at Yonaguni, Japan _ _ _ geomagnetic, about 100 km east of Taiwan. The imager detected medium-scale traveling ionospheric disturbances (MSTIDs for about 7 hours on the night of 26 May 2006. A dense GPS net work in Japan also ob served the same MSTID event on this night. The imager and GEONET data indicate that most of the MSTIDs prop a gated south west ward from the north of Japan to the south of Yonaguni and Taiwan over 4000 km, with a southern limit of _ (geomagnetic latitude _ or lower. On the night of 10 November 2006, the imager observed two weak emission bands that were embedded on the F-region anomaly crest to the south of Yonaguni. The simultaneous electron density profiles from the FORMOSAT-3/COS MIC mission demonstrate that the weak emission bands are due to density depletions in equatorial plasma bubbles. These case studies suggest that the Yonaguni imager in collaboration with other instruments is very suit able for the study of ionospheric disturbances in and around the northern F-region anomaly crest.

  19. The Spatial Clustering of ROSAT All-Sky Survey AGNs II. Halo Occupation Distribution Modeling of the Cross Correlation Function

    CERN Document Server

    Miyaji, Takamitsu; Coil, Alison L; Aceves, Hector

    2010-01-01

    This is the second paper of a series that reports on our investigation of the clustering properties of AGNs in the ROSAT All-Sky Survey (RASS) through cross-correlation functions (CCFs) with Sloan Digital Sky Survey (SDSS) galaxies. In this paper, we apply the Halo Occupation Distribution (HOD) model to the CCFs between the RASS Broad-line AGNs with SDSS Luminous Red Galaxies (LRGs) in the redshift range 0.16

  20. AGN and QSOs in the eROSITA All-Sky Survey -- Part II: Studies of large-scale structure

    CERN Document Server

    Kolodzig, Alexander; Hütsi, Gert; Sunyaev, Rashid

    2013-01-01

    The four year X-ray all-sky survey (eRASS) of eROSITA telescope aboard the Spektrum-Roentgen-Gamma satellite will detect ~3 million AGN with a median redshift of z~1 and typical luminosity of L_{0.5-2.0keV} ~ 10^{44} erg/s. We show that this unprecedented AGN sample, complemented with redshift information, will supply us with outstanding opportunities for large-scale structure research. For the first time, detailed redshift and luminosity resolved studies of the bias factor for X-ray selected AGN will become possible. The eRASS AGN sample will not only improve the redshift and luminosity resolution of these studies but will also expand their luminosity range beyond L_{0.5-2.0 keV} ~ 10^{44} erg/s, thus making possible direct comparison of clustering properties of luminous X-ray AGN and optical quasars. These studies will dramatically improve our understanding of AGN environment, triggering mechanisms, growth of super-massive black holes and their co-evolution with dark matter halos. The eROSITA AGN sample wil...

  1. Searching for Variability in the Gamma-ray Sky using the Fermi All-sky Variability Analysis (FAVA)

    Science.gov (United States)

    Kocevski, Daniel; Buehler, Rolf; Ajello, Marco; Giomi, Matteo; Fermi LAT Collaboration

    2016-01-01

    We present the results of the second Fermi All-sky Variability Analysis (FAVA) catalog, consisting of a search for week long variability above 100 MeV using the new Pass 8 data selection. The catalog includes over 2000 flares, spanning 6 years of the Fermi mission, with hundreds of flares that are not associated with any known catalog source. FAVA was designed to efficiently search for variable sources over a wide range of energies and timescales. Unlike a traditional likelihood analysis, the analysis performed by FAVA uses the mission averaged emission as a background, and is as such independent of any model for the diffuse gamma-ray emission. This makes the FAVA analysis especially sensitive to variable sources in the Galactic plane. This analysis is also computationally inexpensive, allowing for blind searches for flux variations over the entire sky. We will present some of the interesting flares identified through this analysis, and highlight those that are typically missed through traditional analysis methods. We will also present the new public FAVA webpage, which is designed to alert the community of new gamma-ray flares in real time and allow users to create relative flux light curves for any position on the sky; a task that is currently computationally intensive to perform over long intervals using traditional analysis tools.

  2. Medium-Scale Traveling Ionospheric Disturbances and Plasma Bubbles Observed by an All-Sky Airglow Imager at Yonaguni, Japan

    Directory of Open Access Journals (Sweden)

    Tadahiko Ogawa

    2009-01-01

    Full Text Available We report on night time air glow imaging observations of the low latitude ionosphere by means of a 630-m all-sky imager in stalled in March 2006 at Yonaguni, Japan (24.5°N, 123.0°E; 14.6°N geomagnetic, about 100 km east of Taiwan. The imager detected medium-scale traveling ionospheric disturbances (MSTIDs for about 7 hours on the night of 26 May 2006. A dense GPS net work in Japan also ob served the same MSTID event on this night. The imager and GEONET data indicate that most of the MSTIDs prop a gated south west ward from the north of Japan to the south of Yonaguni and Taiwan over 4000 km, with a southern limit of 19°N (geomagnetic latitude 9°N or lower. On the night of 10 November 2006, the imager observed two weak emission bands that were embedded on the F-region anomaly crest to the south of Yonaguni. The simultaneous electron density profiles from the FORMOSAT-3/COS MIC mission demonstrate that the weak emission bands are due to density depletions in equatorial plasma bubbles. These case studies suggest that the Yonaguni imager in collaboration with other instruments is very suit able for the study of ionospheric disturbances in and around the northern F-region anomaly crest.

  3. GALACTIC ALL-SKY SURVEY HIGH-VELOCITY CLOUDS IN THE REGION OF THE MAGELLANIC LEADING ARM

    Energy Technology Data Exchange (ETDEWEB)

    For, Bi-Qing; Staveley-Smith, Lister [International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); McClure-Griffiths, N. M., E-mail: biqing.for@uwa.edu.au [Australia Telescope National Facility, CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710 (Australia)

    2013-02-10

    We present a catalog of high-velocity clouds in the region of the Magellanic Leading Arm. The catalog is based on neutral hydrogen (H I) observations from the Parkes Galactic All-Sky Survey. Excellent spectral resolution allows clouds with narrow-line components to be resolved. The total number of detected clouds is 419. We describe the method of cataloging and present the basic parameters of the clouds. We discuss the general distribution of the high-velocity clouds and classify the clouds based on their morphological type. The presence of a significant number of head-tail clouds and their distribution in the region is discussed in the context of Magellanic System simulations. We suggest that ram-pressure stripping is a more important factor than tidal forces for the morphology and formation of the Magellanic Leading Arm and that different environmental conditions might explain the morphological difference between the Magellanic Leading Arm and Magellanic Stream. We also discuss a newly identified population of clouds that forms the LA IV and a new diffuse bridge-like feature connecting the LA II and III complexes.

  4. Implementation of an F-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Borkowski, K.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J. P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorosh, O.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J. D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C. J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.

    2014-08-01

    We present an implementation of the F-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars. We searched a frequency f0 range from 100 Hz to 1 kHz and the frequency dependent spindown f1 range from -1.6({{f}_{0}}/100\\;Hz)\\times {{10}^{-9}} Hz s-1 to zero. A large part of this frequency-spindown space was unexplored by any of the all-sky searches published so far. Our method consisted of a coherent search over two-day periods using the ℱ-statistic, followed by a search for coincidences among the candidates from the two-day segments. We have introduced a number of novel techniques and algorithms that allow the use of the fast Fourier transform (FFT) algorithm in the coherent part of the search resulting in a fifty-fold speed-up in computation of the F-statistic with respect to the algorithm used in the other pipelines. No significant gravitational wave signal was found. The sensitivity of the search was estimated by injecting signals into the data. In the most sensitive parts of the detector band more than 90% of signals would have been detected with dimensionless gravitational-wave amplitude greater than 5\\times {{10}^{-24}}.

  5. All-sky LIGO search for periodic gravitational waves in the early fifth-science-run data.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Adhikari, R; Ajith, P; Allen, B; Allen, G; Amin, R S; Anderson, S B; Anderson, W G; Arain, M A; Araya, M; Armandula, H; Armor, P; Aso, Y; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barsotti, L; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Behnke, B; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Bodiya, T P; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A F; Brown, D A; Brunet, G; Bullington, A; Buonanno, A; Burmeister, O; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K C; Cao, J; Cardenas, L; Cardoso, V; Caride, S; Casebolt, T; Castaldi, G; Caudill, S; Cavaglià, M; Cepeda, C; Chalkley, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Christensen, N; Clark, D; Clark, J; Clayton, J H; Cokelaer, T; Conte, R; Cook, D; Corbitt, T R C; Cornish, N; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cutler, R M; Danzmann, K; Daudert, B; Davies, G; Debra, D; Degallaix, J; Dergachev, V; Desai, S; Desalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drever, R W P; Duke, I; Dumas, J-C; Dwyer, J; Echols, C; Edgar, M; Effler, A; Ehrens, P; Ely, G; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Franzen, A; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fyffe, M; Garofoli, J A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L M; González, G; Gossler, S; Gouaty, R; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Grimaldi, F; Grosso, R; Grote, H; Grunewald, S; Guenther, M; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harstad, E D; Haughian, E; Hayama, K; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Holt, K; Hosken, D; Hough, J; Huttner, S H; Ingram, D; Ito, M; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kamat, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Ya; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kocsis, B; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kozak, D; Kozhevatov, I; Krishnan, B; Kwee, P; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leonor, I; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Lormand, M; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; Macinnis, M; Mageswaran, M; Mailand, K; Mandel, I; Mandic, V; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Martin, I W; Martin, R M; Marx, J N; Mason, K; Matichard, F; Matone, L; Matzner, R; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D; McKenzie, K; Mehmet, M; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C J; Meyers, D; Miller, A; Miller, J; Minelli, J; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohanty, S D; Moreno, G; Mors, K; Mossavi, K; Mowlowry, C; Mueller, G; Muhammad, D; Mukherjee, S; Mukhopadhyay, H; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Myers, E; Myers, J; Nash, T; Nelson, J; Newton, G; Nishizawa, A; Numata, K; Ochsner, E; O'Dell, J; Ogin, G; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pan, Y; Pankow, C; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Perraca, A; Petrie, T; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Postiglione, F; Principe, M; Prix, R; Quetschke, V; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Rainer, N; Rakhmanov, M; Ramsunder, M; Reed, T; Rehbein, H; Reid, S; Reitze, D H; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rogan, A M; Rollins, J; Romano, J D; Romie, J H; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Santamaria, L; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Scanlan, M; Schediwy, S W; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Sergeev, A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Stein, L C; Strain, K A; Stuver, A; Summerscales, T Z; Sun, K-X; Sung, M; Sutton, P J; Takahashi, H

    2009-03-20

    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1100 Hz and with the frequency's time derivative in the range -5 x 10{-9}-0 Hz s{-1}. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semicoherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 10{-24} are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 10{-6}, the search is sensitive to distances as great as 500 pc.

  6. All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birindelli, S.; Biswas, R.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bullington, A.; Bulten, H. J.; Buonanno, A.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Cardenas, L.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Corsi, A.; Coulon, J.-P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Degallaix, J.; Del Prete, M.; Dergachev, V.; Desalvo, R.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drago, M.; Drever, R. W. P.; Driggers, J.; Dueck, J.; Duke, I.; Dumas, J.-C.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Goetz, E.; Goggin, L. M.; González, G.; Goßler, S.; Gouaty, R.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; Kim, H.; King, P. J.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Lei, M.; Leindecker, N.; Leonor, I.; Leroy, N.; Letendre, N.; Li, T. G. F.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.

    2010-05-01

    We present results from an all-sky search for unmodeled gravitational-wave bursts in the data collected by the LIGO, GEO 600 and Virgo detectors between November 2006 and October 2007. The search is performed by three different analysis algorithms over the frequency band 50-6000 Hz. Data are analyzed for times with at least two of the four LIGO-Virgo detectors in coincident operation, with a total live time of 266 days. No events produced by the search algorithms survive the selection cuts. We set a frequentist upper limit on the rate of gravitational-wave bursts impinging on our network of detectors. When combined with the previous LIGO search of the data collected between November 2005 and November 2006, the upper limit on the rate of detectable gravitational-wave bursts in the 64-2048 Hz band is 2.0 events per year at 90% confidence. We also present event rate versus strength exclusion plots for several types of plausible burst waveforms. The sensitivity of the combined search is expressed in terms of the root-sum-squared strain amplitude for a variety of simulated waveforms and lies in the range 6×10-22Hz-1/2 to 2×10-20Hz-1/2. This is the first untriggered burst search to use data from the LIGO and Virgo detectors together, and the most sensitive untriggered burst search performed so far.

  7. All Sky Camera, LIDAR and Electric Field Meter: Auxiliary instruments for the ASTRI SST-2M prototype

    Directory of Open Access Journals (Sweden)

    Leto Giuseppe

    2015-01-01

    Full Text Available ASTRI SST-2M is the end-to-end prototype telescope of the Italian National Institute of Astrophysics, INAF, designed to investigate the 10–100 TeV band in the framework of the Cherenkov Telescope Array, CTA. The ASTRI SST-2M telescope has been installed in Italy in September 2014, at the INAF observing station located at Serra La Nave on Mount Etna. The telescope is foreseen to be completed and fully operative in spring 2015 including auxiliary instrumentation needed to support both operations and data analysis. In this contribution we present the current status of a sub-set of the auxiliary instruments that are being used at the Serra La Nave site, namely an All Sky Camera, an Electric Field Meter and a Raman Lidar devoted, together with further instrumentation, to the monitoring of the atmospheric and environmental conditions. The data analysis techniques under development for these instruments could be applied at the CTA sites, where similar auxiliary instrumentation will be installed.

  8. The C-Band All-Sky Survey (C-BASS): Design and implementation of the northern receiver

    CERN Document Server

    King, O G; Blackhurst, E J; Copley, C; Davis, R J; Dickinson, C; Holler, C M; Irfan, M O; John, J J; Leahy, J P; Leech, J; Muchovej, S J C; Pearson, T J; Stevenson, M A; Taylor, Angela C

    2013-01-01

    The C-Band All-Sky Survey (C-BASS) is a project to map the full sky in total intensity and linear polarization at 5 GHz. The northern component of the survey uses a broadband single-frequency analogue receiver fitted to a 6.1-m telescope at the Owens Valley Radio Observatory in California, USA. The receiver architecture combines a continuous-comparison radiometer and a correlation polarimeter in a single receiver for stable simultaneous measurement of both total intensity and linear polarization, using custom-designed analogue receiver components. The continuous-comparison radiometer measures the temperature difference between the sky and temperature-stabilized cold electrical reference loads. A cryogenic front-end is used to minimize receiver noise, with a system temperature of $\\approx 30$ K in both linear polarization and total intensity. Custom cryogenic notch filters are used to counteract man-made radio frequency interference. The radiometer $1/f$ noise is dominated by atmospheric fluctuations, while th...

  9. GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey - I. A low-frequency extragalactic catalogue

    Science.gov (United States)

    Hurley-Walker, N.; Callingham, J. R.; Hancock, P. J.; Franzen, T. M. O.; Hindson, L.; Kapińska, A. D.; Morgan, J.; Offringa, A. R.; Wayth, R. B.; Wu, C.; Zheng, Q.; Murphy, T.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Johnston-Hollitt, M.; Lenc, E.; Procopio, P.; Staveley-Smith, L.; Ekers, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Greenhill, L.; Hazelton, B. J.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Webster, R. L.; Williams, A.; Williams, C. L.

    2017-01-01

    Using the Murchison Widefield Array (MWA), the low-frequency Square Kilometre Array precursor located in Western Australia, we have completed the GaLactic and Extragalactic All-sky MWA (GLEAM) survey, and present the resulting extragalactic catalogue, utilizing the first year of observations. The catalogue covers 24 831 square degrees, over declinations south of +30° and Galactic latitudes outside 10° of the Galactic plane, excluding some areas such as the Magellanic Clouds. It contains 307 455 radio sources with 20 separate flux density measurements across 72-231 MHz, selected from a time- and frequency-integrated image centred at 200 MHz, with a resolution of ≈2 arcmin. Over the catalogued region, we estimate that the catalogue is 90 per cent complete at 170 mJy, and 50 per cent complete at 55 mJy, and large areas are complete at even lower flux density levels. Its reliability is 99.97 per cent above the detection threshold of 5σ, which itself is typically 50 mJy. These observations constitute the widest fractional bandwidth and largest sky area survey at radio frequencies to date, and calibrate the low-frequency flux density scale of the southern sky to better than 10 per cent. This paper presents details of the flagging, imaging, mosaicking and source extraction/characterization, as well as estimates of the completeness and reliability. All source measurements and images are available online.1 This is the first in a series of publications describing the GLEAM survey results.

  10. Observation of the distribution of heavy neutral atoms in the IBEX-Lo all-sky maps

    Science.gov (United States)

    Park, J.; Kucharek, H.; Moebius, E.

    2014-12-01

    We investigate the spatial distribution of heavy energetic neutral atoms, mostly oxygen and neon, in the sky maps taken with the Interstellar Boundary Explorer (IBEX) in 2009 - 2011. The IBEX-Lo sensor, one of two highly sensitive single-pixel cameras on the IBEX spacecraft, measures neutral particles within an energy range from 0.01 to 2 keV. In the time-of-flight detector of IBEX-Lo these neutral atoms can be identified as hydrogen or heavier atoms, such as oxygen. These measurements have provided all-sky maps of neutral hydrogen and oxygen. The dominant feature in these maps is the interstellar oxygen and neon gas flow. Its peak location is approximately consistent with the interstellar helium gas flow (Möbius et al., 2009, Science, 326, 969). The flow distribution is distributed over 210° - 240° ecliptic longitude and -6° - 12° ecliptic latitude. Another prominent feature in the oxygen sky maps at 0.2 to 0.8 keV is an extended tail of the oxygen signal toward lower longitude and higher positive latitude (180° - 210° ecliptic longitude and 0° - 24° ecliptic latitude). The measured peak rates in the extended tail is 3 - 5% of the maximum count rate in the primary oxygen and neon gas flow, but is four times higher than any other surrounding oxygen signals. The extended tail may indicate the secondary component of the interstellar oxygen, which is likely generated by charge exchange between local O+ ions and interstellar neutral H in the outer heliosheath. In this poster, we will discuss these two most prominent features in the oxygen sky maps and their implications for the source and the mechanism generating an extended tail in the oxygen signal.

  11. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    Science.gov (United States)

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  12. Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of Mechanisms, Performance, and Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Solar radiation can be computed using radiative transfer models, such as the Rapid Radiation Transfer Model (RRTM) and its general circulation model applications, and used for various energy applications. Due to the complexity of computing radiation fields in aerosol and cloudy atmospheres, simulating solar radiation can be extremely time-consuming, but many approximations--e.g., the two-stream approach and the delta-M truncation scheme--can be utilized. To provide a new fast option for computing solar radiation, we developed the Fast All-sky Radiation Model for Solar applications (FARMS) by parameterizing the simulated diffuse horizontal irradiance and direct normal irradiance for cloudy conditions from the RRTM runs using a 16-stream discrete ordinates radiative transfer method. The solar irradiance at the surface was simulated by combining the cloud irradiance parameterizations with a fast clear-sky model, REST2. To understand the accuracy and efficiency of the newly developed fast model, we analyzed FARMS runs using cloud optical and microphysical properties retrieved using GOES data from 2009-2012. The global horizontal irradiance for cloudy conditions was simulated using FARMS and RRTM for global circulation modeling with a two-stream approximation and compared to measurements taken from the U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Our results indicate that the accuracy of FARMS is comparable to or better than the two-stream approach; however, FARMS is approximately 400 times more efficient because it does not explicitly solve the radiative transfer equation for each individual cloud condition. Radiative transfer model runs are computationally expensive, but this model is promising for broad applications in solar resource assessment and forecasting. It is currently being used in the National Solar Radiation Database, which is publicly available from the National Renewable Energy

  13. GASS: The Parkes Galactic All-Sky Survey. Update: improved correction for instrumental effects and new data release

    Science.gov (United States)

    Kalberla, P. M. W.; Haud, U.

    2015-06-01

    Context. The Galactic All-Sky Survey (GASS) is a survey of Galactic atomic hydrogen (H i) emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release (GASS I) concerned survey goals and observing techniques, the second release (GASS II) focused on stray radiation and instrumental corrections. Aims: We seek to remove the remaining instrumental effects and present a third data release. Methods: We use the HEALPix tessellation concept to grid the data on the sphere. Individual telescope records are compared with averages on the nearest grid position for significant deviations. All averages are also decomposed into Gaussian components with the aim of segregating unacceptable solutions. Improved priors are used for an iterative baseline fitting and cleaning. In the last step we generate 3D FITS data cubes and examine them for remaining problems. Results: We have removed weak, but systematic baseline offsets with an improved baseline fitting algorithm. We have unraveled correlator failures that cause time dependent oscillations; errors cause stripes in the scanning direction. The remaining problems from radio frequency interference (RFI) are spotted. Classifying the severeness of instrumental errors for each individual telescope record (dump) allows us to exclude bad data from averages. We derive parameters that allow us to discard dumps without compromising the noise of the resulting data products too much. All steps are reiterated several times: in each case, we check the Gaussian parameters for remaining problems and inspect 3D FITS data cubes visually. We find that in total ~1.5% of the telescope dumps need to be discarded in addition to ~0.5% of the spectral channels that were excluded in GASS II. Conclusions: The new data release (GASS III) facilitates data products with improved quality. A new web interface, compatible with the previous version, is available for download of GASS III FITS cubes and spectra.

  14. All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Hardt, A.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.

    2012-06-01

    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration ≲1s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range ˜5×10-22Hz-1/2 to ˜1×10-20Hz-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.

  15. GMOSS: All-sky Model of Spectral Radio Brightness Based on Physical Components and Associated Radiative Processes

    Science.gov (United States)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Udaya Shankar, N.; Chluba, Jens

    2017-01-01

    We present the Global Model for the Radio Sky Spectrum (GMOSS), a novel, physically motivated model of the low-frequency radio sky from 22 MHz to 23 GHz. GMOSS invokes different physical components and associated radiative processes to describe the sky spectrum over 3072 pixels of 5° resolution. The spectra are allowed to be convex, concave, or of more complex form with contributions from synchrotron emission, thermal emission, and free-free absorption included. Physical parameters that describe the model are optimized to best fit four all-sky maps at 150 MHz, 408 MHz, 1420 MHz, and 23 GHz and two maps at 22 and 45 MHz generated using the Global Sky Model of de Oliveira-Costa et al. The fractional deviation of the model from data has a median value of 6% and is less than 17% for 99% of the pixels. Though aimed at the modeling of foregrounds for the global signal arising from the redshifted 21 cm line of hydrogen during the Cosmic Dawn and the Epoch of Reionization (EoR), over redshifts 150≲ z≲ 6, GMOSS is well suited for any application that requires simulating spectra of the low-frequency radio sky as would be observed by the beam of any instrument. The complexity in spectral structure that naturally arises from the underlying physics of the model provides a useful expectation for departures from smoothness in EoR foreground spectra and hence may guide the development of algorithms for EoR signal detection. This aspect is further explored in a subsequent paper.

  16. Thermospheric winds and temperatures above Mawson, Antarctica, observed with an all-sky imaging, Fabry-Perot spectrometer

    Directory of Open Access Journals (Sweden)

    C. Anderson

    2009-05-01

    Full Text Available A new all-sky imaging Fabry-Perot spectrometer has been installed at Mawson station (67°36' S, 62°52' E, Antarctica. This instrument is capable of recording independent spectra from many tens of locations across the sky simultaneously. Useful operation began in March 2007, with spectra recorded on a total of 186 nights. Initial analysis has focused on the large-scale daily and average behavior of winds and temperatures derived from observations of the 630.0 nm airglow line of atomic oxygen, originating from a broad layer centered around 240 km altitude, in the ionospheric F-region.

    The 1993 Horizontal Wind Model (HWM93, NRLMSISE-00 atmospheric model, and the Coupled Thermosphere/Ionosphere Plasmasphere (CTIP model were used for comparison. During the geomagnetically quiet period studied, observed winds and temperatures were generally well modelled, although temperatures were consistently higher than NRLMSISE-00 predicted, by up to 100 K. CTIP temperatures better matched our data, particularly later in the night, but predicted zonal winds which were offset from those observed by 70–180 ms−1 westward. During periods of increased activity both winds and temperatures showed much greater variability over time-scales of less than an hour. For the active night presented here, a period of 45 min saw wind speeds decrease by around 180 ms−1, and temperatures increase by approximately 100 K. Active-period winds were poorly modelled by HWM93 and CTIP, although observed median temperatures were in better agreement with NRLMSISE-00 during such periods.

    Average behavior was found to be generally consistent with previous studies of thermospheric winds above Mawson. The collected data set was representative of quiet geomagnetic and solar conditions. Geographic eastward winds in the afternoon/evening generally continued until around local midnight, when winds turned equatorward. Geographic meridional and

  17. Vertical winds and momentum fluxes due to equatorial planetary scale waves using all-sky meteor radar over Brazilian region

    Science.gov (United States)

    Egito, F.; Andrioli, V. F.; Batista, P. P.

    2016-11-01

    In the equatorial region planetary scale waves play an important role transporting significant amount of energy and momentum through atmosphere. Quantifying the momentum transported by these waves and its effects on the mean flow is rather important. Direct estimates of the momentum flux transported by waves require horizontal and vertical wind measurements. Ground-based meteor radars have provided continuous and reliable measurements of the horizontal wind components in the Mesosphere and Lower Thermosphere (MLT) region and have contributed to improve our knowledge of the dynamics of this region. However, instrumental limitations hinder its use for measuring vertical winds and momentum fluxes. On the other hand, according to Babu et al (2012), all- sky meteor radars are able to infer tridimensional winds when using a large number of meteor echoes centered at the meteor ablation peak. Following this approach, we have used measurements performed by a Meteor Radar installed at São João do Cariri, Brazil (7.4°S; 36.5°W) in order to measure vertical winds and calculate the momentum flux transported by equatorial planetary scale waves. In order to evaluate the accuracy of vertical wind values we have performed several tests based on a simple model considering real meteor distributions and theoretical equations for the MLT winds motion. From our tests, we inferred that Brazilian meteor radar data can be used for this purpose with an accuracy of ~ 1.8 m/s. The results show that the vertical wind presents magnitudes of a few meters per second and occasionally reaches magnitudes around 10 m/s. Below 92 km the vertical wind is predominantly upward during the whole year and above exhibits a semi-annual oscillation with downward phase during the equinoxes. Variations associated to planetary scale waves in the vertical wind are also observed and some of them appear simultaneously in the zonal and meridional wind as well. Largest wave induced amplitudes in the vertical wind

  18. NASA/IPAC Infrared Science Archive

    Data.gov (United States)

    National Aeronautics and Space Administration — IRSA is chartered to curate the calibrated science products from NASAs infrared and sub-millimeter missions, including five major large-area/all-sky surveys. IRSA...

  19. Gravity wave activity observed in the mesosphere and ionosphere on September 16th 2015 by an all-sky imager and dTEC maps over Brazil

    Science.gov (United States)

    Wrasse, Cristiano M.; Gobbi, Delano; Buriti, Ricardo; Bageston, José Valentin; Medeiros, Amauri; Paulino, Igo; Cosme Alexandre Figueiredo, M.; Takahashi, Hisao; Azambuja, Rodrigo

    2016-07-01

    All-sky imager was used to observe the wave activity in the mesosphere and a ground network of GPS receivers were used to make detrended Total Electron Content (dTEC) maps to monitor the ionosphere. The wave activity was observed on September 16th 2015 over the southeast region in Brazil. The gravity wave characteristics and the atmospheric conditions for wave propagation will be presented and discussed. The gravity wave source was associated with strong tropospheric convection.

  20. A Southern-Sky Total Intensity Source Catalogue at 2.3 GHz from S-Band Polarisation All-Sky Survey Data

    Science.gov (United States)

    Meyers, B. W.; Hurley-Walker, N.; Hancock, P. J.; Franzen, T. M. O.; Carretti, E.; Staveley-Smith, L.; Gaensler, B. M.; Haverkorn, M.; Poppi, S.

    2017-03-01

    The S-band Polarisation All-Sky Survey has observed the entire southern sky using the 64-m Parkes radio telescope at 2.3 GHz with an effective bandwidth of 184 MHz. The surveyed sky area covers all declinations δ ⩽ 0°. To analyse compact sources, the survey data have been re-processed to produce a set of 107 Stokes I maps with 10.75 arcmin resolution and the large scale emission contribution filtered out. In this paper, we use these Stokes I images to create a total intensity southern-sky extragalactic source catalogue at 2.3 GHz. The source catalogue contains 23 389 sources and covers a sky area of 16 600 deg2, excluding the Galactic plane for latitudes |b| Sky Survey source positions are typically accurate to within 35 arcsec. At a flux density of 225 mJy, the S-band Polarisation All-Sky Survey source catalogue is more than 95% complete, and 94% of S-band Polarisation All-Sky Survey sources brighter than 500 mJy beam-1 have a counterpart at lower frequencies.

  1. Anthropogenic changes in the surface all-sky UV-B radiation through 1850–2005 simulated by an Earth system model

    Directory of Open Access Journals (Sweden)

    T. Yokohata

    2012-02-01

    Full Text Available The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280–315 nm radiation through 1850–2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface all-sky UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface all-sky UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N–60° N and 120° E–150° E, where the effect of aerosols (ca. 70% dominates the total UV-B change.

  2. BANYAN. V. A SYSTEMATIC ALL-SKY SURVEY FOR NEW VERY LATE-TYPE LOW-MASS STARS AND BROWN DWARFS IN NEARBY YOUNG MOVING GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Malo, Lison; Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada)

    2015-01-10

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ∼13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential ≥M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr{sup –1}. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by ≥M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  3. Hierarchical follow-up of sub-threshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data

    OpenAIRE

    Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Walsh, Sinéad; Di Palma, Irene; Allen, Bruce; Astone, Pia; Bock, Oliver; Creighton, Teviet D.; Keitel, David; Machenschalk, Bernd; Prix, Reinhard; Siemens, Xavier; Singh, Avneet; Zhu, Sylvia J.; Schutz, Bernard F.

    2016-01-01

    We report results of an all-sky search for periodic gravitational waves with frequency between 50 and 510 Hz from isolated compact objects, i.e. neutron stars. A new hierarchical multi-stage approach is taken, supported by the computing power of the Einstein@Home project, allowing to probe more deeply than ever before. 16 million sub-threshold candidates from the initial search [LVC,arXiv:1606.09619] are followed up in three stages. None of those candidates is consistent with an isolated grav...

  4. Hierarchical follow-up of sub-threshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data

    CERN Document Server

    Papa, Maria Alessandra; Walsh, Sinéad; Di Palma, Irene; Allen, Bruce; Astone, Pia; Bock, Oliver; Creighton, Teviet D; Keitel, David; Machenschalk, Bernd; Prix, Reinhard; Siemens, Xavier; Singh, Avneet; Zhu, Sylvia J; Schutz, Bernard F

    2016-01-01

    We report results of an all-sky search for periodic gravitational waves with frequency between 50 and 510 Hz from isolated compact objects, i.e. neutron stars. A new hierarchical multi-stage approach is taken, supported by the computing power of the Einstein@Home project, allowing to probe more deeply than ever before. 16 million sub-threshold candidates from the initial search [LVC,arXiv:1606.09619] are followed up in three stages. None of those candidates is consistent with an isolated gravitational wave emitter, and 90% confidence level upper limits are placed on the amplitudes of continuous waves from the target population. Between 170.5 and 171 Hz we set the most constraining 90% confidence upper limit on the strain amplitude h0 at 4.3x10-25 , while at the high end of our frequency range we achieve an upper limit of 7.6x10-25. These are the most constraining all-sky upper limits to date and constrain the ellipticity of rotating compact objects emitting at 300 Hz at a distance D to less than 6x10-7 [d/100...

  5. Hierarchical follow-up of subthreshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data

    Science.gov (United States)

    Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Walsh, Sinéad; Di Palma, Irene; Allen, Bruce; Astone, Pia; Bock, Oliver; Creighton, Teviet D.; Keitel, David; Machenschalk, Bernd; Prix, Reinhard; Siemens, Xavier; Singh, Avneet; Zhu, Sylvia J.; Schutz, Bernard F.

    2016-12-01

    We report results of an all-sky search for periodic gravitational waves with frequency between 50 and 510 Hz from isolated compact objects, e.g., neutron stars. A new hierarchical multistage approach is taken, supported by the computing power of the Einstein@Home project, allowing us to probe more deeply than ever before. 16 million subthreshold candidates from the initial search [LIGO Scientific and Virgo Collaborations, Phys. Rev. D 94, 102002 (2016)] are followed up in four stages. None of those candidates is consistent with an isolated gravitational wave emitter, and 90% confidence level upper limits are placed on the amplitudes of continuous waves from the target population. Between 170.5 and 171 Hz, we set the most constraining 90% confidence upper limit on the strain amplitude h0 at 4.3 ×10-25 , while at the high end of our frequency range, we achieve an upper limit of 7.6 ×10-25 . These are the most constraining all-sky upper limits to date and constrain the ellipticity of rotating compact objects emitting at 300 Hz at a distance D to less than 6 ×10-7 [D/100 pc ] .

  6. The Fermi All-Sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in our Galaxy

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Brandt, T. J.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J.; McEnery, J. E.; Nemmen, R.; Perkins, J. S.; Scargle, J. D; Thompson, D. J.; Troja, E.

    2013-01-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope.For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  7. THE FERMI ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Albert, A. [Department of Physics, Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Antolini, E.; Bonamente, E. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bouvier, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica ' ' M. Merlin' ' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: majello@slac.stanford.edu, E-mail: allafort@stanford.edu, E-mail: rolf.buehler@desy.de [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2013-07-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 Degree-Sign and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  8. Empirically extending the range of validity of parameter-space metrics for all-sky searches for gravitational-wave pulsars

    CERN Document Server

    Wette, Karl

    2016-01-01

    All-sky searches for gravitational-wave pulsars are generally limited in sensitivity by the finite availability of computing resources. Semicoherent searches are a common method of maximizing search sensitivity given a fixed computing budget. The work of Wette and Prix [Phys. Rev. D 88, 123005 (2013)] and Wette [Phys. Rev. D 92, 082003 (2015)] developed a semicoherent search method which uses metrics to construct the banks of pulsar signal templates needed to search the parameter space of interest. In this work we extend the range of validity of the parameter-space metrics using an empirically-derived relationship between the resolution (or mismatch) of the template banks and the mismatch of the overall search. This work has important consequences for the optimization of metric-based semicoherent searches at fixed computing cost.

  9. Toward long-term all-sky time domain surveys-SINDICS: a prospective concept for a Seismic INDICes Survey of half a million red giants

    Directory of Open Access Journals (Sweden)

    Michel Eric

    2015-01-01

    Full Text Available CoRoT and Kepler have brought a new and deep experience in long-term photometric surveys and how to use them. This is true for exoplanets characterizing, stellar seismology and beyond for studying several other phenomena, like granulation or activity. Based on this experience, it has been possible to propose new generation projects, like TESS and PLATO, with more specific scientific objectives and more ambitious observational programs in terms of sky coverage and/or duration of the observations. In this context and as a prospective exercise, we explore here the possibility to set up an all-sky survey optimized for seismic indices measurement, providing masses, radii and evolution stages for half a million solar-type pulsators (subgiants and red giants, in our galactic neighborhood and allowing unprecedented stellar population studies.

  10. PROBING THE DARK AGES AT z ∼ 20: THE SCI-HI 21 cm ALL-SKY SPECTRUM EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Voytek, Tabitha C.; Natarajan, Aravind; Peterson, Jeffrey B. [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States); Jáuregui García, José Miguel; López-Cruz, Omar, E-mail: tcv@andrew.cmu.edu [Instituto Nacional de Astrofísica, Optica y Electrónica (INAOE), Coordinación de Astrofísica, Luis Enrique Erro No. 1 Sta. Ma. Tonantzintla, Puebla, 72840 Mexico (Mexico)

    2014-02-10

    We present first results from the SCI-HI experiment, which we used to measure the all-sky-averaged 21 cm brightness temperature in the redshift range 14.8 < z < 22.7. The instrument consists of a single broadband sub-wavelength size antenna and a sampling system for real-time data processing and recording. Preliminary observations were completed in 2013 June at Isla Guadalupe, a Mexican biosphere reserve located in the Pacific Ocean. The data was cleaned to excise channels contaminated by radio frequency interference, and the system response was calibrated by comparing the measured brightness temperature to the Global Sky Model of the Galaxy and by independent measurement of Johnson noise from a calibration terminator. We present our results, discuss the cosmological implications, and describe plans for future work.

  11. Ground-based search for the brightest transiting planets with the Multi-site All-Sky CAmeRA - MASCARA

    CERN Document Server

    Snellen, Ignas; Navarro, Ramon; Bettonvil, Felix; Kenworthy, Matthew; de Mooij, Ernst; Otten, Gilles; ter Horst, Rik; Poole, Rudolf le

    2012-01-01

    The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been installed, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCA...

  12. Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy

    DEFF Research Database (Denmark)

    Bucher, M.; Delabrouille, J.; Giraud-Héraud, Y.;

    2011-01-01

    An all sky map of the apparent temperature and optical depth of thermal dust emission is constructed using the Planck-HFI (350μm to 2 mm) andIRAS(100μm) data. The optical depth maps are correlated with tracers of the atomic (Hi) and molecular gas traced by CO. The correlation with the column...... density of observed gas is linear in the lowest column density regions at high Galactic latitudes. At high NH, the correlation is consistent with that of the lowest NH, for a given choice of the CO-to-H2 conversion factor. In the intermediate NH range, a departure from linearity is observed, with the dust...... optical depth in excess of the correlation. This excess emission is attributed to thermal emission by dust associated with a dark gas phase, undetected in the available Hi and CO surveys. The 2D spatial distribution of the dark gas in the solar neighbourhood (|bII| > 10°) is shown to extend around known...

  13. Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project

    CERN Document Server

    ,

    2016-01-01

    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the S6 LIGO science run. The search was possible thanks to the computing power provided by the volunteers of the Einstein@Home distributed computing project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population. At the frequency of best strain sensitivity, between $170.5$ and $171$ Hz we set a 90% confidence upper limit of ${5.5}^{-25}$, while at the high end of our frequency range, around 505 Hz, we achieve upper limits $\\simeq {10}^{-24}$. At $230$ Hz we can exclude sources with ellipticities greater than $10^{-6}$ within 100 pc of Earth with fiducial value of the principal moment of inertia of $10^{38} \\textrm{kg m}^2$. If we assume a higher (lower) gravitational wave spindown we constrain farther (closer) objects to higher (lower) ellipticities.

  14. Results of an all-sky high-frequency Einstein@Home search for continuous gravitational waves in LIGO 5th Science Run

    CERN Document Server

    Singh, Avneet; Eggenstein, Heinz-Bernd; Zhu, Sylvia; Pletsch, Holger; Allen, Bruce; Bock, Oliver; Maschenchalk, Bernd; Prix, Reinhard; Siemens, Xavier

    2016-01-01

    We present results of a high-frequency all-sky search for continuous gravitational waves from isolated compact objects in LIGO's 5th Science Run S5 data, using the computing power of the Einstein@Home volunteer computing project. This is the only dedicated continuous gravitational wave search that probes this high frequency range on S5 data. We find no significant candidate signal, so we set 90%-confidence level upper-limits on continuous gravitational wave strain amplitudes. At the lower end of the search frequency range, around 1250 Hz, the most constraining upper-limit is $5.0\\times 10^{-24}$, while at the higher end, around 1500 Hz, it is $6.2\\times 10^{-24}$. Based on these upper-limits, and assuming a fiducial value of the principal moment of inertia of $10^{38}$kg$\\,$m$^2$, we can exclude objects with ellipticities higher than roughly $2.8\\times10^{-7}$ within 100 pc of Earth with rotation periods between 1.3 and 1.6 milliseconds.

  15. A-Train Aerosol Observations Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-Sky Estimates

    Science.gov (United States)

    Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Torres, O.; Remer, L.; Stier, P.; Schutgens, N.

    2014-01-01

    We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  16. Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-11-01

    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the S6 LIGO science run. The search was possible thanks to the computing power provided by the volunteers of the Einstein@Home distributed computing project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population. At the frequency of best strain sensitivity, between 170.5 and 171 Hz we set a 90% confidence upper limit of 5.5 ×10-25 , while at the high end of our frequency range, around 505 Hz, we achieve upper limits ≃10-24 . At 230 Hz we can exclude sources with ellipticities greater than 10-6 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038 kg m2 . If we assume a higher (lower) gravitational wave spin-down we constrain farther (closer) objects to higher (lower) ellipticities.

  17. Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - VII. V1200 Centauri: a bright triple in the Hyades moving group

    CERN Document Server

    Coronado, J; Vanzi, L; Espinoza, N; Brahm, R; Jordán, A; Catelán, M; Ratajczak, M; Konacki, M

    2015-01-01

    We present the orbital and physical parameters of the detached eclipsing binary V1200~Centauri (ASAS~J135218-3837.3) from the analysis of spectroscopic observations and light curves from the \\textit{All Sky Automated Survey} (ASAS) and SuperWASP database. The radial velocities were computed from the high-resolution spectra obtained with the OUC 50-cm telescope and PUCHEROS spectrograph and with 1.2m Euler telescope and CORALIE spectrograph using the cross-correlation technique \\textsc{todcor}. We found that the absolute parameters of the system are $M_1= 1.394\\pm 0.030$ M$_\\odot$, $M_2= 0.866\\pm 0.015$ M$_\\odot$, $R_1= 1.39\\pm 0.15$ R$_\\odot$, $R_2= 1.10\\pm 0.25$ R$_\\odot$. We investigated the evolutionary status and kinematics of the binary and our results indicate that V1200~Centauri is likely a member of the Hyades moving group, but the largely inflated secondary's radius may suggest that the system may be even younger, around 30 Myr. We also found that the eclipsing pair is orbited by another, stellar-mas...

  18. Prospecting for spiral structure in the flocculent outer Milky Way Disk with color magnitude star counts from the 2 Micron All Sky Survey

    CERN Document Server

    Quillen, A C

    2002-01-01

    Using star counts in both color and magnitude from the Two Micron All Sky Survey (2MASS) Second Incremental Release Point Source Catalog we search for evidence of non-uniform extinction and stellar population density changes in the Galactic Plane. Extinction causes the entire main sequence to shift toward redder colors on a color magnitude diagram. A local increase in the stellar density causes an increase in the star counts along a line parallel to the main sequence. We find streaks in star count color magnitude contour plots along the angle of the main sequence which are likely to be caused by distant gas clouds and stellar density variations. The distance of a gas cloud or stellar density change can be estimated from the location of the shift in the star count contours. We identify features in these diagrams which are coherent across at least 10 degrees in Galactic longitude. A series of features is seen at the plausible distance of the expected Perseus spiral arm at a distance of 2 to 4 kpc from the sun. ...

  19. The X-ray Properties of Nearby Abell Clusters from the ROSAT All-Sky Survey: The Sample and Correlations with Optical Properties

    CERN Document Server

    Ledlow, M J; Owen, F N; Burns, J O; Ledlow, Michael J.; Voges, Wolfgang; Owen, Frazer N.; Burns, Jack O.

    2003-01-01

    We present an analysis of the X-ray emission for a complete sample of 288 Abell clusters spanning the redshift range 0.016<= z <= 0.09 from the ROSAT All-Sky Survey. This sample is based on our 20cm VLA survey of nearby Abell clusters. We find an X-ray detection rate of 83%. We report cluster X-ray fluxes and luminosities and two different flux ratios indicative of the concentration and extent of the emission. We examine correlations between the X-ray luminosity, Abell Richness, and Bautz-Morgan and Rood-Sastry cluster morphologies. We find a strong correlation between Lx and cluster richness coupled to a dependence on the optical morphological type. These results are consistent with the observed scatter between X-ray luminosity and temperature and a large fraction of cooling flows. For each cluster field we also report the positions, peak X-ray fluxes, and flux-ratios of all X-ray peaks above 3-sigma significance within a box of 2x2 Mpc centered on Abell's position.

  20. All-sky Multi-colour, Multi-epoch SuperCOSMOS Sky Survey Images Now Available in the VO Through SIAP

    Science.gov (United States)

    Hambly, N. C.; Read, M. A.; Holliman, M. S.; Cross, N. J. G.; Collins, R. S.; Mann, R. G.

    2009-09-01

    This paper describes a new all-sky Simple Image Access (SIA) protocol cut-out service based on the legacy Schmidt telescope photographic surveys (epoch 1949-2000) as digitised by the now decommissioned precision plate scanning facility SuperCOSMOS. Every part of the sky is covered in BRI (typical depths B=22, R=20, I=18 with 2 arcsec resolution) with at least two epochs in R; multiple-epoch images are available in the substantial survey overlap regions. Furthermore, specialist regions have additional filter/epoch coverage, e.g. Hα and matched R exposures in the Galactic Plane, and ˜200 multi-epoch/colour images spread over ˜30 years in the ESO/SRC survey field~287 at 21^h28^m, -45° (B1950). The service has been published to the international Virtual Observatory through the WFAU publishing registry, which can be found through the IVOA Registry of Registries. URL, http://www-wfau.roe.ac.uk:8080/ssa/SSS_SIAP IVORN, ivo://wfau.roe.ac.uk/sss-siap

  1. A Two Micron All-Sky Survey View of the Sagittarius Dwarf Galaxy: II. Swope Telescope Spectroscopy of M Giant Stars in the Dynamically Cold Sagittarius Tidal Stream

    CERN Document Server

    Majewski, Steven R; Law, David R; Patterson, Richard J; Allyson A Polak; Rocha-Pinto, Helio J; Crane, Jeffrey D; Frinchaboy, Peter M; Hummels, Cameron B; Johnston, Kathryn V; Jaehyon, Rhee; Skrutskie, Michael F

    2004-01-01

    We present moderate resolution (~6 km/s) spectroscopy of 284 M giant candidates selected from the Two Micron All Sky Survey photometry. Radial velocities (RVs) are presented for stars mainly in the south, with a number having positions consistent with association to the trailing tidal tail of the Sagittarius (Sgr) dwarf galaxy. The latter show a clear RV trend with orbital longitude, as expected from models of the orbit and destruction of Sgr. A minimum 8 kpc width of the trailing stream about the Sgr orbital midplane is implied by verified RV members. The coldness of this stream (dispersion ~10 km/s) provides upper limits on the combined contributions of stream heating by a lumpy Galactic halo and the intrinsic dispersion of released stars, which is a function of the Sgr core mass. The Sgr trailing arm is consistent with a Galactic halo containing one dominant, LMC-like lump, however some lumpier halos are not ruled out. An upper limit to the total M/L of the Sgr core is 21 in solar units. A second structure...

  2. Results of an all-sky high-frequency Einstein@Home search for continuous gravitational waves in LIGO's fifth science run

    Science.gov (United States)

    Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Zhu, Sylvia; Pletsch, Holger; Allen, Bruce; Bock, Oliver; Maschenchalk, Bernd; Prix, Reinhard; Siemens, Xavier

    2016-09-01

    We present results of a high-frequency all-sky search for continuous gravitational waves from isolated compact objects in LIGO's fifth science run (S5) data, using the computing power of the Einstein@Home volunteer computing project. This is the only dedicated continuous gravitational wave search that probes this high-frequency range on S5 data. We find no significant candidate signal, so we set 90% confidence level upper limits on continuous gravitational wave strain amplitudes. At the lower end of the search frequency range, around 1250 Hz, the most constraining upper limit is 5.0 ×10-24, while at the higher end, around 1500 Hz, it is 6.2 ×10-24. Based on these upper limits, and assuming a fiducial value of the principal moment of inertia of 1038 kg m2 , we can exclude objects with ellipticities higher than roughly 2.8 ×10-7 within 100 pc of Earth with rotation periods between 1.3 and 1.6 milliseconds.

  3. Sub-MeV Band Observation of a Hard Burst from AXP 1E 1547.0-5408 with the Suzaku Wide-band All-sky Monitor

    CERN Document Server

    Yasuda, Tetsuya; Tashiro, Makoto S; Terada, Yukikatsu; Kouzu, Tomomi; Enoto, Teruaki; Nakagawa, Yujin E; Bamba, Aya; Urata, Yuji; Yamaoka, Kazutaka; Ohno, Masanori; Shibata, Sinpei; Makishima, Kazuo

    2015-01-01

    The 2.1-s anomalous X-ray pulsar 1E 1547.0-5408 exhibited an X-ray outburst on 2009 January 22, emitting a large number of short bursts. The wide-band all- sky monitor (WAM) on-board Suzaku detected at least 254 bursts in the 160keV-6.2MeV band over the period of January 22 00:57-17:02 UT from the direction of 1E 1547.0-5408. One of these bursts, which occurred at 06:45:13, produced the brightest fluence in the 0.5-6.2MeV range, with an averaged 0.16-6.2MeV flux and extrapolated 25 keV-2 MeV fluence of about 3x10-6 erg cm-2 s-1 and about 3x10-4 erg cm-2, respectively. After pile-up corrections, the time-resolved WAM spectra of this burst were well-fitted in the 0.16-6.2MeV range by two-component models; specifically, a blackbody plus an optically thin thermal bremsstrahlung or a combination of a blackbody and a power-law component with an exponential cutoff. These results are compared with previous works reporting the persistent emission and weaker short bursts followed by the same outburst.

  4. Anthropogenic changes in the surface all-sky UV-B radiation through 1850–2005 simulated by an Earth system model

    Directory of Open Access Journals (Sweden)

    S. Watanabe

    2012-06-01

    Full Text Available The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280–315 nm radiation through 1850–2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N–60° N and 120° E–150° E, where the effect of aerosols (ca. 70% dominates the total UV-B change.

  5. Search for young stars among ROSAT All-Sky Survey X-ray sources in and around the R CrA dark cloud

    Science.gov (United States)

    Neuhäuser, R.; Walter, F. M.; Covino, E.; Alcalá, J. M.; Wolk, S. J.; Frink, S.; Guillout, P.; Sterzik, M. F.; Comerón, F.

    2000-10-01

    We present the ROSAT All-Sky Survey data in a 126 deg2 area in and around the CrA star forming region. With low-resolution spectroscopy of unidentified ROSAT sources we could find 19 new pre-main sequence stars, two of which are classical T Tauri stars, the others being weak-lined. The spectral types of these new T Tauri stars range from F7 to M6. The two new classical T Tauri stars are located towards two small cloud-lets outside of the main CrA cloud. They appear to be ~ 10 Myrs old, by comparing their location in the H-R diagram with isochrones for an assumed distance of 130 pc, the distance of the main CrA dark cloud. The new off-cloud weak-line T Tauri stars may have formed in similar cloudlets, which have dispersed recently. High-resolution spectra of our new T Tauri stars show that they have significantly more lithium absorption than zero-age main-sequence stars of the same spectral type, so that they are indeed young. From those spectra we also obtained rotational and radial velocities. For some stars we found the proper motion in published catalogs. The direction and velocity of the 3D space motion - south relative to the galatic plane - of the CrA T Tauri stars is consistent with the dark cloud being formed originally by a high-velocity cloud impact onto the galactic plane, which triggered the star formation in CrA. We also present VRIJHK photometry for most of the new T Tauri stars to derive their luminosities, ages, and masses. Partly based on observations collected at the 1.52 m and 3.5 m telescopes of the European Southern Observatory, Chile, in programs 55.E-0549, 57.E-0646, and 63.L-0023, and on observations collected at the 0.9 m, 1.5 m, and 4.0 m CTIO telescope.

  6. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  7. Novalike Cataclysmic Variables in the Infrared

    CERN Document Server

    Hoard, D W; Howell, Steve B; Wachter, Stefanie; Brinkworth, Carolyn S; Knigge, Christian; Drew, J E; Szkody, Paula; Kafka, S; Belle, Kunegunda; Ciardi, David R; Froning, Cynthia S; van Belle, Gerard T; Pretorius, M L

    2014-01-01

    Novalike cataclysmic variables have persistently high mass transfer rates and prominent steady state accretion disks. We present an analysis of infrared observations of twelve novalikes obtained from the Two Micron All Sky Survey, the Spitzer Space Telescope, and the Wide-field Infrared Survey Explorer All Sky Survey. The presence of an infrared excess at >3-5 microns over the expectation of a theoretical steady state accretion disk is ubiquitous in our sample. The strength of the infrared excess is not correlated with orbital period, but shows a statistically significant correlation (but shallow trend) with system inclination that might be partially (but not completely) linked to the increasing view of the cooler outer accretion disk and disk rim at higher inclinations. We discuss the possible origin of the infrared excess in terms of emission from bremsstrahlung or circumbinary dust, with either mechanism facilitated by the mass outflows (e.g., disk wind/corona, accretion stream overflow, and so on) present...

  8. Understanding the Long-Term Spectral Variability of Cygnus X-1 with Burst and Transient Source Experiment and All-Sky Monitor Observations

    Science.gov (United States)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Lin-Qing

    2002-01-01

    We present a comprehensive analysis of all observations of Cyg X-1 by the Compton Gamma Ray Observatory Burst and Transient Source Experiment (BATSE; 20-300 keV) and by the Rossi X-Ray Timing Explorer all-sky monitor (ASM; 1.5-12 keV) until 2002 June, including approximately 1200 days of simultaneous data. We find a number of correlations between fluxes and hardnesses in different energy bands. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the 20-100 keV flux. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. There is also another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superposed on a constant soft blackbody component. These variability patterns are in agreement with the dependencies of the rms variability on the photon energy in the two states. We also study in detail recent soft states from late 2000 until 2002. The last of them has lasted thus far for more than 200 days. Their spectra are generally harder in the 1.5-5 keV band and similar or softer in the 3-12 keV band than the spectra of the 1996 soft state, whereas the rms variability is stronger in all the ASM bands. On the other hand, the 1994 soft state transition observed by BATSE appears very similar to the 1996 one. We interpret the variability patterns in terms of theoretical Comptonization

  9. A Method to Measure Cloudiness of All-sky Images in No-moon Nights%天文选址的夜间云量处理方法

    Institute of Scientific and Technical Information of China (English)

    尹佳; 钱璇; 姚永强; 王红帅; 李林; 尤显龙; 周云贺; 马江龙; 刘立勇; 李俊荣

    2012-01-01

    The site quality of astronomical observatory critically depends on cloud coverage, and the measurement of cloudiness is particularly important for selecting a telescope site. In recent site testing work, all-sky camera is widely employed to detect cloud. Due to the impact of moon light, the measurements of cloudiness of all-sky images are considered to be divided into two categories, no-moon nights and moonlit nights. The method is described in this paper to deal with all-sky images in no-moon nights. By identifying the positions of bright reference stars and making photometry for a set of all-sky images in clear nights, we can set up a reference image with median smoothing of the differential magnitude values. The standard image can be taken as the threshold for clear nights, and the detectivity of stars in other images can be utilize to reveal cloud coverage. Three types of all-sky images, icy lens, part of cloud, and full of cloud, are selected to check up the method, and the effect of threshold determination on cloud estimates is discussed. Finally, the limitation and uncertainty of the method are discussed.%云量是影响天文台址质量最重要的因素之一,对夜间云量的检测和处理尤为重要.采用地面云量相机对全天云量进行监测,所拍摄的图像需要有效的方法进行处理以量化云量.夜间云量图像受月光的影响严重,因此将夜间的云量图像分为有月夜和无月夜两类进行处理.针对无月夜情况,给出了夜间云量的处理过程.对图像中的亮星进行定位和测光,确定星等差.以晴夜图像中亮星的星等差为参照,将星等差低于阈值条件的亮星概率作为晴夜的概率标准.选取了3类图像对该方法进行测试并确定云量,分析了阈值条件对结果的影响.最后,讨论了该方法的适用范围和不确定性.

  10. Discovery of 11 New T Dwarfs in the Two Micron All-Sky Survey, Including a Possible L/T Transition Binary

    CERN Document Server

    Looper, Dagny L; Burgasser, Adam J

    2007-01-01

    We present the discovery of 11 new T dwarfs, found during the course of a photometric survey for mid-to-late T dwarfs in the 2MASS Point Source Catalog and from a proper motion selected sample of ultracool dwarfs in the 2MASS Working Database. Using the NASA Infrared Telescope Facility SpeX spectrograph, we obtained low-resolution (R~150) spectroscopy, allowing us to derive near-infrared spectral types of T2-T8. One of these new T dwarfs, 2MASS J13243559+6358284, was also discovered independently by Metchev et al., in prep. This object is spectroscopically peculiar and possibly a binary and/or very young (<300 Myr). We specifically attempted to model the spectrum of this source as a composite binary to reproduce its peculiar spectral characteristics. The latest-type object in our sample is a T8 dwarf, 2MASS J07290002-3954043, now one of the four latest-type T dwarfs known. All 11 T dwarfs are nearby given their spectrophotometric distance estimates, with 1 T dwarf within 10 pc and 8 additional T dwarfs wit...

  11. The Infrared Astronomical Mission AKARI

    CERN Document Server

    Murakami, H; Barthel, P; Clements, D L; Cohen, M; Doi, Y; Enya, K; Figueredo, E; Fujishiro, N; Fujiwara, H; Fujiwara, M; García-Lario, P; Goto, T; Hasegawa, S; Hibi, Y; Hirao, T; Hiromoto, N; Hong, S S; Imai, K; Ishigaki, M; Ishiguro, M; Ishihara, D; Ita, Y; Jeong, W -S; Jeong, K S; Kaneda, H; Kataza, H; Kawada, M; Kawai, T; Kawamura, A; Kessler, M F; Kester, Do; Kii, T; Kim, D C; Kim, W; Kobayashi, H; Koo, B C; Kwon, S M; Lee, H M; Lorente, R; Makiuti, S; Matsuhara, H; Matsumoto, T; Matsuo, H; Matsuura, S; Müller, T G; Murakami, N; Nagata, H; Nakagawa, T; Naoi, T; Narita, M; Noda, M; Oh, S H; Ohnishi, A; Ohyama, Y; Okada, Y; Okuda, H; Oliver, S; Onaka, T; Ootsubo, T; Oyabu, S; Pak, S; Park, Y S; Pearson, C P; Rowan-Robinson, M; Saitô, T; Sakon, I; Salama, A; Sato, S; Savage, R S; Serjeant, S; Shibai, H; Shirahata, M; Sohn, J J; Suzuki, T; Takagi, T; Takahashi, H; Tanabé, T; Takeuchi, T T; Takita, S; Thomson, M; Uemizu, K; Ueno, M; Usui, F; Verdugo, E; Wada, T; Wang, L; Watabe, T; Watarai, H; White, G J; Yamamura, I; Yamauchi, C; Yasuda, A

    2007-01-01

    AKARI, the first Japanese satellite dedicated to infrared astronomy, was launched on 2006 February 21, and started observations in May of the same year. AKARI has a 68.5 cm cooled telescope, together with two focal-plane instruments, which survey the sky in six wavelength bands from the mid- to far-infrared. The instruments also have the capability for imaging and spectroscopy in the wavelength range 2 - 180 micron in the pointed observation mode, occasionally inserted into the continuous survey operation. The in-orbit cryogen lifetime is expected to be one and a half years. The All-Sky Survey will cover more than 90 percent of the whole sky with higher spatial resolution and wider wavelength coverage than that of the previous IRAS all-sky survey. Point source catalogues of the All-Sky Survey will be released to the astronomical community. The pointed observations will be used for deep surveys of selected sky areas and systematic observations of important astronomical targets. These will become an additional ...

  12. The far-infrared properties of spatially resolved AKARI observations

    NARCIS (Netherlands)

    Jeong, Woong-Seob; Nakagawa, Takao; Yamamura, Issei; Pearson, Chris P.; Savage, Richard S.; Lee, Hyung Mok; Shibai, Hiroshi; Makiuti, Sin'itirou; Baba, Hajime; Barthel, Peter; Clements, Dave; Doi, Yasuo; Figueredo, Elysandra; Goto, Tomotsugu; Hasegawa, Sunao; Kaneda, Hidehiro; Kawada, Mitsunobu; Kawamura, Akiko; Kester, Do; Kwon, Suk Minn; Matsuhara, Hideo; Matsuura, Shuji; Murakami, Hiroshi; Oh, Sang Hoon; Oliver, Sebastian; Pak, Soojong; Park, Yong-Sun; Serjeant, Stephen; Shirahata, Mai; Sohn, Jungjoo; Takagi, Toshinobu.; Wang, Lingyu; White, Glenn J.; Yamauchi, Chisato

    2007-01-01

    We present spatially resolved observations of IRAS sources from the Japanese infrared astronomy satellite AKARI All-Sky Survey during the performance verification phase of the mission. We extracted reliable point sources matched with the IRAS point source catalogue. By comparing IRAS and AKARI fluxe

  13. The Einstein All-Sky Slew Survey

    Science.gov (United States)

    Elvis, Martin S.

    1992-01-01

    The First Einstein IPC Slew Survey produced a list of 819 x-ray sources, with f(sub x) approximately 10(exp -12) - 10(exp -10) erg/sq cm s and positional accuracy of approximately 1.2 feet (90 percent radius). The aim of this program was to identify these x-ray sources.

  14. All-sky search of NAUTILUS data

    Energy Technology Data Exchange (ETDEWEB)

    Astone, P [Istituto Nazionale di Fisica Nucleare INFN, Rome (Italy); Bassan, M; Coccia, E; D' Antonio, S; Minenkov, Y; Modena, I [University of Rome ' Tor Vergata' and INFN, Rome II (Italy); Bonifazi, P [IFSI-CNR and INFN, Rome (Italy); Borkowski, K M [Centre of Astronomy, Nicolaus Copernicus University, Torun (Poland); Budzynski, R J [Department of Physics, Warsaw University, Warsaw (Poland); Chincarini, A [Istituto Nazionale di Fisica Nucleare INFN, Genova (Italy); Emilio, M Di Paolo [INFN, Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Fafone, V; Giordano, G; Marini, A [Istituto Nazionale di Fisica Nucleare INFN, Frascati (Italy); Frasca, S [University of Rome ' La Sapienza' and INFN, Rome (Italy); Foffa, S; Maggiore, M [Dep. de Phys. Theorique, Universite de Geneve, Geneve (Switzerland); Jaranowski, P [Faculty of Physics, University of Bialystok, Bialystok (Poland); Kondracki, W; Krolak, A [Institute of Mathematics, Polish Academy of Sciences, Warsaw (Poland)], E-mail: krolak@impan.gov.pl (and others)

    2008-09-21

    A search for periodic gravitational-wave signals from isolated neutron stars in the NAUTILUS detector data is presented. We have analyzed half a year of data over the frequency band (922.2; 923.2) Hz, the spindown range ( - 1.463 x 10{sup -8}; 0) Hz/s and over the entire sky. We have divided the data into two day stretches and we have analyzed each stretch coherently using matched filtering. We have imposed a low threshold for the optimal detection statistic to obtain a set of candidates that are further examined for coincidences among various data stretches. For some candidates we have also investigated the change of the signal-to-noise ratio when we increase the observation time from 2 to 4 days. Our analysis has not revealed any gravitational-wave signals. Therefore we have imposed upper limits on the dimensionless gravitational-wave amplitude over the parameter space that we have searched. Depending on frequency, our upper limit ranges from 3.4 x 10{sup -23} to 1.3 x 10{sup -22}. We have attempted a statistical verification of the hypotheses leading to our conclusions. We estimate that our upper limit is accurate to within 18%.

  15. All-sky search of NAUTILUS data

    CERN Document Server

    Astone, P; Bonifazi, P; Borkowski, K M; Budzyński, R J; Chincarini, A; Coccia, E; D'Antonio, S; Emilio, M Di Paolo; Fafone, V; Frasca, S; Foffa, S; Giordano, G; Jaranowski, P; Kondracki, W; Królak, A; Maggiore, M; Marini, A; Minenkov, Y; Modena, I; Modestino, G; Moleti, A; Pallottino, G V; Palomba, C; Parodi, R; Pietka, M; Pizzella, G; Pletsch, H J; Quintieri, L; Ricci, F; Rocchi, A; Ronga, F; Sturani, R; Terenzi, R; Vaccarone, R; Visco, M

    2008-01-01

    A search for periodic gravitational-wave signals from isolated neutron stars in the NAUTILUS detector data is presented. We have analyzed half a year of data over the frequency band $$ Hz, the spindown range $$ Hz/s and over the entire sky. We have divided the data into 2 day stretches and we have analyzed each stretch coherently using matched filtering. We have imposed a low threshold for the optimal detection statistic to obtain a set of candidates that are further examined for coincidences among various data stretches. For some candidates we have also investigated the change of the signal-to-noise ratio when we increase the observation time from two to four days. Our analysis has not revealed any gravitational-wave signals. Therefore we have imposed upper limits on the dimensionless gravitational-wave amplitude over the parameter space that we have searched. Depending on frequency, our upper limit ranges from $3.4 \\times 10^{-23}$ to $1.3 \\times 10^{-22}$. We have attempted a statistical verification of th...

  16. Exploración del catálogo de objetos en emisión H de Henize y All Sky Automated Survey: nuevas variables y tipos espectrales

    Science.gov (United States)

    Jaque Arancibia, M.; Barbá, R. H.; Collado, A.; Gamen, R.; Arias, J. I.

    2016-08-01

    Large astronomical surveys allow us to do systematic studies of stellar populations with significant statistical weight. In this study, we have cross-correlated the Henize's (1976) catalog of stellar sources with H emission-line with “The All Sky Automated Survey'' database. After the positional cross-matching we have found that 1402 of 1926 H sources have ASAS light-curves. From that number, more than 50 (723 sources) are periodic variables with amplitude larger than 0.05 magnitudes, while 276 sources show photometric variations without a clear periodicity. Variable stars that we have found are of many different types, among them Miras, eclipsing binaries, bursting stars, etc. Also, only 133 stars are known previously as variable sources in ASAS catalogue, and 93 of them were studied previously in detail. In order to characterize the nature of the sources, we have started a medium-resolution spectroscopic survey of the unstudied variable emission-line objects using the 2.15-m Jorge Sahade Telescope at Complejo Astronómico El Leoncito (Argentina). At the moment, we have observed a set of 67 blue stars selected using 2MASS colors, being almost all of them Be-type stars. This set of bright new variable Be-type stars is ideal for follow-up monitoring for the study of the Be-phenomenon.

  17. Measuring the color and brightness of artificial sky glow from cities using an all-sky imaging system calibrated with astronomical methods in the Johnson-Cousins B and V photometric systems

    Science.gov (United States)

    Pipkin, Ashley; Duriscoe, Dan M.; Lughinbuhl, Christian

    2017-01-01

    Artificial light at night, when observed at some distance from a city, results in a dome of sky glow, brightest at the horizon. The spectral power distribution of electric light utilized will determine its color of the light dome and the amount of light will determine its brightness. Recent outdoor lighting technologies have included blue-rich light emitting diode (LED) sources that may increase the relative amount of blue to green light in sky glow compared to typical high pressure sodium (HPS) sources with warmer spectra. Measuring and monitoring this effect is important to the preservation of night sky visual quality as seen from undeveloped areas outside the city, such as parks or other protected areas, since the dark-adapted human eye is more sensitive to blue and green. We present a method using a wide field CCD camera which images the entire sky in both Johnson V and B photometric bands. Standard stars within the images are used for calibration. The resulting all-sky brightness maps, and a derived B-V color index map, provide a means to assess and track the impact of specific outdoor lighting practices. We also present example data from several cities, including Las Vegas, Nevada, Flagstaff, Arizona, and Cheyenne, Wyoming.

  18. The ultraviolet, optical, and infrared properties of Sloan Digital Sky Survey sources detected by GALEX

    NARCIS (Netherlands)

    Agueros, MA; Ivezic, Z; Covey, KR; Obric, M; Hao, L; Walkowicz, LM; West, AA; Vanden Berk, DE; Lupton, RH; Knapp, GR; Gunn, JE; Richards, GT; Bochanski, J; Brooks, A; Claire, M; Haggard, D; Kaib, N; Kimball, A; Gogarten, SM; Seth, A; Solontoi, M

    2005-01-01

    We discuss the ultraviolet, optical, and infrared properties of the Sloan Digital Sky Survey (SDSS) sources detected by the Galaxy Evolution Explorer ( GALEX) as part of its All-sky Imaging Survey Early Release Observations. Virtually all (> 99%) the GALEX sources in the overlap region are detected

  19. Low-Resolution Near-infrared Stellar Spectra Observed by the Cosmic Infrared Background Experiment (CIBER)

    Science.gov (United States)

    Kim, Min Gyu; Lee, Hyung Mok; Arai, Toshiaki; Bock, James; Cooray, Asantha; Jeong, Woong-Seob; Kim, Seong Jin; Korngut, Phillip; Lanz, Alicia; Lee, Dae Hee; Lee, Myung Gyoon; Matsumoto, Toshio; Matsuura, Shuji; Nam, Uk Won; Onishi, Yosuke; Shirahata, Mai; Smidt, Joseph; Tsumura, Kohji; Yamamura, Issei; Zemcov, Michael

    2017-02-01

    We present near-infrared (0.8–1.8 μm) spectra of 105 bright ({m}J < 10) stars observed with the low-resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment. As our observations are performed above the Earth's atmosphere, our spectra are free from telluric contamination, which makes them a unique resource for near-infrared spectral calibration. Two-Micron All-Sky Survey photometry information is used to identify cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of the observed stars by comparing them with spectral templates from the Infrared Telescope Facility library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines.

  20. The Far Infrared and Submillimeter Diffuse Extragalactic Background

    CERN Document Server

    Hauser, M G

    2001-01-01

    The cosmic infrared background (CIB) radiation was a long-sought fossil of energetic processes associated with structure formation and chemical evolution since the Big Bang. The COBE Diffuse Infrared Background Experiment (DIRBE) and Far Infrared Absolute Spectrophotometer (FIRAS) were specifically designed to search for this background from 1.25 microns to millimeter wavelengths. These two instruments provided high quality, absolutely calibrated all-sky maps which have enabled the first detections of the CIB, initially at far infrared and submillimeter wavelengths, and more recently in the near infrared as well. The aim of this paper is to review the status of determinations of the CIB based upon COBE measurements. The results show that the energy in the CIB from far infrared to millimeter wavelengths is comparable to that in the integrated light of galaxies from UV to near infrared wavelengths: the universe had a luminous but dusty past. On the assumption that nucleosynthesis in stars is the energy source f...

  1. Development of the first infrared satellite observatory

    Science.gov (United States)

    Smith, G. M.; Squibb, G. F.

    1984-01-01

    A development history is given for the Infrared Astronomical Satelite (IRAS), whose primary mission objective is an unbiased, all-sky survey in the 8-120 micron wavelength range. A point source catalog of more than 200,000 IR sources, to be published later this year, represents the accomplishment of this objective. IRAS has also conducted 10,000 pointed observations of specific objects. Attention is given to the cost increases and schedule slips which resulted from the substantial technical challenges of IRAS hardware and software development, and to the management techniques which had to be employed in this major international project.

  2. Summary of observations of the infrared camera (IRC) onboard AKARI

    Science.gov (United States)

    Onaka, T.; Matsuhara, H.; Wada, T.; Ishihara, D.; Ohyama, Y.; Sakon, I.; Shimonishi, T.; Ohsawa, R.; Mori, T. I.; Egusa, F.; Usui, F.; Takita, S.; Murakami, H.; Oyabu, S.; Yamagishi, M.; Mori, T.; Mouri, A.; Kondo, T.; Suzuki, S.; Kaneda, H.; Ita, Y.; Ootsubo, T.

    2012-09-01

    AKARI, the Japanese satellite mission dedicated to infrared astronomy was launched in 2006 February and exhausted its liquid helium in 2007 August. During the cold mission phase, the Infrared Camera (IRC) onboard carried out an all-sky survey at 9 and 18µm with better spatial resolution and higher sensitivity than IRAS. Both bands also have slightly shorter wavelength coverage than IRAS 12 and 25μm bands and thus provide different information on the infrared sky. All-sky image data of the IRC are now in the final processing and will be released to the public within a year. After the exhaustion of the cryogen, the telescope and focal plane instruments of AKARI had still been kept at sufficiently low temperatures owing to the onboard cryocooler. Near-infrared (NIR) imaging and spectroscopic observations with the IRC had continued until 2011 May, when the spacecraft had a serious problem in the power supply system that forced us to terminate the observation. The IRC carried out nearly 20000 pointing observations in total despite of its near-earth orbit. About a half of them were performed after the exhaustion of the cryogen in the spectroscopic modes, which provided high-sensitivity NIR spectra from 2 to 5µm without disturbance of the terrestrial atmosphere. During the warm mission phase, the temperature of the instrument gradually increased and changed the array operation conditions. We present a summary of AKARI/IRC observations, including the all-sky mid-infrared diffuse data as well as the data taken in the warm mission phase.

  3. X-ray and infrared diagnostics of nearby active galactic nuclei with MAXI and AKARI

    CERN Document Server

    Isobe, Naoki; Oyabu, Shinki; Nakagawa, Takao; Baba, Shunsuke; Yano, Kenichi; Ueda, Yoshihiro; Toba, Yoshiki

    2016-01-01

    Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths, with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. Among the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog, 100 ones are currently identified as a non-blazar-type active galactic nucleus. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 $\\mu$m. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2 ones) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, $\\Gamma = 1.9$, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 ...

  4. Nova-like cataclysmic variables in the infrared

    Energy Technology Data Exchange (ETDEWEB)

    Hoard, D. W. [Eureka Scientific, Inc., Oakland, CA (United States); Long, Knox S. [Space Telescope Science Institute, Baltimore, MD (United States); Howell, Steve B. [NASA Ames Research Center, Moffett Field, CA (United States); Wachter, Stefanie [Max Planck Institut für Astronomie, D-69117 Heidelberg (Germany); Brinkworth, Carolyn S. [Spitzer Science Center, California Institute of Technology, Pasadena, CA (United States); Knigge, Christian [Physics and Astronomy, University of Southampton, Southampton (United Kingdom); Drew, J. E. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield (United Kingdom); Szkody, Paula [Department of Astronomy, University of Washington, Seattle, WA (United States); Kafka, S. [Carnegie Institution of Washington, Department of Terrestrial Magnetism, Washington, DC (United States); Belle, Kunegunda [Los Alamos National Laboratory, Los Alamos, NM (United States); Ciardi, David R. [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA (United States); Froning, Cynthia S. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO (United States); Van Belle, Gerard T. [Lowell Observatory, Flagstaff, AZ (United States); Pretorius, M. L., E-mail: hoard@mpia.de [Department of Physics, University of Oxford, Oxford (United Kingdom)

    2014-05-01

    Nova-like (NL) cataclysmic variables have persistently high mass transfer rates and prominent steady state accretion disks. We present an analysis of infrared observations of 12 NLs obtained from the Two Micron All Sky Survey, the Spitzer Space Telescope, and the Wide-field Infrared Survey Explorer All Sky Survey. The presence of an infrared excess at λ ≳ 3-5 μm over the expectation of a theoretical steady state accretion disk is ubiquitous in our sample. The strength of the infrared excess is not correlated with orbital period, but shows a statistically significant correlation (but shallow trend) with system inclination that might be partially (but not completely) linked to the increasing view of the cooler outer accretion disk and disk rim at higher inclinations. We discuss the possible origin of the infrared excess in terms of emission from bremsstrahlung or circumbinary dust, with either mechanism facilitated by the mass outflows (e.g., disk wind/corona, accretion stream overflow, and so on) present in NLs. Our comparison of the relative advantages and disadvantages of either mechanism for explaining the observations suggests that the situation is rather ambiguous, largely circumstantial, and in need of stricter observational constraints.

  5. The infrared astronomical satellite AKARI: overview, highlights of the mission

    Science.gov (United States)

    Murakami, Hiroshi; Matsuhara, Hideo

    2008-07-01

    The AKARI, Japanese infrared astronomical satellite, is a 68.5 cm cooled telescope with two focal-plane instruments providing continuous sky scan at six wavelength bands in mid- and far-infrared. The instruments also have capabilities of imaging and spectroscopy in the wavelength range 2-180 μm in the pointing observations occasionally inserted into the continuous survey. AKARI was launched on 21st Feb. 2006, and has performed the all-sky survey as well as 5380 pointing observations until the liquid helium exhaustion on 26th Aug. 2007. The all sky survey covers more than 90 percent of the entire sky with higher spatial resolutions and sensitivities than the IRAS. First version of the infrared source catalogue will be released in 2009. Here we report the overview of the mission, highlights on the scientific results as well as the performance of the focal-plane instruments. We also present the observation plan with the near infrared camera during the post-helium mission phase started in June 2008.

  6. Mid-Infrared Spectral Diagnostics of Luminous Infrared Galaxies

    CERN Document Server

    Petric, A O; Howell, J; Chan, B; Mazzarella, J M; Evans, A S; Surace, J A; Sanders, D; Appleton, P; Charmandaris, V; Santos, T Diaz; Frayer, D; Lord, S; Haan, S; Inami, H; Iwasawa, K; Kim, D; Madore, B; Marshall, J; Spoon, H; Stierwalt, S; Sturm, E; U, V; Vavilkin, T; Veilleux, S

    2010-01-01

    We present a statistical analysis of the mid-infrared (MIR) spectra of 248 luminous infrared (IR) galaxies (LIRGs) which comprise the Great Observatories All-sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on-board the Spitzer Space Telescope. The GOALS sample enables a direct measurement of the relative contributions of star-formation and active galactic nuclei (AGN) to the total IR emission from a large sample of local LIRGs. The AGN contribution to the MIR emission (f-AGN) is estimated by employing several diagnostics based on the properties of the [NeV], [OIV] and [NeII] fine structure gas emission lines, the 6.2 microns PAH and the shape of the MIR continuum. We find that 18% of all LIRGs contain an AGN and that in 10% of all sources the AGN contributes more than 50% of the total IR luminosity. Summing up the total IR luminosity contributed by AGN in all our sources suggests that AGN supply ~12% of the total energy emitted by LIRGs. The average spectrum of sources with an AGN looks ...

  7. Mission design for the infrared astronomical satellite /IRAS/

    Science.gov (United States)

    Lundy, S. A.; Mclaughlin, W. I.; Pouw, A.

    1979-01-01

    IRAS, a joint United States, Netherlands, United Kingdom astronomical satellite, is scheduled to be launched early in 1981 with the purpose of completing an all-sky survey in the infrared wavelengths from 8 to 120 microns and to observe objects of special interest. The mission design is driven by thermal constraints primarily determined by the Sun and Earth; the orbit and survey strategy must be chosen so as to satisfy the mission requirements before the cryogenic system is depleted of its liquid helium. Computer graphics help the designer choose valid survey strategies and evaluate resulting sky coverage.

  8. Discovery of planetary nebulae using predictive mid-infrared diagnostics

    CERN Document Server

    Parker, Quentin A; Stupar, Milorad; Frew, David J; Green, Anne J; Bojicic, Ivan; Guzman-Ramirez, Lizette; Sabin, Laurence; Vogt, Frederic

    2012-01-01

    We demonstrate a newly developed mid-infrared planetary nebula (PN) selection technique. It is designed to enable efficient searches for obscured, previously unknown, PN candidates present in the photometric source catalogues of Galactic plane MIR sky surveys. Such selection is now possible via new, sensitive, high-to-medium resolution, MIR satellite surveys such as those from the Spitzer Space Telescope and the all-sky Wide-Field Infrared Survey Explorer (WISE) satellite missions. MIR selection is based on how different colour-colour planes isolate zones (sometimes overlapping) that are predominately occupied by different astrophysical object types. These techniques depend on the reliability of the available MIR source photometry. In this pilot study we concentrate on MIR point source detections and show that it is dangerous to take the MIR GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire) photometry from Spitzer for each candidate at face value without examining the actual MIR image data. A...

  9. All-sky observations with HAWC: latest results

    Science.gov (United States)

    Arteaga-Velázquez, J. C.; HAWC Collaboration

    2015-08-01

    The High Altitude Water Cherenkov (HAWC) observatory is a ground-based air- shower detector designed to study cosmic rays and gamma rays with energies from 100 GeV up to 100 TeV. HAWC simultaneously surveys 2sr of the northern sky with a high duty cycle > 90% in search for photons from point and extended sources, diffuse emission, transient events and other astrophysical phenomena at multi-TeV scales against the background of cosmic rays. In fact, the study of this background will open also the possibility of doing cosmic ray physics in the GeV — TeV regime and even to perform solar studies at HAWC. The observatory will consist of a densely packed array of 300 water Cherenkov tanks (4.5 m tall and 7.3 m diameter with 4 photomultipliers each) distributed on a 22 000 m2 surface. Deployment started in March 2012 on a plateau situated on the Sierra Negra Volcano in the state of Puebla, Mexico, at an altitude of 4100 m. Construction is expected to be finished by the first months of 2015. In the mean time, HAWC has been taking data with a partial array and preliminary results have been already obtained. In this contribution, the results from the latest HAWC observations will be presented.

  10. SPACE: the spectroscopic all-sky cosmic explorer

    Science.gov (United States)

    Cimatti, A.; Robberto, M.; Baugh, C.; Beckwith, S. V. W.; Content, R.; Daddi, E.; De Lucia, G.; Garilli, B.; Guzzo, L.; Kauffmann, G.; Lehnert, M.; Maccagni, D.; Martínez-Sansigre, A.; Pasian, F.; Reid, I. N.; Rosati, P.; Salvaterra, R.; Stiavelli, M.; Wang, Y.; Zapatero Osorio, M.; Balcells, M.; Bersanelli, M.; Bertoldi, F.; Blaizot, J.; Bottini, D.; Bower, R.; Bulgarelli, A.; Burgasser, A.; Burigana, C.; Butler, R. C.; Casertano, S.; Ciardi, B.; Cirasuolo, M.; Clampin, M.; Cole, S.; Comastri, A.; Cristiani, S.; Cuby, J.-G.; Cuttaia, F.; de Rosa, A.; Sanchez, A. Diaz; di Capua, M.; Dunlop, J.; Fan, X.; Ferrara, A.; Finelli, F.; Franceschini, A.; Franx, M.; Franzetti, P.; Frenk, C.; Gardner, Jonathan P.; Gianotti, F.; Grange, R.; Gruppioni, C.; Gruppuso, A.; Hammer, F.; Hillenbrand, L.; Jacobsen, A.; Jarvis, M.; Kennicutt, R.; Kimble, R.; Kriek, M.; Kurk, J.; Kneib, J.-P.; Le Fevre, O.; Macchetto, D.; MacKenty, J.; Madau, P.; Magliocchetti, M.; Maino, D.; Mandolesi, N.; Masetti, N.; McLure, R.; Mennella, A.; Meyer, M.; Mignoli, M.; Mobasher, B.; Molinari, E.; Morgante, G.; Morris, S.; Nicastro, L.; Oliva, E.; Padovani, P.; Palazzi, E.; Paresce, F.; Perez Garrido, A.; Pian, E.; Popa, L.; Postman, M.; Pozzetti, L.; Rayner, J.; Rebolo, R.; Renzini, A.; Röttgering, H.; Schinnerer, E.; Scodeggio, M.; Saisse, M.; Shanks, T.; Shapley, A.; Sharples, R.; Shea, H.; Silk, J.; Smail, I.; Spanó, P.; Steinacker, J.; Stringhetti, L.; Szalay, A.; Tresse, L.; Trifoglio, M.; Urry, M.; Valenziano, L.; Villa, F.; Villo Perez, I.; Walter, F.; Ward, M.; White, R.; White, S.; Wright, E.; Wyse, R.; Zamorani, G.; Zacchei, A.; Zeilinger, W. W.; Zerbi, F.

    2009-03-01

    We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015-2025 planning cycle. SPACE aims to produce the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts for more than half a billion galaxies at 0 spectroscopy (e.g. ≈6000 targets per pointing) at a spectral resolution of R~400 as well as diffraction-limited imaging with continuous coverage from 0.8 to 1.8 μm. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover. SPACE will also place high accuracy constraints on the dark energy equation of state parameter and its evolution by measuring the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, and high- z galaxy clusters. The datasets from the SPACE mission will represent a long lasting legacy for the whole astronomical community whose data will be mined for many years to come.

  11. Global luminous efficacies on vertical surfaces for all sky types

    Energy Technology Data Exchange (ETDEWEB)

    Soler, A. [E.T.S. Arquitectura, Madrid (Spain). Dpto. de Fisica e Instalaciones Aplicados; Universidad Politecnico de Madrid (Spain). Facultad de Ciencias Ambientales; Robledo, L. [Universidad Politecnica de Madrid (Spain). Dpto. Sistemas Intelligentes Aplicados

    2000-02-01

    Luminous efficacies are determined at Madrid for North, South, East, West facing surfaces in two ways: by taking into account all the global illuminance and irradiance values available, and by considering data for each of three sky categories as defined from values of the sky clearness index {epsilon}' and the sky brightness index {delta}. Both methods are compared, and for {epsilon}' < 1.23 (overcast skies) the second method is found to be more accurate than the first. (author)

  12. All-Sky Monitoring of Variable Sources with Fermi GBM

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Cherry, Michael L.; Case, Gary L.; Camero-Arranz, Ascension; Chaplin, Vandiver; Connaughton, Valerie; Finger, Mark H.; Jenke, Pater; Rodi, James C.; Baumgartner, Wayne H.; Beklen, Elif; Bhat, P. Narayana; Briggs, Michael S.; Gehrels, Neil; Greiner, Jochen; Jahoda, Keith; Kippen, R. Marc; Kouveliotou, Chryssa; Krimm, Hans A.; Kuulkers, Erik; Lund, Niels; Meegan, Charles A.; Natalucci, Lorenzo; Paciesas, William S.; Preece, Robert

    2011-01-01

    This slide presentation reviews the monitoring of variable sources with the Fermi Gamma Ray Burst Monitor (GBM). It reviews the use of the Earth Occultation technique, the observations of the Crab Nebula with the GBM, and the comparison with other satellite's observations. The instruments on board the four satellites indicate a decline in the Crab from 2008-2010.

  13. Data indexing techniques for the EUVE all-sky survey

    Science.gov (United States)

    Lewis, J.; Saba, V.; Dobson, C.

    1992-01-01

    This poster describes techniques developed for manipulating large full-sky data sets for the Extreme Ultraviolet Explorer project. The authors have adapted the quatrilateralized cubic sphere indexing algorithm to allow us to efficiently store and process several types of large data sets, such as full-sky maps of photon counts, exposure time, and count rates. A variation of this scheme is used to index sparser data such as individual photon events and viewing times for selected areas of the sky, which are eventually used to create EUVE source catalogs.

  14. Conducting The Deepest All-Sky Pulsar Survey Ever: The All-Sky High Time Resolution Universe Survey

    CERN Document Server

    Ng, Cherry

    2014-01-01

    The extreme conditions found in and around pulsars make them fantastic natural laboratories, providing insights to a rich variety of fundamental physics and astronomy. To discover more pulsars we have begun the High Time Resolution Universe (HTRU) survey: a blind survey of the northern sky with the 100-m Effelsberg radio telescope in Germany and a twin survey of the southern sky with the 64-m Parkes radio telescope in Australia. The HTRU is an international collaboration with expertise shared among the MPIfR in Germany, ATNF/CASS and Swinburne University of Technology in Australia, University of Manchester in the UK and INAF in Italy. The HTRU survey uses multi-beam receivers and backends constructed with recent advancements in technology, providing unprecedentedly high time and frequency resolution, allowing us to probe deeper into the Galaxy than ever before. While a general overview of HTRU has been given by Keith at this conference, here we focus on three further aspects of HTRU discoveries and highlights...

  15. A Comprehensive Census of Nearby Infrared Excess Stars

    Science.gov (United States)

    Cotten, Tara H.; Song, Inseok

    2016-07-01

    The conclusion of the Wide-Field Infrared Survey Explorer (WISE) mission presents an opportune time to summarize the history of using excess emission in the infrared as a tracer of circumstellar material and exploit all available data for future missions such as the James Webb Space Telescope. We have compiled a catalog of infrared excess stars from peer-reviewed articles and perform an extensive search for new infrared excess stars by cross-correlating the Tycho-2 and all-sky WISE (AllWISE) catalogs. We define a significance of excess in four spectral type divisions and select stars showing greater than either 3σ or 5σ significance of excess in the mid- and far-infrared. Through procedures including spectral energy distribution fitting and various image analyses, each potential excess source was rigorously vetted to eliminate false positives. The infrared excess stars from the literature and the new stars found through the Tycho-2 and AllWISE cross-correlation produced nearly 500 “Prime” infrared excess stars, of which 74 are new sources of excess, and >1200 are “Reserved” stars, of which 950 are new sources of excess. The main catalog of infrared excess stars are nearby, bright, and either demonstrate excess in more than one passband or have infrared spectroscopy confirming the infrared excess. This study identifies stars that display a spectral energy distribution suggestive of a secondary or post-protoplanetary generation of dust, and they are ideal targets for future optical and infrared imaging observations. The final catalogs of stars summarize the past work using infrared excess to detect dust disks, and with the most extensive compilation of infrared excess stars (˜1750) to date, we investigate various relationships among stellar and disk parameters.

  16. Planck intermediate results: XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    DEFF Research Database (Denmark)

    Aghanim, N.; Ashdown, M.; Aumont, J.;

    2016-01-01

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination...... (GNILC) method, which uses spatial information (the angular powerspectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB...

  17. New infrared star clusters in the Northern and Equatorial Milky Way with 2MASS

    CERN Document Server

    Bica, E; Soares, J; Barbuy, B

    2003-01-01

    We carried out a survey of infrared star clusters and stellar groups on the 2MASS J, H and K_s all-sky release Atlas in the Northern and Equatorial Milky Way (350 < l < 360, 0 < l < 230). The search in this zone complements that in the Southern Milky Way (Dutra et al. 2003a). The method concentrates efforts on the directions of known optical and radio nebulae. The present study provides 167 new infrared clusters, stellar groups and candidates. Combining the two studies for the whole Milky Way, 346 infrared clusters, stellar groups and candidates were discovered, whereas 315 objects were previously known. They constitute an important new sample for future detailed studies.

  18. The Infrared-Gamma-Ray Connection: A WISE View of the Extragalactic Gamma-Ray Sky

    CERN Document Server

    Massaro, F

    2016-01-01

    Using data from the WISE all-sky survey we discovered that the non-thermal infrared (IR) emission of blazars, the largest known population of extragalactic gamma-ray sources, has peculiar spectral properties. In this work, we confirm and strengthen our previous analyses using the latest available releases of both the WISE and the Fermi source catalogs. We also show that there is a tight correlation between the mid-IR colors and the gamma-ray spectral index of Fermi blazars. We name this correlation "the infrared--gamma-ray connection". We discuss how this connection links both the emitted powers and the spectral shapes of particles accelerated in jets arising from blazars over ten decades in energy. Based on this evidence, we argue that the infrared--gamma-ray connection is stronger than the well known radio--gamma-ray connection.

  19. Warm Molecular Gas in Luminous Infrared Galaxies

    CERN Document Server

    Lu, N; Xu, C K; Gao, Y; Armus, L; Mazzarella, J M; Isaak, K G; Petric, A O; Charmandaris, V; Diaz-Santos, T; Evans, A S; Howell, J; Appleton, P; Inami, H; Iwasawa, K; Leech, J; Lord, S; Sanders, D B; Schulz, B; Surace, J; van der Werf, P P

    2014-01-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the $J$ to $J$$-$1 transitions from $J=4$ up to $13$ from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey (GOALS). The observed SLEDs change on average from one peaking at $J \\le 4$ to a broad distribution peaking around $J \\sim\\,$6$-$7 as the IRAS 60-to-100 um color, $C(60/100)$, increases. However, the ratios of a CO line luminosity to the total infrared luminosity, $L_{\\rm IR}$, show the smallest variation for $J$ around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-$J$ regime ($5 \\lesssim J \\lesssim 10$). As a result, the logarithmic ratios of the CO line luminosity summed over CO (5$-$4), (6$-$5), (7$-$6), (8$-$7) and (10$-$9) transitions to $L_{\\rm IR}$, $\\log R_{\\rm midCO}$, remain largely independent of $C(60/100)$, ...

  20. X-ray and infrared diagnostics of nearby active galactic nuclei with MAXI and AKARI

    Science.gov (United States)

    Isobe, Naoki; Kawamuro, Taiki; Oyabu, Shinki; Nakagawa, Takao; Baba, Shunsuke; Yano, Kenichi; Ueda, Yoshihiro; Toba, Yoshiki

    2016-10-01

    Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. One hundred of the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog are currently identified as non-blazar-type active galactic nuclei. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 μm. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, Γ = 1.9, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 keV ranges derived with MAXI was roughly converted into the absorption column density. After the X-ray luminosity was corrected for absorption from the estimated column density, the well-known X-ray-to-infrared luminosity correlation was confirmed, at least in the Compton-thin regime. In contrast, NGC 1365, the only Compton-thick object in the MAXI catalog, was found to deviate from the correlation toward a significantly lower X-ray luminosity by nearly an order of magnitude. It was verified that the relation between the X-ray hardness below 10 keV and X-ray-to-infrared color acts as an effective tool to pick up Compton-thick objects. The difference in the infrared colors between the type-1 and type-2 Seyfert galaxies and its physical implication on the classification and unification of active galactic nuclei are briefly discussed.

  1. X-ray and infrared diagnostics of nearby active galactic nuclei with MAXI and AKARI

    Science.gov (United States)

    Isobe, Naoki; Kawamuro, Taiki; Oyabu, Shinki; Nakagawa, Takao; Baba, Shunsuke; Yano, Kenichi; Ueda, Yoshihiro; Toba, Yoshiki

    2016-12-01

    Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. One hundred of the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog are currently identified as non-blazar-type active galactic nuclei. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 μm. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, Γ = 1.9, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 keV ranges derived with MAXI was roughly converted into the absorption column density. After the X-ray luminosity was corrected for absorption from the estimated column density, the well-known X-ray-to-infrared luminosity correlation was confirmed, at least in the Compton-thin regime. In contrast, NGC 1365, the only Compton-thick object in the MAXI catalog, was found to deviate from the correlation toward a significantly lower X-ray luminosity by nearly an order of magnitude. It was verified that the relation between the X-ray hardness below 10 keV and X-ray-to-infrared color acts as an effective tool to pick up Compton-thick objects. The difference in the infrared colors between the type-1 and type-2 Seyfert galaxies and its physical implication on the classification and unification of active galactic nuclei are briefly discussed.

  2. FAR-INFRARED PROPERTIES OF TYPE 1 QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Hanish, D. J.; Teplitz, H. I.; Capak, P.; Desai, V.; Armus, L.; Brinkworth, C.; Brooke, T.; Colbert, J.; Fadda, D.; Noriega-Crespo, A.; Paladini, R. [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 E California Blvd., Pasadena, CA 91125 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Huynh, M. [International Centre for Radio Astronomy Research, M468, University of Western Australia, Crawley, WA 6009 (Australia); Lacy, M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Murphy, E. [The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Scarlata, C. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Shenoy, S., E-mail: hanish@ipac.caltech.edu [Space Science Division, NASA Ames Research Center, M/S 245-6, Moffett Field, CA 94035 (United States)

    2013-05-01

    We use the Spitzer Space Telescope Enhanced Imaging Products and the Spitzer Archival Far-InfraRed Extragalactic Survey to study the spectral energy distributions (SEDs) of spectroscopically confirmed type 1 quasars selected from the Sloan Digital Sky Survey (SDSS). By combining the Spitzer and SDSS data with the Two Micron All Sky Survey, we are able to construct a statistically robust rest-frame 0.1-100 {mu}m type 1 quasar template. We find that the quasar population is well-described by a single power-law SED at wavelengths less than 20 {mu}m, in good agreement with previous work. However, at longer wavelengths, we find a significant excess in infrared luminosity above an extrapolated power-law, along with significant object-to-object dispersion in the SED. The mean excess reaches a maximum of 0.8 dex at rest-frame wavelengths near 100 {mu}m.

  3. Far-Infrared Properties of Type 1 Quasars

    CERN Document Server

    Hanish, D J; Capak, P; Desai, V; Armus, L; Brinkworth, C; Brooke, T; Colbert, J; Fadda, D; Frayer, D; Huynh, M; Lacy, M; Murphy, E; Noriega-Crespo, A; Paladini, R; Scarlata, C; Shenoy, S

    2013-01-01

    We use the Spitzer Space Telescope Enhanced Imaging Products (SEIP) and the Spitzer Archival Far-InfraRed Extragalactic Survey (SAFIRES) to study the spectral energy distributions of spectroscopically confirmed type 1 quasars selected from the Sloan Digital Sky Survey (SDSS). By combining the Spitzer and SDSS data with the 2-Micron All Sky Survey (2MASS) we are able to construct a statistically robust rest-frame 0.1-100 micron type 1 quasar template. We find the quasar population is well-described by a single power-law SED at wavelengths less than 20 microns, in good agreement with previous work. However, at longer wavelengths we find a significant excess in infrared luminosity above an extrapolated power-law, along with signifiant object-to-object dispersion in the SED. The mean excess reaches a maximum of 0.8 dex at rest-frame wavelengths near 100 microns.

  4. Infrared thermography

    CERN Document Server

    Meola, Carosena

    2012-01-01

    This e-book conveys information about basic IRT theory, infrared detectors, signal digitalization and applications of infrared thermography in many fields such as medicine, foodstuff conservation, fluid-dynamics, architecture, anthropology, condition monitoring, non destructive testing and evaluation of materials and structures.

  5. Infrared Imaging

    Science.gov (United States)

    Danchi, W.; Lawson, P.; Absil, O.; Akeson, R.; Bally, J.; Barry, R.; Beichman, C.; Belu, A.; Boyce, M.; Breckinridge, J.; Burrows, A.; Chen, C.; Cole, D.; Crisp, D.; Danner, R.; Deroo, P.; Coudé du Foresto, V.; Defrère, D.; Ebbets, D.; Falkowski, P.; Gappinger, R.; Haugabook, I.; Hanot, C.; Henning, T.; Hinz, P.; Hollis, J.; Hunyadi, S.; Hyland, D.; Johnston, K.; Kaltenegger, L.; Kasting, J.; Kenworthy, M.; Ksendzov, A.; Lane, B.; Laughlin, G.; Lay, O.; Liseau, R.; Lopez, B.; Millan-Gabet, R.; Martin, S.; Mawet, D.; Mennesson, B.; Monnier, J.; Murakami, N.; Noecker, C.; Nishikawa, J.; Pesesen, M.; Peters, R.; Quillen, A.; Ragland, S.; Rinehart, S.; Rottgering, H.; Scharf, D.; Serabyn, G.; Tamura, M.; Tehrani, M.; Traub, W.; Unwin, S.; Wilner, D.; Woilliez, J.; Woolf, N.; Zhao, M.

    2009-03-01

    A mid-infrared mission would enable the detection of biosignatures of Earth-like exoplanets around more than 150 nearby stars. The mid-infrared spectral region is attractive for characterizing exoplanets because contrast with the parent star brightness is more favorable than in the visible (10 million vs. 10 billion), and because mid-infrared light probes deep into a planet's troposphere. Furthermore, the mid-infrared offers access to several strong molecular features that are key signs of life, and also provides a measure of the effective temperature and size of a planet. Taken together, an infrared mission plus a visible one would provide a nearly full picture of a planet, including signs of life; with a measure of mass from an astrometric mission, we would have a virtually complete picture. A small infrared mission would have several telescopes that are rigidly connected, with a science return from the detection and characterization of super-Earth sized to larger planets near the HZ, plus a direct measure of the exozodi brightness in the HZ. In a large infrared mission, with formation-flying telescopes, planets from an Earth-twin and upwards in mass could be detected and characterized, as well as the exozodi. If proceeded by an astrometric mission, the detection phase could be skipped and the mission devoted to characterization, as in the visible case; lacking an astrometric mission, an infrared one could proceed alone, as was discussed for a visible coronograph, and with similar caveats. The technology needed for a large formation-flying mission is similar to that for a small connected-element one (e.g., cryogenics and detectors), with the addition of formationflying technology. The technology is now in hand to implement a probe-scale mission; starlight suppression has even been demonstrated to meet the requirements of a flagship mission. However, additional development of formation-flying technology is needed, particularly in-space testing of sensors and

  6. The \\^G Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. II. Framework, Strategy, and First Result

    CERN Document Server

    Wright, J T; Sigurðsson, S; Povich, M S; Mullan, B

    2014-01-01

    We describe the framework and strategy of the \\^G infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations' waste heat. We develop a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although Gaia will significantly improve our capability to identify the latter. We present a "zeroth order" null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can...

  7. Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect--cosmic infrared background correlation

    CERN Document Server

    Ade, P A R; Arnaud, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Burigana, C; Butler, R C; Calabrese, E; Catalano, A; Chamballu, A; Chiang, H C; Christensen, P R; Churazov, E; Clements, D L; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Finelli, F; Flores-Cacho, I; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Harrison, D L; Helou, G; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Langer, M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Levrier, F; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maggio, G; Maino, D; Mak, D S Y; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Melchiorri, A; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Nati, F; Natoli, P; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Partridge, B; Pasian, F; Pearson, T J; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Spencer, L D; Stolyarov, V; Stompor, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Welikala, N; Yvon, D; Zacchei, A; Zonca, A

    2015-01-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro--Frenk--White profile, we find that the radial profile concentration parameter is $c_{500} = 1.00^{+0.18}_{-0.15}$. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spe...

  8. Infrared retina

    Science.gov (United States)

    Krishna, Sanjay; Hayat, Majeed M.; Tyo, J. Scott; Jang, Woo-Yong

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  9. Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared...... that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck...... data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation...

  10. Infrared properties of blazars: putting the GASP-WEBT sources into context

    CERN Document Server

    Raiteri, C M; Carnerero, M I; Acosta-Pulido, J A; Larionov, V M; D'Ammando, F; Arévalo, M J; Arkharov, A A; Bueno, A Bueno; Di Paola, A; Efimova, N V; González-Morales, P A; Gorshanov, D L; Grinon-Marin, A B; Lázaro, C; Manilla-Robles, A; Yabar, A Pastor; Giménez, I Puerto; Velasco, S

    2014-01-01

    The infrared properties of blazars can be studied from the statistical point of view with the help of sky surveys, like that provided by the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All Sky Survey (2MASS). However, these sources are known for their strong and unpredictable variability, which can be monitored for a handful of objects only. In this paper we consider the 28 blazars (14 BL Lac objects and 14 flat-spectrum radio quasars, FSRQs) that are regularly monitored by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) since 2007. They show a variety of infrared colours, redshifts, and infrared-optical spectral energy distributions (SEDs), and thus represent an interesting mini-sample of bright blazars that can be investigated in more detail. We present near-IR light curves and colours obtained by the GASP from 2007 to 2013, and discuss the infrared-optical SEDs. These are analysed with the aim of understanding the interplay among different emission compon...

  11. Hunting for Infrared Signatures of Supermassive Black Hole Activity in Dwarf Galaxies

    Science.gov (United States)

    Hainline, Kevin; Reines, Amy; Greene, Jenny; Stern, Daniel

    2016-08-01

    In order to explore the origin of the relationship between the growth of a galaxy and its central supermassive black hole, evidence must be found for black holes in galaxies at a wide range in masses. Searching for supermassive black holes in dwarf galaxies is especially important as these objects have less complicated merger histories, and they may host black holes that are similar to early proposed ``seed'' black holes. However, this selection is complicated by the fact that star formation in these dwarf galaxies can often mask the optical signatures of supermassive black hole growth and active galactic nucleus (AGN) activity in these objects. The all-sky infrared coverage offered by the Wide-field Infrared Survey Explorer (WISE) has been used to great success to select AGNs in more massive galaxies, but great care must be used when using infrared selection techniques on samples of dwarf galaxies. In particular, compact, highly star-forming dwarf galaxies can have infrared colors that may lead them to be erroneously selected as AGNs. In this talk, I will discuss recent work exploring infrared selection of AGN candidates in dwarf galaxies, and present a set of potential IR dwarf-galaxy AGN candidates. I will also outline the importance in these results with respect to future selection of AGNs in low-metallicity galaxies at high-redshift.

  12. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    CERN Document Server

    Rayner, J T; Vacca, W D

    2009-01-01

    We present a 0.8 -5 micron spectral library of 210 cool stars observed at a resolving power of R = lambda / Delta lambda ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra are measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using Two Micron All Sky Survey (2MASS) photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically-obscured regions...

  13. The Infrared Camera (IRC) for AKARI - Design and Imaging Performance

    CERN Document Server

    Onaka, T; Wada, T; Fujishiro, N; Fujiwara, H; Ishigaki, M; Ishihara, D; Ita, Y; Kataza, H; Kim, W; Matsumoto, T; Murakami, H; Ohyama, Y; Oyabu, S; Sakon, I; Tanabé, T; Takagi, T; Uemizu, K; Ueno, M; Usui, F; Watarai, H; Cohen, M; Enya, K; Ootsubo, T; Pearson, C P; Takeyama, N; Yamamuro, T; Ikeda, Y

    2007-01-01

    The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite. It is designed for wide-field deep imaging and low-resolution spectroscopy in the near- to mid-infrared (1.8--26.5um) in the pointed observation mode of AKARI. IRC is also operated in the survey mode to make an all-sky survey at 9 and 18um. It comprises three channels. The NIR channel (1.8--5.5um) employs a 512 x 412 InSb array, whereas both the MIR-S (4.6--13.4um) and MIR-L (12.6--26.5um) channels use 256 x 256 Si:As impurity band conduction arrays. Each of the three channels has a field-of-view of about 10' x 10' and are operated simultaneously. The NIR and MIR-S share the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about $25' away from the NIR/MIR-S field-of-view. IRC gives us deep insights into the formation and evolution of galaxies, the evolution of planetary disks, the process of star-formation, the properties of interstellar matter under various physical conditions, and the nature an...

  14. A Unified Near Infrared Spectral Classification Scheme for T Dwarfs

    CERN Document Server

    Burgasser, A J; Leggett, S K; Kirkpatrick, J D; Golimowski, D A; Burgasser, Adam J.; Golimowski, David A.

    2006-01-01

    A revised near infrared classification scheme for T dwarfs is presented, based on and superseding prior schemes developed by Burgasser et al. and Geballe et al., and defined following the precepts of the MK Process. Drawing from two large spectroscopic libraries of T dwarfs identified largely in the Sloan Digital Sky Survey and the Two Micron All Sky Survey, nine primary spectral standards and five alternate standards spanning spectral types T0 to T8 are identified that match criteria of spectral character, brightness, absence of a resolved companion and accessibility from both northern and southern hemispheres. The classification of T dwarfs is formally made by the direct comparison of near infrared spectral data of equivalent resolution to the spectra of these standards. Alternately, we have redefined five key spectral indices measuring the strengths of the major H$_2$O and CH$_4$ bands in the 1-2.5 micron region that may be used as a proxy to direct spectral comparison. Two methods of determining T spectra...

  15. Infrared Photometry of Late-M, L, and T Dwarfs

    CERN Document Server

    Leggett, S K; Fan, X; Geballe, T R; Knapp, G R

    2002-01-01

    We present ZJHKL'M' photometry of a sample of 58 late-M, L, and T dwarfs, most of which are identified from the Sloan Digital Sky Survey and the Two Micron All-Sky Survey. Near-infrared spectra and spectral classifications for most of this sample are presented in a companion paper by Geballe et al. We derive the luminosities of 18 dwarfs in the sample and the results imply that the effective temperature range for the L dwarfs in our sample is approximately 2200-1300 K and for the T dwarfs 1300-800 K. We obtained new photometric data at the United Kingdom Infrared Telescope for: 42 dwarfs at Z, 34 dwarfs at JHK, 21 dwarfs at L', as well as M' data for two L dwarfs and two T dwarfs. The M' data provide the first accurate photometry for L and T dwarfs in this bandpass - for a T2 and a T5 dwarf, we find K-M'=1.2 and 1.6, respectively. These colors are much bluer than predicted by models suggesting that CO may be more abundant in these objects than expected, as has been found for the T6 dwarf Gl 229B. We also find...

  16. Infrared colour properties of nearby radio-luminous galaxies

    CERN Document Server

    Yang, Xiao-hong; Huang, Yan

    2015-01-01

    By combining the data of the Two Micron All Sky Survey (2MASS), the Wide Field Infrared Survey Explorer (WISE) and the Akari satellite, we study the infrared colour properties of a sample of 2712 nearby radio-luminous galaxies (RLGs). These RLGs are divided into radio-loud (RL) active galactic nuclei (AGNs), mainly occurring at redshifts of $0.05$ 3.0. We also analyse the MIR colours of RL AGNs divided into low- and high-excitation radio galaxies (LERGs and HERGs, respectively). The ([3.4]-[4.6])$-$([4.6]-[12]) diagram clearly shows separate distributions of LERGs and HERGs and a region of overlap, which suggests that LERGs and HERGs have different MIR properties. LERGs are responsible for the double-core distribution of RL AGNs on the ([3.4]-[4.6])$-$([4.6]-[12]) diagram. In addition, we also suggest 90$-$140$\\mu$m band spectral index $\\alpha(90,140)<-1.4$ as a criterion of selecting nearby active galaxies with non-thermal emissions at FIR wavelengths.

  17. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    Science.gov (United States)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; Donoso, Emilio; Jarrett, Thomas H.; Lonsdale, Carol; Mace, Gregory; Mainzer, A.; Marsh, Ken; Padgett, Deborah; Petty, Sara; Ressler, Michael E.; Skrutskie, Michael F.; Stanford, Spencer A.; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L.; Wu, Jingwen

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  18. ISM Properties of Local Luminous Infrared Galaxies

    Science.gov (United States)

    Diaz-Santos, Tanio; Armus, Lee; Stierwalt, Sabrina; Elbaz, David; Malhotra, Sangeeta

    2015-08-01

    Luminous and Ultra-luminous Infrared Galaxies ((U)LIRGs) represent the most important galaxy population at redshifts z > 1 as they account for more than 50% of all star formation produced in the Universe at those epochs; and encompass what it is called the main-sequence (MS) of star-forming galaxies. Investigating their local counterparts -low luminosity LIRGs- is therefore key to understand the physical properties and phases of their inter-stellar medium (ISM) - a task that is rather challenging in the distant Universe. On the other hand, high-z star-bursting (out of the MS) systems, although small in number, account for a modest yet still significant fraction of the total energy production. Here I present far-IR line emission observations ([CII]158μm, [OI]63μm, [OIII]88μm and [NII]122μm) obtained with Herschel for two large samples of nearby LIRGs: The Great Observatories All-sky LIRG Survey (GOALS), a sample of more than 240 relatively cold LIRGs, and a survey of 30 LIRGs selected to have very warm mid- to far-IR colors, suggestive of an ongoing intense nuclear starburst and/or an AGN. Using photo-dissociation region (PDR) models we derive the basic characteristics of the ISM (ionization intensity and density) for both samples and study differences among systems as a function of AGN activity, merger stage, dust temperature, and compactness of the starburst - parameters that are thought to control the life cycle of galaxies moving in and out of the MS, locally and at high-z.

  19. Infrared heating

    Science.gov (United States)

    1983-11-01

    The transfer of energy by radiation whose limits lie between 1 mm and 400 mm is indicated. The radiation used lies practically completely in the infrared region. Its use therefore depends on the thermal radiation laws (black body or integral receiver laws). These laws were derived mathematically in accordance with the properties of an ideal body, the so-called ""integral receiver'' (formerly black body). According to definition this integral receiver has the property of absorbing completely all incident electromagnetic radiation. From these the following laws were deduced: (1) All bodies with a temperature above absolute zero emit a radiation. (2) The energy emitted by the integral receiver is proportional to the 4th power of the absolute temperature. (3) The emission theoretically comprizes the whole radiation. (4) The radiation comprizing the emission spectrum does not transport the same amount of energy at every wavelength.

  20. Discoveries from a Near-infrared Proper Motion Survey using Multi-epoch 2MASS Data

    CERN Document Server

    Kirkpatrick, J Davy; Burgasser, Adam J; Schurr, Steven D; Cutri, Roc M; Cushing, Michael C; Cruz, Kelle L; Sweet, Anne C; Knapp, Gillian R; Barman, Travis S; Bochanski, John J; Roellig, Thomas L; McLean, Ian S; McGovern, Mark R; Rice, Emily L

    2010-01-01

    We have conducted a 4030-square-deg near-infrared proper motion survey using multi-epoch data from the Two Micron All-Sky Survey (2MASS). We find 2778 proper motion candidates, 647 of which are not listed in SIMBAD. After comparison to DSS images, we find that 107 of our proper motion candidates lack counterparts at B-, R-, and I-bands and are thus 2MASS-only detections. We present results of spectroscopic follow-up of 188 targets that include the infrared-only sources along with selected optical-counterpart sources with faint reduced proper motions or interesting colors. We also establish a set of near-infrared spectroscopic standards with which to anchor near-infrared classifications for our objects. Among the discoveries are six young field brown dwarfs, five "red L" dwarfs, three L-type subdwarfs, twelve M-type subdwarfs, eight "blue L" dwarfs, and several T dwarfs. We further refine the definitions of these exotic classes to aid future identification of similar objects. We examine their kinematics and fi...

  1. The WIRED Survey II: Infrared Excesses in the SDSS DR7 White Dwarf Catalog

    CERN Document Server

    Debes, J H; Wachter, S; Leisawitz, D T; Cohen, M

    2011-01-01

    With the launch of the {\\em Wide-field Infrared Survey Explorer} ({\\em WISE}), a new era of detecting planetary debris and brown dwarfs around white dwarfs (WDs) has begun with the {\\em WISE} InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD Catalog between the {\\em WISE}, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From $\\sim18,000$ input targets, there are {\\em WISE} detections comprising 344 "naked" WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+brown dwarf (BD) systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spect...

  2. The WIRED Survey. 2; Infrared Excesses in the SDSS DR7 White Dwarf Catalog

    Science.gov (United States)

    Debes, John H.; Hoard, D. W.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin

    2011-01-01

    With the launch of the Wide-field Infrar.ed Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From -18,000 input targets, there are WISE detections comprising 344 "naked" WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large (approx. 6") WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

  3. Internal Extinction in Spiral Galaxies in the Near Infrared

    CERN Document Server

    Masters, K L; Haynes, M P; Masters, Karen L.; Giovanelli, Riccardo; Haynes, Martha P.

    2003-01-01

    In order to study the effects of internal extinction in spiral galaxies we search for correlations of near infrared (NIR) photometric parameters with inclination. We use data from the 2 Micron All-Sky Survey (2MASS) Extended Source Catalog (XSC) on 15,224 spiral galaxies for which we also have redshifts. For 3035 of the galaxies, I-band photometry is available which is included in the analysis. From the simple dependence of reddening on inclination we derive a lower limit to the difference in magnitude between the face-on and edge-on aspect of 0.9, 0.3 and 0.1 magnitudes in I (0.81 um), J (1.25 um) and H (1.65 um) bands. We find that the faintest isophotal radius reported in the XSC (at the 21st mag/arc sq level) is closer to the centers of the galaxies than other common isophotal measures (e.g. the 23.5 mag/arc sq radius in I-band), and argue that it should not be assumed to represent an outer isophote at which galaxies are transparent at all viewing angles. A simple linear extinction law (i.e. Delta M = gam...

  4. Morphology and Molecular Gas Fractions of Local Luminous Infrared Galaxies as a Function of Infrared Luminosity and Merger Stage

    CERN Document Server

    Larson, Kirsten L; Barnes, Joshua E; Ishida, Cathy M; Evans, Aaron S; U, Vivian; Mazzarella, Joseph M; Kim, Don-Chan; Privon, George C; Mirabel, I Felix; Flewelling, Heather A

    2016-01-01

    We present a new, detailed analysis of the morphologies and molecular gas fractions for a complete sample of 65 local luminous infrared galaxies (LIRGs) from the Great Observatories All-Sky LIRG Survey (GOALS) using high resolution $I$-band images from The Hubble Space Telescope, the University of Hawaii 2.2m Telescope and the Pan-STARRS1 Survey. Our classification scheme includes single undisturbed galaxies, minor mergers, and major mergers, with the latter divided into five distinct stages from pre-first pericenter passage to final nuclear coalescence. We find that major mergers of molecular gas-rich spirals clearly play a major role for all sources with $L_{\\rm IR} > 10^{11.5} L_\\odot $; however, below this luminosity threshold, minor mergers and secular processes dominate. Additionally, galaxies do not reach $L_{\\rm IR} > 10^{12.0} L_\\odot $ until late in the merger process when both disks are near final coalescence. The mean molecular gas fraction (MGF $= M_{\\rm H_2} / (M_* + M_{\\rm H_2})$) for non-inter...

  5. Mid-Infrared Properties of Luminous Infrared Galaxies II: Probing the Dust and Gas Physics of the GOALS Sample

    CERN Document Server

    Stierwalt, Sabrina; Charmandaris, Vassilis; Diaz-Santos, Tanio; Marshall, Jason; Evans, Aaron; Haan, Sebastian; Howell, Justin; Iwasawa, Kazushi; Kim, Dongchan; Murphy, Eric J; Rich, Jeff A; Spoon, Henrik W W; Inami, Hanae; Petric, Andreea; U, Vivian

    2014-01-01

    The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present the results of a multi-component, spectral decomposition analysis of the low resolution mid-IR Spitzer IRS spectra from 5-38um of 244 LIRG nuclei. The detailed fits and high quality spectra allow for characterization of the individual PAH features, warm molecular hydrogen emission, and optical depths for silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of GOALS, are very consistent in their MIR properties (i.e. tau_9.7um, tau_ice, neon line and PAH feature ratios). However, as their PAH EQW decreases, usually an indicator of an increasingly dominant AGN, LIRGs cover a larger spread in these MIR parameters. The contribution from PAHs to the total L(IR) in LIRGs varies from 2-29% and LIRGs prior to their first encounter show higher L(PAH)/L(IR) ratios on average. We observe a correlation between ...

  6. AcuA: the AKARI/IRC Mid-infrared Asteroid Survey

    CERN Document Server

    Usui, Fumihiko; Mueller, Thomas G; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; Ishihara, Daisuke; Kataza, Hirokazu; Takita, Satoshi; Oyabu, Shinki; Ueno, Munetaka; Matsuhara, Hideo; Onaka, Takashi

    2011-01-01

    We present the results of an unbiased asteroid survey in the mid-infrared wavelength with the Infrared Camera (IRC) onboard the Japanese infrared satellite AKARI. About 20% of the point source events recorded in the AKARI All-Sky Survey observations are not used for the IRC Point Source Catalog (IRC-PSC) in its production process because of the lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, remain in these "residual events". We identify asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculate the size and albedo based on the Standard Thermal Model. Finally we have a brand-new catalog of asteroids, named the Asteroid Catalog Using Akari (AcuA), which contains 5,120 objects, about twice as many as the IRAS asteroid catalog. The catalog objects comprise 4,953 main belt asteroids, 58 near Earth asteroids, and 109 Jovian Trojan asteroids. The catalog will be publicly available via th...

  7. Photometric Properties of Six Local Volume Dwarf Galaxies from Deep Near-Infrared Observations

    CERN Document Server

    de Swardt, B; Jerjen, H

    2010-01-01

    We have obtained deep near-infrared $J$- (1.25 $\\mu$m), $H$- (1.65$ \\mu$m) and $K_s$-band (2.15 $\\mu$m) imaging for a sample of six dwarf galaxies ($M_B\\ga-17$ mag) in the Local Volume (LV, $D\\la10$ Mpc). The sample consists mainly of early-type dwarf galaxies found in various environments in the LV. Two galaxies (LEDA 166099 and UGCA 200) in the sample are detected in the near-infrared for the first time. The deep near-infrared images allow for a detailed study of the photometric and structural properties of each galaxy. The surface brightness profiles of the galaxies are detected down to the ~$24 mag arcsec^{-2}$ isophote in the $J$- and $H$-bands, and $23 mag arcsec^{-2}$ in the $K_s$-band. The total magnitudes of the galaxies are derived in the three wavelength bands. For the brightest galaxies ($M_B\\la-15.5$ mag) in the sample, we find that the Two Micron All Sky Survey (2MASS) underestimates the total magnitudes of these systems by up to $\\la0.5$ mag. The radial surface brightness profiles of the galaxi...

  8. The Optical-infrared Extinction Curve and Its Variation in the Milky Way

    Science.gov (United States)

    Schlafly, E. F.; Meisner, A. M.; Stutz, A. M.; Kainulainen, J.; Peek, J. E. G.; Tchernyshyov, K.; Rix, H.-W.; Finkbeiner, D. P.; Covey, K. R.; Green, G. M.; Bell, E. F.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Martin, N. F.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2016-04-01

    The dust extinction curve is a critical component of many observational programs and an important diagnostic of the physics of the interstellar medium. Here we present new measurements of the dust extinction curve and its variation toward tens of thousands of stars, a hundred-fold larger sample than in existing detailed studies. We use data from the APOGEE spectroscopic survey in combination with ten-band photometry from Pan-STARRS1, the Two Micron All-Sky Survey, and Wide-field Infrared Survey Explorer. We find that the extinction curve in the optical through infrared is well characterized by a one-parameter family of curves described by R(V). The extinction curve is more uniform than suggested in past works, with σ (R(V))=0.18, and with less than one percent of sight lines having R(V)\\gt 4. Our data and analysis have revealed two new aspects of Galactic extinction: first, we find significant, wide-area variations in R(V) throughout the Galactic plane. These variations are on scales much larger than individual molecular clouds, indicating that R(V) variations must trace much more than just grain growth in dense molecular environments. Indeed, we find no correlation between R(V) and dust column density up to E(B-V)≈ 2. Second, we discover a strong relationship between R(V) and the far-infrared dust emissivity.

  9. Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-08-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 . This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ-CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.

  10. THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Debes, John H.; Leisawitz, David T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoard, D. W. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Wachter, Stefanie [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cohen, Martin [Monterey Institute for Research in Astronomy, Marina, CA 93933 (United States)

    2011-12-01

    With the launch of the Wide-field Infrared Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From {approx}18,000 input targets, there are WISE detections comprising 344 'naked' WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large ( Almost-Equal-To 6'') WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

  11. Inferences of all-sky solar irradiance using Terra and Aqua MODIS satellite data

    DEFF Research Database (Denmark)

    Houborg, Rasmus Møller; Søgaard, Henrik; Emmerich, W.

    2007-01-01

    -sky solar irradiance components, which links a physically based clear-sky model with a neural network version of a rigorous radiative transfer model. The scheme exploits the improved cloud characterization and retrieval capabilities of the MODerate resolution Imaging Spectroradiometer (MODIS) onboard...... the Terra and Aqua satellites, and employs a cloud motion tracking scheme for the production of hourly solar irradiance data throughout the day. The scheme was implemented for the Island of Zealand, Denmark (56° N, 12° E) and Southern Arizona, USA (31° N, 110° W) permitting model evaluation for two highly...... contrasting climates and cloud environments. Information on the atmospheric state was provided by MODIS data products and verifications against AErosol RObotic NETwork (AERONET) data demonstrated usefulness of MODIS aerosol optical depth and total precipitable water vapour retrievals for the delineation...

  12. A Survey of Variable Extragalactic Sources with XTE's All Sky Monitor (ASM)

    Science.gov (United States)

    Jernigan, Garrett

    1998-01-01

    The original goal of the project was the near real-time detection of AGN utilizing the SSC 3 of the ASM on XTE which does a deep integration on one 100 square degree region of the sky. While the SSC never performed sufficiently well to allow the success of this goal, the work on the project has led to the development of a new analysis method for coded aperture systems which has now been applied to ASM data for mapping regions near clusters of galaxies such as the Perseus Cluster and the Coma Cluster. Publications are in preparation that describe both the new method and the results from mapping clusters of galaxies.

  13. The Lunar Occultation Observer (LOCO) - A Nuclear Astrophysics All-Sky Survey Mission Concept

    Science.gov (United States)

    Miller, R. S.; Bonamente, M.; Burgess, J. M.; Harmon, B. A.; Jenke, P.; Lawrence, D. J.; O'Brien, S.; Orr, M. R.; Paciesas, W. S.; Young, C. A.

    2008-07-01

    The Lunar Occultation Observer (LOCO) is a new lunar-based concept to probe the nuclear astrophysics regime. It will be a pioneering mission in high-energy astrophysics: the first to employ occultation as the principle detection and imaging method.

  14. The Lunar Occultation Observer (LOCO) -- A Nuclear Astrophysics All-Sky Survey Mission Concept

    Science.gov (United States)

    Miller, R. S.; Bonamente, M.; Burgess, J. M.; Jenke, P.; Lawrence, D. J.; O'Brien, S.; Orr, M. R.; Paciesas, W. S.; Young, C. A.

    2009-03-01

    The Lunar Occultation Observer (LOCO) is a new γ-ray astrophysics mission concept expected to have unprecedented sensitivity in the nuclear regime. Operating in lunar orbit, LOCO will utilize lunar occultation imaging to survey and probe the cosmos.

  15. An all-sky catalog of solar-type dwarfs for exoplanetary transit surveys

    CERN Document Server

    Nascimbeni, V; Ortolani, S; Giuffrida, G; Marrese, P M; Magrin, D; Ragazzoni, R; Pagano, I; Rauer, H; Cabrera, J; Pollacco, D; Heras, A M; Deleuil, M; Gizon, L; Granata, V

    2016-01-01

    Most future surveys designed to discover transiting exoplanets, including TESS and PLATO, will target bright (V3.0 subgiants. The relatively low amount of contamination (defined as the fraction of false positives; <30%) also makes UCAC4-RPM a useful tool for the past and ongoing ground-based transit surveys, which need to discard candidate signals originating from early-type or giant stars. As an application, we show how UCAC4-RPM may support the preparation of the TESS (that will map almost the entire sky) input catalog and the input catalog of PLATO, planned to survey more than half of the whole sky with exquisite photometric precision.

  16. The onion universe: all sky light-cone simulations in shells

    CERN Document Server

    Fosalba, P; Castander, F; Manera, M

    2007-01-01

    Very large scale surveys will provide a view of the universe with good angular resolution but in many cases poorer redshift information. We will see the universe as a set of concentric radial shells around the observer, with a onion like structure. We build maps that mimic this onion like structure from a light-cone output of a new N-body simulation. The simulation is run with GADGET-2 on the MareNostrum supercomputer and has N = 2048^3 particles in a cubical box of 3072 \\Mpc on a side, representing one of the largest N-body simulations run to date. These onion maps can be used to interpret observations and also represent a very large (>1000) data compression. We present the angular density power spectrum of the maps, which shows the characteristic features in linear theory that we expect to measure in future surveys: the matter-radiation equality and the baryon acoustic wiggles. We use the maps to determine the smallest scale (largest multipoles) where linear theory and the Gaussianity of the error analysis ...

  17. A serendipitous all sky survey for bright objects in the outer solar system

    CERN Document Server

    Brown, M E; Schmidt, B P; Drake, A J; Djorgovski, S G; Graham, M J; Mahabal, A; Donalek, C; Larson, S; Christensen, E; Beshore, E; McNaught, R

    2015-01-01

    We use seven year's worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20 degrees to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover 8 known bright objects in the outer solar system, the faintest having $V=19.8\\pm0.1$, no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for $V\\lesssim 19.1$ ($V\\lesssim18.6$ in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plan...

  18. Reconciling the observed all-sky CMB flux with its expected value from an inhomogeneous Universe

    CERN Document Server

    Lieu, R

    2004-01-01

    In the expanding near Universe where $\\approx$ 50 % of the matter is clumped into galaxies and their halos, it was known from an earlier work that the angular magnification of a large CMB emission feature depends on the statistical balance between light beam convergence by clumps and divergence within the voids for the majority of the sightlines to the feature. The total flux, however, reflects this balance for {\\it all} sightlines to the feature, including those minority ones which are associated with galaxy strong lensing. Thus the brightness of the entire CMB sky is inevitably enhanced by at least a factor corresponding to the average strong lensing amplification for a random direction. The only way of reconciling this with the COBE/FIRAS measurement is to envisage a galaxy number density (or central mass) two orders of magnitude below the observed value. The evidence brought forth here represents another formidable inconsistency between the standard cosmological model and reality.

  19. Searching for M Dwarf Flares in Raptor-Q All-sky Photometric Data

    Science.gov (United States)

    Wolfe, Tristan; Wozniak, P. R.; Vestrand, Tom

    2012-10-01

    Stellar flares are releases of magnetic energy that cause emissions of a wide range across the electromagnetic spectrum. Flares of M dwarf stars are characterized by a large increase in blue and near-UV emissions, causing an increase in several magnitudes within minutes (Hilton et al, AJ, 2010). Exoplanets of several Earth masses have been discovered orbiting M dwarfs, so the search for M dwarf flares is very important, as the planets' atmospheres and habitability may be affected by these bursts in energy. Using data from Los Alamos National Labs' Raptor-Q telescope at Fenton Hill, NM, we are developing an automated method of detecting M dwarf flares. Raptor-Q operates robotically and, with five cameras, collects over 10,000 images of 90% of the sky above 12 degrees elevation in a given night, with a sensitivity up to magnitude R=10 (Wren et al, Proc SPIE, 2010), and automatically provides photometric and astrometric reductions of its images. A prototype pipeline has been developed using Python that looks for transient light curves (quick changes in magnitude over time) in Raptor-Q's data. These light curves will then be analyzed for characteristics of stellar flares, and cross-correlated with published catalogs to determine stellar type and any previous observations of flares.

  20. All Sky Search for Gravitational-Wave Bursts in the Second Joint LIGO-Virgo Run

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Ceron, E. Amador; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aylott, B. E.; Blackburn, L.; Camp, J. B.; Cannizzo, J.

    2012-01-01

    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration approx. sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.

  1. The diffuse soft excess emission in the Coma cluster from the ROSAT All-Sky Survey

    CERN Document Server

    Bonamente, Max; Bulbul, Esra

    2009-01-01

    RASS data near the North Galactic Pole was analyzed in order to study the large-scale distribution of soft X-ray emission from the Coma cluster. These RASS data constitute the only available X-ray observations of Coma that feature an in situ -- temporally and spatially contiguous -- background, with unlimited and continuous radial coverage. These unique characteristics of the RASS data are used to deliver a final assessment on whether the soft excess previously detected in the Coma cluster is due to background subtraction errors, or not. This paper confirms the presence of soft X-ray excess associated with Coma, and reports the detection of 1/4 keV band excess out to 5 Mpc from the cluster center, the largest soft excess halo discovered to date. We propose that the emission is related to filaments that converge towards Coma, and generated either by non-thermal radiation caused by accretion shocks, or by thermal emission from the filaments themselves.

  2. Anisotropy in the all-sky distribution of galaxy morphological types

    CERN Document Server

    Javanmardi, Behnam

    2016-01-01

    We present the first study of the isotropy of the distribution of morphological types of galaxies in the Local Universe out to around 200 Mpc using more than 60,000 galaxies from the HyperLeda database. We divide the sky into two opposite hemispheres and compare the abundance distribution of the morphological types, $T$, using the Kolmogorov-Smirnov (KS) test. This is repeated for different directions in the sky and the KS statistic as a function of sky coordinates is obtained. For three samples of galaxies within around 100, 150, and 200 Mpc, we find a significant hemispherical asymmetry with a vanishingly small chance of occurring in an isotropic distribution. Astonishingly, regardless of this extreme significance, the hemispherical asymmetry is aligned with the Celestial Equator at the 97.1-99.8% and with the Ecliptic at the 94.6-97.6% confidence levels, estimated using a Monte Carlo analysis. Shifting $T$ values randomly within their uncertainties has a negligible effect on this result. When a magnitude l...

  3. Parameterization of atmospheric long-wave emissivity in a mountainous site for all sky conditions

    Directory of Open Access Journals (Sweden)

    J. Herrero

    2012-03-01

    Full Text Available Long-wave radiation is an important component of the energy balance of the Earth's surface. The downward component, emitted by the clouds and aerosols in the atmosphere, is rarely measured, and is still not well understood. In mountainous areas, the models existing for its estimation through the emissivity of the atmosphere do not give good results, and worse still in the presence of clouds. In order to estimate this emissivity for any atmospheric state and in a mountainous site, we related it to the screen-level values of temperature, relative humidity and solar radiation. This permitted the obtaining of: (1 a new set of parametric equations and (2 the modification of the Brutsaert's equation for cloudy skies through the calibration of C factor to 0.34 and the parameterization of the cloud index N. Both fitted to the surface data measured at a weather station at a height of 2500 m a.s.l. in Sierra Nevada, Spain. This study analyzes separately three significant atmospheric states related to cloud cover, which were also deduced from the screen-level meteorological data. Clear and totally overcast skies are accurately represented by the new parametric expressions, while the intermediate situations corresponding to partly clouded skies, concentrate most of the dispersion in the measurements and, hence, the error in the simulation. Thus, the modeling of atmospheric emissivity is greatly improved thanks to the use of different equations for each atmospheric state.

  4. An all-sky extrasolar planet survey with multiple object, dispersed fixed-delay interferometers

    Directory of Open Access Journals (Sweden)

    Jian Ge

    2007-01-01

    Full Text Available La prospección de planetas extrasolares en todo el cielo (ASEPS se basará en telescopios de campo amplio (inicialmente el telescopio Sloan, para luego pasar a telescopios con mayores aperturas y una nueva generación de potentes espectrógrafos multiobjetos para dar seguimiento a millones de estrellas brillantes cercanas. ASEPS detectará decenas de miles de planetas extrasolares en las próximas dos décadas. Actualmente, ya se ha detectado un planeta (con periodo de 4.11 días y con 0.49 masas de Júpiter alrededor de una estrella de V = 8.05 mag (Ge et al. 2006, con el telescopio de 0.9-m Coude del KPNO, con el instrumento interferométrico de retardo fijo dispersado en su version mono-objeto. En las bandas visibles, ASEPS incrementará el número de sistemas planetarios en al menos dos órdenes de magnitud, dando así una poderosa base estad´ıstica para comprender las diferentes clases de sistemas planetarios. Este estudio tiene la capacidad de detectar planetas tipo Júpiter, tanto en masa como en distancia a su estrella madre. El estudio se desarrolla en el cercano infrarrojo y puede conducir al descubrimiento de planetas tipo terrestre en las zonas habitables de estrellas poco masivas. Las observaciones recientes con el telescopio Sloan demuestran la viabilidad de la búsqueda de planetas en forma multi-objeto en paralelo al reconocimiento espectroscópico de objetos d´ebiles SDSS. Esto sugiere que es posible combinar instrumentos Doppler con otros instrumentos astronómicos dentro de un solo paquete para incrementar la productividad científica y la eficiencia de operación, y así reducir los costos de instrumentos de los futuros grandes telescopios de campo amplio

  5. Search for neutrino point sources with an all-sky autocorrelation analysis in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Turcati, Andrea; Bernhard, Anna; Coenders, Stefan [TU, Munich (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic kilometre scale neutrino telescope located in the Antarctic ice. Its full-sky field of view gives unique opportunities to study the neutrino emission from the Galactic and extragalactic sky. Recently, IceCube found the first signal of astrophysical neutrinos with energies up to the PeV scale, but the origin of these particles still remains unresolved. Given the observed flux, the absence of observations of bright point-sources is explainable with the presence of numerous weak sources. This scenario can be tested using autocorrelation methods. We present here the sensitivities and discovery potentials of a two-point angular correlation analysis performed on seven years of IceCube data, taken between 2008 and 2015. The test is applied on the northern and southern skies separately, using the neutrino energy information to improve the effectiveness of the method.

  6. Planck early results. XXIII. The first all-sky survey of Galactic cold clumps

    DEFF Research Database (Denmark)

    Bucher, M.; Delabrouille, J.; Giraud-Héraud, Y.

    2011-01-01

    , with a distribution peaking around 13K. The data are inconsistent with a constant value of the associated spectral index β over the whole temperature range: β varies from 1.4 to 2.8, with a mean value around 2.1. Distances are obtained for approximately one third of the objects. Most of the detections lie within 2kpc...... of the Sun, but more distant sources are also detected, out to 7kpc. The mass estimates inferred from dust emission range from 0.4 M to 2.4 × 105 M. Their physical properties show that these cold sources trace a broad range of objects, from low-mass dense cores to giant molecular clouds, hence the "cold...

  7. HAWC: A Next-generation All-sky Gamma Ray Telescope

    Science.gov (United States)

    Westerhoff, Stefan

    2012-07-01

    The High Altitude Water Cherenkov Gamma-Ray Observatory (HAWC) is currently under construction 4,100 m above sea level on the slope of Pico de Orizaba, Mexico. HAWC is a high-duty cycle, large field-of-view instrument capable of monitoring the gamma ray sky between roughly 50 GeV and 100 TeV. The detector will be used to record both steady and transient gamma-ray sources and to provide an unbiased survey of the northern sky (2 π sr daily coverage). Upon completion, HAWC will comprise 300 large light-tight water tanks covering an area of 20,000 square meters. Each tank will be instrumented with four photomultipliers to detect particles from extensive air showers produced by gamma rays and cosmic rays. With 15 times the sensitivity of its predecessor experiment Milagro, the HAWC Observatory will enable significant detections of Crab-like fluxes each day at a median energy of 1 TeV. In this talk, we present the scientific case for HAWC, describe its design and sensitivity, and report on early results from VAMOS, the 7-tank prototype which has been operational since 2011.

  8. HAWC: A next-generation all-sky gamma-ray telescope

    Science.gov (United States)

    Westerhoff, Stefan

    2014-05-01

    The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory is currently under construction 4100 m above sea level on the slope of Pico de Orizaba in Mexico. HAWC is a high-duty cycle, large field-of-view instrument capable of monitoring the gamma-ray sky between roughly 50 GeV and 100 TeV. The detector will be used to record both steady and transient gamma-ray sources and to provide an unbiased survey of the northern sky with 2π sr daily coverage. Upon completion in 2014, HAWC will comprise 300 large light-tight water tanks arrayed over an area of 20,000 m2. Each tank will be instrumented with four photomultipliers to detect particles from extensive air showers produced by gamma rays and cosmic rays. With 15 times the sensitivity of its predecessor experiment Milagro, the HAWC Observatory will enable significant detection of Crab-like fluxes each day at a median energy of 1 TeV. We present the scientific case for HAWC and describe its design and sensitivity.

  9. Diffuse radio foregrounds: all-sky polarisation and anomalous microwave emission

    Science.gov (United States)

    Vidal Navarro, M. A.

    2014-07-01

    In this Thesis, we present work on the diffuse Galactic emission in the 23-43 GHz frequency range. We studied the polarised emission, which is dominated by synchrotron radiation at these frequencies. We also present work on the anomalous microwave emission (AME), both in total intensity and polarisation. These observations are useful to quantify the CMB foreground contribution and give us information about the ISM of our Galaxy. Polarisation observations are affected by a positive bias, particularly important in regions with low signal-to-noise ratio. We present a method to correct the bias in the case where the uncertainties in the Q, U Stokes parameters are not symmetric. We show that this method successfully corrects the polarisation maps, with a residual bias smaller than the random uncertainties on the maps, outperforming the methods that are previously described in the literature. We use the de-biasing method to set upper limits for the polarisation of AME in the ρ Ophiuchi and Perseus molecular clouds. In both clouds the AME polarisation fraction is found to be less than 2% at 23 GHz and33 GHz.We use data from the WMAP satellite at 23, 33 and 41 GHz to study the diffuse polarised emission over the entire sky. This emission is due to synchrotron radiation and it originates mostly from filamentary structures with well-ordered magnetic fields.We identify new filaments and studied their observational properties, such as polarisation spectral indices, polarisation fraction and Faraday rotation. We explore the link between the large scale filaments and the local ISM, using the model of an expanding shell in the vicinity of the Sun. We also quantify the level of contamination added by the diffuse filaments to the CMB E- and B-mode power spectra.The Q/U Imaging ExperimenT (QUIET) observed the polarised sky at 43 and 95 GHz, in order to measure the CMB spectra. We describe the instrument, the observations and data processing, focusing on two regions of the Galactic plane. We study the foreground contamination in a region of the sky. We also discuss some properties of the diffuse synchrotron emission observed on the Galactic plane by QUIET.Using interferometric observations at 31 GHz, we studied AME in the translucent cloud LDN 1780. Interferometric data at 31 GHz and different ancillary data were used. We study the connection between the radio emission and the interstellar dust present in the cloud. The spinning dust hypothesis for the origin of AME is tested and we conclude that it can explain the radio properties observed in this cloud.

  10. North-South America Network of Magnetically Conjugate All-Sky Imagers

    Science.gov (United States)

    2015-01-02

    sites selected are taking data (in Massachusetts, Columbia, Peru, Argentina and Antarctica), and two remain to be installed (North Carolina and South...for Space Physics at Boston University. Five of the sites selected are taking data (in Massachusetts, Columbia, Peru, Argentina and Antarctica), and...number of instruments had to be deployed in other countries, all of the US Export Control rules and documentation had to be addressed. BU provided

  11. Probing cosmology with weak lensing selected clusters I: Halo approach and all-sky simulations

    CERN Document Server

    Shirasaki, Masato; Yoshida, Naoki

    2015-01-01

    Weak gravitational lensing enables us to search clusters without the conventional assumption on the relation between visible and dark matter. We explore a variety of statistics of clusters selected with cosmic shear measurement by utilizing both analytic models and large numerical simulations. We first develop a halo model to predict the abundance and the clustering of weak lensing selected clusters. Observational effects such as galaxy shape noise are included in our model. We then generate realistic mock weak lensing catalogs to test the accuracy of our analytic model. To this end, we perform full-sky ray-tracing simulations that allow us to have multiple realizations of a large continuous area. We model the masked regions on the sky using the actual positions of bright stars, and generate 200 mock weak lensing catalogs with sky coverage of $\\sim$1000 squared degrees. We utilize the large set of mock catalogs to evaluate the covariance matrices between the local and non-local statistics. We show that our th...

  12. All-sky signals from recombination to reionization with the SKA

    NARCIS (Netherlands)

    Subrahmanyan, R.; Shankar, U. N.; Pritchard, J.; Vedantham, H. K.

    2015-01-01

    Cosmic evolution in the hydrogen content of the Universe through recombination and up to the end of reionization is expected to be revealed as subtle spectral features in the uniform extragalactic cosmic radio background. The redshift evolution in the excitation temperature of the 21-cm spin flip tr

  13. LoFASM: A Low Frequency All Sky Monitor for Radio Transients and Student Training

    Science.gov (United States)

    2015-09-02

    Emission (STARGATE) project, a public-private partnership between UTB’s Center for Advanced Radio Astronomy and SpaceX, focused on RF technology...local terrestrial origin. Each station comprises 12 dipole antennas in a phased array: the antenna feeds can be combined in such a way as to

  14. Planck intermediate results XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.;

    2016-01-01

    in the Sloan Digital Sky Survey (SDSS). The DL A(V) estimates are larger than those determined towards QSOs by a factor of about 2, which depends on U-min. The DL fitting parameter U-min, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust...

  15. The Evryscope: the first all-sky gigapixel-scale telescope

    Science.gov (United States)

    Law, Nicholas Michael; Fors, Octavi; Ratzloff, Jeffrey; Wulfken, Philip; del Ser, Daniel; Kavanaugh, Dustin

    2015-08-01

    Current time-domain wide-field sky surveys generally operate with few-degree-sized fields and take many individual images to cover large sky areas each night. We present the design and first results from the Evryscope ("wideseer"), which takes a different approach: using an array of 71mm telescopes to form a single, wide, field-of-view pointed at every part of the accessible sky simultaneously and continuously.The Evryscope is a gigapixel-scale imager which takes a 13"-pixel-sampling image covering 8,000 square degrees every two minutes. Its extremely large field of view overcomes the individual telescopes' modest apertures to produce an etendue ~10% of LSST's. The Evryscope, based at CTIO and with first light in May 2015, returns high-precision high-cadence light curves for every accessible star brighter than ~16th magnitude, and is searching for transiting giant planets around the brightest and most nearby stars, habitable planets around nearby M-dwarfs, and planetary occultations of white dwarfs. Its comprehensive nearby microlensing and eclipse-timing searches are sensitive to exoplanets inaccessible to other planet-finding methods, while the Evryscope will also provide comprehensive monitoring of outbursting young stars, white dwarf activity, and stellar activity of all types. When relatively rare transients events occur, such as gamma-ray bursts or nearby supernovae, the array will return minute-by-minute light curves without needing pointing towards the event as it occurs, and, because all data is recorded, can even search for pre-detection outbursts. We will present the system design, the results from the first few months of Evryscope operation, plans for more systems around the world, and an update on the Evryscope prototype telescopes we have been operating for the last three years in the Canadian High Arctic.

  16. Evryscope science: exploring the potential of all-sky gigapixel-scale telescopes

    CERN Document Server

    Law, Nicholas M; Ratzloff, Jeffrey; Wulfken, Philip; Kavanaugh, Dustin; Sitar, David J; Pruett, Zachary; Birchart, Mariah; Barlow, Brad; Cannon, Kipp; Cenko, S Bradley; Dunlap, Bart; Kraus, Adam; Maccarone, Thomas J

    2015-01-01

    Low-cost mass-produced sensors and optics have recently made it feasible to build telescope arrays which observe the entire accessible sky simultaneously. In this article we discuss the scientific motivation for these telescopes, including exoplanets, stellar variability and extragalactic transients. To provide a concrete example we detail the goals and expectations for the Evryscope, an under-construction 780 MPix telescope which covers 8,660 square degrees in each two-minute exposure; each night, 18,400 square degrees will be continuously observed for an average of approximately 6 hours. Despite its small 61mm aperture, the system's large field of view provides an etendue which is ~10% of LSST. The Evryscope, which places 27 separate individual telescopes into a common mount which tracks the entire accessible sky with only one moving part, will return 1%-precision, many-year-length, high-cadence light curves for every accessible star brighter than mV=16.5, with brighter stars having few-millimagnitude photo...

  17. Evryscope Science: Exploring the Potential of All-Sky Gigapixel-Scale Telescopes

    Science.gov (United States)

    Law, Nicholas M.; Fors, Octavi; Ratzloff, Jeffrey; Wulfken, Philip; Kavanaugh, Dustin; Sitar, David J.; Pruett, Zachary; Birchard, Mariah N.; Barlow, Brad N.; Cannon, Kipp; Cenko, S. Bradley; Dunlap, Bart; Kraus, Adam; Maccarone, Thomas J.

    2015-03-01

    Low-cost mass-produced sensors and optics have recently made it feasible to build telescope arrays which observe the entire accessible sky simultaneously. In this article we discuss the scientific motivation for these telescopes, including exoplanets, stellar variability and extragalactic transients. To provide a concrete example we detail the goals and expectations for the Evryscope, an under-construction 780 MPix telescope which covers 8,660 square degrees in each two-minute exposure; each night, 18,400 square degrees will be continuously observed for an average of approximately 6 hours. Despite its small 61mm aperture, the system's large field of view provides an etendue which is ~10% of LSST. The Evryscope, which places 27 separate individual telescopes into a common mount which tracks the entire accessible sky with only one moving part, will return 1%-precision, many-year-length, high-cadence light curves for every accessible star brighter than mV=16.5, with brighter stars having few-millimagnitude photometric precision in long-term light curves. It will be capable of searching for transiting giant planets around the brightest and most nearby stars, where the planets are much easier to characterize; it will also search for small planets nearby M-dwarfs, for planetary occultations of white dwarfs, and will perform comprehensive nearby microlensing and eclipse-timing searches for exoplanets inaccessible to other planet-finding methods. The Evryscope will also monitor outbursting young stars, white dwarf activity, and stellar activity of all types, along with finding a large sample of very-long-period M-dwarf eclipsing binaries. When relatively rare transients events occur, such as gamma-ray bursts (GRBs), nearby supernovae, or even gravitational wave detections, the array will return minute-by-minute light curves without needing pointing towards the event as it occurs. (abridged)

  18. Nature and completeness of galaxies detected in the Two Micron All Sky Survey

    CERN Document Server

    McIntosh, D H; Weinberg, M D; Katz, N; Intosh, Daniel H. Mc; Bell, Eric F.; Weinberg, Martin D.; Katz, Neal

    2005-01-01

    We cross correlate the well-defined and very complete spectroscopic Main Galaxy Sample (MGS) of 156,000 bright (r16 reflects the sharp surface-brightness limit of the extended source detection algorithm in 2MASS. As a result, the r>16 galaxies found in the XSC are over-representative in red early types and under-representative in blue latetypes. At r>16 the XSC suffers an additional selection effect from the 2-3" spatial resolution limit of 2MASS. Therefore, 2MASS continues to detect 90% of of the MGS at 16

  19. The GMRT 150 MHz All-sky Radio Survey: First Alternative Data Release TGSS ADR1

    CERN Document Server

    Intema, H T; Mooley, K P; Frail, D A

    2016-01-01

    We present the first full release of a survey of the 150 MHz radio sky, observed with the Giant Metrewave Radio Telescope between April 2010 and March 2012 as part of the TGSS project. Aimed at producing a reliable compact source survey, our automated data reduction pipeline efficiently processed more than 2000 hours of observations with minimal human interaction. Through application of innovative techniques such as image-based flagging, direction-dependent calibration of ionospheric phase errors, correcting for systematic offsets in antenna pointing, and improving the primary beam model, we created good quality images for over 95 percent of the 5336 pointings. Our data release covers 36,900 square degrees (or 3.6 pi steradians) of the sky between -53 deg and +90 deg DEC, which is 90 percent of the total sky. The majority of pointing images have a background RMS noise below 5 mJy/beam with an approximate resolution of 25" x 25" (or 25" x 25" / cos (DEC - 19 deg) for pointings south of 19 deg DEC). We have pro...

  20. The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1

    Science.gov (United States)

    Intema, H. T.; Jagannathan, P.; Mooley, K. P.; Frail, D. A.

    2017-02-01

    We present the first full release of a survey of the 150 MHz radio sky, observed with the Giant Metrewave Radio Telescope (GMRT) between April 2010 and March 2012 as part of the TIFR GMRT Sky Survey (TGSS) project. Aimed at producing a reliable compact source survey, our automated data reduction pipeline efficiently processed more than 2000 h of observations with minimal human interaction. Through application of innovative techniques such as image-based flagging, direction-dependent calibration of ionospheric phase errors, correcting for systematic offsets in antenna pointing, and improving the primary beam model, we created good quality images for over 95 percent of the 5336 pointings. Our data release covers 36 900 deg2 (or 3.6 π steradians) of the sky between -53° and +90° declination (Dec), which is 90 percent of the total sky. The majority of pointing images have a noise level below 5 mJy beam-1 with an approximate resolution of 25''×25'' (or 25''×25''/ cos(Dec-19°) for pointings south of 19° declination). We have produced a catalog of 0.62 Million radio sources derived from an initial, high reliability source extraction at the seven sigma level. For the bulk of the survey, the measured overall astrometric accuracy is better than two arcseconds in right ascension and declination, while the flux density accuracy is estimated at approximately ten percent. Within the scope of the TGSS alternative data release (TGSS ADR) project, the source catalog, as well as 5336 mosaic images (5°×5°) and an image cutout service, are made publicly available at the CDS as a service to the astronomical community. Next to enabling a wide range of different scientific investigations, we anticipate that these survey products will provide a solid reference for various new low-frequency radio aperture array telescopes (LOFAR, LWA, MWA, SKA-low), and can play an important role in characterizing the epoch-of-reionisation (EoR) foreground. The TGSS ADR project aims at continuously improving the quality of the survey data products. Near-future improvements include replacement of bright source snapshot images with archival targeted observations, using new observations to fill the holes in sky coverage and replace very poor quality observational data, and an improved flux calibration strategy for less severely affected observational data. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A78

  1. Nearby Galaxies in the 2micron All Sky Survey I. K-band Luminosity Functions

    CERN Document Server

    Devereux, Nick; Ashby, M L N; Willmer, C N A; Hriljac, Paul

    2009-01-01

    Differential K-band luminosity functions (LFs) are presented for a complete sample of 1613 nearby bright galaxies segregated by visible morphology. The LF for late-type spirals follows a power law that rises towards low luminosities whereas the LFs for ellipticals, lenticulars and bulge-dominated spirals are peaked and decline toward both higher and lower luminosities. Each morphological type (E, S0, S0/a-Sab, Sb-Sbc, Sc-Scd) contributes approximately equally to the overall K-band luminosity density of galaxies in the local universe. Type averaged bulge/disk ratios are used to subtract the disk component leading to the prediction that the K-band LF for bulges is bimodal with ellipticals dominating the high luminosity peak, comprising 60% of the bulge luminosity density in the local universe with the remaining 40% contributed by lenticulars and the bulges of spirals. Overall, bulges contribute 30% of the galaxy luminosity density at K in the local universe with spiral disks making up the remainder. If bulge lu...

  2. The 2π charged particles analyzer: All-sky camera concept and development for space missions

    Science.gov (United States)

    Vaisberg, O.; Berthellier, J.-J.; Moore, T.; Avanov, L.; Leblanc, F.; Leblanc, F.; Moiseev, P.; Moiseenko, D.; Becker, J.; Collier, M.; Laky, G.; Keller, J.; Koynash, G.; Lichtenneger, H.; Leibov, A.; Zhuravlev, R.; Shestakov, A.; Burch, J.; McComas, D.; Shuvalov, S.; Chornay, D.; Torkar, K.

    2016-12-01

    Increasing the temporal resolution and instant coverage of velocity space of space plasma measurements is one of the key issues for experimentalists. Today, the top-hat plasma analyzer appears to be the favorite solution due to its relative simplicity and the possibility to extend its application by adding a mass-analysis section and an electrostatic angular scanner. Similarly, great success has been achieved in MMS mission using such multiple top-hat analyzers to achieve unprecedented temporal resolution. An instantaneous angular coverage of charged particles measurements is an alternative approach to pursuing the goal of high time resolution. This was done with 4-D Fast Omnidirectional Nonscanning Energy Mass Analyzer and, to a lesser extent, by DYMIO instruments for Mars-96 and with the Fast Imaging Plasma Spectrometer instrument for MErcury Surface, Space ENvironment, GEochemistry, and Ranging mission. In this paper we describe, along with precursors, a plasma analyzer with a 2π electrostatic mirror that was developed originally for the Phobos-Soil mission with a follow-up in the frame of the BepiColombo mission and is under development for future Russian missions. Different versions of instrument are discussed along with their advantages and drawbacks.

  3. COATLI: an all-sky robotic optical imager with 0.3 arcsec image quality

    CERN Document Server

    Watson, Alan M; Núñez, Luis C Álvarez; Ángeles, Fernando; Becerra-Godínez, Rosa L; Chapa, Oscar; Farah, Alejandro S; Fuentes-Fernández, Jorge; Figueroa, Liliana; Lebre, Rosalía Langarica; Quirós, Fernando; Román-Zúñiga, Carlos G; Ruíz-Diáz-Soto, Jaime; Tejada, Carlos G; Tinoco, Silvio J

    2016-01-01

    COATLI will provide 0.3 arcsec FWHM images from 550 to 900 nm over a large fraction of the sky. It consists of a robotic 50-cm telescope with a diffraction-limited fast-guiding imager. Since the telescope is small, fast guiding will provide diffraction-limited image quality over a field of at least 1 arcmin and with coverage of a large fraction of the sky, even in relatively poor seeing. The COATLI telescope will be installed at the at the Observatorio Astron\\'omico Nacional in Sierra San Pedro M\\'artir, M\\'exico, during 2016 and the diffraction-limited imager will follow in 2017.

  4. An All-Sky Search for Steady VHE Gamma-Ray Sources

    CERN Document Server

    Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

    1999-01-01

    The Milagrito water Cherenkov detector in the Jemez Mountains near Los Alamos, New Mexico took data from February 1997 to April 1998. Milagrito served as a prototype for the larger Milagro detector, which has just begun operations. Milagrito was the first large-aperture gamma-ray detector with sensitivity to gamma rays below 1 TeV. We report here on a search for steady emission from point sources over most of the northern sky using data from Milagrito.

  5. Wiener Reconstruction of All-Sky Galaxy Surveys in Spherical Harmonics

    Science.gov (United States)

    Lahav, O.; Fisher, K. B.; Hoffman, Y.; Scharf, C. A.; Zaroubi, S.

    1994-03-01

    The analysis of whole-sky galaxy surveys commonly suffers from the problems of shot-noise and incomplete sky coverage (e.g., at the Zone of Avoidance). The orthogonal set of spherical harmonics is utilized here to expand the observed galaxy distribution. We show that in the framework of Bayesian statistics and Gaussian random fields the 4π harmonics can be recovered and the shot-noise can be removed, giving the optimal picture of the underlying density field. The correction factor from observed to reconstructed harmonics turns out to be the well-known Wiener filter (the ratio of signal to signal + noise), which is also derived by requiring minimum variance. We apply the method to the projected 1.2 Jy IRAS survey. The reconstruction confirms the connectivity of the supergalactic plane across the Galactic plane (at Galactic longitude l~135^deg^ and l~315^deg^) and the Puppis cluster behind the Galactic plane (l~240^deg^). The method can be extended to three dimensions in both real and redshift space, and applied to other cosmic phenomena such as the COBE microwave background maps.

  6. ALL SKY CAMERA OBSERVATIONS OF CLOUD AND LIGHT POLLUTION AT THIRTY METER TELESCOPE CANDIDATE SITES

    Directory of Open Access Journals (Sweden)

    W. Skidmore

    2011-01-01

    Full Text Available Cámaras fotográficas de cobertura hemisférica fueron instaladas en los sitios candidatos del Telescopio de Treinta Metros (TMT para obtener imágenes que permitieron estimar las estadísticas de cobertura de nubes, y evaluar el nivel de contaminación lumínica. Dos métodos fueron empleados para estudiar la cobertura de nubes; el primero un método manual basado en la inspección de películas en las bandas azul y rojo, y el segundo un método automático basado en la análisis fotométrico de las imágenes. Desarrollamos un procedimiento para el estudio de la contaminación lumínica que demostró que esta contaminación, en los sitios candidatos, no es relevante para la selección de sitio de TMT.

  7. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    CERN Document Server

    Wilson-Hodge, Colleen A; Bhat, P N; Briggs, M S; Chaplin, V; Connaughton, V; Camero-Arranz, A; Case, G; Cherry, M; Rodi, J; Finger, M H; Jenke, P; Haynes, R H

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog enters or exits occultation by the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results can be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation

  8. An All Sky Extrasolar Planet Survey with new generation multiple object Doppler instruments at Sloan telescope

    Directory of Open Access Journals (Sweden)

    Jian Ge

    2007-01-01

    Full Text Available La Exploración de Planetas Extrasolares de Todo el Cielo (ASEPS utilizara el telescopio Sloan de 2.5-m de campo amplio y la nueva generación de instrumentos Doppler de objetos múltiples de alto rendimiento con el fin de emprender una exploración Doppler a gran escala en las bandas del visibles e IR cercano de hasta 250,000 estrellas relativamente brillantes (V < 13 y J < 11 y para planetas extrasolares entre 2008-2013. Una exploración continuada hasta 2020 podrá explorar 250,000 estrellas adicionales y obtener información sobre planetas de periodo largo, posiblemente detectando muchos análogos solares. El objetivo de ASEPS es el de incrementar el número de planetas extrasolares en casi dos órdenes de magnitud (hasta 10,000 planetas durante 12 años utilizando todas las noches despejadas. Este incremento tan dramático en el número de planetas conocidos permitirá estudiar mejor las correlaciones entre las diversas propiedades de planetas extrasolares. Además, el gran número de descubrimientos de planetas permitirá detectar planetas raros que pudieron haber quedado fuera de búsquedas previas, así como también planetas en tránsito, y sistemas de planetas múltiples que interactúan entre sí.

  9. All sky CMB map from cosmic strings integrated Sachs-Wolfe effect

    CERN Document Server

    Ringeval, Christophe

    2012-01-01

    By actively distorting the Cosmic Microwave Background (CMB) over our past light cone, cosmic strings are unavoidable sources of non-Gaussianity. Developing optimal estimators able to disambiguate a string signal from the primordial type of non-Gaussianity requires calibration over synthetic full sky CMB maps, which till now had been numerically unachievable at the resolution of modern experiments. In this paper, we provide the first high resolution full sky CMB map of the temperature anisotropies induced by a network of cosmic strings since the recombination. The map has about 200 million sub-arcminute pixels in the healpix format which is the standard in use for CMB analyses (Nside=4096). This premiere required about 800,000 cpu hours; it has been generated by using a massively parallel ray tracing method piercing through a thousands of state of art Nambu-Goto cosmic string numerical simulations which pave the comoving volume between the observer and the last scattering surface. We explicitly show how this ...

  10. All-Sky Earth Occultation Observations with the Fermi Gamma-Ray Burst Monitor

    Science.gov (United States)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Jenke, P.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; Haynes, R. H.; Preece, R.; Rodi, J.

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/ soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels.

  11. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    Science.gov (United States)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; Jenke, P.; Paciesas, W.; Preece, R.; Rodi, J.

    2010-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. New sources are added to our catalog as they become active or upon request. In addition to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results will be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation.

  12. All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2010-01-01

    We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.

  13. IDENTIFICATION OF 1.4 MILLION ACTIVE GALACTIC NUCLEI IN THE MID-INFRARED USING WISE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, N. J.; Dudik, R. P.; Dorland, B. N.; Zacharias, N.; Makarov, V.; Fey, A.; Frouard, J.; Finch, C. [U.S. Naval Observatory, 3450 Massachusetts Avenue NW, Washington, DC 20392 (United States)

    2015-11-15

    We present an all-sky sample of ≈1.4 million active galactic nuclei (AGNs) meeting a two-color infrared photometric selection criteria for AGNs as applied to sources from the Wide-field Infrared Survey Explorer final catalog release (AllWISE). We assess the spatial distribution and optical properties of our sample and find that the results are consistent with expectations for AGNs. These sources have a mean density of ≈38 AGNs per square degree on the sky, and their apparent magnitude distribution peaks at g ≈ 20, extending to objects as faint as g ≈ 26. We test the AGN selection criteria against a large sample of optically identified stars and determine the “leakage” (that is, the probability that a star detected in an optical survey will be misidentified as a quasi-stellar object (QSO) in our sample) rate to be ≤4.0 × 10{sup −5}. We conclude that our sample contains almost no optically identified stars (≤0.041%), making this sample highly promising for future celestial reference frame work as it significantly increases the number of all-sky, compact extragalactic objects. We further compare our sample to catalogs of known AGNs/QSOs and find a completeness value of ≳84% (that is, the probability of correctly identifying a known AGN/QSO is at least 84%) for AGNs brighter than a limiting magnitude of R ≲ 19. Our sample includes approximately 1.1 million previously uncataloged AGNs.

  14. The First Hyper-Luminous Infrared Galaxy Discovered by WISE

    Science.gov (United States)

    Eisenhardt, Peter R.; Wu, Jingwen; Tsai, Chao-Wei; Assef, Roberto; Benford, Dominic; Blain, Andrew; Bridge, Carrie; Condon, J. J.; Cushing, Michael C.; Cutri, Roc; Evans, Neal J., III; Gelino, Chris; Griffith, Roger L.; Grillmair, Carl J.; Jarrett, Tom; Lonsdale, Carol J.; Masci, Frank J.; Mason, Brian S.; Petty, Sara; Sayers, Jack; Stanford, S. Adam; Stern, Daniel; Wright, Edward L.; Yan, Lin

    2012-01-01

    We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISEJ181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of approximately 1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 micrometers and well detected at 12 or 22 micrometers). The WISE data and a 350 micrometers detection give a minimum bolometric luminosity of 3.7 x 10(exp 13) solar luminosity, with approximately 10(exp 14) solar luminosity plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate approximately 300 solar mass yr(exp -1), accounting for less than or equal to 10 percent of the bolometric luminosity. Strong 22 micrometer emission relative to 350 micrometer implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is approximately 10? above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local MBH-bulge mass relation, the implied Eddington ratio is approximately greater than 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.

  15. XID II: Statistical Cross-Association of ROSAT Bright Source Catalog X-ray Sources with 2MASS Point Source Catalog Near-Infrared Sources

    CERN Document Server

    Haakonsen, Christian Bernt; 10.1088/0067-0049/184/1/138

    2009-01-01

    The 18806 ROSAT All Sky Survey Bright Source Catalog (RASS/BSC) X-ray sources are quantitatively cross-associated with near-infrared (NIR) sources from the Two Micron All Sky Survey Point Source Catalog (2MASS/PSC). An association catalog is presented, listing the most likely counterpart for each RASS/BSC source, the probability Pid that the NIR source and X-ray source are uniquely associated, and the probability Pnoid that none of the 2MASS/PSC sources are associated with the X-ray source. The catalog includes 3853 high quality (Pid>0.98) X-ray--NIR matches, 2280 medium quality (0.98>Pid>0.9) matches, and 4153 low quality (0.9>Pid>0.5) matches. Of the high quality matches, 1418 are associations that are not listed in the SIMBAD database, and for which no high quality match with a USNO-A2 optical source was presented for the RASS/BSC source in previous work. The present work offers a significant number of new associations with RASS/BSC objects that will require optical/NIR spectroscopy for classification. For...

  16. WISE TF: A Mid-infrared, 3.4-micron Extension of the Tully-Fisher Relation Using WISE Photometry

    CERN Document Server

    Lagattuta, David J; Staveley-Smith, Lister; Hong, Tao; Springob, Christopher M; Masters, Karen L; Koribalski, Bärbel S; Jones, D Heath

    2013-01-01

    We present a mid-infrared Tully-Fisher (TF) relation using photometry from the 3.4-micron W1 band of the Wide-field Infrared Survey Explorer (WISE) satellite. The WISE TF relation is formed from 568 galaxies taken from the all-sky 2MASS Tully-Fisher (2MTF) galaxy catalog, spanning a range of environments including field, group, and cluster galaxies. This constitutes the largest mid-infrared TF relation constructed, to date. After applying a number of corrections to galaxy magnitudes and line widths, we measure a master TF relation given by M_corr = -22.24 - 10.05[log(W_corr) - 2.5], with an average dispersion of sigma_WISE = 0.686 magnitudes. There is some tension between WISE TF and a preliminary 3.6-micron relation, which has a shallower slope and almost no intrinsic dispersion. However, our results agree well with a more recent relation constructed from a large sample of cluster galaxies. We additionally compare WISE TF to the near-infrared 2MTF template relations, finding a good agreement between the TF p...

  17. YSO Clusters on Galactic Infrared Loops

    Science.gov (United States)

    Marton, Gábor; Kiss, Zoltán Tamás; Tóth, L. Viktor; Zahorecz, Sarolta; Pásztor, László; Ueno, Munateka; Kitamura, Yoshimi; Tamura, Motohide; Kawamura, Akiko; Onishi, Toshikazu

    The AKARI all sky survey (Murakami et al. Publ. Astron. Soc. Jpn. 59:369, 2007) was investigated for YSO candidates. Distribution of candidate sources have been analysed and compared to that of galactic CO and medium scale structures. Clustering and other inhomogenities have been found.

  18. Infrared Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The end goal of this project is to develop proof-of-concept infrared detectors which can be integrated in future infrared instruments engaged in remote...

  19. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  20. The Gˆ Mid-Infrared Search for Extraterrestrial Civilizations with Large Power Supplies: First Results

    Science.gov (United States)

    Povich, M. S.; Wright, J. T.; Griffith, R.; Sigurdsson, S.; Maldonado, J. T.; Mullan, B.

    2014-03-01

    We present initial results from the Glimpsing Heat from Alien Technologies ("G-HAT" or Gˆ), in which we use the WISE all-sky mid-infrared (MIR) Source Catalog to search for and place constraints on the abundance of extraterrestrial civilizations with large power supplies. A civilization consuming a significant fraction of the luminous power of their host star (Kardashev type II civilization or K2; Kardashev 1964) or galaxy (K3) and operating at a temperature similar to the equilibrium temperatures in or near stellar habitable zones will produce MIR excess emission in the form of waste heat. Searches for such MIR excesses from K2s have been performed in the past, notably by Carrigan (2009) using the IRAS source catalog. Taking advantage of the 103 improvement in sensitivity over IRAS provided by WISE, Gˆ has enabled the first systematic search for waste heat from galaxy-spanning K3 civilizations and will search for K2s throughout a significant fraction of the Milky Way's volume. We find that a galaxy-spanning (K III) civilization with an power supply of more than about one percent of its stellar luminosity will have detectable mid-infrared excess. We have produced a catalog of 32,000 WISE extended sources and visually reviewed the data and literature on the reddest 4000 of them, identifying several hundred candidates worthy of detailed observational follow-up. Mid-infrared spectra, far-infrared photometry, and radio emission from CO could be used to distinguish extraterrestrial mid-infrared radiation from dust. We will extend this analysis to WISE point sources to search for K2s.

  1. Sample of optically unidentified X-ray binaries in the Galactic bulge. Constraints on the physical nature from infrared photometric surveys

    CERN Document Server

    Zolotukhin, Ivan

    2014-01-01

    We report on the archival near-infrared and mid-infrared observations of 7 persistent X-ray sources situated in the Galactic bulge using data from the UKIRT Infrared Deep Sky Survey (UKIDSS), Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) and the Wide-field Infrared Survey Explorer (WISE) all-sky survey. We were able to successfully identify, or provide upper flux limits for the systems SAX J1747.0-2853, IGR J17464-2811, AX J1754.2-2754, IGR J17597-2201, IGR J18134-1636, IGR J18256-1035, Ser X-1 and constrain the nature of these systems. In the case of IGR J17597-2201 we present arguments that the source accretes matter from the stellar wind rather than via Roche lobe overflow of the secondary. We suggest that, at its X-ray luminosity of $10^{34-35}$ erg s$^{-1}$, we are probing the poorly known class of wind-fed low-mass X-ray binaries (LMXBs).

  2. The environment of the infrared dust bubble N65: a mutiwavelength study

    CERN Document Server

    Petriella, A; Giacani, E B

    2010-01-01

    AIMS: We investigate the environment of the infrared dust bubble N65 and search for evidence of triggered star formation in its surroundings. METHODS: We performed a multiwavelength study of the region around N65 with data taken from large-scale surveys: Two Micron All Sky Survey, GLIMPSE, MIPSGAL, SCUBA, and GRS. We analyzed the distribution of the molecular gas and dust in the environment of N65 and performed infrared photometry and spectral analysis of point sources to search for young stellar objects and identify the ionizing star candidates. RESULTS: We found a molecular cloud that appears to be fragmented into smaller clumps along the N65 PDR. This indicates that the so-called collect and collapse process may be occurring. Several young stellar objects are distributed among the molecular clumps. They may represent a second generation of stars whose formation was triggered by the bubble expanding into the molecular gas. We dentified O-type stars inside N65, which are the most reliable ionizing star candi...

  3. The Nuclear Structure in Nearby Luminous Infrared Galaxies: HST NICMOS Imaging of the GOALS Sample

    CERN Document Server

    Haan, S; Armus, L; Evans, A S; Howell, J H; Mazzarella, J M; Kim, D C; Vavilkin, T; Inami, H; Sanders, D B; Petric, A; Bridge, C R; Melbourne, J L; Charmandaris, V; Diaz-Santos, T; Murphy, E J; U, V; Stierwalt, S; Marshall, J A

    2010-01-01

    We present results of Hubble Space Telescope NICMOS H-band imaging of 73 of most luminous (i.e., log[L_IR/L_0]>11.4) Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). This dataset combines multi-wavelength imaging and spectroscopic data from space (Spitzer, HST, GALEX, and Chandra) and ground-based telescopes. In this paper we use the high-resolution near-infrared data to recover nuclear structure that is obscured by dust at optical wavelengths and measure the evolution in this structure along the merger sequence. A large fraction of all galaxies in our sample possess double nuclei (~63%) or show evidence for triple nuclei (~6%). Half of these double nuclei are not visible in the HST B-band images due to dust obscuration. The majority of interacting LIRGs have remaining merger timescales of 0.3 to 1.3 Gyrs, based on the projected nuclear separations and the mass ratio of nuclei. We find that the bulge luminosity surface density increases significantly along the merger sequence ...

  4. The Spatial Extent of (U)LIRGs in the mid-Infrared I: The Continuum Emission

    CERN Document Server

    Diaz-Santos, T; Armus, L; Petric, A O; Howell, J H; Murphy, E J; Mazzarella, J M; Veilleux, S; Bothun, G; Inami, H; Appleton, P N; Evans, A S; Haan, S; Marshall, J A; Sanders, D B; Stierwalt, S; Surace, J A

    2010-01-01

    We present an analysis of the extended mid-infrared (MIR) emission of the Great Observatories All-Sky LIRG Survey (GOALS) sample based on 5-15um low resolution spectra obtained with the IRS on Spitzer. We calculate the fraction of extended emission as a function of wavelength for the galaxies in the sample, FEE_lambda. We can identify 3 general types of FEE_lambda: one where it is constant, one where features due to emission lines and PAHs appear more extended than the continuum, and a third which is characteristic of sources with deep silicate absorption at 9.7um. More than 30% of the galaxies have a median FEE_lambda larger than 0.5 implying that at least half of their MIR emission is extended. Luminous Infrared Galaxies (LIRGs) display a wide range of FEE in their warm dust continuum (0~10^11.25Lsun strongly increases in those classified as mergers in their final stage of interaction. The FEE_13.2um is also related to the contribution of an active galactic nucleus (AGN) to the MIR. Galaxies which are more ...

  5. The Complete Infrared View of Active Galactic Nuclei from the 70-month Swift/BAT Catalog

    CERN Document Server

    Ichikawa, Kohei; Ueda, Yoshihiro; Matsuoka, Kenta; Toba, Yoshiki; Kawamuro, Taiki; Trakhtenbrot, Benny; Koss, Michael J

    2016-01-01

    We systematically investigate the near- (NIR) to far-infrared (FIR) photometric properties of a nearly complete sample of local active galactic nuclei (AGN) detected in the Swift/Burst Alert Telescope (BAT) all-sky ultra hard X-ray (14-195 keV) survey. Out of 606 non-blazar AGN in the Swift/BAT 70-month catalog at high galactic latitude of $|b|>10^{\\circ}$, we obtain IR photometric data of 604 objects by cross-matching the AGN positions with catalogs from the WISE, AKARI, IRAS, and Herschel infrared observatories. We find a good correlation between the ultra-hard X-ray and mid-IR (MIR) luminosities over five orders of magnitude ($41 < \\log (L_{14-195}/{\\rm erg}~{\\rm s}^{-1})< 46$). Informed by previous measures of the intrinsic spectral energy distribution of AGN, we find FIR pure-AGN candidates whose FIR emission is thought to be AGN-dominated with low starformation activity. We demonstrate that the dust covering factor decreases with the bolometric AGN luminosity, confirming the luminosity-dependent u...

  6. Characterization of high proper motion objects from the wide-field infrared survey explorer

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Sheppard, Scott S., E-mail: kluhman@astro.psu.edu [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States)

    2014-06-01

    We present an analysis of high proper motion objects that we have found in a recent study and in this work with multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE). Using photometry and proper motions from the Two Micron All-Sky Survey and WISE, we have identified the members of this sample that are likely to be late-type, nearby, or metal-poor. We have performed optical and near-infrared spectroscopy on 41 objects, from which we measure spectral types that range from M4-T2.5. This sample includes 11 blue L dwarfs and 5 subdwarfs; the latter were also classified as such in the recent study by Kirkpatrick and coworkers. Based on their spectral types and photometry, several of our spectroscopic targets may have distances of <20 pc with the closest at ∼12 pc. The tangential velocities implied by the spectrophotometric distances and proper motions indicate that four of the five subdwarfs are probably members of the Galactic halo while several other objects, including the early-T dwarf WISE J210529.08–623558.7, may belong to the thick disk.

  7. Distribution and characteristics of Infrared Dark Clouds using genetic forward modelling

    CERN Document Server

    Marshall, D J; Jones, A P

    2009-01-01

    Infrared Dark Clouds (IRDCs) are dark clouds seen in silhouette in mid-infrared surveys. They are thought to be the birthplace of massive stars, yet remarkably little information exists on the properties of the population as a whole (e.g. mass spectrum, spatial distribution). Genetic forward modelling is used along with the Two Micron All Sky Survey and the Besancon Galactic model to deduce the three dimensional distribution of interstellar extinction towards previously identified IRDC candidates. This derived dust distribution can then be used to determine the distance and mass of IRDCs, independently of kinematic models of the Milky Way. Along a line of sight that crosses an IRDC, the extinction is seen to rise sharply at the distance of the cloud. Assuming a dust to gas ratio, the total mass of the cloud can be estimated. The method has been successfully applied to 1259 IRDCs, including over 1000 for which no distance or mass estimate currently exists. The IRDCs are seen to lie preferentially along the spi...

  8. Infrared Signature of Active Massive Black Holes in Nearby Dwarf Galaxies

    CERN Document Server

    Marleau, Francine R; Bianconi, Matteo; Habas, Rebecca

    2014-01-01

    We have identified 314 nearby galaxies that display the infrared signature of black hole activity. Of these, twelve lie within a distance of 11 Mpc, the nearest being EW Eri located only 50 kpc away. Using the Wide-field Infrared Survey Explorer (WISE) All-Sky Release Source Catalog, we examine the IR colors of a sample of known nearby dwarf galaxies in order to identify both unobscured (type 1) and obscured (type 2) active galactic nuclei in these low-mass systems. We estimate the stellar and black hole masses for our nearby dwarf galaxy sample and find that activity is detected in galaxies with stellar masses from 10^5 to 10^9 M_sun and that this activity is due to black holes with masses in the range 10^2-10^6 M_sun. The black hole masses probed here are several orders of magnitude smaller than previously reported for centrally located massive black holes. We examine the stellar mass versus black hole mass relationship in this low galaxy mass regime, and find that the existing relation extends to these low...

  9. First Detection of Galactic Latitude Dependence of Near-Infrared Diffuse Galactic Light from DIRBE Reanalysis

    CERN Document Server

    Sano, K; Tsumura, K; Arai, T; Shirahata, M; Onishi, Y

    2016-01-01

    Observational study on near-infrared (IR) scattering properties of interstellar dust grains has been limited due to its faintness. Using all-sky maps obtained from Diffuse Infrared Background Experiment (DIRBE), we investigate the scattering property from diffuse Galactic light (DGL) measurements at 1.25, 2.2, and 3.5 {\\mu}m in addition to our recent analyses of diffuse near-IR emission (Sano et al. 2015; Sano et al. 2016). As a result, we first find that the intensity ratios of near-IR DGL to 100 {\\mu}m emission increase toward low Galactic latitudes at 1.25 and 2.2 {\\mu}m. The derived latitude dependence can be reproduced by a scattered light model of interstellar dust with a large scattering asymmetry factor g = of $0.8^{+0.2}_{-0.3}$ at 1.25 and 2.2 {\\mu}m, assuming an infinite Galaxy disk as an illuminating source. The derived asymmetry factor is comparable to the values obtained in the optical, but several times larger than that expected from a recent dust model. Since possible latitude dependence of u...

  10. NEW M, L, AND T DWARF COMPANIONS TO NEARBY STARS FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, Kevin L.; Loutrel, Nicholas P.; McCurdy, Nicholas S.; Melso, Nicole D.; Star, Kimberly M.; Terrien, Ryan C. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Mace, Gregory N.; McLean, Ian S. [UCLA Division of Astronomy and Astrophysics, Los Angeles, CA 90095 (United States); Young, Michael D.; Rhode, Katherine L. [Department of Astronomy, Indiana University, Swain West 319, 727 East Third Street, Bloomington, IN 47405 (United States); Davy Kirkpatrick, J., E-mail: kluhman@astro.psu.edu [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-12-01

    We present 11 candidate late-type companions to nearby stars identified with data from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All Sky Survey (2MASS). Eight of the candidates are likely to be companions based on their common proper motions with the primaries. The remaining three objects are rejected as companions, one of which is a free-floating T7 dwarf. Spectral types are available for five of the companions, which consist of M2V, M8.5V, L5, T8, and T8. Based on their photometry, the unclassified companions are probably two mid-M dwarfs and one late-M/early-L dwarf. One of the T8 companions, WISE J142320.84+011638.0, has already been reported by Pinfield and coworkers. The other T8 companion, ULAS J095047.28+011734.3, was discovered by Burningham and coworkers through the United Kingdom Infrared Telescope Infrared Deep Sky Survey, but its companionship has not been previously recognized in the literature. The L5 companion, 2MASS J17430860+8526594, is a new member of a class of L dwarfs that exhibit unusually blue near-IR colors. Among the possible mechanisms that have been previously proposed for the peculiar colors of these L dwarfs, low metallicity does not appear to be a viable explanation for 2MASS J17430860+8526594 since our spectrum of the primary suggests that its metallicity is not significantly subsolar.

  11. New M, L, and T Dwarf Companions to Nearby Stars from the Wide-field Infrared Survey Explorer

    CERN Document Server

    Luhman, Kevin L; McCurdy, Nicholas S; Mace, Gregory N; Melso, Nicole D; Star, Kimberly M; Young, Michael D; Terrien, Ryan C; McLean, Ian S; Kirkpatrick, J Davy; Rhode, Katherine L

    2012-01-01

    We present 11 candidate late-type companions to nearby stars identified with data from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky Survey (2MASS). Eight of the candidates are likely to be companions based on their common proper motions with the primaries. The remaining three objects are rejected as companions, one of which is a free-floating T7 dwarf. Spectral types are available for five of the companions, which consist of M2V, M8.5V, L5, T8, and T8. Based on their photometry, the unclassified companions are probably two mid-M dwarfs and one late-M/early-L dwarf. One of the T8 companions, WISE J142320.84+011638.0, has already been reported by Pinfield and coworkers. The other T8 companion, ULAS J095047.28+011734.3, was discovered by Burningham and coworkers through the United Kingdom Infrared Telescope Infrared Deep Sky Survey, but its companionship has not been previously recognized in the literature. The L5 companion, 2MASS J17430860+8526594, is a new member of a class of L dw...

  12. the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. II. Framework, strategy, and first result

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J. T.; Griffith, R. L.; Sigurdsson, S. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA, 16802 (United States); Povich, M. S. [Department of Physics and Astronomy, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, CA 91768 (United States); Mullan, B. [Blue Marble Space Institution of Science, P.O. Box 85561, Seattle, WA 98145-1561 (United States)

    2014-09-01

    We describe the framework and strategy of the Ĝ infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations' waste heat. We develop a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although GAIA will significantly improve our capability to identify the latter. We present a zeroth order null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can extend our methodology to smaller waste heat luminosities, and potentially entirely rule out (or detect) both Kardashev Type III civilizations and new physics that allows for unlimited 'free' energy generation.

  13. Infrared design examples

    CERN Document Server

    Wolfe, William L

    1999-01-01

    This tutorial covers infrared design examples in considerable detail, building on principles presented in an earlier text, 'Introduction to Infrared System Design' (SPIE PRESS Vol. TT24). The text explores a range of problems illustrating several design issues, with applications in military, industry, aeronautics, space, and medicine, among others.

  14. Mid-infrared properties of luminous infrared galaxies. II. Probing the dust and gas physics of the goals sample

    Energy Technology Data Exchange (ETDEWEB)

    Stierwalt, S.; Armus, L.; Diaz-Santos, T.; Marshall, J.; Haan, S.; Howell, J.; Murphy, E. J.; Inami, H.; Petric, A. O. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Charmandaris, V. [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Iwasawa, K. [INAF-Observatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Kim, D. C. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Rich, J. A. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Spoon, H. W. W. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); U, V., E-mail: sabrinas@virginia.edu [Department of Physics and Astronomy, University of California, Riverside, CA 92507 (United States)

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ{sub 9.7μm}, τ{sub ice}, neon line ratios, and PAH feature ratios). However, as their EQW{sub 6.2{sub μm}} decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L{sub IR}/L{sub 8{sub μm}}) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ∼6% of the sample but only in the most obscure sources (s{sub 9.7{sub μm}} < –1.24). Ice absorption features are observed in ∼11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H{sub 2})/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H{sub 2})/L

  15. Selection of a Sample of Suitable Potential Mid-Infrared Calibration Stars from the Hipparcos/Tycho Catalogue

    Science.gov (United States)

    Martín-Luis, F.; Kidger, M.; Cohen, M.

    With the increasing availability of sensitive mid-IR area detectors on large telescopes there is a pressing need to increase the number and faintness of mid-infrared flux standards that are available. It is necessary to go as much as 4 orders of magnitude fainter in flux than the faintest ISO calibrators, although building on the foundations of the ISO calibration legacy. In an attempt to resolve this problem we have searched the Hipparcos/Tycho catalogue for stars of type KIII and AV that are suitable potential standard stars for the mid-infrared. Colour, variability, and astrometric criteria have been used. We discuss the progress that has already been made towards the resolution of the problem of calibration, particularly the studies aimed at obtaining an initial list of normal stars with reliable spectral type and good visible photometry, and which have a high density on the sky. We discuss a method for templating highly accurate fluxes from 1 to 30 μm from the visible colours and spectral type of a star of type AV or KIII that will allow us to predict fluxes with great accuracy, with a resolution Δ λ/λ ˜ 3000. This resolution is well adapted to proposed infrared instruments on the Spanish 10m Gran Telescopio Canarias. Our aim is to produce a list of 1000 standard stars with highly accurate calibration from 1 to 30 μm for Day 1 of the GTC. Work in progress has produced an initial list of ˜7000 candidate stars north of declination -44o. MSX infrared photometry has been found for 881 of the stars included in our all-sky survey, allowing us to extend the spectral coverage of a significant fraction of these stars into the mid-infrared.

  16. Infrared Solar Physics

    Directory of Open Access Journals (Sweden)

    Matthew J. Penn

    2014-05-01

    Full Text Available The infrared solar spectrum contains a wealth of physical data about our Sun, and is explored using modern detectors and technology with new ground-based solar telescopes. The scientific motivation behind exploring these wavelengths is presented, along with a brief look at the rich history of observations here. Several avenues of solar physics research exploiting and benefiting from observations at infrared wavelengths from roughly 1000 nm to 12 400 nm are discussed, and the instrument and detector technology driving this research is briefly summarized. Finally, goals for future work at infrared wavelengths are presented in conjunction with ground and space-based observations.

  17. The Spatial Extent of (U)LIRGs in the Mid-infrared. I. The Continuum Emission

    Science.gov (United States)

    Díaz-Santos, T.; Charmandaris, V.; Armus, L.; Petric, A. O.; Howell, J. H.; Murphy, E. J.; Mazzarella, J. M.; Veilleux, S.; Bothun, G.; Inami, H.; Appleton, P. N.; Evans, A. S.; Haan, S.; Marshall, J. A.; Sanders, D. B.; Stierwalt, S.; Surace, J. A.

    2010-11-01

    We present an analysis of the extended mid-infrared (MIR) emission of the Great Observatories All-Sky LIRG Survey sample based on 5-15 μm low-resolution spectra obtained with the Infrared Spectrograph on Spitzer. We calculate the fraction of extended emission (FEE) as a function of wavelength for the galaxies in the sample, FEEλ, defined as the fraction of the emission which originates outside of the unresolved component of a source at a given distance. We find that the FEEλ varies from one galaxy to another, but we can identify three general types of FEEλ: one where FEEλ is constant, one where features due to emission lines and polycyclic aromatic hydrocarbons appear more extended than the continuum, and a third which is characteristic of sources with deep silicate absorption at 9.7 μm. More than 30% of the galaxies have a median FEEλ larger than 0.5, implying that at least half of their MIR emission is extended. Luminous Infrared Galaxies (LIRGs) display a wide range of FEE in their warm dust continuum (0 ~ 1011.25 L sun strongly increases in those classified as mergers in their final stage of interaction. The FEE13.2 μm is also related to the contribution of an active galactic nucleus (AGN) to the MIR emission. Galaxies which are more AGN dominated are less extended, independently of their L IR. We finally find that the extent of the MIR continuum emission is correlated with the far-IR IRAS log(f 60 μm/f 100 μm) color. This enables us to place a lower limit to the area in a galaxy from where the cold dust emission may originate, a prediction which can be tested soon with the Herschel Space Telescope.

  18. Discovering Massive Runaway Stars with Infrared Bow Shock Nebulae: Four OB Stars Found in WISE

    Science.gov (United States)

    Wernke, Heather N.; Kobulnicky, Henry A.; Dale, Daniel A.; Povich, Matthew S.; Andrews, Julian E.; Chick, William T.; Munari, Stephan; Olivier, Grace M.; Schurhammer, Danielle; Sorber, Rebecca L.

    2016-01-01

    Supernovae, pulsars, and gamma-ray bursts are examples of the result of the death of massive (late-O and early-B type) stars. Determining stellar mass loss rates can help us predict the type of death the star will endure. We focus on stars that are located at the center of an infrared bow shock nebula, indicating that the star was flung from its birthplace at supersonic speed. Observing these massive, high-velocity, runaway stars with bow shock nebulae to determine their spectral type will help in the measurements of their stellar mass loss rates. The spectra of four OB stars driving bow shock candidates are presented. These four candidates were found by searching through the Wide-field Infrared Survey Explorer (WISE) All-Sky Data Release and were the most visible in the WISE 21µm band. The spectrum for each star was obtained with the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO). The spectral types of G077.3617+01.16 (HD 229159), G079.8219+00.096 ([CPR2002]A10), G092.7265+00.18, and G076.0752-02.2044 (TYC 2697-1046-1) were found to be B1.0I, O9.0V, B0.0V, and B0.0V respectively. As predicted, the candidates are all either late-O or early-B type stars. Now that the spectral types of these stars are known, further analysis can be done to determine the velocities, temperatures, masses, and stellar mass loss rates.This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  19. Infrared processing of foods

    Science.gov (United States)

    Infrared (IR) processing of foods has been gaining popularity over conventional processing in several unit operations, including drying, peeling, baking, roasting, blanching, pasteurization, sterilization, disinfection, disinfestation, cooking, and popping . It has shown advantages over conventional...

  20. Optically triggered infrared photodetector.

    Science.gov (United States)

    Ramiro, Íñigo; Martí, Antonio; Antolín, Elisa; López, Esther; Datas, Alejandro; Luque, Antonio; Ripalda, José M; González, Yolanda

    2015-01-14

    We demonstrate a new class of semiconductor device: the optically triggered infrared photodetector (OTIP). This photodetector is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. Our experimental device, fabricated using InAs/AlGaAs quantum-dot technology, demonstrates normal incidence infrared detection in the 2-6 μm range. The detection is optically triggered by a 590 nm light-emitting diode. Furthermore, the detection gain is achieved in our device without an increase of the noise level. The novel characteristics of OTIPs open up new possibilities for third generation infrared imaging systems ( Rogalski, A.; Antoszewski, J.; Faraone, L. J. Appl. Phys. 2009, 105 (9), 091101).

  1. Infrared Semiconductor Metamaterials

    Science.gov (United States)

    2016-09-01

    AFRL-AFOSR-VA-TR-2016-0310 Infrared Semiconductor Metamaterials Jon Schuller UNIVERSITY OF CALIFORNIA SANTA BARBARA 3227 CHEADLE HL SANTA BARBARA, CA...From - To) 15-07-2013 to 14-07-2016 4. TITLE AND SUBTITLE Infrared Semiconductor Metamaterials 5a. CONTRACT NUMBER FA9550-13-1-0182 5b. GRANT...program are 1) establishing an approach for widely tunable resonators and metasurfaces 2) experimentally demonstrating widely tunable semiconductor

  2. Clustering of Infrared-bright Dust-obscured Galaxies Revealed by the Hyper Suprime-Cam and WISE

    Science.gov (United States)

    Toba, Yoshiki; Nagao, Tohru; Kajisawa, Masaru; Oogi, Taira; Akiyama, Masayuki; Ikeda, Hiroyuki; Coupon, Jean; Strauss, Michael A.; Wang, Wei-Hao; Tanaka, Masayuki; Niida, Mana; Imanishi, Masatoshi; Lee, Chien-Hsiu; Matsuhara, Hideo; Matsuoka, Yoshiki; Onoue, Masafusa; Terashima, Yuichi; Ueda, Yoshihiro; Harikane, Yuichi; Komiyama, Yutaka; Miyazaki, Satoshi; Noboriguchi, Akatoki; Usuda, Tomonori

    2017-01-01

    We present measurements of the clustering properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining 125 deg2 of wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid-IR images taken with Wide-Field Infrared Survey Explorer, we have discovered 4367 IR-bright DOGs with {(i-[22])}{AB}> 7.0 and flux density at 22 μ {{m}}> 1.0 mJy. We calculate the angular autocorrelation function (ACF) for a uniform subsample of 1411 DOGs with 3.0 mJy r 0 = 12.0 ± 2.0 and 10.3 ± 1.7 {h}-1 Mpc, respectively. IR-bright DOGs reside in massive dark matter halos with a mass of {log}[ /({h}-1 {M}ȯ )]={13.57}-0.55+0.50 and {13.65}-0.52+0.45 in the two cases, respectively.

  3. The \\^G Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. III. The Reddest Extended Sources in WISE

    CERN Document Server

    Griffith, Roger L; Maldonado, Jessica; Povich, Matthew S; Sigurdsson, Steinn; Mullan, Brendan

    2015-01-01

    Nearby Type II (galaxy-spanning) Kardashev supercivilizations would have high mid-infrared (MIR) luminosities. We have used the Wide-field Infrared Survey Explorer (WISE) to survey ~$1 \\times 10^5$ galaxies for extreme MIR emission, $10^3$ times more galaxies than the only previous such search. We have calibrated the WISE All-sky Catalog pipeline products to improve its photometry for extended sources. We present 563 extended sources with $|b| \\ge 10$ and red MIR colors, having visually vetted them to remove artifacts. No galaxies in our sample host an alien civilization reprocessing more than 85% of its starlight into the MIR, and only 50 galaxies, including Arp 220, have MIR luminosities consistent with >50% reprocessing. Ninety of these (likely) extragalactic sources have little literature presence; in most cases they are likely barely resolved galaxies or pairs of galaxies undergoing large amounts of star formation. Five are new to science and deserve further study. The Be star 48 Librae sits within a MIR...

  4. Multi-wavelength GOALS Observations of Star Formation and Active Galactic Nucleus Activity in the Luminous Infrared Galaxy IC 883

    CERN Document Server

    Modica, F; Evans, A S; Kim, D C; Mazzarella, J M; Iwasawa, K; Petric, A; Howell, J H; Surace, J A; Armus, L; Spoon, H W W; Sanders, D B; Barnes, J E

    2011-01-01

    New optical HST, Spitzer, GALEX, and Chandra observations of the single-nucleus, luminous infrared galaxy (LIRG) merger IC 883 are presented. The galaxy is a member of the Great Observatories All-sky LIRG Survey (GOALS), and is of particular interest for a detailed examination of a luminous late-stage merger due to the richness of the optically-visible star clusters and the extended nature of the nuclear X-ray, mid-IR, CO and radio emission. In the HST ACS images, the galaxy is shown to contain 156 optically visible star clusters distributed throughout the nuclear regions and tidal tails of the merger, with a majority of visible clusters residing in an arc ~ 3-7 kpc from the position of the mid-infrared core of the galaxy. The luminosity functions of the clusters have an alpha_F435W ~ -2.17+/-0.22 and alpha_F814W ~ -2.01+/-0.21. Further, the colors and absolute magnitudes of the majority of the clusters are consistent with instantaneous burst population synthesis model ages in the range of a few x10^7 - 10^8 ...

  5. The infrared luminosities of ˜332 000 SDSS galaxies predicted from artificial neural networks and the Herschel Stripe 82 survey

    Science.gov (United States)

    Ellison, Sara L.; Teimoorinia, Hossein; Rosario, David J.; Mendel, J. Trevor

    2016-01-01

    The total infrared (IR) luminosity (LIR) can be used as a robust measure of a galaxy's star formation rate (SFR), even in the presence of an active galactic nucleus (AGN), or when optical emission lines are weak. Unfortunately, existing all sky far-IR surveys, such as the Infrared Astronomical Satellite (IRAS) and AKARI, are relatively shallow and are biased towards the highest SFR galaxies and lowest redshifts. More sensitive surveys with the Herschel Space Observatory are limited to much smaller areas. In order to construct a large sample of LIR measurements for galaxies in the nearby Universe, we employ artificial neural networks (ANNs), using 1136 galaxies in the Herschel Stripe 82 sample as the training set. The networks are validated using two independent data sets (IRAS and AKARI) and demonstrated to predict the LIR with a scatter σ ˜ 0.23 dex, and with no systematic offset. Importantly, the ANN performs well for both star-forming galaxies and those with an AGN. A public catalogue is presented with our LIR predictions which can be used to determine SFRs for 331 926 galaxies in the Sloan Digital Sky Survey (SDSS), including ˜129 000 SFRs for AGN-dominated galaxies for which SDSS SFRs have large uncertainties.

  6. The Dynamics and Cold Gas Content of Luminous Infrared Galaxies in the Local Universe

    Science.gov (United States)

    Privon, George C.

    2014-01-01

    Many of the most luminous galaxies in the local universe are understood to be the product of mergers and interactions between disk galaxies. These encounters trigger enhanced star formation and accretion onto supermassive black holes; the bulk of which is hidden behind significant extinction from dust. Dynamical simulations matched to individual systems can provide great insight into the merger-driven activity by placing objects on a dynamically-determined merger timeline and by enabling follow-up hydrodynamic simulations which can be used to compare simulations directly with observations. New dynamical models will be presented for luminous infrared galaxies drawn from the Great Observatories All-sky LIRG survey, along with a dynamically-motivated merger stage classification system; these are facilitating a detailed comparison of simulated and observed properties of star formation. New observations of the cold ISM in these systems will also be shown,investigating the influence of AGN activity on tracers of high density (> 10^5 cm^-3) molecular gas.

  7. A Near-Infrared Spectroscopic Survey at the SDSS 2.5-meter Telescope?

    CERN Document Server

    Skrutskie, Michael F

    2015-01-01

    We are posting this 10-year-old white paper to support an upcoming survey description paper for the SDSS-III Apache Point Galactic Evolution Experiment (APOGEE) led by PI Dr. Steven Majewski. The white paper presented here was a contribution to a 2005 "futures" planning process for the Astrophysical Research Consortium led by Dr. Donald York that examined both prospects for extending the work of SDSS and SDSS-II as well as enhancing the capabilities of the Apache Point 3.5-meter telescope and the overall scientific reach of the Consortium. This particular white paper describes the potential for using the Sloan 2.5-meter telescope and its fiber optic infrastructure to conduct a galactic plane chemical abundance survey in the low-extinction 1.6um H-band. The survey would target >1000 red giant stars per night selected from the Two Micron All Sky Survey using a >200 fiber near-infrared spectrograph operating at spectral resolution of R~24,000 with a magnitude limit of H~12 - very close to the final APOGEE implem...

  8. Planck intermediate results. XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    CERN Document Server

    Aghanim, N; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, A J; Barreiro, R B; Bartolo, N; Basak, S; Benabed, K; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Burigana, C; Calabrese, E; Cardoso, J -F; Carron, J; Chiang, H C; Colombo, L P L; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; de Bernardis, P; de Zotti, G; Delabrouille, J; Di Valentino, E; Dickinson, C; Diego, J M; Doré, O; Douspis, M; Ducout, A; Dupac, X; Dusini, S; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Fantaye, Y; Finelli, F; Forastieri, F; Frailis, M; Fraisse, A A; Franceschi, E; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Gerbino, M; Ghosh, T; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Helou, G; Henrot-Versillé, S; Herranz, D; Hivon, E; Huang, Z; Jaffe, A H; Jones, W C; Keihänen, E; Keskitalo, R; Kiiveri, K; Kisner, T S; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lamarre, J -M; Langer, M; Lasenby, A; Lattanzi, M; Lawrence, C R; Jeune, M Le; Levrier, F; Lilje, P B; Lilley, M; Lindholm, V; López-Caniego, M; Ma, Y -Z; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Matarrese, S; Mauri, N; McEwen, J D; Melchiorri, A; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Moss, A; Natoli, P; Oxborrow, C A; Pagano, L; Paoletti, D; Patanchon, G; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Plaszczynski, S; Polastri, L; Polenta, G; Puget, J -L; Rachen, J P; Racine, B; Reinecke, M; Remazeilles, M; Renzi, A; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Ruiz-Granados, B; Salvati, L; Sandri, M; Savelainen, M; Scott, D; Sirignano, C; Sirri, G; Soler, J D; Spencer, L D; Suur-Uski, A -S; Tauber, J A; Tavagnacco, D; Tenti, M; Toffolatti, L; Tomasi, M; Tristram, M; Trombetti, T; Valiviita, J; Van Tent, F; Vielva, P; Villa, F; Vittorio, N; Wandelt, B D; Wehus, I K; Zacchei, A; Zonca, A

    2016-01-01

    Using the Planck 2015 data release (PR2) temperature observations, we perform the separation of Galactic thermal dust emission and cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method. This makes use of the spatial information (angular power spectrum) to disentangle the Galactic dust emission and CIB anisotropies. A significantly improved all-sky map of the Planck thermal dust, with reduced CIB contamination, is produced at 353, 545, and 857 GHz. From the reduction of the CIB contamination in the thermal dust maps, we are able to provide a more accurate estimate of the local dust temperature and dust spectral index over the sky with reduced dispersion at high latitudes. We find that $T = (19.4 \\pm 1.3)$ K and $\\beta = 1.6 \\pm 0.1$ on the whole sky, while $T = (19.4 \\pm 1.5)$ K and $\\beta = 1.6 \\pm 0.2$ on 21 % of the sky at high latitudes, where the error b...

  9. Optical - Near Infrared Photometric Calibration of M-dwarf Metallicity and Its Application

    CERN Document Server

    Hejazi, Neda; Dawson, Peter C

    2015-01-01

    Based on a carefully constructed sample of dwarf stars, a new optical-near infrared photometric calibration to estimate the metallicity of late-type K and early-to-mid-type M dwarfs is presented. The calibration sample has two parts; the first part includes 18 M dwarfs with metallicities determined by high-resolution spectroscopy and the second part contains 49 dwarfs with metallicities obtained through moderate-resolution spectra. By applying this calibration to a large sample of around 1.3 million M dwarfs from the Sloan Digital Sky Survey and the Two-Micron All Sky Survey, the metallicity distribution of this sample is determined and compared with those of previous studies. Using photometric parallaxes, the Galactic heights of M dwarfs in the large sample are also estimated. Our results show that stars farther from the Galactic plane, on average, have lower metallicity, which can be attributed to the age-metallicity relation. A scarcity of metal-poor dwarf stars in the metallicity distribution relative to ...

  10. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Luminous Infrared Galaxy Candidates

    CERN Document Server

    Griffith, Roger L; Eisenhardt, Peter R M; Gelino, Christopher R; Cushing, Michael C; Benford, Dominic; Blain, Andrew; Bridge, Carrie R; Cohen, Martin; Cutri, Roc M; Donoso, Emilio; Jarrett, Thomas H; Lonsdale, Carol; Mace, Gregory; Mainzer, A; Marsh, Ken; Padgett, Deborah; Petty, Sara; Ressler, Michael E; Skrutskie, Michael F; Stanford, Spencer A; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L; Wu, Jingwen; Yan, Lin

    2012-01-01

    We present Spitzer 3.6 and 4.5 $\\mu$m photometry and positions for a sample of 1510 brown dwarf candidates identified by the WISE all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12); Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify 7 fainter (4.5 $\\mu$m $\\sim$ 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy (HyLIRG) candidates. For this control sample we find another 6 brown dwarf c...

  11. The Infrared Hunter

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2 This image composite compares infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation's sword. The infrared picture is from NASA's Spitzer Space Telescope, and the visible image is from the National Optical Astronomy Observatory, headquartered in Tucson, Ariz. In addition to Orion, two other nebulas can be seen in both pictures. The Orion nebula, or M42, is the largest and takes up the lower half of the images; the small nebula to the upper left of Orion is called M43; and the medium-sized nebula at the top is NGC 1977. Each nebula is marked by a ring of dust that stands out in the infrared view. These rings make up the walls of cavities that are being excavated by radiation and winds from massive stars. The visible view of the nebulas shows gas heated by ultraviolet radiation from the massive stars. Above the Orion nebula, where the massive stars have not yet ejected much of the obscuring dust, the visible image appears dark with only a faint glow. In contrast, the infrared view penetrates the dark lanes of dust, revealing bright swirling clouds and numerous developing stars that have shot out jets of gas (green). This is because infrared light can travel through dust, whereas visible light is stopped short by it. The infrared image shows light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  12. Infrared observations of comets

    Science.gov (United States)

    Hanner, Martha S.

    1991-01-01

    Selected comets are observed in the near infrared (1 to 2.2 micron) and thermal infrared (3.5 to 20 micron) with the NASA Infrared Telescope Facility (IRTF) and other telescopes as appropriate, in order to characterize the physical properties of the dust grains; their composition, size distribution, emissivity, and albedo. Systematic variations in these properties among comets are looked for, in order to understand the heterogeneity of comet nuclei. Spectrophotometry of the 10 micron silicate emission feature is particularly emphasized. The rate of dust production from the nucleus and its temporal variability are also determined. Knowledge of the dust environment is essential to S/C design and mission planning for NASA's CRAF mission.

  13. Infrared source test

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  14. Variable waveband infrared imager

    Science.gov (United States)

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  15. Powerful infrared emitting diodes

    Directory of Open Access Journals (Sweden)

    Kogan L. M.

    2012-02-01

    Full Text Available Powerful infrared LEDs with emission wavelength 805 ± 10, 870 ± 20 and 940 ± 10 nm developed at SPC OED "OPTEL" are presented in the article. The radiant intensity of beam diode is under 4 W/sr in the continuous mode and under 100 W/sr in the pulse mode. The radiation power of wide-angle LEDs reaches 1 W in continuous mode. The external quantum efficiency of emission IR diodes runs up to 30%. There also has been created infrared diode modules with a block of flat Fresnel lenses with radiant intensity under 70 W/sr.

  16. Distribution and Characteristics of Infrared Dark Clouds Using Genetic Forward Modelling

    Science.gov (United States)

    Marshall, D. J.; Joncas, G.; Jones, A. P.

    2009-11-01

    Infrared Dark Clouds (IRDCs) are dark clouds seen in silhouette in mid-infrared surveys. They are thought to be the birthplace of massive stars, yet remarkably little information exists on the properties of the population as a whole (e.g., mass spectrum, spatial distribution). Genetic forward modeling is used along with the Two Micron All Sky Survey and the Besançon Galactic model to deduce the three-dimensional distribution of interstellar extinction toward previously identified IRDC candidates. This derived dust distribution can then be used to determine the distance and mass of IRDCs, independently of kinematic models of the Milky Way. Along a line of sight that crosses an IRDC, the extinction is seen to rise sharply at the distance of the cloud. Assuming a dust-to-gas ratio, the total mass of the cloud can be estimated. The method has been successfully applied to 1259 IRDCs, including over 1000 for which no distance or mass estimate currently exists. The IRDCs are seen to lie preferentially along the spiral arms and in the molecular ring of the Milky Way, reinforcing the idea that they are the birthplace of massive stars. Also, their mass spectrum is seen to follow a power law with an index of -1.75 ± 0.06, steeper than giant molecular clouds (GMCs) in the inner Galaxy but comparable to clumps in GMCs. This slope suggests that the IRDCs detected using the present method are not gravitationally bound, but are rather the result of density fluctuations induced by turbulence.

  17. Classification study of WISE infrared sources: identification of candidate asymptotic giant branch stars

    Institute of Scientific and Technical Information of China (English)

    Xun Tu; Zhong-Xiang Wang

    2013-01-01

    In the Wide-field Infrared Survey Explorer (WISE) all-sky source catalog there are 76 million mid-infrared point sources that were detected in the first three WISE bands and have association with only one 2MASS near-IR source within 3".We search for their identifications in the SIMBAD database and find 3.2 million identified sources.Based on these known sources,we establish three criteria for selecting candidate asymptotic giant branch (AGB) stars in the Galaxy,which are three defined zones in a color-color diagram,Galactic latitude |b| ≤ 20°,and "corrected" WISE third-band W3c≤ 11.Applying these criteria to the WISE+2MASS sources,1.37 million of them are selected.We analyze the WISE third-band W3 distribution of the selected sources,and further establish that W3≤8 is required in order to exclude a large fraction of normal stars from them.We therefore find 0.47 million candidate AGB stars in our Galaxy from the WISE source catalog.Using W3c,we estimate their distances and derive their Galactic distributions.The candidates are generally distributed around the Galactic center uniformly,with 68% (1-σ) of them within approximately 8 kpc.We discuss the idea that optical spectroscopy can be used to verify the C-rich AGB stars in our candidates,and thus a fraction of them (~10%) will be good targets for the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)survey that is planned to start in fall of 2012.

  18. The Dynamic Infrared Sky

    Science.gov (United States)

    Kasliwal, Mansi M.; SPIRITS (Spitzer InfraRed Intensive Transients Survey) Team

    2017-01-01

    The dynamic infrared sky is hitherto largely unexplored. I will present the SPitzer InfraRed Intensive Transients Survey (SPIRITS) --- a systematic search of 194 nearby galaxies within 30 Mpc, on timescales ranging between a week to a year, to a depth of 20 mag with Spitzer's IRAC camera. SPIRITS has already uncovered over 95 explosive transients and over 1200 strong variables. Of these, 37 infrared transients are especially interesting as they have no optical counterparts whatsoever even with deep limits from Keck and HST. Interpretation of these new discoveries may include (i) the birth of massive binaries that drive shocks in their molecular cloud, (ii) stellar mergers with dusty winds, (iii) 8--10 solar mass stars experiencing e-capture induced collapse in their cores, (iv) enshrouded supernovae, or (v) formation of stellar mass black holes. SPIRITS reveals that the infrared sky is not just as dynamic as the optical sky; it also provides access to unique, elusive signatures in stellar astrophysics.

  19. The infrared retina

    Science.gov (United States)

    Krishna, Sanjay

    2009-12-01

    As infrared imaging systems have evolved from the first generation of linear devices to the second generation of small format staring arrays to the present 'third-gen' systems, there is an increased emphasis on large area focal plane arrays (FPAs) with multicolour operation and higher operating temperature. In this paper, we discuss how one needs to develop an increased functionality at the pixel level for these next generation FPAs. This functionality could manifest itself as spectral, polarization, phase or dynamic range signatures that could extract more information from a given scene. This leads to the concept of an infrared retina, which is an array that works similarly to the human eye that has a 'single' FPA but multiple cones, which are photoreceptor cells in the retina of the eye that enable the perception of colour. These cones are then coupled with powerful signal processing techniques that allow us to process colour information from a scene, even with a limited basis of colour cones. Unlike present day multi or hyperspectral systems, which are bulky and expensive, the idea would be to build a poor man's 'infrared colour' camera. We use examples such as plasmonic tailoring of the resonance or bias dependent dynamic tuning based on quantum confined Stark effect or incorporation of avalanche gain to achieve embodiments of the infrared retina.

  20. The infrared retina

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, Sanjay, E-mail: skrishna@chtm.unm.ed [Center for High Technology Materials, Electrical and Computer Engineering Department University of New Mexico, 1313, Goddard Street SE, MSC04 2710 Albuquerque, NM, 87106 (United States)

    2009-12-07

    As infrared imaging systems have evolved from the first generation of linear devices to the second generation of small format staring arrays to the present 'third-gen' systems, there is an increased emphasis on large area focal plane arrays (FPAs) with multicolour operation and higher operating temperature. In this paper, we discuss how one needs to develop an increased functionality at the pixel level for these next generation FPAs. This functionality could manifest itself as spectral, polarization, phase or dynamic range signatures that could extract more information from a given scene. This leads to the concept of an infrared retina, which is an array that works similarly to the human eye that has a 'single' FPA but multiple cones, which are photoreceptor cells in the retina of the eye that enable the perception of colour. These cones are then coupled with powerful signal processing techniques that allow us to process colour information from a scene, even with a limited basis of colour cones. Unlike present day multi or hyperspectral systems, which are bulky and expensive, the idea would be to build a poor man's 'infrared colour' camera. We use examples such as plasmonic tailoring of the resonance or bias dependent dynamic tuning based on quantum confined Stark effect or incorporation of avalanche gain to achieve embodiments of the infrared retina.

  1. Infrared Thermometer (IRT) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    VR Morris

    2006-10-30

    The Infrared Thermometer (IRT) is a ground-based radiation pyrometer that provides measurements of the equivalent blackbody brightness temperature of the scene in its field of view. The downwelling version has a narrow field of view for measuring sky temperature and for detecting clouds. The upwelling version has a wide field of view for measuring the narrowband radiating temperature of the ground surface.

  2. Decoherence and infrared divergence

    Indian Academy of Sciences (India)

    J Kupsch

    2002-08-01

    The dynamics of a particle which is linearly coupled to a boson field is investigated. The boson field induces superselection rules for the momentum of the particle, if the field is infrared divergent. Thereby the Hamiltonian of the total system remains bounded from below.

  3. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  4. Bringing the infrared to light

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    Infrared imaging is usually done by use of infrared cameras. We present an effective alternative approach where infrared light is converted to near visible light in a non-linear process, and then detected by low cost, high performance camera. The approach is generic and can be applied towards many...

  5. Infrared Sensor with Liquid Crystal Chopper

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the like.

  6. Near-infrared extinction with discretised stellar colours

    Science.gov (United States)

    Juvela, M.; Montillaud, J.

    2016-01-01

    of the small-scale structures. The all-sky extinction maps that are discussed in Appendix A are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A78 It can also be found at http://www.interstellarmedium.org/Extinction

  7. Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals

    Science.gov (United States)

    Horowitz, Paul; Sagan, Carl

    1993-01-01

    We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.

  8. An all-sky, three-flavor search for neutrinos from gamma-ray bursts with the icecube neutrino observatory

    Science.gov (United States)

    Hellauer, Robert Eugene, III

    Ultra high energy cosmic rays (UHECRs), defined by energy greater than 10. 18 eV, have been observed for decades, but their sources remain unknown. Protons and heavy ions, which comprise cosmic rays, interact with galactic and intergalactic magnetic fields and, consequently, do not point back to their sources upon measurement. Neutrinos, which are inevitably produced in photohadronic interactions, travel unimpeded through the universe and disclose the directions of their sources. Among the most plausible candidates for the origins of UHECRs is a class of astrophysical phenomena known as gamma-ray bursts (GRBs). GRBs are the most violent and energetic events witnessed in the observable universe. The IceCube Neutrino Observatory, located in the glacial ice 1450 m to 2450 m below the South Pole surface, is the largest neutrino detector in operation. IceCube detects charged particles, such as those emitted in high energy neutrino interactions in the ice, by the Cherenkov light radiated by these particles. The measurement of neutrinos of 100 TeV energy or greater in IceCube correlated with gamma-ray photons from GRBs, measured by spacecraft detectors, would provide evidence of hadronic interaction in these powerful phenomena and confirm their role in ultra high energy cosmic ray production. This work presents the first IceCube GRB-neutrino coincidence search optimized for charged-current interactions of electron and tau neutrinos as well as neutral-current interactions of all neutrino flavors, which produce nearly spherical Cherenkov light showers in the ice. These results for three years of data are combined with the results of previous searches over four years of data optimized for charged-current muon neutrino interactions, which produce extended Cherenkov light tracks. Several low significance events correlated with GRBs were detected, but are consistent with the background expectation from atmospheric muons and neutrinos. The combined results produce limits that place the strongest constraints thus far on models of neutrino and UHECR production in GRB fireballs.

  9. Systems design of COATLI: an all-sky robotic optical imager with 0.3 arcsec image quality

    Science.gov (United States)

    Cuevas, Salvador; Langarica, Rosalia; Watson, Alan M.; Fuentes-Fernández, Jorge; Ángeles, Fernando; Farah, Alejandro S.; Figueroa, Liliana; Becerra-Godínez, Rosa L.; Chapa, Oscar; Román-Zúñiga, Carlos G.; Quiróz, Fernando; Tejada, Carlos; Álvarez-Núñez, Luis C.; Ruz, Jaime; Tinoco, Silvio J.

    2016-08-01

    COATLI is a new instrument and telescope that will provide 0.3 arcsec FWHM images from 550 to 920 nm over a large fraction of the sky. It consists of a robotic 50-cm telescope with a diffraction-limited imager. The imager has a steering mirror for fast guiding, a blue channel using an EMCCD from 400 to 550 nm to measure image motion, a red channel using a standard CCD from 550 to 920 nm, and an active optics system based on a deformable mirror to compensate static aberrations in the red channel. Since the telescope is small, fast guiding will provide diffraction-limited image quality in the red channel over a large fraction of the sky, even in relatively poor seeing. The COATLI telescope will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, Baja California, México, in 2016 and will initially operate with a simple interim imager. The definitive COATLI instrument will be installed in 2017. In this work we present the general optomechanical and control electronics design of COATLI.

  10. Identification of High Energy Gamma-Ray Sources And Source Populations in the Era of Deep All-Sky Coverage

    Energy Technology Data Exchange (ETDEWEB)

    Reimer, Olaf; /Stanford U., HEPL /KIPAC, Menlo Park; Torres, Diego F.; /ICREA, Barcelona /Barcelona, IEEC

    2007-04-17

    A large fraction of the anticipated source detections by the Gamma-ray Large Area Space Telescope (GLAST-LAT) will initially be unidentified. We argue that traditional approaches to identify individuals and/or populations of gamma ray sources will encounter procedural limitations. Those limitations are discussed on the background of source identifications from EGRET observations. Generally, our ability to classify (faint) source populations in the anticipated GLAST dataset with the required degree of statistical confidence will be hampered by sheer source wealth. A new paradigm for achieving the classification of gamma ray source populations is discussed.

  11. All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    CERN Document Server

    Abadie, J; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Affeldt, C; Agathos, M; Agatsuma, K; Ajith, P; Allen, B; Ceron, E Amador; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barayoga, J C B; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Beck, D; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Belletoile, A; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Bulik, T; Bulten, H J; Buonanno, A; Burguet-Castell, J; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Caudill, S; Cavaglia, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, W; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H; Chow, J; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clark, D E; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Del Pozzo, W; del Prete, M; Dent, T; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Diaz, M; Dietz, A; Donovan, F; Dooley, K L; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endroczi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Feroz, F; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Flanigan, M; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fujimoto, M -K; Fulda, P J; Fyffe, M; Gair, J; Galimberti, M; Gammaitoni, L; Garcia, J; Garufi, F; Gaspar, M E; Gemme, G; Geng, R; Genin, E; Gennai, A; Gergely, L A; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil, S; Gill, C; Gleason, J; Goetz, E; Goggin, L M; Gonzalez, G; Gorodetsky, M L; Gossler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Gray, N; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Gupta, R; Gustafson, E K; Gustafson, R; Ha, T; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Hardt, A; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Heefner, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Hosken, D J; Hough, J; Howell, E J; Hughey, B; Husa, S; Huttner, S H; Inta, R; Isogai, T; Ivanov, A; Izumi, K; Jacobson, M; James, E; Jang, Y J; Jaranowski, P; Jesse, E; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawamura, S; Kawazoe, F; Kelley, D; Kells, W; Keppel, D G; Keresztes, Z; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B; Kim, C; Kim, H; Kim, K; Kim, N; Kim, Y -M; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kranz, O; Kringel, V; Krishnamurthy, S; Krishnan, B; Krolak, A; Kuehn, G; Kumar, R; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lastzka, N; Lawrie, C; Lazzarini, A; Leaci, P; Lee, C H; Lee, H K; Lee, H M; Leong, J R; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lindquist, P E; Liu, Y; Liu, Z; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M; Luck, H; Lundgren, A P; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marandi, A; Marchesoni, F; Marion, F; Marka, S; Marka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McKechan, D J A; McWilliams, S; Meadors, G D; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moreno, G; Morgado, N; Morgia, A; Mori, T; Morriss, S R; Mosca, S; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Muller-Ebhardt, H; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nash, T; Naticchioni, L; Necula, V; Nelson, J; Newton, G; Nguyen, T; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Peiris, P; Pekowsky, L; Penn, S; Perreca, A; Persichetti, G; Phelps, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Pold, J; Postiglione, F; Prato, M; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quitzow-James, R; Raab, F J; Rabeling, D S; Racz, I; Radkins, H; Raffai, P; Rakhmanov, M; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Redwine, K; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Rolland, L; Rollins, J G; Romano, J D; Romano, R; Romie, J H; Rosinska, D; Rover, C; Rowan, S; Rudiger, A; Ruggi, P; Ryan, K; Sainathan, P; Salemi, F; Sammut, L; Sandberg, V; Sannibale, V; Santamaria, L; Santiago-Prieto, I; Santostasi, G; Sassolas, B; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R L; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sentenac, D; Sergeev, A; Shaddock, D A; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Somiya, K; Sorazu, B; Soto, J; Speirits, F C; Sperandio, L; Stefszky, M; Stein, A J; Stein, L C; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S E; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Taffarello, L; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thuring, A; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Tseng, K; Tucker, E; Ugolini, D; Vahlbruch, H; Vajente, G; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Vicere, A; Villar, A E; Vinet, J -Y; Vitale, S; Vitale, S; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Wallace, L; Wan, Y; Wang, M; Wang, X; Wang, Z; Wanner, A; Ward, R L; Was, M; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wilkinson, C; Willems, P A; Williams, L; Williams, R; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yamamoto, K; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zadrozny, A; Zanolin, M; Zendri, J -P; Zhang, F; Zhang, L; Zhang, W; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J

    2012-01-01

    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64--5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous...

  12. All-Sky Search for Gravitational-Wave Bursts in the First Joint LIGO-GEO-Virgo Run

    Science.gov (United States)

    Camp, J. B.; Camizzo, J.

    2012-01-01

    We present results from an aU-sky search for unmodeled gravitational-wave bursts in the data collected by the LIGO, GEO 600 and Virgo detectors between November 2006 and October 2007. The search is performed. by three different analysis algorithms over the frequency band 50 - 6000 Hz. Data are analyzed for times with at least two of the four LIGO-Virgo detectors in coincident operation, with a total live time of 266 days, No events produced by the search algorithms survive the selection cuts. We set a frequentist upper limit on the rate of gravitational-wave bursts impinging on our network of detectors. When combined with the previous LIGO search of the data collected between November 2005 and November 2006, the upper limit on the rate of detectable gra.vitational. wave bursts in the 64-2048 Hz band is 2,0 events per year at 90% confidence. We also present event rate versus strength exclusion plots for several types of plausible burst waveforms. The sensitivity of the combined search is expressed in terms of the root-sum-squared strain amplitude for a variety of simulated waveforms and lies in the range 6 X 10(exp -22) Hz(exp - 1/2) to 2 X 10(exp -20) Hz(exp -l/2). This is the first untriggered burst search to use data from the LIGO and Virgo detectors together, and the most sensitive untriggered burst search performed so far.

  13. GOALS, STRATEGIES AND FIRST DISCOVERIES OF AO327, THE ARECIBO ALL-SKY 327 MHz DRIFT PULSAR SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Deneva, J. S. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); Stovall, K.; Martinez, J. G.; Jenet, F. [Center for Advanced Radio Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); McLaughlin, M. A.; Bates, S. D.; Bagchi, M. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Freire, P. C. C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2013-09-20

    We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of –1° to 28°, excluding the region within 5° of the Galactic plane, where high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 μs sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsars with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include 3 ms pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28°-38°. We compare the sensitivity and search volume of AO327 to the Green Bank North Celestial Cap survey and the GBT350 drift survey, both of which operate at 350 MHz.

  14. GaLactic and Extragalactic All-Sky MWA-eXtended (GLEAM-X) survey: Pilot observations

    Science.gov (United States)

    Hurley-Walker, N.; Seymour, N.; Staveley-Smith, L.; Johnston-Hollitt, M.; Kapinska, A.; McKinley, B.

    2017-01-01

    This proposal is a pilot study for the extension of the highly successful GaLactic and Extragalactic MWA (GLEAM) survey (Wayth et al. 2015). The aim is to test out new observing strategies and data reduction techniques suitable for exploiting the longer baselines of the extended phase 2 MWA array. Deeper and wide surveys at higher resolution will enable a legion of science capabilities pertaining to galaxy evolution, clusters and the cosmic web, whilst maintaining the advantages over LOFAR including larger field-of-view, wider frequency coverage and better sensitivity to extended emission. We will continue the successful drift scan mode observing to test the feasibility of a large-area survey in 2017-B and onward. We will also target a single deep area with a bright calibrator source to establish the utility of focussed deep observations. In both cases, we will be exploring calibrating and imaging strategies across 72-231 MHz with the new long baselines. The published extragalactic sky catalogue (Hurley-Walker et al. 2017) improves the prospects for good ionospheric calibration in this new regime, as well as trivialising flux calibration. The new Alternative Data Release of the TIFR GMRT Sky Survey (TGSS-ADR1; Intema et al. 2016), which has 30" resolution and covers the proposed observing area, allows us to test whether our calibration and imaging strategy correctly recovers the true structure of (high surface-brightness) resolved sources. GLEAM-X will have lower noise, higher surface brightness sensitivity, and have considerably wider bandwidth than TGSS. These properties will enable a wide range of science, such as: Detecting and characterising cluster relics and haloes beyond z=0.45; Accurately determining radio source counts at multiple frequencies; Measuring the low-v luminosity function to z 0.5; Performing Galactic plane science such as HII region detection and cosmic tomography; Determining the typical ionospheric diffractive scale at the MRO, feeding into SKA_Low calibration strategies. In addition the proposal is designed to be commensally used for transients science, and will also create a more accurate, higher-resolution foreground model for the EoR2 field, allowing better foreground subtraction and therefore increased sensitivity to the EoR signal.

  15. Goals, Strategies and First Discoveries of AO327, the Arecibo All-Sky 327 MHz Drift Pulsar Survey

    CERN Document Server

    Deneva, J S; McLaughlin, M A; Bates, S D; Freire, P C C; Martinez, J G; Jenet, F; Bagchi, M

    2013-01-01

    We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of -1 to 28 degrees, excluding the region within 5 degrees of the Galactic plane, where high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 us sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsars with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include three millisecond pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28 to 38 degrees. We compare ...

  16. All sky coordination initiative, simple service for wide-field monitoring systems to cooperate in searching for fast optical transients

    Science.gov (United States)

    Karpov, S.; Sokołowski, M.; Gorbovskoy, E.

    Here we stress the necessity of cooperation between different wide-field monitoring projects (FAVOR/TORTORA, Pi of the Sky, MASTER, etc), aimed for independent detection of fast optical transients, in order to maximize the area of the sky covered at any moment and to coordinate the monitoring of gamma-ray telescopes' field of view. We review current solutions available for it and propose a simple protocol with dedicated service (ASCI) for such systems to share their current status and pointing schedules.

  17. Determination of Pulsation Periods and Other Parameters of 2875 Stars Classified as MIRA in the All Sky Automated Survey (ASAS)

    Science.gov (United States)

    Vogt, N.; Contreras-Quijada, A.; Fuentes-Morales, I.; Vogt-Geisse, S.; Arcos, C.; Abarca, C.; Agurto-Gangas, C.; Caviedes, M.; DaSilva, H.; Flores, J.; Gotta, V.; Peñaloza, F.; Rojas, K.; Villaseñor, J. I.

    2016-11-01

    We have developed an interactive PYTHON code and derived crucial ephemeris data of 99.4% of all stars classified as “Mira” in the ASAS database, referring to pulsation periods, mean maximum magnitudes, and whenever possible, the amplitudes among others. We present a statistical comparison between our results and those given by the International Variable Star Index (VSX) of the American Association of Variable Star Observers, as well as those determined with the machine learning automatic procedure of Richards et al. Our periods are in good agreement with those of the VSX in more than 95% of the stars. However, when comparing our periods with those of Richards et al., the coincidence rate is only 76% and most of the remaining cases refer to aliases. We conclude that automatic codes still require more refinements in order to provide reliable period values. Period distributions of the target stars show three local maxima around 215, 275, and 330 days, apparently of universal validity; their relative strength seems to depend on galactic longitude. Our visual amplitude distribution turns out to be bimodal, however, 1/3 of the targets have rather small amplitudes (A < 2.5 m ) and could refer to semiregular variables (SR). We estimate that about 20% of our targets belong to the SR class. We also provide a list of 63 candidates for period variations and a sample of 35 multiperiodic stars that seem to confirm the universal validity of typical sequences in the double period and in the Petersen diagrams.

  18. VizieR Online Data Catalog: GaLactic and Extragalactic All-sky MWA survey (Hurley-Walker+, 2016)

    Science.gov (United States)

    Hurley-Walker, N.; Callingham, J. R.; Hancock, P. J.; Franzen, T. M. O.; Hindson, L.; Kapinska, A. D.; Morgan, J.; Offringa, A. R.; Wayth, R. B.; Wu, C.; Zheng, Q.; Murphy, T.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Johnston-Hollitt, M.; Lenc, E.; Procopio, P.; Staveley-Smith, L.; Ekers, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Greenhill, L.; Hazelton, B. J.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Webster, R. L.; Williams, A.; Williams, C. L.

    2016-10-01

    This paper concerns only data collected in the first year, i.e. four weeks between June 2013 and July 2014. We also do not image every observation, since the survey is redundant across approximately 50% of the observed RA ranges, and some parts are adversely acted by the Galactic plane and Centaurus A. Table 1 lists the observations which have been used to create this first GLEAM catalogue. (4 data files).

  19. Shared Skies Partnership: A Dual-Site All-Sky Live Remote Observing Initiative for Research and Education

    Science.gov (United States)

    Kielkopf, John F.; Hart, R.; Carter, B.; Collins, K. A.; Brown, C.; Hay, J.; Hons, A.; Marsden, S.

    2014-01-01

    The University of Southern Queensland's Mt. Kent Observatory in Queensland, Australia, and the University of Louisville's Moore Observatory in Kentucky, USA, are collaborating in the development of live remote observing for research, student training, and education. With a focus on flexible operation assisted by semi-autonomous controllers, rather than completely robotic data acquisition, the partnership provides interactive hands-on experience to students at all levels, optimized performance based on real-time observations, and flexible scheduling for transient events