WorldWideScience

Sample records for all-polymer paper-based batteries

  1. Paper-based, printed zinc-air battery

    Science.gov (United States)

    Hilder, M.; Winther-Jensen, B.; Clark, N. B.

    A flexible battery is printed on paper by screen-printing a zinc/carbon/polymer composite anode on one side of the sheet, polymerising a poly(3,4-ethylenedioxythiophene) (PEDOT) cathode on the other side of the sheet, and applying a lithium chloride electrolyte between the two electrodes. The PEDOT cathode is prepared by inkjet printing a pattern of iron(III) p-toluenesulfonate as a solution in butan-1-ol onto paper, followed by vapour phase polymerisation of the monomer. The electrolyte is prepared as a solution of lithium chloride and lithium hydroxide and also applied by inkjet printing on to paper, where it is absorbed into the sheet cross-section. Measurements on a zinc/carbon-PEDOT/air battery in a similar configuration on a polyethylene naphthalate substrate shows a discharge capacity of up to 1.4 mAh cm -2 for an initial load of 2.5 mg zinc, equivalent to almost 70% of the zinc content of the anode, which generates 0.8 V at a discharge current of 500 μA. By comparison, the performance of the paper-based battery is lower, with an open-circuit voltage of about 1.2 V and a discharge capacity of 0.5 mAh cm 2. It appears that the paper/electrolyte combination has a limited ability to take up anode oxidation products before suffering a reduction in ionic mobility. The effects of different zinc/carbon/binder combinations, differences in application method for the zinc/carbon composite and various electrolyte compositions are discussed.

  2. Poly(vinylidene fluoride-hexafluoropropylene polymer electrolyte for paper-based and flexible battery applications

    Directory of Open Access Journals (Sweden)

    Nojan Aliahmad

    2016-06-01

    Full Text Available Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene (PVDH-HFP porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphoneimide (LiTFSI and lithium aluminum titanium phosphate (LATP, with an ionic conductivity of 2.1 × 10−3 S cm−1. Combining ceramic (LATP with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO and lithium cobalt oxide (LCO electrodes and (i standard metallic current collectors and (ii paper-based current collectors were fabricated and tested. The achieved specific capacities were (i 123 mAh g−1 for standard metallic current collectors and (ii 99.5 mAh g−1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  3. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Agarwal, Mangilal, E-mail: agarwal@iupui.edu [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States)

    2016-06-15

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10{sup −3} S cm{sup −1}. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g{sup −1} for standard metallic current collectors and (ii) 99.5 mAh g{sup −1} for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  4. All Polymer Micropump

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen

    2008-01-01

    In this thesis an all polymer micropump, and the fabrication method required to fabricate this, are examined. Polymer microfluidic. devices are of major scientific interest because they can combine complicated chemical and biological analys~s in cheap and disposable devices. The electrode system...... in the micropump is based on the conducting polymer poly(3,4 ethylenedioxythiophene) (PEDOT). The majority of the work conducted was therefore aimed at developing methods for patterning and processing PEDOT. First a method was developed, where the conducting polymer PEDOT can be integrated into non...... of the substrate, the PEDOT is integrated into the non-conductive polymer. The result is a material that retains the good conductivity of PEDOT, but gains the mechanical stability of the substrate. The best results were obtained for PEDOTjPMMA. The new mechanically stable PEDOTjPMMA was micro-patterned using clean...

  5. All-Polymer Lasers

    Science.gov (United States)

    Wu, Yeheng; Lott, Joseph; Kazmierczak, Tomasz; Song, Hyunmin; Baer, Eric; Singer, Kenneth; Weder, Christoph

    2008-03-01

    We have fabricated all-polymer lasers both as distributed feedback lasers (DFB) and distributed Bragg reflector (DBR) lasers. For the DBR lasers, a layer of polymer doped with the laser dye is laminated between two multilayer polymer mirrors. The mirrors were made using the co-extrusion process combining PMMA alternated with polystyrene with 128 layers for each mirror. Two dyes were employed, Rhodamine 6G (R6G), and 1,4-bis-(α-cyano-4-methoxystyryl)-2,5-dimethoxybenzene (C1RG). They were pumped with a nanosecond laser and emitted at about 570 and 510 nm respectively. For DFB lasers, the low refractive index layers were doped with C1RG or R6G. PMMA and PMMA-PVDF were the hosts for the C1RG and R6G respectively. A total of eight co-extruded 32-layer films were stacked together to make a DFB laser. For the DBR lasers, we were able to observe thresholds as low as 100nJ. The highest conversion efficiency obtained about 14% in the forward direction. We also observed trends of lasing threshold, even spaced lasing modes and penetration of the film. Matrix method simulations taking into account layer thickness variations were consistent with experimental results. For the DFB lasers, the lowest lasing threshold observed was 52 μW.

  6. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  7. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot......-controlled microdrilling was applied to drill through an insulating polymer, covering a conductive layer of PEDOT. The sudden drop in electrical resistance between the metal drill and the PEDOT layer upon physical contact was employed as stop criterion for the drilling process. Arrays of 3x 3 microelectrodes of diameter...... electrode configurations showed that the conducting polymer electrodes approach the steady state currents predicted from modeling, but at a much slower rate than expected. This wasshown to be caused by the use of electro active PEDOT electrodes. Subtraction of the latter contribution gave an approach...

  8. Self-standing paper based anodes prepared from siliconcarbonitride-MoS2 composite for Li-ion battery applications

    Science.gov (United States)

    David, Lamuel; Singh, Gurpreet

    2013-03-01

    We study synthesis of free-standing polymer derived SiCN/ MoS2 composite paper anode for Li-ion battery application. This was achieved following a two-step approach: First, polysilazane was interfaced with exfoliated MoS2 nanosheets which upon pyrolysis resulted in SiCN/MoS2 composite. Second, dispersion of SiCN/MoS2 in isopropanol was vacuum filtered resulting in formation of a self-standing composite paper. Physical and chemical characterization of the composite was carried out by use of electron microscopy, Fourier transform infrared spectroscopy (FT-IR) and Thermo-gravimetric analysis (TGA). FT-IR data indicated complete conversion of polysilazane precursor to SiCN ceramic, while electron microscopy confirmed layered structure of the paper. Thermo-gravimetric analysis showed enhanced thermodynamic stability of the composite paper up to 800 °C. Electrochemical analysis of SiCN/MoS2 composite paper anodes showed that Li-ion can reversible intercalate in the voltage range of 0-2.5 V with a first cycle discharge capacity of 770 mAh/g at a current density of 100 mA/g.

  9. All-polymer photonic crystal slab sensor

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Sørensen, Kristian Tølbøl; Vannahme, Christoph

    2015-01-01

    An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5x10-6 RIU when measured i...

  10. Paper based electronics platform

    KAUST Repository

    Nassar, Joanna Mohammad

    2017-07-20

    A flexible and non-functionalized low cost paper-based electronic system platform fabricated from common paper, such as paper based sensors, and methods of producing paper based sensors, and methods of sensing using the paper based sensors are provided. A method of producing a paper based sensor can include the steps of: a) providing a conventional paper product to serve as a substrate for the sensor or as an active material for the sensor or both, the paper product not further treated or functionalized; and b) applying a sensing element to the paper substrate, the sensing element selected from the group consisting of a conductive material, the conductive material providing contacts and interconnects, sensitive material film that exhibits sensitivity to pH levels, a compressible and/or porous material disposed between a pair of opposed conductive elements, or a combination of two of more said sensing elements. The method of sensing can further include measuring, using the sensing element, a change in resistance, a change in voltage, a change in current, a change in capacitance, or a combination of any two or more thereof.

  11. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing

    OpenAIRE

    Fengling Zhang; Tianyi Cai; Liang Ma; Liyuan Zhan; Hong Liu

    2017-01-01

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensin...

  12. All-polymer microfluidic systems for droplet based sample analysis

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben

    In this PhD project, I pursued to develop an all-polymer injection moulded microfluidic platform with integrated droplet based single cell interrogation. To allow for a proper ”one device - one experiment” methodology and to ensure a high relevancy to non-academic settings, the systems presented...... here were fabricated exclusive using commercially relevant fabrication methods such as injection moulding and ultrasonic welding. Further, to reduce the complexity of the final system, I have worked towards an all-in-one device which includes sample loading, priming (removal of air), droplet formation......, droplet packing, imaging and amplification (heating). The project has been broken into sub-projects, in which several devices of simpler application have been developed. Most of these employ gravity for concentrating and packing droplets, which has been made possible by the use of large area chambers...

  13. Melt-processed all-polymer distributed Bragg reflector laser.

    Science.gov (United States)

    Singer, Kenneth D; Kazmierczak, Tomasz; Lott, Joseph; Song, Hyunmin; Wu, Yeheng; Andrews, James; Baer, Eric; Hiltner, Anne; Weder, Christoph

    2008-07-07

    We have assembled and studied melt-processed all-polymer lasers comprising distributed Bragg reflectors that were fabricated in large sheets using a co-extrusion process and define the cavities for dye-doped compression-molded polymer gain core sheets. Distributed Bragg reflector (DBR) resonators consisting of 128 alternating poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) layers were produced by multilayer co-extrusion. Gain media were fabricated by compression-molding thermoplastic host poly notmers doped with organic laser dyes. Both processing methods can be used in high-throughput roll-to-roll manufacturing. Optically pumped DBR lasers assembled from these components display single and multimode lasing in the reflection band of the resonators, with a slope efficiency of nearly 19% and lasing thresholds as low as 90microJ/cm(2). The lasing wavelength can be controlled via the layer thickness of the DBR resonator films, and variation of the laser dye. Studies of threshold and efficiency are in agreement with models for end-pumped lasers.

  14. Paper-based plasma sanitizers

    Science.gov (United States)

    Xie, Jingjin; Chen, Qiang; Suresh, Poornima; Roy, Subrata; White, James F.; Mazzeo, Aaron D.

    2017-05-01

    This work describes disposable plasma generators made from metallized paper. The fabricated plasma generators with layered and patterned sheets of paper provide a simple and flexible format for dielectric barrier discharge to create atmospheric plasma without an applied vacuum. The porosity of paper allows gas to permeate its bulk volume and fuel plasma, while plasma-induced forced convection cools the substrate. When electrically driven with oscillating peak-to-peak potentials of ±1 to ±10 kV, the paper-based devices produced both volume and surface plasmas capable of killing microbes. The plasma sanitizers deactivated greater than 99% of Saccharomyces cerevisiae and greater than 99.9% of Escherichia coli cells with 30 s of noncontact treatment. Characterization of plasma generated from the sanitizers revealed a detectable level of UV-C (1.9 nWṡcm-2ṡnm-1), modest surface temperature (60 °C with 60 s of activation), and a high level of ozone (13 ppm with 60 s of activation). These results deliver insights into the mechanisms and suitability of paper-based substrates for active antimicrobial sanitization with scalable, flexible sheets. In addition, this work shows how paper-based generators are conformable to curved surfaces, appropriate for kirigami-like “stretchy” structures, compatible with user interfaces, and suitable for sanitization of microbes aerosolized onto a surface. In general, these disposable plasma generators represent progress toward biodegradable devices based on flexible renewable materials, which may impact the future design of protective garments, skin-like sensors for robots or prosthetics, and user interfaces in contaminated environments.

  15. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing

    Directory of Open Access Journals (Sweden)

    Fengling Zhang

    2017-01-01

    Full Text Available We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.

  16. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing.

    Science.gov (United States)

    Zhang, Fengling; Cai, Tianyi; Ma, Liang; Zhan, Liyuan; Liu, Hong

    2017-01-31

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.

  17. Batteries

    Directory of Open Access Journals (Sweden)

    Yang Lijuan

    2016-01-01

    Full Text Available Fe3O4/carbon microspheres (Fe3O4/C were prepared by a facile hydrothermal reaction using cellulose and ferric trichloride as precursors. The resultant composite spheres have been investigated as anode materials for the lithium-ion batteries, and they show high capacity and good cycle stability (830mAhg−1 at a current density of 0.1C up to 70 cycles, as well as enhanced rate capability. The excellent electrochemical performance is attributed to the high structural stability and high rate of ionic/electronic conduction arising from the porous character and the synergetic effect of the carbon coated Fe3O4 structure and conductive carbon coating.

  18. Fabrication and modelling of injection moulded all-polymer capillary microvalves for passive microfluidic control

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Carl Esben; Østergaard, Peter Friis

    2014-01-01

    from rapid prototyping to pilot (mass) production. (1) Fabrication of an all-polymer microfluidic system using a rapid prototyped master insert for injection moulding and ultrasonic welding, including a systematic experimental characterisation of chip featured geometric capillary microvalve test...

  19. Understanding temperature tuning of the all polymer co-extruded laser

    Science.gov (United States)

    Crescimanno, Michael; Andrews, Jim; Aviles, Michael; Dawson, Nathan; Petrus, Joshua; Mazzocco, Anthony; Singer, Ken; Baer, Eric; Song, Hyunmin

    2012-10-01

    We investigate the effects of elevated temperatures on a few types of all-polymer multilayer films that were fabricated using a co-extrusion melt-process technique. We report on the anisotropic thermal expansion of the multilayer films, which affects the photonic crystal structure via constituent wise induced anisotropic strains and a change in the relative refractive indices. In addition to the characterization of these films in the temperature range of approximately 20-95 degrees C, we show the application to non-contact temperature sensing and wavelength tuning of all polymer Distributed FeedBack (DFB) lasers and Distributed Bragg Reflector (DBR) lasers.

  20. Paper based microfluidic devices for environmental diagnostics

    CSIR Research Space (South Africa)

    Govindasamy, K

    2012-09-01

    Full Text Available such as elevated temperatures and mechanical stresses. Paper based microfluidic chips are patterned with micron sized hydrophobic barriers which penetrate the paper?s cross section. These barriers guide the capillary movement of fluids through the cellulose...

  1. Recent Advances in Paper-Based Sensors

    Directory of Open Access Journals (Sweden)

    Edith Chow

    2012-08-01

    Full Text Available Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed.

  2. Burst pressure of phaseguide structures of different heights in all-polymer microfluidic channels

    DEFF Research Database (Denmark)

    Garbarino, Francesca; Kistrup, Kasper; Rizzi, Giovanni

    2017-01-01

    We present an experimental investigation of the burst/overflow pressure of water and a representative surfactant-containing buffer in microfluidic channels with phaseguide structures oriented at an angle of 90° to the channel length as a function of their height, . The all-polymer chips were fabr...

  3. Screen-Printed All-Polymer Aptasensor for Impedance Based Detection of Influenza A Virus

    DEFF Research Database (Denmark)

    Kirkegaard, Julie; Rozlosnik, Noemi

    2017-01-01

    In this chapter a detailed description of the fabrication and testing of an aptasensor for influenza A virus detection is given. The sensor chip is an all-polymer chip fabricated with screen-printed poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes. Chip substrates...

  4. All polymer chip for amperometric studies of transmitter release from large groups of neuronal cells

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Taboryski, Rafael

    2012-01-01

    We present an all polymer electrochemical chip for simple detection of transmitter release from large groups of cultured PC 12 cells. Conductive polymer PEDOT:tosylate microelectrodes were used together with constant potential amperometry to obtain easy-to-analyze oxidation signals from potassium...

  5. High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording)

    Science.gov (United States)

    Zhou, Yan; Bao, Zhenan

    2015-10-01

    The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as

  6. Fabrication and characterization of all-polymer, transparent ferroelectric capacitors on flexible substrates

    KAUST Repository

    Khan, Yasser

    2011-12-01

    All-polymer, transparent ferroelectric devices, based on the functional polymer poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)], have been fabricated on flexible substrates. The performance of the all-polymer devices was studied and compared to devices with metal electrodes. Specifically, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) [PEDOT:PSS] and platinum (Pt) electrode effects on the morphology, crystallinity and orientation of P(VDF-TrFE) films were investigated. The devices with PEDOT:PSS electrodes showed similar hysteresis and switching current response compared to Pt electrodes but with tremendously improved fatigue performance. Further, the devices with PEDOT:PSS electrodes showed lower coercive field and better fatigue performance than values reported for other polymer electrodes used with P(VDF-TrFE) on flexible substrates. © 2011 Elsevier B.V. All rights reserved.

  7. Fabrication of paper based microfluidic devices

    CSIR Research Space (South Africa)

    Govindasamy, K

    2012-07-01

    Full Text Available This paper describes an inexpensive method of fabricating paper based microfluidic devices, a new point of care technology. The method uses a solid ink printer, chromatography paper and a heating source. The printer deposits wax onto the surface...

  8. All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers

    OpenAIRE

    Wienhold, T.; Kraemmer, S.; Wondimu, S.F.; Siegle, T.; Bog, U.; Weinzierl, U.; Schmidt, S.; Becker, H.; Kalt, H.; Mappes, T.; Koeber, S.; Koos, C.

    2015-01-01

    We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 105 and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid reso...

  9. All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Klinkhammer, Sönke; Christiansen, Mads Brøkner

    2010-01-01

    Organic semiconductor lasers are of particular interest as tunable visible laser light sources. For bringing those to market encapsulation is needed to ensure practicable lifetimes. Additionally, fabrication technologies suitable for mass production must be used. We introduce all-polymer chips...... comprising encapsulated distributed feedback organic semiconductor lasers. Several chips are fabricated in parallel by thermal nanoimprint of the feedback grating on 4? wafer scale out of poly(methyl methacrylate) (PMMA) and cyclic olefin copolymer (COC). The lasers consisting of the organic semiconductor...

  10. All-printed paper-based memory

    KAUST Repository

    He, Jr-Hau

    2016-06-16

    All-printed paper-based substrate memory devices are described which can be prepared by a process that includes coating, using a screen printer, one or more areas of a paper substrate (102) with a conductor material (104), such as a carbon paste, to form a first electrode, depositing, with an ink jet printer, a layer of resistance switching insulator material (106), such as titanium dioxide, over one or more areas of the conductor material, and depositing, with an ink jet printer, a layer of metal (108), such as silver, over one or more areas of the titanium dioxide to form a second electrode.

  11. Isotachophoretic preconcenetration on paper-based microfluidic devices.

    Science.gov (United States)

    Moghadam, Babak Y; Connelly, Kelly T; Posner, Jonathan D

    2014-06-17

    Paper substrates have been widely used to construct point-of-care lateral flow immunoassay (LFIA) diagnostic devices. Paper based microfluidic devices are robust and relatively simple to operate, compared to channel microfluidic devices, which is perhaps their greatest advantage and the reason they have reached a high level of commercial success. However, paper devices may not be well suited for integrated sample preparation, such as sample extraction and preconcentration, which is required in complex samples with low analyte concentrations. In this study, we investigate integration of isotachophoresis (ITP), an electrokinetic preconcentration and extraction technique, onto nitrocellulose-based paper microfluidic devices with the goal to improve the limit of detection of LFIA. ITP has been largely used in traditional capillary based microfluidic devices as a pretreatment method to preconcentrate and separate a variety of ionic compounds. Our findings show that ITP on nitrocellulose is capable of up to a 900 fold increase in initial sample concentration and up to 60% extraction from 100 μL samples and more than 80% extraction from smaller sample volumes. Paper based ITP is challenged by Joule heating and evaporation because it is open to the environment. We achieved high preconcentration by mitigating evaporation induced dispersion using novel cross-shaped device structures that keep the paper hydrated. We show that ITP on the nitrocellulose membrane can be powered and run several times by a small button battery suggesting that it could be integrated to a portable point-of-care diagnostic device. These results highlight the potential of ITP to increase the sensitivity of paper based LFIA under conditions where small analyte concentrations are present in complex biological samples.

  12. All Polymer FET Fabricated from Polypyrrole-Polyvinyl Alcohol (PPY—PVA) Nanocomposite

    Science.gov (United States)

    Bhadra, J.; Baruah, K.; Sarkar, D.

    2010-10-01

    We report here fabrication of the all polymer FET prepared from PPY—PVA nanocomposite. Synthesis of PPY is carried out by interface polymerization technique and then blended in PVA matrix in 1:100 wt/wt ratios. The spin cast film obtained from the above shows nanorod structure of 1-2 μm length and 50 nm diameter. FET is fabricated using overhead projector transparent sheet as substrate by spin cast method. Source, drain and gate electrodes are made by silver deposition. The I-V characteristics of the all polymer FET shows the clear behaviour of FET characteristics for a p-channel semiconductor. The threshold voltage and mobility of the device are found to be 96.4 volt and 21.3×10-4 cm2/Vs respectively. The device transconductance is obtained as 45.31 nS. The study possesses the potential for fabrication of low cost FET based on organic conducting polymers.

  13. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All-Polymer Solar Cells

    KAUST Repository

    Karuthedath, Safakath

    2018-03-27

    A combination of steady-state and time-resolved spectroscopic measurements is used to investigate the photophysics of the all-polymer bulk heterojunction system TQ1:N2200. Upon thermal annealing a doubling of the external quantum efficiency and an improved fill factor (FF) is observed, resulting in an increase in the power conversion efficiency. Carrier extraction is similar for both blends, as demonstrated by time-resolved electric-field-induced second harmonic generation experiments in conjunction with transient photocurrent studies, spanning the ps-µs time range. Complementary transient absorption spectroscopy measurements reveal that the different quantum efficiencies originate from differences in charge carrier separation and recombination at the polymer-polymer interface: in as-spun samples ~35 % of the charges are bound in interfacial charge-transfer states and recombine geminately, while this pool is reduced to ~7 % in thermally-annealed sample, resulting in higher short-circuit currents. Time-delayed collection field experiments demonstrate a field-dependent charge generation process in as-spun samples, which reduces the FF. In contrast, field-dependence of charge generation is weak in annealed films. While both devices exhibit significant non-geminate recombination competing with charge extraction, causing low FFs, our results demonstrate that the donor/acceptor interface in all-polymer solar cells can be favourably altered to enhance charge separation, without compromising charge transport and extraction.

  14. High Performance All-Polymer Solar Cell via Polymer Side-Chain Engineering

    KAUST Repository

    Zhou, Yan

    2014-03-24

    An average PCE of 4.2% for all-polymer solar cells from 20 devices with an average J SC of 8.8 mA cm-2 are obtained with a donor-acceptor pair despite a low LUMO-LUMO energy offset of less than 0.1 eV. Incorporation of polystyrene side chains into the donor polymer is found to assist in reducing the phase separation domain length scale, and results in more than 20% enhancement of PCE. We observe a direct correlation between the short circuit current (J SC) and the length scale of BHJ phase separation, which is obtained by resonance soft X-ray scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Paper-based Synthetic Gene Networks

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  16. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  17. Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bingwen; Du, Dan; Hua, Xin; Yu, Xiao-Ying; Lin, Yuehe

    2014-05-08

    Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

  18. Burst pressure of phaseguide structures of different heights in all-polymer microfluidic channels

    Science.gov (United States)

    Garbarino, Francesca; Kistrup, Kasper; Rizzi, Giovanni; Fougt Hansen, Mikkel

    2017-12-01

    We present an experimental investigation of the burst/overflow pressure of water and a representative surfactant-containing buffer in microfluidic channels with phaseguide structures oriented at an angle of 90° to the channel length as a function of their height, h . The all-polymer chips were fabricated by injection moulding and sealed by ultrasonic welding. Channels with a height of 200 μ m and widths of 1 mm or 3 mm were investigated for five values of h between 8 μ m and 82 μ m. Phaseguide structures without branches and with branches at angles α   =  45°, 60° and 75° were studied. All phaseguide structures were found able to pin both liquids and the burst pressure was found to increase approximately linearly with the height of the phaseguide from about 100-350 Pa for water and from about 25-200 Pa for the buffer. The burst pressure was found not to depend on the channel width and it was only weakly influenced by the presence of a branch on the phaseguide. For phaseguides with a branch, the liquid was always found to burst at the branch location. The measured burst pressures were compared to those estimated using a simple theory. The knowledge obtained in this study enables simple tuning of liquid spreading and overflow in microfluidic channels by use of phaseguide structures with different heights and it also provides a set of systematic experimental data to be compared with simulations/theory.

  19. Tuning the Morphology of All-Polymer OPVs through Altering Polymer–Solvent Interactions

    KAUST Repository

    Pavlopoulou, Eleni

    2014-09-09

    © 2014 American Chemical Society. In this work, we investigated the effects of solvent(s)-polymer(s) interactions on the morphology of all-polymer bulk-heterojunction (BHJ) active layers cast from cosolutions. We demonstrate that altering the interactions between the solvent and both the donor and acceptor polymers in the cosolution prior to film-casting induces different solid-state morphological characteristics that subsequently leads to differences in the device performance of organic photovoltaics (OPV). Poly(3-hexylthiophene), P3HT, was codissolved poly[[N,N\\'-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5 ′-(2,2 ′-bithiophene)], P(NDI2OD-T2), or otherwise known as ActivInk N2200, in dichlorobenzene, chlorobenzene, and xylene. According to the qualitative interaction map we propose, all three solvents exhibit favorable interactions with P3HT. The extent of incompatibility these solvents exhibit with P(NDI2OD-T2), however, varies, with xylene as the worst solvent for P(NDI2OD-T2) among those examined. Polymer-polymer interactions in xylene are, thus, more favorable compared to P(NDI2OD-T2)-xylene interactions. Grazing-incidence wide-angle X-ray scattering measurements on the cast films suggest that this preferential affinity between the two polymers disrupts crystallization in the blends; P(NDI2OD-T2) crystallinity decreases and, concurrently, results in shorter P3HT coherence lengths. Significant mixing of the two polymers is also evidenced. OPVs comprising P3HT and P(NDI2OD-T2) active layers cast from xylene exhibit the best device characteristics compared to OPVs whose active layers are cast from di- or mono-chlorobenzene. We attribute the improved OPV performance for the xylene-cast active layer to the presence of a more intermixed network of nanocrystalline domains of the two polymers, which originates from the affinity of P3HT and P(NDI2OD-T2) in the parent cosolution.

  20. DNA barcoding via counterstaining with AT/GC sensitive ligands in injection-molded all-polymer nanochannel devices

    DEFF Research Database (Denmark)

    Østergaard, Peter Friis; Matteucci, Marco; Reisner, Walter

    2013-01-01

    /or requirement of specialized facilities/skill-sets. In this article we show that nanochannel-based mapping can be performed in all polymer chips fabricated via injection molding: a fabrication process so inexpensive that the devices can be considered disposable. Fluorescent intensity variations can be obtained...

  1. Comparative study on aptamers as recognition elements for antibiotics in a label-free all-polymer biosensor

    DEFF Research Database (Denmark)

    Dapra, Johannes; Lauridsen, Lasse Holm; Nielsen, Alex Toftgaard

    2013-01-01

    We present an all-polymer electrochemical microfluidic biosensor using Topas ® as substrate and a conductive polymer bilayer as electrode material. The conductive bilayer consists of tosylate doped poly(3,4-ethylenedioxythiophene) (PEDOT:TsO) and the hydroxymethyl derivative PEDOT-OH:TsO, which...

  2. Fabrication of an all-polymer electrochemical sensor by using a one-step hot embossing procedure

    DEFF Research Database (Denmark)

    Kafka, Jan Robert; Larsen, Niels Bent; Skaarup, Steen

    2010-01-01

    We present a fast one-step hot embossing procedure for fabricating an all-polymer electrochemical sen¬sor based on a thin, conductive film of poly(3,4-ethylenedioxythiophene) (PEDOT), a few 100s of nano¬meters in thickness, polymerised on top of a non-conductive TOPAS® (Cyclic Olefin Copolymer...

  3. All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells

    DEFF Research Database (Denmark)

    Liu, Yao; Larsen-Olsen, Thue Trofod; Zhao, Xingang

    2013-01-01

    Inverted all polymer solar cells based on a blend of a perylene diimide based polymer acceptor and a dithienosilole based polymer donor were fabricated from small area devices to roll-to-roll (R2R) coated and printed large area modules. The device performance was successfully optimized by using...... solution processibility and R2R coated and printed large area (4.2 cm 2) solar cells exhibited a PCE of 0.20%. © 2013 Elsevier B.V....

  4. Measurement model equivalence in web- and paper-based surveys ...

    African Journals Online (AJOL)

    The aim of this research is to investigate whether web-based and paper-based organisational climate surveys can be regarded as equivalent techniques of data collection. Due to the complex geographical placement of various units of the participating organisation and limited internet access, both paper-based and

  5. Formatting a Paper-based Survey Questionnaire: Best Practices

    Directory of Open Access Journals (Sweden)

    Elizabeth Fanning

    2005-08-01

    Full Text Available This paper summarizes best practices with regard to paper-based survey questionnaire design. Initial design considerations, the cover and cover page, directions, ordering of questions, navigational path (branching, and page design are discussed.

  6. Characterization of Fluid Flow in Paper-Based Microfluidic Systems

    Science.gov (United States)

    Walji, Noosheen; MacDonald, Brendan

    2014-11-01

    Paper-based microfluidic devices have been presented as a viable low-cost alternative with the versatility to accommodate many applications in disease diagnosis and environmental monitoring. Current microfluidic designs focus on the use of silicone and PDMS structures, and several models have been developed to describe these systems; however, the design process for paper-based devices is hindered by a lack of prediction capability. In this work we simplify the complex underlying physics of the capillary-driven flow mechanism in a porous medium and generate a practical numerical model capable of predicting the flow behaviour. We present our key insights regarding the properties that dictate the behaviour of fluid wicking in paper-based microfluidic devices. We compare the results from our model to experiments and discuss the application of our model to design of paper-based microfluidic devices for arsenic detection in drinking water in Bangladesh.

  7. All-Polymer Photovoltaic Devices of Poly(3-(4- n -octyl)-phenylthiophene) from Grignard Metathesis (GRIM) Polymerization

    KAUST Repository

    Holcombe, Thomas W.

    2009-10-14

    (Graph Presented) The synthesis of poly[3-(4-n-octyl)-phenylthiophene] (POPT) from Grignard Metathesis (GRIM) is reported. GRIM POPT is found to have favorable electronic, optical, and processing properties for organic photovoltaics (OPVs). Space-charge limited current and field effect transistor measurements for POPT yielded hole mobilities of 1 × 10-4 cm2/(V s) and 0.05 cm2/(V s), respectively. Spincasting GRIM POPT from chlorobenzene yields a thin film with a 1.8 eV band gap, and PC61BM:POPT bulk heterojection devices provide a peak performance of 3.1%. Additionally, an efficiency of 2.0% is achieved in an all-polymer, bilayer OPV using poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-(1-cyanovinylene) phenylene] (CNPPV) as an acceptor. This state-of-the-art all-polymer device is analyzed in comparison to the analogous poly(3-hexylthiophene) (P3HT)/CNPPV device. Counter to expectations based on more favorable energy level alignment, greater active layer light absorption, and similar hole mobility, P3HT/CNPPV devices perform less well than POPT/CNPPV devices with a peak efficiency of 0.93%. © 2009 American Chemical Society.

  8. Toner and paper-based fabrication techniques for microfluidic applications.

    Science.gov (United States)

    Coltro, Wendell Karlos Tomazelli; de Jesus, Dosil Pereira; da Silva, José Alberto Fracassi; do Lago, Claudimir Lucio; Carrilho, Emanuel

    2010-08-01

    The interest in low-cost microfluidic platforms as well as emerging microfabrication techniques has increased considerably over the last years. Toner- and paper-based techniques have appeared as two of the most promising platforms for the production of disposable devices for on-chip applications. This review focuses on recent advances in the fabrication techniques and in the analytical/bioanalytical applications of toner and paper-based devices. The discussion is divided in two parts dealing with (i) toner and (ii) paper devices. Examples of miniaturized devices fabricated by using direct-printing or toner transfer masking in polyester-toner, glass, PDMS as well as conductive platforms as recordable compact disks and printed circuit board are presented. The construction and the use of paper-based devices for off-site diagnosis and bioassays are also described to cover this emerging platform for low-cost diagnostics.

  9. ZnS-paper based flexible piezoelectric nanogenerator

    Science.gov (United States)

    Sultana, Ayesha; Middya, Tapas Ranjan; Mandal, Dipankar

    2018-04-01

    Here, we presented a novel, cost effective approach to fabricate flexible piezoelectric nanogenerator (NG) consisting of ZnS nanowires (NWs) grown upon cellulose. An output voltage of 4 V is generated from the nanocomposite paper (NC-paper) based NG. Subsequently, it has the capability to power Light Emitting Diode (LED) and charging up capacitor. The corresponding energy stored in the capacitor (1 µF) is 16 µJ. Thus, the fabricated NC-paper based NG can be used for smart textile structures, wearable and self-powered nanodevices.

  10. Fully enclosed microfluidic paper-based analytical devices.

    Science.gov (United States)

    Schilling, Kevin M; Lepore, Anna L; Kurian, Jason A; Martinez, Andres W

    2012-02-07

    This article introduces fully enclosed microfluidic paper-based analytical devices (microPADs) fabricated by printing toner on the top and bottom of the devices using a laser printer. Enclosing paper-based microfluidic channels protects the channels from contamination, contains and protects reagents stored on the device, contains fluids within the channels so that microPADs can be handled and operated more easily, and reduces evaporation of solutions from the channels. These benefits extend the capabilities of microPADs for applications as low-cost point-of-care diagnostic devices. © 2012 American Chemical Society

  11. From Paper Based Clinical Practice Guidelines to Declarative Workflow Management

    DEFF Research Database (Denmark)

    Lyng, Karen Marie; Hildebrandt, Thomas; Mukkamala, Raghava Rao

    2009-01-01

    a sub workflow can be described in a declarative workflow management system: the Resultmaker Online Consultant (ROC). The example demonstrates that declarative primitives allow to naturally extend the paper based flowchart to an executable model without introducing a complex cyclic control flow graph....

  12. Transforming paper-based assessment forms to a digital format

    DEFF Research Database (Denmark)

    Jonasen, Tanja Svarre; Lunn, Tine Bieber; Helle, Tina

    2017-01-01

    Background: The aim of this paper is to provide the reader with an overall impression of the stepwise user-centred design approach including the specific methods used and lessons learned when transforming paper-based assessment forms into a prototype app, taking the Housing Enabler as an example...

  13. Rapid development of paper-based fluidic diagnostic devices

    CSIR Research Space (South Africa)

    Smith, S

    2014-11-01

    Full Text Available We present a method for rapid and low-cost development of microfluidic diagnostic devices using paper-based techniques. Specifically, the implementation of fluidic flow paths and electronics on paper are demonstrated, with the goal of producing...

  14. High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths

    OpenAIRE

    Benten, Hiroaki; Nishida, Takaya; Mori, Daisuke; Xu, Huajun; Ohkita, Hideo; Ito, Shinzaburo

    2016-01-01

    We developed high-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths. A power conversion efficiency of 6.7% was obtained with an external quantum efficiency over 60% both in the visible and near-infrared regions. Our results demonstrate that the ternary blend all-polymer systems open a new avenue for accelerating improvement in the efficiency of non-fullerene thin-film polymer solar cells.

  15. A disposable power source in resource-limited environments: A paper-based biobattery generating electricity from wastewater.

    Science.gov (United States)

    Fraiwan, Arwa; Kwan, Landen; Choi, Seokheun

    2016-11-15

    We report a novel paper-based biobattery which generates power from microorganism-containing liquid derived from renewable and sustainable wastewater which is readily accessible in the local environment. The device fuses the art of origami and the technology of microbial fuel cells (MFCs) and has the potential to shift the paradigm for flexible and stackable paper-based batteries by enabling exceptional electrical characteristics and functionalities. 3D, modular, and retractable battery stack is created from (i) 2D paper sheets through high degrees of folding and (ii) multifunctional layers sandwiched for MFC device configuration. The stack is based on ninja star-shaped origami design formed by eight MFC modular blades, which is retractable from sharp shuriken (closed) to round frisbee (opened). The microorganism-containing wastewater is added into an inlet of the closed battery stack and it is transported into each MFC module through patterned fluidic pathways in the paper layers. During operation, the battery stack is transformed into the round frisbee to connect eight MFC modules in series for improving the power output and simultaneously expose all air-cathodes to the air for their cathodic reactions. The device generates desired values of electrical current and potential for powering an LED for more than 20min. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. From Paper-based to Electronic Securities Posttrading

    DEFF Research Database (Denmark)

    Rapp, Hermann; Parisi, Cristiana

    centuries old business practices in the investment industry. This study focuses on CREST, a leading settlement infrastructure that facilitated the leap from paper-based to electronic post-trading in London. In 1993 it started as a project of the Bank of England, and today, CREST is operated by Euroclear......Over recent decades, securities post-trading has seen a radical change from paper-based to electronic procedures. Technological advances have facilitated digitisation as a global trend. While in the investment industry technology has also been a key driver for financial automation since the late...... United Kingdom & Ireland (EUI). Research objectives of this study are to investigate the industry context, how the CREST project was managed and introduced at a time of crisis, how the technology was designed, and its impact on financial markets and today’s UK and European infrastructure. Twenty...

  17. Large-scale production of paper-based Li-ion cells

    CERN Document Server

    Zolin, Lorenzo

    2017-01-01

    This book describes in detail the use of natural cellulose fibers for the production of innovative, low-cost, and easily recyclable lithium-ion (Li-ion) cells by means of fast and reliable papermaking procedures that employ water as a solvent. In addition, it proposes specific methods to optimize the safety features of these paper-based cells and to improve the electronic conductivity of the electrodes by means of a carbonization process– an interesting novel technology that enables higher current rate capabilities to be achieved. The in-depth descriptions of materials, methods, and techniques are complemented by the inclusion of a general overview of electrochemical devices and, in particular, of different Li-ion battery configurations. Presenting the outcomes of this important research, the work is of wide interest to electrochemical engineers in both research institutions and industry.

  18. All-polymer bistable resistive memory device based on nanoscale phase-separated PCBM-ferroelectric blends

    KAUST Repository

    Khan, Yasser

    2012-11-21

    All polymer nonvolatile bistable memory devices are fabricated from blends of ferroelectric poly(vinylidenefluoride-trifluoroethylene (P(VDF-TrFE)) and n-type semiconducting [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The nanoscale phase separated films consist of PCBM domains that extend from bottom to top electrode, surrounded by a ferroelectric P(VDF-TrFE) matrix. Highly conducting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer electrodes are used to engineer band offsets at the interfaces. The devices display resistive switching behavior due to modulation of this injection barrier. With careful optimization of the solvent and processing conditions, it is possible to spin cast very smooth blend films (Rrms ≈ 7.94 nm) and with good reproducibility. The devices exhibit high Ion/I off ratios (≈3 × 103), low read voltages (≈5 V), excellent dielectric response at high frequencies (Ïμr ≈ 8.3 at 1 MHz), and excellent retention characteristics up to 10 000 s. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dye-incorporated Polynaphthalenediimide Acceptor for Additive-free High-performance All-polymer Solar Cells.

    Science.gov (United States)

    Chen, Dong; Yao, Jia; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Yang, Chunhe; Zhang, Zhiguo; Chen, Lie; Chen, Yiwang; Li, Yongfang

    2018-02-22

    All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. In this work, by means of simple random copolymerization, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13%, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating dye into the n-type polymer yields insights into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Battery Modeling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,

  1. Paper-Based Electrochemical Cell Coupled to Mass Spectrometry.

    Science.gov (United States)

    Liu, Yao-Min; Perry, Richard H

    2015-10-01

    On-line coupling of electrochemistry (EC) to mass spectrometry (MS) is a powerful approach for identifying intermediates and products of EC reactions in situ. In addition, EC transformations have been used to increase ionization efficiency and derivatize analytes prior to MS, improving sensitivity and chemical specificity. Recently, there has been significant interest in developing paper-based electroanalytical devices as they offer convenience, low cost, versatility, and simplicity. This report describes the development of tubular and planar paper-based electrochemical cells (P-EC) coupled to sonic spray ionization (SSI) mass spectrometry (P-EC/SSI-MS). The EC cells are composed of paper sandwiched between two mesh stainless steel electrodes. Analytes and reagents can be added directly to the paper substrate along with electrolyte, or delivered via the SSI microdroplet spray. The EC cells are decoupled from the SSI source, allowing independent control of electrical and chemical parameters. We utilized P-EC/SSI-MS to characterize various EC reactions such as oxidations of cysteine, dopamine, polycyclic aromatic hydrocarbons, and diphenyl sulfide. Our results show that P-EC/SSI-MS has the ability to increase ionization efficiency, to perform online EC transformations, and to capture intermediates of EC reactions with a response time on the order of hundreds of milliseconds. The short response time allowed detection of a deprotonated diphenyl sulfide intermediate, which experimentally confirms a previously proposed mechanism for EC oxidation of diphenyl sulfide to pseudodimer sulfonium ion. This report introduces paper-based EC/MS via development of two device configurations (tubular and planar electrodes), as well as discusses the capabilities, performance, and limitations of the technique.

  2. From Paper Based Clinical Practice Guidelines to Declarative Workflow Management

    DEFF Research Database (Denmark)

    Lyng, Karen Marie; Hildebrandt, Thomas; Mukkamala, Raghava Rao

    2009-01-01

    We present a field study of oncology workflow, involving doctors, nurses and pharmacists at Danish hospitals and discuss the obstacles, enablers and challenges for the use of computer based clinical practice guidelines. Related to the CIGDec approach of Pesic and van der Aalst we then describe how...... a sub workflow can be described in a declarative workflow management system: the Resultmaker Online Consultant (ROC). The example demonstrates that declarative primitives allow to naturally extend the paper based flowchart to an executable model without introducing a complex cyclic control flow graph....

  3. 1000-fold sample focusing on paper-based microfluidic devices.

    Science.gov (United States)

    Rosenfeld, Tally; Bercovici, Moran

    2014-12-07

    We present an experimental and analytical study of a novel paper-based analytical device (μPAD) for isotachophoretic sample focusing. Guided by a simple heat transfer model, we further developed wax printing fabrication to enable the creation of shallow channels, which are critical in providing sufficient dissipation of Joule heat, and thus enable the use of high electric fields and short analysis time. This results in a device that is self-contained on a simple piece of filter paper and does not require any specialized enclosures or cooling devices to combat evaporation at high temperatures. Furthermore, we provide an analytical model for isotachophoretic sample accumulation in porous media, introduce a simple figure of merit for evaluating and comparing the efficiency of such devices, and present experimental validation in both paper and glass channels. Using this device we demonstrate the processing of 30 μL of sample achieving 1000-fold increase in peak concentration in 6 min. We believe that this method and device can serve as a guide to the design of low-cost, rapid and highly sensitive paper-based diagnostic platforms.

  4. Patterning Conjugated Polymers by Laser: Synergy of Nanostructure Formation in the All-Polymer Heterojunction P3HT/PCDTBT.

    Science.gov (United States)

    Rodríguez-Rodríguez, Álvaro; Rebollar, Esther; Ezquerra, Tiberio A; Castillejo, Marta; Garcia-Ramos, Jose V; García-Gutiérrez, Mari-Cruz

    2018-01-09

    In this work we report a broad scenario for the patterning of semiconducting polymers by laser-induced periodic surface structures (LIPSS). Based on the LIPSS formation in the semicrystalline poly(3-hexylthiophene) (P3HT), we have extended the LIPSS fabrication to an essentially amorphous semiconducting polymer like poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT). This polymer shows a good quality and well-ordered nanostructures not only at the 532 nm laser wavelength, as in the case of P3HT, but also at 266 nm providing gratings with smaller pitch. In addition, we have proven the feasibility of fabricating LIPSS in the P3HT/PCDTBT (1:1) blend, which can be considered as a model bulk-heterojunction for all-polymer solar cells. In spite of the heterogeneous roughness, due to phase separation in the blend, both P3HT and PCDTBT domains present well-defined LIPSS as well as a synergy for both components in the blend when irradiating at wavelengths of 532 and 266 nm. Both, P3HT and PCDTBT in the blend require lower fluence and less pulses in order to optimize LIPSS morphology than in the case of irradiating the homopolymers separately. Near edge X-ray absorption fine structure and Raman spectroscopy reveal a good chemical stability of both components in the blend thin films during LIPSS formation. In addition, scanning transmission X-ray spectro-microscopy shows that the mechanisms of LIPSS formation do not induce a further phase segregation neither a mixture of the components. Conducting atomic force microscopy reveals a heterogeneous electrical conductivity for the irradiated homopolymer and for the blend thin films, showing higher electrical conduction in the trenches than in the ridge regions of the LIPSS.

  5. Graphene Paper Based Nanomaterials for Electrochemical Sensing and Energy Conversion

    DEFF Research Database (Denmark)

    Zhang, Minwei

    Graphene has emerged as a highly interesting material since it was experimentally isolated for the first timein 2004. This single-atom-thick nanosheet consisting of carbon atoms arrayed in a honeycomb pattern,displays outstanding physicochemical properties, including as an excellent conductor...... of heat and electricity,large specific surface area, and high mechanical strength. Therefore, graphene based materials are expected to have great potential for use in the fields of sensors, catalysis, and as electrode materials for energy storage and conversion. In order to link practical applications...... and energy technologies. This PhD project is devoted to the synthesis, characterization and applications of graphene paper based nanomaterials for electrochemical sensors and energy conversion. The thesis is divided into three parts with 8 chapters in total. In Chapter 1, we provide an overview...

  6. Paper-based inkjet-printed microfluidic analytical devices.

    Science.gov (United States)

    Yamada, Kentaro; Henares, Terence G; Suzuki, Koji; Citterio, Daniel

    2015-04-27

    Rapid, precise, and reproducible deposition of a broad variety of functional materials, including analytical assay reagents and biomolecules, has made inkjet printing an effective tool for the fabrication of microanalytical devices. A ubiquitous office device as simple as a standard desktop printer with its multiple ink cartridges can be used for this purpose. This Review discusses the combination of inkjet printing technology with paper as a printing substrate for the fabrication of microfluidic paper-based analytical devices (μPADs), which have developed into a fast-growing new field in analytical chemistry. After introducing the fundamentals of μPADs and inkjet printing, it touches on topics such as the microfluidic patterning of paper, tailored arrangement of materials, and functionalities achievable exclusively by the inkjet deposition of analytical assay components, before concluding with an outlook on future perspectives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers.

    Science.gov (United States)

    Zhou, Nanjia; Dudnik, Alexander S; Li, Ting I N G; Manley, Eric F; Aldrich, Thomas J; Guo, Peijun; Liao, Hsueh-Chung; Chen, Zhihua; Chen, Lin X; Chang, Robert P H; Facchetti, Antonio; Olvera de la Cruz, Monica; Marks, Tobin J

    2016-02-03

    The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE "sweet spot" at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for both polymer

  8. Paper-based Platform for Urinary Creatinine Detection.

    Science.gov (United States)

    Sittiwong, Jarinya; Unob, Fuangfa

    2016-01-01

    A new paper platform was developed for the colorimetric detection of creatinine. The filter paper was coated with 3-propylsulfonic acid trimethoxysilane and used as the platform. Creatinine in a cationic form was extracted onto the paper via an ion-exchange mechanism and detected through the Jaffé reaction, resulting in a yellow-orange color complex. The color change on the paper could be observed visually, and the quantitative detection of creatinine was achieved through monitoring the color intensity change. The color intensity of creatinine complexes on the paper platform as a function of the creatinine concentration provided a linear range for creatinine detection in the range of 10 - 60 mg L(-1) and a detection limit of 4.2 mg L(-1). The accuracy of the proposed paper-based method was comparable to the conventional standard Jaffé method. This paper platform could be applied for simple and rapid detection of creatinine in human urine samples with a low consumption of reagent.

  9. Screen printed paper-based diagnostic devices with polymeric inks.

    Science.gov (United States)

    Sun, Ju-Yen; Cheng, Chao-Min; Liao, Ying-Chih

    2015-01-01

    A simple and low-cost fabrication method for paper-based diagnostic devices (PBDDs) is described in this study. Street-available polymer solutions were screen printed onto filter papers to create hydrophobic patterns for fluidic channels. In order to obtain fully functional hydrophobic patterns for fluids, the original polymer solutions were diluted with butyl acetate to yield a suitable viscosity range between 30-200 cP for complete patterning on paper. Typical pH and glucose tests with color indicators were performed on the screen printed PBDDs. Images of the PBDDs were analyzed by computers to obtain calibration curves for pH between 2 and 12 and glucose concentration ranging from 10-1000 mmol dm(-3). Detection of formaldehyde in acetone was also carried out to show the possibility of using this PBBD for analytical detection with organic solvents. An exemplar PBDD with simultaneous pH and glucose detection was also used to demonstrate the feasibility of applying this technique for realistic diagnostic applications.

  10. A Highly Durable, Transferable, and Substrate-Versatile High-Performance All-Polymer Micro-Supercapacitor with Plug-and-Play Function.

    Science.gov (United States)

    Zhu, Minshen; Huang, Yang; Huang, Yan; Li, Hongfei; Wang, Zifeng; Pei, Zengxia; Xue, Qi; Geng, Huiyuan; Zhi, Chunyi

    2017-04-01

    A highly durable high-performance all-polymer micro-supercapacitor with plug-and-play function is developed. Through the newly developed technology, these micro-supercapacitors can be transferred to any substrate with all functions well retained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Colorimetric detection for paper-based biosensing applications

    Science.gov (United States)

    Brink, C.; Joubert, T.-H.

    2016-02-01

    Research on affordable point-of-care health diagnostics is rapidly advancing1. Colorimetric biosensor applications are typically qualitative, but recently the focus has been shifted to quantitative measurements2,3. Although numerous qualitative point-of-care (POC) health diagnostic devices are available, the challenge exists of developing a quantitative colorimetric array reader system that complies with the ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, Deliverable to end-users) principles of the World Health Organization4. This paper presents a battery powered 8-bit tonal resolution colorimetric sensor circuit for paper microfluidic assays using low cost photo-detection circuitry and a low-power LED light source. A colorimetric 3×3-pixel array reader was developed for rural environments where resources and personnel are limited. The device sports an ultralow-power E-ink paper display. The colorimetric device includes integrated GPS functionality and EEPROM memory to log measurements with geo-tags for possible analysis of regional trends. The device competes with colour intensity measurement techniques using smartphone cameras, but proves to be a cheaper solution, compensating for the typical performance variations between cameras of different brands of smartphones. Inexpensive methods for quantifying bacterial assays have been shown using desktop scanners, which are not portable, and cameras, which suffer severely from changes in ambient light in different environments. Promising colorimetric detection results have been demonstrated using devices such as video cameras5, digital colour analysers6, flatbed scanners7 or custom portable readers8. The major drawback of most of these methods is the need for specialized instrumentation and for image analysis on a computer.

  12. From Fullerene-Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control.

    Science.gov (United States)

    Kang, Hyunbum; Lee, Wonho; Oh, Jiho; Kim, Taesu; Lee, Changyeon; Kim, Bumjoon J

    2016-11-15

    All-polymer solar cells (all-PSCs), consisting of conjugated polymers as both electron donor (P D ) and acceptor (P A ), have recently attracted great attention. Remarkable progress has been achieved during the past few years, with power conversion efficiencies (PCEs) now approaching 8%. In this Account, we first discuss the major advantages of all-PSCs over fullerene-polymer solar cells (fullerene-PSCs): (i) high light absorption and chemical tunability of P A , which affords simultaneous enhancement of both the short-circuit current density (J SC ) and the open-circuit voltage (V OC ), and (ii) superior long-term stability (in particular, thermal and mechanical stability) of all-PSCs due to entangled long P A chains. In the second part of this Account, we discuss the device operation mechanism of all-PSCs and recognize the major challenges that need to be addressed in optimizing the performance of all-PSCs. The major difference between all-PSCs and fullerene-PSCs originates from the molecular structures and interactions, i.e., the electron transport ability in all-PSCs is significantly affected by the packing geometry of two-dimensional P A chains relative to the electrodes (e.g., face-on or edge-on orientation), whereas spherically shaped fullerene acceptors can facilitate isotropic electron transport properties in fullerene-PSCs. Moreover, the crystalline packing structures of P D and P A at the P D -P A interface greatly affect their free charge carrier generation efficiencies. The design of P A polymers (e.g., main backbone, side chain, and molecular weight) should therefore take account of optimizing three major aspects in all-PSCs: (1) the electron transport ability of P A , (2) the molecular packing structure and orientation of P A , and (3) the blend morphology. First, control of the backbone and side-chain structures, as well as the molecular weight, is critical for generating strong intermolecular assembly of P A and its network, thus enabling high

  13. Paper-Based Origami Flexible and Foldable Thermoelectric Nanogenerator

    KAUST Repository

    Rojas, Jhonathan Prieto

    2016-11-12

    Paper has been an essential material in our daily life since ancient times. Its affordability, accessibility, adaptability, workability and its easiness of usage makes it an attractive structural material to develop many kind of technologies such as flexible electronics, energy storage and harvesting devices. Additionally, the scientific community has increased its interest on waste heat as an environmentally friendly energy source to support the increasing energy demand. Therefore, in this paper we described two affordable and flexible thermoelectric nanogenerators (TEGs) developed on paper substrates by the usage of simple micromachining and microfabrication techniques. Moreover, they exhibit mechanical stability and adaptability (through folding and cutting techniques) for a diverse set of scenarios where vertical or horizontal schemes can be conveniently used depending on the final application. The first TEG device, implemented on standard paper, generated a power of 0.5 nW (ΔT = 50 K). By changing the substrate to a tearless and extra-smooth polyester paper, the TEG performance was optimized achieving less internal resistance and a greater power of ~80 nW (ΔT = 75 K), at the cost of more rigidity in the substrate. This power represented over three times higher power production than the standard paper–based TEG with same dimensions, number of thermoelectric pairs and temperature difference. Another interesting aspect of paper based TEG is due to its foldability, one can control the temperature difference by unfolding (larger separation between hot and cold ends) and folding (smaller separation). Finally, one of the underlying objectives of this work is to spread the availability of essential technologies to the broad population by inclusion of everyday materials and simple processes.

  14. 3D Printed Paper-Based Microfluidic Analytical Devices

    Directory of Open Access Journals (Sweden)

    Yong He

    2016-06-01

    Full Text Available As a pump-free and lightweight analytical tool, paper-based microfluidic analytical devices (μPADs attract more and more interest. If the flow speed of μPAD can be programmed, the analytical sequences could be designed and they will be more popular. This reports presents a novel μPAD, driven by the capillary force of cellulose powder, printed by a desktop three-dimensional (3D printer, which has some promising features, such as easy fabrication and programmable flow speed. First, a suitable size-scale substrate with open microchannels on its surface is printed. Next, the surface of the substrate is covered with a thin layer of polydimethylsiloxane (PDMS to seal the micro gap caused by 3D printing. Then, the microchannels are filled with a mixture of cellulose powder and deionized water in an appropriate proportion. After drying in an oven at 60 °C for 30 min, it is ready for use. As the different channel depths can be easily printed, which can be used to achieve the programmable capillary flow speed of cellulose powder in the microchannels. A series of microfluidic analytical experiments, including quantitative analysis of nitrite ion and fabrication of T-sensor were used to demonstrate its capability. As the desktop 3D printer (D3DP is very cheap and accessible, this device can be rapidly printed at the test field with a low cost and has a promising potential in the point-of-care (POC system or as a lightweight platform for analytical chemistry.

  15. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  16. Button batteries

    Science.gov (United States)

    ... recovery. Alternative Names Swallowing batteries References Hess JM, Lowell MJ. Esophagus, stomach and duodenum. In: Marx JA, ... Jacob L. Heller, MD, MHA, Emergency Medicine, Virginia Mason Medical Center, Seattle, WA. Also reviewed by David ...

  17. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    International Nuclear Information System (INIS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-01-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution

  18. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kistrup, Kasper, E-mail: kkis@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Skotte Sørensen, Karen, E-mail: karen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Center for Integrated Point of Care Technologies (CiPoC), DELTA, Venlighedsvej 4, DK-2870 Hørsholm (Denmark); Wolff, Anders, E-mail: anders.wolff@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Fougt Hansen, Mikkel, E-mail: mikkel.hansen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark)

    2015-04-15

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution.

  19. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian

    2017-04-20

    While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all-polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low-bandgap polymer donor commonly used with fullerenes (PBDT-TS1; taken as a model system). In this material set, the introduction of a third electron-deficient motif, namely 2,1,3-benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (Eopt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow-gap P2TPDBT[2F]T analog (Eopt = 1.7 eV) used as fullerene alternative yields high open-circuit voltages (VOC) of ≈1.0 V, notable short-circuit current values (JSC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all-polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.

  20. n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells.

    Science.gov (United States)

    Hwang, Ye-Jin; Earmme, Taeshik; Courtright, Brett A E; Eberle, Frank N; Jenekhe, Samson A

    2015-04-08

    Knowledge of the critical factors that determine compatibility, blend morphology, and performance of bulk heterojunction (BHJ) solar cells composed of an electron-accepting polymer and an electron-donating polymer remains limited. To test the idea that bulk crystallinity is such a critical factor, we have designed a series of new semiconducting naphthalene diimide (NDI)-selenophene/perylene diimide (PDI)-selenophene random copolymers, xPDI (10PDI, 30PDI, 50PDI), whose crystallinity varies with composition, and investigated them as electron acceptors in BHJ solar cells. Pairing of the reference crystalline (crystalline domain size Lc = 10.22 nm) NDI-selenophene copolymer (PNDIS-HD) with crystalline (Lc = 9.15 nm) benzodithiophene-thieno[3,4-b]thiophene copolymer (PBDTTT-CT) donor yields incompatible blends, whose BHJ solar cells have a power conversion efficiency (PCE) of 1.4%. However, pairing of the new 30PDI with optimal crystallinity (Lc = 5.11 nm) as acceptor with the same PBDTTT-CT donor yields compatible blends and all-polymer solar cells with enhanced performance (PCE = 6.3%, Jsc = 18.6 mA/cm(2), external quantum efficiency = 91%). These photovoltaic parameters observed in 30PDI:PBDTTT-CT devices are the best so far for all-polymer solar cells, while the short-circuit current (Jsc) and external quantum efficiency are even higher than reported values for [70]-fullerene:PBDTTT-CT solar cells. The morphology and bulk carrier mobilities of the polymer/polymer blends varied substantially with crystallinity of the acceptor polymer component and thus with the NDI/PDI copolymer composition. These results demonstrate that the crystallinity of a polymer component and thus compatibility, blend morphology, and efficiency of polymer/polymer blend solar cells can be controlled by molecular design.

  1. High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology.

    Science.gov (United States)

    Lee, Changyeon; Kang, Hyunbum; Lee, Wonho; Kim, Taesu; Kim, Ki-Hyun; Woo, Han Young; Wang, Cheng; Kim, Bumjoon J

    2015-04-17

    The effectiveness of side-chain engineering is demonstrated to produce highly efficient all-polymer solar cells (efficiency of 5.96%) using a series of naphthalene diimide-based polymer acceptors with controlled side chains. The dramatic changes in the polymer packing, blend morphology, and electron mobility of all-polymer solar cells elucidate clear trends in the photovoltaic performances. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Online versus Paper-Based Instruction: Comparing Two Strategy Training Modules for Improving Reading Comprehension

    Science.gov (United States)

    Huang, Hsin-chou

    2014-01-01

    This study investigates the effectiveness of online versus paper-based reading strategy instruction on EFL learners' reading comprehension. Fifty-seven university students from two intact reading classes with comparable proficiency levels were assigned to participate in either a paper-based or an online reading instructional module. Both groups…

  3. Computer versus Paper-Based Reading: A Case Study in English Language Teaching Context

    Science.gov (United States)

    Solak, Ekrem

    2014-01-01

    This research aims to determine the preference of prospective English teachers in performing computer and paper-based reading tasks and to what extent computer and paper-based reading influence their reading speed, accuracy and comprehension. The research was conducted at a State run University, English Language Teaching Department in Turkey. The…

  4. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  5. All-Polymer Solar Cells Based on Fully Conjugated Donor-Acceptor Block Copolymers with Poly(naphthalene bisimide Acceptor Blocks: Device Performance and Thin Film Morphology

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2015-01-01

    Full Text Available All-polymer solar cells are fabricated by using poly(3-hexylthiophene (P3HT and fully conjugated donor-acceptor (D-A block copolymer (P3HT-PNBI-P3HT as donor and acceptor materials, respectively. Atomic force microscopy (AFM and grazing incidence wide angle X-ray scattering (GIWAXS analyses reveal that device performance strongly depends on the P3HT:P3HT-PNBI-P3HT thin film morphology. Indeed, the π-π stacking nanomorphology rich in the edge-on orientation is formed in the P3HT:P3HT-PNBI-P3HT thin film by optimizing the fabrication conditions, for example, thermal annealing temperature and cast solvent. Consequently, the power conversion efficiency (PCE of 1.60% is achieved with an open-circuit voltage (Voc of 0.59 V, short-current (Jsc of 4.43 mA/cm2, and fill factor (FF of 0.61. These results suggest that P3HT-PNBI-P3HT has the huge potential for the usage as a nonfullerene acceptor material.

  6. A suspending-droplet mode paper-based microfluidic platform for low-cost, rapid, and convenient detection of lead(II) ions in liquid solution.

    Science.gov (United States)

    Sun, Han; Li, Wanbo; Dong, Zhen-Zhen; Hu, Chong; Leung, Chung-Hang; Ma, Dik-Lung; Ren, Kangning

    2018-01-15

    A paper-based microfluidic device based on unconventional principle was developed and used to detect lead ions through a two-step process including heated incubation and subsequent mixing. The device was made by generating a superhydrophobic pattern, which defines channel and reservoir barriers, on a water-impermeable paper substrate, followed by loading and drying the reagents in the defined reservoirs. Different from the conventional paper-based devices that are made of water-permeable paper, the as-prepared device holds water drops in discrete reservoirs, and the water drops will not move unless the device is titled along the direction of the predefined channels. In this way, the liquid samples applied onto the device are handled as individual drops and could be stored, transported, and mixed on demand. Different from the conventional paper-based devices that use capillary force to drive liquid, our new device uses wetting and gravity as driving force. We name this operation principle suspending-droplet mode paper-based device (SD-μPAD). The use of a Teflon contact-printing stamp makes the production of such devices rapid, cost efficient, and mass productive. Utilizing a G-quadruplex-based luminescence switch-on assay, we demonstrated rapid, convenient, highly sensitive, and low cost detection of lead(II) ions in water samples, using a custom made battery-powered portable device, and a smart phone as the detector. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An Evaluation of a Language for Paper-based Form Sketching

    DEFF Research Database (Denmark)

    Farruglia, Phillip; Borg, Johnathan; Camilleri, K.P.

    2006-01-01

    form idea. The research disclosed in this paper is aimed at combining the benefits of paper-based freehand sketches with those of three-dimensional (3D) models. More specifically, this paper reports the on-going development of a prescribed sketching language (PSL) required to create a seamless link...... between paper-based form sketching and CAGM systems. Evaluation results revealed that whilst PSL is easy-to-learn, yet it requires improvements. Such a sketching language contributes a step towards simulating early form design solutions by the combined use of paper-based sketches and 3D models....

  8. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care.

    Science.gov (United States)

    Choi, Jane Ru; Hu, Jie; Tang, Ruihua; Gong, Yan; Feng, Shangsheng; Ren, Hui; Wen, Ting; Li, XiuJun; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-02-07

    With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.

  9. Battery Safety Basics

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  10. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  11. Paper-based Biosensor for Rapid Colorimetric Detection of Pathogenic Bacteria

    Data.gov (United States)

    National Aeronautics and Space Administration — The current project proposes to develop a real-time method for identification of targeted microorganisms using a paper-based biosensor system with ease-of-use,...

  12. Paper-based smart microfluidics for education and low-cost diagnostics

    CSIR Research Space (South Africa)

    Smith, S

    2015-11-01

    Full Text Available to develop PoC diagnostic solutions. Specifically, the emerging field of paper-based microfluidics, with advantages such as low-cost, disposability and minimal external equipment requirements, provides unique opportunities for addressing healthcare issues...

  13. Cost-Effective and Handmade Paper-Based Immunosensing Device for Electrochemical Detection of Influenza Virus

    OpenAIRE

    Devarakonda, Sivaranjani; Singh, Renu; Bhardwaj, Jyoti; Jang, Jaesung

    2017-01-01

    Although many studies concerning the detection of influenza virus have been published, a paper-based, label-free electrochemical immunosensor has never been reported. Here, we present a cost-effective, handmade paper-based immunosensor for label-free electrochemical detection of influenza virus H1N1. This immunosensor was prepared by modifying paper with a spray of hydrophobic silica nanoparticles, and using stencil-printed electrodes. We used a glass vaporizer to spray the hydrophobic silica...

  14. Qualitative and quantitative detection of T7 bacteriophages using paper based sandwich ELISA.

    Science.gov (United States)

    Khan, Mohidus Samad; Pande, Tripti; van de Ven, Theo G M

    2015-08-01

    Viruses cause many infectious diseases and consequently epidemic health threats. Paper based diagnostics and filters can offer attractive options for detecting and deactivating pathogens. However, due to their infectious characteristics, virus detection using paper diagnostics is more challenging compared to the detection of bacteria, enzymes, DNA or antigens. The major objective of this study was to prepare reliable, degradable and low cost paper diagnostics to detect viruses, without using sophisticated optical or microfluidic analytical instruments. T7 bacteriophage was used as a model virus. A paper based sandwich ELISA technique was developed to detect and quantify the T7 phages in solution. The paper based sandwich ELISA detected T7 phage concentrations as low as 100 pfu/mL to as high as 10(9) pfu/mL. The compatibility of paper based sandwich ELISA with the conventional titre count was tested using T7 phage solutions of unknown concentrations. The paper based sandwich ELISA technique is faster and economical compared to the traditional detection techniques. Therefore, with proper calibration and right reagents, and by following the biosafety regulations, the paper based technique can be said to be compatible and economical to the sophisticated laboratory diagnostic techniques applied to detect pathogenic viruses and other microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Paper-based smart microfluidics for education and low-cost diagnostics

    Directory of Open Access Journals (Sweden)

    Suzanne Smith

    2015-11-01

    Full Text Available Current centralised healthcare models pose many challenges, particularly for developing countries such as South Africa, where travel and time costs make it difficult for patients to seek healthcare, even when urgently needed. To address this issue, point-of-care (PoC tests, which are performed at or near the site of clinical care, have gained popularity and are actively being developed. Microfluidic systems, in which small volumes of fluids can be processed, provide an ideal platform on which to develop PoC diagnostic solutions. Specifically, the emerging field of paper-based microfluidics, with advantages such as low-cost, disposability and minimal external equipment requirements, provides unique opportunities for addressing healthcare issues in developing countries. This work explores the field of paper-based microfluidics, with step-by-step instructions on the design, manufacture and testing processes to realise paper-based devices towards diagnostic applications. Paper-based microfluidic and electronic components are presented, as well as the integration of these components to provide smart paper-based devices. This serves as an educational tool, enabling both beginners and experts in the field to fast-track development of unique paper-based solutions towards PoC diagnostics, with emphasis on the South African context, where both the need for and impact of these solutions are great.

  16. Radioactive battery

    International Nuclear Information System (INIS)

    Deaton, R.L.; Silver, G.L.

    1975-01-01

    A radioactive battery is described that is comprised of a container housing an electrolyte, two electrodes immersed in the electrolyte and insoluble radioactive material disposed adjacent one electrode. Insoluble radioactive material of different intensity of radioactivity may be disposed adjacent the second electrode. If hydrobromic acid is used as the electrolyte, Br 2 will be generated by the radioactivity and is reduced at the cathode: Br 2 + 2e = 2 Br - . At the anode Br - is oxidized: 2Br - = Br 2 + 2e. (U.S.)

  17. Paperless and paper-based processes in the modern radiotherapy department

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, M. [Radiation Oncology Queensland, 280 North Street, Toowoomba 4350 (Australia)], E-mail: mark.middleton@roq.net.au; Bradford, C. [Harley St. Cancer Centre, London (United Kingdom); Frantzis, J. [Radiation Oncology Queensland, 280 North Street, Toowoomba 4350 (Australia); Ambler, A. [Harley St. Cancer Centre, London (United Kingdom); Sisson, T. [Radiation Oncology Queensland, 280 North Street, Toowoomba 4350 (Australia); Montgomerie, D. [Harley St. Cancer Centre, London (United Kingdom); Martin, J. [Radiation Oncology Queensland, 280 North Street, Toowoomba 4350 (Australia)

    2009-11-15

    Purpose: To assess the implications on workflow and efficiency in a paperless environment versus a traditional paper-based environment. This paper summarises the comparison of specific workflow practices conducted in a paperless and paper-based approach, comparing time taken, potential advantages and disadvantages of each approach, and the cost-effectiveness of a paperless approach. Methods and materials: A time study was undertaken on three specific workflow areas for 5 patients with breast and prostate cancer respectively, and comparison made between paperless and paper-based methodology. The workflow areas analysed were electronic treatment record (ETR) versus treatment sheet preparation, digital history check process versus paper-based and digital image and trend analysis versus paper-based. The cost-effectiveness of a paperless approach was then analysed. Additionally a staff questionnaire was undertaken, assessing Information Technology (IT) skills of staff and comfort levels pertaining to a paperless environment. Results: There was on average a 50% reduction in workload when comparing an ETR versus a paper-based treatment sheet, a 50% reduction in workload by utilising a paperless history check process and a 70% reduction in workload with a paperless image and trend analysis process. There was also significant cost savings by introducing a paperless workflow. The survey showed a higher level of comfort with information technology in the paperless environment, and less frustration with aspects of working in the paper-based centre. Conclusion: The digital radiotherapy department offers highly significant improvements in efficiency. These potentially translate into major financial savings and increased job satisfaction.

  18. Paperless and paper-based processes in the modern radiotherapy department

    International Nuclear Information System (INIS)

    Middleton, M.; Bradford, C.; Frantzis, J.; Ambler, A.; Sisson, T.; Montgomerie, D.; Martin, J.

    2009-01-01

    Purpose: To assess the implications on workflow and efficiency in a paperless environment versus a traditional paper-based environment. This paper summarises the comparison of specific workflow practices conducted in a paperless and paper-based approach, comparing time taken, potential advantages and disadvantages of each approach, and the cost-effectiveness of a paperless approach. Methods and materials: A time study was undertaken on three specific workflow areas for 5 patients with breast and prostate cancer respectively, and comparison made between paperless and paper-based methodology. The workflow areas analysed were electronic treatment record (ETR) versus treatment sheet preparation, digital history check process versus paper-based and digital image and trend analysis versus paper-based. The cost-effectiveness of a paperless approach was then analysed. Additionally a staff questionnaire was undertaken, assessing Information Technology (IT) skills of staff and comfort levels pertaining to a paperless environment. Results: There was on average a 50% reduction in workload when comparing an ETR versus a paper-based treatment sheet, a 50% reduction in workload by utilising a paperless history check process and a 70% reduction in workload with a paperless image and trend analysis process. There was also significant cost savings by introducing a paperless workflow. The survey showed a higher level of comfort with information technology in the paperless environment, and less frustration with aspects of working in the paper-based centre. Conclusion: The digital radiotherapy department offers highly significant improvements in efficiency. These potentially translate into major financial savings and increased job satisfaction.

  19. Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices

    Science.gov (United States)

    Matsuura, Koji; Huang, Han-Wei; Chen, Ming-Cheng; Chen, Yu; Cheng, Chao-Min

    2017-04-01

    Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P coupled with catalysis of GAPDH and was promoted by electron transfer from NADH. Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.

  20. Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application.

    Science.gov (United States)

    Gong, Max M; Sinton, David

    2017-06-28

    Infectious diseases are a major global health issue. Diagnosis is a critical first step in effectively managing their spread. Paper-based microfluidic diagnostics first emerged in 2007 as a low-cost alternative to conventional laboratory testing, with the goal of improving accessibility to medical diagnostics in developing countries. In this review, we examine the advances in paper-based microfluidic diagnostics for medical diagnosis in the context of global health from 2007 to 2016. The theory of fluid transport in paper is first presented. The next section examines the strategies that have been employed to control fluid and analyte transport in paper-based assays. Tasks such as mixing, timing, and sequential fluid delivery have been achieved in paper and have enabled analytical capabilities comparable to those of conventional laboratory methods. The following section examines paper-based sample processing and analysis. The most impactful advancement here has been the translation of nucleic acid analysis to a paper-based format. Smartphone-based analysis is another exciting development with potential for wide dissemination. The last core section of the review highlights emerging health applications, such as male fertility testing and wearable diagnostics. We conclude the review with the future outlook, remaining challenges, and emerging opportunities.

  1. Paper-Based Assessment of the Effects of Aging on Response Time: A Diffusion Model Analysis

    Directory of Open Access Journals (Sweden)

    Judith Dirk

    2017-04-01

    Full Text Available The effects of aging on response time were examined in a paper-based lexical-decision experiment with younger (age 18–36 and older (age 64–75 adults, applying Ratcliff’s diffusion model. Using digital pens allowed the paper-based assessment of response times for single items. Age differences previously reported by Ratcliff and colleagues in computer-based experiments were partly replicated: older adults responded more conservatively than younger adults and showed a slowing of their nondecision components of RT by 53 ms. The rates of evidence accumulation (drift rate showed no age-related differences. Participants with a higher score in a vocabulary test also had higher drift rates. The experiment demonstrates the possibility to use formal processing models with paper-based tests.

  2. Development of paper-based electrochemical sensors for water quality monitoring

    Science.gov (United States)

    Smith, Suzanne; Bezuidenhout, Petroné; Mbanjwa, Mesuli; Zheng, Haitao; Conning, Mariette; Palaniyandy, Nithyadharseni; Ozoemena, Kenneth; Land, Kevin

    2016-02-01

    We present a method for the development of paper-based electrochemical sensors for detection of heavy metals in water samples. Contaminated water leads to serious health problems and environmental issues. Paper is ideally suited for point-of-care testing, as it is low cost, disposable, and multi-functional. Initial sensor designs were manufactured on paper substrates using combinations of inkjet printing and screen printing technologies using silver and carbon inks. Bismuth onion-like carbon nanoparticle ink was manufactured and used as the active material of the sensor for both commercial and paper-based sensors, which were compared using standard electrochemical analysis techniques. The results highlight the potential of paper-based sensors to be used effectively for rapid water quality monitoring at the point-of-need.

  3. Transformation of paper-based occupational therapy assessment forms to a digital format

    DEFF Research Database (Denmark)

    Bang, Marie Bangsgaard; Lunn, Tine Bieber Kirkegaard; Helle, Tina

    Background The growing digitalization process serves to modernize the health care systems, to improve documentation and the efficiency of the public sector. Consequently, the adoption of digitalization at large is critical for the development of occupational therapy (OT). Yet, most OT assessment...... forms are paper-based. The aim is to describe the process of transforming the paper-based Housing Enabler (HE) rating forms into a HE application (app) available on a tablet. Method The transformation process was conducted in two steps 1.Development: A participatory design, involving several workshops...... documentation and an easy overview of the accessibility score. To some OTs the tablet interfered with the relation to the client, whereas to other OTs the tablet increased the sense of professionalism. Still, there are technical challenges to overcome. Conclusion Digitalization of paper-based assessment forms...

  4. Advances in paper-based sample pretreatment for point-of-care testing.

    Science.gov (United States)

    Tang, Rui Hua; Yang, Hui; Choi, Jane Ru; Gong, Yan; Feng, Shang Sheng; Pingguan-Murphy, Belinda; Huang, Qing Sheng; Shi, Jun Ling; Mei, Qi Bing; Xu, Feng

    2017-06-01

    In recent years, paper-based point-of-care testing (POCT) has been widely used in medical diagnostics, food safety and environmental monitoring. However, a high-cost, time-consuming and equipment-dependent sample pretreatment technique is generally required for raw sample processing, which are impractical for low-resource and disease-endemic areas. Therefore, there is an escalating demand for a cost-effective, simple and portable pretreatment technique, to be coupled with the commonly used paper-based assay (e.g. lateral flow assay) in POCT. In this review, we focus on the importance of using paper as a platform for sample pretreatment. We firstly discuss the beneficial use of paper for sample pretreatment, including sample collection and storage, separation, extraction, and concentration. We highlight the working principle and fabrication of each sample pretreatment device, the existing challenges and the future perspectives for developing paper-based sample pretreatment technique.

  5. Paper-based sensors for rapid detection of virulence factor produced by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Alatraktchi, Fatima AlZahra'a; Noori, Jafar Safaa; Tanev, Georgi Plamenov

    2018-01-01

    method to quantify pyocyanin in bacterial cultures without the conventional time consuming pretreatment of the samples. The electrochemical properties of the paper-based sensors were evaluated by ferri/ferrocyanide as a redox mediator, and showed reliable sensing performance. The paper-based sensors...... readily allow for the determination of pyocyanin in bacterial cultures with high reproducibility, achieving a limit of detection of 95 nM and a sensitivity of 4.30 μA/μM in standard culture media. Compared to the similar commercial ceramic based sensors, it is a 2.3-fold enhanced performance. The simple...

  6. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  7. Toward Paper-Based Sensors: Turning Electrical Signals into an Optical Readout System.

    Science.gov (United States)

    Liana, Devi D; Raguse, Burkhard; Gooding, J Justin; Chow, Edith

    2015-09-02

    Paper-based sensors are gaining increasing attention for their potential applications in resource-limited settings and for point-of-care analysis. However, chemical analysis of paper-based electronic sensors is frequently interpreted using complex software and electronic displays which compromise the advantages of using paper. In this work, we present two semiquantitative paper-based readout systems that can visually measure a change in resistance of a resistive-based sensor. The readout systems use electrochromic Prussian blue/polyaniline as an electrochromic indicator on a resistive gold nanoparticle film that is fabricated on paper. When the readout system is integrated with a resistive sensor in an electrical circuit, and a voltage is applied, the voltage drop along the readout system varies depending on the sensor's resistance. Due to the voltage gradient formed along the gold nanoparticle film, the overlaying Prussian blue/polyaniline will change color at voltages greater than its reduction voltage (green/blue for oxidized state and transparent for reduced state). Thus, the changes in resistances of a sensor can be semiquantified through color visualization by either measuring the length of the transparent film (analog readout system) or by counting the number of transparent segments (digital readout system). The work presented herein can potentially serve as an alternative paper-based display system for resistive sensors in instances where cost and weight is a premium.

  8. 78 FR 211 - Paper and Paper-Based Packaging Promotion, Research and Information Order; Referendum Procedures

    Science.gov (United States)

    2013-01-02

    ... CONTACT: Maureen T. Pello, Marketing Specialist, Promotion and Economics Division, Fruit and Vegetable... Vol. 78 Wednesday, No. 1 January 2, 2013 Part IV Department of Agriculture Agricultural Marketing Service 7 CFR Part 1222 Paper and Paper-Based Packaging Promotion, Research and Information Order...

  9. The Role of Guided Induction in Paper-Based Data-Driven Learning

    Science.gov (United States)

    Smart, Jonathan

    2014-01-01

    This study examines the role of guided induction as an instructional approach in paper-based data-driven learning (DDL) in the context of an ESL grammar course during an intensive English program at an American public university. Specifically, it examines whether corpus-informed grammar instruction is more effective through inductive, data-driven…

  10. A Comparison of Tablet-Based and Paper-Based Survey Data Collection in Conservation Projects

    Directory of Open Access Journals (Sweden)

    Craig Leisher

    2014-05-01

    Full Text Available There is growing use of household surveys by conservation organizations as they seek to measure the social impacts of conservation initiatives, especially in developing countries. Several recent health-sector studies suggest that computer-aided personal interviewing may be a cheaper and faster alternative to the traditional paper-based interviewing. Here, a comparison of The Nature Conservancy-funded tablet computer-based and paper-based household surveys is presented. Because the tablet and paper surveys were not identical except for the data collection tool, the results are suggestive. In the comparison, the cost per completed interview for the tablet-based survey was 74% less than the paper-based survey average, and the average time per interview question for the tablet-based survey was 46% less than the paper-based survey average. The cost saving came primarily from less need for data cleaning and lower enumerator fees. The time saving came primarily from faster data entry. The results suggest that there may be substantial savings in costs and time when using tablets rather than paper for survey data collection in a developing country.

  11. A review on wax printed microfluidic paper-based devices for international health.

    Science.gov (United States)

    Altundemir, S; Uguz, A K; Ulgen, K

    2017-07-01

    Paper-based microfluidics has attracted attention for the last ten years due to its advantages such as low sample volume requirement, ease of use, portability, high sensitivity, and no necessity to well-equipped laboratory equipment and well-trained manpower. These characteristics have made paper platforms a promising alternative for a variety of applications such as clinical diagnosis and quantitative analysis of chemical and biological substances. Among the wide range of fabrication methods for microfluidic paper-based analytical devices ( μ PADs), the wax printing method is suitable for high throughput production and requires only a commercial printer and a heating source to fabricate complex two or three-dimensional structures for multipurpose systems. μ PADs can be used by anyone for in situ diagnosis and analysis; therefore, wax printed μ PADs are promising especially in resource limited environments where people cannot get sensitive and fast diagnosis of their serious health problems and where food, water, and related products are not able to be screened for toxic elements. This review paper is focused on the applications of paper-based microfluidic devices fabricated by the wax printing technique and used for international health. Besides presenting the current limitations and advantages, the future directions of this technology including the commercial aspects are discussed. As a conclusion, the wax printing technology continues to overcome the current limitations and to be one of the promising fabrication techniques. In the near future, with the increase of the current interest of the industrial companies on the paper-based technology, the wax-printed paper-based platforms are expected to take place especially in the healthcare industry.

  12. Quantifying oxygen in paper-based cell cultures with luminescent thin film sensors.

    Science.gov (United States)

    Boyce, Matthew W; Kenney, Rachael M; Truong, Andrew S; Lockett, Matthew R

    2016-04-01

    Paper-based scaffolds are an attractive material for generating 3D tissue-like cultures because paper is readily available and does not require specialized equipment to pattern, cut, or use. By controlling the exchange of fresh culture medium with the paper-based scaffolds, we can engineer diffusion-dominated environments similar to those found in spheroids or solid tumors. Oxygen tension directly regulates cellular phenotype and invasiveness through hypoxia-inducible transcription factors and also has chemotactic properties. To date, gradients of oxygen generated in the paper-based cultures have relied on cellular response-based readouts. In this work, we prepared a luminescent thin film capable of quantifying oxygen tensions in apposed cell-containing paper-based scaffolds. The oxygen sensors, which are polystyrene films containing a Pd(II) tetrakis(pentafluorophenyl)porphyrin dye, are photostable, stable in culture conditions, and not cytotoxic. They have a linear response for oxygen tensions ranging from 0 to 160 mmHg O2, and a Stern-Volmer constant (K sv) of 0.239 ± 0.003 mmHg O2 (-1). We used these oxygen-sensing films to measure the spatial and temporal changes in oxygen tension for paper-based cultures containing a breast cancer line that was engineered to constitutively express a fluorescent protein. By acquiring images of the oxygen-sensing film and the fluorescently labeled cells, we were able to approximate the oxygen consumption rates of the cells in our cultures.

  13. Error analysis for pesticide detection performed on paper-based microfluidic chip devices

    Science.gov (United States)

    Yang, Ning; Shen, Kai; Guo, Jianjiang; Tao, Xinyi; Xu, Peifeng; Mao, Hanping

    2017-07-01

    Paper chip is an efficient and inexpensive device for pesticide residues detection. However, the reasons of detection error are not clear, which is the main problem to hinder the development of pesticide residues detection. This paper focuses on error analysis for pesticide detection performed on paper-based microfluidic chip devices, which test every possible factor to build the mathematical models for detection error. In the result, double-channel structure is selected as the optimal chip structure to reduce detection error effectively. The wavelength of 599.753 nm is chosen since it is the most sensitive detection wavelength to the variation of pesticide concentration. At last, the mathematical models of detection error for detection temperature and prepared time are concluded. This research lays a theory foundation on accurate pesticide residues detection based on paper-based microfluidic chip devices.

  14. The Synergy of Paper-Based and Digital Material for Ubiquitous Foreign Language Learners

    Directory of Open Access Journals (Sweden)

    Sabrina Leone

    2011-09-01

    Full Text Available In recent years, the development of digital information transfer, storage and communication methods has allowed for access to ubiquitous global connections and to a large number of resources available to foreign language students at all age and levels of schooling. Further, the combination of traditional paper-based learning material with digital one in a ubiquitous learning environment may offer great innovation in the delivery of education, to foster a student-centred approach, and to accommodate the needs of ubiquitous learners’ personal lifestyles. In this direction, research has increasingly emphasised the importance of a technology-enhanced rather than technology-driven learning approach. This paper aims to evaluate the effectiveness of the integration of paper-based and digital material through Quick Response (QR code for ubiquitous English language learners in three different scenarios. Results show that, despite some difficulties, flexibility and personalisation of learning have been perceived as an asset.

  15. Preparation of Drug-loaded Chitosan Microspheres and Its Application in Paper-based PVC Wallpaper

    Science.gov (United States)

    Lin, Hui; Chen, Lihui; Yan, Guiyang; Chen, Feng; Huang, Liulian

    2018-03-01

    By screening through test, it was found that the drug-loaded chitosan microspheres with the average particle size of 615 nm may be prepared with NaF as the mold-proof drug, chitosan as the drug carrier and sodium tripolyphosphate as the cross-linking agent; and they can improve the aspergillus niger-proof effect if loaded onto the base paper surface of the paper-based PVC wallpaper. The results show that NaF and chitosan have mold-proof synergistic effects; the mold-proof effect of the wallpaper may be improved by increasing the dose of chitosan; when the mass ratio of NaF, sodium tripolyphosphate and chitosan was 2:7:28, the paper-based PVC wallpaper with good mold-proof property can be prepared.

  16. Experimental Study on Inkjet-Printed Passive UHF RFID Tags on Versatile Paper-Based Substrates

    Directory of Open Access Journals (Sweden)

    Han He

    2016-01-01

    Full Text Available We present the possibilities and challenges of passive UHF RFID tag antennas manufactured by inkjet printing silver nanoparticle ink on versatile paper-based substrates. The most efficient manufacturing parameters, such as the pattern resolution, were determined and the optimal number of printed layers was evaluated for each substrate material. Next, inkjet-printed passive UHF RFID tags were fabricated on each substrate with the optimized parameters and number of layers. According to our measurements, the tags on different paper substrates showed peak read ranges of 4–6.5 meters and the tags on different cardboard substrates exhibited peak read ranges of 2–6 meters. Based on their wireless performance, these inkjet-printed paper-based passive UHF RFID tags are sufficient for many future wireless applications and comparable to tags fabricated on more traditional substrates, such as polyimide.

  17. High-throughput rapid-prototyping of low-cost paper-based microfluidics.

    Science.gov (United States)

    Ghaderinezhad, Fariba; Amin, Reza; Temirel, Mikail; Yenilmez, Bekir; Wentworth, Adam; Tasoglu, Savas

    2017-06-15

    Paper-based micro analytical devices offer significant advantages compared to the conventional microfluidic chips including cost-effectiveness, ease of fabrication, and ease of use while preserving critical features including strong capillary action and biological compatibility. In this work, we demonstrate an inexpensive, rapid method for high-throughput fabrication of paper-based microfluidics by patterning hydrophobic barriers using a desktop pen plotter integrated with a custom-made, low-cost paper feeder. We tested various types of commercial permanent markers and compared their water-resistant capabilities for creating hydrophobic barriers. Additionally, we studied the performance of markers with different types of paper, plotting speeds, and pattern dimensions. To verify the effectiveness of the presented fabrication method, colorimetric analysis was performed on the results of a glucose assay.

  18. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers

    Energy Technology Data Exchange (ETDEWEB)

    Cinti, Stefano, E-mail: stefano.cinti@uniroma2.it; Basso, Mattia; Moscone, Danila; Arduini, Fabiana, E-mail: fabiana.arduini@uniroma2.it

    2017-04-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 %{sub vol}), with a sensitivity of 9.13 μA/mM cm{sup 2} (1574 μA/%{sub vol} cm{sup 2}) and a detection limit equal to 0.52 mM (0.003%{sub vol}). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. - Highlights: • Novel ethanol biosensor fabricated onto office paper. • Enhanced hydrogen peroxide detection using Carbon black/Prussian blue nanoparticles. • Only 100 μL required to perform measurements. • Paper-based electrochemical device coupled with a portable potentiostat. • Rapid quantification of ethanol in beer samples.

  19. The Synergy of Paper-Based and Digital Material for Ubiquitous Foreign Language Learners

    OpenAIRE

    Sabrina Leone; Tommaso Leo

    2011-01-01

    In recent years, the development of digital information transfer, storage and communication methods has allowed for access to ubiquitous global connections and to a large number of resources available to foreign language students at all age and levels of schooling. Further, the combination of traditional paper-based learning material with digital one in a ubiquitous learning environment may offer great innovation in the delivery of education, to foster a student-centred approach, and to accom...

  20. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers

    International Nuclear Information System (INIS)

    Cinti, Stefano; Basso, Mattia; Moscone, Danila; Arduini, Fabiana

    2017-01-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 % vol ), with a sensitivity of 9.13 μA/mM cm 2 (1574 μA/% vol cm 2 ) and a detection limit equal to 0.52 mM (0.003% vol ). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. - Highlights: • Novel ethanol biosensor fabricated onto office paper. • Enhanced hydrogen peroxide detection using Carbon black/Prussian blue nanoparticles. • Only 100 μL required to perform measurements. • Paper-based electrochemical device coupled with a portable potentiostat. • Rapid quantification of ethanol in beer samples.

  1. FLASH: A rapid method for prototyping paper-based microfluidic devices‡

    Science.gov (United States)

    Martinez, Andres W.; Phillips, Scott T.; Wiley, Benjamin J.; Gupta, Malancha

    2011-01-01

    This article describes FLASH (Fast Lithographic Activation of Sheets), a rapid method for laboratory prototyping of microfluidic devices in paper. Paper-based microfluidic devices are emerging as a new technology for applications in diagnostics for the developing world, where low cost and simplicity are essential. FLASH is based on photolithography, but requires only a UV lamp and a hotplate; no clean-room or special facilities are required (FLASH patterning can even be performed in sunlight if a UV lamp and hotplate are unavailable). The method provides channels in paper with dimensions as small as 200 μm in width and 70 μm in height; the height is defined by the thickness of the paper. Photomasks for patterning paper-based microfluidic devices can be printed using an ink-jet printer or photocopier, or drawn by hand using a waterproof black pen. FLASH provides a straightforward method for prototyping paper-based microfluidic devices in regions where the technological support for conventional photolithography is not available. PMID:19023478

  2. Integrated, paper-based potentiometric electronic tongue for the analysis of beer and wine

    International Nuclear Information System (INIS)

    Nery, Emilia Witkowska; Kubota, Lauro T.

    2016-01-01

    The following manuscript details the stages of construction of a novel paper-based electronic tongue with an integrated Ag/AgCl reference, which can operate using a minimal amount of sample (40 μL). First, we optimized the fabrication procedure of silver electrodes, testing a set of different methodologies (electroless plating, use of silver nanoparticles and commercial silver paints). Later a novel, integrated electronic tongue system was assembled with the use of readily available materials such as paper, wax, lamination sheets, bleach etc. New system was thoroughly characterized and the ion-selective potentiometric sensors presented performance close to theoretical. An electronic tongue, composed of electrodes sensitive to sodium, calcium, ammonia and a cross-sensitive, anion-selective electrode was used to analyze 34 beer samples (12 types, 19 brands). This system was able to discriminate beers from different brands, and types, indicate presence of stabilizers and antioxidants, dyes or even unmalted cereals and carbohydrates added to the fermentation wort. Samples could be classified by type of fermentation (low, high) and system was able to predict pH and in part also alcohol content of tested beers. In the next step sample volume was minimalized by the use of paper sample pads and measurement in flow conditions. In order to test the impact of this advancement a four electrode system, with cross-sensitive (anion-selective, cation-selective, Ca 2+ /Mg 2+ , K + /Na + ) electrodes was applied for the analysis of 11 types of wine (4 types of grapes, red/white, 3 countries). Proposed matrix was able to group wines produced from different varieties of grapes (Chardonnay, Americanas, Malbec, Merlot) using only 40 μL of sample. Apart from that, storage stability studies were performed using a multimeter, therefore showing that not only fabrication but also detection can be accomplished by means of off-the-shelf components. This manuscript not only describes new

  3. Integrated, paper-based potentiometric electronic tongue for the analysis of beer and wine

    Energy Technology Data Exchange (ETDEWEB)

    Nery, Emilia Witkowska, E-mail: ewitkowskanery@ichf.edu.pl [Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); National Institute of Science and Technology in Bioanalytics, Institute of Chemistry – UNICAMP, P.O. Box 6154, Campinas (Brazil); Kubota, Lauro T. [Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); National Institute of Science and Technology in Bioanalytics, Institute of Chemistry – UNICAMP, P.O. Box 6154, Campinas (Brazil)

    2016-04-28

    The following manuscript details the stages of construction of a novel paper-based electronic tongue with an integrated Ag/AgCl reference, which can operate using a minimal amount of sample (40 μL). First, we optimized the fabrication procedure of silver electrodes, testing a set of different methodologies (electroless plating, use of silver nanoparticles and commercial silver paints). Later a novel, integrated electronic tongue system was assembled with the use of readily available materials such as paper, wax, lamination sheets, bleach etc. New system was thoroughly characterized and the ion-selective potentiometric sensors presented performance close to theoretical. An electronic tongue, composed of electrodes sensitive to sodium, calcium, ammonia and a cross-sensitive, anion-selective electrode was used to analyze 34 beer samples (12 types, 19 brands). This system was able to discriminate beers from different brands, and types, indicate presence of stabilizers and antioxidants, dyes or even unmalted cereals and carbohydrates added to the fermentation wort. Samples could be classified by type of fermentation (low, high) and system was able to predict pH and in part also alcohol content of tested beers. In the next step sample volume was minimalized by the use of paper sample pads and measurement in flow conditions. In order to test the impact of this advancement a four electrode system, with cross-sensitive (anion-selective, cation-selective, Ca{sup 2+}/Mg{sup 2+}, K{sup +}/Na{sup +}) electrodes was applied for the analysis of 11 types of wine (4 types of grapes, red/white, 3 countries). Proposed matrix was able to group wines produced from different varieties of grapes (Chardonnay, Americanas, Malbec, Merlot) using only 40 μL of sample. Apart from that, storage stability studies were performed using a multimeter, therefore showing that not only fabrication but also detection can be accomplished by means of off-the-shelf components. This manuscript not only

  4. Battery Aging and the Kinetic Battery Model

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2016-01-01

    Batteries are omnipresent, and with the uprise of the electrical vehicles will their use will grow even more. However, the batteries can deliver their required power for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to be taken into account when

  5. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  6. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  7. Micro Calorimeter for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  8. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers.

    Science.gov (United States)

    Cinti, Stefano; Basso, Mattia; Moscone, Danila; Arduini, Fabiana

    2017-04-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 % vol ), with a sensitivity of 9.13 μA/mM cm 2 (1574 μA/% vol cm 2 ) and a detection limit equal to 0.52 mM (0.003% vol ). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cost-Effective and Handmade Paper-Based Immunosensing Device for Electrochemical Detection of Influenza Virus

    Directory of Open Access Journals (Sweden)

    Sivaranjani Devarakonda

    2017-11-01

    Full Text Available Although many studies concerning the detection of influenza virus have been published, a paper-based, label-free electrochemical immunosensor has never been reported. Here, we present a cost-effective, handmade paper-based immunosensor for label-free electrochemical detection of influenza virus H1N1. This immunosensor was prepared by modifying paper with a spray of hydrophobic silica nanoparticles, and using stencil-printed electrodes. We used a glass vaporizer to spray the hydrophobic silica nanoparticles onto the paper, rendering it super-hydrophobic. The super-hydrophobicity, which is essential for this paper-based biosensor, was achieved via 30–40 spray coatings, corresponding to a 0.39–0.41 mg cm−2 coating of nanoparticles on the paper and yielding a water contact angle of 150° ± 1°. Stencil-printed carbon electrodes modified with single-walled carbon nanotubes and chitosan were employed to increase the sensitivity of the sensor, and the antibodies were immobilized via glutaraldehyde cross-linking. Differential pulse voltammetry was used to assess the sensitivity of the sensors at various virus concentrations, ranging from 10 to 104 PFU mL−1, and the selectivity was assessed against MS2 bacteriophages and the influenza B viruses. These immunosensors showed good linear behaviors, improved detection times (30 min, and selectivity for the H1N1 virus with a limit of detection of 113 PFU mL−1, which is sufficiently sensitive for rapid on-site diagnosis. The simple and inexpensive methodologies developed in this study have great potential to be used for the development of a low-cost and disposable immunosensor for detection of pathogenic microorganisms, especially in developing countries.

  10. Development and statistical assessment of a paper-based immunoassay for detection of tumor markers

    Energy Technology Data Exchange (ETDEWEB)

    Mazzu-Nascimento, Thiago [Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590, São Carlos, SP (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP (Brazil); Morbioli, Giorgio Gianini [Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590, São Carlos, SP (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP (Brazil); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Milan, Luis Aparecido [Departamento de Estatística, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Donofrio, Fabiana Cristina [Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, 78557-267, Sinop, MT (Brazil); Mestriner, Carlos Alberto [Wama Produtos para Laboratório Ltda, 13560-971, São Carlos, SP (Brazil); Carrilho, Emanuel, E-mail: emanuel@iqsc.usp.br [Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590, São Carlos, SP (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP (Brazil)

    2017-01-15

    Paper-based assays are an attractive low-cost option for clinical chemistry testing, due to characteristics such as short time of analysis, low consumption of samples and reagents, and high portability of assays. However, little attention has been given to the evaluation of the performance of these simple tests, which should include the use of a statistical approach to define the choice of best cut-off value for the test. The choice of the cut-off value impacts on the sensitivity and specificity of the bioassay. Here, we developed a paper-based immunoassay for the detection of the carcinoembryonic antigen (CEA) and performed a statistical assessment to establish the assay's cut-off value using the Youden's J index (68.28 A.U.), what allowed for a gain in sensibility (0.86) and specificity (1.0). We also discuss about the importance of defining a gray zone as a safety margin for test (±12% over the cut-off value), eliminating all false positives and false negatives outcomes and avoiding misleading results. The test accuracy was calculated as the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, presenting a value of 0.97, what classifies this test as highly accurate. We propose here a low-cost method capable of detecting carcinoembryonic antigen (CEA) in human serum samples, highlighting the importance of statistical tools to evaluate a new low-cost diagnostic method. - Highlights: • A paper-based sandwich immunoassay protocol for detection of tumor markers. • A statistical approach to define cut-off values and measuring test's sensitivity, specificity and accuracy. • A simple way to create a gray zone, avoiding false positive and false negative outcomes.

  11. Paper based diagnostics for personalized health care: Emerging technologies and commercial aspects.

    Science.gov (United States)

    Mahato, Kuldeep; Srivastava, Ananya; Chandra, Pranjal

    2017-10-15

    Personalized health care (PHC) is being appreciated globally to combat clinical complexities underlying various metabolic or infectious disorders including diabetes, cardiovascular, communicable diseases etc. Effective diagnoses majorly depend on initial identification of the causes which are nowadays being practiced in disease-oriented approach, where personal health profile is often overlooked. The adoption of PHC has shown significantly improved diagnoses in various conditions including emergency, ambulatory, and remote area. PHC includes personalized health monitoring (PHM), which is its integral part and may provide valuable information's on various clinical conditions. In PHC, bio-fluids are analyzed using various diagnostic devices including lab based equipment and biosensors. Among all types of biosensing systems, paper based biosensors are commercially attracted due to its portability, easy availability, cheaper manufacturing cost, and transportability. Not only these, various intrinsic properties of paper has facilitated the development of paper based miniaturized sensors, which has recently gained ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free, Deliverable to all end-users) status for point of care diagnosis in miniaturized settings. In this review, importance of paper based biosensors and their compatibility for affordable and low cost diagnostics has been elaborated with various examples. Limitations and strategies to overcome the challenges of paper biosensor have also been discussed. We have provided elaborated tables which describe the types, model specifications, sensing mechanisms, target biomarkers, and analytical performance of the paper biosensors with their respective applications in real sample matrices. Different commercial aspects of paper biosensor have also been explained using SWOT (Strength, Weakness, Opportunities, Threats) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing

    Science.gov (United States)

    Yafia, Mohamed; Shukla, Saurabh; Najjaran, Homayoun

    2015-05-01

    In this work, a new fabrication method is presented for digital microfluidic (DMF) devices in which the electrodes are generated using the screen printing technique. This method is applicable to both rigid and flexible substrates. The proposed screen printing approach, as a batch printing technique, is advantageous to the widely reported DMF fabrication methods in terms of fabrication time, cost and capability of mass production. Screen printing provides an effective means for printing different types of conductive materials on a variety of substrates. Specifically, screen printing of conductive silver and carbon based inks is performed on paper, glass and wax paper. As a result, the fabricated DMF devices are characterized by being flexible, disposable and incinerable. Hence, the main advantage of screen printing carbon based inks on paper substrates is more pronounced for point-of-care applications that require a large number of low cost DMF chips, and laboratory setups that lack sophisticated microfabrication facilities. The resolution of the printed DMF electrodes generated by this technique is examined for proof of concept using manual screen printing, but higher resolution screens and automated machines are available off-the-shelf, if needed. Another contribution of this research is the improved actuation techniques that facilitate droplet transport in electrode configurations with relatively large electrode spacing to alleviate the disadvantage of lower resolution screens. Thus, we were able to reduce the cost of fabrication significantly without compromising the DMF performance. The paper-based devices have already shown to be effective in continuous microfluidics domain, so the investigation of their applicability in DMF systems is worthwhile. With this in mind, successful integration of a paper-based microchannel with paper-based digital microfluidic chip is demonstrated in this work.

  13. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing

    International Nuclear Information System (INIS)

    Yafia, Mohamed; Shukla, Saurabh; Najjaran, Homayoun

    2015-01-01

    In this work, a new fabrication method is presented for digital microfluidic (DMF) devices in which the electrodes are generated using the screen printing technique. This method is applicable to both rigid and flexible substrates. The proposed screen printing approach, as a batch printing technique, is advantageous to the widely reported DMF fabrication methods in terms of fabrication time, cost and capability of mass production. Screen printing provides an effective means for printing different types of conductive materials on a variety of substrates. Specifically, screen printing of conductive silver and carbon based inks is performed on paper, glass and wax paper. As a result, the fabricated DMF devices are characterized by being flexible, disposable and incinerable. Hence, the main advantage of screen printing carbon based inks on paper substrates is more pronounced for point-of-care applications that require a large number of low cost DMF chips, and laboratory setups that lack sophisticated microfabrication facilities. The resolution of the printed DMF electrodes generated by this technique is examined for proof of concept using manual screen printing, but higher resolution screens and automated machines are available off-the-shelf, if needed. Another contribution of this research is the improved actuation techniques that facilitate droplet transport in electrode configurations with relatively large electrode spacing to alleviate the disadvantage of lower resolution screens. Thus, we were able to reduce the cost of fabrication significantly without compromising the DMF performance. The paper-based devices have already shown to be effective in continuous microfluidics domain, so the investigation of their applicability in DMF systems is worthwhile. With this in mind, successful integration of a paper-based microchannel with paper-based digital microfluidic chip is demonstrated in this work. (note)

  14. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  15. A screen-printed circular-type paper-based glucose/O2 biofuel cell

    Science.gov (United States)

    Shitanda, Isao; Nohara, Saki; Hoshi, Yoshinao; Itagaki, Masayuki; Tsujimura, Seiya

    2017-08-01

    The printable paper-based enzymatic biofuel cell (PBFC) to directly power small devices is an important objective for realizing cost-effective and disposable energy harvesting devices. In the present study, a screen-printed circular-type PBFC, composed of a series of 5 individual cells, was constructed. The PBFC exhibited the open circuit potential of 2.65 V and maximum power of 350 μW at 1.55 V, which were sufficient to illuminate an LED without requiring a booster circuit. The output voltage of this PBFC can also be easily adjusted as required.

  16. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed antenna to date, and a fourth-order Koch Snowflake monopole, which utilises a Sierpinski gasket fractal for ink reduction, are demonstrated. It is shown that fractals prove to be a successful method of reducing fabrication costs in inkjet-printed antennas, while retaining or enhancing printed antenna performance. © 2012 The Institution of Engineering and Technology.

  17. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Teengam, Prinjaporn [Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Siangproh, Weena [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 (Thailand); Tuantranont, Adisorn [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Pathumthani, 12120 (Thailand); Henry, Charles S. [Department of Chemistry, Colorado State University, Fort Collins, CO, 80523 (United States); Vilaivan, Tirayut [Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Chailapakul, Orawon, E-mail: corawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Nanotec-CU Center of Excellence on Food and Agriculture, Bangkok, 10330 (Thailand)

    2017-02-01

    A novel paper-based electrochemical biosensor was developed using an anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe (AQ-PNA) and graphene-polyaniline (G-PANI) modified electrode to detect human papillomavirus (HPV). An inkjet printing technique was employed to prepare the paper-based G-PANI-modified working electrode. The AQ-PNA probe baring a negatively charged amino acid at the N-terminus was immobilized onto the electrode surface through electrostatic attraction. Electrochemical impedance spectroscopy (EIS) was used to verify the AQ-PNA immobilization. The paper-based electrochemical DNA biosensor was used to detect a synthetic 14-base oligonucleotide target with a sequence corresponding to human papillomavirus (HPV) type 16 DNA by measuring the electrochemical signal response of the AQ label using square-wave voltammetry before and after hybridization. It was determined that the current signal significantly decreased after the addition of target DNA. This phenomenon is explained by the rigidity of PNA-DNA duplexes, which obstructs the accessibility of electron transfer from the AQ label to the electrode surface. Under optimal conditions, the detection limit of HPV type 16 DNA was found to be 2.3 nM with a linear range of 10–200 nM. The performance of this biosensor on real DNA samples was tested with the detection of PCR-amplified DNA samples from the SiHa cell line. The new method employs an inexpensive and disposable device, which easily incinerated after use and is promising for the screening and monitoring of the amount of HPV-DNA type 16 to identify the primary stages of cervical cancer. - Highlights: • A paper-based DNA biosensor using AQ-PNA probe and G-PANI modified electrode was first developed. • This developed DNA biosensor was highly specific over the non-complementary DNA. • This sensor was successfully applied to detect the HPV-DNA type 16 obtained from cancer cell lines. • This sensor is inexpensive and

  18. Laser carved micro-crack channels in paper-based dilution devices.

    Science.gov (United States)

    Liu, Qian; Xu, Chaoping; Liang, Heng

    2017-12-01

    We developed novel laser carved micro-crack (LCC) paper-based channels to significantly accelerate the liquid flow without an external pump. For the aqueous solutions they increased the flow velocity 59 times in 16% laser power-8 micro-cracks-LCC channel compared with it in solely-printed channels. All experimental data from both LCC and solely-printed channels were well-fitted by the time-distance quadratic trinomial that we developed on laser power and micro-crack number. We designed and fabricated T-junction microstructures of LCCs. Further, the microfluidic paper-based analytical device (μPAD) of LCC on dye mixing gradient and pH gradient were developed with the characteristics, fast self-acting transportation and high-performance mixing of liquid flows. In the dye mixing gradient the time cost was reduced from 2355s in the solely-printed one to only 123s in the five-stage of this LCC-μPAD. It was useful for quick and long-distance transferences through the multiple units of μPADs. Certainly, this LCC-μPAD was inexpensive, disposable, portable and applicable to resource-limited environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Paper-Based Sensor Chip for Heavy Metal Ion Detection by SWSV

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wang

    2018-03-01

    Full Text Available Heavy metal ion pollution problems have had a terrible influence on human health and the environment. Therefore, the monitoring of heavy metal ions is of great practical significance. In this paper, an electrochemical three-electrode system was fabricated and integrated on nitrocellulose membrane (NC by the use of magnetron sputtering technology, which exhibited a uniform arrangement of porous structure without further film modification. This paper-based sensor chip was used for Cu2+ detection by square-wave stripping voltammetry (SWSV. Within the ranges of 5~200 μg·L−1 and 200~1000 μg·L−1, it showed good linearity of 99.58% and 98.87%, respectively. The limit of detection was 2 μg·L−1. On the basis of satisfying the detection requirements (10 μg·L−1, the integrated sensor was small in size and inexpensive in cost. Zn2+, Cd2+, Pb2+ and Bi3+ were also detected by this paper-based sensor chip with good linearity.

  20. Digitally Controlled Procedure for Assembling Fully Drawn Paper-Based Electroanalytical Platforms.

    Science.gov (United States)

    Dossi, Nicolò; Petrazzi, Stefano; Toniolo, Rosanna; Tubaro, Franco; Terzi, Fabio; Piccin, Evandro; Svigelj, Rossella; Bontempelli, Gino

    2017-10-03

    A simple, reliable, and low-cost fabrication method is proposed here for assembling paper-based electrochemical devices (PEDs) using a commercial desktop digitally controlled plotter/cutter, together with ordinary writing tools. Permanent markers (tips of 1 mm) were used to create effective hydrophobic barriers on paper, while micromechanical pencils (mounting 4B graphite leads, 0.5 mm in diameter) were adopted for automatically drawn precise reference, counter, and working carbon electrodes. Fabrication parameters, such as writing pressure and speed, were first optimized, and the electrochemical performance of these devices was then evaluated by using potassium hexacyanoferrate(II) as redox probe. The good interdevice reproducibility (4.8%) displayed by the relevant voltammetric responses confirmed that this strategy can be profitably adopted to easily assemble paper-based electrochemical devices in a highly flexible manner. The simplicity of the instrumentation used and the low cost of each single device (about $0.04), together with the speed of fabrication (about 2 min), are other important features of the proposed strategy. Finally, to confirm the effectiveness of this prototyping method for the analysis of real samples and rapid controls, PEDs assembled by this simple approach were successfully exploited for the analysis of vitamin B 6 in food supplements.

  1. Paper-based microfluidic devices for electrochemical immunofiltration analysis of human chorionic gonadotropin.

    Science.gov (United States)

    Cao, Liangli; Fang, Cheng; Zeng, Ruosheng; Zhao, Xiongjie; Jiang, Yuren; Chen, Zhencheng

    2017-06-15

    An electrochemical immunofiltration analysis was introduced into microfluidic paper-based analytical devices (μPADs) for the first time, which was based on photolithography and screen-printing technology. The hydrophilic test zones of the aldehyde-functionalized screen-printed electrodes (SPEs) were biofunctionalized with capture antibodies (Ab 1 ). A sensitive immune detection method was developed by using primary signal antibody functionalized gold nanoparticles (GNPs/Ab 2 ) and alkaline phosphatase conjugated secondary antibody (ALP-IgG). Differential pulse voltammetry (DPV) was performed to detect the electrochemical response. The microfluidic paper-based electrochemical immunosensor (μ-PEI) was optimized and characterized for the detection of human chorionic gonadotropin (HCG), a model analyte, in a linear range from 1.0mIUmL -1 to 100.0 IU mL -1 with a detection limit of 0.36mIUmL -1 . Additionally, the proposed μ-PEI was used to test HCG in real human serum and obtained satisfactory results. The disposable, efficient, sensitive and low-cost μ-PEI has exhibited great potential for the development of point-of-care testing (POCT) devices that can be applicated in healthcare monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Electron beam for preservation of biodeteriorated cultural heritage paper-based objects

    Science.gov (United States)

    Chmielewska-Śmietanko, Dagmara; Gryczka, Urszula; Migdał, Wojciech; Kopeć, Kamil

    2018-02-01

    Unsuitable storage conditions or accidents such as floods can present a serious threat for large quantities of book making them prone to attack by harmful microorganisms. The microbiological degradation of archives and book collections can be efficiently inhibited with irradiation processing. Application of EB irradiation to book and archive collections can also be a very effective alternative to the commonly used ethylene oxide treatment, which is toxic to the human and natural environment. In this study was evaluated the influence of EB irradiation used for microbiological decontamination process on paper-based objects. Three different kinds of paper (Whatman CHR 1, office paper and newsprint paper) were treated with 0.4, 1, 2, 5, 10 and 25 kGy electron beam irradiation. Optical and mechanical properties of different sorts of paper treated with e-beam, before and after the radiation process were studied. These results, which correlated with absorbed radiation doses effective for the elimination of Aspergillus niger (A. niger) allowed to determine that EB irradiation with absorbed radiation dose of 5 kGy ensures safe decontamination of different sorts of paper-based objects.

  3. Microfluidic Paper-Based Sample Concentration Using Ion Concentration Polarization with Smartphone Detection

    Directory of Open Access Journals (Sweden)

    Xue Li

    2016-11-01

    Full Text Available A simple method for microfluidic paper-based sample concentration using ion concentration polarization (ICP with smartphone detection is developed. The concise and low-cost microfluidic paper-based ICP analytical device, which consists of a black backing layer, a nitrocellulose membrane, and two absorbent pads, is fabricated with the simple lamination method which is widely used for lateral flow strips. Sample concentration on the nitrocellulose membrane is monitored in real time by a smartphone whose camera is used to collect the fluorescence images from the ICP device. A custom image processing algorithm running on the smartphone is used to track the concentrated sample and obtain its fluorescence signal intensity for quantitative analysis. Two different methods for Nafion coating are evaluated and their performances are compared. The characteristics of the ICP analytical device especially with intentionally adjusted physical properties are fully evaluated to optimize its performance as well as to extend its potential applications. Experimental results show that significant concentration enhancement with fluorescence dye sample is obtained with the developed ICP device when a fast depletion of fluorescent dye is observed. The platform based on the simply laminated ICP device with smartphone detection is desired for point-of-care testing in settings with poor resources.

  4. Novel and facile viscometer using a paper-based microfluidic device

    Science.gov (United States)

    Kang, Hyunwoong; Jang, Ilhoon; Song, Simon

    2017-11-01

    In clinical applications, it is important to rapidly estimate the blood viscosity of a patient with a high accuracy and a small sample consumption. Unfortunately, ordinary mechanical viscometers require long analysis time, large volume of sample and skilled person. To address this issue, silicon-based viscometers have been developed, but they are still far from prevail usage in clinical environments due to complexity in process and analysis. Recently, a paper-based microfluidic device is emerged as a new platform for a facile point-of-care diagnostic device due to low cost, disposability and ease of use. Thus, we propose a novel and facile method of measuring a viscosity with a paper-based microfluidic devices and a smartphone. This viscometer utilizes mixing characteristics of two fluid flows in a T-shape channel: one for reference and the other for test fluid. The mixing strongly depends on viscosity difference between the two fluids. Also, the fluids are dyed for colorimetric analysis with a smartphone. We found that the accuracy of viscometer is about 3 percent when it was tested for various glycerin aqueous solutions. More detailed information will be discussed in the presentation. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (No. 2016R1A2B3009541).

  5. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  6. Integrated, paper-based potentiometric electronic tongue for the analysis of beer and wine.

    Science.gov (United States)

    Nery, Emilia Witkowska; Kubota, Lauro T

    2016-04-28

    The following manuscript details the stages of construction of a novel paper-based electronic tongue with an integrated Ag/AgCl reference, which can operate using a minimal amount of sample (40 μL). First, we optimized the fabrication procedure of silver electrodes, testing a set of different methodologies (electroless plating, use of silver nanoparticles and commercial silver paints). Later a novel, integrated electronic tongue system was assembled with the use of readily available materials such as paper, wax, lamination sheets, bleach etc. New system was thoroughly characterized and the ion-selective potentiometric sensors presented performance close to theoretical. An electronic tongue, composed of electrodes sensitive to sodium, calcium, ammonia and a cross-sensitive, anion-selective electrode was used to analyze 34 beer samples (12 types, 19 brands). This system was able to discriminate beers from different brands, and types, indicate presence of stabilizers and antioxidants, dyes or even unmalted cereals and carbohydrates added to the fermentation wort. Samples could be classified by type of fermentation (low, high) and system was able to predict pH and in part also alcohol content of tested beers. In the next step sample volume was minimalized by the use of paper sample pads and measurement in flow conditions. In order to test the impact of this advancement a four electrode system, with cross-sensitive (anion-selective, cation-selective, Ca(2+)/Mg(2+), K(+)/Na(+)) electrodes was applied for the analysis of 11 types of wine (4 types of grapes, red/white, 3 countries). Proposed matrix was able to group wines produced from different varieties of grapes (Chardonnay, Americanas, Malbec, Merlot) using only 40 μL of sample. Apart from that, storage stability studies were performed using a multimeter, therefore showing that not only fabrication but also detection can be accomplished by means of off-the-shelf components. This manuscript not only describes new

  7. Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors

    International Nuclear Information System (INIS)

    Delaney, Jacqui L.; Doeven, Egan H.; Harsant, Anthony J.; Hogan, Conor F.

    2013-01-01

    Graphical abstract: -- Highlights: •The ability to generate ECL emission using the audio output of a mobile phone is demonstrated. •Electrochemical control can be achieved by controlling the amplitude and waveform of the sound. •A mobile phone “app” synchronises the electrochemical stimulation with detection via the camera. •In combination with paper-based microfluidic sensors, extremely low cost analysis is possible. •Detection of proline at levels suitable for diagnosis of hyperprolinemia is demonstrated. -- Abstract: By exploiting its ability to play sounds, a mobile phone with suitable software installed can serve the basic functions of a potentiostat in controlling an applied potential to oxidise ECL-active molecules, while the resultant photonic signal is monitored using the camera in video mode. In combination with paper microfluidic sensors this opens significant new possibilities for low-cost, instrument-free sensing

  8. Folding-paper-based preconcentrator for low dispersion of preconcentration plug

    Science.gov (United States)

    Lee, Kyungjae; Yoo, Yong Kyoung; Han, Sung Il; Lee, Junwoo; Lee, Dohwan; Kim, Cheonjung; Lee, Jeong Hoon

    2017-12-01

    Ion concentration polarization (ICP) has been widely studied for collecting target analytes as it is a powerful preconcentrator method employed for charged molecules. Although the method is quite robust, simple, cheap, and yields a high preconcentration factor, a major hurdle to be addressed is extracting the preconcentrated samples without dispersing the plug. This study investigates a 3D folding-paper-based ICP preconcentrator for preconcentrated plug extraction without the dispersion effect. The ICP preconcentrator is printed on a cellulose paper with pre-patterned hydrophobic wax. To extract and isolate the preconcentration plug with minimal dispersion, a 3D pop-up structure is fabricated via water drain, and a preconcentration factor of 300-fold for 10 min is achieved. By optimizing factors such as the electric field, water drain, and sample volume, the technique was enhanced by facilitating sample preconcentration and isolation, thereby providing the possibility for extensive applications in analytical devices such as lateral flow assays and FTAR cards.

  9. Sistem Scoring Conversion TOEFL Paper Based Test (PBT Politeknik Negeri Cilacap Menggunakan Metode User Centered Design

    Directory of Open Access Journals (Sweden)

    Cahya Vikasari

    2017-06-01

    Full Text Available Sistem komputer interaktif untuk dipakai oleh useruntuk mendukung pekerjannya. User merupakan object yang penting didalam pengembangan dan pembangun sistem. User adalah personal-personal yang terlibat langsung dalam pemakaian aplikasi. Konsep dari UCD adalah user sebagai pusat dari proses pengembangan sistem, dan tujuan/sifat-sifat, konteks dan lingkungan sistem semua didasarkan dari pengalaman pengguna Pembangunan sistem skoring test TOEFL paper based test (PBT di UPT bahasa politeknik negeri cilacapmenggunakan metode UCD. Dengan menggunakan metode UCD sistem dapat   mempermudah dan mempercepat pendaftaran oleh calon pendaftar dengan tampilan antarmuka yang user friendly , mempermudah proses pengelolaan data dan rekap data pendaftar, mempermudah pengkonversian skor TOEFL yang dilakukan secara otomatis, serta  meminimalisir terjadinya kesalahan, duplikasi data dan duplikasi kegiatan.

  10. Glossiness of Colored Papers based on Computer Graphics Model and Its Measuring Method

    Science.gov (United States)

    Aida, Teizo

    In the case of colored papers, the color of surface effects strongly upon the gloss of its paper. The new glossiness for such a colored paper is suggested in this paper. First, using the Achromatic and Chromatic Munsell colored chips, the author obtained experimental equation which represents the relation between lightness V ( or V and saturation C ) and psychological glossiness Gph of these chips. Then, the author defined a new glossiness G for the colored papers, based on the above mentioned experimental equations Gph and Cook-Torrance's reflection model which are widely used in the filed of Computer Graphics. This new glossiness is shown to be nearly proportional to the psychological glossiness Gph. The measuring system for the new glossiness G is furthermore descrived. The measuring time for one specimen is within 1 minute.

  11. Low-cost rapid prototyping of flexible plastic paper based microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This research presents a novel rapid prototyping method for paper-based flexible microfluidic devices. The microchannels were fabricated using laser ablation on a piece of plastic paper (permanent paper), the dimensions of the microchannels was carefully studied for various laser powers and scanning speeds. After laser ablation of the microchannels on the plastic paper, a transparent poly (methyl methacrylate)(PMMA) film was thermally bonded to the plastic paper to enclose the channels. After connection of tubing, the device was ready to use. An example microfluidic device (droplet generator) was also fabricated using this technique. Due to the flexibility of the fabricated device, this technique can be used to fabricate 3D microfluidic devices. The fabrication process was simple and rapid without any requirement of cleanroom facilities. © 2013 IEEE.

  12. Paper-based potentiometric pH sensor using carbon electrode drawn by pencil

    Science.gov (United States)

    Kawahara, Ryotaro; Sahatiya, Parikshit; Badhulika, Sushmee; Uno, Shigeyasu

    2018-04-01

    A flexible and disposable paper-based pH sensor fabricated with a pencil-drawn working electrode and a Ag/AgCl paste reference electrode is demonstrated for the first time to show pH response by the potentiometric principle. The sensor substrate is made of chromatography paper with a wax-printed hydrophobic area, and various types of carbon pencils are tested as working electrodes. The pH sensitivities of the electrodes drawn by carbon pencils with different hardnesses range from 16.5 to 26.9 mV/pH. The proposed sensor is expected to be more robust against shape change in electrodes on a flexible substrate than other types of chemiresistive/amperometric pH sensors.

  13. Impact of Physical Deformation on Electrical Performance of Paper-Based Sensors

    KAUST Repository

    Nassar, Joanna M.

    2017-01-23

    We report on investigation of the mechanical properties of paper electronics (printed and made out of paper). One key objective of such paper electronics is to achieve ultraflexibility. Therefore, it is important to understand electrical functionality and reliability of paper electronics under various physical (mechanical) deformations. Here, we show the general mechanical properties of the cellulose paper used and its electrical behavior under applied strain, tackling the main effects that need to be identified when building paper-based systems, from product performance and stability perspective. An overview of the stress-strain behavior of silver ink on paper is discussed, and then, we tackle a more specific analysis of the performance variations of paper sensors made with recyclable household materials when exposed to various mechanical conditions of tensile and compressive bending. This paper is important for developing stable wearable sensors for incorporation into Internet of Everything applications.

  14. Novel electrochemical paper-based immunocapture assay for the quantitative determination of ethinylestradiol in water samples.

    Science.gov (United States)

    Scala-Benuzzi, María L; Raba, Julio; Soler-Illia, Galo J A A; Schneider, Rudolf J; Messina, Germán A

    2018-02-23

    We report a novel and innovative electrochemical paper-based immunocapture assay (EPIA) to address the need for ultrasensitive detection of emerging pollutants without regulatory status and whose effects on environment and human health are not completely yet understood. In particular, we present the application of this system towards highly sensitive detection of the emerging pollutant ethinyl estradiol (EE2). The EPIA approach is based on the use of paper microzones modified with silica nanoparticles (SNs) and anti-EE2 specific antibodies for capture and pre-concentration of EE2 from river water samples. After the pre-concentration procedure, the paper microzones are placed onto a screen-printed carbon electrode modified with electrochemically reduced graphene (RG). The bound EE2 is subsequently desorbed adding a diluted solution of sulfuric acid on the paper microzones. Finally, recovered EE2 is electrochemically detected by OSWV. The proposed novel methodology showed an appropriate LOD and linear range for the quantification of EE2 for water samples with different origins. The non-sophisticated equipment required, the adequate recovery values obtained (from 97% to 104%, with a RSD less than 4.9%), an appropriate LOD and linear range value (0.1 ng L-1 and 0.5-120 ng L-1, respectively) achieved by our immunocapture sensor present significant analytical figures of merit, particularly when the routine quantification of EE2 is considered. In addition, our system was based on electrochemical paper-based technology, which allows obtaining portable, easy-to-use, inexpensive and disposable devices. The EPIA can also serve as a general-purpose immunoassay platform applicable to quantitation of other drugs and emerging pollutants in environmental samples.

  15. A microfluidic paper-based analytical device for rapid quantification of particulate chromium

    International Nuclear Information System (INIS)

    Rattanarat, Poomrat; Dungchai, Wijitar; Cate, David M.; Siangproh, Weena; Volckens, John; Chailapakul, Orawon; Henry, Charles S.

    2013-01-01

    Graphical abstract: -- Highlights: •Cr detection using a paper-based analytical device. •Analysis of total Cr levels in particulate matter was achieved. •Method for on-paper oxidation of Cr to Cr(VI) using Ce(IV) was established. -- Abstract: Occupational exposure to Cr is concerning because of its myriad of health effects. Assessing chromium exposure is also cost and resource intensive because the analysis typically uses sophisticated instrumental techniques like inductively coupled plasma-mass spectrometry (ICP-MS). Here, we report a novel, simple, inexpensive microfluidic paper-based analytical device (μPAD) for measuring total Cr in airborne particulate matter. In the μPAD, tetravalent cerium (Ce(IV)) was used in a pretreatment zone to oxidize all soluble Cr to Cr(VI). After elution to the detection zone, Cr(VI) reacts with 1,5-diphenylcarbazide (1,5-DPC) forming 1,5-diphenylcarbazone (DPCO) and Cr(III). The resulting Cr(III) forms a distinct purple colored complex with the DPCO. As proof-of-principle, particulate matter (PM) collected on a sample filter was analyzed with the μPAD to quantify the mass of total Cr. A log-linear working range (0.23–3.75 μg; r 2 = 0.998) between Cr and color intensity was obtained with a detection limit of 0.12 μg. For validation, a certified reference containing multiple competing metals was analyzed. Quantitative agreement was obtained between known Cr levels in the sample and the Cr measured using the μPAD

  16. Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability

    Science.gov (United States)

    Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2014-07-01

    Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated.Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated. Electronic supplementary information (ESI) available: Video of rolling tests; video of the PFP circuit used as flexible cable in a cell phone; video of the application of the circuit as a RFID tag; a detailed method for synthesizing silver nanowires; details of the PFP technique; folding tests for the circuits; air humidity test for the circuit. See DOI: 10.1039/c4nr00846d

  17. Blood coagulation screening using a paper-based microfluidic lateral flow device.

    Science.gov (United States)

    Li, H; Han, D; Pauletti, G M; Steckl, A J

    2014-10-21

    A simple approach to the evaluation of blood coagulation using a microfluidic paper-based lateral flow assay (LFA) device for point-of-care (POC) and self-monitoring screening is reported. The device utilizes whole blood, without the need for prior separation of plasma from red blood cells (RBC). Experiments were performed using animal (rabbit) blood treated with trisodium citrate to prevent coagulation. CaCl2 solutions of varying concentrations are added to citrated blood, producing Ca(2+) ions to re-establish the coagulation cascade and mimic different blood coagulation abilities in vitro. Blood samples are dispensed into a paper-based LFA device consisting of sample pad, analytical membrane and wicking pad. The porous nature of the cellulose membrane separates the aqueous plasma component from the large blood cells. Since the viscosity of blood changes with its coagulation ability, the distance RBCs travel in the membrane in a given time can be related to the blood clotting time. The distance of the RBC front is found to decrease linearly with increasing CaCl2 concentration, with a travel rate decreasing from 3.25 mm min(-1) for no added CaCl2 to 2.2 mm min(-1) for 500 mM solution. Compared to conventional plasma clotting analyzers, the LFA device is much simpler and it provides a significantly larger linear range of measurement. Using the red colour of RBCs as a visible marker, this approach can be utilized to produce a simple and clear indicator of whether the blood condition is within the appropriate range for the patient's condition.

  18. The characterisation and design improvement of a paper-based E.coli impedimetric sensor

    Science.gov (United States)

    Bezuidenhout, P.; Kumar, S.; Wiederoder, M.; Schoeman, J.; Land, K.; Joubert, T.-H.

    2016-02-01

    This paper describes the development and optimisation of a paper-based E. coli impedimetric biosensor for water quality monitoring. Impedimetric biosensing is advantageous because it is a highly sensitive, label-free, real-time method for the detection of biological species. An impedimetric biosensor measures the change in impedance caused by specific capture of a target on the sensor surface. Each biosensor consists of a pair of photo paper-based inkjet printed electrodes. An impedance analyser was used to measure the impedance at frequencies ranging from 1 kHz to 1 MHz at 1V. The parameters that were investigated to achieve enhanced sensor performance were buffer type, antibody attachment method, measurement frequency, electrode layout, and conductive material. A 0.04M PBS (phosphate buffered saline) solution achieves better results compared to a less conductive 0.04M PB (potassium phosphate dibasic) solution. The direct adsorption of anti-E. coli antibodies onto the sensor surface yielded better results than attaching the sensor to a lateral flow test. The resistive component had a greater impact on the detected impedance, therefore an optimal frequency of 1 MHz was identified. Geometrical electrode designs that maximise the resistive change between the electrodes were utilised. Both lower cost silver and bio-compatible gold ink were validated as electrode materials. The impedance change generated by the selective capture of E. coli K-12, ranging in concentration from 103 to 107 colony forming units per millilitre (cfu/ml), showed a detection limit of 105 cfu/ml.

  19. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  20. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  1. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available. © 2012 American Chemical Society

  2. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  3. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  4. Nonleaking battery terminals.

    Science.gov (United States)

    Snider, W. E.; Nagle, W. J.

    1972-01-01

    Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45% KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a KOH electrolyte in a plastic case are considered.

  5. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  6. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  7. Metering the capillary-driven flow of fluids in paper-based microfluidic devices.

    Science.gov (United States)

    Noh, Hyeran; Phillips, Scott T

    2010-05-15

    This article describes an exceedingly simple and low-cost method for metering the capillary-driven flow rate of fluids within three-dimensional (3D) microfluidic, paper-based analytical devices (microPADs). Initial prototypes of 3D microPADs control the spatial distribution of fluids within a device, but they provide little control over how quickly (or slowly) fluids move within the device. The methods described in this article provide control over when and how quickly a fluid is distributed into detection zones. These methods are inexpensive (the metering regions are composed of paraffin wax), the devices are easy to fabricate, and they are capable of controlling the flow of fluids to detection zones with precise time delays (e.g., +/-6% of the total wicking time). We anticipate that this type of precise control over fluid distribution rates will be useful particularly for point-of-care assays that require multiple steps (where each step requires that the reagents interact for a defined period of time) or for simultaneously displaying the results of multiple different assays on a single device.

  8. Determination of Apparent Amylose Content in Rice by Using Paper-Based Microfluidic Chips.

    Science.gov (United States)

    Hu, Xianqiao; Lu, Lin; Fang, Changyun; Duan, Binwu; Zhu, Zhiwei

    2015-11-11

    Determination of apparent amylose content in rice is a key function for rice research and the rice industry. In this paper, a novel approach with paper-based microfluidic chip is reported to determine apparent amylose content in rice. The conventional color reaction between amylose and iodine was employed. Blue color of amylose-iodine complex generated on-chip was converted to gray and measured with Photoshop after the colored chip was scanned. The method for preparation of the paper chip is described. In situ generation of iodine for on-chip color reaction was designed, and factors influencing color reaction were investigated in detail. Elimination of yellow color interference of excess iodine by exploiting color removal function of Photoshop was presented. Under the optimized conditions, apparent amylose content in rice ranging from 1.5 to 26.4% can be determined, and precision was 6.3%. The analytical results obtained with the developed approach were in good agreement with those with the continuous flow analyzer method.

  9. Quantum dot-modified paper-based assay for glucose screening

    International Nuclear Information System (INIS)

    The article describes a simple optical assay for glucose. It is based on the use of paper spots loaded with colloidal CdSe/ZnS quantum dots (Q-dots) and the enzyme glucose oxidase (GOx). Circular paper sheets were uniformly loaded with Q-dots and then displayed strong fluorescence under a UV lamp (365 nm exCitation). The action of GOx causes the production of H 2 O 2 which, after a typical exposure time of 20 min, causes fluorescence intensity to be quenched. To obtain a reading, the paper sheets were photographed under 365 nm excitation using a digital camera. Several parameters, including the amount of Q-dots, sample pH, and amount of GOx were optimized to maximize the response to glucose. The paper-based assay showed a sigmoidal-shaped response with respect to the glucose concentration in the 5–200 mg·dL −1 range (limit of detection of 5 μg·dL −1 ), demonstrating their potential use for biomedical applications. (author)

  10. Evaluating the Difference between Virtual and Paper-Based Clinical Cases in Family Medicine Undergraduate Education.

    Science.gov (United States)

    Klemenc-Ketis, Zalika; Cagran, Branka; Dinevski, Dejan

    2018-01-01

    A "virtual patient" is defined as a computer program which simulates real patients' cases. The aim of this study was to determine whether the inclusion of virtual patients affects the level of factual knowledge of family medicine students at the undergraduate level. This was a case-controlled prospective study. The students were randomly divided into experimental (EG: N = 51) and control (CG: N = 48) groups. The students in the EG were asked to practice diagnosis using virtual patients instead of the paper-based clinical cases which were solved by the students in the CG. The main observed variable in the study was knowledge of family medicine, determined by 50 multiple choice questions (MCQs) about knowledge of family medicine. There were no statistically significant differences in the groups' initial knowledge. At the final assessment of knowledge, there were no statistically significant differences between the groups, but there was a statistically significant difference between their initial and final knowledge. The study showed that adding virtual patient cases to the curriculum, instead of paper clinical cases, did not affect the level of factual knowledge about family medicine. Virtual patients can be used, but a significant educational outcome is not expected.

  11. Biosensing with Paper-Based Miniaturized Printed Electrodes–A Modern Trend

    Directory of Open Access Journals (Sweden)

    Célia M. Silveira

    2016-09-01

    Full Text Available From the bench-mark work on microfluidics from the Whitesides’s group in 2007, paper technology has experienced significant growth, particularly regarding applications in biomedical research and clinical diagnostics. Besides the structural properties supporting microfluidics, other advantageous features of paper materials, including their versatility, disposability and low cost, show off the great potential for the development of advanced and eco-friendly analytical tools. Consequently, paper was quickly employed in the field of electrochemical sensors, being an ideal material for producing custom, tailored and miniaturized devices. Stencil-, inkjet-, or screen-printing are the preferential techniques for electrode manufacturing. Not surprisingly, we witnessed a rapid increase in the number of publications on paper based screen-printed sensors at the turn of the past decade. Among the sensing strategies, various biosensors, coupling electrochemical detectors with biomolecules, have been proposed. This work provides a critical review and a discussion on the future progress of paper technology in the context of miniaturized printed electrochemical biosensors.

  12. Identifying potentially eligible subjects for research: paper-based logs versus the hospital administrative database.

    Science.gov (United States)

    Magee, L A; Massey, K; von Dadelszen, P; Fazio, M; Payne, B; Liston, R

    2011-12-01

    The Canadian Perinatal Network (CPN) is a national database focused on threatened very pre-term birth. Women with one or more conditions most commonly associated with very pre-term birth are included if admitted to a participating tertiary perinatal unit at 22 weeks and 0 days to 28 weeks and 6 days. At BC Women's Hospital and Health Centre, we compared traditional paper-based ward logs and a search of the Canadian Institute for Health Information (CIHI) electronic database of inpatient discharges to identify patients. The study identified 244 women potentially eligible for inclusion in the CPN admitted between April and December 2007. Of the 155 eligible women entered into the CPN database, each method identified a similar number of unique records (142 and 147) not ascertained by the other: 10 (6.4%) by CIHI search and 5 (3.2%) by ward log review. However, CIHI search achieved these results after reviewing fewer records (206 vs. 223) in less time (0.67 vs. 13.6 hours for ward logs). Either method is appropriate for identification of potential research subjects using gestational age criteria. Although electronic methods are less time-consuming, they cannot be performed until after the patient is discharged and records and charts are reviewed. Each method's advantages and disadvantages will dictate use for a specific project.

  13. Comparison of paper-based and electronic data collection process in clinical trials: costs simulation study.

    Science.gov (United States)

    Pavlović, Ivan; Kern, Tomaz; Miklavcic, Damijan

    2009-07-01

    An alternative to clinical trial paper-based data collection (PDC) is internet based electronic data collection (EDC), where the investigators over the internet enter data directly in the electronic database by themselves. In our study we considered clinical trial as a business process. Our objective was to model PDC and EDC process and to estimate the difference of the costs of PDC and EDC process for a sample clinical trial based on these models. We used Extended Event-driven Process Chains (eEPC) modeling technique to model PDC and EDC process. In order to evaluate the costs of the processes we assigned costs functions to each process function which appears in the model. The parameters which appear in these functions include efforts, staff prices and data quality parameters. We estimated the values of all these parameters and performed costs calculations for a sample clinical trial. Through an analysis and modeling efforts we identified sub-processes which contain main differences affecting duration and costs of the PDC and EDC process: data gathering at the research center; monitoring; and data management. The most significant model difference between PDC and EDC process appeared in data management sub-process. For the sample clinical trial considered in our simulation study and our parameters estimations the EDC process decreased data collection costs for 55%. For different scenarios of parameters variations we show that the EDC process may bring from 49% to 62% of savings when compared to PDC process.

  14. Pressure-assisted low-temperature sintering for paper-based writing electronics.

    Science.gov (United States)

    Xu, L Y; Yang, G Y; Jing, H Y; Wei, J; Han, Y D

    2013-09-06

    With the aim of preparing paper-based writing electronics, a kind of conductive pen was made with nano-silver ink as the conductive component and a rollerball pen as the writing implement. This was used to direct-write conductive patterns on Epson photo paper. In order to decrease the sintering temperature, pressure was introduced to enhance the driving forces for sintering. Compared with hot sintering without pressure, hot-pressure can effectively improve the conductivity of silver coatings, reduce the sintering time and thus improve productivity. Importantly, pressure can achieve a more uniform and denser microstructure, which increases the connection strength of the silver coating. At the optimum hot-pressure condition (sintering temperature 120 ° C/sintering pressure 25 MPa/sintering time 15 min), a typical measured resistivity value was 1.43 × 10⁻⁷ Ω m, nine greater than that of bulk silver. This heat treatment process is compatible with paper and does not cause any damage to the paper substrates. Even after several thousand bending cycles, the resistivity values of writing tracks by hot-pressure sintering stay almost the same (from 1.43 × 10⁻⁷ to 1.57 × 10⁻⁷ Ω m). The stability and flexibility of the writing circuits are good, which demonstrates the promising future of writing electronics.

  15. Pressure-assisted low-temperature sintering for paper-based writing electronics

    International Nuclear Information System (INIS)

    Xu, L Y; Yang, G Y; Jing, H Y; Han, Y D; Wei, J

    2013-01-01

    With the aim of preparing paper-based writing electronics, a kind of conductive pen was made with nano-silver ink as the conductive component and a rollerball pen as the writing implement. This was used to direct-write conductive patterns on Epson photo paper. In order to decrease the sintering temperature, pressure was introduced to enhance the driving forces for sintering. Compared with hot sintering without pressure, hot-pressure can effectively improve the conductivity of silver coatings, reduce the sintering time and thus improve productivity. Importantly, pressure can achieve a more uniform and denser microstructure, which increases the connection strength of the silver coating. At the optimum hot-pressure condition (sintering temperature 120 ° C/sintering pressure 25 MPa/sintering time 15 min), a typical measured resistivity value was 1.43 × 10 −7 Ω m, nine greater than that of bulk silver. This heat treatment process is compatible with paper and does not cause any damage to the paper substrates. Even after several thousand bending cycles, the resistivity values of writing tracks by hot-pressure sintering stay almost the same (from 1.43 × 10 −7 to 1.57 × 10 −7 Ω m). The stability and flexibility of the writing circuits are good, which demonstrates the promising future of writing electronics. (paper)

  16. Blood plasma separation in ZnO nanoflowers-supported paper based microfluidic for glucose sensing

    Science.gov (United States)

    Muhimmah, Luthviyah Choirotul; Roekmono, Hadi, Harsono; Yuwono, Rio Akbar; Wahyuono, Ruri Agung

    2018-04-01

    Blood plasma separation is essential to analyze and quantify the bio-substances in the human blood and hence, allows for diagnosing various diseases. This paper presents the two layer paper-based microfluidic analytical devices coated with ZnO nanoflowers (ZnO NF-µPAD) for a rapid blood plasma separation and glucose sensing. Plasma separation in ZnO NF-µPAD was evaluated experimentally and numerically using computational fluid dynamics package for a flow over porous networks. Glucose detection was carried out using Fourier-transform infrared (FTIR) measurements. The glucose concentrations in the red blood samples investigated here vary in the range of 150 - 310 mg.dl-1. The plasma separation process on ZnO NF-μPAD requires 240 ± 93 s. The spectroscopic data reveals that the IR absorptions and Raman signals at the typical vibrational frequencies of glucose are increasing at higher glucose concentration. After subtraction from absorption background arising from ZnO NF and the paper, linearly increasing IR absorption (913 and 1349 cm-1) and Raman signals (1346 and 1461 cm-1) are observable with a relatively good sensitivity.

  17. Paper-Based Analytical Devices Relying on Visible-Light-Enhanced Glucose/Air Biofuel Cells.

    Science.gov (United States)

    Wu, Kaiqing; Zhang, Yan; Wang, Yanhu; Ge, Shenguang; Yan, Mei; Yu, Jinghua; Song, Xianrang

    2015-11-04

    A strategy that combines visible-light-enhanced biofuel cells (BFCs) and electrochemical immunosensor into paper-based analytical devices was proposed for sensitive detection of the carbohydrate antigen 15-3 (CA15-3). The gold nanoparticle modified paper electrode with large surface area and good conductibility was applied as an effective matrix for primary antibodies. The glucose dehydrogenase (GDH) modified gold-silver bimetallic nanoparticles were used as bioanodic biocatalyst and signal magnification label. Poly(terthiophene) (pTTh), a photoresponsive conducting polymer, served as catalyst in cathode for the reduction of oxygen upon illumination by visible light. In the bioanode, electrons were generated through the oxidation of glucose catalyzed by GDH. The amount of electrons is determined by the amount of GDH, which finally depended on the amount of CA15-3. In the cathode, electrons from the bioanode could combine with the generated holes in the HOMO energy level of cathode catalysts pTTh. Meanwhile, the high energy level photoexcited electrons were generated in the LUMO energy level and involved in the oxygen reduction reaction, finally resulting in an increasing current and a decreasing overpotential. According to the current signal, simple and efficient detection of CA15-3 was achieved.

  18. Paper-based device for separation and cultivation of single microalga.

    Science.gov (United States)

    Chen, Chih-Chung; Liu, Yi-Ju; Yao, Da-Jeng

    2015-12-01

    Single-cell separation is among the most useful techniques in biochemical research, diagnosis and various industrial applications. Microalgae species have great economic importance as industrial raw materials. Microalgae species collected from environment are typically a mixed and heterogeneous population of species that must be isolated and purified for examination and further application. Conventional methods, such as serial dilution and a streaking-plate method, are intensive of labor and inefficient. We developed a paper-based device for separation and cultivation of single microalga. The fabrication was simply conducted with a common laser printer and required only a few minutes without lithographic instruments and clean-room. The driving force of the paper device was simple capillarity without a complicated pump connection that is part of most devices for microfluidics. The open-structure design of the paper device makes it operable with a common laboratory micropipette for sample transfer and manipulation with a naked eye or adaptable to a robotic system with functionality of high-throughput retrieval and analysis. The efficiency of isolating a single cell from mixed microalgae species is seven times as great as with a conventional method involving serial dilution. The paper device can serve also as an incubator for microalgae growth on simply rinsing the paper with a growth medium. Many applications such as highly expressed cell selection and various single-cell analysis would be applicable. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Rapid Characterization of Bacterial Electrogenicity Using a Single-Sheet Paper-Based Electrofluidic Array

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2017-07-01

    Full Text Available Electrogenicity, or bacterial electron transfer capacity, is an important application which offers environmentally sustainable advances in the fields of biofuels, wastewater treatment, bioremediation, desalination, and biosensing. Significant boosts in this technology can be achieved with the growth of synthetic biology that manipulates microbial electron transfer pathways, thereby potentially significantly improving their electrogenic potential. There is currently a need for a high-throughput, rapid, and highly sensitive test array to evaluate the electrogenic properties of newly discovered and/or genetically engineered bacterial species. In this work, we report a single-sheet, paper-based electrofluidic (incorporating both electronic and fluidic structure screening platform for rapid, sensitive, and potentially high-throughput characterization of bacterial electrogenicity. This novel screening array uses (i a commercially available wax printer for hydrophobic wax patterning on a single sheet of paper and (ii water-dispersed electrically conducting polymer mixture, poly(3,4-ethylenedioxythiophene:polystyrene sulfonate, for full integration of electronic and fluidic components into the paper substrate. The engineered 3-D, microporous, hydrophilic, and conductive paper structure provides a large surface area for efficient electron transfer. This results in rapid and sensitive power assessment of electrogenic bacteria from a microliter sample volume. We validated the effectiveness of the sensor array using hypothesis-driven genetically modified Pseudomonas aeruginosa mutant strains. Within 20 min, we observed that the sensor platform successfully measured the electricity-generating capacities of five isogenic mutants of P. aeruginosa while distinguishing their differences from genetically unmodified bacteria.

  20. Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices

    Science.gov (United States)

    Volckens, John

    2014-01-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments. PMID:24515892

  1. Biosensing with Paper-Based Miniaturized Printed Electrodes–A Modern Trend

    Science.gov (United States)

    Silveira, Célia M.; Monteiro, Tiago; Almeida, Maria Gabriela

    2016-01-01

    From the bench-mark work on microfluidics from the Whitesides’s group in 2007, paper technology has experienced significant growth, particularly regarding applications in biomedical research and clinical diagnostics. Besides the structural properties supporting microfluidics, other advantageous features of paper materials, including their versatility, disposability and low cost, show off the great potential for the development of advanced and eco-friendly analytical tools. Consequently, paper was quickly employed in the field of electrochemical sensors, being an ideal material for producing custom, tailored and miniaturized devices. Stencil-, inkjet-, or screen-printing are the preferential techniques for electrode manufacturing. Not surprisingly, we witnessed a rapid increase in the number of publications on paper based screen-printed sensors at the turn of the past decade. Among the sensing strategies, various biosensors, coupling electrochemical detectors with biomolecules, have been proposed. This work provides a critical review and a discussion on the future progress of paper technology in the context of miniaturized printed electrochemical biosensors. PMID:27690119

  2. A Thieno[2,3-b]pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors

    KAUST Repository

    Chen, Hung-Yang

    2017-12-28

    A novel fused heterocycle-flanked diketopyrrolopyrrole (DPP) monomer, thieno[2,3-b]pyridine diketopyrrolopyrrole (TPDPP), was designed and synthesized. When copolymerized with 3,4-difluorothiophene using Stille coupling polymerization, the new polymer pTPDPP-TF possesses a highly planar conjugated polymer backbone due to the fused thieno[2,3-b]pyridine flanking unit that effectively alleviates the steric hindrance with both the central DPP core and the 3,4-difluorothiophene repeat unit. This new polymer exhibits a high electron affinity (EA) of −4.1 eV and was successfully utilized as an n-type polymer semiconductor for applications in organic field-effect transistors (OFETs) and all polymer solar cells. A promising n-type charge carrier mobility of 0.1 cm2 V–1 s–1 was obtained in bottom-contact, top-gate OFETs, and a power conversion efficiency (PCE) of 2.72% with a high open-circuit voltage (VOC) of 1.04 V was achieved for all polymer solar cells using PTB7-Th as the polymer donor.

  3. Acid-base titrations using microfluidic paper-based analytical devices.

    Science.gov (United States)

    Karita, Shingo; Kaneta, Takashi

    2014-12-16

    Rapid and simple acid-base titration was accomplished using a novel microfluidic paper-based analytical device (μPAD). The μPAD was fabricated by wax printing and consisted of ten reservoirs for reaction and detection. The reaction reservoirs contained various amounts of a primary standard substance, potassium hydrogen phthalate (KHPth), whereas a constant amount of phenolphthalein was added to all the detection reservoirs. A sample solution containing NaOH was dropped onto the center of the μPAD and was allowed to spread to the reaction reservoirs where the KHPth neutralized it. When the amount of NaOH exceeded that of the KHPth in the reaction reservoirs, unneutralized hydroxide ion penetrated the detection reservoirs, resulting in a color reaction from the phenolphthalein. Therefore, the number of the detection reservoirs with no color change determined the concentration of the NaOH in the sample solution. The titration was completed within 1 min by visually determining the end point, which required neither instrumentation nor software. The volumes of the KHPth and phenolphthalein solutions added to the corresponding reservoirs were optimized to obtain reproducible and accurate results for the concentration of NaOH. The μPADs determined the concentration of NaOH at orders of magnitude ranging from 0.01 to 1 M. An acid sample, HCl, was also determined using Na2CO3 as a primary standard substance instead of KHPth. Furthermore, the μPAD was applicable to the titrations of nitric acid, sulfuric acid, acetic acid, and ammonia solutions. The μPADs were stable for more than 1 month when stored in darkness at room temperature, although this was reduced to only 5 days under daylight conditions. The analysis of acidic hot spring water was also demonstrated in the field using the μPAD, and the results agreed well with those obtained by classic acid-base titration.

  4. Optimization of a paper-based ELISA for a human performance biomarker.

    Science.gov (United States)

    Murdock, Richard C; Shen, Li; Griffin, Daniel K; Kelley-Loughnane, Nancy; Papautsky, Ian; Hagen, Joshua A

    2013-12-03

    Monitoring aspects of human performance during various activities has recently become a highly investigated research area. Many new commercial products are available now to monitor human physical activity or responses while performing activities ranging from playing sports, to driving, and even sleeping. However, monitoring cognitive performance biomarkers, such as neuropeptides, is still an emerging field due to the complicated sample collection and processing, as well as the need for a clinical lab to perform analysis. Enzyme-linked immunosorbent assays (ELISAs) provide specific detection of biomolecules with high sensitivity (picomolar concentrations). Even with the advantage of high sensitivity, most ELISAs need to be performed in a laboratory setting and require around 6 h to complete. Transitioning this assay to a platform where it reduces cost, shortens assay time, and is able to be performed outside a lab is invaluable. Recently developed paper diagnostics provide an inexpensive platform on which to perform ELISAs; however, the major limiting factor for moving out of the laboratory environment is the measurement and analysis instrumentation. Using something as simple as a digital camera or camera-enabled Windows- or Android-based tablets, we are able to image paper-based ELISAs (P-ELISAs), perform image analysis, and produce response curves with high correlation to target biomolecule concentration in the 10 pM range. Neuropeptide Y detection was performed. Additionally, silver enhancement of Au NPs conjugated with IgG antibodies showed a concentration-dependent response to IgG, thus eliminating the need for an enzyme-substrate system. Automated image analysis and quantification of antigen concentrations are able to be performed on Windows- and Android-based mobile platforms.

  5. Development of a Quasi-Steady Flow Electrochemical Paper-Based Analytical Device.

    Science.gov (United States)

    Adkins, Jaclyn A; Noviana, Eka; Henry, Charles S

    2016-11-01

    An electrochemical paper-based analytical device (ePAD) was developed for quasi-steady flow detection at microwire electrodes, for the first time. The device implements a fan shaped geometry connected to an analysis channel whereby solution is pulled from an inlet, through a channel, and into the steadily increasing capillary network of the fan. The network counteracts the decrease in solution flow rate associated with increasing viscosity within the channel, generating quasi-steady flow within the analysis channel. Microwire electrodes were embedded between two paper layers within the analysis channel, such that solution flow occurred on both sides of the wire electrodes. The quasi-steady flow ePAD increased the current by 2.5 times and 0.7 times from a saturated channel with no flow and from a single-layer paper device with flow, respectively. Amperometric detection was used for flow injection analysis (FIA) of multiple analytes at both Au and Pt microwire working electrodes, both of which provided similar sensitivity (ca. 0.2 mM -1 ) when normalized to the same standard. The two-layer paper devices provided a detection limit of 31 μM for p-aminophenol (PAP) using Pt electrodes and was also used to detect enzyme activity for the reaction of β-galactosidase with p-aminophenyl-galactopyranoside (PAPG). Measured enzyme kinetics provided similar V max (0.079 mM/min) and K m (0.36 mM) values as those found in the literature. This device shows great promise toward use in enzyme-linked immunosorbent assays or other analytical techniques where flow or washing steps are necessary. The developed sensor provides a simple and inexpensive device capable of performing multiple injection analysis with steady-flow and online detection that would normally require an external pump to perform.

  6. Paper-based maskless enzymatic sensor for glucose determination combining ink and wire electrodes.

    Science.gov (United States)

    Amor-Gutiérrez, O; Costa Rama, E; Costa-García, A; Fernández-Abedul, M T

    2017-07-15

    In this work we have developed an amperometric enzymatic biosensor in a paper-based platform with a mixed electrode configuration: carbon ink for the working electrode (WE) and metal wires (from a low-cost standard electronic connection) for reference (RE) and auxiliary electrodes (AE). A hydrophobic wax-defined paper area was impregnated with diluted carbon ink. Three gold-plated pins of the standard connection are employed, one for connecting the WE and the other two acting as RE and AE. The standard connection works as a clip in order to support the paper in between. As a proof-of-concept, glucose sensing was evaluated. The enzyme cocktail (glucose oxidase, horseradish peroxidase and potassium ferrocyanide as mediator of the electron transfer) was adsorbed on the surface. After drying, glucose solution was added to the paper, on the opposite side of the carbon ink. It wets RE and AE, and flows by capillarity through the paper contacting the carbon WE surface. The reduction current of ferricyanide, product of the enzymatic reaction, is measured chronoamperometrically and correlates to the concentration of glucose. Different parameters related to the bioassay were optimized, adhering the piece of paper onto a conventional screen-printed carbon electrode (SPCE). In this way, the RE and the AE of the commercial card were employed for optimizing the paper-WE. After evaluating the assay system in the hybrid paper-SPCE cell, the three-electrode system consisting of paper-WE, wire-RE and wire-AE, was employed for glucose determination, achieving a linear range between 0.3 and 15mM with good analytical features and being able of quantifying glucose in real food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Glucose biosensor based on disposable electrochemical paper-based transducers fully fabricated by screen-printing.

    Science.gov (United States)

    Lamas-Ardisana, P J; Martínez-Paredes, G; Añorga, L; Grande, H J

    2018-06-30

    This paper describes a new approach for the massive production of electrochemical paper-based analytical devices (ePADs). These devices are fully fabricated by screen-printing technology and consist of a lineal microfluidic channel delimited by hydrophobic walls (patterned with diluted ultraviolet screen-printing ink in chromatographic paper grade 4) and a three-electrode system (printed with carbon and/or Ag/AgCl conductive inks). The printing process was characterised and optimized for pattern each layer with only one squeeze sweep. These ePADs were used as transducers to develop a glucose biosensor. Ionic strength/pH buffering salts, electrochemical mediator (ferricyanide) and enzyme (glucose dehydrogenase FAD-dependent) were separately stored along the microfluidic channel in order to be successively dissolved and mixed after the sample dropping at the entrance. The analyses required only 10 µl and the biosensors showed good reproducibility (RSD = 6.2%, n = 10) and sensitivity (0.426 C/M cm 2 ), wide linear range (0.5-50 mM; r 2 = 0.999) and low limit of detection (0.33 mM). Furthermore, the new biosensor was applied for glucose determination in five commercial soft-drinks without any sample treatment before the analysis. These samples were also analysed with a commercial enzymatic-kit assay. The results indicated that both methods provide accurate results. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Geometrical Alignment of Multiple Fabrication Steps for Rapid Prototyping of Microfluidic Paper-Based Analytical Devices.

    Science.gov (United States)

    Rahbar, Mohammad; Nesterenko, Pavel N; Paull, Brett; Macka, Mirek

    2017-11-21

    Three main fabrication steps for microfluidic paper-based analytical devices (μPADs) were fully integrated with accurate geometrical alignment between the individual steps in a simple and rapid manner. A wax printer for creating hydrophobic barriers was integrated with an inexpensive (ca. $300) electronic craft plotter/cutter for paper cutting, followed by colorimetric reagent deposition using technical pens. The principal shortcoming in the lack of accurate and precise alignment of the features created by these three individual fabrication steps was addressed in this work by developing appropriate alignment procedures during the multistep fabrication process. The wax printing step was geometrically aligned with the following cutting and plotting (deposition) steps in a highly accurate and precise manner using optical scanning function of the plotter/cutter based on registration marks printed on the paper using the wax printer and scanned by the plotter/cutter. The accuracy and precision of alignment in a two-dimensional plane were quantified by cutting and plotting cross-shaped features and measuring their center coordinates relative to wax printed reference lines. The average accuracy along the X- and Y-axis was 0.12 and 0.16 mm for cutting and 0.19 and 0.17 mm for plotting, respectively. The potential of this approach was demonstrated by fabricating μPADs for instrument-free determination of cobalt in waters using distance-based readout, with excellent precision (%RSD = 5.7) and detection limit (LOD) of 2.5 ng and 0.5 mg/L (mass and concentration LODs, respectively).

  9. Measuring learning gain: Comparing anatomy drawing screencasts and paper-based resources.

    Science.gov (United States)

    Pickering, James D

    2017-07-01

    The use of technology-enhanced learning (TEL) resources is now a common tool across a variety of healthcare programs. Despite this popular approach to curriculum delivery there remains a paucity in empirical evidence that quantifies the change in learning gain. The aim of the study was to measure the changes in learning gain observed with anatomy drawing screencasts in comparison to a traditional paper-based resource. Learning gain is a widely used term to describe the tangible changes in learning outcomes that have been achieved after a specific intervention. In regard to this study, a cohort of Year 2 medical students voluntarily participated and were randomly assigned to either a screencast or textbook group to compare changes in learning gain across resource type. Using a pre-test/post-test protocol, and a range of statistical analyses, the learning gain was calculated at three test points: immediate post-test, 1-week post-test and 4-week post-test. Results at all test points revealed a significant increase in learning gain and large effect sizes for the screencast group compared to the textbook group. Possible reasons behind the difference in learning gain are explored by comparing the instructional design of both resources. Strengths and weaknesses of the study design are also considered. This work adds to the growing area of research that supports the effective design of TEL resources which are complimentary to the cognitive theory of multimedia learning to achieve both an effective and efficient learning resource for anatomical education. Anat Sci Educ 10: 307-316. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  10. A Novel Physical Sensing Principle for Liquid Characterization Using Paper-Based Hygro-Mechanical Systems (PB-HMS)

    OpenAIRE

    Perez-Cruz, Angel; Stiharu, Ion; Dominguez-Gonzalez, Aurelio

    2017-01-01

    In recent years paper-based microfluidic systems have emerged as versatile tools for developing sensors in different areas. In this work; we report a novel physical sensing principle for the characterization of liquids using a paper-based hygro-mechanical system (PB-HMS). The PB-HMS is formed by the interaction of liquid droplets and paper-based mini-structures such as cantilever beams. The proposed principle takes advantage of the hygroscopic properties of paper to produce hygro-mechanical m...

  11. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, L.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  12. Deep diode atomic battery

    International Nuclear Information System (INIS)

    Anthony, T.R.; Cline, H.E.

    1977-01-01

    A deep diode atomic battery is made from a bulk semiconductor crystal containing three-dimensional arrays of columnar and lamellar P-N junctions. The battery is powered by gamma rays and x-ray emission from a radioactive source embedded in the interior of the semiconductor crystal

  13. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  14. Dry release of all-polymer structures

    DEFF Research Database (Denmark)

    Haefliger, D.; Nordstrøm, M.; Rasmussen, Peter Andreas

    2005-01-01

    We present a simple dry release technique which uses a thin fluorocarbon film for efficient removal of plastic microdevices from a mould or a handling substrate by reducing the adhesion between the two. This fluorocarbon film is deposited on the substrate in an advanced Si dry etch device utilisi...... 100% were demonstrated on wafer-scale. The fluorocarbon film showed excellent compatibility with metal etch processes and polymer baking and curing steps. It further facilitates demoulding of polydimethylsiloxane stamps suitable for soft-lithography....

  15. Nanostructures for all-polymer microfluidic systems

    DEFF Research Database (Denmark)

    Matschuk, Maria; Bruus, Henrik; Larsen, Niels Bent

    2010-01-01

    antistiction coating was found to improve the replication fidelity (shape and depth) of nanoscale features substantially. Arrays of holes of 50 nm diameter/35 nm depth and 100 nm/100 nm diameter, respectively, were mass-produced in cyclic olefin copolymer (Topas 5013) by injection molding. Polymer microfluidic...

  16. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  17. Paramedic Application of a Triage Sieve: A Paper-Based Exercise.

    Science.gov (United States)

    Cuttance, Glen; Dansie, Kathryn; Rayner, Tim

    2017-02-01

    acceptable performance of a triage sieve during a MCI. Cuttance G , Dansie K , Rayner T . Paramedic application of a triage sieve: a paper-based exercise. Prehosp Disaster Med. 2017;32(1):3-13.

  18. Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes.

    Science.gov (United States)

    Ramdzan, Adlin N; Almeida, M Inês G S; McCullough, Michael J; Kolev, Spas D

    2016-05-05

    A low cost, disposable and easy to use microfluidic paper-based analytical device (μPAD) was developed for simple and non-invasive determination of total aldehydes in saliva with a potential to be used in epidemiological studies to assess oral cancer risk. The μPAD is based on the colour reaction between aldehydes (e.g. acetaldehyde, formaldehyde), 3-methyl-2-benzothiazolinone hydrazone (MBTH) and iron(III) to form an intense blue coloured formazan dye. The newly developed μPAD has a 3D design with two overlapping paper layers. The first layer comprises 15 circular detection zones (8 mm in diameter), each impregnated with 8 μL of MBTH, while the second layer contains 15 reagent zones (4 mm in diameter). Two μL of iron(III) chloride are added to each one of the second layer zones after the addition of sample to the detection zones in the first layer. All hydrophilic zones of the μPAD are defined by wax printing using a commercial wax printer. Due to the 2-step nature of the analytical reaction, the two paper layers are separated by a cellulose acetate interleaving sheet to allow for the reaction between the aldehydes in the saliva sample with MBTH to proceed first with the formation of an azine, followed by a blue coloured reaction between the azine and the oxidized by iron(III) form of MBTH, produced after the removal of the interleaving sheet. After obtaining a high resolution image of the detection side zone of the device using a flatbed scanner, the intensity of the blue colour within each detection zone is measured with Image J software. Under optimal conditions, the μPAD is characterised by a working range of 20.4-114.0 μM, limit of detection of 6.1 μM, and repeatability, expressed as RSD, of less than 12.7% (n = 5). There is no statistically significant difference at the 95% confidence level between the results obtained by the μPAD and the reference method (Student's t-test: 0.090 < 0.38). The optimized μPAD is stable for more than 41 days

  19. Comparability of Computer-based and Paper-based Versions of Writing Section of PET in Iranian EFL Context

    OpenAIRE

    Mohammad Mohammadi; Masoud Barzgaran

    2010-01-01

    Computer technology has provided language testing experts with opportunity to develop computerized versions of traditional paper-based language tests. New generations of TOEFL and Cambridge IELTS, BULATS, KET, PET are good examples of computer-based language tests. Since this new method of testing introduces new factors into the realm of language assessment ( e.g. modes of test delivery, familiarity with computer, etc.),the question may be whether the two modes of computer- and paper-based te...

  20. Development of a Fax-based system for incorporating nondigital paper-based data into DICOM imaging examinations.

    Science.gov (United States)

    Rothpearl, Allen; Sanguinetti, Rafael; Killcommons, John

    2010-02-01

    We describe the development of software that allows and automates the routine inclusion of nondigital paper-based data directly into DICOM examinations. No human intervention is required. The software works by allowing the direct faxing of nondigital paper-based patient data directly into DICOM imaging examinations and is added as the first series in the examination. The software is effective in any typical PACS/DICOM server environment.

  1. Battery equalization active methods

    Science.gov (United States)

    Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; Milanes-Montero, M. Isabel; Guerrero-Martinez, Miguel A.

    2014-01-01

    Many different battery technologies are available for the applications which need energy storage. New researches are being focused on Lithium-based batteries, since they are becoming the most viable option for portable energy storage applications. As most of the applications need series battery strings to meet voltage requirements, battery imbalance is an important matter to be taken into account, since it leads the individual battery voltages to drift apart over time, and premature cells degradation, safety hazards, and capacity reduction will occur. A large number of battery equalization methods can be found, which present different advantages/disadvantages and are suitable for different applications. The present paper presents a summary, comparison and evaluation of the different active battery equalization methods, providing a table that compares them, which is helpful to select the suitable equalization method depending on the application. By applying the same weight to the different parameters of comparison, switch capacitor and double-tiered switching capacitor have the highest ratio. Cell bypass methods are cheap and cell to cell ones are efficient. Cell to pack, pack to cell and cell to pack to cell methods present a higher cost, size, and control complexity, but relatively low voltage and current stress in high-power applications.

  2. Bio-patch design and implementation based on a low-power system-on-chip and paper-based inkjet printing technology.

    Science.gov (United States)

    Yang, Geng; Xie, Li; Mantysalo, Matti; Chen, Jian; Tenhunen, Hannu; Zheng, L R

    2012-11-01

    This paper presents the prototype implementation of a Bio-Patch using fully integrated low-power System-on-Chip (SoC) sensor and paper-based inkjet printing technology. The SoC sensor is featured with programmable gain and bandwidth to accommodate a variety of bio-signals. It is fabricated in a 0.18-ìm standard CMOS technology, with a total power consumption of 20 ìW from a 1.2 V supply. Both the electrodes and interconnections are implemented by printing conductive nano-particle inks on a flexible photo paper substrate using inkjet printing technology. A Bio-Patch prototype is developed by integrating the SoC sensor, a soft battery, printed electrodes and interconnections on a photo paper substrate. The Bio-Patch can work alone or operate along with other patches to establish a wired network for synchronous multiple-channel bio-signals recording. The measurement results show that electrocardiogram and electromyogram are successfully measured in in-vivo tests using the implemented Bio-Patch prototype.

  3. HST Replacement Battery Initial Performance

    Science.gov (United States)

    Krol, Stan; Waldo, Greg; Hollandsworth, Roger

    2009-01-01

    The Hubble Space Telescope (HST) original Nickel-Hydrogen (NiH2) batteries were replaced during the Servicing Mission 4 (SM4) after 19 years and one month on orbit.The purpose of this presentation is to highlight the findings from the assessment of the initial sm4 replacement battery performance. The batteries are described, the 0 C capacity is reviewed, descriptions, charts and tables reviewing the State Of Charge (SOC) Performance, the Battery Voltage Performance, the battery impedance, the minimum voltage performance, the thermal performance, the battery current, and the battery system recharge ratio,

  4. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  5. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics.

    Science.gov (United States)

    Wang, Fuliang; Mao, Peng; He, Hu

    2016-02-17

    Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10(-8) (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10(-8) to 5.08 × 10(-8) (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved.

  6. A Novel Physical Sensing Principle for Liquid Characterization Using Paper-Based Hygro-Mechanical Systems (PB-HMS).

    Science.gov (United States)

    Perez-Cruz, Angel; Stiharu, Ion; Dominguez-Gonzalez, Aurelio

    2017-07-20

    In recent years paper-based microfluidic systems have emerged as versatile tools for developing sensors in different areas. In this work; we report a novel physical sensing principle for the characterization of liquids using a paper-based hygro-mechanical system (PB-HMS). The PB-HMS is formed by the interaction of liquid droplets and paper-based mini-structures such as cantilever beams. The proposed principle takes advantage of the hygroscopic properties of paper to produce hygro-mechanical motion. The dynamic response of the PB-HMS reveals information about the tested liquid that can be applied to characterize certain properties of liquids. A suggested method to characterize liquids by means of the proposed principle is introduced. The experimental results show the feasibility of such a method. It is expected that the proposed principle may be applied to sense properties of liquids in different applications where both disposability and portability are of extreme importance.

  7. Toward Wearable Energy Storage Devices: Paper-Based Biofuel Cells based on a Screen-Printing Array Structure.

    Science.gov (United States)

    Shitanda, Isao; Momiyama, Misaki; Watanabe, Naoto; Tanaka, Tomohiro; Tsujimura, Seiya; Hoshi, Yoshinao; Itagaki, Masayuki

    2017-10-01

    A novel paper-based biofuel cell with a series/parallel array structure has been fabricated, in which the cell voltage and output power can easily be adjusted as required by printing. The output of the fabricated 4-series/4-parallel biofuel cell reached 0.97±0.02 mW at 1.4 V, which is the highest output power reported to date for a paper-based biofuel cell. This work contributes to the development of flexible, wearable energy storage device.

  8. Battery operated preconcentration-assisted lateral flow assay.

    Science.gov (United States)

    Kim, Cheonjung; Yoo, Yong Kyoung; Han, Sung Il; Lee, Junwoo; Lee, Dohwan; Lee, Kyungjae; Hwang, Kyo Seon; Lee, Kyu Hyoung; Chung, Seok; Lee, Jeong Hoon

    2017-07-11

    Paper-based analytical devices (e.g. lateral flow assays) are highly advantageous as portable diagnostic systems owing to their low costs and ease of use. Because of their low sensitivity and detection limits for biomolecules, these devices have several limitations in applications for real-field diagnosis. Here, we demonstrate a paper-based preconcentration enhanced lateral flow assay using a commercial β-hCG-based test. Utilizing a simple 9 V battery operation with a low power consumption of approximately 81 μW, we acquire a 25-fold preconcentration factor, demonstrating a clear sensitivity enhancement in the colorimetric lateral flow assay; consequently, clear colors are observed in a rapid kit test line, which cannot be monitored without preconcentration. This device can also facilitate a semi-quantitative platform using the saturation value and/or color intensity in both paper-based colorimetric assays and smartphone-based diagnostics.

  9. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  10. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  11. A facile method for urinary phenylalanine measurement on paper-based lab-on-chip for PKU therapy monitoring.

    Science.gov (United States)

    Messina, M A; Meli, C; Conoci, S; Petralia, S

    2017-12-04

    A miniaturized paper-based lab-on-chip (LoC) was developed for the facile measurement of urinary Phe (phenylalanine) level on PKU (Phenylketonuria) treated patient. This system permits the monitoring of Phe in a dynamic range concentration of 20-3000 μM.

  12. Comparability of Computer-based and Paper-based Versions of Writing Section of PET in Iranian EFL Context

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadi

    2010-11-01

    Full Text Available Computer technology has provided language testing experts with opportunity to develop computerized versions of traditional paper-based language tests. New generations of TOEFL and Cambridge IELTS, BULATS, KET, PET are good examples of computer-based language tests. Since this new method of testing introduces new factors into the realm of language assessment ( e.g. modes of test delivery, familiarity with computer, etc.,the question may be whether the two modes of computer- and paper-based tests comparably measure the same construct, and hence, the scores obtained from the two modes can be used interchangeably. Accordingly, the present study aimed to investigate the comparability of the paper- and computer-based versions of a writing test. The data for this study were collected from administering the writing section of a Cambridge Preliminary English Test (PET to eighty Iranian intermediate EFL learners through the two modes of computer- and paper-based testing. Besides, a computer familiarity questionnaire was used to divide participants into two groups with high and low computer familiarity. The results of the independent samples t-test revealed that there was no statistically significant difference between the learners' computer- and paper-based writing scores. The results of the paired samples t-test showed no statistically significant difference between high- and low-computer-familiar groups on computer-based writing. The researchers concluded that the two modes comparably measured the same construct.

  13. Computer-Based and Paper-Based Reading Comprehension in Adolescents with Typical Language Development and Language-Learning Disabilities

    Science.gov (United States)

    Srivastava, Pradyumn; Gray, Shelley

    2012-01-01

    Purpose: With the global expansion of technology, our reading platform has shifted from traditional text to hypertext, yet little consideration has been given to how this shift might help or hinder students' reading comprehension. The purpose of this study was to compare reading comprehension of computer-based and paper-based texts in adolescents…

  14. The Effectiveness of Song Technique in Teaching Paper Based TOEFL (PBT)'s Listening Comprehension Section

    Science.gov (United States)

    Kuswoyo, Heri

    2013-01-01

    Among three sections that follow the Paper-Based TOEFL (PBT), many test takers find listening comprehension section is the most difficult. Thus, in this research the researcher aims to explore how students learn PBT's listening comprehension section effectively through song technique. This sounds like a more interesting and engaging way to learn…

  15. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.

    Science.gov (United States)

    Pearce, J M; Anzalone, N C; Heldt, C L

    2016-08-01

    The open-source release of self-replicating rapid prototypers (RepRaps) has created a rich opportunity for low-cost distributed digital fabrication of complex 3-D objects such as scientific equipment. For example, 3-D printable reactionware devices offer the opportunity to combine open hardware microfluidic handling with lab-on-a-chip reactionware to radically reduce costs and increase the number and complexity of microfluidic applications. To further drive down the cost while improving the performance of lab-on-a-chip paper-based microfluidic prototyping, this study reports on the development of a RepRap upgrade capable of converting a Prusa Mendel RepRap into a wax 3-D printer for paper-based microfluidic applications. An open-source hardware approach is used to demonstrate a 3-D printable upgrade for the 3-D printer, which combines a heated syringe pump with the RepRap/Arduino 3-D control. The bill of materials, designs, basic assembly, and use instructions are provided, along with a completely free and open-source software tool chain. The open-source hardware device described here accelerates the potential of the nascent field of electrochemical detection combined with paper-based microfluidics by dropping the marginal cost of prototyping to nearly zero while accelerating the turnover between paper-based microfluidic designs. © 2016 Society for Laboratory Automation and Screening.

  16. Conversion technique from paper-based seismic profiles to SEG-Y degital data, provided by free softwares

    Science.gov (United States)

    Tuzino, Taqumi

    This article introduces a conversion method from paper-based seismic profiles to SEG-Y formatted degital data. This method employs two free software, NetPBM and Seismic Unix which work on Unix-like OS. The principle is 1) scanning paper-based profiles to obtain pixel images conposed of 8 bit charactor, 2) conversion of trace data format from character to floating and 3) paste of SEG-Y header to floating trace data. Paper-based profiles drown by line scan recorder were successfully converted to trace-by-pixel SEG-Y data. Paper based wiggle profiles were converted firstly to trace-by-pixel SEG-Y data, and then to trace-by-trace SEG-Y data, by using horizontal trace sum of trace-by-pixel data. Quality of these data was examined and proofed that they are tolerable to be used, though they have restriction of paper. SEG-Y convertied data would provide additional analyses; deconvolution, migration, seismic attribute analyses, and would be ready for interpretation softwares.

  17. A rapid, straightforward, and print house compatible mass fabrication method for integrating 3D paper-based microfluidics.

    Science.gov (United States)

    Xiao, Liangpin; Liu, Xianming; Zhong, Runtao; Zhang, Kaiqing; Zhang, Xiaodi; Zhou, Xiaomian; Lin, Bingcheng; Du, Yuguang

    2013-11-01

    Three-dimensional (3D) paper-based microfluidics, which is featured with high performance and speedy determination, promise to carry out multistep sample pretreatment and orderly chemical reaction, which have been used for medical diagnosis, cell culture, environment determination, and so on with broad market prospect. However, there are some drawbacks in the existing fabrication methods for 3D paper-based microfluidics, such as, cumbersome and time-consuming device assembly; expensive and difficult process for manufacture; contamination caused by organic reagents from their fabrication process. Here, we present a simple printing-bookbinding method for mass fabricating 3D paper-based microfluidics. This approach involves two main steps: (i) wax-printing, (ii) bookbinding. We tested the delivery capability, diffusion rate, homogeneity and demonstrated the applicability of the device to chemical analysis by nitrite colorimetric assays. The described method is rapid (method that is common in a print house, making itself an ideal scheme for large-scale production of 3D paper-based microfluidics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Paper-Based and Computer-Based Concept Mappings: The Effects on Computer Achievement, Computer Anxiety and Computer Attitude

    Science.gov (United States)

    Erdogan, Yavuz

    2009-01-01

    The purpose of this paper is to compare the effects of paper-based and computer-based concept mappings on computer hardware achievement, computer anxiety and computer attitude of the eight grade secondary school students. The students were randomly allocated to three groups and were given instruction on computer hardware. The teaching methods used…

  19. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics

    Science.gov (United States)

    Wang, Fuliang; Mao, Peng; He, Hu

    2016-01-01

    Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10−8 (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10−8 to 5.08 × 10−8 (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved. PMID:26883558

  20. Circulating current battery heater

    Science.gov (United States)

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2001-01-01

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  1. Advanced battery development

    Science.gov (United States)

    In order to promote national security by ensuring that the United States has an adequate supply of safe, assured, affordable, and environmentally acceptable energy, the Storage Batteries Division at Sandia National Laboratories (SNL), Albuquerque, is responsible for engineering development of advanced rechargeable batteries for energy applications. This effort is conducted within the Exploratory Battery Technology Development and Testing (ETD) Lead center, whose activities are coordinated by staff within the Storage Batteries Division. The ETD Project, directed by SNL, is supported by the U.S. Department of Energy, Office of Energy Systems Research, Energy Storage and Distribution Division (DOE/OESD). SNL is also responsible for technical management of the Electric Vehicle Advanced Battery Systems (EV-ABS) Development Project, which is supported by the U.S. Department of Energy's Office of Transportation Systems (OTS). The ETD Project is operated in conjunction with the Technology Base Research (TBR) Project, which is under the direction of Lawrence Berkeley Laboratory. Together these two projects seek to establish the scientific feasibility of advanced electrochemical energy storage systems, and conduct the initial engineering development on systems suitable for mobile and stationary commercial applications.

  2. Used batteries - REMINDER

    CERN Multimedia

    2006-01-01

    With colder weather drawing in, it is quite likely that older car batteries will fail. On this subject, the Safety Commission wishes to remind everyone that CERN is not responsible for the disposal of used batteries from private vehicles. So please refrain from abandoning them on pavements or around or inside buildings. Used batteries can be disposed of safely, free-of-charge and without any damage to the environment at waste disposal sites (déchetteries) close to CERN in both France (Ain and Haute-Savoie) and in the Canton of Geneva in Switzerland (Cheneviers). Since the average car battery lasts a number of years, this only represents a small effort on your part over the whole lifetime of your vehicle. Most people don't need reminding that car batteries contain concentrated sulphuric acid, which can cause severe burns. Despite this, we frequently find them casually dumped in scrap metal bins! For more information, please contact R. Magnier/SC-GS 160879 We all have a responsibility for safety and th...

  3. Battery Vent Mechanism And Method

    Science.gov (United States)

    Ching, Larry K. W.

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  4. Battery venting system and method

    Science.gov (United States)

    Casale, Thomas J.; Ching, Larry K. W.; Baer, Jose T.; Swan, David H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  5. Research Advances: Paper Batteries, Phototriggered Microcapsules, and Oil-Free Plastic Production

    Science.gov (United States)

    King, Angela G.

    2010-01-01

    Chemists continue to work at the forefront of materials science research. Recent advances include application of bioengineering to produce plastics from renewable biomass instead of petroleum, generation of paper-based batteries, and development of phototriggerable microcapsules for chemical delivery. In this article, the author provides summaries…

  6. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  7. Battery Monitoring and Charging System

    National Research Council Canada - National Science Library

    Thivierge, Daniel P

    2007-01-01

    A battery monitoring device for a battery having cells grouped in modules. The device includes a monitoring circuit for each module which monitors the voltage in each cell and the overall module voltage...

  8. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  9. Impact resistant battery enclosure systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich

    2017-10-31

    Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

  10. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  11. Science Teacher Educators’ Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Directory of Open Access Journals (Sweden)

    William J. FRASER

    2017-10-01

    Full Text Available This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS, and by the Nature of Scientific Inquiry (NOSI. Furthermore, science educators’ own PCK, and the limitations of a predominantly paper-based distance education (DE model of delivery are challenges that they have to face when introducing PCK and authentic inquiry-based learning experiences. It deprives them and their students from optimal engagement in a science-oriented community of practice, and leaves little opportunity to establish flourishing communities of inquiry. This study carried out a contextual analysis of the tutorial material to assess the PCK that the student teachers had been exposed to. This comprised the ideas of a community of inquiry, a community of science, the conceptualization of PCK, scientific inquiry, and the 5E Instructional Model of the Biological Sciences Curriculum Study. The analysis confirmed that the lecturers had a good understanding of NOS, NOSI and science process skills, but found it difficult to design interventions to optimize the PCK development of students through communities of inquiry. Paper-based tutorials are ideal to share theory, policies and practices, but fail to monitor the engagement of learners in communities of inquiry. The article concludes with a number of suggestions to address the apparent lack of impact power of the paper-based mode of delivery, specifically in relation to inquiry-based teaching and learning (IBTL.

  12. Poly(N-isopropylacrylamide) Hydrogels for Storage and Delivery of Reagents to Paper-Based Analytical Devices

    OpenAIRE

    Haydn T. Mitchell; Spencer A. Schultz; Philip J. Costanzo; Andres W. Martinez

    2015-01-01

    The thermally responsive hydrogel N,N'-methylenebisacrylamide-cross-linked poly(N-isopropylacrylamide) (PNIPAM) was developed and evaluated as a reagent storage and delivery system for microfluidic paper-based analytical devices (microPADs). PNIPAM was shown to successfully deliver multiple solutions to microPADs in specific sequences or simultaneously in laminar-flow configuration and was found to be suitable for delivering four classes of reagents to the devices: Small molecules, enzymes, a...

  13. The quality of paper-based versus electronic nursing care plan in Australian aged care homes: A documentation audit study.

    Science.gov (United States)

    Wang, Ning; Yu, Ping; Hailey, David

    2015-08-01

    The nursing care plan plays an essential role in supporting care provision in Australian aged care. The implementation of electronic systems in aged care homes was anticipated to improve documentation quality. Standardized nursing terminologies, developed to improve communication and advance the nursing profession, are not required in aged care practice. The language used by nurses in the nursing care plan and the effect of the electronic system on documentation quality in residential aged care need to be investigated. To describe documentation practice for the nursing care plan in Australian residential aged care homes and to compare the quantity and quality of documentation in paper-based and electronic nursing care plans. A nursing documentation audit was conducted in seven residential aged care homes in Australia. One hundred and eleven paper-based and 194 electronic nursing care plans, conveniently selected, were reviewed. The quantity of documentation in a care plan was determined by the number of phrases describing a resident problem and the number of goals and interventions. The quality of documentation was measured using 16 relevant questions in an instrument developed for the study. There was a tendency to omit 'nursing problem' or 'nursing diagnosis' in the nursing process by changing these terms (used in the paper-based care plan) to 'observation' in the electronic version. The electronic nursing care plan documented more signs and symptoms of resident problems and evaluation of care than the paper-based format (48.30 vs. 47.34 out of 60, Ppaper-based system (Ppaper-based system. Omission of the nursing problem or diagnosis from the nursing process may reflect a range of factors behind the practice that need to be understood. Further work is also needed on qualitative aspects of the nurse care plan, nurses' attitudes towards standardized terminologies and the effect of different documentation practice on care quality and resident outcomes. Copyright

  14. A Comparative Study of Paper-based and Computer-based Contextualization in Vocabulary Learning of EFL Students

    Directory of Open Access Journals (Sweden)

    Mousa Ahmadian

    2015-04-01

    Full Text Available Vocabulary acquisition is one of the largest and most important tasks in language classes. New technologies, such as computers, have helped a lot in this way. The importance of the issue led the researchers to do the present study which concerns the comparison of contextualized vocabulary learning on paper and through Computer Assisted Language Learning (CALL. To this end, 52 Pre-university EFL learners were randomly assigned in two groups: a paper-based group (PB and a computer-based (CB group each with 26 learners. The PB group received PB contextualization of vocabulary items, while the CB group received CB contextualization of the vocabulary items thorough PowerPoint (PP software. One pretest, posttest, along with an immediate and a delayed posttest were given to the learners. Paired samples t-test of pretest and posttest and independent samples t-test of the delayed and immediate posttest were executed by SPSS software. The results revealed that computer-based contextualization had more effects on vocabulary learning of Iranian EFL learners than paper-based contextualization of the words. Keywords: Computer-based contextualization, Paper-based contextualization, Vocabulary learning, CALL

  15. Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems.

    Science.gov (United States)

    Guo, Hengyu; Yeh, Min-Hsin; Zi, Yunlong; Wen, Zhen; Chen, Jie; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2017-05-23

    The development of lightweight, superportable, and sustainable power sources has become an urgent need for most modern personal electronics. Here, we report a cut-paper-based self-charging power unit (PC-SCPU) that is capable of simultaneously harvesting and storing energy from body movement by combining a paper-based triboelectric nanogenerator (TENG) and a supercapacitor (SC), respectively. Utilizing the paper as the substrate with an assembled cut-paper architecture, an ultralight rhombic-shaped TENG is achieved with highly specific mass/volume charge output (82 nC g -1 /75 nC cm -3 ) compared with the traditional acrylic-based TENG (5.7 nC g -1 /5.8 nC cm -3 ), which can effectively charge the SC (∼1 mF) to ∼1 V in minutes. This wallet-contained PC-SCPU is then demonstrated as a sustainable power source for driving wearable and portable electronic devices such as a wireless remote control, electric watch, or temperature sensor. This study presents a potential paper-based portable SCPU for practical and medical applications.

  16. Simple and Rapid Determination of Ferulic Acid Levels in Food and Cosmetic Samples Using Paper-Based Platforms

    Science.gov (United States)

    Tee-ngam, Prinjaporn; Nunant, Namthip; Rattanarat, Poomrat; Siangproh, Weena; Chailapakul, Orawon

    2013-01-01

    Ferulic acid is an important phenolic antioxidant found in or added to diet supplements, beverages, and cosmetic creams. Two designs of paper-based platforms for the fast, simple and inexpensive evaluation of ferulic acid contents in food and pharmaceutical cosmetics were evaluated. The first, a paper-based electrochemical device, was developed for ferulic acid detection in uncomplicated matrix samples and was created by the photolithographic method. The second, a paper-based colorimetric device was preceded by thin layer chromatography (TLC) for the separation and detection of ferulic acid in complex samples using a silica plate stationary phase and an 85:15:1 (v/v/v) chloroform: methanol: formic acid mobile phase. After separation, ferulic acid containing section of the TLC plate was attached onto the patterned paper containing the colorimetric reagent and eluted with ethanol. The resulting color change was photographed and quantitatively converted to intensity. Under the optimal conditions, the limit of detection of ferulic acid was found to be 1 ppm and 7 ppm (S/N = 3) for first and second designs, respectively, with good agreement with the standard HPLC-UV detection method. Therefore, these methods can be used for the simple, rapid, inexpensive and sensitive quantification of ferulic acid in a variety of samples. PMID:24077320

  17. Computer-based and paper-based reading comprehension in adolescents with typical language development and language-learning disabilities.

    Science.gov (United States)

    Srivastava, Pradyumn; Gray, Shelley

    2012-10-01

    With the global expansion of technology, our reading platform has shifted from traditional text to hypertext, yet little consideration has been given to how this shift might help or hinder students' reading comprehension. The purpose of this study was to compare reading comprehension of computer-based and paper-based texts in adolescents with and without language-learning disabilities (LLD). Fourteen adolescents with LLD and 25 adolescents with typical language development (TLD) read literary texts in computer-based and paper-based formats and then answered reading comprehension questions. The LLD group scored significantly lower than the TLD group on the reading comprehension measure, but there were no significant between-group differences for reading or answering time. In addition, there were no significant within-group differences for the computer-based or paper-based conditions. Predictors for reading comprehension varied by group and condition. Neither group appeared to be affected by the additional cognitive load imposed by hypertext in the computer-based condition; however, the load between conditions may not have been sufficient to differentially impact reading comprehension. Based on the regression analyses, it appears that working memory, oral language, and decoding differed in their contribution to reading comprehension for each group and condition.

  18. Simple and rapid determination of ferulic acid levels in food and cosmetic samples using paper-based platforms.

    Science.gov (United States)

    Tee-ngam, Prinjaporn; Nunant, Namthip; Rattanarat, Poomrat; Siangproh, Weena; Chailapakul, Orawon

    2013-09-26

    Ferulic acid is an important phenolic antioxidant found in or added to diet supplements, beverages, and cosmetic creams. Two designs of paper-based platforms for the fast, simple and inexpensive evaluation of ferulic acid contents in food and pharmaceutical cosmetics were evaluated. The first, a paper-based electrochemical device, was developed for ferulic acid detection in uncomplicated matrix samples and was created by the photolithographic method. The second, a paper-based colorimetric device was preceded by thin layer chromatography (TLC) for the separation and detection of ferulic acid in complex samples using a silica plate stationary phase and an 85:15:1 (v/v/v) chloroform: methanol: formic acid mobile phase. After separation, ferulic acid containing section of the TLC plate was attached onto the patterned paper containing the colorimetric reagent and eluted with ethanol. The resulting color change was photographed and quantitatively converted to intensity. Under the optimal conditions, the limit of detection of ferulic acid was found to be 1 ppm and 7 ppm (S/N = 3) for first and second designs, respectively, with good agreement with the standard HPLC-UV detection method. Therefore, these methods can be used for the simple, rapid, inexpensive and sensitive quantification of ferulic acid in a variety of samples.

  19. Microfluidic paper-based analytical devices for potential use in quantitative and direct detection of disease biomarkers in clinical analysis.

    Science.gov (United States)

    Lim, Wei Yin; Goh, Boon Tong; Khor, Sook Mei

    2017-08-15

    Clinicians, working in the health-care diagnostic systems of developing countries, currently face the challenges of rising costs, increased number of patient visits, and limited resources. A significant trend is using low-cost substrates to develop microfluidic devices for diagnostic purposes. Various fabrication techniques, materials, and detection methods have been explored to develop these devices. Microfluidic paper-based analytical devices (μPADs) have gained attention for sensing multiplex analytes, confirming diagnostic test results, rapid sample analysis, and reducing the volume of samples and analytical reagents. μPADs, which can provide accurate and reliable direct measurement without sample pretreatment, can reduce patient medical burden and yield rapid test results, aiding physicians in choosing appropriate treatment. The objectives of this review are to provide an overview of the strategies used for developing paper-based sensors with enhanced analytical performances and to discuss the current challenges, limitations, advantages, disadvantages, and future prospects of paper-based microfluidic platforms in clinical diagnostics. μPADs, with validated and justified analytical performances, can potentially improve the quality of life by providing inexpensive, rapid, portable, biodegradable, and reliable diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  1. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  2. Weston Standard battery

    CERN Multimedia

    This is a Weston AOIP standard battery with its calibration certificate (1956). Inside, the glassware forms an "H". Its name comes from the British physicist Edward Weston. A standard is the materialization of a given quantity whose value is known with great accuracy.

  3. Secondary alkaline batteries

    Science.gov (United States)

    McBreen, J.

    1984-03-01

    The overall reactions (charge/discharge characteristics); electrode structures and materials; and cell construction are studied for nickel oxide-cadmium, nickel oxide-iron, nickel oxide-hydrogen, nickel oxide-zinc, silver oxide-zinc, and silver oxide-cadmium, silver oxide-iron, and manganese dioxide-zinc batteries.

  4. Modeling for Battery Prognostics

    Science.gov (United States)

    Kulkarni, Chetan S.; Goebel, Kai; Khasin, Michael; Hogge, Edward; Quach, Patrick

    2017-01-01

    For any battery-powered vehicles (be it unmanned aerial vehicles, small passenger aircraft, or assets in exoplanetary operations) to operate at maximum efficiency and reliability, it is critical to monitor battery health as well performance and to predict end of discharge (EOD) and end of useful life (EOL). To fulfil these needs, it is important to capture the battery's inherent characteristics as well as operational knowledge in the form of models that can be used by monitoring, diagnostic, and prognostic algorithms. Several battery modeling methodologies have been developed in last few years as the understanding of underlying electrochemical mechanics has been advancing. The models can generally be classified as empirical models, electrochemical engineering models, multi-physics models, and molecular/atomist. Empirical models are based on fitting certain functions to past experimental data, without making use of any physicochemical principles. Electrical circuit equivalent models are an example of such empirical models. Electrochemical engineering models are typically continuum models that include electrochemical kinetics and transport phenomena. Each model has its advantages and disadvantages. The former type of model has the advantage of being computationally efficient, but has limited accuracy and robustness, due to the approximations used in developed model, and as a result of such approximations, cannot represent aging well. The latter type of model has the advantage of being very accurate, but is often computationally inefficient, having to solve complex sets of partial differential equations, and thus not suited well for online prognostic applications. In addition both multi-physics and atomist models are computationally expensive hence are even less suited to online application An electrochemistry-based model of Li-ion batteries has been developed, that captures crucial electrochemical processes, captures effects of aging, is computationally efficient

  5. Evaluation of cognitive loads imposed by traditional paper-based and innovative computer-based instructional strategies.

    Science.gov (United States)

    Khalil, Mohammed K; Mansour, Mahmoud M; Wilhite, Dewey R

    2010-01-01

    Strategies of presenting instructional information affect the type of cognitive load imposed on the learner's working memory. Effective instruction reduces extraneous (ineffective) cognitive load and promotes germane (effective) cognitive load. Eighty first-year students from two veterinary schools completed a two-section questionnaire that evaluated their perspectives on the educational value of a computer-based instructional program. They compared the difference between cognitive loads imposed by paper-based and computer-based instructional strategies used to teach the anatomy of the canine skeleton. Section I included 17 closed-ended items, rated on a five-point Likert scale, that assessed the use of graphics, content, and the learning process. Section II included a nine-point mental effort rating scale to measure the level of difficulty of instruction; students were asked to indicate the amount of mental effort invested in the learning task using both paper-based and computer-based presentation formats. The closed-ended data were expressed as means and standard deviations. A paired t test with an alpha level of 0.05 was used to determine the overall mean difference between the two presentation formats. Students positively evaluated their experience with the computer-based instructional program with a mean score of 4.69 (SD=0.53) for use of graphics, 4.70 (SD=0.56) for instructional content, and 4.45 (SD=0.67) for the learning process. The mean difference of mental effort (1.50) between the two presentation formats was significant, t=8.26, p≤.0001, df=76, for two-tailed distribution. Consistent with cognitive load theory, innovative computer-based instructional strategies decrease extraneous cognitive load compared with traditional paper-based instructional strategies.

  6. Review on pen-and-paper-based observational methods for assessing ergonomic risk factors of computer work.

    Science.gov (United States)

    Rahman, Mohd Nasrull Abdol; Mohamad, Siti Shafika

    2017-01-01

    Computer works are associated with Musculoskeletal Disorders (MSDs). There are several methods have been developed to assess computer work risk factor related to MSDs. This review aims to give an overview of current techniques available for pen-and-paper-based observational methods in assessing ergonomic risk factors of computer work. We searched an electronic database for materials from 1992 until 2015. The selected methods were focused on computer work, pen-and-paper observational methods, office risk factors and musculoskeletal disorders. This review was developed to assess the risk factors, reliability and validity of pen-and-paper observational method associated with computer work. Two evaluators independently carried out this review. Seven observational methods used to assess exposure to office risk factor for work-related musculoskeletal disorders were identified. The risk factors involved in current techniques of pen and paper based observational tools were postures, office components, force and repetition. From the seven methods, only five methods had been tested for reliability. They were proven to be reliable and were rated as moderate to good. For the validity testing, from seven methods only four methods were tested and the results are moderate. Many observational tools already exist, but no single tool appears to cover all of the risk factors including working posture, office component, force, repetition and office environment at office workstations and computer work. Although the most important factor in developing tool is proper validation of exposure assessment techniques, the existing observational method did not test reliability and validity. Futhermore, this review could provide the researchers with ways on how to improve the pen-and-paper-based observational method for assessing ergonomic risk factors of computer work.

  7. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Razaq, Aamir; Sjoedin, Martin; Stroemme, Maria; Mihranyan, Albert [Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala (Sweden); Department of Chemistry, Angstroem Laboratory, Uppsala (Sweden); Nyholm, Leif [Department of Chemistry, Angstroem Laboratory, Uppsala (Sweden)

    2012-04-15

    Composites of polypyrrole (PPy) and Cladophora nanocellulose, reinforced with 8 {mu}m-thick chopped carbon filaments, can be used as electrode materials to obtain paper-based energy-storage devices with unprecedented performance at high charge and discharge rates. Charge capacities of more than 200 C g{sup -1} (PPy) are obtained for paper-based electrodes at potential scan rates as high as 500 mV s{sup -1}, whereas cell capacitances of {proportional_to}60-70 F g{sup -1} (PPy) are reached for symmetric supercapacitor cells with capacitances up to 3.0 F (i.e.,0.48 F cm{sup -2}) when charged to 0.6 V using current densities as high as 31 A g{sup -1} based on the PPy weight (i.e., 99 mA cm{sup -2}). Energy and power densities of 1.75 Wh kg{sup -1} and 2.7 kW kg{sup -1}, respectively, are obtained when normalized with respect to twice the PPy weight of the smaller electrode. No loss in cell capacitance is seen during charging/discharging at 7.7 A g{sup -1} (PPy) over 1500 cycles. It is proposed that the nonelectroactive carbon filaments decrease the contact resistances and the resistance of the reduced PPy composite. The present straightforward approach represents significant progress in the development of low-cost and environmentally friendly paper-based energy-storage devices for high-power applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Chitosan-assisted buffer layer incorporated with hydroxypropyl methylcellulose-coated silver nanowires for paper-based sensors

    Science.gov (United States)

    Xu, Duohua; Qiu, Jingshen; Wang, Yucheng; Yan, Jiajun; Liu, Gui-Shi; Yang, Bo-Ru

    2017-06-01

    Fabricating flexible sensors on paper is intriguing. Here, we exploited chitosan as a buffer layer to facilitate the fabrication of silver nanowire (AgNW) networks and flexible devices on commercial paper. We found that the AgNW networks exhibited uniform distribution, smooth surface, and strong adhesion. The enhanced adhesion of AgNWs was attributed to the intermolecular hydrogen bonding between chitosan and hydroxypropyl methylcellulose (HPMC), which can be tailored by tuning the pH of the chitosan aqueous solution. This facile fabrication method utilizing biodegradable polymers and cost-effective AgNW ink holds great promise for portable, wearable, and disposable paper-based electronics.

  9. Batteries and accumulators in France

    International Nuclear Information System (INIS)

    2012-12-01

    The present report gives an overview of the batteries and accumulators market in France in 2011 based on the data reported through ADEME's Register of Batteries and accumulators. In 2001, the French Environmental Agency, known as ADEME, implemented a follow-up of the batteries and accumulators market, creating the Observatory of batteries and accumulators (B and A). In 2010, ADEME created the National Register of producers of Batteries and Accumulators in the context of the implementation of the order issued on November 18, 2009. This is one of the four enforcement orders for the decree 2009-1139 issued on September 22, 2009, concerning batteries and accumulators put on the market and the disposal of waste batteries and accumulators, and which transposes the EU-Directive 2006/66/CE into French law. This Register follows the former Observatory for batteries and accumulators. This Register aims to record the producers on French territory and to collect the B and A producers and recycling companies' annual reporting: the regulation indeed requires that all B and A producers and recycling companies report annually on the Register the quantities of batteries and accumulators they put on the market, collect and treat. Based on this data analysis, ADEME issues an annual report allowing both the follow-up of the batteries and accumulators market in France and communication regarding the achievement of the collection and recovery objectives set by EU regulation. This booklet presents the situation in France in 2011

  10. Batteries not included

    International Nuclear Information System (INIS)

    Cooper, M.

    2001-01-01

    This article traces the development of clockwork wind-up battery chargers that can be used to recharge mobile phones, laptop computers, torches or radio batteries from the pioneering research of the British inventor Trevor Baylis to the marketing of the wind-up gadgets by Freeplay Energy who turned the idea into a commercial product. The amount of cranking needed to power wind-up devices is discussed along with a hand-cranked charger for mobile phones, upgrading the phone charger's mechanism, and drawbacks of the charger. Details are given of another invention using a hand-cranked generator with a supercapacitor as a storage device which has a very much higher capacity for storing electrical charge

  11. The nuclear battery

    International Nuclear Information System (INIS)

    Kozier, K.S.; Rosinger, H.E.

    1988-01-01

    This paper reviews the evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work. 19 refs

  12. Modular Battery Controller

    Science.gov (United States)

    Button, Robert M (Inventor); Gonzalez, Marcelo C (Inventor)

    2017-01-01

    Some embodiments of the present invention describe a battery including a plurality of master-less controllers. Each controller is operatively connected to a corresponding cell in a string of cells, and each controller is configured to bypass a fraction of current around the corresponding cell when the corresponding cell has a greater charge than one or more other cells in the string of cells.

  13. Multifunctional Structural Composite Batteries

    Science.gov (United States)

    2007-09-01

    Conference held in Dallas, Texas on 6-9 November 2006. We are developing structural polymeric composites that both carry structural loads and store...structural polymeric composites that both carry structural loads and store electrochemical energy. These multifunctional batteries could replace inert...solid-state goal, and is compatible with our PEO -based resin electrolytes . The metal substrate provides structural support while acting as a

  14. Improving Sample Distribution Homogeneity in Three-Dimensional Microfluidic Paper-Based Analytical Devices by Rational Device Design.

    Science.gov (United States)

    Morbioli, Giorgio Gianini; Mazzu-Nascimento, Thiago; Milan, Luis Aparecido; Stockton, Amanda M; Carrilho, Emanuel

    2017-05-02

    Paper-based devices are a portable, user-friendly, and affordable technology that is one of the best analytical tools for inexpensive diagnostic devices. Three-dimensional microfluidic paper-based analytical devices (3D-μPADs) are an evolution of single layer devices and they permit effective sample dispersion, individual layer treatment, and multiplex analytical assays. Here, we present the rational design of a wax-printed 3D-μPAD that enables more homogeneous permeation of fluids along the cellulose matrix than other existing designs in the literature. Moreover, we show the importance of the rational design of channels on these devices using glucose oxidase, peroxidase, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) reactions. We present an alternative method for layer stacking using a magnetic apparatus, which facilitates fluidic dispersion and improves the reproducibility of tests performed on 3D-μPADs. We also provide the optimized designs for printing, facilitating further studies using 3D-μPADs.

  15. Do not Lose Your Students in Large Lectures: A Five-Step Paper-Based Model to Foster Students’ Participation

    Directory of Open Access Journals (Sweden)

    Mona Hassan Aburahma

    2015-07-01

    Full Text Available Like most of the pharmacy colleges in developing countries with high population growth, public pharmacy colleges in Egypt are experiencing a significant increase in students’ enrollment annually due to the large youth population, accompanied with the keenness of students to join pharmacy colleges as a step to a better future career. In this context, large lectures represent a popular approach for teaching the students as economic and logistic constraints prevent splitting them into smaller groups. Nevertheless, the impact of large lectures in relation to student learning has been widely questioned due to their educational limitations, which are related to the passive role the students maintain in lectures. Despite the reported feebleness underlying large lectures and lecturing in general, large lectures will likely continue to be taught in the same format in these countries. Accordingly, to soften the negative impacts of large lectures, this article describes a simple and feasible 5-step paper-based model to transform lectures from a passive information delivery space into an active learning environment. This model mainly suits educational establishments with financial constraints, nevertheless, it can be applied in lectures presented in any educational environment to improve active participation of students. The components and the expected advantages of employing the 5-step paper-based model in large lectures as well as its limitations and ways to overcome them are presented briefly. The impact of applying this model on students’ engagement and learning is currently being investigated.

  16. A novel label-free microfluidic paper-based immunosensor for highly sensitive electrochemical detection of carcinoembryonic antigen.

    Science.gov (United States)

    Wang, Yang; Xu, Huiren; Luo, Jinping; Liu, Juntao; Wang, Li; Fan, Yan; Yan, Shi; Yang, Yue; Cai, Xinxia

    2016-09-15

    In this work, a highly sensitive label-free paper-based electrochemical immunosensor employing screen-printed working electrode (SPWE) for detection of carcinoembryonic antigen (CEA) was fabricated. In order to raise the detection sensitivity and immobilize anti-CEA, amino functional graphene (NH2-G)/thionine (Thi)/gold nanoparticles (AuNPs) nanocomposites were synthesized and coated on SPWE. The principle of the immunosensor determination was based on the fact that the decreased response currents of Thi were proportional to the concentrations of corresponding antigens due to the formation of antibody-antigen immunocomplex. Experimental results revealed that the immunoassay enabled the determination of standard CEA solutions with linear working ranges of 50pgmL(-1) to 500ngmL(-1), the limit of detections for CEA is 10pgmL(-1) (S/N=3) and its corresponding correlation coefficients were 0.996. Furthermore, the proposed immunosensor could be used for the determination of clinical serum samples. A large number of clinical serum samples were detected and the relative errors between measured values and reference concentrations were calculated. Results showed that this novel paper-based electrochemical immunosensor could provide a new platform for low cost, sensitive, specific, and point-of-care diagnosis in cancer detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor.

    Science.gov (United States)

    Guo, Jian-Feng; Huo, Dan-Qun; Yang, Mei; Hou, Chang-Jun; Li, Jun-Jie; Fa, Huan-Bao; Luo, Hui-Bo; Yang, Ping

    2016-12-01

    Herein, we have developed a simple, sensitive and paper-based colorimetric sensor for the selective detection of Chromium (Ⅵ) ions (Cr (VI)). Silanization-titanium dioxide modified filter paper (STCP) was used to trap bovine serum albumin capped gold nanoparticles (BSA-Au NPs), leading to the fabrication of BSA-Au NPs decorated membrane (BSA-Au NPs/STCP). The BSA-Au NPs/STCP operated on the principle that BSA-Au NPs anchored on the STCP were gradually etched by Cr (VI) as the leaching process of gold in the presence of hydrobromic acid (HBr) and hence induced a visible color change. Under optimum conditions, the paper-based colorimetric sensor showed clear color change after reaction with Cr (VI) as well as with favorable selectivity to a variety of possible interfering counterparts. The amount-dependent colorimetric response was linearly correlated with the Cr (VI) concentrations ranging from 0.5µM to 50.0µM with a detection limit down to 280nM. Moreover, the developed cost-effective colorimetric sensor has been successfully applied to real environmental samples which demonstrated the potential for field applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Printed biotin-functionalised polythiophene films as biorecognition layers in the development of paper-based biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Ihalainen, Petri, E-mail: petri.ihalainen@abo.fi [Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Pesonen, Markus [Physics, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Sund, Pernilla [Laboratory of Polymer Technology, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Viitala, Tapani [Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki (Finland); Määttänen, Anni; Sarfraz, Jawad [Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Wilén, Carl-Erik [Laboratory of Polymer Technology, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Österbacka, Ronald [Physics, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Peltonen, Jouko [Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Turku (Finland)

    2016-02-28

    Highlights: • Inkjet-printed polythiophene films show good adhesion on ultrathin gold films. • Biotin-functionalisation of polythiophene enables specificity towards streptavidin. • Supramolecular biorecognition architectures can be prepared by printing. • The addition of each printed layer can be followed by a change in capacitance. - Abstract: The integration of flexible electronic sensors in clinical diagnostics is visioned to significantly reduce the cost of many diagnostic tests and ultimately make healthcare more accessible. This study concentrates on the characterisation of inkjet-printed bio-functionalised polythiophene films on paper-based ultrathin gold film (UTGF) electrodes and their possible application as biorecognition layers. Physicochemical surface properties (topography, chemistry, and wetting) and electrochemical characteristics of water-soluble regioirregular tetraethylene-glycol polythiophene (TEGPT) and biotin-functionalised TEGPT (b-TEGPT) films were examined and compared. In addition, their specificity towards streptavidin protein was tested. The results show that stable supramolecular biorecognition layers of insulating b-TEGPT and streptavidin were successfully fabricated on a paper-based UTGF by inkjet-printing. Good adhesion of thiophene to UTGF can be attributed to covalent linkage between sulphur and gold, whereas the stability of the streptavidin layer is due to the high affinity between biotin and streptavidin. The device introduced can be utilised in the development of biosensors for clinically relevant analytes e.g. for detecting complementary DNA oligomers or antibody–antigen complexes.

  19. Printed biotin-functionalised polythiophene films as biorecognition layers in the development of paper-based biosensors

    Science.gov (United States)

    Ihalainen, Petri; Pesonen, Markus; Sund, Pernilla; Viitala, Tapani; Määttänen, Anni; Sarfraz, Jawad; Wilén, Carl-Erik; Österbacka, Ronald; Peltonen, Jouko

    2016-02-01

    The integration of flexible electronic sensors in clinical diagnostics is visioned to significantly reduce the cost of many diagnostic tests and ultimately make healthcare more accessible. This study concentrates on the characterisation of inkjet-printed bio-functionalised polythiophene films on paper-based ultrathin gold film (UTGF) electrodes and their possible application as biorecognition layers. Physicochemical surface properties (topography, chemistry, and wetting) and electrochemical characteristics of water-soluble regioirregular tetraethylene-glycol polythiophene (TEGPT) and biotin-functionalised TEGPT (b-TEGPT) films were examined and compared. In addition, their specificity towards streptavidin protein was tested. The results show that stable supramolecular biorecognition layers of insulating b-TEGPT and streptavidin were successfully fabricated on a paper-based UTGF by inkjet-printing. Good adhesion of thiophene to UTGF can be attributed to covalent linkage between sulphur and gold, whereas the stability of the streptavidin layer is due to the high affinity between biotin and streptavidin. The device introduced can be utilised in the development of biosensors for clinically relevant analytes e.g. for detecting complementary DNA oligomers or antibody-antigen complexes.

  20. Transforming paper-based assessment forms to a digital format: Exemplified by the Housing Enabler prototype app.

    Science.gov (United States)

    Svarre, Tanja; Lunn, Tine Bieber Kirkegaard; Helle, Tina

    2017-11-01

    The aim of this paper is to provide the reader with an overall impression of the stepwise user-centred design approach including the specific methods used and lessons learned when transforming paper-based assessment forms into a prototype app, taking the Housing Enabler as an example. Four design iterations were performed, building on a domain study, workshops, expert evaluation and controlled and realistic usability tests. The user-centred design process involved purposefully selected participants with different Housing Enabler knowledge and housing adaptation experience. The design iterations resulted in the development of a Housing Enabler prototype app. The prototype app has several features and options that are new compared with the original paper-based Housing Enabler assessment form. These new features include a user friendly overview of the assessment form; easy navigation by swiping back and forth between items; onsite data analysis; and ranking of the accessibility score, photo documentation and a data export facility. Based on the presented stepwise approach, a high-fidelity Housing Enabler prototype app was successfully developed. The development process has emphasized the importance of combining design participants' knowledge and experiences, and has shown that methods should seem relevant to participants to increase their engagement.

  1. A paper-based microbial fuel cell array for rapid and high-throughput screening of electricity-producing bacteria.

    Science.gov (United States)

    Choi, Gihoon; Hassett, Daniel J; Choi, Seokheun

    2015-06-21

    There is a large global effort to improve microbial fuel cell (MFC) techniques and advance their translational potential toward practical, real-world applications. Significant boosts in MFC performance can be achieved with the development of new techniques in synthetic biology that can regulate microbial metabolic pathways or control their gene expression. For these new directions, a high-throughput and rapid screening tool for microbial biopower production is needed. In this work, a 48-well, paper-based sensing platform was developed for the high-throughput and rapid characterization of the electricity-producing capability of microbes. 48 spatially distinct wells of a sensor array were prepared by patterning 48 hydrophilic reservoirs on paper with hydrophobic wax boundaries. This paper-based platform exploited the ability of paper to quickly wick fluid and promoted bacterial attachment to the anode pads, resulting in instant current generation upon loading of the bacterial inoculum. We validated the utility of our MFC array by studying how strategic genetic modifications impacted the electrochemical activity of various Pseudomonas aeruginosa mutant strains. Within just 20 minutes, we successfully determined the electricity generation capacity of eight isogenic mutants of P. aeruginosa. These efforts demonstrate that our MFC array displays highly comparable performance characteristics and identifies genes in P. aeruginosa that can trigger a higher power density.

  2. Do not Lose Your Students in Large Lectures: A Five-Step Paper-Based Model to Foster Students’ Participation

    Science.gov (United States)

    Aburahma, Mona Hassan

    2015-01-01

    Like most of the pharmacy colleges in developing countries with high population growth, public pharmacy colleges in Egypt are experiencing a significant increase in students’ enrollment annually due to the large youth population, accompanied with the keenness of students to join pharmacy colleges as a step to a better future career. In this context, large lectures represent a popular approach for teaching the students as economic and logistic constraints prevent splitting them into smaller groups. Nevertheless, the impact of large lectures in relation to student learning has been widely questioned due to their educational limitations, which are related to the passive role the students maintain in lectures. Despite the reported feebleness underlying large lectures and lecturing in general, large lectures will likely continue to be taught in the same format in these countries. Accordingly, to soften the negative impacts of large lectures, this article describes a simple and feasible 5-step paper-based model to transform lectures from a passive information delivery space into an active learning environment. This model mainly suits educational establishments with financial constraints, nevertheless, it can be applied in lectures presented in any educational environment to improve active participation of students. The components and the expected advantages of employing the 5-step paper-based model in large lectures as well as its limitations and ways to overcome them are presented briefly. The impact of applying this model on students’ engagement and learning is currently being investigated. PMID:28975906

  3. Do not Lose Your Students in Large Lectures: A Five-Step Paper-Based Model to Foster Students' Participation.

    Science.gov (United States)

    Aburahma, Mona Hassan

    2015-07-27

    Like most of the pharmacy colleges in developing countries with high population growth, public pharmacy colleges in Egypt are experiencing a significant increase in students' enrollment annually due to the large youth population, accompanied with the keenness of students to join pharmacy colleges as a step to a better future career. In this context, large lectures represent a popular approach for teaching the students as economic and logistic constraints prevent splitting them into smaller groups. Nevertheless, the impact of large lectures in relation to student learning has been widely questioned due to their educational limitations, which are related to the passive role the students maintain in lectures. Despite the reported feebleness underlying large lectures and lecturing in general, large lectures will likely continue to be taught in the same format in these countries. Accordingly, to soften the negative impacts of large lectures, this article describes a simple and feasible 5-step paper-based model to transform lectures from a passive information delivery space into an active learning environment. This model mainly suits educational establishments with financial constraints, nevertheless, it can be applied in lectures presented in any educational environment to improve active participation of students. The components and the expected advantages of employing the 5-step paper-based model in large lectures as well as its limitations and ways to overcome them are presented briefly. The impact of applying this model on students' engagement and learning is currently being investigated.

  4. Design of a microfluidic paper-based device for analysis of biomarkers from urine samples on diapers.

    Science.gov (United States)

    Couto, Adriana; Tao Dong

    2017-07-01

    Among all infections, urinary tract infections (UTI) are one of the most common. Nowadays the procedures to analyze urine and consequently detect UTI are often painful and time-consuming. Recent studies about microfluidic paper-based devices have developed the interest of researchers due their outstanding characteristics. In this paper is presented a novel design for a microfluidic paper-based device for screening and analysis of multiple biomarkers from urine samples on diapers. The device consists on a set of eight layers. It was designed based on the previous attempts to improve and overcome some problems detected as the continuous entrance of fluids, the possibility of contamination and the invalidity of results due to communication between different reagent pads. One approach was create a "self-locking" mechanism that closes the sample inlet in approximately four minutes solving the first two problems. Furthermore, is important that comfort is guaranteed, hence a device with a total thickness of 5,3 mm is presented. This device can keep the results for eight hours and can be used as a low-cost and more effective alternative than conventional methods being a strategy with potential for the diagnostic and analysis of biological samples in the future improving healthcare.

  5. Microfluidic paper-based analytical devices for colorimetric detection of urinary tract infection biomarkers on adult diapers.

    Science.gov (United States)

    Chaohao Chen; Tao Dong

    2015-08-01

    Urinary tract infections (UTI) are common infection diseases in elderly patients. The conventional method of detecting UTI involves the collection of significant urine samples from the elderly patients. However, this is a very difficult and time-consuming procedure. This paper addresses the development of a microfluidic paper-based analytical device (μPAD) to detect UTI from urine collected from adult diapers. The design and fabrication for the μPAD is shown. The fabrication process involves melting solid wax on top of filter paper using a hot plate, followed by pattern transfer using a mold with rubbed wax. To demonstrate the feasibility of the proposed method, the μPAD with deposited nitrite reagent had detected different concentrations of nitrite solutions from 0.5 ppm to 100 ppm spiked in urine samples. A calibration curve was obtained by plotting the gray scale intensity values against the various nitrite concentrations. The results showed that the proposed paper-based device holds great potential as low-cost, disposable solution to sensitively detect UTI markers in urine sampled from diapers.

  6. Development of a disposable and highly sensitive paper-based immunosensor for early diagnosis of Asian soybean rust.

    Science.gov (United States)

    Miranda, Barbara S; Linares, Elisângela M; Thalhammer, Stefan; Kubota, Lauro T

    2013-07-15

    Soybean is one of the most important crops and plays a key role in the whole food chain production. Soybean crops are very susceptible to the fungus Phakopsora Pachyrhizi, the agent responsible by the Asian soybean rust. The spore of the fungus is easily disseminated by wind with adequate environment, leaf wetness, high humidity and temperatures, the crop can be totally lost within few days. A high sensitive, specific and easy test is the key for early diagnosing the soybean rust and therefore save the crop. Here we present a paper-based immunosensor for early stage diagnosis of soybean rust that can be performed by unskilled operators on-site. Nitrocellulose membrane was chosen as the substrate to stick the antigen due to its high binding properties. Polyclonal antibodies labeled with fluorescent nanoparticles were employed as the recognizers. An analytical curve with spiked samples shows a linear response range from 0.0032 to 3.2 μg/mL. This immunosensor presents a very low detection limit of 2.2 ng/mL, which corresponds approximately to 8-12 spores/mL. The paper-based sensor reachs the detection range of ELISA and PCR based test systems, and outranges the available commercial test kits by two order of magnitude. We believe this immunosensor has a great potential as a point-of-care device for the early diagnosis of Asian soybean rust. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Functional paper-based SERS substrate for rapid and sensitive detection of Sudan dyes in herbal medicine

    Science.gov (United States)

    Wu, Mianmian; Li, Pan; Zhu, Qingxia; Wu, Meiran; Li, Hao; Lu, Feng

    2018-05-01

    There has been an increasing demand for rapid and sensitive techniques for the identification of Sudan compounds that emerged as the most often illegally added fat-soluble dyes in herbal medicine. In this report, we have designed and fabricated a functionalized filter paper consisting of gold nanorods (GNRs) and mono-6-thio-cyclodextrin (HS-β-CD) as a surface-enhanced Raman spectroscopy (SERS) substrate, in which the GNR provides sufficient SERS enhancement, and the HS-β-CD with strong chemical affinity toward GNR provides the inclusion compound to capture hydrophobic molecules. Moreover, the CD-GNR were uniformly assembled on filter paper cellulose through the electrostatic adsorption and hydrogen bond, so that the CD-GNR paper-based SERS substrate (CD-GNR-paper) demonstrated higher sensitivity for the determination of Sudan III (0.1 μM) and Sudan IV (0.5 μM) than GNRs paper-based SERS substrate (GNR-paper), with high stability after the storage in the open air for 90 days. Importantly, CD-GNR-paper can effectively collect the Sudan dyes from illegally adulterated onto samples of Resina Draconis with a simple operation, further open up new exciting opportunity for SERS detection of more compounds illegally added with high sensitivity and fast signal responses.

  8. Nuclear battery materials and application of nuclear batteries

    International Nuclear Information System (INIS)

    Hao Shaochang; Lu Zhenming; Fu Xiaoming; Liang Tongxiang

    2006-01-01

    Nuclear battery has lots of advantages such as small volume, longevity, environal stability and so on, therefore, it was widely used in aerospace, deep-sea, polar region, heart pacemaker, micro-electromotor and other fields etc. The application of nuclear battery and the development of its materials promote each other. In this paper the development and the latest research progress of nuclear battery materials has been introduced from the view of radioisotope, electric energy conversion and encapsulation. And the current and potential applications of the nuclear battery are also summarized. (authors)

  9. Wireless battery management control and monitoring system

    Science.gov (United States)

    Zumstein, James M.; Chang, John T.; Farmer, Joseph C.; Kovotsky, Jack; Lavietes, Anthony; Trebes, James Edward

    2018-01-16

    A battery management system using a sensor inside of the battery that sensor enables monitoring and detection of various events in the battery and transmission of a signal from the sensor through the battery casing to a control and data acquisition module by wireless transmission. The detection of threshold events in the battery enables remedial action to be taken to avoid catastrophic events.

  10. Computationally efficient methods for state of charge approximation and performance measure calculation in series-connected battery equalization systems

    Science.gov (United States)

    Han, Weiji; Zhang, Liang; Han, Yehui

    2015-07-01

    The battery system plays an important role in a number of modern power applications. In practice, cell charge imbalance is a very common issue in battery system operations, which may cause serious problems in power efficiency, equipment reliability and safety, etc. To analyze the performance of battery equalization systems, physical experiments with actual devices and computer simulations based on circuit models are typically used. These approaches, however, may be time-consuming and energy-inefficient for larger-scale systems. In this paper, based on the proposed mathematical model for series-connected battery equalization systems, we develop an analytical algorithm to approximate the state of charge (SOC) of battery cells at any time instant during the equalization process, and derive the formulas to calculate critical performance measures of the system. Extensive numerical experiments are carried out to justify the accuracy of the algorithm and formulas developed. In addition, the proposed methods use much less computational time as compared to computer simulations.

  11. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  12. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  13. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  14. Joint Battery Industry Sector Study.

    Science.gov (United States)

    1994-08-31

    company, Yardney Technical Products, is a potential supplier of lithium systems to the military but, to date, has not produced any batteries . The...small,3 single pimary cell batteries used in commercial electoic devices. Yardney Technical Products, Inc. and BST Systems are the North Americ-m...primary reserve silver zinc batteries , there are three main suppliers - Yardney , Whittaker, and Eagle-Picher. Commercial primary silver zinc cells are

  15. 78 FR 38093 - Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-06-25

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  16. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to... Battery and Battery Systems--Small and Medium Size DATES: The meeting will be held October 1-3, 2013, from...

  17. Undirected health IT implementation in ambulatory care favors paper-based workarounds and limits health data exchange.

    Science.gov (United States)

    Djalali, Sima; Ursprung, Nadine; Rosemann, Thomas; Senn, Oliver; Tandjung, Ryan

    2015-11-01

    The adoption and use of health information technology (IT) continues to grow around the globe. In Switzerland, the government nor professional associations have to this day provided incentives for health IT adoption. We aim to assess the proportion of physicians who are routinely working with electronic health data and describe to what extent physicians exchange electronic health data with peers and other health care providers. Additionally, we aim to estimate the effect of physicians' attitude towards health IT on the adoption of electronic workflows. Between May and July 2013, we conducted a cross-sectional survey of 1200 practice based physicians in Switzerland. Respondents were asked to report on their technical means and where applicable their paper-based workarounds to process laboratory data, examination results, referral letters and physician's letters. Physicians' view of barriers and facilitators towards health IT use was determined by a composite score. A response rate of 57.1% (n=685) was reached. The sample was considered to be representative for physicians in Swiss ambulatory care. 35.2% of the respondents documented patients' health status with the help of a longitudinal semi-structured electronic text record generated by one or more encounters in the practice. Depending on the task within a workflow, around 11-46% of the respondents stated to rely on electronic workflow practices to process laboratory and examination data and dispatch referral notes and physician's letters. The permanent use of electronic workflow processes was infrequent. Instead, respondents reported paper-based workarounds affecting specific tasks within a workflow. Physicians' attitude towards health IT was significantly associated with the adoption of electronic workflows (OR 1.04-1.31, p<0.05), but the effect sizes of factors related to the working environment (e.g., regional factors, medical specialty, type of practice) were larger. At present, only a few physicians in Swiss

  18. Battery Post-Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Post-test diagnostics of aged batteries can provide additional information regarding the cause of performance degradation, which, previously, could be only inferred...

  19. ZEBRA battery meets USABC goals

    Science.gov (United States)

    Dustmann, Cord-H.

    In 1990, the California Air Resources Board has established a mandate to introduce electric vehicles in order to improve air quality in Los Angeles and other capitals. The United States Advanced Battery Consortium has been formed by the big car companies, Electric Power Research Institute (EPRI) and the Department of Energy in order to establish the requirements on EV-batteries and to support battery development. The ZEBRA battery system is a candidate to power future electric vehicles. Not only because its energy density is three-fold that of lead acid batteries (50% more than NiMH) but also because of all the other EV requirements such as power density, no maintenance, summer and winter operation, safety, failure tolerance and low cost potential are fulfilled. The electrode material is plain salt and nickel in combination with a ceramic electrolyte. The cell voltage is 2.58 V and the capacity of a standard cell is 32 Ah. Some hundred cells are connected in series and parallel to form a battery with about 300 V OCV. The battery system including battery controller, main circuit-breaker and cooling system is engineered for vehicle integration and ready to be mounted in a vehicle [J. Gaub, A. van Zyl, Mercedes-Benz Electric Vehicles with ZEBRA Batteries, EVS-14, Orlando, FL, Dec. 1997]. The background of these features are described.

  20. Reprint of: Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors

    International Nuclear Information System (INIS)

    Delaney, Jacqui L.; Doeven, Egan H.; Harsant, Anthony J.; Hogan, Conor F.

    2013-01-01

    Graphical abstract: -- Highlights: •The ability to generate ECL emission using the audio output of a mobile phone is demonstrated. •Electrochemical control can be achieved by controlling the amplitude and waveform of the sound. •A mobile phone “app” synchronises the electrochemical stimulation with detection via the camera. •In combination with paper-based microfluidic sensors, extremely low cost analysis is possible. •Detection of proline at levels suitable for diagnosis of hyperprolinemia is demonstrated. -- Abstract: By exploiting its ability to play sounds, a mobile phone with suitable software installed can serve the basic functions of a potentiostat in controlling an applied potential to oxidise ECL-active molecules, while the resultant photonic signal is monitored using the camera in video mode. In combination with paper microfluidic sensors this opens significant new possibilities for low-cost, instrument-free sensing

  1. Image analysis for a microfluidic paper-based analytical device using the CIE L*a*b* color system.

    Science.gov (United States)

    Komatsu, Takeshi; Mohammadi, Saeed; Busa, Lori Shayne Alamo; Maeki, Masatoshi; Ishida, Akihiko; Tani, Hirofumi; Tokeshi, Manabu

    2016-11-28

    The combination of a microfluidic paper-based analytical device (μPAD) and digital image analysis is widely used for quantitative analysis with μPADs because of its easy and simple operation. Herein, we have demonstrated a quantitative analysis based on multiple color changes on a μPAD. The CIE L*a*b* color system was employed to analyse the digital images obtained with the μPAD. We made pH measurements using a universal pH-indicator showing multiple color changes for various pH values of aqueous test solutions. The detectable pH range of this method was wider than the typical grayscale-based image analysis, and we succeeded in the measurements for a wide pH range of 2-9.

  2. Development of a Whole Blood Paper-Based Device for Phenylalanine Detection in the Context of PKU Therapy Monitoring

    Directory of Open Access Journals (Sweden)

    Robert Robinson

    2016-02-01

    Full Text Available Laboratory-based testing does not allow for the sufficiently rapid return of data to enable optimal therapeutic monitoring of patients with metabolic diseases such as phenylketonuria (PKU. The typical turn-around time of several days for current laboratory-based testing is too slow to be practically useful for effective monitoring or optimizing therapy. This report describes the development of a rapid, paper-based, point-of-care device for phenylalanine detection using a small volume (40 μL of whole blood. The quantitative resolution and reproducibility of this device with instrumented readout are described, together with the potential use of this device for point-of-care monitoring by PKU patients.

  3. Paper-based ion concentration polarization device for selective preconcentration of muc1 and lamp-2 genes

    Science.gov (United States)

    Son, Seok Young; Lee, Hyomin; Kim, Sung Jae

    2017-12-01

    Recently, novel biomolecules separation and detection methods based on ion concentration polarization (ICP) phenomena have been extensively researched due to its high amplification ratio and high-speed accumulation. Despite of these bright advances, the fabrication of conventional ICP devices still have complicated and times-consuming tasks. As an alternative platform, a paper have been recently used for the identical ICP operations. In this work, we demonstrated the selective preconcentration of a muc1 gene fragment as human breast cancer marker and a lamp-2 gene fragment as the cause of Danon disease in paper-based ICP devices. As a result, these two DNA fragments were successfully concentrated up to 60 fold at different location in a single paper-channel. The device would be a promising platform for point-of-care device due to an economic fabrication, the easy extraction of concentrated sample and an easy disposability.

  4. Paper-Based Microfluidic Device with a Gold Nanosensor to Detect Arsenic Contamination of Groundwater in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mosfera A. Chowdury

    2017-03-01

    Full Text Available In this paper, we present a microfluidic paper-based analytical device (μPAD with a gold nanosensor functionalized with α-lipoic acid and thioguanine (Au–TA–TG to detect whether the arsenic level of groundwater from hand tubewells in Bangladesh is above or below the World Health Organization (WHO guideline level of 10 μg/L. We analyzed the naturally occurring metals present in Bangladesh groundwater and assessed the interference with the gold nanosensor. A method was developed to prevent interference from alkaline metals found in Bangladesh groundwater (Ca, Mg, K and Na by increasing the pH level on the μPADs to 12.1. Most of the heavy metals present in the groundwater (Ni, Mn, Cd, Pb, and Fe II did not interfere with the μPAD arsenic tests; however, Fe III was found to interfere, which was also prevented by increasing the pH level on the μPADs to 12.1. The μPAD arsenic tests were tested with 24 groundwater samples collected from hand tubewells in three different districts in Bangladesh: Shirajganj, Manikganj, and Munshiganj, and the predictions for whether the arsenic levels were above or below the WHO guideline level agreed with the results obtained from laboratory testing. The μPAD arsenic test is the first paper-based test validated using Bangladesh groundwater samples and capable of detecting whether the arsenic level in groundwater is above or below the WHO guideline level of 10 μg/L, which is a step towards enabling the villagers who collect and consume the groundwater to test their own sources and make decisions about where to obtain the safest water.

  5. Chemometrics-assisted microfluidic paper-based analytical device for the determination of uric acid by silver nanoparticle plasmon resonance.

    Science.gov (United States)

    Hamedpour, Vahid; Postma, Geert J; van den Heuvel, Edwin; Jansen, Jeroen J; Suzuki, Koji; Citterio, Daniel

    2018-03-01

    This manuscript reports on the application of chemometric methods for the development of an optimized microfluidic paper-based analytical device (μPAD). As an example, we applied chemometric methods for both device optimization and data processing of results of a colorimetric uric acid assay. Box-Behnken designs (BBD) were utilized for the optimization of the device geometry and the amount of thermal inkjet-deposited assay reagents, which affect the assay performance. Measurement outliers were detected in real time by partial least squares discriminant analysis (PLS-DA) of scanned images. The colorimetric assay mechanism is based on the on-device formation of silver nanoparticles (AgNPs) through the interaction of uric acid, ammonia, and poly(vinyl alcohol) with silver ions under mild basic conditions. The yellow color originating from visible light absorption by localized surface plasmon resonance of AgNPs can be detected by the naked eye or, more quantitatively, with a simple flat-bed scanner. Under optimized conditions, the linearity of the calibration curve ranges from 0.1-5 × 10 -3 mol L -1 of uric acid with a limit of detection of 33.9 × 10 -6 mol L -1 and a relative standard of deviation 4.5% (n = 3 for determination of 5.0 × 10 -3 mol L -1 uric acid). Graphical abstract A chemometrics-assisted microfluidic paper-based analytical device was developed as a low-cost and rapid platform for the determination of uric acid (UA). The detection method is based on the chemical interaction of UA, ammonia, and polyvinyl alcohol under mild basic condition with silver ions inducing formation of yellow silver nanoparticles (AgNPs).

  6. Point-of-care coagulation monitoring: first clinical experience using a paper-based lateral flow diagnostic device.

    Science.gov (United States)

    Hegener, Michael A; Li, Hua; Han, Daewoo; Steckl, Andrew J; Pauletti, Giovanni M

    2017-09-01

    Vitamin K antagonists such as warfarin are the most widely used class of oral anticoagulants. Due to a narrow therapeutic window, patients on warfarin require regular monitoring. Self-testing using point-of-care (POC) diagnostic devices is available, but cost makes this monitoring method beyond reach for many. The main objective of this research was to assess the clinical utility of a low-cost, paper-based lateral flow POC diagnostic device developed for anticoagulation monitoring without the need for a separate electronic reader. Custom-fabricated lateral flow assay (LFA) test strips comprised of a glass fiber sample pad, a nitrocellulose analytical membrane, a cellulose wicking pad, and a plastic backing card were assembled in a plastic cassette. Healthy volunteers and patients on warfarin therapy were recruited for this prospective study. For each participant, a whole blood sample was collected via fingerstick to determine: (1) international normalized ratio (INR) using the CoaguChek® XS coagulometer, (2) hematocrit by centrifugation, and (3) red blood cell (RBC) travel distance on the experimental LFA device after 240 s using digital image analysis. RBC travel distance measured on the LFA device using blood samples obtained from warfarin patients positively correlated with increasing INR value and the LFA device had the capability to statistically distinguish between healthy volunteer INR values and those for patients groups with INR ≥ 2.6. From these data, it is predicted that this low-cost, paper-based LFA device can have clinical utility for identifying anticoagulated patients taking vitamin K antagonists who are outside of the desired therapeutic efficacy window.

  7. 46 CFR 120.354 - Battery installations.

    Science.gov (United States)

    2010-10-01

    ... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.354 Battery installations. (a) Large batteries. Each large battery...

  8. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B.; Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  9. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  10. Maximizing System Lifetime by Battery Scheduling

    OpenAIRE

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.; Bohnenkamp, H.C.; Katoen, Joost P.

    2009-01-01

    The use of mobile devices is limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries over the load to exploit recovery properties usually extends the system lifetime. Straightforward scheduling schemes, like round robin or choosing the best battery available, already provide a big improvement compared to a sequential discharge of the batteries. ...

  11. Batteries: Polymers switch for safety

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil

    2016-01-11

    Ensuring safety during operation is a major issue in the development of lithium-ion batteries. Coating the electrode current collector with thermoresponsive polymer composites is now shown to rapidly shut the battery down when it overheats, and to quickly resume its function when normal operating conditions return

  12. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  13. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  14. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.; Argent-Katwala, Ashok; Dingle, Nicholas J.; Harder, Uli

    2008-01-01

    The use of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  15. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...

  16. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2009-01-01

    The use of mobile devices like cell phones, navigation systems or laptop computers is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed; however, it also depends on the usage pattern of the battery. Continuous drawing of a high

  17. Lead/acid battery technology

    Science.gov (United States)

    Manders, J. E.; Lam, L. T.; Peters, K.; Prengaman, R. D.; Valeriote, E. M.

    Following the schedule of previous Asian Battery Conferences, the Proceedings closed with an expert panel of battery scientists and technologists who answered questions put by the assembled delegates. The subjects under consideration were as follows. Grid alloys: grain structure of lead-calcium and lead-calcium-tin alloys; dross problems; control of calcium content; cast-on-strap; terminal-post attack; porosity/acid-wicking problems; effect of silver; lead-cadmium alloys. Leady oxide: α-PbO:β-PbO ratio; influence on plate-processing and battery performance. Paste-mixing and curing: influence of amorphous material. Plate formation: black/powdery plates; effect of acid concentration; charge level. Valve-regulated batteries: mass balances; grid thickness; shelf life. Battery charging: overcharge effects; fast charging; temperature effects; string configurations; sodium sulfate additive.

  18. Battery selection for space experiments

    Science.gov (United States)

    Francisco, David R.

    1992-10-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese and nickel cadmium. A detailed description of the lead acid and silver zinc cells while a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage and with different types of loads. A description of the required maintenance for each type of battery will be investigated. The lifetime and number of charge/discharge cycles will be discussed.

  19. A novel paper-based assay for the simultaneous determination of Rh typing and forward and reverse ABO blood groups.

    Science.gov (United States)

    Noiphung, Julaluk; Talalak, Kwanrutai; Hongwarittorrn, Irin; Pupinyo, Naricha; Thirabowonkitphithan, Pannawich; Laiwattanapaisal, Wanida

    2015-05-15

    We propose a new, paper-based analytical device (PAD) for blood typing that allows for the simultaneous determination of ABO and Rh blood groups on the same device. The device was successfully fabricated by using a combination of wax printing and wax dipping methods. A 1:2 blood dilution was used for forward grouping, whereas whole blood could be used for reverse grouping. A 30% cell suspension of A-cells or B-cells was used for haemagglutination on the reverse grouping side. The total assay time was 10 min. The ratio between the distance of red blood cell movement and plasma separation is the criterion for agglutination and indicates the presence of the corresponding antigen or antibody. The proposed PAD has excellent reproducibility in that the same blood groups, namely A, AB, and O, were reported by using different PADs that were fabricated on the same day (n=10). The accuracy for detecting blood group A (n=12), B (n=13), AB (n=9), O (n=14), and Rh (n=48) typing were 92%, 85%, 89%, 93%, and 96%, respectively, in comparison with the conventional slide test method. The haematocrit of the sample affects the accuracy of the results, and appropriate dilution is suggested before typing. In conclusion, this study proposes a novel method that is straightforward, time-saving, and inexpensive for the simultaneous determination of ABO and Rh blood groups, which is promising for use in developing countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper in Drinking Water.

    Science.gov (United States)

    Quinn, Casey W; Cate, David; Miller-Lionberg, Daniel; Reilly, Thomas; Volckens, John; Henry, Charles S

    2018-02-22

    Metal contamination of natural and drinking water systems poses hazards to public and environmental health. Quantifying metal concentrations in water typically requires sample collection in the field followed by expensive laboratory analysis that can take days to weeks to obtain results. The objective of this work was to develop a low-cost, field-deployable method to quantify trace levels of copper in drinking water by coupling solid-phase extraction/preconcentration with a microfluidic paper-based analytical device. This method has the advantages of being hand-powered (instrument-free) and using a simple 'read by eye' quantification motif (based on color distance). Tap water samples collected across Fort Collins, CO were tested with this method and validated against ICP-MS. We demonstrate the ability to quantify the copper content of tap-water within 30% of a reference technique at levels ranging from 20 to 3500 ppb. The application of this technology, which should be sufficient as a rapid screening tool, can lead to faster, more cost-effective detection of soluble metals in water systems.

  1. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording.

    Science.gov (United States)

    Fan, Xing; Chen, Jun; Yang, Jin; Bai, Peng; Li, Zhaoling; Wang, Zhong Lin

    2015-04-28

    A 125 μm thickness, rollable, paper-based triboelectric nanogenerator (TENG) has been developed for harvesting sound wave energy, which is capable of delivering a maximum power density of 121 mW/m(2) and 968 W/m(3) under a sound pressure of 117 dBSPL. The TENG is designed in the contact-separation mode using membranes that have rationally designed holes at one side. The TENG can be implemented onto a commercial cell phone for acoustic energy harvesting from human talking; the electricity generated can be used to charge a capacitor at a rate of 0.144 V/s. Additionally, owing to the superior advantages of a broad working bandwidth, thin structure, and flexibility, a self-powered microphone for sound recording with rolled structure is demonstrated for all-sound recording without an angular dependence. The concept and design presented in this work can be extensively applied to a variety of other circumstances for either energy-harvesting or sensing purposes, for example, wearable and flexible electronics, military surveillance, jet engine noise reduction, low-cost implantable human ear, and wireless technology applications.

  2. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application

    Science.gov (United States)

    Gao, Nan; Huang, Pengcheng; Wu, Fangying

    2018-03-01

    In this study, we have developed a method for rapid, highly efficient and selective detection of melamine. The negatively charged citrate ions form an electrostatic layer on gold nanoparticles (AuNPs) and keep the NPs dispersed and stable. When citrate-capped AuNPs were further modified with Triton X-100, it stabilized the AuNPs against the conditions of high ionic strength and a broad pH range. However, the addition of melamine caused the destabilization and aggregation of NPs. This may be attributed to the interaction between melamine and the AuNPs through the ligand exchange with citrate ions on the surface of AuNPs leading Triton X-100 to be removed. As a result, the AuNPs were unstable, resulting in the aggregation. The aggregation induced a wine red-to-blue color change, and a new absorption peak around 630 nm appeared. Triton X-100-AuNPs could selectively detect melamine at the concentration as low as 5.1 nM. This probe was successfully applied to detect melamine in milk. Furthermore, paper-based quantitative detection system using this colorimetric probe was also demonstrated by integrating with a smartphone.

  3. Towards Practical Application of Paper based Printed Circuits: Capillarity Effectively Enhances Conductivity of the Thermoplastic Electrically Conductive Adhesives

    Science.gov (United States)

    Wu, Haoyi; Chiang, Sum Wai; Lin, Wei; Yang, Cheng; Li, Zhuo; Liu, Jingping; Cui, Xiaoya; Kang, Feiyu; Wong, Ching Ping

    2014-09-01

    Direct printing nanoparticle-based conductive inks onto paper substrates has encountered difficulties e.g. the nanoparticles are prone to penetrate into the pores of the paper and become partially segmented, and the necessary low-temperature-sintering process is harmful to the dimension-stability of paper. Here we prototyped the paper-based circuit substrate in combination with printed thermoplastic electrically conductive adhesives (ECA), which takes the advantage of the capillarity of paper and thus both the conductivity and mechanical robustness of the printed circuitsweredrastically improved without sintering process. For instance, the electrical resistivity of the ECA specimen on a pulp paper (6 × 10-5Ω.cm, with 50 wt% loading of Ag) was only 14% of that on PET film than that on PET film. This improvement has been found directly related to the sizing degree of paper, in agreement with the effective medium approximation simulation results in this work. The thermoplastic nature also enables excellent mechanical strength of the printed ECA to resist repeated folding. Considering the generality of the process and the wide acceptance of ECA technique in the modern electronic packages, this method may find vast applications in e.g. circuit boards, capacitive touch pads, and radio frequency identification antennas, which have been prototyped in the manuscript.

  4. Thermodynamic analysis of water vapor sorption isotherms and mechanical properties of selected paper-based food packaging materials.

    Science.gov (United States)

    Rhim, Jong-Whan; Lee, Jun Ho

    2009-01-01

    Adsorption isotherms of 3 selected paper-based packaging materials, that is, vegetable parchment (VP) paper, Kraft paper, and solid-bleached-sulfate (SBS) paperboard, were determined at 3 different temperatures (25, 40, and 50 degrees C). The GAB isotherm model was found to fit adequately for describing experimental adsorption isotherm data for the paper samples. The monolayer moisture content of the paper samples decreased with increase in temperature, which is in the range of 0.0345 to 0.0246, 0.0301 to 0.0238, and 0.0318 to 0.0243 g water/g solid for the MG paper, the Kraft paper, and the SBS paperboard, respectively. The net isosteric heats of sorption (q(st)) for the paper samples decreased exponentially with increase in moisture content after reaching the maximum values of 18.51, 27.39, and 26.80 kJ/mol for the VP paper, the Kraft paper, and the SBS paperboard, respectively, at low-moisture content. The differential enthalpy and entropy of 3 paper samples showed compensation phenomenon with the isokinetic temperature of 399.7 K indicating that water vapor had been adsorbed onto the paper samples with the same mechanism. Depending on the paper material, tensile strength of paper samples was affected by moisture content.

  5. A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells

    KAUST Repository

    Lee, Chuan-Pei

    2017-04-22

    We have synthesized a metal-free composite ink that contains graphene dots (GDs) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) that can be used on paper to serve as the counter electrode in a flexible dye-sensitized solar cell (DSSC). This paper-based GD/PEDOT:PSS electrode is low-cost, light-weight, flexible, environmentally friendly, and easy to cut and process for device fabrication. We determined the GD/PEDOT:PSS composite effectively fills the dense micro-pores in the paper substrate, which leads to improved carrier transport in the electrode and a 3-fold enhanced cell efficiency as compared to the paper electrode made with sputtered Pt. Moreover, the DSSC with the paper electrode featuring the GD/PEDOT:PSS composite did not fail in photovoltaic tests even after bending the electrode 150 times, whereas the device made with the Pt-based paper electrode decreased in efficiency by 45% after such manipulation. These exceptional properties make the metal-free GD/PEDOT:PSS composite ink a promising electrode material for a wide variety of flexible electronic applications.

  6. Evaluation and Optimization of Paper-Based SERS Substrate for Potential Label-Free Raman Analysis of Seminal Plasma

    Directory of Open Access Journals (Sweden)

    Zufang Huang

    2017-01-01

    Full Text Available Characterization and optimization of paper SERS substrate were performed in detail, in which morphologies and distribution of silver nanoparticles (AgNPs on the paper substrate pretreated with different concentrations of NaCl and the subsequent soaking with colloidal AgNPs for different period of time were evaluated. Our results show that both NaCl concentration and soaking time with AgNPs have a significant influence on SERS enhancement, showing that an optimal EF of 2.27 × 107 was achieved when the paper substrate was treated with 20 mM NaCl and one-hour soak with AgNPs. Moreover, seminal plasma (SP was specifically selected to evaluate the performance of paper-based SERS substrate for potential clinical detection and diagnosis. The optimization of the paper SERS substrate demonstrates potential applications in reliable on-site detection of SP and clinical diagnosis of fertility-related diseases as well.

  7. Aspartate Aminotransferase and Alanine Aminotransferase Detection on Paper-Based Analytical Devices with Inkjet Printer-Sprayed Reagents

    Directory of Open Access Journals (Sweden)

    Hsiang-Li Wang

    2016-01-01

    Full Text Available General biochemistry detection on paper-based microanalytical devices (PADs uses pipette titration. However, such an approach is extremely time-consuming for large-scale detection processes. Furthermore, while automated methods are available for increasing the efficiency of large-scale PAD production, the related equipment is very expensive. Accordingly, this study proposes a low-cost method for PAD manufacture, in which the reagent is applied using a modified inkjet printer. The optimal reaction times for the detection of aspartate aminotransferase (AST and alanine aminotransferase (ALT are shown to be 6 and 7 min, respectively, given AST and ALT concentrations in the range of 5.4 to 91.2 U/L (R2 = 0.9932 and 5.38 to 86.1 U/L (R2 = 0.9944. The experimental results obtained using the proposed PADs for the concentration detection of AST and ALT in real human blood serum samples are found to be in good agreement with those obtained using a traditional spectrophotometric detection method by National Cheng Kung University hospital.

  8. Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil.

    Science.gov (United States)

    Ueland, Maiken; Blanes, Lucas; Taudte, Regina V; Stuart, Barbara H; Cole, Nerida; Willis, Peter; Roux, Claude; Doble, Philip

    2016-03-04

    A novel microfluidic paper-based analytical device (μPAD) was designed to filter, extract, and pre-concentrate explosives from soil for direct analysis by a lab on a chip (LOC) device. The explosives were extracted via immersion of wax-printed μPADs directly into methanol soil suspensions for 10min, whereby dissolved explosives travelled upwards into the μPAD circular sampling reservoir. A chad was punched from the sampling reservoir and inserted into a LOC well containing the separation buffer for direct analysis, avoiding any further extraction step. Eight target explosives were separated and identified by fluorescence quenching. The minimum detectable amounts for all eight explosives were between 1.4 and 5.6ng with recoveries ranging from 53-82% from the paper chad, and 12-40% from soil. This method provides a robust and simple extraction method for rapid identification of explosives in complex soil samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Is transcription of data on antiretroviral treatment from electronic to paper-based registers reliable in Malawi?

    Science.gov (United States)

    Gadabu, O J; Munthali, C V; Zachariah, R; Gudmund-Hinderaker, S; Jahn, A; Twea, H; Gondwe, A; Mumba, S; Lungu, M; Malisita, K; Mhango, E; Makombe, S D; Tenthani, L; Mwalwanda, L; Moyo, C; Douglas, G P; Lewis, Z L; Chimbwandira, F

    2011-09-21

    Antiretroviral treatment (ART) clinics at one central hospital, three district hospitals and one mission hospital in the central and southern regions of Malawi. To measure the extent of inaccuracies in the transcription of case registration and recorded deaths between electronic medical data (EMR) and paper registers. This was done to inform the Ministry of Health on the reliability of the paper-based system as backup in case of EMR failure. Retrospective analysis of routine programme data. A total of 31 763 registrations and 2922 deaths in the EMR were compared with those in the paper registers. In one hospital, up to 24% of overall case registrations were missing from the paper registers. At other sites, the differences were minor and included duplicate patients who should have been classified as 'transfer in' patients in the paper register. There were major differences in the number of registered deaths in two of the five facilities. There are varying degrees of agreement between the EMR and paper registers which compromise the use of the latter as a backup solution in case of EMR failure. The reasons for this unreliability and ways forward to address the problem are discussed.

  10. Battery Aging, Battery Charging and the Kinetic Battery Model : A First Exploration

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Haverkort, Boudewijn R.; Bertrand, Nathalie; Bortolussi, Luca

    2017-01-01

    Rechargeable batteries are omnipresent and will be used more and more, for instance for wearables devices, electric vehicles or domestic energy storage. However, batteries can deliver power only for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to

  11. A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles

    Science.gov (United States)

    Xia, Quan; Wang, Zili; Ren, Yi; Sun, Bo; Yang, Dezhen; Feng, Qiang

    2018-05-01

    With the rapid development of lithium-ion battery technology in the electric vehicle (EV) industry, the lifetime of the battery cell increases substantially; however, the reliability of the battery pack is still inadequate. Because of the complexity of the battery pack, a reliability design method for a lithium-ion battery pack considering the thermal disequilibrium is proposed in this paper based on cell redundancy. Based on this method, a three-dimensional electric-thermal-flow-coupled model, a stochastic degradation model of cells under field dynamic conditions and a multi-state system reliability model of a battery pack are established. The relationships between the multi-physics coupling model, the degradation model and the system reliability model are first constructed to analyze the reliability of the battery pack and followed by analysis examples with different redundancy strategies. By comparing the reliability of battery packs of different redundant cell numbers and configurations, several conclusions for the redundancy strategy are obtained. More notably, the reliability does not monotonically increase with the number of redundant cells for the thermal disequilibrium effects. In this work, the reliability of a 6 × 5 parallel-series configuration is the optimal system structure. In addition, the effect of the cell arrangement and cooling conditions are investigated.

  12. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-17

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  13. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties

    Science.gov (United States)

    Zeng, Xiaoliang; Ye, Lei; Yu, Shuhui; Li, Hao; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-04-01

    Inspired by the nano/microscale hierarchical structure and the precise inorganic/organic interface of natural nacre, we fabricated artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets (NF-BNNSs) and poly(vinyl alcohol) (PVA) via a vacuum-assisted self-assembly technique. The artificial nacre-like papers exhibit excellent tensile strength (125.2 MPa), on a par with that of the natural nacre, and moreover display a 30% higher toughness (2.37 MJ m-3) than that of the natural nacre. These excellent mechanical properties result from an ordered `brick-and-mortar' arrangement of NF-BNNSs and PVA, in which the long-chain PVA molecules act as the bridge to link NF-BNNSs via hydrogen bonds. The resulting papers also render high thermal conductivity (6.9 W m-1 K-1), and reveal their superiority as flexible substrates to support light-emitting-diode chips. The combined mechanical and thermal properties make the materials highly desirable as flexible substrates for next-generation commercial portable electronics.Inspired by the nano/microscale hierarchical structure and the precise inorganic/organic interface of natural nacre, we fabricated artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets (NF-BNNSs) and poly(vinyl alcohol) (PVA) via a vacuum-assisted self-assembly technique. The artificial nacre-like papers exhibit excellent tensile strength (125.2 MPa), on a par with that of the natural nacre, and moreover display a 30% higher toughness (2.37 MJ m-3) than that of the natural nacre. These excellent mechanical properties result from an ordered `brick-and-mortar' arrangement of NF-BNNSs and PVA, in which the long-chain PVA molecules act as the bridge to link NF-BNNSs via hydrogen bonds. The resulting papers also render high thermal conductivity (6.9 W m-1 K-1), and reveal their superiority as flexible substrates to support light-emitting-diode chips. The combined mechanical and thermal properties make

  14. Food Quality Monitor: Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection of Biogenic Amine Odorants.

    Science.gov (United States)

    Tseng, Shih-Yu; Li, Szu-Ying; Yi, Shang-Yi; Sun, Aileen Y; Gao, Dong-Yu; Wan, Dehui

    2017-05-24

    This paper describes the fabrication of paper-based plasmonic refractometric sensors through the embedding of metal nanoparticles (NPs) onto flexible papers using reversal nanoimprint lithography. The NP-embedded papers can serve as gas sensors for the detection of volatile biogenic amines (BAs) released from spoiled food. Commercial inkjet papers were employed as sensor substrates-their high reflectance (>80%) and smooth surfaces (roughness: ca. 4.9 nm) providing significant optical signals for reflection-mode plasmonic refractometric sensing and high particle transfer efficiency, respectively; in addition, because inkjet papers have lightweight and are burnable and flexible, they are especially suitable for developing portable, disposable, cost-effective, eco-friendly sensing platforms. Solid silver NPs (SNPs), solid gold NPs (GNPs), and hollow Au-Ag alloyed NPs (HGNs) were immobilized on a solid mold and then transferred directly onto the softened paper surfaces. The particle number density and exposure height of the embedded NPs were dependent on two imprinting parameters: applied pressure and temperature. The optimal samples exhibited high particle transfer efficiency (ca. 85%), a sufficient exposure surface area (ca. 50% of particle surface area) presented to the target molecules, and a strong resonance reflectance dip for detection. Moreover, the HGN-embedded paper displayed a significant wavelength dip shift upon the spontaneous adsorption of BA vapors (e.g., Δλ = 33 nm for putrescine; Δλ = 24 nm for spermidine), indicating high refractometric sensitivity; in contrast, no visible spectroscopic responses were observed with respect to other possibly coexisting gases (e.g., air, N 2 , CO 2 , water vapor) during the food storage process, indicating high selectivity. Finally, the plasmonic sensing papers were used to monitor the freshness of a food product (salmon).

  15. A cost-effective assay for antioxidant using simple cotton thread combining paper based device with mobile phone detection.

    Science.gov (United States)

    Sateanchok, Suphasinee; Wangkarn, Sunanta; Saenjum, Chalermpong; Grudpan, Kate

    2018-01-15

    A cost-effective assay for antioxidant using simple cotton thread combining paper based device with mobile phone detection has been investigated. Standard and sample solutions flow along a bunch of cotton thread treated with sodium hydroxide via microfluidic behaviors without external pumping. The analyte solution reacts with the reagents that have been immobilized on the paper strip fixed at the end of the cotton bunch. The developed platforms were used for the assays of total phenolic content and antioxidant capacity by employing Folin-Ciocalteu and 2, 2-diphenyl-1-picryhydrazyl (DPPH) respectively. Simple detection can be made by employing a mobile phone camera (iPhone 4S) with Image J or Photoshop for image processing and evaluation. Gallic acid was used as a reference standard in this work, as its polyphenol structures can be found in many plants. The total phenolic content is expressed as gallic acid equivalents (GAE) (mg/g material). Inhibition capacity is calculated by the equation: % I = [(I o - I s )/ I o ] × 100, where I s is the relative magenta intensity (CMYK mode) of sample, and I o the relative magenta intensity of DPPH•. IC 50 inhibition can be estimated from the graph and can be used for the antioxidant capacity consideration. Applications to the assay green tea samples were demonstrated. The total phenolic contents in the green tea samples were found to be 48-105mg/g, with %RSD of less than 10 for that of higher 50 GAE mg/g and IC 50 values of the samples studied were 25-50mg/L. The results obtained by the developed methods agree with that of the standard methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Low-cost and facile fabrication of a paper-based capillary electrophoresis microdevice for pathogen detection.

    Science.gov (United States)

    Lee, Jee Won; Lee, Dohwan; Kim, Yong Tae; Lee, Eun Yeol; Kim, Do Hyun; Seo, Tae Seok

    2017-05-15

    This paper describes the development of a novel paper-based capillary electrophoresis (pCE) microdevice using mineral paper, which is durable, oil and tear resistant, and waterproof. The pCE device is inexpensive (~$1.6 per device for materials), simple to fabricate, lightweight, and disposable, so it is more adequate for point-of-care (POC) pathogen diagnostics than a conventional CE device made of glass, quartz, silicon or polymer. In addition, the entire fabrication process can be completed within 1h without using expensive clean room facilities and cumbersome photolithography procedures. A simple cross-designed pCE device was patterned on the mineral paper by using a plotter, and assembled with an OHP film via a double-sided adhesive film. After filling the microchannel with polyacrylamide gel, the injection, backbiasing, and separation steps were sequentially operated to differentiate single-stranded DNA (ssDNA) with 4 bp resolution in a 2.9cm-long CE separation channel. Furthermore, we successfully demonstrated the identification of the PCR amplicons of two target genes of Escherichia coli O157:H7 (rrsH gene, 121 bp) and Staphylococcus aureus (glnA gene, 225 bp). For accurate assignment of the peaks in the electropherogram, two bracket ladders (80 bp for the shortest and 326 bp for the longest) were employed, so the two amplicons of the pathogens were precisely identified on a pCE chip within 3min using the relative migration time ratio without effect of the CE environments. Thus, we believe that the pCE microdevice could be very useful for the separation of nucleic acids, amino acids, and ions as an analytical tool for use in the medical applications in the resource-limited environments as well as fundamental research fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine.

    Science.gov (United States)

    Yao, Yong; Zhang, Chunsun

    2016-10-01

    A novel screen-printed microfluidic paper-based analytical device with all-carbon electrode-enabled electrochemical assay (SP-ACE-EC-μPAD) has been developed. The fabrication of these devices involved wax screen-printing, which was simple, low-cost and energy-efficient. The working, counter and reference electrodes were screen-printed using carbon ink on the patterned paper devices. Different wax screen-printing processes were examined and optimized, which led to an improved method with a shorter heating time (~5 s) and a lower heating temperature (75 °C). Different printing screens were examined, with a 300-mesh polyester screen yielding the highest quality wax screen-prints. The carbon electrodes were screen-printed on the μPADs and then examined using cyclic voltammetry. The analytical performance of the SP-ACE-EC-μPADs for the detection of glucose and uric acid in standard solutions was investigated. The results were reproducible, with a linear relationship [R(2) = 0.9987 (glucose) or 0.9997 (uric acid)] within the concentration range of interest, and with detection limits as low as 0.35 mM (glucose) and 0.08 mM (uric acid). To determine the clinical utility of the μPADs, chronoamperometry was used to analyze glucose and uric acid in real urine samples using the standard addition method. Our devices were able to detect the analytes of interest in complex real-world biological samples, and have the potential for use in a wide variety of applications.

  18. Introducing a Method for Transformation of Paper-Based Research Data into Concept-Based Representation with openEHR.

    Science.gov (United States)

    Saalfeld, Birgit; Tute, Erik; Wolf, Klaus-Hendrik; Marschollek, Michael

    2017-01-01

    Combining research data and clinical routine data is a chance for medical research. We present our method for the transformation of paper-based research data into a concept-based representation. With this representation the study data from research projects can be combined with data from clinical tools with less integration effort. We applied and verified our method using data from a current research study. In this paper we also show our main challenges and lessons learned. Clinical assessment data and study diaries from a long term study (n=24, 3 months observation time each, 17 different clinical assessments) stored on paper were used as the data set. An openEHR-based electronical health record platform was adapted for acquisition and representation of the research data. To avoid transcription errors, the data was entered twice by different student assistants. A third compared and corrected both data sets. Content models (17 archetypes and five templates from openEHR concept) based on clinical assessments were created manually. Web forms for data entry were created automatically on the basis of this concept-based content models. Additionally, form functionalities to support data entry and comparison were implemented. In total, 829 compositions were entered by the student assistants. With our developed method, we are able to represent the study data in a clinical concept-based platform, which means less integration effort for access and processing of research and clinical data. Some minor difficulties occurred during the process. All in all, adapting routine tools, like the EHR platform, seems to be convenient to deal with research data.

  19. Paper-based biosensor relying on flower-like reduced graphene guided enzymatically deposition of polyaniline for Pb(2+) detection.

    Science.gov (United States)

    Ge, Shenguang; Wu, Kaiqing; Zhang, Yan; Yan, Mei; Yu, Jinghua

    2016-06-15

    A multi-amplified paper-based electrochemical strategy using Pb(2+) dependent DNAzyme as the recognition unit for Pb(2+) detection was developed. In this work, flower-like reduced graphene (FrGO) was prepared utilizing flower-like ZnO as template, which was first one step grown on the gold nanoparticles modified paper working electrode (Au-PWE). After being treated with acid and then modified with Au, a novel sensor platform named Au/FrGO/Au-PWE with large specific surface area and good electrical conductivity was fabricated. The Mn2O3 nanoparticle-assembled hierarchical hollow spheres (H-Mn2O3) was served as nanocarrier to immobilize GOx, HRP and signal strand (S3), resulting to the formation of S3/H-Mn2O3/HRP/GOx bioconjugations. In the presence of Pb(2+), the DNAzyme (S1) was activated and the substrate strand (S2) was cleaved. After the incubation with S3/H-Mn2O3/HRP/GOx in 0.1M HAc-NaAc solution (pH 4.3) containing 30 mM aniline and 15 mM glucose, a readily measurable "turn-on" electrochemical signal could be measured. On the basis of the signal amplification strategy of Au/FrGO/Au-PWE sensing platform and S3/H-Mn2O3/HRP/GOx bioconjugations, the developed biosensor exhibited a good linear response toward over a wide range of concentration from 0.005 to 2000 nM. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Computing lifetimes for battery-powered devices

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a

  1. Maximizing System Lifetime by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.; Bohnenkamp, H.C.; Katoen, Joost P.

    2009-01-01

    The use of mobile devices is limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries over the load to exploit recovery properties usually extends the

  2. Photovoltaic / Diesel / Battery Hybrid Power Supply System

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-10-01

    Full Text Available ............................................................................................. 62 5.3 Sizing the battery ................................................................................................ 65 5.4 Specifications for the battery bank ..................................................................... 67 5... of the system, the specific components required may include major components such as a DC-AC power inverter, battery bank, system and battery controller, auxiliary energy sources and sometimes the specified electrical load (appliances) The performance...

  3. Cell for making secondary batteries

    Science.gov (United States)

    Visco, S.J.; Liu, M.; DeJonghe, L.C.

    1992-11-10

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

  4. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  5. Towards Safer Lithium-Ion Batteries

    OpenAIRE

    Herstedt, Marie

    2003-01-01

    Surface film formation at the electrode/electrolyte interface in lithium-ion batteries has a crucial impact on battery performance and safety. This thesis describes the characterisation and treatment of electrode interfaces in lithium-ion batteries. The focus is on interface modification to improve battery safety, in particular to enhance the onset temperature for thermally activated reactions, which also can have a negative influence on battery performance. Photoelectron Spectroscopy (PES) ...

  6. A zinc paste primary battery

    Science.gov (United States)

    Jasinski, R.; McCarron, R.; Brilmyer, G.

    1983-03-01

    It is pointed out that zinc/air batteries could, in principle, be used to power electric vehicles. One concept for enhancing the practical performance of this battery system involves the separation of energy density factors from power density factors. This concept can be implemented by employing the active negative plate material in the form of a zinc slurry, which is circulated from a reservoir through the negative electrode compartment. An extension of this fuel cell-battery concept is related to the utilization of the active material as a pumpable paste rather than as a slurry. The present investigation is concerned with preliminary experiments on formulating and characterizing pumpable zinc/zinc oxide pastes in the context of a primary zinc/oxygen battery. A 'paste' is defined as a thick viscous mass of solid, uniformly and semipermanently dispersed in a liquid phase. Attention is given to the physical basis for predicting which solid/liquid mixtures will provide pumpable pastes.

  7. Prognostics in Battery Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Batteries represent complex systems whose internal state vari- ables are either inaccessible to sensors or hard to measure un- der operational conditions. This work...

  8. Flexible Hybrid Battery/Pseudocapacitor

    Science.gov (United States)

    Tucker, Dennis S.; Paley, Steven

    2015-01-01

    Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.

  9. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  10. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  11. Integrated Inverter And Battery Charger

    Science.gov (United States)

    Rippel, Wally E.

    1988-01-01

    Circuit combines functions of dc-to-ac inversion (for driving ac motor in battery-powered vehicle) and ac-to-dc conversion (for charging battery from ac line when vehicle not in use). Automatically adapts to either mode. Design of integrated inverter/charger eliminates need for duplicate components, saves space, reduces weight and cost of vehicle. Advantages in other applications : load-leveling systems, standby ac power systems, and uninterruptible power supplies.

  12. Online versus paper-based screening for depression and anxiety in adults with cystic fibrosis in Ireland: a cross-sectional exploratory study

    OpenAIRE

    Cronly, Jennifer; Duff, Alistair J; Riekert, Kristin A; Perry, Ivan J; Fitzgerald, Anthony P; Horgan, Aine; Lehane, Elaine; Howe, Barbara; Ni Chroinin, Muireann; Savage, Eileen

    2018-01-01

    Objective To compare online and paper-based screening for depression and anxiety in adults with cystic fibrosis (CF). Design and setting Cross-sectional study in CF clinics in Ireland and through the Cystic Fibrosis Ireland online community. Participants 160 adult patients aged 18 or above were recruited. Of these, 147 were included in the analysis; 83 online and 64 paper-based. The remaining 13 were excluded because of incomplete data. Measures Depression and anxiety were measured using the ...

  13. Online versus paper-based screening for depression and anxiety in adults with cystic fibrosis in Ireland: a cross-sectional exploratory study

    OpenAIRE

    Cronly, Jennifer; Duff, Alistair J.; Riekert, Kristin A.; Perry, Ivan J.; Fitzgerald, Anthony P.; Horgan, Aine; Lehane, Elaine; Howe, Barbara; Ni Chroinin, Muireann; Savage, Eileen

    2018-01-01

    Objective: To compare online and paper-based screening for depression and anxiety in adults with cystic fibrosis (CF). Design and setting: Cross-sectional study in CF clinics in Ireland and through the Cystic Fibrosis Ireland online community. Participants: 160 adult patients aged 18 or above were recruited. Of these, 147 were included in the analysis; 83 online and 64 paper-based. The remaining 13 were excluded because of incomplete data. Measures: Depression and anxiety were measured using ...

  14. Optimization of station battery replacement

    International Nuclear Information System (INIS)

    Jancauskas, J.R.; Shook, D.A.

    1994-01-01

    During a loss of ac power at a nuclear generating station (including diesel generators), batteries provide the source of power which is required to operate safety-related components. Because traditional lead-acid batteries have a qualified life of 20 years, the batteries must be replaced a minimum of once during a station's lifetime, twice if license extension is pursued, and more often depending on actual in-service dates and the results of surveillance tests. Replacement of batteries often occurs prior to 20 years as a result of systems changes caused by factors such as Station Blackout Regulations, control system upgrades, incremental load growth, and changes in the operating times of existing equipment. Many of these replacement decisions are based on the predictive capabilities of manual design basis calculations. The inherent conservatism of manual calculations may result in battery replacements occurring before actually required. Computerized analysis of batteries can aid in optimizing the timing of replacements as well as in interpreting service test data. Computerized analysis also provides large benefits in maintaining the as-configured load profile and corresponding design margins, while also providing the capability of quickly analyze proposed modifications and response to internal and external audits

  15. Optimization of station battery replacement

    Science.gov (United States)

    Jancauskas, J. R.; Shook, D. A.

    1994-08-01

    During a loss of ac power at a nuclear generating station (including diesel generators), batteries provide the source of power which is required to operate safety-related components. Because traditional lead-acid batteries have a qualified life of 20 years, the batteries must be replaced a minimum of once during a station's lifetime, twice if license extension is pursued, and more often depending on actual in-service dates and the results of surveillance tests. Replacement of batteries often occurs prior to 20 years as a result of systems changes caused by factors such as Station Blackout Regulations, control system upgrades, incremental load growth, and changes in the operating times of existing equipment. Many of these replacement decisions are based on the predictive capabilities of manual design basis calculations. The inherent conservatism of manual calculations may result in battery replacements occurring before actually required. Computerized analysis of batteries can aid in optimizing the timing of replacements as well as in interpreting service test data. Computerized analysis also provides large benefits in maintaining the as-configured load profile and corresponding design margins, while also providing the capability to quickly analyze proposed modifications and respond to internal and external audits.

  16. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  17. Computer Aided Battery Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-07

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modeling of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.

  18. Functional materials for rechargeable batteries.

    Science.gov (United States)

    Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun

    2011-04-19

    There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Technical feasibility for commercialization of lithium ion battery as a substitute dry battery for motorcycle

    Science.gov (United States)

    Kurniyati, Indah; Sutopo, Wahyudi; Zakaria, Roni; Kadir, Evizal Abdul

    2017-11-01

    Dry battery on a motorcycle has a rapid rate of voltage drop, life time is not too long, and a long charging time. These are problems for users of dry battery for motorcycle. When the rate in the voltage decreases, the energy storage in the battery is reduced, then at the age of one to two years of battery will be dead and cannot be used, it makes the user should replace the battery. New technology development of a motorcycle battery is lithium ion battery. Lithium ion battery has a specification that has been tested and possible to replace dry battery. Characteristics of lithium ion battery can answer the question on the dry battery service life, the rate of decrease in voltage and charging time. This paper discusses about the technical feasibility for commercialization of lithium ion battery for motorcycle battery. Our proposed methodology of technical feasibility by using a goldsmith commercialization model of the technical feasibility and reconfirm the technical standard using the national standard of motorcycle battery. The battery has been through all the stages of the technical feasibility of the goldsmith model. Based on the results of the study, lithium ion batteries have the minimum technical requirements to be commercialized and has been confirmed in accordance with the standard motorcycle battery. This paper results that the lithium ion battery is visible to commercialized by the technical aspect.

  20. Proper battery system design for GAS experiments

    Science.gov (United States)

    Calogero, Stephen A.

    1992-10-01

    The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.

  1. Controllers for Battery Chargers and Battery Chargers Therefrom

    Science.gov (United States)

    Elmes, John (Inventor); Kersten, Rene (Inventor); Pepper, Michael (Inventor)

    2014-01-01

    A controller for a battery charger that includes a power converter has parametric sensors for providing a sensed Vin signal, a sensed Vout signal and a sensed Iout signal. A battery current regulator (BCR) is coupled to receive the sensed Iout signal and an Iout reference, and outputs a first duty cycle control signal. An input voltage regulator (IVR) receives the sensed Vin signal and a Vin reference. The IVR provides a second duty cycle control signal. A processor receives the sensed Iout signal and utilizes a Maximum Power Point Tracking (MPPT) algorithm, and provides the Vin reference to the IVR. A selection block forwards one of the first and second duty cycle control signals as a duty cycle control signal to the power converter. Dynamic switching between the first and second duty cycle control signals maximizes the power delivered to the battery.

  2. A terracotta bio-battery.

    Science.gov (United States)

    Ajayi, Folusho F; Weigele, Peter R

    2012-07-01

    Terracotta pots were converted into simple, single chamber, air-cathode bio-batteries. This bio-battery design used a graphite-felt anode and a conductive graphite coating without added catalyst on the exterior as a cathode. Bacteria enriched from river sediment served as the anode catalyst. These batteries gave an average OCV of 0.56 V ± 0.02, a Coulombic efficiency of 21 ± 5%, and a peak power of 1.06 mW ± 0.01(33.13 mW/m(2)). Stable current was also produced when the batteries were operated with hay extract in salt solution. The bacterial community on the anode of the batteries was tested for air tolerance and desiccation resistance over a period ranging from 2 days to 2 weeks. The results showed that the anode community could survive complete drying of the electrolyte for several days. These data support the further development of this technology as a potential power source for LED-based lighting in off-grid, rural communities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Characterization of Vanadium Flow Battery

    DEFF Research Database (Denmark)

    Bindner, Henrik W.; Krog Ekman, Claus; Gehrke, Oliver

    This report summarizes the work done at Risø-DTU testing a vanadium flow battery as part of the project “Characterisation of Vanadium Batteries” (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery...... has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risø DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration...... of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses...

  4. Vehicle Battery Safety Roadmap Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  5. Alternator control for battery charging

    Science.gov (United States)

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  6. The Philadelphia Face Perception Battery

    Science.gov (United States)

    Thomas, Amy; Lawler, Kathy; Olson, Ingrid R; Aguirre, Geoffrey K

    2008-01-01

    The Philadelphia Face Perception Battery (PFPB) tests four aspects of face perception: discrimination of facial similarity, attractiveness, gender, and age. Calibration with 116 neurologically intact subjects yielded average performance of ~90%. Across subjects, there was a low correlation (perception. There were modest effects of subject demographic factors upon performance, and test-retest reliability scores (between 0.37 and 0.75) were comparable to other neuropsychological batteries. Modification of the stimuli to obscure internal facial features lowered performance on the age, gender, and attractiveness discrimination tests between 2 and 4 standard deviations. The clinical sensitivity of the battery was demonstrated by testing a patient with acquired prosopagnosia. She showed performance impairments of between 2 and 4 standard deviations on all sub-tests. The PFPB is freely available for non-commercial use. PMID:18082362

  7. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper

    International Nuclear Information System (INIS)

    Costa, M N; Veigas, B; Jacob, J M; Santos, D S; Martins, R; Fortunato, E; Gomes, J; Inácio, J; Baptista, P V

    2014-01-01

    There is a strong interest in the use of biopolymers in the electronic and biomedical industries, mainly towards low-cost applications. The possibility of developing entirely new kinds of products based on cellulose is of current interest, in order to enhance and to add new functionalities to conventional paper-based products. We present our results towards the development of paper-based microfluidics for molecular diagnostic testing. Paper properties were evaluated and compared to nitrocellulose, the most commonly used material in lateral flow and other rapid tests. Focusing on the use of paper as a substrate for microfluidic applications, through an eco-friendly wax-printing technology, we present three main and distinct colorimetric approaches: (i) enzymatic reactions (glucose detection); (ii) immunoassays (antibodies anti-Leishmania detection); (iii) nucleic acid sequence identification (Mycobacterium tuberculosis complex detection). Colorimetric glucose quantification was achieved through enzymatic reactions performed within specific zones of the paper-based device. The colouration achieved increased with growing glucose concentration and was highly homogeneous, covering all the surface of the paper reaction zones in a 3D sensor format. These devices showed a major advantage when compared to the 2D lateral flow glucose sensors, where some carryover of the coloured products usually occurs. The detection of anti-Leishmania antibodies in canine sera was conceptually achieved using a paper-based 96-well enzyme-linked immunosorbent assay format. However, optimization is still needed for this test, regarding the efficiency of the immobilization of antigens on the cellulose fibres. The detection of Mycobacterium tuberculosis nucleic acids integrated with a non-cross-linking gold nanoprobe detection scheme was also achieved in a wax-printed 384-well paper-based microplate, by the hybridization with a species-specific probe. The obtained results with the above

  8. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper

    Science.gov (United States)

    Costa, M. N.; Veigas, B.; Jacob, J. M.; Santos, D. S.; Gomes, J.; Baptista, P. V.; Martins, R.; Inácio, J.; Fortunato, E.

    2014-03-01

    There is a strong interest in the use of biopolymers in the electronic and biomedical industries, mainly towards low-cost applications. The possibility of developing entirely new kinds of products based on cellulose is of current interest, in order to enhance and to add new functionalities to conventional paper-based products. We present our results towards the development of paper-based microfluidics for molecular diagnostic testing. Paper properties were evaluated and compared to nitrocellulose, the most commonly used material in lateral flow and other rapid tests. Focusing on the use of paper as a substrate for microfluidic applications, through an eco-friendly wax-printing technology, we present three main and distinct colorimetric approaches: (i) enzymatic reactions (glucose detection); (ii) immunoassays (antibodies anti-Leishmania detection); (iii) nucleic acid sequence identification (Mycobacterium tuberculosis complex detection). Colorimetric glucose quantification was achieved through enzymatic reactions performed within specific zones of the paper-based device. The colouration achieved increased with growing glucose concentration and was highly homogeneous, covering all the surface of the paper reaction zones in a 3D sensor format. These devices showed a major advantage when compared to the 2D lateral flow glucose sensors, where some carryover of the coloured products usually occurs. The detection of anti-Leishmania antibodies in canine sera was conceptually achieved using a paper-based 96-well enzyme-linked immunosorbent assay format. However, optimization is still needed for this test, regarding the efficiency of the immobilization of antigens on the cellulose fibres. The detection of Mycobacterium tuberculosis nucleic acids integrated with a non-cross-linking gold nanoprobe detection scheme was also achieved in a wax-printed 384-well paper-based microplate, by the hybridization with a species-specific probe. The obtained results with the above

  9. Validation of Battery Safety for Space Missions

    Science.gov (United States)

    Jeevarajan, Judith

    2012-01-01

    Presentation covers: (1) Safety Certification Process at NASA (2) Safety Testing for Lithium-ion Batteries (3) Limitations Observed with Li-ion Batteries in High Voltage and High Capacity Configurations.

  10. Li-air batteries: Decouple to stabilize

    Science.gov (United States)

    Xu, Ji-Jing; Zhang, Xin-Bo

    2017-09-01

    The utilization of porous carbon cathodes in lithium-air batteries is hindered by their severe decomposition during battery cycling. Now, dual redox mediators are shown to decouple the complex electrochemical reactions at the cathode, avoiding cathode passivation and decomposition.

  11. Li-ion Battery Aging Datasets

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set has been collected from a custom built battery prognostics testbed at the NASA Ames Prognostics Center of Excellence (PCoE). Li-ion batteries were run...

  12. Battery failure model derived from flaw theory

    Science.gov (United States)

    Schulman, I.

    1981-01-01

    A previously derived failure model for battery lifetime is discussed in terms of growth rate of the flaw, distribution of flaw sizes, and number of flaws. Equations are presented for determining the failure model for a nickel cadmium battery.

  13. 46 CFR 129.353 - Battery categories.

    Science.gov (United States)

    2010-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.353 Battery categories. This section applies to batteries installed to meet the requirements of § 129.310(a) for secondary sources of power to vital loads...

  14. Specification For ST-5 Li Ion Battery

    Science.gov (United States)

    Castell, Karen D.; Day, John H. (Technical Monitor)

    2000-01-01

    This Specification defines the general requirements for rechargeable Space Flight batteries intended for use in the ST-5 program. The battery chemistry chosen for this mission is lithium ion (Li-Ion).

  15. Materials science: Pulley protection in batteries

    Science.gov (United States)

    McDowell, Matthew T.

    2017-09-01

    High-energy battery electrodes can break apart during operation. Conventional rope-and-pulley systems have inspired the development of a polymer that holds electrodes together at the molecular scale, enabling durable batteries to be made.

  16. Practical Methods in Li-ion Batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela

    This thesis presents, as a collection of papers, practical methods in Li-ion batteries for simplified modeling (Manuscript I and II), battery electric vehicle design (III), battery management system testing (IV and V) and balancing system control (VI and VII). • Manuscript I tackles methodologies...... to parameterize battery models based solely on manufacturer’s datasheets • Manuscript II presents a parameterization method for battery models based on the notion of direct current resistance • Manuscript III proposes a battery electric vehicle design that combines fixed and swappable packs • Manuscript IV...... develops a battery system model for battery management system testing on a hardware-in-the-loop simulator • Manuscript V extends the previous work, introducing theoretical principles and presenting a practical method to develop ad hoc software and strategies for testing • Manuscript VI presents...

  17. Controlling fires in silver/zinc batteries

    Science.gov (United States)

    Boshers, W. A.; Britz, W. A.

    1977-01-01

    Silver/zinc storage battery fires are often difficult to extinguish. Improved technique employs manifold connected to central evacuation chamber to rapidly vent combustion-supporting gases generated by battery plate oxides.

  18. Survey of rechargeable battery technology

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

  19. Online versus paper-based screening for depression and anxiety in adults with cystic fibrosis in Ireland: a cross-sectional exploratory study.

    Science.gov (United States)

    Cronly, Jennifer; Duff, Alistair J; Riekert, Kristin A; Perry, Ivan J; Fitzgerald, Anthony P; Horgan, Aine; Lehane, Elaine; Howe, Barbara; Ni Chroinin, Muireann; Savage, Eileen

    2018-01-21

    To compare online and paper-based screening for depression and anxiety in adults with cystic fibrosis (CF). Cross-sectional study in CF clinics in Ireland and through the Cystic Fibrosis Ireland online community. 160 adult patients aged 18 or above were recruited. Of these, 147 were included in the analysis; 83 online and 64 paper-based. The remaining 13 were excluded because of incomplete data. Depression and anxiety were measured using the Hospital Anxiety and Depression Scale (HADS). Data on pulmonary function (forced expiratory volume in 1 s %) and body mass index were self-reported based on clinical assessments. Sociodemographic data were collected. Compared with the paper-based participants, the online participants were more likely to be female (61.7% vs 48.4%), older (mean 32.2 vs 28.2 years) and were more likely to be married (32.5% vs 15.6%), living with their spouse or partner (42.5% vs 22.6%) and working either full time (33.7% vs 15.9%) or part time (30.1%vs 17.5%). The prevalence rates of elevated anxiety and depression were not significantly different (P=0.71 and P=0.56). HADS anxiety and depression scores were not statistically different between online (P=0.83) and paper-based (P=0.92) participants based on Mann-Whitney U test. A significant negative correlation was found between depression and pulmonary function (r=-0.39, P=0.01) and anxiety and pulmonary function (r=-0.36, P=0.02). Based on Cronbach's alpha, there were no statistically significant differences between the online and paper-based participants on the internal consistency of the HADS anxiety (P=0.073) and depression (P=0.378) scales. Our findings suggest that online and paper-based screening for depression and anxiety in adult patients with CF yield comparable findings on prevalence rates and scores, associations with health and internal consistency of subscales. This study highlights that online screening offers an alternative method to paper-based screening. Further research with a

  20. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Federal Aviation Administration Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  1. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to...

  2. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    NARCIS (Netherlands)

    Pham, T.H.; Rosea, B.; Wilkins, S.

    2016-01-01

    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  3. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  4. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  5. Aluminum-air battery crystallizer

    Science.gov (United States)

    Maimoni, A.

    1987-01-01

    A prototype crystallizer system for the aluminum-air battery operated reliably through simulated startup and shutdown cycles and met its design objectives. The crystallizer system allows for crystallization and removal of the aluminium hydroxide reaction product; it is required to allow steady-state and long-term operation of the aluminum-air battery. The system has to minimize volume and maintain low turbulence and shear to minimize secondary nucleation and energy consumption while enhancing agglomeration. A lamella crystallizer satisfies system constraints.

  6. 46 CFR 111.15-5 - Battery installation.

    Science.gov (United States)

    2010-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-5 Battery... must be as close as possible to the engine or engines. (c) Small batteries. Small size battery... and, for a lead-acid battery, the fully charged specific gravity value. This information must be...

  7. Principles and applications of lithium secondary batteries

    CERN Document Server

    Park, Jung-Ki

    2012-01-01

    Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energystorage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a centralrole in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development onlithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer

  8. Novel Electrolytes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Brett L. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Chemistry

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  9. BATTERIES 2020 – A Joint European Effort towards European Competitive Automotive Batteries

    DEFF Research Database (Denmark)

    Timmermans, J.-M.; Rodriguez-Martinez, L.M.; Omar, N.

    The Integrated Project “Batteries 2020” unites 9 European partners jointly working on the research and development of European competitive automotive batteries. The project aims at increasing lifetime and energy density of large format high-energy lithium-ion batteries towards the goals targeted...... of degradation processes. (iii) Reduction of battery cost; a way to reduce costs, increase battery residual value and improve sustainability is to consider second life uses of batteries used in EV. These batteries are still operational and suitable to less restrictive conditions, such as those for stationary...

  10. A Battery Power Bank with Series-Connected Buck–Boost-Type Battery Power Modules

    Directory of Open Access Journals (Sweden)

    Tsung-Hsi Wu

    2017-05-01

    Full Text Available The operation of a battery power bank with series-connected buck–boost-type battery power modules (BPMs was investigated in this study. Each BPM consisted of a battery pack with an associated buck–boost converter for individually controlling battery currents. With a proposed discharging scenario, load voltage regulation with charge equalization among batteries was performed by controlling the battery currents in accordance with their state-of-charges (SOCs estimated by real-time battery-loaded voltages detected under the same operating condition. In addition, the fault tolerance was executed to isolate exhausted or faulty batteries from the battery power bank without interrupting the system operation. Experiments were conducted to verify the effectiveness of the discharging scenario for a laboratory battery power bank with four series buck–boost BPMs.

  11. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  12. Battery Charge Equalizer with Transformer Array

    Science.gov (United States)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  13. Battery impedance spectroscopy using bidirectional grid connected ...

    Indian Academy of Sciences (India)

    Shimul Kumar Dam

    Impedance spectroscopy; grid connection; battery converter; state of charge; health monitoring. 1. Introduction. Batteries play an important role as energy storage devices for renewable energy sources, electric vehicle and many other applications. A battery bank is interfaced to load through a power converter, which controls ...

  14. Review of storage battery system cost estimates

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  15. Top ten reasons why coke batteries fail

    Energy Technology Data Exchange (ETDEWEB)

    Dohle, H.; Schulte, H.; Ramani, R.V. [ThyssenKrupp EnCoke GmbH, Bochum (Germany)

    2002-07-01

    The reasons for the failure of coke batteries are varied and interrelated. Identifying them and taking precautionary measures against them will help with the possible extension of the service life of the batteries. Most of the contributory factors are interrelated and in combination they encourage faster deterioration of the battery. 6 refs., 12 figs.

  16. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  17. Battery impedance spectroscopy using bidirectional grid connected ...

    Indian Academy of Sciences (India)

    Battery impedance can provide valuable insight into the condition of the battery. Commercially available impedance measurement instruments are expensive. Hence their direct use in a battery management system is not justifiable. In this work, a 3-kW bi-directional converter for charging and discharging a batterybank has ...

  18. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Science.gov (United States)

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  19. Using web-based and paper-based questionnaires for collecting data on fertility issues among female childhood cancer survivors: differences in response characteristics

    NARCIS (Netherlands)

    van den Berg, M.H.; Overbeek, A.; van der Pal, H.J.H.; Versluys, A.B.; Bresters, D.; van Leeuwen, F.E.; Lambalk, C.B.; Kaspers, G.J.L.; van Dulmen-den Broeder, E.

    2011-01-01

    Background: Web-based questionnaires have become increasingly popular in health research. However, reported response rates vary and response bias may be introduced. Objective: The aim of this study was to evaluate whether sending a mixed invitation (paper-based together with Web-based questionnaire)

  20. Using web-based and paper-based questionnaires for collecting data on fertility issues among female childhood cancer survivors: differences in response characteristics

    NARCIS (Netherlands)

    van den Berg, Marleen H.; Overbeek, Annelies; van der Pal, Helena J.; Versluys, A. Birgitta; Bresters, Dorine; van Leeuwen, Flora E.; Lambalk, Cornelis B.; Kaspers, Gertjan J. L.; van Dulmen-den Broeder, Eline

    2011-01-01

    Web-based questionnaires have become increasingly popular in health research. However, reported response rates vary and response bias may be introduced. The aim of this study was to evaluate whether sending a mixed invitation (paper-based together with Web-based questionnaire) rather than a Web-only

  1. A Simple Paper-Based Microfluidic Device for the Determination of the Total Amino Acid Content in a Tea Leaf Extract

    Science.gov (United States)

    Cai, Longfei; Wu, Yunying; Xu, Chunxiu; Chen, Zefeng

    2013-01-01

    An experiment was developed to demonstrate a microfluidic device in the analytical chemistry (instrumental analysis) laboratory. Students made the paper-based microfluidic device with a wax pen and a piece of filter paper and used it to determine the total quantity of amino acids in a green tea leaf

  2. Paper-based enzyme-free immunoassay for rapid detection and subtyping of influenza A H1N1 and H3N2 viruses.

    Science.gov (United States)

    Lei, Kin Fong; Huang, Chia-Hao; Kuo, Rei-Lin; Chang, Cheng-Kai; Chen, Kuan-Fu; Tsao, Kuo-Chien; Tsang, Ngan-Ming

    2015-07-09

    Development of rapid screening in the ambulatory environment is the most pressing needs for the control of spread of infectious disease. Despite there are many methods to detect the immunoassay results, quantitative measurement in rapid disease screening is still a great challenge for point-of-care applications. In this work, based on the internal structural protein, i.e., nucleoprotein (NP), and outer surface glycoproteins, i.e., H1 and H3, of the influenza viruses, specific and sensitive immunoassay on paper-based platform was evaluated and confirmed. Detection and subtyping of influenza A H1N1 and H3N2 viruses found in people were demonstrated by colorimetric paper-based sandwich immunoassay. Concentration-dependent response to influenza viruses was shown and the detection limits could achieve 2.7×10(3) pfu/assay for H1 detection and 2.7×10(4) pfu/assay for H3 detection, which are within the clinical relevant level. Moreover, detection of influenza virus from infected cell lysate and clinical samples was demonstrated to further confirm the reliability of the paper-based immunoassay. The use of paper for the development of diagnostic devices has the advantages of lightweight, ease-of-use, and low cost and paper-based immunoassay is appropriate to apply for rapid screening in point-of-care applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fabricating Simple Wax Screen-Printing Paper-Based Analytical Devices to Demonstrate the Concept of Limiting Reagent in Acid- Base Reactions

    Science.gov (United States)

    Namwong, Pithakpong; Jarujamrus, Purim; Amatatongchai, Maliwan; Chairam, Sanoe

    2018-01-01

    In this article, a low-cost, simple, and rapid fabrication of paper-based analytical devices (PADs) using a wax screen-printing method is reported here. The acid-base reaction is implemented in the simple PADs to demonstrate to students the chemistry concept of a limiting reagent. When a fixed concentration of base reacts with a gradually…

  4. Transparent lithium-ion batteries

    KAUST Repository

    Yang, Y.

    2011-07-25

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries.

  5. Phthalocyanines in batteries and supercapacitors

    CSIR Research Space (South Africa)

    Oni, J

    2012-08-01

    Full Text Available of their lower cost. This review article looks through a very narrow window of the applications of phthalocyanines in batteries and supercapacitors as a means of improving the qualities such as cycle property, energy density, capacity, open circuit voltage, etc...

  6. A nanoview of battery operation

    DEFF Research Database (Denmark)

    Schougaard, Steen Brian

    2016-01-01

    The redox-active materials in lithium-ion batteries have relatively poor electronic and ionic conduction and may experience stress from charge-discharge volume changes, so their formulation into structures with nanosized features is highly desirable. On page 566 of this issue, Lim et al. (1...

  7. Environmental assessment of batteries for photovoltaic systems

    International Nuclear Information System (INIS)

    Brouwer, J.M.; Lindeijer, E.W.

    1993-10-01

    A life cycle analysis (LCA) on 4 types of batteries for PV systems has been performed. in order to assess the environmental impacts of the various battery types, leading to recommendations for improvements in the production and use of batteries. The different battery types are compared on the basis of a functional unit: 240 kWh electric energy from PV modules delivered for household applications by one flat-plate lead-acid battery. An important product characteristic is the performance; in the study a Ni-Cd battery is taken to deliver 4 times as much energy as a flat plate battery (Pb-flat), a rod plate battery (Pb-rod) 3.4 times as much and a tubular plate battery (Pb-tube) 2.8 times as much. Environmental data was gathered from recent primary and secondary data in a database under internal quality control. Calculations were performed with an updated version of SIMAKOZA, a programme developed by the Centre of Environmental Science (CML), University of Leiden, Leiden, Netherlands. Of the types investigated, the Pb tube battery is to be preferred environmentally. Using one allocation method for recycling, the NiCd battery scores best on ozone depletion since no PVC is used (PVC production demands cooling with CFCs), on non-toxic waste and on disruption of ecosystems. The lead-bearing batteries score better on other aspects due to lower energy consumption during production and no emissions of cadmium. Using another allocation method for recycling the NiCd battery scores best on almost all environmental topics. Both allocation methods supplement each other. For resource depletion, regarding cadmium as an unavoidable by-product of zinc production renders NiCd batteries as much less problematic than lead/acid batteries, but taking account of the physical resources available would make the use of cadmium much more problematic than the use of lead. 37 figs., 20 tabs., 8 appendices, 109 refs

  8. The Science of Battery Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; El Gabaly Marquez, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; McCarty, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Sugar, Joshua Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Talin, Alec A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Fenton, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Nagasubramanian, Ganesan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Jungjohann, Katherine Leigh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Kliewer, Christopher Jesse [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Hudak, Nicholas S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Research and Development; Leung, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics; McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Combustion Technology; Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Chemical and Biological Systems; Zavadil, Kevin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Lab.

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  9. Battery Fault Detection with Saturating Transformers

    Science.gov (United States)

    Davies, Francis J. (Inventor); Graika, Jason R. (Inventor)

    2013-01-01

    A battery monitoring system utilizes a plurality of transformers interconnected with a battery having a plurality of battery cells. Windings of the transformers are driven with an excitation waveform whereupon signals are responsively detected, which indicate a health of the battery. In one embodiment, excitation windings and sense windings are separately provided for the plurality of transformers such that the excitation waveform is applied to the excitation windings and the signals are detected on the sense windings. In one embodiment, the number of sense windings and/or excitation windings is varied to permit location of underperforming battery cells utilizing a peak voltage detector.

  10. Models for Battery Reliability and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  11. Li-ion batteries: Phase transition

    International Nuclear Information System (INIS)

    Hou Peiyu; Zhang Yantao; Zhang Lianqi; Chu Geng; Gao Jian

    2016-01-01

    Progress in the research on phase transitions during Li + extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomena in Li-ion batteries. Physical phenomena such as phase transitions (and resultant phase diagrams) are often observed in Li-ion battery research and already play an important role in promoting Li-ion battery technology. For example, the phase transitions during Li + insertion/extraction are highly relevant to the thermodynamics and kinetics of Li-ion batteries, and even physical characteristics such as specific energy, power density, volume variation, and safety-related properties. (topical review)

  12. Advanced integrated battery testing and simulation

    Science.gov (United States)

    Liaw, Bor Yann; Bethune, Keith P.; Yang, Xiao Guang

    The recent rapid expansion in the use of portable electronics, computers, personal data assistants, cellular phones, power tools, and even electric and hybrid vehicles creates a strong demand on fast deployment of battery technologies at an unprecedented rate. To facilitate such a development integrated battery testing and simulation (IBTS) using computer modeling is an effective tool to improve our capability of rapid prototyping battery technology and facilitating concurrent product development. In this paper, we will present a state-of-the-art approach to use IBTS for improvements in battery cell design, operation optimization, and even charge control for advanced batteries.

  13. Lithium-ion batteries advances and applications

    CERN Document Server

    Pistoia, Gianfranco

    2014-01-01

    Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwi

  14. Primary battery design and safety guidelines handbook

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E.; Trout, J. Barry

    1994-12-01

    This handbook provides engineers and safety personnel with guidelines for the safe design or selection and use of primary batteries in spaceflight programs. Types of primary batteries described are silver oxide zinc alkaline, carbon-zinc, zinc-air alkaline, manganese dioxide-zionc alkaline, mercuric oxide-zinc alkaline, and lithium anode cells. Along with typical applications, the discussions of the individual battery types include electrochemistry, construction, capacities and configurations, and appropriate safety measures. A chapter on general battery safety covers hazard sources and controls applicable to all battery types. Guidelines are given for qualification and acceptance testing that should precede space applications. Permissible failure levels for NASA applications are discussed.

  15. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  16. The Mechanical Response of Multifunctional Battery Systems

    Science.gov (United States)

    Tsutsui, Waterloo

    The current state of the art in the field of the mechanical behavior of electric vehicle (EV) battery cells is limited to quasi-static analysis. The lack of published data in the dynamic mechanical behavior of EV battery cells blinds engineers and scientists with the uncertainty of what to expect when EVs experience such unexpected events as intrusions to their battery systems. To this end, the recent occurrences of several EVs catching fire after hitting road debris even make this topic timelier. In order to ensure the safety of EV battery, it is critical to develop quantitative understanding of battery cell mechanical behavior under dynamic compressive loadings. Specifically, the research focuses on the dynamic mechanical loading effect on the standard "18650" cylindrical lithium-ion battery cells. In the study, the force-displacement and voltage-displacement behavior of the battery cells were analyzed experimentally at two strain rates, two state-of-charges, and two unit-cell configurations. The results revealed the strain rate sensitivity of their mechanical responses with the solid sacrificial elements. When the hollow sacrificial cells are used, on the other hand, effect was negligible up to the point of densification strength. Also, the high state-of-charge appeared to increase the stiffness of the battery cells. The research also revealed the effectiveness of the sacrificial elements on the mechanical behavior of a unit cell that consists of one battery cell and six sacrificial elements. The use of the sacrificial elements resulted in the delayed initiation of electric short circuit. Based on the analysis of battery behavior at the cell level, granular battery assembly, a battery pack, was designed and fabricated. The behavior of the granular battery assembly was analyzed both quasistatically and dynamically. Building on the results of the research, various research plans were proposed. Through conducting the research, we sought to answer the following

  17. Towards an All-Polymer Biosensor for Early Alzheimer's Disease

    DEFF Research Database (Denmark)

    Christiansen, Nikolaj Ormstrup; Heegaard, Niels

    Alzheimer's disease (AD) is quickly evolving into one of the biggest and most costly health issues in Europe and the United States. AD is a protein misfolding disease, caused by accumulation of abnormally folded β-amyloid and tau protein in the brain. The build-up of protein is believed...... to degenerate the brain tissue literally shrinking the brain. This slowly destroys function of these parts of the brain. It has been discovered that the concentration of A42 in cerebrospinal fluid (CSF) is a biomarker for this disease. It is therefor of great interest to develop quick and low cost methods...

  18. Lithium-polymer batteries; Les batteries lithium-polymere

    Energy Technology Data Exchange (ETDEWEB)

    Lascaud, St. [Electricite de France, 77 - Moret sur Loing (France). Dept. CIMA

    1999-04-01

    Lithium polymer batteries are a technological breakthrough which will improve EV`s range by a factor three. This new technology based on very thin plastic films, produced by solvent-less and a high productive process will reach low cost at industrial scale. EDF, Bollore and Schneider Electric are involved in R and D program to carry out a 2 kWh lithium polymer module by the end of year 2000. (authors)

  19. Inkjet-Printed Paper-Based RFID and Nanotechnology-Based Ultrasensitive Sensors: The "Green" Ultimate Solution for an Ever Improving Life Quality and Safety?

    Science.gov (United States)

    Tentzeris, Manos; Yang, Li

    The paper introduces the integration of conformal paper-based RFID's with a Single Walled Carbon Nanotube (SW-CNT) composite for the development of a chipless RFID-enabled wireless sensor node for toxic gas detection and breathing-gas-content estimation. The electrical performance of the inkjet-printed SWCNT-based ultra-sensitive sensor if reported up to 1GHz. The whole module is realized by inkjet-printing on a low-cost "green" paper-based substrate designed to operate in the European UHF RFID band. The electrical conductivity of the SWCNT film changes in the presence of ultra-small quantities of gases like ammonia and nitrogen dioxide, resulting in the variation of the backscattered power level which can be easily detected by the RFID reader to realize reliable early-warning toxic gas detection or breathing monitoring with potentially profound effects on ubiquitous low-cost "green" quality-of-life applications.

  20. Using web-based and paper-based questionnaires for collecting data on fertility issues among female childhood cancer survivors: differences in response characteristics.

    Science.gov (United States)

    van den Berg, Marleen H; Overbeek, Annelies; van der Pal, Helena J; Versluys, A Birgitta; Bresters, Dorine; van Leeuwen, Flora E; Lambalk, Cornelis B; Kaspers, Gertjan J L; van Dulmen-den Broeder, Eline

    2011-09-29

    Web-based questionnaires have become increasingly popular in health research. However, reported response rates vary and response bias may be introduced. The aim of this study was to evaluate whether sending a mixed invitation (paper-based together with Web-based questionnaire) rather than a Web-only invitation (Web-based questionnaire only) results in higher response and participation rates for female childhood cancer survivors filling out a questionnaire on fertility issues. In addition, differences in type of response and characteristics of the responders and nonresponders were investigated. Moreover, factors influencing preferences for either the Web- or paper-based version of the questionnaire were examined. This study is part of a nationwide study on reproductive function, ovarian reserve, and risk of premature menopause in female childhood cancer survivors. The Web-based version of the questionnaire was available for participants through the Internet by means of a personalized user name and password. Participants were randomly selected to receive either a mixed invitation (paper-based questionnaire together with log-in details for Web-based questionnaire, n = 137) or a Web-only invitation (log-in details only, n = 140). Furthermore, the latter group could request a paper-based version of the questionnaire by filling out a form. Overall response rates were comparable in both randomization groups (83% mixed invitation group vs 89% in Web-only invitation group, P = .20). In addition, participation rates appeared not to differ (66% or 90/137, mixed invitation group vs 59% or 83/140, Web-only invitation group, P =.27). However, in the mixed invitation group, significantly more respondents filled out the paper-based questionnaire compared with the Web-only invitation group (83% or 75/90 and 65% or 54/83, respectively, P = .01). The 44 women who filled out the Web-based version of the questionnaire had a higher educational level than the 129 women who filled out the

  1. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor.

    Science.gov (United States)

    Wang, Qi-Xian; Xue, Shi-Fan; Chen, Zi-Han; Ma, Shi-Hui; Zhang, Shengqiang; Shi, Guoyue; Zhang, Min

    2017-08-15

    In this work, a novel time-resolved ratiometric fluorescent probe based on dual lanthanide (Tb: terbium, and Eu: europium)-doped complexes (Tb/DPA@SiO 2 -Eu/GMP) has been designed for detecting anthrax biomarker (dipicolinic acid, DPA), a unique and major component of anthrax spores. In such complexes-based probe, Tb/DPA@SiO 2 can serve as a stable reference signal with green fluorescence and Eu/GMP act as a sensitive response signal with red fluorescence for ratiometric fluorescent sensing DPA. Additionally, the probe exhibits long fluorescence lifetime, which can significantly reduce the autofluorescence interferences from biological samples by using time-resolved fluorescence measurement. More significantly, a paper-based visual sensor for DPA has been devised by using filter paper embedded with Tb/DPA@SiO 2 -Eu/GMP, and we have proved its utility for fluorescent detection of DPA, in which only a handheld UV lamp is used. In the presence of DPA, the paper-based visual sensor, illuminated by a handheld UV lamp, would result in an obvious fluorescence color change from green to red, which can be easily observed with naked eyes. The paper-based visual sensor is stable, portable, disposable, cost-effective and easy-to-use. The feasibility of using a smartphone with easy-to-access color-scanning APP as the detection platform for quantitative scanometric assays has been also demonstrated by coupled with our proposed paper-based visual sensor. This work unveils an effective method for accurate, sensitive and selective monitoring anthrax biomarker with backgroud-free and self-calibrating properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  3. Simultaneous Detection of Antibiotic Resistance Genes on Paper-Based Chip Using [Ru(phen)2dppz]2+ Turn-on Fluorescence Probe.

    Science.gov (United States)

    Li, Bofan; Zhou, Xiaoming; Liu, Hongxing; Deng, Huaping; Huang, Ru; Xing, Da

    2018-02-07

    Antibiotic resistance, the ability of some bacteria to resist antibiotic drugs, has been a major global health burden due to the extensive use of antibiotic agents. Antibiotic resistance is encoded via particular genes; hence the specific detection of these genes is necessary for diagnosis and treatment of antibiotic resistant cases. Conventional methods for monitoring antibiotic resistance genes require the sample to be transported to a central laboratory for tedious and sophisticated tests, which is grueling and time-consuming. We developed a paper-based chip, integrated with loop-mediated isothermal amplification (LAMP) and the "light switch" molecule [Ru(phen) 2 dppz] 2+ , to conduct turn-on fluorescent detection of antibiotic resistance genes. In this assay, the amplification reagents can be embedded into test spots of the chip in advance, thus simplifying the detection procedure. [Ru(phen) 2 dppz] 2+ was applied to intercalate into amplicons for product analysis, enabling this assay to be operated in a wash-free format. The paper-based detection device exhibited a limit of detection (LOD) as few as 100 copies for antibiotic resistance genes. Meanwhile, it could detect antibiotic resistance genes from various bacteria. Noticeably, the approach can be applied to other genes besides antibiotic resistance genes by simply changing the LAMP primers. Therefore, this paper-based chip has the potential for point-of-care (POC) applications to detect various gene samples, especially in resource-limited conditions.

  4. Developing Web-oriented Homework System to Assess Students’ Introductory Physics Course Performance and Compare to Paper-based Peer Homework

    Directory of Open Access Journals (Sweden)

    Neset DEMIRCI

    2006-07-01

    Full Text Available The World Wide Web influences education and our lives in many ways. Nowadays, Web-based homework has been becoming widespread practice in physics courses and some other courses as well. Although are some disputes whether this is an encouraging or risky development for student learning, there is limited research assessing the pedagogical effect of changing the medium from written, hand-graded homework to online oriented, computer-graded homework. In this study, web-oriented homework system is developed to assess students’ introductory physics course performance. Later on, these results are compared with paper-based (peer homework performance for mid enrollment physics courses. One of two identical sections of introductory physics course students received paper-based, hand graded group homework while the other received the individual web-based homework. Then two groups’ on conceptual and problem-solving performance measures are compared. No significant differences were found in students’ Force Concept Inventory (FCI test scores; however, average homework performance scores were significant that could be attributed to the homework method used in favor of paper-based peer homework group.

  5. Use of and attitudes to a hospital information system by medical secretaries, nurses and physicians deprived of the paper-based medical record: a case report

    Directory of Open Access Journals (Sweden)

    Karlsen Tom H

    2004-10-01

    Full Text Available Abstract Background Most hospitals keep and update their paper-based medical records after introducing an electronic medical record or a hospital information system (HIS. This case report describes a HIS in a hospital where the paper-based medical records are scanned and eliminated. To evaluate the HIS comprehensively, the perspectives of medical secretaries and nurses are described as well as that of physicians. Methods We have used questionnaires and interviews to assess and compare frequency of use of the HIS for essential tasks, task performance and user satisfaction among medical secretaries, nurses and physicians. Results The medical secretaries use the HIS much more than the nurses and the physicians, and they consider that the electronic HIS greatly has simplified their work. The work of nurses and physicians has also become simplified, but they find less satisfaction with the system, particularly with the use of scanned document images. Conclusions Although the basis for reference is limited, the results support the assertion that replacing the paper-based medical record primarily benefits the medical secretaries, and to a lesser degree the nurses and the physicians. The varying results in the different employee groups emphasize the need for a multidisciplinary approach when evaluating a HIS.

  6. The Influence of Web- versus Paper-Based Formats on the Assessment of Tobacco Dependence: Evaluating the Measurement Invariance of the Dimensions of Tobacco Dependence Scale

    Directory of Open Access Journals (Sweden)

    Chris G. Richardson

    2009-01-01

    Full Text Available The purpose of this study was to examine the influence of mode of administration (internet-based, web survey format versus pencil-and-paper format on responses to the Dimensions of Tobacco Dependence Scale (DTDS. Responses from 1,484 adolescents that reported using tobacco (mean age 16 years were examined; 354 (23.9% participants completed a web-based version and 1,130 (76.1% completed a paper-based version of the survey. Both surveys were completed in supervised classroom environments. Use of the web-based format was associated with significantly shorter completion times and a small but statistically significant increase in the number of missing responses. Tests of measurement invariance indicated that using a web-based mode of administration did not influence the psychometric functioning of the DTDS. There were no significant differences between the web- and paper-based groups' ratings of the survey's length, their question comprehension, and their response accuracy. Overall, the results of the study support the equivalence of scores obtained from web- and paper-based versions of the DTDS in secondary school settings.

  7. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off-line recharging and on-line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm-sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  8. Non-Intrusive Battery Health Monitoring

    Directory of Open Access Journals (Sweden)

    Gajewski Laurent

    2017-01-01

    Full Text Available The “Non-intrusive battery health monitoring”, developed by Airbus Defence and Space (ADS in cooperation with the CIRIMAT-CNRS laboratory and supported by CNES, aims at providing a diagnosis of the battery ageing in flight, called State of Health (SOH, using only the post-treatment of the battery telemetries. The battery current and voltage telemetries are used by a signal processing tool on ground to characterize and to model the battery at low frequencies which allows monitoring the evolution of its degradation with great accuracy. The frequential behaviour estimation is based on inherent disturbances on the current during the nominal functioning of the battery. For instance, on-board thermal control or equipment consumption generates random disturbances on battery current around an average current. The battery voltage response to these current random disturbances enables to model the low frequency impedance of the battery by a signal processing tool. The re-created impedance is then compared with the evolution model of the low frequencies impedance as a function of the battery ageing to estimate accurately battery degradation. Hence, this method could be applied to satellites which are already in orbit and whose battery telemetries acquisition system fulfils the constraints determined in the study. This innovative method is an improvement of present state-of-the-art and is important to have a more accurate in-flight knowledge of battery ageing which is crucial for mission and operation planning and also for possible satellite mission extension or deorbitation. This method is patented by Airbus Defence and Space and CNES.

  9. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  10. Lithium-thionyl chloride battery

    Science.gov (United States)

    Wong, D.; Bowden, W.; Hamilton, N.; Cubbison, D.; Dey, A. N.

    1981-04-01

    The main objective is to develop, fabricate, test, and deliver safe high rate lithium-thionyl chloride batteries for various U.S. Army applications such as manpack ratios and GLLD Laser Designators. We have devoted our efforts in the following major areas: (1) Optimization of the spirally wound D cell for high rate applications, (2) Development of a 3 inch diameter flat cylindrical cell for the GLLD laser designator application, and (3) Investigation of the reduction mechanism of SOCl2. The rate capability of the spirally wound D cell previously developed by us has been optimized for both the manpack radio (BA5590) battery and GLLD laser designator battery application in this program. A flat cylindrical cell has also been developed for the GLLD laser designator application. It is 3 inches in diameter and 0.9 inch in height with extremely low internal cell impedance that minimizes cell heating and polarization on the GLLD load. Typical cell capacity was found to be 18.0-19.0 Ahr with a few cells delivering up to about 21.0 Ahr on the GLLD test load. Study of the reduction mechanism of SOCl2 using electrochemical and spectroscopic techniques has also been carried out in this program which may be directly relevant to the intrinsic safety of the system.

  11. Interfacial reactions in lithium batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.

  12. Batteries for electric road vehicles.

    Science.gov (United States)

    Goodenough, John B; Braga, M Helena

    2018-01-15

    The dependence of modern society on the energy stored in a fossil fuel is not sustainable. An immediate challenge is to eliminate the polluting gases emitted from the roads of the world by replacing road vehicles powered by the internal combustion engine with those powered by rechargeable batteries. These batteries must be safe and competitive in cost, performance, driving range between charges, and convenience. The competitive performance of an electric car has been demonstrated, but the cost of fabrication, management to ensure safety, and a short cycle life have prevented large-scale penetration of the all-electric road vehicle into the market. Low-cost, safe all-solid-state cells from which dendrite-free alkali-metal anodes can be plated are now available; they have an operating temperature range from -20 °C to 80 °C and they permit the design of novel high-capacity, high-voltage cathodes providing fast charge/discharge rates. Scale-up to large multicell batteries is feasible.

  13. Computing Optimal Schedules of Battery Usage in Embedded Systems

    NARCIS (Netherlands)

    Jongerden, M.R.; Mereacre, Alexandru; Bohnenkamp, H.C.; Haverkort, Boudewijn R.H.M.; Katoen, Joost P.

    2010-01-01

    The use of mobile devices is often limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries or battery cells over the load to exploit the recovery

  14. Model-based energy analysis of battery powered systems

    NARCIS (Netherlands)

    Jongerden, M.R.

    2010-01-01

    The use of mobile devices is often limited by the lifetime of the included batteries. This lifetime naturally depends on the battery's capacity and on the rate at which the battery is discharged. However, it also depends on the usage pattern, i.e., the workload, of the battery. When a battery is

  15. An Improved Wireless Battery Charging System

    Directory of Open Access Journals (Sweden)

    Woo-Seok Lee

    2018-03-01

    Full Text Available This paper presents a direct wireless battery charging system. The output current of the series-series compensated wireless power transfer (SS-WPT system is used as a current source, and the output voltage of AC-DC converter controls the current source. Therefore, the proposed wireless battery charging system needs no battery charging circuit to carry out charging profiles, and can solve space constraints and thermal problems in many battery applications. In addition, the proposed wireless battery charging system can implement easily most other charging profiles. In this paper, the proposed wireless battery charging system is implemented and the feasibility is verified experimentally according to constant-current constant-voltage charging profile or multi-step current charging profile.

  16. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-12-31

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  17. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-01-01

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  18. The battery recycling loop: a European perspective

    Science.gov (United States)

    Ahmed, F.

    Restricting the loss of lead into the environment is essential and European legislation has reacted by requiring the recycling of lead/acid batteries. With the forecast of strong growth in the battery market over the next decade, secondary lead output will need to increase substantially to supply this demand. Battery recycling rates are vulnerable, however, to low lead prices and restrictive legislation. Effective recycling schemes are required to ensure maximum recovery and several are successfully in operation. Environmentally sound technology exists to recycle the lead and polypropylene components of batteries. A full range of lead and lead alloys are available to the battery industry from secondary material and now challenge primary products in most battery applications. It is important to optimize recycling efficiency and minimize environmental damage.

  19. Enabling fast charging - Battery thermal considerations

    Science.gov (United States)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  20. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  1. Primer on lead-acid storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  2. Thermal Battery Systems for Ordnance Fuzing

    Science.gov (United States)

    1982-07-01

    Characteriza- (63) J. DeGruson and R. Spencer, Improved tion of Aged, Unactivated Thermal Battery Thermal Battery Performance, Eagle - Picher In- Components, U.S...AFB ATTN F. TEPPER WASHINGTON, DC 20332 1421 CLARKVIEW RD BALTIMORE, MD 21209 EAGLE - PICHER INDUSTRIES ATTN R. COTTINGRAM MR. GEORGE J. METHLIE PO BOX...PERIOD COVERED Technical Report Thermal Battery Systems for Ordnance Fuzing TechnicalReport 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) B

  3. Bacterial Acclimation Inside an Aqueous Battery.

    Science.gov (United States)

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  4. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  5. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  6. Rechargeable batteries materials, technologies and new trends

    CERN Document Server

    Zhang, Zhengcheng

    2015-01-01

    This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write

  7. Hubble Space Telescope 2004 Battery Update

    Science.gov (United States)

    Hollandsworth, Roger; Armantrout, Jon; Whitt, Tom; Rao, Gopalakrishna M.

    2006-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. The on-orbit HST batteries were manufactured on an expedited basis after the Challenger Shuttle Disaster in 1986. The original design called for the HST to be powered by six 50 Ah Nickel Cadmium batteries, which would have required a shuttle mission every 5 years for battery replacement. The decision to use NiH2 instead has resulted in a longer life battery set which was launched with HST in April 1990, with a design life of 7 years that has now exceeded 14+ years of orbital cycling. This chart details the specifics of the original HST NiH2 cell design. The HST replacement batteries for Service Mission 4, originally scheduled for Spring 2005, are currently in cold storage at NASA Goddard Space Flight Center (GSFC). The SM4 battery cells utilize slurry process electrodes having 80% porosity.

  8. Lithium-Oxygen Batteries: At a Crossroads?

    DEFF Research Database (Denmark)

    Vegge, Tejs; García Lastra, Juan Maria; Siegel, Donald Jason

    2017-01-01

    In this current opinion, we critically review and discuss some of the most important recent findings in the field of rechargeable lithium-oxygen batteries. We discuss recent discoveries like the evolution of reactive singlet oxygen and the use of organic additives to bypass reactive LiO2 reaction...... intermediates, and their possible implications on the potential for commercialization of lithium-oxygen batteries. Finally, we perform a critical assessment of lithium-superoxide batteries and the reversibility of lithium-hydroxide batteries....

  9. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  10. Lead acid batteries simulation including experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Achaibou, N.; Malek, A. [Division Energie Solaire Photovoltaique, Centre de Developpement des Energies Renouvelables, B.P. 62, Route de l' Observatoire, Bouzareah, Alger (Algeria); Haddadi, M. [Laboratoire de Dispositif de Communication et de Conversion Photovoltaique Ecole Nationale Polytechnique, Rue Hassen Badi, El Harrach, Alger (Algeria)

    2008-12-01

    The storage of energy in batteries is a cause of the failure and loss of reliability in PV systems. The battery behavior has been largely described in the literature by many authors; the selected models are of Monegon and CIEMAT. This paper reviews the two general lead acid battery models and their agreement with experimental data. In order to validate these models, the behavior of different battery cycling currents has been simulated. Results obtained have been compared to real data. The CIEMAT model presents a good performance compared to Monegon's model. (author)

  11. Machine Learning Based Diagnosis of Lithium Batteries

    Science.gov (United States)

    Ibe-Ekeocha, Chinemerem Christopher

    The depletion of the world's current petroleum reserve, coupled with the negative effects of carbon monoxide and other harmful petrochemical by-products on the environment, is the driving force behind the movement towards renewable and sustainable energy sources. Furthermore, the growing transportation sector consumes a significant portion of the total energy used in the United States. A complete electrification of this sector would require a significant development in electric vehicles (EVs) and hybrid electric vehicles (HEVs), thus translating to a reduction in the carbon footprint. As the market for EVs and HEVs grows, their battery management systems (BMS) need to be improved accordingly. The BMS is not only responsible for optimally charging and discharging the battery, but also monitoring battery's state of charge (SOC) and state of health (SOH). SOC, similar to an energy gauge, is a representation of a battery's remaining charge level as a percentage of its total possible charge at full capacity. Similarly, SOH is a measure of deterioration of a battery; thus it is a representation of the battery's age. Both SOC and SOH are not measurable, so it is important that these quantities are estimated accurately. An inaccurate estimation could not only be inconvenient for EV consumers, but also potentially detrimental to battery's performance and life. Such estimations could be implemented either online, while battery is in use, or offline when battery is at rest. This thesis presents intelligent online SOC and SOH estimation methods using machine learning tools such as artificial neural network (ANN). ANNs are a powerful generalization tool if programmed and trained effectively. Unlike other estimation strategies, the techniques used require no battery modeling or knowledge of battery internal parameters but rather uses battery's voltage, charge/discharge current, and ambient temperature measurements to accurately estimate battery's SOC and SOH. The developed

  12. Lithium-ion batteries fundamentals and applications

    CERN Document Server

    Wu, Yuping

    2015-01-01

    Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph:Introduces the underlying theory and history of lithium-ion batteriesDescribes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separatorsDiscusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current col

  13. DOE battery program for weapon applications

    Science.gov (United States)

    Clark, R. P.; Baldwin, A. R.

    This report discusses the Department of Energy (DOE) Weapons Battery program which originates from Sandia National Laboratories (SNL) and involves activities ranging from research, design and development to testing, consulting, and production support. The primary customer is the DOE/Office of Defense Programs, although work is also done for various Department of Defense agencies and their contractors. The majority of the SNL activities involve thermal battery (TB) and lithium ambient temperature battery (LAMB)technologies. Smaller efforts are underway in the areas of silver oxide/zinc and nickel oxide/cadmium batteries as well as double layer capacitors.

  14. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, Paulus P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  15. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Shahmuradyan, Anna; Krull, Ulrich J

    2013-02-05

    A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.

  16. Comparison of documentation of patient reported adverse drug reactions on both paper-based medication charts and electronic medication charts at a New Zealand hospital.

    Science.gov (United States)

    Shen, Wilson; Wong, Bernice; Chin, Jessica Yi Ping; Lee, Michael; Coulter, Carolyn; Braund, Rhiannon

    2016-10-28

    Known adverse drug reactions (ADRs) can have profound effects on disease states, as well as prescribing practice. Therefore, the correct and complete documentation of each individual patient's ADR history, upon hospital admission, is important in optimising that individual patient's pharmacotherapy. This study investigated the documentation of ADRs at a tertiary New Zealand hospital, on both paper-based medication charts and electronic medication charts to quantify both the number of ADRs patients self-report, as well as the differences between recording of that information in electronic and paper-based charting systems. Following ethical approval, inpatient medication charts on the general medical ward (electronic prescribing), or the general surgical ward (paper-based medication charts) were viewed for documented ADRs-as reported by each patient on admission. Consecutive patient charts (and electronic clinical management system) were viewed until 50 patients from each ward, each with at least one documented ADR, (in any of the information sources) were obtained. Patient demographic information, ADR history and discrepancies between information sources were determined. In both wards 114 patients were reviewed in order to find 50 patients with documented ADRs. In the medical ward (electronic) 44 (90%) patients had discrepancies in ADR information between different information sources and in the surgical ward (paper) this occurred in 49 (98%) patients. A large number of patients self-report ADRs. Full documentation of patient reported ADRs is required to adequately inform future prescribing decisions. Discrepancies between ADR information recorded in different information systems exist, but information sharing between electronic and non-electronic sources could be prioritised in order to allow full and complete information to be collected, stored and utilised; and reduce the current inadequacies.

  17. Paper-based assay of antioxidant activity using analyte-mediated on-paper nucleation of gold nanoparticles as colorimetric probes.

    Science.gov (United States)

    Choleva, Tatiana G; Kappi, Foteini A; Giokas, Dimosthenis L; Vlessidis, Athanasios G

    2015-02-20

    With the increasing interest in the health benefits arising from the consumption of dietary products rich in antioxidants, there exists a clear demand for easy-to-use and cost-effective tests that can be used for the identification of the antioxidant power of food products. Paper-based analytical devices constitute a remarkable platform for such expedient and low-cost assays with minimal external resources but efforts in this direction are still scarce. In this work we introduce a new paper-based device in the form of a sensor patch that enables the determination of antioxidant activity through analyte-driven on-paper formation of gold nanoparticles. The principle of detection capitalizes, for the first time, on the on-paper nucleation of gold ions to its respective nanoparticles, upon reduction by antioxidant compounds present in an aqueous sample. The ensuing chromatic transitions, induced on the paper surface, are used as an optical "signature" of the antioxidant strength of the solution. The response of the paper-based sensor was evaluated against a large variety of antioxidant species and the respective dose response curves were constructed. On the basis of these data, the contribution of each species according to its chemical structure was elucidated. For the analysis of real samples, a concentration-dependent colorimetric response was established against Gallic acid equivalents over a linear range of 10 μM-1.0 mM, with detection limits at the low and ultra-low μM levels (i.e. <1.0 μM) and satisfactory precision (RSD=3.6-12.6%). The sensor has been tested for the assessment of antioxidant activity in real samples (teas and wines) and the results correlated well with commonly used antioxidant detection methods. Importantly, the sensor performed favorably for long periods of time when stored at moisture-free and low temperature conditions without losing its activity thus posing as an attractive alternative to the assessment of antioxidant activity without

  18. Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies

    International Nuclear Information System (INIS)

    Rydh, Carl Johan; Sanden, Bjoern A.

    2005-01-01

    Energy return factors and overall energy efficiencies are calculated for a stand-alone photovoltaic (PV)-battery system. Eight battery technologies are evaluated: lithium-ion (nickel), sodium-sulphur, nickel-cadmium, nickel-metal hydride, lead-acid, vanadium-redox, zinc-bromine and polysulphide-bromide. With a battery energy storage capacity three times higher than the daily energy output, the energy return factor for the PV-battery system ranges from 2.2 to 10 in our reference case. For a PV-battery system with a service life of 30 yr, this corresponds to energy payback times between 2.5 and 13 yr. The energy payback time is 1.8-3.3 yr for the PV array and 0.72-10 yr for the battery, showing the energy related significance of batteries and the large variation between different technologies. In extreme cases, energy return factors below one occur, implying no net energy output. The overall battery efficiency, including not only direct energy losses during operation but also energy requirements for production and transport of the charger, the battery and the inverter, is 0.41-0.80. For some batteries, the overall battery efficiency is significantly lower than the direct efficiency of the charger, the battery and the inverter (0.50-0.85). The ranking order of batteries in terms of energy efficiency, the relative importance of different battery parameters and the optimal system design and operation (e.g. the use of air conditioning) are, in many cases, dependent on the characterisation of the energy background system and on which type of energy efficiency measure is used (energy return factor or overall battery efficiency)

  19. Design and Realization of a Smart Battery Management System

    OpenAIRE

    C. Chen; K.L. Man; T.O. Ting; Chi-Un Lei; T. Krilavicius; T.T. Jeong; J.K. Seon; Sheng-Uei Guan; Prudence W.H. Wong

    2012-01-01

    Battery management system (BMS) emerges a decisive system component in battery-powered applications, such as (hybrid) electric vehicles and portable devices. However, due to the inaccurate parameter estimation of aged battery cells and multi-cell batteries, current BMSs cannot control batteries optimally, and therefore affect the usability of products. In this paper, we proposed a smart management system for multi-cell batteries, and discussed the development of our research study in three di...

  20. Lead-nickel electrochemical batteries

    CERN Document Server

    Glaize, Christian

    2012-01-01

    The lead-acid accumulator was introduced in the middle of the 19th Century, the diverse variants of nickel accumulators between the beginning and the end of the 20th Century. Although old, these technologies are always very present on numerous markets. Unfortunately they are still not used in optimal conditions, often because of the misunderstanding of the internal electrochemical phenomena.This book will show that batteries are complex systems, made commercially available thanks to considerable amounts of scientific research, empiricism and practical knowledge. However, the design of

  1. An averaging battery model for a lead-acid battery operating in an electric car

    Science.gov (United States)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  2. Accuracy and Efficiency of Recording Pediatric Early Warning Scores Using an Electronic Physiological Surveillance System Compared With Traditional Paper-Based Documentation.

    Science.gov (United States)

    Sefton, Gerri; Lane, Steven; Killen, Roger; Black, Stuart; Lyon, Max; Ampah, Pearl; Sproule, Cathryn; Loren-Gosling, Dominic; Richards, Caitlin; Spinty, Jean; Holloway, Colette; Davies, Coral; Wilson, April; Chean, Chung Shen; Carter, Bernie; Carrol, E D

    2017-05-01

    Pediatric Early Warning Scores are advocated to assist health professionals to identify early signs of serious illness or deterioration in hospitalized children. Scores are derived from the weighting applied to recorded vital signs and clinical observations reflecting deviation from a predetermined "norm." Higher aggregate scores trigger an escalation in care aimed at preventing critical deterioration. Process errors made while recording these data, including plotting or calculation errors, have the potential to impede the reliability of the score. To test this hypothesis, we conducted a controlled study of documentation using five clinical vignettes. We measured the accuracy of vital sign recording, score calculation, and time taken to complete documentation using a handheld electronic physiological surveillance system, VitalPAC Pediatric, compared with traditional paper-based charts. We explored the user acceptability of both methods using a Web-based survey. Twenty-three staff participated in the controlled study. The electronic physiological surveillance system improved the accuracy of vital sign recording, 98.5% versus 85.6%, P < .02, Pediatric Early Warning Score calculation, 94.6% versus 55.7%, P < .02, and saved time, 68 versus 98 seconds, compared with paper-based documentation, P < .002. Twenty-nine staff completed the Web-based survey. They perceived that the electronic physiological surveillance system offered safety benefits by reducing human error while providing instant visibility of recorded data to the entire clinical team.

  3. Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time "shock" biosensor for wastewater.

    Science.gov (United States)

    Xu, Zhiheng; Liu, Yucheng; Williams, Isaiah; Li, Yan; Qian, Fengyu; Zhang, Hui; Cai, Dingyi; Wang, Lei; Li, Baikun

    2016-11-15

    A paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) was developed as a disposable self-support real-time "shock" biosensor for wastewater. PMMFCs were examined at three types of shocks (chromium, hypochlorite and acetate) in a batch-mode chamber, and exhibited various responses to shock types and concentrations. The power output of PMMFC sensor was four times as the carbon cloth (CC)-based MFCs, indicating the advantage of paper-based anode for bacterial adhesion. The power output was more sensitive than the voltage output under shocks, and thus preventing the false signals. The simulation of power harvest using PMS indicated that PMMFC could accomplish more frequent data transmission than single-anode MFCs (PSMFC) and CC anode MFCs (CCMMFC), making the self-support wastewater monitor and data transmission possible. Compared with traditional MFC sensors, PMMFCs integrated with PMS exhibit the distinct advantages of tight paper-packed structure, short acclimation period, high power output, and high sensitivity to a wide range of shocks, posing a great potential as "disposable self-support shock sensor" for real time in situ monitoring of wastewater quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. 33 CFR 117.917 - Battery Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  5. Failure modes of batteries removed from service

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, J.H. [Douglas Battery Manufacturing Co., Winston-Salem, NC (United States)

    1995-12-31

    Battery failure modes are described. Data is presented from survey results on 12-volt automotive passenger car batteries. The age from manufacturing code was determined. Failures were classified into the following categories: serviceable, broken, open circuit, short circuit, corrosion, worn out, abused, or overcharged.

  6. Overview of photovoltaic and battery applications

    Science.gov (United States)

    Murrell, J. D.; Hellman, Karl H.

    1989-10-01

    The use of solar cells and batteries for power generation and vehicle propulsion is examined. Issues such as energy uses and fuel sources, solar electric power, energy storage for solar photovoltaic systems, batteries for electric cars and applications for other mobile sources are also discussed.

  7. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a

  8. Investigating improvements on redox flow batteries

    CSIR Research Space (South Africa)

    Swartbooi, AM

    2006-09-01

    Full Text Available storage devices coupled to most of their applications. Lead-acid batteries have long been used as the most economical option to store electricity in many small scale applications, but lately more interest have been shown in redox flow batteries. The low...

  9. Battery impedance spectroscopy using bidirectional grid connected ...

    Indian Academy of Sciences (India)

    Shimul Kumar Dam

    battery management system one needs to track two vari- ables—state of ... demand is high, thus improving the power quality. The .... the aging effect. To find out usefulness of measurements at different frequencies, the impedance of a 12 V, 9 Ah VRLA battery is measured by a standard commercial equipment. Solartron ...

  10. A Micro-Grid Battery Storage Management

    DEFF Research Database (Denmark)

    Mahat, Pukar; Escribano Jiménez, Jorge; Moldes, Eloy Rodríguez

    2013-01-01

    systems under its administration. This paper presents an optimized scheduling of a micro-grid battery storage system that takes into account the next-day forecasted load and generation profiles and spot electricity prices. Simulation results show that the battery system can be scheduled close to optimal...

  11. Ferroresonant flux coupled battery charger

    Science.gov (United States)

    McLyman, Colonel W. T. (Inventor)

    1987-01-01

    A battery charger for incorporation into an electric-powered vehicle is disclosed. The charger includes a ferroresonant voltage-regulating circuit for providing an output voltage proportional to the frequency of an input AC voltage. A high frequency converter converts a DC voltage supplied, for example, from a rectifier connected to a standard AC outlet, to a controlled frequency AC voltage which is supplied to the input of the ferroresonant circuit. The ferroresonant circuit includes an output, a saturable core transformer connected across the output, and a first linear inductor and a capacitor connected in series across the saturable core transformer and tuned to resonate at the third harmonic of the AC voltage from the high frequency converter. The ferroresonant circuit further includes a second linear inductor connected between the input of the ferroresonant circuit and the saturable core transformer. The output voltage from the ferroresonant circuit is rectified and applied across a pair of output terminals adapted to be connected to the battery to be charged. A feedback circuit compares the voltage across the output terminals with a reference voltage and controls the frequency of the AC voltage produced by the high frequency converter to maintain the voltage across the output terminals at a predetermined value. The second linear inductor provides a highly reactive load in the event of a fault across the output terminals to render the charger short-circuit proof.

  12. Multiscale simulation approach for battery production systems

    CERN Document Server

    Schönemann, Malte

    2017-01-01

    Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.

  13. Lithium and sodium batteries with polysulfide electrolyte

    KAUST Repository

    Li, Mengliu

    2017-12-28

    A battery comprising: at least one cathode, at least one anode, at least one battery separator, and at least one electrolyte disposed in the separator, wherein the anode is a lithium metal or lithium alloy anode or an anode adapted for intercalation of lithium ion, wherein the cathode comprises material adapted for reversible lithium extraction from and insertion into the cathode, and wherein the separator comprises at least one porous, electronically conductive layer and at least one insulating layer, and wherein the electrolyte comprises at least one polysulfide anion. The battery provides for high energy density and capacity. A redox species is introduced into the electrolyte which creates a hybrid battery. Sodium metal and sodium-ion batteries also provided.

  14. Silicene for Na-ion battery applications

    KAUST Repository

    Zhu, Jiajie

    2016-08-19

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954mAh/g for freestanding silicene and 730mAh/g for the graphenesilicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of >0.3 V against the Na/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be <0.3 eV.

  15. Battery selection for Space Shuttle experiments

    Science.gov (United States)

    Francisco, David R.

    1993-04-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese, and nickel cadmium. A detailed description of the lead acid and silver zinc cells and a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage, and with different types of loads. The lifetime and number of charge/discharge cycles will also be discussed. A description of the required maintenance for each type of battery will be investigated.

  16. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  17. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Redox Cycling Realized in Paper-Based Biochemical Sensor for Selective Detection of Reversible Redox Molecules Without Micro/Nano Fabrication Process.

    Science.gov (United States)

    Yamamoto, So; Uno, Shigeyasu

    2018-02-28

    This paper describes a paper-based biochemical sensor that realizes redox cycling with close interelectrode distance. Two electrodes, the generator and collector electrodes, can detect steady-state oxidation and reduction currents when suitable potential is held at each electrode. The sensor has two gold plates on both sides of a piece of chromatography paper and defines the interelectrode distance by the thickness of the paper (180 μm) without any micro-fabrication processes. Our proposed sensor geometry has successfully exhibited signatures of redox cycling. As a result, the concentration of ferrocyanide as reversible redox molecules was successfully quantified under the interference by ascorbic acid as a strong irreversible reducing agent. This was possible because the ascorbic acids are completely consumed by the irreversible reaction, while maintaining redox cycling of reversible ferrocyanide. This suggests that a sensor based on the redox cycling method will be suitable for detecting target molecules at low concentration.

  19. Case Study: Converting Paper-based Case Report Forms to an Electronic Format (e-CRF) with ACASI Self-Report Integration.

    Science.gov (United States)

    Mierzwa, Stan; Souidi, Samir; Akello, Carolyne; Etima, Juliane; Ssebagala, Richard; Nolan, Monica; Kabwigu, Samuel; Nakablito, Clemensia

    2017-01-01

    This paper will discuss the integration of electronic Case Report Forms (e-CRFs) into an already existing Android-based Audio Computer-Assisted Self-Interview (ACASI) software solution that was developed for a public health project in Kampala, Uganda, the technical outcome results, and lessons learned that may be useful to other projects requiring or considering such a technology solution. The developed product can function without a connection to the Internet and allows for synchronizing collected data once connectivity is possible. Previously, only paper-based CRFs were utilized at the Uganda project site. A subset or select group of CRFs were targeted for integration with ACASI in order to test feasibility and success. Survey volume, error rate, and acceptance of the system, as well as the operational and technical design of the solution, will be discussed.

  20. Translating 10 lessons from lean six sigma project in paper-based training site to electronic health record-based primary care practice: challenges and opportunities.

    Science.gov (United States)

    Aleem, Sohaib

    2013-01-01

    Lean Six Sigma is a well-proven methodology to enhance the performance of any business, including health care. The strategy focuses on cutting out waste and variation from the processes to improve the value and efficiency of work. This article walks through the journey of "green belt" training using a Lean Six Sigma approach and the implementation of a process improvement project that focused on wait time for patients to be examined in an urban academic primary care clinic without requiring added resources. Experiences of the training and the project at an urban paper-based satellite clinic have informed the planning efforts of a data and performance team, including implementing a 15-minute nurse "pre-visit" at primary care sites of an accountable care organization.

  1. Microfluidic Paper-based Analytical Device for the Determination of Hexavalent Chromium by Photolithographic Fabrication Using a Photomask Printed with 3D Printer.

    Science.gov (United States)

    Asano, Hitoshi; Shiraishi, Yukihide

    2018-01-01

    This article describes a simple and inexpensive microfluidic paper-based analytical device (μPAD) for the determination of hexavalent chromium (Cr VI ) in water samples. The μPADs were fabricated on paper by photolithography using a photomask printed with a 3D printer and functionalized with reagents for a colorimetric assay. In the μPAD, Cr VI reacts with 1,5-diphenylcarbazide to form a violet-colored complex. Images of μPADs were captured with a digital camera; then the red, green, and blue color intensity of each detection zone were measured using images processing software. The green intensity analysis was the best sensitive among the RGB color. A linear working range (40 - 400 ppm; R 2 = 0.981) between the Cr VI and green intensity was obtained with a detection limit of 30 ppm. All of the recoveries were between 94 and 109% in recovery studies on water samples, and good results were obtained.

  2. Pregnant Women's Views on the Feasibility and Acceptability of Web-Based Mental Health E-Screening Versus Paper-Based Screening: A Randomized Controlled Trial.

    Science.gov (United States)

    Kingston, Dawn; Austin, Marie-Paule; Veldhuyzen van Zanten, Sander; Harvalik, Paula; Giallo, Rebecca; McDonald, Sarah D; MacQueen, Glenda; Vermeyden, Lydia; Lasiuk, Gerri; Sword, Wendy; Biringer, Anne

    2017-04-07

    Major international guidelines recommend mental health screening during the perinatal period. However, substantial barriers to screening have been reported by pregnant and postpartum women and perinatal care providers. E-screening offers benefits that may address implementation challenges. The primary objective of this randomized controlled trial was to evaluate the feasibility and acceptability of Web-based mental health e-screening compared with paper-based screening among pregnant women. A secondary objective was to identify factors associated with women's preferences for e-screening and disclosure of mental health concerns. Pregnant women recruited from community and hospital-based antenatal clinics and hospital-based prenatal classes were computer-randomized to a fully automated Web-based e-screening intervention group or a paper-based control group. Women were eligible if they spoke or read English, were willing to be randomized to e-screening, and were willing to participate in a follow-up diagnostic interview. The intervention group completed the Antenatal Psychosocial Health Assessment and the Edinburgh Postnatal Depression Scale on a tablet computer, while controls completed them on paper. All women completed self-report baseline questions and were telephoned 1 week after randomization by a blinded research assistant for a MINI International Neuropsychiatric Interview. Renker and Tonkin's tool of feasibility and acceptability of computerized screening was used to assess the feasibility and acceptability of e-screening compared with paper-based screening. Intention-to-treat analysis was used. To identify factors associated with preference for e-screening and disclosure, variables associated with each outcome at Ppaper (46.0%, 139/302 vs 29.2%, 95/325), compared with women in the paper-based screening group. There were no differences between groups in women's disclosure of emotional health concerns (94.1%, 284/302 vs 90.2%, 293/325). Women in the e

  3. Rapid detection of aflatoxigenic Aspergillus sp. in herbal specimens by a simple, bendable, paper-based lab-on-a-chip.

    Science.gov (United States)

    Chaumpluk, Piyasak; Plubcharoensook, Pattra; Prasongsuk, Sehanat

    2016-06-01

    Postharvest herbal product contamination with mycotoxins and mycotoxin-producing fungi represents a potentially carcinogenic hazard. Aspergillus flavus is a major cause of this issue. Available mold detection methods are PCR-based and rely heavily on laboratories; thus, they are unsuitable for on-site monitoring. In this study, a bendable, paper-based lab-on-a-chip platform was developed to rapidly detect toxigenic Aspergillus spp. DNA. The 3.0-4.0 cm(2) chip is fabricated using Whatman™ filter paper, fishing line and a simple plastic lamination process and has nucleic acid amplification and signal detection components. The Aspergillus assay specifically amplifies the aflatoxin biosynthesis gene, aflR, using loop-mediated isothermal amplification (LAMP); hybridization between target DNA and probes on blue silvernanoplates (AgNPls) yields colorimetric results. Positive results are indicated by the detection pad appearing blue due to dispersed blue AgNPls; negative results are indicated by the detection pad appearing colorless or pale yellow due to probe/target DNA hybridization and AgNPls aggregation. Assay completion requires less than 40 min, has a limit of detection (LOD) of 100 aflR copies, and has high specificity (94.47%)and sensitivity (100%). Contamination was identified in 14 of 32 herbal samples tested (43.75%). This work demonstrates the fabrication of a simple, low-cost, paper-based lab-on-a-chip platform suitable for rapid-detection applications. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. NiZn battery as the alternative battery technology for PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Faris, S.M.; Tsai, T. [Xellerion Inc., Hawthorne, NY (United States)

    2007-07-01

    Xellerion Inc. (USA) has developed a rechargeable nickel-zinc (NiZn) battery using a proprietary solid-state electrolyte. Xellerion's proprietary hydroxide conductive membrane technology provides superior power and energy performance. The company manufactures high capacity batteries ranging from 20 to 60 ampere hours (AH) for different applications. NiZn battery with a capacity higher than 100 AH will be available in 2008 for large battery electric vehicles (BEV) and plug-in hybrid electric vehicle (PHEV) applications. This presentation provided a detailed comparison of Xellerion NiZn battery to other leading battery technologies, including lithium based batteries, for PHEV applications. It was noted that although lithium based batteries have been considered as the main stream for new PHEV development, some safety and cost issues remain to be addressed. In addition, concerns have been raised regarding the lithium consumption rate and worldwide reserve for future large scale deployment. For these reasons, Xellerion's NiZn battery is regarded as a viable alternative battery technology for PHEVs. 27 figs.

  5. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  6. Hierarchically structured materials for lithium batteries

    Science.gov (United States)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-10-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg-1), new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime.

  7. A Foldable Lithium-Sulfur Battery.

    Science.gov (United States)

    Li, Lu; Wu, Zi Ping; Sun, Hao; Chen, Deming; Gao, Jian; Suresh, Shravan; Chow, Philippe; Singh, Chandra Veer; Koratkar, Nikhil

    2015-11-24

    The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices. The key to this result lies in the use of fully foldable and superelastic carbon nanotube current-collector films and impregnation of the active materials (S and Li) into the current-collectors in a checkerboard pattern, enabling the battery to be folded along two mutually orthogonal directions. The carbon nanotube films also serve as the sulfur entrapment layer in the Li-S battery. The foldable battery showed batteries with significantly greater energy density than traditional lithium-ion batteries could power the flexible and foldable devices of the future including laptops, cell phones, tablet computers, surgical tools, and implantable biomedical devices.

  8. Wireless Battery Management System of Electric Transport

    Science.gov (United States)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  9. Membranes for Redox Flow Battery Applications

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  10. Nickel-iron battery system safety

    Science.gov (United States)

    Saltat, R. C.

    1984-06-01

    The generated flow rates of gaseous hydrogen and gaseous oxygen from an electrical vehicle nickel-iron battery system were determined and used to evaluate the flame quenching capabilities of several candidate devices to prevent flame propagation within batteries having central watering/venting systems. The battery generated hydrogen and oxygen gases were measured for a complete charge and discharge cycle. The data correlates well with accepted theory during strong overcharge conditions indicating that the measurements are valid for other portions of the cycle. Tests confirm that the gas mixture in the cells is always flammable regardless of the battery status. The literature indicated that a conventional flame arrestor would not be effective over the broad spectrum of gassing conditions presented by a nickel-iron battery. Four different types of protective devices were evaluated. A foam-metal arrestor design was successful in quenching gaseous hydrogen and gaseous oxygen flames, however; the application of this flame arrestor to individual cell or module protection in a battery is problematic. A possible rearrangement of the watering/venting system to accept the partial protection of simple one-way valves is presented which, in combination with the successful foam-metal arrestor as main vent protection, could result in a significant improvement in battery protection.

  11. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  12. Hierarchically structured materials for lithium batteries

    International Nuclear Information System (INIS)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-01-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg −1 ), new energy storage systems, such as lithium–oxygen (Li–O 2 ) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li–O 2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime. (paper)

  13. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly followed...... by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated...

  14. Supported liquid membrane battery separators

    Science.gov (United States)

    Pemsler, J. P.; Dempsey, M. D.

    1984-07-01

    The feasibility of using a supported liquid membrane (SLM) as a separator in the nickel-zinc battery was investigated. In particular, SLM separators should prevent zinc dendirte growth from shorting out the cell and might also alleviate capacity loss due to zinc electrode shape changes. A number of ion exchange/solvent modifier systems for incorporation into SLMs were developed under a previous LBL contract. SLMs prepared with hese reagents exhibited resistances in the range of 0.4 to 10 ohm sq cm, selectivity transported hydroxyl ions over zincate ions by a factor of 10 to the 6th power to 10 to the 7th power, and possessed electrochemical and chemical stability in alkaline electrolytes. In order to evaluate these SLM separators under conditions closely resembling a commercial Ni-Zn cell, an accelerated cycle life test was devised using commercial electrodes.

  15. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  16. 49 CFR 229.43 - Exhaust and battery gases.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively. ...

  17. Resistor Extends Life Of Battery In Clocked CMOS Circuit

    Science.gov (United States)

    Wells, George H., Jr.

    1991-01-01

    Addition of fixed resistor between battery and clocked complementary metal oxide/semiconductor (CMOS) circuit reduces current drawn from battery. Basic idea to minimize current drawn from battery by operating CMOS circuit at lowest possible current consistent with use of simple, fixed off-the-shelf components. Prolongs lives of batteries in such low-power CMOS circuits as watches and calculators.

  18. Bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Veen, W.R. ter; Raadschelders, J.W.; Have, P.T.J.H. ten

    2000-01-01

    In hybrid electric vehicles (HEV) the requirements on batteries are very different from those for battery electric vehicles (BEV). A high power (bipolar) lead-acid battery could be a good alternative for other types of batteries under development for this application. It is potentially cheap and

  19. Performance of Automotive SLI Battery under Constant Current ...

    African Journals Online (AJOL)

    In this project, a cost-effective 12V battery charge controller was developed to implement constant current constant voltage charge algorithm in small-sized stand-alone solar PV systems. The algorithm was tested on automotive SLI battery instead of deep-cycle PV battery to further reduce overall system cost. The battery ...

  20. Model-based energy analysis of battery powered systems

    NARCIS (Netherlands)

    Jongerden, M.R.

    2010-01-01

    The use of mobile devices is often limited by the lifetime of the included batteries. This lifetime naturally depends on the battery’s capacity and on the rate at which the battery is discharged. However, it also depends on the usage pattern, i.e., the workload, of the battery. When a battery is

  1. Lead acid battery pulse discharge investigation

    Science.gov (United States)

    Dowgiallo, E. J., Jr.

    1980-04-01

    The effects of high current pulses caused by electric vehicle silicon controlled rectifier and and transistor chopper controllers on battery energy, life and microstructure were uncertain in the past. Such high current pulses may have a significant effect on diffusion and reaction rates, conductivity/resistance ratios and crystal morphology of processses occuring within the battery. It is important to learn what processes become rate controlling under such conditions and to determine what may be done through design or regulation to increase the battery efficiency and life under such service. Equipment to measure watt hours with programmable discharge load banks capable of simulating high current pulsed waveforms is described.

  2. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  3. A review of nickel hydrogen battery technology

    Science.gov (United States)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  4. Li-Ion Battery for ISS

    Science.gov (United States)

    Dalton, Penni; Cohen, Fred

    2004-01-01

    The ISS currently uses Ni-H2 batteries in the main power system. Although Ni-H2 is a robust and reliable system, recent advances in battery technology have paved the way for future replacement batteries to be constructed using Li-ion technology. This technology will provide lower launch weight as well as increase ISS electric power system (EPS) efficiency. The result of incorporating this technology in future re-support hardware will be greater power availability and reduced program cost. the presentations of incorporating the new technology.

  5. Li-ion EMU Battery Testing

    Science.gov (United States)

    Rehm, Raymond; Bragg, Bobby; Strangways, Brad

    2001-01-01

    A 45Ah Lithium ion (Li-Ion) battery comprised of 5 Yardney prismatic cells was evaluated to replace the silver-zinc cells in the Extra-vehicular Mobility Unit (EMU). Tests determined that the five cell battery can meet the mission objective of 500 duty cycles and maintain a minimum voltage of 16.0 V without an individual cell voltage dropping below 3.0V. Forty real time cycles were conducted to develop BOL trend data. Decision to switch to accelerated cycling for the remaining 460 cycles was made since Real Time cycling requires 1 day/cycle. Conclusions indicate that battery replacement would indeed be prudent.

  6. Distribution of electrolytes in a flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Robert Mason; Smeltz, Andrew; Junker, Sven Tobias; Perry, Michael L.

    2017-12-26

    A method of determining a distribution of electrolytes in a flow battery includes providing a flow battery with a fixed amount of fluid electrolyte having a common electrochemically active specie, a portion of the fluid electrolyte serving as an anolyte and a remainder of the fluid electrolyte serving as a catholyte. An average oxidation state of the common electrochemically active specie is determined in the anolyte and the catholyte and, responsive to the determined average oxidation state, a molar ratio of the common electrochemically active specie between the anolyte and the catholyte is adjusted to increase an energy discharge capacity of the flow battery for the determined average oxidation state.

  7. Method of making a sodium sulfur battery

    Science.gov (United States)

    Elkins, Perry E.

    1981-01-01

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.

  8. Mars Express Lithium Ion Batteries Performance Analysis

    Directory of Open Access Journals (Sweden)

    Dudley G.

    2017-01-01

    Full Text Available Now more than 12 years in orbit, Mars Express battery telemetry during some of the deepest discharge cycles has been analysed with the help of the ESTEC lithium ion cell model. The best-fitting model parameter sets were then used to predict the energy that is expected to be available before the battery voltage drops below the minimum value that can support the power bus. This allows mission planners to determine what future power profiles could be supported without risk of entering safe mode. It also gives some more insights into the ageing properties of these batteries.

  9. Lithium-thionyl chloride batteries - past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    McCartney, J.F.; Lund, T.J.; Sturgeon, W.J.

    1980-02-01

    Lithium based batteries have the highest theoretical energy density of known battery types. Of the lithium batteries, the lithium-thionyl chloride electrochemistry has the highest energy density of those which have been reduced to practice. The characteristics, development status, and performance of lithium-thionyl chloride batteries are treated in this paper. Safety aspects of lithium-thionyl chloride batteries are discussed along with impressive results of hazard/safety tests of these batteries. An orderly development plan of a minimum family of standard cells to avoid a proliferation of battery sizes and discharge rates is presented.

  10. Button battery ingestion in children: An emerging hazard

    Directory of Open Access Journals (Sweden)

    Mayank Jain

    2013-01-01

    Full Text Available Button battery ingestion is an emerging hazard. In this retrospective study, we report six cases of lithium button battery ingestion in pediatric age group (mean age 2.8 years. Three button batteries were removed from stomach and three from esophagus. Esophageal site was associated with significant local injury, and one button battery was impacted in the esophagus, requiring rigid esophagoscopy for removal. Small battery size, used batteries, and early removal (<12 h after ingestion were associated with lesser mucosal injury. No long-term complications were noted. Our study emphasizes that early diagnosis and urgent removal of ingested button battery are the only measures which prevent complications.

  11. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  12. FY2016 Advanced Batteries R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview; the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.

  13. Pregnant Women's Perceptions of the Risks and Benefits of Disclosure During Web-Based Mental Health E-Screening Versus Paper-Based Screening: Randomized Controlled Trial.

    Science.gov (United States)

    Kingston, Dawn; Biringer, Anne; Veldhuyzen van Zanten, Sander; Giallo, Rebecca; McDonald, Sarah; MacQueen, Glenda; Vermeyden, Lydia; Austin, Marie-Paule

    2017-10-20

    Pregnant women's perceptions of the risks and benefits during mental health screening impact their willingness to disclose concerns. Early research in violence screening suggests that such perceptions may vary by mode of screening, whereby women view the anonymity of e-screening as less risky than other approaches. Understanding whether mode of screening influences perceptions of risk and benefit of disclosure is important in screening implementation. The objective of this randomized controlled trial was to compare the perceptions of pregnant women randomized to a Web-based screening intervention group and a paper-based screening control group on the level of risk and benefit they perceive in disclosing mental health concerns to their prenatal care provider. A secondary objective was to identify factors associated with women's perceptions of risk and benefit of disclosure. Pregnant women recruited from maternity clinics, hospitals, and prenatal classes were computer-randomized to a fully automated Web-based e-screening intervention group or a paper-based control. The intervention group completed the Antenatal Psychosocial Health Assessment and the Edinburgh Postnatal Depression Scale on a computer tablet, whereas the control group completed them on paper. The primary outcome was women's perceptions of the risk and benefits of mental health screening using the Disclosure Expectations Scale (DES). A completer analysis was conducted. Statistical significance was set at Pdisclosure subscales. Over three-quarters of women in both intervention and control groups perceived that mental health screening was beneficial. However, 43.1% (272/631) of women in both groups reported feeling very, moderately, or somewhat vulnerable during mental health screening. We found that women of low income, those treated previously for depression or anxiety, and those pregnant with their first child were more likely to perceive greater risk. However, these associations were very small

  14. Application of a paper based device containing a new culture medium to detect Vibrio cholerae in water samples collected in Haiti.

    Science.gov (United States)

    Briquaire, Romain; Colwell, Rita R; Boncy, Jacques; Rossignol, Emmanuel; Dardy, Aline; Pandini, Isabelle; Villeval, François; Machuron, Jean-Louis; Huq, Anwar; Rashed, Shah; Vandevelde, Thierry; Rozand, Christine

    2017-02-01

    Cholera is now considered to be endemic in Haiti, often with increased incidence during rainy seasons. The challenge of cholera surveillance is exacerbated by the cost of sample collection and laboratory analysis. A diagnostic tool is needed that is low cost, easy-to-use, and able to detect and quantify Vibrio cholerae accurately in water samples within 18-24h, and perform reliably in remote settings lacking laboratory infrastructure and skilled staff. The two main objectives of this study were to develop and evaluate a new culture medium embedded in a new diagnostic tool (PAD for paper based analytical device) for detecting Vibrio cholerae from water samples collected in Haiti. The intent is to provide guidance for corrective action, such as chlorination, for water positive for V. cholerae epidemic strains. For detecting Vibrio cholerae, a new chromogenic medium was designed and evaluated as an alternative to thiosulfate citrate bile salts sucrose (TCBS) agar for testing raw water samples. Sensitivity and specificity of the medium were assessed using both raw and spiked water samples. The Vibrio cholerae chromogenic medium was proved to be highly selective against most of the cultivable bacteria in the water samples, without loss of sensitivity in detection of V. cholerae. Thus, reliability of this new culture medium for detection of V. cholerae in the presence of other Vibrio species in water samples offers a significant advantage. A new paper based device containing the new chromogenic medium previously evaluated was compared with reference methods for detecting V. cholerae from spiked water sample. The microbiological PAD specifications were evaluated in Haiti. More precisely, a total of 185 water samples were collected at five sites in Haiti, June 2014 and again in June 2015. With this new tool, three V. cholerae O1 and 17 V. cholerae non-O1/O139 strains were isolated. The presence of virulence-associated and regulatory genes, including ctxA, zot, ace, and tox

  15. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  16. A Brief Review of Current Lithium Ion Battery Technology and Potential Solid State Battery Technologies

    OpenAIRE

    Ulvestad, Andrew

    2018-01-01

    Solid state battery technology has recently garnered considerable interest from companies including Toyota, BMW, Dyson, and others. The primary driver behind the commercialization of solid state batteries (SSBs) is to enable the use of lithium metal as the anode, as opposed to the currently used carbon anode, which would result in ~20% energy density improvement. However, no reported solid state battery to date meets all of the performance metrics of state of the art liquid electrolyte lithiu...

  17. Headspace-Sampling Paper-Based Analytical Device for Colorimetric/Surface-Enhanced Raman Scattering Dual Sensing of Sulfur Dioxide in Wine.

    Science.gov (United States)

    Li, Dan; Duan, Huazhen; Ma, Yadan; Deng, Wei

    2018-05-01

    This study demonstrates a novel strategy for colorimetric/surface-enhanced Raman scattering (SERS) dual-mode sensing of sulfur dioxide (SO 2 ) by coupling headspace sampling (HS) with paper-based analytical device (PAD). The smart and multifunctional PAD is fabricated with a vacuum filtration method in which 4-mercaptopyridine (Mpy)-modified gold nanorods (GNRs)-reduced graphene oxide (rGO) hybrids (rGO/MPy-GNRs), anhydrous methanol, and starch-iodine complex are immobilized into cellulose-based filter papers. The resultant PAD exhibits a deep-blue color with a strong absorption peak at 600 nm due to the formation of an intermolecular charge-transfer complex between starch and iodine. However, the addition of SO 2 induces the Karl Fischer reaction, resulting in the decrease of color and increase of SERS signals. Therefore, the PAD can be used not only as a naked-eye indicator of SO 2 changed from blue to colorless but also as a highly sensitive SERS substrates because of the SO 2 -triggered conversion of Mpy to pyridine methyl sulfate on the GNRs. A distinguishable change in the color was observed at a SO 2 concentration of 5 μM by the naked eye, and a detection limit as low as 1.45 μM was obtained by virtue of UV-vis spectroscopy. The PAD-based SERS method is effective over a wide range of concentrations (1 μM to 2000 μM) for SO 2 , and the detection limit for SO 2 is found to be 1 μM. The HS-PAD based colorimetric/SERS method is applied for the determination of SO 2 in wine, and the detection results match well with those obtained from the traditional Monier-Williams method. This study not only offers a new method for on-site monitoring of SO 2 but also provides a new strategy for designing of paper-based sensing platform for a wide range of field-test applications.

  18. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Hrovat, David [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Moazami-Goudarzi, Maryam [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Espie, George S. [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada)

    2015-07-23

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  19. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    International Nuclear Information System (INIS)

    Noor, M. Omair; Hrovat, David; Moazami-Goudarzi, Maryam; Espie, George S.; Krull, Ulrich J.

    2015-01-01

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  20. Efficiencies of Internet-based digital and paper-based scientific surveys and the estimated costs and time for different-sized cohorts.

    Directory of Open Access Journals (Sweden)

    Constantin E Uhlig

    Full Text Available To evaluate the relative efficiencies of five Internet-based digital and three paper-based scientific surveys and to estimate the costs for different-sized cohorts.Invitations to participate in a survey were distributed via e-mail to employees of two university hospitals (E1 and E2 and to members of a medical association (E3, as a link placed in a special text on the municipal homepage regularly read by the administrative employees of two cities (H1 and H2, and paper-based to workers at an automobile enterprise (P1 and college (P2 and senior (P3 students. The main parameters analyzed included the numbers of invited and actual participants, and the time and cost to complete the survey. Statistical analysis was descriptive, except for the Kruskal-Wallis-H-test, which was used to compare the three recruitment methods. Cost efficiencies were compared and extrapolated to different-sized cohorts.The ratios of completely answered questionnaires to distributed questionnaires were between 81.5% (E1 and 97.4% (P2. Between 6.4% (P1 and 57.0% (P2 of the invited participants completely answered the questionnaires. The costs per completely answered questionnaire were $0.57-$1.41 (E1-3, $1.70 and $0.80 for H1 and H2, respectively, and $3.36-$4.21 (P1-3. Based on our results, electronic surveys with 10, 20, 30, or 42 questions would be estimated to be most cost (and time efficient if more than 101.6-225.9 (128.2-391.7, 139.8-229.2 (93.8-193.6, 165.8-230.6 (68.7-115.7, or 188.2-231.5 (44.4-72.7 participants were required, respectively.The study efficiency depended on the technical modalities of the survey methods and engagement of the participants. Depending on our study design, our results suggest that in similar projects that will certainly have more than two to three hundred required participants, the most efficient way of conducting a questionnaire-based survey is likely via the Internet with a digital questionnaire, specifically via a centralized e-mail.