WorldWideScience

Sample records for all-optical conditional logic

  1. Photonic encryption using all optical logic.

    Energy Technology Data Exchange (ETDEWEB)

    Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.; Robertson, Perry J.; Vawter, Gregory Allen; Tarman, Thomas David; Pierson, Lyndon George

    2003-12-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and

  2. All-optical logic-gates based on bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Zhang Chun-Ping; Guo Zong-Xia; Tian Jian-Guo; Zhang Guang-Yin; Song Qi-Wang

    2005-01-01

    Based on self-diffraction in bacteriorhodopsin (bR) film, we propose all-optical NOT, XOR, half adder and XNOR logic operations. Using the relation between diffraction light and the polarization states of recording beams, we demonstrate NOT and XNOR logic operations. Studying the relation of polarization states among the diffracting, recording and reading beams, we implement XOR logic and half adder operations with three inputs. The methods are simple and practicable.

  3. All Optical Logical Operations Using Excitable Cavity Solitons

    OpenAIRE

    Jacobo, Adrián; Gomila, Damià; Colet, Pere; Matías, Manuel A

    2010-01-01

    We show theoretically that dissipative solitons arising in the transverse plane of nonlinear optical cavities show oscillatory and excitable regimes that can be used to perform all-optical logical operations. This allows for the construction of reconfigurable optical gates that can operate in parallel

  4. All-optical switching and all-optical logic gates based on bacteriorhodopsin

    Science.gov (United States)

    Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan

    2004-06-01

    We demonstrate an all-optical switching using a bacteriorhodopsin (bR) film. The transmission of the bR film is investigated using the pump-probe method. A diode-pumped second harmonic YAG laser (λ = 532nm which is around the maximum initial B state absorption) was used as a pumping beam and a cw He-Ne laser (λ = 632 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we design an all-optical operating device functioning as 11 kinds of variable binary all-optical logic gates. The incident 532nm beam acts as an input to the logic gate and the transmission of the 632nm bears the output of the gate.

  5. All-optical biomolecular parallel logic gates with bacteriorhodopsin.

    Science.gov (United States)

    Sharma, Parag; Roy, Sukhdev

    2004-06-01

    All-optical two input parallel logic gates with bacteriorhodopsin (BR) protein have been designed based on nonlinear intensity-induced excited-state absorption. Amplitude modulation of a continuous wave (CW) probe laser beam transmission at 640 nm corresponding to the peak absorption of O intermediate state through BR, by a modulating CW pump laser beam at 570 nm corresponding to the peak absorption of initial BR state has been analyzed considering all six intermediate states in its photocycle using the rate equation approach. The transmission characteristics have been shown to exhibit a dip, which is sensitive to normalized small-signal absorption coefficient (beta), rate constants of O and N intermediate states and absorption of the O state at 570 nm. There is an optimum value of beta for a given pump intensity range for which maximum modulation can be achieved. It is shown that 100% modulation can be achieved if the initial state of BR does not absorb the probe beam. The results have been used to design low-power all-optical parallel NOT, AND, OR, XNOR, and the universal NAND and NOR logic gates for two cases: 1) only changing the output threshold and 2) considering a common threshold with different beta values. PMID:15382746

  6. Expanded all-optical programmable logic array based on multi-input/output canonical logic units.

    Science.gov (United States)

    Lei, Lei; Dong, Jianji; Zou, Bingrong; Wu, Zhao; Dong, Wenchan; Zhang, Xinliang

    2014-04-21

    We present an expanded all-optical programmable logic array (O-PLA) using multi-input and multi-output canonical logic units (CLUs) generation. Based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF), two-input and three-input CLUs are simultaneously achieved in five different channels with an operation speed of 40 Gb/s. Clear temporal waveforms and wide open eye diagrams are successfully observed. The effectiveness of the scheme is validated by extinction ratio and optical signal-to-noise ratio measurements. The computing capacity, defined as the total amount of logic functions achieved by the O-PLA, is discussed in detail. For a three-input O-PLA, the computing capacity of the expanded CLUs-PLA is more than two times as large as that of the standard CLUs-PLA, and this multiple will increase to more than three and a half as the idlers are individually independent.

  7. Photonic-crystal-based all-optical NOT logic gate.

    Science.gov (United States)

    Singh, Brahm Raj; Rawal, Swati

    2015-12-01

    In the present paper, we have utilized the concept of photonic crystals for the implementation of an optical NOT gate inverter. The designed structure has a hexagonal arrangement of silicon rods in air substrate. The logic function is based on the phenomenon of the existence of the photonic bandgap and resulting guided modes in defect photonic crystal waveguides. We have plotted the transmission, extinction ratio, and tolerance analysis graphs for the structure, and it has been observed that the maximum output is obtained for a telecom wavelength of 1.554 μm. Dispersion curves are obtained using the plane wave expansion method, and the transmission is simulated using the finite element method. The proposed structure is applicable for photonic integrated circuits due to its simple structure and clear operating principle. PMID:26831380

  8. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    Science.gov (United States)

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-01

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  9. Implementation of tristate logic based all optical flip-flop with nonlinear material

    Institute of Scientific and Technical Information of China (English)

    Partha Ghosh; Sourangshu Mukhopadhyay

    2005-01-01

    @@ The advantages of multivalued logic in optical parallel computation need no introduction. There are lots of proposals, already reported, where tristate, quarternary state logic operations can be performed with optics. Here we report a new approach to implement tristate logic based all optical flip-flop using optical nonlinear material. The concept and the principle of operation of this type of flip-flop are different from that of the conventional binary one.

  10. All-optical 10 Gb/s AND logic gate in a silicon microring resonator

    DEFF Research Database (Denmark)

    Xiong, Meng; Lei, Lei; Ding, Yunhong;

    2013-01-01

    An all-optical AND logic gate in a single silicon microring resonator is experimentally demonstrated at 10 Gb/s with 50% RZ-OOK signals. By setting the wavelengths of two intensity-modulated input pumps on the resonances of the microring resonator, field-enhanced four-wave mixing with a total input...

  11. Passive all-optical polarization switch, binary logic gates, and digital processor.

    Science.gov (United States)

    Zaghloul, Y A; Zaghloul, A R M; Adibi, A

    2011-10-10

    We introduce the passive all-optical polarization switch, which modulates light with light. That switch is used to construct all the binary logic gates of two or more inputs. We discuss the design concepts and the operation of the AND, OR, NAND, and NOR gates as examples. The rest of the 16 logic gates are similarly designed. Cascading of such gates is straightforward as we show and discuss. Cascading in itself does not require a power source, but feedback at this stage of development does. The design and operation of an SR Latch is presented as one of the popular basic sequential devices used for memory cells. That completes the essential components of an all-optical polarization digital processor. The speed of such devices is well above 10 GHz for bulk implementations and is much higher for chip-size implementations. In addition, the presented devices do have the four essential characteristics previously thought unique to the microelectronic ones.

  12. Complete all-optical processing polarization-based binary logic gates and optical processors.

    Science.gov (United States)

    Zaghloul, Y A; Zaghloul, A R M

    2006-10-16

    We present a complete all-optical-processing polarization-based binary-logic system, by which any logic gate or processor can be implemented. Following the new polarization-based logic presented in [Opt. Express 14, 7253 (2006)], we develop a new parallel processing technique that allows for the creation of all-optical-processing gates that produce a unique output either logic 1 or 0 only once in a truth table, and those that do not. This representation allows for the implementation of simple unforced OR, AND, XOR, XNOR, inverter, and more importantly NAND and NOR gates that can be used independently to represent any Boolean expression or function. In addition, the concept of a generalized gate is presented which opens the door for reconfigurable optical processors and programmable optical logic gates. Furthermore, the new design is completely compatible with the old one presented in [Opt. Express 14, 7253 (2006)], and with current semiconductor based devices. The gates can be cascaded, where the information is always on the laser beam. The polarization of the beam, and not its intensity, carries the information. The new methodology allows for the creation of multiple-input-multiple-output processors that implement, by itself, any Boolean function, such as specialized or non-specialized microprocessors. Three all-optical architectures are presented: orthoparallel optical logic architecture for all known and unknown binary gates, singlebranch architecture for only XOR and XNOR gates, and the railroad (RR) architecture for polarization optical processors (POP). All the control inputs are applied simultaneously leading to a single time lag which leads to a very-fast and glitch-immune POP. A simple and easy-to-follow step-by-step algorithm is provided for the POP, and design reduction methodologies are briefly discussed. The algorithm lends itself systematically to software programming and computer-assisted design. As examples, designs of all binary gates, multiple

  13. A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic

    Science.gov (United States)

    Sharifi, Hojjat; Hamidi, Seyyedeh Mehri; Navi, Keivan

    2016-07-01

    In this paper, a general method is proposed to design all-optical photonic crystal logic gates and functions based on threshold logic concept that have regular pattern in inputs. In our proposed structure, a photonic crystal junction is cascaded by a threshold power level detector. Additionally, a novel mechanism is introduced to shift the threshold power level for designing different logic gates and functions. The finite difference time domain and plane wave expansion methods are used to evaluate the proposed structures. The proposed gates and functions occupy an area less than 150 μm2 and also, the maximum power required for the switching mechanism is 15 μW. The inputs and output in the mentioned gates and functions are homogeneous and they can operate with a bit rate of about 500 Gbits/s.

  14. All-optical switches, unidirectional flow, and logic gates with discrete solitons in waveguide arrays.

    Science.gov (United States)

    Al Khawaja, U; Al-Marzoug, S M; Bahlouli, H

    2016-05-16

    We propose a mechanism by which a number of useful all-optical operations, such as switches, diodes, and logic gates, can be performed with a single device. An effective potential well is obtained by modulating the coupling between the waveguides through their separations. Depending on the power of a control soliton injected through the potential well, an incoming soliton will either completely transmit or reflect forming a controllable switch. We show that two such switches can work as AND, OR, NAND, and NOR logic gates. Furthermore, the same device may also function as a perfect soliton diode with adjustable polarity. We discuss the feasibility of realising such devices with current experimental setups. PMID:27409929

  15. All-optical three-input logic minterms generation using semiconductor optical amplifier-based Sagnac interferometer

    DEFF Research Database (Denmark)

    Lei, L.; Da Ros, Francesco; Xu, Jing;

    2013-01-01

    All-optical three-input logic minterms are generated at 42 Gbit/s with a Sagnac interferometer by using cross-phase modulation in a semiconductor optical amplifier. To the best of the author's knowledge, this is the first time that high-speed logic operations with more than two inputs have been...

  16. Ultrafast all-optical arithmetic logic based on hydrogenated amorphous silicon microring resonators

    Science.gov (United States)

    Gostimirovic, Dusan; Ye, Winnie N.

    2016-03-01

    For decades, the semiconductor industry has been steadily shrinking transistor sizes to fit more performance into a single silicon-based integrated chip. This technology has become the driving force for advances in education, transportation, and health, among others. However, transistor sizes are quickly approaching their physical limits (channel lengths are now only a few silicon atoms in length), and Moore's law will likely soon be brought to a stand-still despite many unique attempts to keep it going (FinFETs, high-k dielectrics, etc.). This technology must then be pushed further by exploring (almost) entirely new methodologies. Given the explosive growth of optical-based long-haul telecommunications, we look to apply the use of high-speed optics as a substitute to the digital model; where slow, lossy, and noisy metal interconnections act as a major bottleneck to performance. We combine the (nonlinear) optical Kerr effect with a single add-drop microring resonator to perform the fundamental AND-XOR logical operations of a half adder, by all-optical means. This process is also applied to subtraction, higher-order addition, and the realization of an all-optical arithmetic logic unit (ALU). The rings use hydrogenated amorphous silicon as a material with superior nonlinear properties to crystalline silicon, while still maintaining CMOS-compatibility and the many benefits that come with it (low cost, ease of fabrication, etc.). Our method allows for multi-gigabit-per-second data rates while maintaining simplicity and spatial minimalism in design for high-capacity manufacturing potential.

  17. All-optical light modulation in pharaonis phoborhodopsin and its application to parallel logic gates

    Science.gov (United States)

    Sharma, Parag; Roy, Sukhdev

    2004-08-01

    All-optical light modulation in pharaonis phoborhodopsin (ppR) protein has been analyzed considering its ppRO state dynamics based on nonlinear intensity-induced excited-state absorption. Amplitude modulation of a cw probe laser beam transmission at 560nm corresponding to the peak absorption of ppRO intermediate state through ppR, by a modulating cw pump laser beam at 498nm corresponding to the peak absorption of initial ppR state has been analyzed considering all six intermediate states in its photocylce using the rate equation approach. The transmission characteristics have been shown to exhibit a dip at relatively lower pump intensity values compared to bacteriorhodopsin, which is sensitive to normalized small-signal absorption coefficient (β ), rate constants of ppRM and ppRO states, and absorption of the ppRO state at 498nm. There is an optimum value of β for a given pump intensity range for which maximum modulation can be achieved. It is shown that 100% modulation can be achieved if the initial state of ppR does not absorb the probe beam. The results have been used to design low power all optical parallel NOT, AND, OR, XNOR, and the universal NAND and NOR logic gates for two cases: (i) only changing the output threshold and (ii) considering a common threshold with different β values. At typical parameters, wild-type (WT) ppR based logic gates can be realized at considerably lower pump powers than WT-bR.

  18. Quantum-dot all-optical logic in a structured vacuum

    International Nuclear Information System (INIS)

    We demonstrate multiwavelength channel optical logic operations on the Bloch vector of a quantum two-level system in the structured electromagnetic vacuum of a bimodal photonic crystal waveguide. This arises through a bichromatic strong-coupling effect that enables unprecedented control over single quantum-dot (QD) excitation through two beams of ultrashort femtojoule pulses. The second driving pulse (signal) with slightly different frequency and weaker strength than the first (holding) pulse leads to controllable strong modulation of the QD Bloch vector evolution path. This occurs through resonant coupling of the signal pulse with the Mollow sideband transitions created by the holding pulse. The movement of the Mollow sidebands during the passage of the holding pulse leads to an effective chirping in transition frequency seen by the signal. Bloch vector dynamics in the rotating frame of the signal pulse and within the dressed-state basis created by the holding pulse reveals that this chirped coupling between the signal pulse and the Mollow sidebands leads to either augmentation or negation of the final quantum-dot population (after pulse passage) compared to the outcome of the holding pulse alone and depending on the relative frequencies of the pulses. By making use of this extra degree of freedom for ultrafast control of QD excitations, applications in ultrafast all-optical logic and, or, and not gates are proposed in the presence of significant (0.1) THz nonradiative dephasing and (about 1%) inhomogeneous broadening.

  19. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal

    Science.gov (United States)

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-08-01

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

  20. All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal

    Science.gov (United States)

    Goudarzi, Kiyanoosh; Mir, Ali; Chaharmahali, Iman; Goudarzi, Dariush

    2016-04-01

    In this paper, we have proposed an all-optical logic gate structure based on line and point defects created in the two dimensional square lattice of silicon rods in air photonic crystals (PhCs). Line defects are embedded in the ГX and ГZ directions of the momentum space. The device has two input and two output ports. It has been shown analytically whether the initial phase difference between the two input beams is π/2, they interfere together constructively or destructively to realize the logical functions. The simulation results show that the device can acts as a XOR and an OR logic gate. It is applicable in the frequency range of 0-0.45 (a/λ), however we set it at (a/λ=) 0.419 for low dispersion condition, correspondingly the lambda is equal to 1.55 μm. The maximum delay time to response to the input signals is about 0.4 ps, hence the speed of the device is about 2.5 THz. Also 6.767 dB is the maximum contrast ratio of the device.

  1. IST-LASAGNE: Towards all-optical label swapping employing optical logic gates and optical flip-flops

    DEFF Research Database (Denmark)

    Ramos, F.; Kehayas, E.; Martinez, J.M.;

    2005-01-01

    The Information Society Technologies - all-optical LAbel SwApping employing optical logic Gates in NEtwork nodes (IST-LASAGNE) project aims at designing and implementing the first, modular, scalable, and truly all-optical photonic router capable of operating at 40 Gb/s. The results of the first p...... project year are presented in this paper, with emphasis on the implementation of network node functionalities employing optical logic gates and optical flip-flops, as well as the definition of the network architecture and migration scenarios. © 2005 IEEE....

  2. All-optical NOT and XOR logic operation at 2.5 Gb/s based on semiconductor optical amplifier loop mirror

    Institute of Scientific and Technical Information of China (English)

    Wang Ying; Zhang Xin-Liang; Huang De-Xiu

    2004-01-01

    All-optical XOR and NOT logic operations based on semiconductor optical amplifier loop mirror (SLALOM) are simultaneously demonstrated theoretically and experimentally. Based on a segmented semiconductor optical amplifier model, the all-optical logic operation process is simulated theoretically. In an experimental study, 2.5 Gb/s all-optical XOR operation was achieved in the output port of SLALOM, while all-optical NOT operation was achieved in the input port through a circulator at the same time.

  3. Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal

    Science.gov (United States)

    Rani, Preeti; Kalra, Yogita; Sinha, R. K.

    2016-09-01

    In this paper, we have reported design and analysis of polarization independent all optical logic gates in silicon-on-insulator photonic crystal consisting of two dimensional honeycomb lattices with two different air holes exhibiting photonic band gap for both TE and TM mode in the optical communication window. The proposed structures perform as an AND optical logic gate and all the optical logic gates based on the phenomenon of interference. The response period and bit rate for TE and TM polarizations at a wavelength of 1.55 μm show improved results as reported earlier.

  4. Performance Investigation of All-Optical NRZ-to-Manchester Format Conversion with SOA-MZI Based XOR Logic Gate

    International Nuclear Information System (INIS)

    All-optical format conversion between non-return-to-zero (NRZ) and the Manchester code is implemented by using an optical exclusive-OR (XOR) logic gate based on a semiconductor optical amplifier Mach-Zehnder Interferometer (SOA-MZI). There is 10 Gbit/s all-optical NRZ-to-Manchester conversion implemented in our simulation system and BER performance of the format conversion is investigated. Transmission performances of the converted Manchester coded signal are discussed in terms of transmission length and received optical power. (fundamental areas of phenomenology(including applications))

  5. Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection

    Science.gov (United States)

    Zhong, Dongzhou; Luo, Wei; Xu, Geliang

    2016-09-01

    Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light, we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers (VCSELs) with optical-injection. Here, two logic inputs are encoded in the detuning of the injected light from a tunable CW laser. The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs. For the same logic inputs, under electro-optic modulation, we perform various digital signal processing (NOT, AND, NAND, XOR, XNOR, OR, NOR) in the all-optical domain by controlling the logic operation of the applied electric field. Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization. To quantify the reliabilities of these logic gates, we further demonstrate their success probabilities. Project supported by the National Natural Science Foundation of China (Grant No. 61475120) and the Innovative Projects in Guangdong Colleges and Universities, China (Grant Nos. 2014KTSCX134 and 2015KTSCX146).

  6. All-optical reconfigurable multi-logic gates based on nonlinear polarization rotation effect in a single SOA

    Institute of Scientific and Technical Information of China (English)

    Lilin Yi; Weisheng Hu; Hao He; Yi Dong; Yaohui Jin; Weiqiang Sun

    2011-01-01

    We demonstrate an all-optical reconfigurable logic gate based on dominant nonlinear polarization rotation accompanied with cross-gain modulation effect in a singlc semiconductor optical amplifier (SOA). Five logic functions, including NOT, OR, NOR, AND, and NAND, are realized using 10-Gb/s on-off keying signals with flexible wavelength tunability. The operation principle is explained in detail. By adjusting polarization controllers, multiple logic functions corresponding to different input polarization states are separately achieved using a single SOA with high flexibility.%@@ We demonstrate an all-optical reconfigurable logic gate based on dominant nonlinear polarization rotation accompanied with cross-gain modulation effect in a single semiconductor optical amplifier (SOA).Five logic functions, including NOT, OR, NOR, AND, and NAND, are realized using 10-Gb/s on-off keying signals with flexible wavelength tunability.The operation principle is explained in detail.By adjusting polarization controllers, multiple logic functions corresponding to different input polarization states are separately achieved using a single SOA with high flexibility.

  7. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-04-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.

  8. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  9. All-optical logical gates based on pump-induced resonant nonlinearity in an erbium-doped fiber coupler.

    Science.gov (United States)

    Li, Qiliang; Zhang, Zhen; Li, Dongqiang; Zhu, Mengyun; Tang, Xianghong; Li, Shuqin

    2014-12-01

    In this paper, we theoretically investigate all-optical logical gates based on the pump-induced resonant nonlinearity in an erbium-doped fiber coupler. The resonant nonlinearity yielded by the optical transitions between the (4)I(15/2) states and (4)I(13/2) states in Er(3+) induces the refractive index to change, which leads to switching between two output ports. First, we do a study on the switching performance, and calculate the extinction ratio (Xratio) of the device. Second, using the Xratio, we obtain the truth tables of the device. The results reveal that compared with other undoped nonlinear couplers, the erbium-doped fiber coupler can drop the switching threshold power. We also obtain different logic gates and logic operations in the cases of the same phase and different phase of two initial signals by changing the pump power.

  10. Logical, conditional, and classical probability

    OpenAIRE

    Quznetsov, G. A.

    2005-01-01

    The propositional logic is generalized on the real numbers field. the logical function with all properties of the classical probability function is obtained. The logical analog of the Bernoulli independent tests scheme is constructed. The logical analog of the Large Number Law is deduced from properties of these functions. The logical analog of thd conditional probability is defined. Consistency encured by a model on a suitable variant of the nonstandard analysis.

  11. All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates

    Science.gov (United States)

    Singh, Chandra Pal; Roy, Sukhdev

    2003-03-01

    All-optical switching has been theoretically analyzed in bacteriorhodopsin (bR) based on nonlinear intensity induced excited state absorption of the M state. The transmission of a cw probe laser beam at 410 nm corresponding to the peak absorption of M state through a bR film is switched by a pulsed pump laser beam at 570 nm that corresponds to the maximum initial B state absorption. The switching characteristics have been numerically simulated using the rate equation approach considering all the six intermediate states (B, K, L, M, N and O) in the bR photocycle. The switching characteristics are shown to be sensitive to various parameters such as the pump pulse width, pump intensity, life time of the M state, thickness of the film and absorption cross-section of the B-state at probe wavelength ( σBp). It has been shown that the probe laser beam can be completely switched off (100% modulation) by the pump laser beam at relatively low pump powers, for σBp=0. The switching characteristics have also been used to theoretically design all-optical NOT, OR, AND and the universal NOR and NAND logic gates with two pulsed pump laser beams using the six state model.

  12. All-optical OR/NOR Bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    An OR/NOR bi-functional all-optical logic gate has been experimentally demonstrated at 10 Gbit/s by using cross-gain modulation (XGM) in only 2 semiconductor optical amplifiers (SOAs). One SOA was used for NOR operation and the other SOA was used for inversion to obtain OR operation. Numerical simulation has also been performed, which coincided well with the experimental results.

  13. All-optical logic gate based on transient grating from disperse red 1 doped organic-inorganic hybrid films with an improved figure of merit

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Tianxi; Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn; Shao, Jinyou [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing Systems Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Wang, Yushu [School of Materials Science and Engineering, Georgia Institute of Technology, 500 Tenth Street NW, Atlanta, Georgia 30318 (United States)

    2015-10-21

    Azobenzene dyes have large refractive index near their main resonance, but the poor figure of merit (FOM) limits their potential for all-optical applications. To improve this situation, disperse red 1 (DR1) molecules were dispersed in a sol-gel germanium/Ormosil organic-inorganic hybrid matrix. Z-scan measurement results showed a good compatibility between the dopant and the matrix, and also, an improved FOM was obtained as compared to the DR1/polymer films reported previously. To demonstrate the all-optical signal processing effect, a cw Nd:YAG laser emitting at 532 nm and a He-Ne laser emitting at 632.8 nm were used as pump and probe beams, respectively. DR1 acts as an initiator of the photo-induced transient holographic grating, which is attributed to the trans-cis-trans photoisomerization. Thus, a three inputs AND all-optical logic gate was achieved by using choppers with different frequencies. The detailed mechanism of operation is discussed. These results indicate that the DR1 doped germanium/Ormosil organic-inorganic hybrid film with an improved FOM has a great potential in all-optical devices around its main resonance.

  14. Demonstration and optimisation of an ultrafast all-optical AND logic gate using four-wave mixing in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    We have proposed an all-optical AND logic gate based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) integrated with an optical filter. In the scheme proposed, the preferred logical function can be performed without using a continuous-wave (cw) signal. The modified nonlinear Schroedinger equation (MNLSE) is used for the modelling wave propagation in a SOA. The MNLSE takes into account all nonlinear effects relevant to pico- and sub-picosecond pulse durations and is solved by the finite-difference beam-propagation method (FD-BPM). Based on the simulation results, the optimal output signal with a 40-fJ energy can be obtained at a bit rate of 50 Gb s-1. In the simulations, besides the nonlinearities included in the model, the pattern effect of the signals propagating in the SOA medium and the effect of the input signal bit rate are extensively investigated to optimise the system performance. (optical logic elements)

  15. Spin centres in SiC for all-optical nanoscale quantum sensing under ambient conditions

    Science.gov (United States)

    Anisimov, A. N.; Babunts, R. A.; Kidalov, S. V.; Mokhov, E. N.; Soltamov, V. A.; Baranov, P. G.

    2016-07-01

    Level anticrossing (LAC) spectroscopy was demonstrated on a family of uniaxially oriented spin colour centres with S = 3/2 in the ground and excited states in hexagonal 4H-, 6H- and rhombic 15R- SiC polytypes. It was shown that these centres exhibit unique characteristics such as optical spin alignment up to the temperatures of 250 ◦C. A sharp variation of the IR photoluminescence intensity in the vicinity of LAC with the record contrast was observed, which can be used for a purely all-optical sensing of the magnetic field and temperature without applying radiofrequency field. A distinctive feature of the LAC signal is weak dependence on the direction of the magnetic field that allows one to monitor the LAC signals in the nonoriented systems, such as powder of SiC nanocrystals.

  16. All-optical conditional logic with a nonlinear photonic crystal nanocavity

    CERN Document Server

    McCutcheon, Murray W; Young, Jeff F; Dalacu, Dan; Poole, Philip J; Williams, Robin L

    2009-01-01

    We demonstrate tunable frequency-converted light mediated by a chi-(2) nonlinear photonic crystal nanocavity. The wavelength-scale InP-based cavity supports two closely-spaced localized modes near 1550 nm which are resonantly excited by a 130 fs laser pulse. The cavity is simultaneously irradiated with a non-resonant probe beam, giving rise to rich second-order scattering spectra reflecting nonlinear mixing of the different resonant and non-resonant components. In particular, we highlight the radiation at the sum frequencies of the probe beam and the respective cavity modes. This would be a useful, minimally-invasive monitor of the joint occupancy state of multiple cavities in an integrated optical circuit.

  17. All-optical conditional logic with a nonlinear photonic crystal nanocavity

    Science.gov (United States)

    McCutcheon, Murray W.; Rieger, Georg W.; Young, Jeff F.; Dalacu, Dan; Poole, Philip J.; Williams, Robin L.

    2009-11-01

    We demonstrate tunable frequency-converted light mediated by a χ(2) nonlinear photonic crystal nanocavity. The InP-based cavity supports two closely spaced localized modes near 1550 nm, which are resonantly excited by a 130 fs laser pulse. The cavity is simultaneously irradiated with a nonresonant probe beam, giving rise to rich second-order scattering spectra showing nonlinear mixing of the different resonant and nonresonant components. We highlight the radiation at the sum frequencies of the probe beam and the respective cavity modes. This would be a useful, minimally invasive monitor of the joint occupancy state of multiple cavities in an integrated optical circuit.

  18. Conditionals and Modularity in General Logics

    CERN Document Server

    Gabbay, Dov M

    2011-01-01

    This text centers around three main subjects. The first is the concept of modularity and independence in classical logic and nonmonotonic and other nonclassical logic, and the consequences on syntactic and semantical interpolation and language change. In particular, we will show the connection between interpolation for nonmonotonic logic and manipulation of an abstract notion of size. Modularity is essentially the ability to put partial results achieved independently together for a global result. The second aspect of the book is the authors' uniform picture of conditionals, including many-valu

  19. All-optical analog comparator

    Science.gov (United States)

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai

    2016-08-01

    An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.

  20. All-optical bit-pattern recognition in data segments using logic AND and XOR in a single all-active MZI wavelength converter

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Fjelde, T; Buron, J D;

    2002-01-01

    A novel and cost-effective scheme far comparing a segment of an incoming data stream to an expected sequence, using a single, all- active MZI is proposed. The comparator comprises the logic AND and XOR functions, and is demonstrated at 10 Gb/s......A novel and cost-effective scheme far comparing a segment of an incoming data stream to an expected sequence, using a single, all- active MZI is proposed. The comparator comprises the logic AND and XOR functions, and is demonstrated at 10 Gb/s...

  1. Simultaneous Realization of Wavelength Conversion, 2R Regeneration, and All-Optical Multiple Logic Gates with OR, NOR, XOR, and XNOR Functions Based on Self-Polarization Rotation in a Single SOA: An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Youssef Said

    2012-01-01

    Full Text Available We highlight the feasibility of experimental implementation of both inverted and noninverted wavelength conversion, 2R regeneration, and all-optical logic functions, such as OR, NOR, XOR, and XNOR optical gates by exploiting the self-polarization rotation in a semiconductor optical amplifier (SOA device without changing the setup configuration. Switching between each optical function is done by only adjusting the input optical power level. In order to allow optimum control and preserve the polarization state of the injected and collected signals, the polarimetric measures have been carried out in free space.

  2. Simulation of all-optical logic NOR gate based on two-photon absorption with semiconductor optical amplifier-assisted Mach-Zehnder interferometer with the effect of amplified spontaneous emission

    Science.gov (United States)

    Kotb, Amer

    2015-05-01

    The performance of an all-optical NOR gate is numerically simulated and investigated. The NOR Boolean function is realized by using a semiconductor optical amplifier (SOA) incorporated in Mach-Zehnder interferometer (MZI) arms and exploiting the nonlinear effect of two-photon absorption (TPA). If the input pulse intensities is adjusting to be high enough, the TPA-induced phase change can be larger than the regular gain-induced phase change and hence support ultrafast operation in the dual rail switching mode. The numerical study is carried out by taking into account the effect of the amplified spontaneous emission (ASE). The dependence of the output quality factor ( Q-factor) on critical data signals and SOAs parameters is examined and assessed. The obtained results confirm that the NOR gate implemented with the proposed scheme is capable of operating at a data rate of 250 Gb/s with logical correctness and high output Q-factor.

  3. All-optical repeater.

    Science.gov (United States)

    Silberberg, Y

    1986-06-01

    An all-optical device containing saturable gain, saturable loss, and unsaturable loss is shown to transform weak, distorted optical pulses into uniform standard-shape pulses. The proposed device performs thresholding, amplification, and pulse shaping as required from an optical repeater. It is shown that such a device could be realized by existing semiconductor technology.

  4. Study on Mach-Zehnder type all optical logic gate based on microring resonator%基于 Mach-Zehnder结构微环谐振腔全光逻辑门的研究

    Institute of Scientific and Technical Information of China (English)

    高磊; 王涛

    2014-01-01

    In order to solve the problem of high pump power of logic gates , a novel Mach-Zehnder type all optical logic gate based on micro-ring resonator was proposed .The periodical patterns of air holes added in the micro-ring waveguide provide strong confinement on light , which enhances the third order nonlinear Kerr effect around the band edge and decreases the pump power of phase shift .Combining micro-ring resonator with Mach-Zehnder structure , different logic function can be realized with the phase shift in the different micro-rings controlled by Kerr effect .The impact of the different size of air holes on the structure was calculated and the detailed control methods of the logic gates were verified . The feasibility was proved .The simulation results show that this device possesses several practical advantages , such as low power consumption of less than 10dBm, delay of ps order, high speed data processing ability and μm order dimension.The device achieves the different kinds of logic gates and has the guiding significance to all optical networks .%为了解决全光逻辑门结构所需抽运能量过大的问题,提出了一种基于Mach-Zehnder结构微环谐振腔的全光控制逻辑门结构。通过在微环波导上加入空气孔加强对光的限制,增强了带边附近的3阶非线性效应,从而减小达到所需相移的抽运能量。将微环谐振腔与Mach-Zehnder结构结合,采用光学Kerr效应控制不同微环内相移的改变,从而实现不同逻辑门功能。同时进行了理论分析与仿真验证,计算了不同尺寸空气孔对于结构的影响,并对于不同逻辑功能的控制方法,验证了结构的可行性。结果表明,这种逻辑门结构所需抽运能量不超过10dBm,延迟处于皮秒量级,速度快,器件的尺寸处于微米量级,该结构可以同时实现不同的逻辑门状态,对于全光网络的研究有指导意义。

  5. Comparison of all optical forwarding packet architectures

    Science.gov (United States)

    Farhat, Rim; Farhat, Amel; Menif, Mourad

    2016-04-01

    In this paper two all optical packet forwarding architectures based on non linear effect in semiconductor optical amplifier in Mach-Zehnder configuration SOA-MZI are studied. The first architecture consist in combing flip flop functionality with the AND logic functionality in the same unit. Error free operation at 40 Gbps for two cascaded nodes is achieved. In the second architecture two separated units namely the flip flop and the AND logic gate are used. 100 Gbps bit rate is reached. At 40 Gbps error free operation is achieved for three cascaded nodes.

  6. ALL OPTICAL 3-BIT SERIAL INPUT SHIFT REGISTER DESIGN

    Directory of Open Access Journals (Sweden)

    VIKRANT K SRIVASTAVA,

    2010-08-01

    Full Text Available In this Paper, we present all-optical shift Register logic with complete Boolean functionality as a representative circuit for modeling and optimization of monolithically integrated components. Proposed optical logic unit is based on nonlinear effects in semiconductor optical amplifiers (SOA. We show a strategy of optical pulse propagation in SOA based on coupled nonlinear equations describing XGM and FWM effects. These equations are first solved togenerate the pump, probe and conjugate pulses in a SOA. The pulse behavior are analyzed and applied to realize behavior of all-optical NAND gate. Next, the logic is used to implement All-Optical Flip-Flop logic, and its function is verified with the help of truth table. Finally with the help of three Flip Flop a 3-bit shift register is proposed. The full design is simple, compact, economical, thermally stable and integration capable.

  7. Design of all-optical read-only memory.

    Science.gov (United States)

    Jung, Young Jin; Park, Namkyoo; Jhon, Young Min; Lee, Seok

    2009-11-01

    A semiconductor optical amplifier-based all-optical read-only memory (ROM) is successfully demonstrated through simulations using a one-level simplification method optimized for optical logic circuits. Design details are presented, and advantages are discussed in comparison with an all-optical ROM-employing decoder. We demonstrate that eight characters can be stored at each address in the American Standard Code for Information Interchange. PMID:19881640

  8. Logic of primary-conditionals and secondary conditionals

    Institute of Scientific and Technical Information of China (English)

    Liu Zhuanghu; Li Xiaowu

    2006-01-01

    Firstly,the authors analyzed the properties of primary-onditionals and secondary-conditionals,establish the minimum system C2Lm of primary-conditionals and secondary-conditionals,and then prove some of the formal theorems of the system which have important intuitive meanings.Secondly,the authors constructed the neighborhood semantics,prove the soundness of C2Lm,introduce a general concept of canonical model by the neighborhood semantics,and then prove the completeness of C2Lm by the canonical model.Finally,according to the technical results of the minimum system C2Lm,the authors discuss some of the important problems concerning primary-conditionals and secondary-onditionals.

  9. All-optical Reservoir Computing

    CERN Document Server

    Duport, François; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-01-01

    Reservoir Computing is a novel computing paradigm which uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  10. All-optical reservoir computing.

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  11. All-optical reservoir computing

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-01

    Reservoir Computing is a novel computing paradigm which uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  12. Universal quantum computation using all-optical hybrid encoding

    Institute of Scientific and Technical Information of China (English)

    郭奇; 程留永; 王洪福; 张寿

    2015-01-01

    By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing.

  13. 基于非线性材料二次谐波与混频特性非逻辑门运算的全光实现%All-Optical Implementation of Inversion Logic Operation by Second Harmonic Generation and Wave Mixing Character of Some Non-Linear Material

    Institute of Scientific and Technical Information of China (English)

    Sisir Kumar Garai; Debojyati Samanta; Sourangshu Mukhopadhyay

    2008-01-01

    Optics has already been proved as a successful candidate for conducting parallel logic, arithmetic and algebraic operations. Several all-optical data processors were proposed since last few decades. To implement these systems, different data encoding decoding techniques such as polarization encoding, tristate, quartenary state, multivalued state, symbolic substitution technique etc. have already been proposed. All these are done to use optics in a suitable platform. We propose here a new concept of encoding data by adopting frequencies variation technique for conducting a inversion operation successfully.

  14. All-optical pressure sensor

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an all-optical pressure sensor comprising a waveguide accommodating a distributed Bragg reflector. Pressure sensing can then be provided by utilizing effective index modulation of the waveguide and detection of a wavelength shift of light reflected from the Bragg...... reflector. Sound sensing may also be provided thereby having an all-optical microphone. One embodiment of the invention relates to an optical pressure sensor comprising at least one outer membrane and a waveguide, the waveguide comprising at least one core for confining and guiding light,at least one...... distributed Bragg reflector located in said at least one core, and at least one inner deflecting element forming at least a part of the core,wherein the pressure sensor is configured such that the geometry and/or dimension of the at least one core is changed when the at least one outer membrane is submitted...

  15. All-optical photoacoustic microscopy

    Directory of Open Access Journals (Sweden)

    Sung-Liang Chen

    2015-12-01

    Full Text Available Three-dimensional photoacoustic microscopy (PAM has gained considerable attention within the biomedical imaging community during the past decade. Detecting laser-induced photoacoustic waves by optical sensing techniques facilitates the idea of all-optical PAM (AOPAM, which is of particular interest as it provides unique advantages for achieving high spatial resolution using miniaturized embodiments of the imaging system. The review presents the technology aspects of optical-sensing techniques for ultrasound detection, such as those based on optical resonators, as well as system developments of all-optical photoacoustic systems including PAM, photoacoustic endoscopy, and multi-modality microscopy. The progress of different AOPAM systems and their representative applications are summarized.

  16. All-optical Reservoir Computing

    OpenAIRE

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-01-01

    Reservoir Computing is a novel computing paradigm which uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunicatio...

  17. The All Optical New Universal Gate Using TOAD

    Directory of Open Access Journals (Sweden)

    Goutam Kumar Maity

    2014-06-01

    Full Text Available Since the seventies of the past century the reversible logic has originated as an unconventional form of computing. It is new relatively in the area of extensive applications in quantum computing, low power CMOS, DNA computing, digital signal processing (DSP, nanotechnology, communication, optical computing, computer graphics, bio information, etc .Here we present and configure a new TAND gate in all-optical domain and also in this paper we have explained their principle of operations and used a theoretical model to fulfil this task, finally supporting through numerical simulations. In the field of ultra-fast all-optical signal processing Terahertz Optical Asymmetric Demultiplexer (TOAD, semiconductor optical amplifier (SOA-based, has an important function. The different logical (composing of Boolean function operations can be executed by designed circuits with TAND gate in the domain of universal logic-based information processing.

  18. Developmental and individual differences in conditional reasoning: effects of logic instructions and alternative antecedents.

    Science.gov (United States)

    Daniel, David B; Klaczynski, Paul A

    2006-01-01

    In Study 1, 10-, 13-, and 16-year-olds were assigned to conditions in which they were instructed to think logically and provided alternative antecedents to the consequents of conditional statements. Providing alternatives improved reasoning on two uncertain logical forms, but decreased logical responding on two certain forms; logic instructions improved reasoning among adolescents. Correlations among inferences and verbal ability were found primarily when task conditions created conflict between automatic and controlled inferences. In Study 2, when the cognitive demands of the logic instructions were reduced, 10-year-olds made more logically correct inferences, but only when a conditional's consequents were strongly associated with alternative antecedents. Discussion focuses on the ability to inhibit invited inferences and the role of automatically activated memories.

  19. All-Optical Switching in Bacteriorhodopsin Based on Excited-State Absorption

    Science.gov (United States)

    Roy, Sukhdev

    2008-03-01

    Switching light with light is of tremendous importance for both fundamental and applied science. The advent of nano-bio-photonics has led to the design, synthesis and characterization of novel biomolecules that exhibit an efficient nonlinear optical response, which can be utilized for designing all-optical biomolecular switches. Bacteriorhodopsin (bR) protein found in the purple membrane of Halobacterium halobium has been the focus of intense research due to its unique properties that can also be tailored by physical, chemical and genetic engineering techniques to suit desired applications. The talk would focus on our recent results on all-optical switching in bR and its mutants, based on excited-state absorption, using the pump-probe technique. We would discuss the all-optical control of various features of the switching characteristics such as switching contrast, switching time, switching pump intensity, switched probe profile and phase, and relative phase-shift. Optimized conditions for all-optical switching that include optimized values of the small-signal absorption coefficient (for cw case), the pump pulse width and concentration for maximum switching contrast (for pulsed case), would be presented. We would discuss the desired optimal spectral and kinetic properties for device applications. We would also discuss the application of all-optical switching to design low power all-optical computing devices, such as, spatial light modulators, logic gates and multiplexers and compare their performance with other natural photoreceptors such as pharaonis phoborhodopsin, proteorhodopsin, photoactive yellow protein and the blue light plant photoreceptor phototropin.

  20. All optical regeneration using semiconductor devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Tromborg, Bjarne

    All-optical regeneration is a key functionality for implementing all-optical networks. We present a simple theory for the bit-error-rate in links employing all-optical regenerators, which elucidates the interplay between the noise and and nonlinearity of the regenerator. A novel device structure ...... is analyzed, emphasizing general aspects of active semiconductor waveguides....

  1. All-Optical Reversible Hybrid New Gate using TOAD

    Directory of Open Access Journals (Sweden)

    Goutam Kumar Maity

    2014-03-01

    Full Text Available Reversible logic is emerged as a promising computing paradigm with applications in low-power CMOS, quantum computing, optical computing and nanotechnology. Optical logic gates become potential component to work at macroscopic (light pulses carry information, or quantum (single photon carries information levels with high efficiency. In this paper, we propose a novel scheme of Hybrid new gate realization in all-optical domain. Simulation results verify the functionality of the gate as well as reversibility. Approximate insertion power loss in dB is also reported for the Gaussian incident and control pulse.

  2. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2000-01-01

    Semiconductor optical amplifiers are useful building blocks for all-optical gates as wavelength converters and OTDM demultiplexers. The paper reviews the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using cross-phase modulation....... These gates are very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-speed all-optical logic functions...

  3. Impacts of SOA Working Conditions on All-optical XOR Output Performance%SOA工作条件对全光异或输出性能的影响研究

    Institute of Scientific and Technical Information of China (English)

    邓大鹏; 曹东东; 廖晓闽; 朱峰; 林初善

    2013-01-01

    The SOA dynamic model and SOA-MZI all-optical XOR principles were analyzed theoretically,and the experiment model based on SOA-MZI structure was built by using software OptiSystem.Then the impacts of data signal power,continuous probe power and bias current injected into SOA on the output extinction ratio,Q factor and bit error performance were simulated and researched.Finally,a group of best working conditions were obtained as the data signal power of 3 dBm,the continuous probe power of 0 dBm and the bias current of 600 mA,under which best XOR output performance with the extinction ratio(ER) of about 11.5 dB,Q factor of about 22,and bit error rate (BER) of about 10-108 can be obtained.The methods and conclusions can be used in other all-optical signal processing applications based on SOA,to make preparation for the comprehensive construction of all-optical network in the future.%理论分析了SOA动态模型和SOA-MZI全光异或原理,采用光通信系统设计软件OptiSystem搭建了基于SOA-MZI的全光异或实验模型,仿真研究了注入SOA的数据信号光功率、连续探测光功率、偏置电流等工作条件对异或输出消光比、Q值以及误码性能的影响,取得了一组最佳工作条件,即数据信号光功率为3 dBm,连续探测光功率为0 dBm,偏置电流为600mA,此时可以得到最佳的异或输出性能:消光比约11.5dB,Q值约22,误码率约10-108量级.研究方法和相关结论可以推广到基于SOA的其他全光信号处理应用中,为未来全光网络的全面建设做准备.

  4. All-optical flip-flop based on coupled SOA-PSW

    Science.gov (United States)

    Wang, Lina; Wang, Yongjun; Wu, Chen; Wang, Fu

    2016-07-01

    The semiconductor optical amplifier (SOA) has obvious advantages in all-optical signal processing, because of the simple structure, strong non-linearity, and easy integration. A variety of all-optical signal processing functions, such as all-optical wavelength conversion, all-optical logic gates and all-optical sampling, can be completed by SOA. So the SOA has been widespread concerned in the field of all-optical signal processing. Recently, the polarization rotation effect of SOA is receiving considerable interest, and many researchers have launched numerous research work utilizing this effect. In this paper, a new all-optical flip-flop structure using polarization switch (PSW) based on polarization rotation effect of SOA is presented.

  5. Semiconductor devices for all-optical regeneration

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne;

    2003-01-01

    We review different implementations of semiconductor devices for all-optical regeneration. A general model will be presented for all-optical regeneration in fiber links, taking into consideration the trade-off between non-linearity and noise. Furthermore we discuss a novel regenerator type, based...

  6. Nanofiber-based all-optical switches

    CERN Document Server

    Kien, Fam Le

    2016-01-01

    We study all-optical switches operating on a single four-level atom with the $N$-type transition configuration in a two-mode nanofiber cavity with a significant length (on the order of $20$ mm) and a moderate finesse (on the order of 300) under the electromagnetically induced transparency (EIT) conditions. In our model, the gate and probe fields are the quantum nanofiber-cavity fields excited by weak classical light pulses, and the parameters of the $D_2$ line of atomic cesium are used. We examine two different switching schemes. The first scheme is based on the effect of the presence of a photon in the gate mode on the EIT of the probe mode. The second scheme is based on the use of EIT to store a photon of the gate mode in the population of an appropriate atomic level, which leads to the reduction of the transmission of the field in the probe mode. We investigate the dependencies of the switching contrast on various parameters, such as the cavity length, the mirror reflectivity, and the detunings and powers ...

  7. Parity Checking and Generating Circuit with Nonlinear Material in All-Optical Domain

    Institute of Scientific and Technical Information of China (English)

    Kuladeep Roy Chowdhury; Debduti De; Sourangshu Mukhopadhyay

    2005-01-01

    @@ An all-optical parity checker and parity bit generator circuit is proposed, in which optical non-linear materials are used as switching devices. High-speed (above GHz) logic operations can be achieved by this all-optical circuit that is tremendously fast than its equivalent electronic counterpart. Here these circuits are used to check the errors in optical data through a transmission line.

  8. An all-optical matrix multiplication scheme with non-linear material based switching system

    Institute of Scientific and Technical Information of China (English)

    Archan Kumar Das; Sourangshu Mukhopadhyay

    2005-01-01

    Optics is a potential candidate in information, data, and image processing. In all-optical data and information processing, optics has been used as information carrying signal because of its inherent advantages of parallelism. Several optical methods are proposed in support of the above processing. In many algebraic,arithmetic, and image processing schemes fundamental logic and memory operations are conducted exploring all-optical devices. In this communication we report an all-optical matrix multiplication operation with non-linear material based switching circuit.

  9. All-optical signal processing and regeneration

    DEFF Research Database (Denmark)

    Wolfson, David

    2001-01-01

    The trend in the industry today is that more and more complex functionalities are moving from the electrical domain and into the optical domain, demonstrating that all-optical networks are coming closer to realisation. In order for this progress to continue, there is a need for advanced optical c...

  10. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...

  11. All-Optical Network Subsystems Using Integrated SOA-Based Optical Gates and Flip-Flops for Label-Swapped Netorks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Holm-Nielsen, Pablo Villanueva; Kehayas, E.;

    2006-01-01

    In this letter, we demonstrate that all-optical network subsystems, offering intelligence in the optical layer, can be constructed by functional integration of integrated all-optical logic gates and flip-flops. In this context, we show 10-Gb/s all-optical 2-bit label address recognition by interc...

  12. All-Optical Vector Atomic Magnetometer

    CERN Document Server

    Patton, B; Hovde, D C; Budker, D

    2014-01-01

    We demonstrate an all-optical magnetometer capable of measuring the magnitude and direction of a magnetic field using nonlinear magneto-optical rotation in a cesium vapor. Vector capability is added by effective modulation of the field along orthogonal axes and subsequent demodulation of the magnetic-resonance frequency. This modulation is provided by the AC Stark shift induced by circularly polarized laser beams. The sensor exhibits a demonstrated rms noise floor of 50 fT/Hz^(1/2) in measurement of the field magnitude and 0.5 mrad/Hz^(1/2) in the field direction; elimination of technical noise would improve these sensitivities to 12 fT/Hz^(1/2) and 5 microrad/Hz^(1/2), respectively. Applications for a precise all-optical vector magnetometer would include magnetically sensitive fundamental physics experiments, such as the search for a permanent electric dipole moment of the neutron.

  13. All-Optical Vector Atomic Magnetometer

    Science.gov (United States)

    Patton, B.; Zhivun, E.; Hovde, D. C.; Budker, D.

    2014-07-01

    We demonstrate an all-optical magnetometer capable of measuring the magnitude and direction of a magnetic field using nonlinear magneto-optical rotation in cesium vapor. Vector capability is added by effective modulation of the field along orthogonal axes and subsequent demodulation of the magnetic-resonance frequency. This modulation is provided by the ac Stark shift induced by circularly polarized laser beams. The sensor exhibits a demonstrated rms noise floor of ˜65 fT/√Hz in measurement of the field magnitude and 0.5 mrad /√Hz in the field direction; elimination of technical noise would improve these sensitivities to 12 fT /√Hz and 10 μrad /√Hz , respectively. Applications for this all-optical vector magnetometer would include magnetically sensitive fundamental physics experiments, such as the search for a permanent electric dipole moment of the neutron.

  14. Ultrafast all-optical switching in bacteriorhodopsin

    Science.gov (United States)

    Roy, Sukhdev; Singh, C. P.; Reddy, K. P. J.

    2001-04-01

    All-optical switching has been demonstrated in bacteriorhodopsin based on excited-state nonlinear absorption. A probe laser beam at 640 nm corresponding to the O-state absorption maximum is switched due to a strong pulsed pump laser beam at 570 nm, that corresponds to the maximum ground state absorption. We have studied the effect of variation in pulse width and in small signal absorption coefficient on the switching characteristics. The switching time decreases as the pulse width of the pump beam decreases and the small signal absorption coefficient increases. The switching contrast depends mainly on the peak pumping intensity.

  15. Ultrafast all-optical graphene modulator.

    Science.gov (United States)

    Li, Wei; Chen, Bigeng; Meng, Chao; Fang, Wei; Xiao, Yao; Li, Xiyuan; Hu, Zhifang; Xu, Yingxin; Tong, Limin; Wang, Hongqing; Liu, Weitao; Bao, Jiming; Shen, Y Ron

    2014-02-12

    Graphene is an optical material of unusual characteristics because of its linearly dispersive conduction and valence bands and the strong interband transitions. It allows broadband light-matter interactions with ultrafast responses and can be readily pasted to surfaces of functional structures for photonic and optoelectronic applications. Recently, graphene-based optical modulators have been demonstrated with electrical tuning of the Fermi level of graphene. Their operation bandwidth, however, was limited to about 1 GHz by the response of the driving electrical circuit. Clearly, this can be improved by an all-optical approach. Here, we show that a graphene-clad microfiber all-optical modulator can achieve a modulation depth of 38% and a response time of ∼ 2.2 ps, limited only by the intrinsic carrier relaxation time of graphene. This modulator is compatible with current high-speed fiber-optic communication networks and may open the door to meet future demand of ultrafast optical signal processing. PMID:24397481

  16. All-optical buffering for DPSK packets

    Science.gov (United States)

    Liu, Guodong; Wu, Chongqing; Liu, Lanlan; Wang, Fu; Mao, Yaya; Sun, Zhenchao

    2013-12-01

    Advanced modulation formats, such as DPSK, DQPSK, QAM, have become the mainstream technologies in the optical network over 40Gb/s, the DPSK format is the fundamental of all advanced modulation formats. Optical buffers, as a key element for temporarily storing packets in order to synchronization or contention resolution in optical nodes, must be adapted to this new requirement. Different from other current buffers to store the NRZ or RZ format, an all-optical buffer of storing DPSK packets based on nonlinear polarization rotation in SOA is proposed and demonstrated. In this buffer, a section of PMF is used as fiber delay line to maintain the polarization states unchanged, the driver current of SOA is optimized, and no amplifier is required in the fiber loop. A packet delay resolution of 400ns is obtained and storage for tens rounds is demonstrated without significant signal degradation. Using proposed the new tunable DPSK demodulator, bit error rate has been measured after buffering for tens rounds for 10Gb/s data payload. Configurations for First-in First-out (FIFO) buffer or First-in Last-out (FILO) buffer are proposed based on this buffer. The buffer is easy control and suitable for integration. The terminal contention caused by different clients can be mitigated by managing packets delays in future all-optical network, such as optical packet switching network and WDM switching network.

  17. All-optical OFDM network coding scheme for all-optical virtual private communication in PON

    Science.gov (United States)

    Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong

    2014-03-01

    A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.

  18. ALL OPTICAL IMPLEMENTATION OF HIGH SPEED AND LOW POWER REVERSIBLE FULL ADDER USING SEMICONDUCTOR OPTICAL AMPLIFIER BASED MACH-ZEHNDER INTERFEROMETER

    Directory of Open Access Journals (Sweden)

    R. M. Bommi

    2014-01-01

    Full Text Available In the recent years reversible logic design has promising applications in low power computing, optical computing, quantum computing. VLSI design mainly concentrates on low power logic circuit design. In the present scenario researchers have made implementations of reversible logic gates in optical domain for its low energy consumption and high speed. This study is all about designing a reversible Full adder using combination of all optical Toffoli and all optical TNOR and to compare it with the Full adder designed using all optical Toffoli gate in terms of optical cost. All optical TNOR gate can work as a replacement of existing NAND based All optical Toffoli Gate (TG. The gates are designed using Mach-Zehnder Interferometer (MZI based optical switch. The proposed system is developed with the basic of reversibility to design all optical full Adder implemented with CMOS transistors. The design is efficient in terms of both architecture and in power consumption.

  19. All-optical bandwidth-tailorable radar

    CERN Document Server

    Zou, Weiwen; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2015-01-01

    Radar has been widely used in military, security, and rescue. Metamaterial cloak is employed in stealth targets to evade radar detection. Hence modern radar should be reconfigurable at multi-bands for detecting stealth targets, which might be realized based on microwave photonics. Here, we demonstrate an all-optical bandwidth-tailorable radar architecture. It is a coherent system utilizing one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates wideband linearly-chirped radar signal. The working bands can be flexibly tailored with desired bandwidth at user-preferred carrier frequency. After modulated onto the pre-chirped optical pulse, radar echoes are time-stretched and frequency-compressed by several times. The digitization becomes much easier without loss of detection ability. We believe that the demonstration can innovate the radar's architecture with ultra-high range resolution.

  20. All-Optical Switches in Optical Time-Division Multiplexing Technology: Theory,Experience and Application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Optical time division multiplexing (OTDM) is one of thepromisinig ways for the future high-speed optical fiber communication networks. All-optical switch is, being one of the core technologies of OTDM systems and networks, crucial to realize the various signal processes including time-division demultiplexing, packet switching, all-optical regenerating and so on. This thesis mainly studies various all-optical switch technologies and their utilization in the fields of all-optical signal processings in the OTDM systems and networks. The main jobs are listed as follows.(1) A novel all-optical ultrafast demultiplexing scheme using the soliton self-trapping effect in birefringent fiber is proposed.(2) The demultiplexing performance of the Nonlinear Optical Loop Mirror(NOLM) is thoroughly analyzed and its optimization is further discussed.(3) The performance analysis and the configuration optimization of the all-optical switches based on the Semiconductor Optical Amplifier(SOA) are systematically presented. The speed limitation of the all-optical SOA switches induced by the fast gain depletion of SOA is discussed. Besides, a novel SOA switch is proposed, which adopts the asymmetric Mach-Zehnder Interferometer configuration.(4) The 8×2\\^5 Gb/s OTDM experimental transmission system along 105 km standard fiber is realized using the NOLM demultiplexer.(5) The NOLM switch is used to realize the all-optical 3R regeneration of 2\\^5 Gb/s Return-to-Zero signal.(6) The feasibility and limitation of the all-optical SOA packet switch is discussed. And a developed MZI configuration of SOA packet switch is further shown to improve the packet switching performance. Finally, an all-optical packet dropping node suitable in the networks with ring or bus configuration and an all-optical packet switching node in the ShuffleNet networks are proposed to show the feasibility of all-optical packet switching through combining the all-optical switches and the reasonable logic decisions.

  1. The effect of emotion on interpretation and logic in a conditional reasoning task.

    Science.gov (United States)

    Blanchette, Isabelle

    2006-07-01

    The effect of emotional content on logical reasoning is explored in three experiments. Theparticipants completed a conditional reasoning task (If p, then q) with emotional and neutral contents. In Experiment 1, existing emotional and neutral words were used. The emotional value of initially neutral words was experimentally manipulated in Experiments 1B and 2, using classical conditioning. In all experiments, participants were less likely to provide normatively correct answers when reasoning about emotional stimuli, compared with neutral stimuli. This was true for both negative (Experiments 1B and 2) and positive contents (Experiment 2). The participants' interpretations of the conditional statements were also measured (perceived sufficiency, necessity, causality, and plausibility). The results showed the expected relationship between interpretation and reasoning. However, emotion did not affect interpretation. Emotional and neutral conditional statements were interpreted similarly. The results are discussed in light of current models of emotion and reasoning.

  2. The GALAXIE all-optical FEL project

    International Nuclear Information System (INIS)

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project’s acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 μm laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  3. All-optical devices for ultrafast packet switching

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; HerreraDorren, J.; Raz, O.;

    2007-01-01

    We discuss integrated devices for all-optical packet switching. We focus on monolithically integrated all-optical flip-flops, ultra-fast semiconductor based wavelength converters and explain the operation principles. Finally, a 160 Gb/s all-optical packet switching experiment over 110 km of field...

  4. All-optical NOR gate based on injection-locking effect in a semiconductor laser

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A scheme for all-optical NOR logic gate is proposed based on injection-locking effect in a semiconductor laser. In this scheme, signal light injection into the laser will cause frequency shift of laser modes, as a result, the probe light into the laser can be switched between injection-locked and unlocked status, and its output power will be modulated. Theoretical analysis for this scheme is carried out by using a model to describe the dynamics of the injection-locked laser. By numerical simulation, the influence of laser bias current, laser length, injected signal power and signal frequency on the output performance of NOR logic gate is quantitatively analyzed.

  5. All optical NAND gate based on nonlinear photonic crystal ring resonator

    Directory of Open Access Journals (Sweden)

    Somaye Serajmohammadi

    2016-06-01

    Full Text Available In this paper we proposed a new design for all optical NAND gate. By combining nonlinear Kerr effect with photonic crystal ring resonators, we designed an all optical NAND gate. A typical NAND gate is a logic device with one bias and two logic input and one output ports. It has four different combinations for its logic input ports. The output port of the NAND gate is OFF, when both logic ports are ON, otherwise the output port will be ON. The switching power threshold obtained for this structure equals to 1.5 kW/μm2. For designing the proposed optical logic gate we employed one resonant ring whose resonant wavelength is at 1554 nm. The functionality of the proposed NAND gate depends on the operation of this resonant ring. When the power intensity of optical waves is less than the switching threshold the ring will couple optical waves into drop waveguide otherwise the optical waves will propagate on the bus waveguide.

  6. All-optical half-adder/half-subtractor using terahertz optical asymmetric demultiplexer.

    Science.gov (United States)

    Gayen, Dilip Kumar; Chattopadhyay, Tanay; Bhattacharyya, Arunava; Basak, Saikat; Dey, Dipanti

    2014-12-20

    Logic gates are the fundamental building blocks of digital systems. Using these logic gates, one can perform different logic and arithmetic operations. All-optical logic and arithmetic operations are very much expected in high-speed communication systems. In this paper, we present a model to perform addition/subtraction operations on two binary digits based on a terahertz optical asymmetric demultiplexer (TOAD). Using four TOAD-based switches, we have designed a half-adder and half-subtractor circuit. The approach to designing all-optical arithmetic circuits not only enhances the computational speed but is also capable of synthesizing light as inputs to produce the desired outputs. The main advantages of this circuit are that synchronization between inputs is eliminated and simultaneous addition and subtraction operations are realized at the outputs. This circuit is designed theoretically and verified through numerical simulations. The impact of the control pulse energy, gain recovery time, and the input data pulse width on the extinction ratio, contrast ratio, amplitude modulation, Q-factor, and relative opening of the pseudo-eye diagram of the switching outcome is explored and assessed by means of numerical simulations. PMID:25608188

  7. Development of EDG Engine Condition Diagnosis Logic in Korean Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Oh; Choi, Kwang Hee; Lee, Sang Guk [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2012-05-15

    Through benchmarking using the excellent record of the nuclear power plants under operation in the United States and Europe and with the continuous development of nuclear-related technology, the Korea Hydro and Nuclear Power Co., LTD (KHNP) reached an average planned preventive maintenance period of 29.6 days in 2009. In addition, KHNP plans to reduce the planned preventive maintenance period at Korea standard nuclear plants (KSNPs) from 29.6 days to less than 21 days by 2014 through a combination of domestic research and development (R and D) and the introduction of the technical know-how applied in the very best overseas nuclear power plants (NPPs). Accordingly, it is necessary to reduce the inspection and maintenance periods of an emergency diesel generator (EDG), which are currently set in the planned preventive maintenance period. If the condition-based predictive maintenance (CBM) technology is applied to EDG engines, the maintenance period of an EDG will be shortened because engine maintenance is accomplished according to the engine condition under this plan. In this study, in the series of CBM program developments which will be applied to EDG engines, the development results of condition diagnosis logic to be applied to EDG engines for exiting domestic NPPs are introduced

  8. All-optical generation of surface plasmons in graphene

    Science.gov (United States)

    Constant, T. J.; Hornett, S. M.; Chang, D. E.; Hendry, E.

    2016-02-01

    Surface plasmons in graphene offer a compelling route to many useful photonic technologies. As a plasmonic material, graphene offers several intriguing properties, such as excellent electro-optic tunability, crystalline stability, large optical nonlinearities and extremely high electromagnetic field concentration. As such, recent demonstrations of surface plasmon excitation in graphene using near-field scattering of infrared light have received intense interest. Here we present an all-optical plasmon coupling scheme which takes advantage of the intrinsic nonlinear optical response of graphene. Free-space, visible light pulses are used to generate surface plasmons in a planar graphene sheet using difference frequency wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching 10-5.

  9. Reconfigurable all-optical dual-directional half-subtractor for high-speed differential phase shift keying signal based on semiconductor optical amplifiers

    Institute of Scientific and Technical Information of China (English)

    Zhang Yin; Dong Jian-Ji; Lei Lei; Zhang Xin-Liang

    2012-01-01

    All-optical digital logic elementary circuits are the building blocks of many important computational operations in future high-speed all-optical networks and computing systems.Multifunctional and reconfigurable logic units are essential in this respect.Employing the demodulation properties of delay interferometers for input differential phase shift keying signals and the gain saturation effect in two parallel semiconductor optical amplifiers,a novel design of 40 Gbit/s reconfigurable all-optical dual-directional half-subtractor is proposed and demonstrated.All output logic results show that the scheme achieves over 11=dB extinction ratio,clear and wide open eye diagram,as well as low polarization dependence (< 1 dB),without using any additional input light beam.The scheme may provide a promising candidate for future ultrafast all-optical signal processing applications.

  10. Characterisation of hybrid integrated all-optical flip-flop

    DEFF Research Database (Denmark)

    Liu, Y.; McDougall, R.; Seoane, Jorge;

    2006-01-01

    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given....

  11. All-optical demultiplexing using an electroabsorption modulator

    OpenAIRE

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    2000-01-01

    In the 1990s, the electroabsorption modulator (EAM) has found a wide range of applications. Functionalities such as pulse generation and demultiplexing by electrical modulation have been demonstrated using an EAM. Recently, all-optical wavelength conversion, demultiplexing, and signal regeneration, have also been experimentally demonstrated. In this paper, we investigate all-optical demultiplexing from 80 to 10 Gbit/s.

  12. All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics

    Science.gov (United States)

    Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan

    2004-03-01

    We experimentally and theoretically investigated the optical switching characteristics of bacteriorhodopsin (bR) at l=633 nm using the pump-probe method. A diode-pumped second harmonic YAG laser (l=532 nm which is located around the maximum initial Br state absorption) was used as a pumping beam and a cw He-Ne laser (l=633 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we have demonstrated an all-optical device functioning as 11 kinds of variable binary all-optical logic gates.

  13. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream

    Science.gov (United States)

    Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  14. 40Gb/s all-optical binary-coded-decimal decoder

    Science.gov (United States)

    Lei, Lei; Zhang, Yin; Dong, Jianji; Yu, Yu; Zhang, Xinliang

    2011-12-01

    We have experimentally demonstrated a 40Gb/s all-optical binary-coded-decimal (BCD) decoder for the first time, utilizing delay interferometers (DIs) and cascading semiconductor optical amplifiers (SOAs) without any assisting light. Extinction ratios (ERs) of the intermediate results after the first SOA are all over 11dB which ensures the capability to cascade to the second one. The final results are in the form of return-to-zero (RZ) format with correct and clear temporal waveforms. The proposed scheme could be extended to 1-of-16 decoder, logic minterms and read only memory (ROM).

  15. Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer

    Science.gov (United States)

    Xu, Jing; Zhang, Xinliang; Liu, Deming; Huang, Dexiu

    2006-10-01

    An ultrafast all-optical logic NOR gate based on a semiconductor optical amplifier (SOA) and a fiber delay interferometer (FDI) is presented. For high-speed input return-to-zero (RZ) signal, nonreturn-to-zero (NRZ) switching windows which satisfy Boolean NOR operation can be formed by properly choosing the delay time and the phase shift of FDI. 40Gb/s NOR operation has been demonstrated successfully with low control optical power. The factors that degrade the NOR operation have been discussed.

  16. Dynamics of an all-optical atomic spin gyroscope.

    Science.gov (United States)

    Fang, Jiancheng; Wan, Shuangai; Yuan, Heng

    2013-10-20

    We present the transfer function of an all-optical atomic spin gyroscope through a series of differential equations and validate the transfer function by experimental test. A transfer function is the basis for further control system design. We build the differential equations based on a complete set of Bloch equations describing the all-optical atomic spin gyroscope, and obtain the transfer function through application of the Laplace transformation to these differential equations. Moreover, we experimentally validate the transfer function in an all-optical Cs-Xe129 atomic spin gyroscope through a series of step responses. This transfer function is convenient for analysis of the form of control system required. Furthermore, it is available for the design of the control system specifically to improve the performance of all-optical atomic spin gyroscopes.

  17. All-optical signal processing using dynamic Brillouin gratings

    Science.gov (United States)

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-01-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159

  18. Analysis of noise suppression in cascaded all-optical regenerators

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Bischoff, Svend

    2002-01-01

    We derive an approximate analytical expression for the BER of cascaded links with all-optical regenerators and use it for performing a general analysis of the interplay between noise and the non-linearity of the regenerator characteristic.......We derive an approximate analytical expression for the BER of cascaded links with all-optical regenerators and use it for performing a general analysis of the interplay between noise and the non-linearity of the regenerator characteristic....

  19. 100GHz Integrated All-Optical Switch Enabled by ALD

    CERN Document Server

    Moille, Gregory; Morgenroth, Laurence; Lehoucq, Gaëlle; Neuilly, François; Hu, Bowen; Decoster, Didier; de Rossi, Alfredo

    2015-01-01

    The carrier lifetime of a photonic crystal all-optical switch is optimized by controlling the surface of GaAs by Atomic Layer Deposition. We demonstrate an all optical modulation capability up to 100GHz at Telecom wavelengths, with a contrast as high as 7dB. Wavelength conversion has also been demonstrated at a repetition rate of 2.5GHz with average pump power of about 0.5mW

  20. On Dependence Logic

    OpenAIRE

    Galliani, Pietro; Väänänen, Jouko

    2013-01-01

    We give an overview of some developments in dependence and independence logic. This is a tiny selection, intended for a newcomer, from a rapidly growing literature on the topic. Furthermore, we discuss conditional independence atoms and we prove that conditional and non-conditional independence logic are equivalent. Finally, we briefly discuss an application of our logics to belief representation.

  1. High contrast all-optical diode based on direction-dependent optical bistability within asymmetric ring cavity

    Science.gov (United States)

    Xia, Xiu-Wen; Zhang, Xin-Qin; Xu, Jing-Ping; Yang, Ya-Ping

    2016-08-01

    We propose a simple all-optical diode which is comprised of an asymmetric ring cavity containing a two-level atomic ensemble. Attributed to spatial symmetry breaking of the ring cavity, direction-dependent optical bistability is obtained in a classical bistable system. Therefore, a giant optical non-reciprocity is generated, which guarantees an all-optical diode with a high contrast up to 22 dB. Furthermore, its application as an all-optical logic AND gate is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274242, 11474221, and 11574229), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203), and the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB922203 and 2013CB632701).

  2. All-optical controlling based on nonlinear graphene plasmonic waveguides.

    Science.gov (United States)

    Li, Jian; Tao, Jin; Chen, Zan Hui; Huang, Xu Guang

    2016-09-19

    We give the effective refractive index of graphene plasmonic waveguides with both linear and nonlinear effects based on the nonlinear cross-phase modulation, and address the effects of photo-induced refractive index change and absorption change. A non-resonant all-optical nonlinear graphene plasmonic switch with an ultra-compact size of 0.25 μm2 is proposed and numerically analyzed based on the dynamics of the photo-induced absorption change. The results show that the all-optical graphene plasmonic switch can realize a broad bandwidth over 5 THz, a potentially very high switching speed and an extinction ratio of 18.14 dB with the electric amplitude of the pump light of 1.5 × 107 V/m at the signal frequency of 28 THz. Our study could provide a possibility for future all-optical highly integrated optical components. PMID:27661951

  3. All-optical information processing in photonic crystals

    Science.gov (United States)

    Yanik, Mehmet Fatih

    This thesis covers coherent and incoherent all-optical information processing using photonic bandgap nanostructures and microcavities. The first 3 chapters introduce all-optical bistable switching, transistor and memory elements with sub-micron scale dimensions. A strategy for large scale integration without optical isolators is also described. In chapters 4 and 5, dynamically modulated photonic crystal structures are introduced. It is shown that light pulses can be stopped and stored all-optically without requiring any coherent or resonant light-matter interaction. In chapter 6, it is shown that light pulses can be coherently time-reversed by using only index modulations and linear optics. In chapter 7, a supercomputer implementation of an object oriented finite difference time domain simulation is described to simulate photonic nanostructures with arbitrary material & geometric features.

  4. Photonic temporal integrator for all-optical computing.

    Science.gov (United States)

    Slavík, Radan; Park, Yongwoo; Ayotte, Nicolas; Doucet, Serge; Ahn, Tae-Jung; LaRochelle, Sophie; Azaña, José

    2008-10-27

    We report the first experimental realization of an all-optical temporal integrator. The integrator is implemented using an all-fiber active (gain-assisted) filter based on superimposed fiber Bragg gratings made in an Er-Yb co-doped optical fiber that behaves like an 'optical capacitor'. Functionality of this device was tested by integrating different optical pulses, with time duration down to 60 ps, and by integration of two consecutive pulses that had different relative phases, separated by up to 1 ns. The potential of the developed device for implementing all-optical computing systems for solving ordinary differential equations was also experimentally tested. PMID:18958098

  5. Control and Management Issues in All-Optical Networks

    Directory of Open Access Journals (Sweden)

    Ridha Rejeb

    2010-02-01

    Full Text Available As more intelligence and control mechanisms are added into optical networks, the need for the deployment of a reliable and secure management system using efficient control techniques has become increasingly relevant. While some of available control and management methods are applicable to different types of network architectures, many of them are not adequate for all-optical networks. These emerging transparent optical networks have particularly unique features and requirements in terms of security and quality of service thus requiring a much more targeted approach in terms of network management. In particular, the peculiar behavior of all-optical components and architectures bring forth a new set of challenges for network security. In this article, we briefly overview security and management issues that arise in all-optical networks. We then discuss the key management functions that are responsible for ensuring the secure and continued functioning of the network. Consequently, we present a framework for the realization of an appropriate management system that can meet the challenges posed by all-optical networks.

  6. All-optical signal processing in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær

    2002-01-01

    The focal point of the research presented here is all-optical signal processing via nonlinearities. The objective has been to investigate the interaction between optical signals via nonlinearities and how these nonlinearities can be engineered to serve specific purposes. The nonlinear response...

  7. All-optical orthogonal frequency division multiplexing (OFDM) transmitter

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to an all-optical orthogonal frequency division multiplexing (OFDM) transmitter for generating an OFDM output signal. The transmitter comprises a first time-domain optical Fourier transform (OFT) assembly, the first OFT assembly is of a K-D-K configuration and comprises...

  8. Ultimate-fast all-optical switching of a microcavity

    NARCIS (Netherlands)

    Yuce, E.

    2013-01-01

    In this thesis we study ultrafast all-optical switching of microcavities. We employ the electronic Kerr effect to switch the resonance frequency of microcavities operating at telecom wavelengths. We observe the fastest possible switching of a microcavity resonance within 300 fs. The switching speed

  9. Photonic logic-gates: boosting all-optical header processing in future packet-switched networks

    OpenAIRE

    Martinez Canet, Josep Manuel

    2008-01-01

    Las redes ópticas de paquetes se han convertido en los últimos años en uno de los temas de vanguardia en el campo de las tecnologías de comunicaciones. El procesado de cabeceras es una de las funciones más importantes que se llevan a cabo en nodos intermedios, donde un paquete debe ser encaminado a su destino correspondiente. El uso de tecnología completamente óptica para las funciones de encaminamiento y reconocimiento de cabeceras reduce el retardo de procesado respecto al procesado eléctri...

  10. Data Logic

    DEFF Research Database (Denmark)

    Nilsson, Jørgen Fischer

    A Gentle introduction to logical languages, logical modeling, formal reasoning and computational logic for computer science and software engineering students......A Gentle introduction to logical languages, logical modeling, formal reasoning and computational logic for computer science and software engineering students...

  11. All-optical Demultiplexing Using an Electroabsorption Modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    1999-01-01

    In the last decade, the electroabsorption modulator (EAM) (essentially a reverse biased semiconductor optical amplifier) has found an increasingly wider range of applications within optical communications, although mostly at the research level. Recently, all-optical signal-processing such as wave......In the last decade, the electroabsorption modulator (EAM) (essentially a reverse biased semiconductor optical amplifier) has found an increasingly wider range of applications within optical communications, although mostly at the research level. Recently, all-optical signal-processing...... the channel to be demultiplexed, and the other OTDM channels is shown to saturate at a value which increases with the signal input power....... such as wavelength conversion, demultiplexing, and signal regeneration using an EAM have also been experimentally demonstrated, and lately theoretical calculations of wavelength conversion and signal regeneration have been presented. These functionalities are important for constructing ultrahigh-speed all...

  12. All-Optical Switching Based on Azo Polymer Material

    Institute of Scientific and Technical Information of China (English)

    DENG Yan; LUO Yan-Hua; WANG Pei; LU Yong-Hua; MING Hai; ZhANG Qi-Jing

    2007-01-01

    Conventional all-optical switches based on azo polymer films and the all-optical switches based on the attenuated total reflection (ATR) geometry are investigated. A conventional switch system, including a pump beam of 532nm and a probe beam of 650nm, is based on the photoinduced birefringence effect of azo polymer. An ATR switch in a prism-multilayer configuration is achieved by changing the reflectance of the probe beam with an external pump beam. The ATR method provides the substantial improvement of the speed and the efficiency of the modulation over the conventional method. Although the azo polymer response still remains relatively slow,an enhanced nonlinear refractive index of the azo polymer film can effectively increase the modulation.

  13. All Optical Flip-Flop Based on Coupled Laser Diodes

    OpenAIRE

    Hill, MT Martin

    1999-01-01

    An all optical set-reset flip flop is presented that is based on two coupled identical laser diodes. The lasers are coupled so that when one of the lasers lases it quenches lasing in the other laser. The state of the flip flop is determined by which laser is currently lasing. Rate equations are used to model the flip flop and obtain steady state characteristics. The flip flop is experimentally demonstrated by use of antireflection coated laser diodes and free space optics.

  14. All-optical switching in optically induced nonlinear waveguide couplers

    Energy Technology Data Exchange (ETDEWEB)

    Diebel, Falko, E-mail: falko.diebel@uni-muenster.de; Boguslawski, Martin; Rose, Patrick; Denz, Cornelia [Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149 Münster (Germany); Leykam, Daniel; Desyatnikov, Anton S. [Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2014-06-30

    We experimentally demonstrate all-optical vortex switching in nonlinear coupled waveguide arrays optically induced in photorefractive media. Our technique is based on multiplexing of nondiffracting Bessel beams to induce various types of waveguide configurations. Using double- and quadruple-well potentials, we demonstrate precise control over the coupling strength between waveguides, the linear and nonlinear dynamics and symmetry-breaking bifurcations of guided light, and a power-controlled optical vortex switch.

  15. An exciton-polariton mediated all-optical router

    OpenAIRE

    Flayac, H.; Savenko, I. G.

    2013-01-01

    We propose an all-optical nonlinear router based on a double barrier gate connected to periodically modulated guides. A semiconductor microcavity is driven nonresonantly in-between the barriers to form an exciton-polariton condensate on a discrete state that is subject to the exciton blueshift. The subsequent coherent optical signal is allowed to propagate through a guide provided that the condensate energy is resonant with a miniband or is blocked if it faces a gap. While a symmetric sample ...

  16. A coherent perceptron for all-optical learning

    International Nuclear Information System (INIS)

    We present nonlinear photonic circuit models for constructing programmable linear transformations and use these to realize a coherent perceptron, i.e., an all-optical linear classifier capable of learning the classification boundary iteratively from training data through a coherent feedback rule. Through extensive semi-classical stochastic simulations we demonstrate that the device nearly attains the theoretical error bound for a model classification problem. (orig.)

  17. A coherent perceptron for all-optical learning

    Energy Technology Data Exchange (ETDEWEB)

    Tezak, Nikolas; Mabuchi, Hideo [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States)

    2015-12-15

    We present nonlinear photonic circuit models for constructing programmable linear transformations and use these to realize a coherent perceptron, i.e., an all-optical linear classifier capable of learning the classification boundary iteratively from training data through a coherent feedback rule. Through extensive semi-classical stochastic simulations we demonstrate that the device nearly attains the theoretical error bound for a model classification problem. (orig.)

  18. Polarization-Independent All-Optical Regenerator for DPSK Data

    Directory of Open Access Journals (Sweden)

    Valeria Vercesi

    2014-05-01

    Full Text Available We demonstrate polarization-independent simultaneous all-optical phase-preserving amplitude regeneration and wavelength conversion of NRZ differential phase shift keying (DPSK data by four-wave mixing (FWM in a semiconductor optical amplifier (SOA. The dependence upon polarization state of the signals is eliminated by using a co-polarized dual-pump architecture. Investigation on the regenerative capability vs. pumps detuning shows significant BER threshold margin improvement over 6 nm conversion range.

  19. All-optical switching in metamaterial with high structural symmetry

    OpenAIRE

    Tuz, Vladimir R.; Prosvirnin, Sergey L.

    2011-01-01

    We argue the possibility of realization of a polarization insensitive all-optical switching in a planar metamaterial composed of a 4-fold periodic array of two concentric metal rings placed on a substrate of nonlinear material. It is demonstrated that a switching may be achieved between essentially different values of transmission near the resonant frequency of the high-quality-factor Fano-shape trapped-mode excitation.

  20. All-optical mode unscrambling on a silicon photonic chip

    CERN Document Server

    Morichetti, Francesco; Grillanda, Stefano; Peserico, Nicola; Carminati, Marco; Ciccarella, Pietro; Ferrari, Giorgio; Guglielmi, Emanuele; Sorel, Marc; Melloni, Andrea

    2015-01-01

    We demonstrate a 4-channel silicon photonic MIMO demultiplexer performing all-optical unscrambling of four mixed modes. Mode unscrambling is achieved by means of a cascaded Mach-Zehnder architecture that is sequentially reconfigured by individually monitoring each stage though integrated transparent detectors, namely Contact Less Integrated Photonic Probes (CLIPPs). Robust demultiplexing of 10 Gbit/s channels with less than -20 dB crosstalk is achieved.

  1. Experimental and theoretical investigation of semiconductor optical amplifier (SOA) based all-optical switches

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup

    2004-01-01

    , consisting of an SOA and an asymmetric MZI filter, is analyzed in the small-signal regime, and the obtainable modulation bandwidth is expressed analytically. A new optical spectrum approach to small signal analysis is introduced, and is used to assess the bandwidth enhancing effect of different optical......This thesis analyzes semiconductor optical amplifier (SOA) based all-optical switches experimentally and through numerical simulations. These devices are candidates for optical signal processing functionalities such as wavelength conversion, regeneration, and logic processing in future transparent...... optical networks. The factors governing the modulation bandwidth of SOAs are determined, and schemes for reducing detrimental patterning effects are discussed. Three types of SOA-based switches are investigated numerically: so-called standardmode and differential-mode switches, and the filtering assisted...

  2. A Fuzzy Logic Control Strategy for Doubly Fed Induction Generator for Improved Performance under Faulty Operating Conditions

    Directory of Open Access Journals (Sweden)

    G. Venu Madhav

    2014-12-01

    Full Text Available In this paper, decouple PI control for output active and reactive powers which is the common control technique for power converter of Doubly Fed Induction Generator (DFIG is presented. But there are some disadvantages with this control method like uncertainty about the exact model, behavior of some parameters or unpredictable wind speed and tuning of PI parameters. To overcome the mentioned disadvantages a fuzzy logic control of DFIG wind turbine is presented and is compared with PI controller. To validate the proposed scheme, simulation results are presented, these results showed that the performance of fuzzy control of DFIG is excellent and it improves power quality and stability of wind turbine compared to PI controller. The Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. The entire work is carried out in MATLab/Simulink. Different faulty operating conditions are considered to prove the effective implementation of the proposed control scheme.

  3. Realization of an all optical exciton-polariton router

    Energy Technology Data Exchange (ETDEWEB)

    Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Bloch, Jacqueline, E-mail: jacqueline.bloch@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Physics Department, Ecole Polytechnique, F-91128 Palaiseau Cedex (France)

    2015-11-16

    We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions.

  4. All-optical flip-flop and control methods thereof

    Science.gov (United States)

    Maywar, Drew; Agrawal, Govind P.

    2010-03-23

    Embodiments of the invention pertain to remote optical control of holding beam-type, optical flip-flop devices, as well as to the devices themselves. All-optical SET and RE-SET control signals operate on a cw holding beam in a remote manner to vary the power of the holding beam between threshold switching values to enable flip-flop operation. Cross-gain modulation and cross-polarization modulation processes can be used to change the power of the holding beam.

  5. All-optical nonlinear switching cell made of photonic crystal.

    Science.gov (United States)

    Wirth Lima, A; da Silva, Marcio G; Ferreira, A C; Sombra, A S B

    2009-07-01

    We analyze and propose a directional optical coupler embedded in photonic crystal, which is driven by an external command signal. Therefore, this switching cell can work in an all-optical switch. The switching method uses a low-power external command signal, inserted in the central coupling region, which acts as another waveguide. The switching process is based on the change from the bar state to the cross state due to the external command signal. In our simulations we used the plane wave expansion method, finite-difference time-domain method, and our own binary propagation method.

  6. All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators

    Science.gov (United States)

    Moniem, Tamer A.

    2016-04-01

    The photonic crystals draw significant attention to build all-optical logic devices and are considered one of the solutions for the opto-electronic bottleneck via speed and size. The paper presents a novel optical 4 × 2 encoder based on 2D square lattice photonic crystals of silicon rods. The main realization of optical encoder is based on the photonic crystal ring resonator NOR gates. The proposed structure has four logic input ports, two output ports, and two bias input port. The photonic crystal structure has a square lattice of silicon rods with a refractive index of 3.39 in air. The structure has lattice constant 'a' equal to 630 nm and bandgap range from 0.32 to 044. The total size of the proposed 4 × 2 encoder is equal to 35 μm × 35 μm. The simulation results using the dimensional finite difference time domain and Plane Wave Expansion methods confirm the operation and the feasibility of the proposed optical encoder for ultrafast optical digital circuits.

  7. Tunable All-Optical Filtering and Buffering in a Coupled Quantum Dot-Planar Photonic Crystal Structure

    Institute of Scientific and Technical Information of China (English)

    QIAN Yong; QIAN Jun; WANG Yu-Zhu

    2009-01-01

    We theoretically investigate controlled tunable all-optical filtering and buffering of optical pulses in a hybrid nano-photonic structure,where a single quantum dot (QD) embedded in a photonic crystal nanocavity is sidecoupled between a bare nanocavity and a photonic crystal waveguide.We demonstrate that there is a sharp low-loss transmission peak in the transmission spectrum under even low QD-nanocavity coupling strength and the input optical pulses can be delayed up to several hundred piceseconds within the dephasing time of the QD.The filtering regime can be shifted readily by manipulating the detuning between the QD excitonic transition frequency and resonant frequency of the nanocavity mode,which can be explored in future for on-clup all-optical logic and signal processing.

  8. All-optical reservoir computer based on saturation of absorption.

    Science.gov (United States)

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-01

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  9. All-Optical Implementation of the Ant Colony Optimization Algorithm

    Science.gov (United States)

    Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare

    2016-05-01

    We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems.

  10. Optimised Design and Analysis of All-Optical Networks

    DEFF Research Database (Denmark)

    Glenstrup, Arne John

    2002-01-01

    is developed, based on shortest-path algorithms and a comparatively new metaheuristic called simulated allocation. It is able to handle design of all-optical mesh networks with optical cross-connects, considers duct as well as fibre and node costs, and can also design protected networks. The method is assessed...... model for optical ring network design is presented. Manually designed real world ring networks are studied and it is found that the model can lead to cheaper network design. Moreover, ring and mesh network architectures are compared using real world costs, and it is found that optical cross......-connects should be drastically cheaper if they are to compete on the cost with ring networks. An MPXS (multi-protocol wavelength switching) simulator is constructed, focusing especially on the timing in the setup phase to asess the blocking probability effect of node and link delays as well as wavelength...

  11. All optical cooling of $^{39}$K to Bose Einstein condensation

    CERN Document Server

    Salomon, Guillaume; Lepoutre, Steven; Aspect, Alain; Bourdel, Thomas

    2014-01-01

    We report the all-optical production of Bose Einstein condensates (BEC) of $^{39}$K atoms. We directly load $3 \\times 10^{7}$ atoms in a large volume optical dipole trap from gray molasses on the D1 transition. We then apply a small magnetic quadrupole field to polarize the sample before transferring the atoms in a tightly confining optical trap. Evaporative cooling is finally performed close to a Feshbach resonance to enhance the scattering length. Our setup allows to cross the BEC threshold with $3 \\times 10^5$ atoms every 7s. As an illustration of the interest of the tunability of the interactions we study the expansion of Bose-Einstein condensates in the 1D to 3D crossover.

  12. Generalized model for all-optical light modulation in bacteriorhodopsin

    Science.gov (United States)

    Roy, Sukhdev; Singh, C. P.; Reddy, K. P. J.

    2001-10-01

    We present a generalized model for the photochemical cycle of bacteriorhodopsin (bR) protein molecule. Rate equations have been solved for the detailed light-induced processes in bR for its nine states: B→K↔L↔MI→MII↔N↔O↔P→Q→B. The complete steady-state intensity-induced population densities in various states of the molecule have been computed to obtain a general, exact, and analytical expression for the nonlinear absorption coefficient for multiple modulation pump laser beams. All-optical light modulation of different probe laser beam transmissions by intensity induced population changes due to one and two modulation laser beams has been analyzed. The proposed model has been shown to accurately model experimental results.

  13. High-contrast, all-optical switching in bacteriorhodopsin films

    Science.gov (United States)

    Banyal, Ravinder Kumar; Raghavendra Prasad, B.

    2005-09-01

    We report experiments with nonlinear-absorption-based, high-contrast, all-optical switching in photochromic bacteriorhodopsin (BR) films. The switching action is accomplished by control of the transmission of a weak probe beam through a BR sample with the help of strong pump beam illumination at 532 nm wavelength. We found that the switching properties of BR films depend on several experimentally controllable parameters such as probe wavelength, pump beam intensity, and excitation rate. A comparative study of the switching behavior and other parameters of practical use was carried out at three probe wavelengths (543, 594, and 633 nm) and various beam powers and pump excitation rates. The results are presented for commercially available wild-type and D96N variant BR films.

  14. All-optical optoacoustic microscope based on wideband pulse interferometry.

    Science.gov (United States)

    Wissmeyer, Georg; Soliman, Dominik; Shnaiderman, Rami; Rosenthal, Amir; Ntziachristos, Vasilis

    2016-05-01

    Optical and optoacoustic (photoacoustic) microscopy have been recently joined in hybrid implementations that resolve extended tissue contrast compared to each modality alone. Nevertheless, the application of the hybrid technique is limited by the requirement to combine an optical objective with ultrasound detection collecting signal from the same micro-volume. We present an all-optical optoacoustic microscope based on a pi-phase-shifted fiber Bragg grating (π-FBG) with coherence-restored pulsed interferometry (CRPI) used as the interrogation method. The sensor offers an ultra-small footprint and achieved higher sensitivity over piezoelectric transducers of similar size. We characterize the spectral bandwidth of the ultrasound detector and interrogate the imaging performance on phantoms and tissues. We show the first optoacoustic images of biological specimen recorded with π-FBG sensors. We discuss the potential uses of π-FBG sensors based on CRPI. PMID:27128047

  15. Single-SOA-Based Ultrahigh-Speed All-Optical Half Subtracter with PolSK Modulated Signals

    Institute of Scientific and Technical Information of China (English)

    LI Pei-Li; HUANG De-Xiu; ZHANG Xin-Liang; WANG Yang

    2008-01-01

    A novel ultrahigh-speed all-optical half subtracter based on four-wave mixing (FWM) in a single semiconductor optical amplifier (SOA) is proposed. This scheme only requires a single SOA and two input signals without additional light source,so it is quite simple and compact.Due to the polarization-shift-keying (PolSK) modulated signals being used in this scheme,pattern-dependent degradation can be avoided. By numerical simulation,dependence of the critical factors of the logic gate performance,e.g.,the output power of logic 1 and extinction ratio (ER),on two input signals power is investigated.In addition,the effect of the gain polarization dependence of SOA is analysed.

  16. Laser-induced Bessel beams can realize fast all-optical switching in gold nanosol prepared by pulsed laser ablation

    International Nuclear Information System (INIS)

    We demonstrate the possibility of realizing, all-optical switching in gold nanosol. Two overlapping laser beams are used for this purpose, due to which a low-power beam passing collinear to a high-power beam will undergo cross phase modulation and thereby distort the spatial profile. This is taken to advantage for performing logic operations. We have also measured the threshold pump power to obtain a NOT gate and the minimum response time of the device. Contrary to the general notion that the response time of thermal effects used in this application is of the order of milliseconds, we prove that short pump pulses can result in fast switching. Different combinations of beam splitters and combiners will lead to the formation of other logic functions too.

  17. Single-SOA-Based Ultrahigh-Speed All-Optical Half Subtracter with PolSK Modulated Signals

    International Nuclear Information System (INIS)

    A novel ultrahigh-speed all-optical half subtracter based on four-wave mixing (FWM) in a single semiconductor optical amplifier (SOA) is proposed. This scheme only requires a single SOA and two input signals without additional light source, so it is quite simple and compact. Due to the polarization-shift-keying (PolSK) modulated signals being used in this scheme, pattern-dependent degradation can be avoided. By numerical simulation, dependence of the critical factors of the logic gate performance, e.g., the output power of logic 1 and extinction ratio (ER), on two input signals power is investigated. In addition, the effect of the gain polarization dependence of SOA is analysed. (fundamental areas of phenomenology (including applications))

  18. Resource allocation in circuit-switched all-optical networks

    Science.gov (United States)

    Marquis, Douglas; Barry, Richard A.; Finn, Steven G.; Parikh, Salil A.; Swanson, Eric A.; Thomas, Robert E.

    1996-03-01

    We describe an all-optical network testbed deployed in the Boston area, and research surrounding the allocation of optical resources -- frequencies and time slots -- within the network. The network was developed by a consortium of AT&T Bell Laboratories, Digital Equipment Corporation, and Massachusetts Institute of Technology under a grant from ARPA. The network is organized as a hierarchy consisting of local, metropolitan, and wide area nodes tea support optical broadcast and routing modes. Frequencies are shared and reused to enhance network scalability. Electronic access is provided through optical terminals that support multiple services having data rates between 10 Mbps/user and 10 Gbps/user. Of particular interest for this work is the 'B-service,' which simultaneously hops frequency and time slots on each optical terminal to allow frequency sharing within the AON. B-service provides 1.244 Gbps per optical terminal, with bandwidth for individual connections divided in increments as small as 10 Mbps. We have created interfaces between the AON and commercially available electronic circuit-switched and packet-switched networks. The packet switches provide FDDI (datacomm), T3 (telecomm), and ATM/SONET switching at backplane rates of over 3 Gbps. We show results on network applications that dynamically allocate optical bandwidth between electronic packet-switches based on the offered load presented by users. Bandwidth allocation granularity is proportional to B-Service slots (10-1244 Mbps), and switching times are on the order of one second. We have also studied the effects of wavelength changers upon the network capacity and blocking probabilities in wide area all-optical networks. Wavelength changers allow a change in the carrier frequency (within the network) without disturbing the data modulation. The study includes both a theoretical model of blocking probabilities based on network design parameters, and a computer simulation of blocking in networks with and

  19. Logical Varieties in Normative Reasoning

    CERN Document Server

    Burgin, Mark; Mestdagh, de Vey

    2011-01-01

    Although conventional logical systems based on logical calculi have been successfully used in mathematics and beyond, they have definite limitations that restrict their application in many cases. For instance, the principal condition for any logical calculus is its consistency. At the same time, knowledge about large object domains (in science or in practice) is essentially inconsistent. Logical prevarieties and varieties were introduced to eliminate these limitations in a logically correct way. In this paper, the Logic of Reasonable Inferences is described. This logic has been applied successfully to model legal reasoning with inconsistent knowledge. It is demonstrated that this logic is a logical variety and properties of logical varieties related to legal reasoning are developed.

  20. All-optical active switching in individual semiconductor nanowires

    Science.gov (United States)

    Piccione, Brian; Cho, Chang-Hee; van Vugt, Lambert K.; Agarwal, Ritesh

    2012-10-01

    The imminent limitations of electronic integrated circuits are stimulating intense activity in the area of nanophotonics for the development of on-chip optical components, and solutions incorporating direct-bandgap semiconductors are important in achieving this end. Optical processing of data at the nanometre scale is promising for circumventing these limitations, but requires the development of a toolbox of components including emitters, detectors, modulators, waveguides and switches. In comparison to components fabricated using top-down methods, semiconductor nanowires offer superior surface properties and stronger optical confinement. They are therefore ideal candidates for nanoscale optical network components, as well as model systems for understanding optical confinement. Here, we demonstrate all-optical switching in individual CdS nanowire cavities with subwavelength dimensions through stimulated polariton scattering, as well as a functional NAND gate built from multiple switches. The device design exploits the strong light-matter coupling present in these nanowires, leading to footprints that are a fraction of those of comparable silicon-based dielectric contrast and photonic crystal devices.

  1. Terahertz-driven, all-optical electron gun

    CERN Document Server

    Huang, W Ronny; Wu, Xiaojun; Cankaya, Huseyin; Calendron, Anne-Laure; Ravi, Koustuban; Zhang, Dongfang; Nanni, Emilio A; Hong, Kyung-Han; Kärtner, Franz X

    2016-01-01

    Ultrashort electron beams with narrow energy spread, high charge, and low jitter are essential for resolving phase transitions in metals, semiconductors, and molecular crystals. These semirelativistic beams, produced by phototriggered electron guns, are also injected into accelerators for x-ray light sources. The achievable resolution of these time-resolved electron diffraction or x-ray experiments has been hindered by surface field and timing jitter limitations in conventional RF guns, which thus far are 96 fs, respectively. A gun driven by optically-generated single-cycle THz pulses provides a practical solution to enable not only GV/m surface fields but also absolute timing stability, since the pulses are generated by the same laser as the phototrigger. Here, we demonstrate an all-optical THz gun yielding peak electron energies approaching 1 keV, accelerated by 300 MV/m THz fields in a novel micron-scale waveguide structure. We also achieve quasimonoenergetic, sub-keV bunches with 32 fC of charge, which ca...

  2. All-optical nonlinear holographic correlation using bacteriorhodopsin films

    Science.gov (United States)

    Thoma, Ralph; Dratz, Michael; Hampp, Norbert

    1995-05-01

    Films made of the halobacterial photochrome bacteriorhodopsin (BR) can be used in a number of holographic real-time applications. Their application as active material in a dual-axis joint- Fourier-transform (DAJFT) real-time correlator was shown recently. The BR films have a strong nonlinear intensity dependence on the light-induced absorption and refractive-index changes. Therefore the holographic diffraction efficiency also shows a nonlinear dependence on the writing intensity. We investigate the effect of this nonlinearity on the result of the correlation process in a bacteriorhodopsin-based DAJFT correlator. Numerical models supporting the experimental observations are presented. It was found that the BR film combines the holographic function for most objects with that of a spatial bandpass filter, whose center frequency is tuned by the writing intensity. This results in smaller peak widths and a suppression of the sidelobes. BR films allow the application of this nonlinear behavior in real time to the all-optical correlation process.

  3. Logical labyrinths

    CERN Document Server

    Smullyan, Raymond

    2008-01-01

    This book features a unique approach to the teaching of mathematical logic by putting it in the context of the puzzles and paradoxes of common language and rational thought. It serves as a bridge from the author's puzzle books to his technical writing in the fascinating field of mathematical logic. Using the logic of lying and truth-telling, the author introduces the readers to informal reasoning preparing them for the formal study of symbolic logic, from propositional logic to first-order logic, a subject that has many important applications to philosophy, mathematics, and computer science. T

  4. Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film

    Science.gov (United States)

    Choi, S. B.; Kyoung, J. S.; Kim, H. S.; Park, H. R.; Park, D. J.; Kim, Bong-Jun; Ahn, Y. H.; Rotermund, F.; Kim, Hyun-Tak; Ahn, K. J.; Kim, D. S.

    2011-02-01

    We demonstrate ultrafast all-optical control of terahertz (THz) radiation through nanoresonators, slot antennas with a hundred micron length but submicron width in thin gold layers, fabricated on vanadium dioxide (VO2) thin films. Our THz nanoresonators show almost perfect transmission at resonance. By virtue of phase transition of VO2 from insulating to metallic state, induced in subpicosecond time scale by moderate optical pump, ultrafast control of THz transmission is enabled. This is compared to bare VO2 films where no switching dynamics are observed under similar conditions.

  5. Assessment of future agricultural conditions in southwestern Africa using fuzzy logic and high-resolution climate model scenarios

    Directory of Open Access Journals (Sweden)

    Weinzierl, Thomas

    2015-12-01

    Full Text Available Climate change is expected to have a major impact on the arid savanna regions of southwestern Africa, such as the Okavango Basin. Precipitation is a major constraint for agriculture in countries like Namibia and Botswana and assessments of future crop growth conditions are in high demand. This GIS-based approach uses reanalysis data and climate model output for two scenarios and compares them to the precipitation requirements of the five most important crops grown in the region: maize, pearl millet, sorghum, cassava and cow pea. It also takes into account the dominant soil types, as plant growth is also limited by nutrient-poor soils with unfavorable physical and chemical properties. The two factors are then combined using a fuzzy logic algorithm. The assessment visualizes the expected shifts in suitable zones and identifies areas where farming without irrigation may experience a decline in yields or may even no longer be possible at the end of the 21st century. The results show that pearl millet is the most suitable crop in all scenarios while especially the cultivation of maize, sorghum and cow pea may be affected by a possible reduction of precipitation under the high-emission scenario.

  6. Logical entropy of quantum dynamical systems

    Directory of Open Access Journals (Sweden)

    Ebrahimzadeh Abolfazl

    2016-01-01

    Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.

  7. Fuzzy Logic Engine

    Science.gov (United States)

    Howard, Ayanna

    2005-01-01

    The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.

  8. Description of all-optical network test bed and applications

    Science.gov (United States)

    Marquis, Douglas; Castagnozzi, Daniel M.; Hemenway, B. R.; Parikh, Salil A.; Stevens, Mark L.; Swanson, Eric A.; Thomas, Robert E.; Ozveren, C.; Kaminow, Ivan P.

    1995-12-01

    We describe an all-optical network testbed deployed in the Boston metropolitan area, and some of the experimental applications running over the network. The network was developed by a consortium of AT&T Bell Laboratories, Digital Equipment Corporation, and Massachusetts Institute of Technology under a grant from ARPA. The network is an optical WDM system organized as a hierarchy consisting of local, metropolitan, and wide area nodes that support optical broadcast and routing modes. Frequencies are shared and reused to enhance network scalability. Electronic access is provided through optical terminals that support multiple services having data rates between 10 Mbps/user and 10 Gbps/user. Novel components used to implement the network include fast-tuning 1.5 micrometers distributed Bragg reflector lasers, passive wavelength routers, and broadband optical frequency converters. An overlay control network implemented at 1.3 micrometers allows reliable out-of-band control and standardized network management of all network nodes. We have created interfaces between the AON and commercially available electronic circuit-switched and packet-switched networks. We will report on network applications that can dynamically allocate optical bandwidth between electronic packet-switches based on the offered load presented by users, without requiring interfaces between users and the AON control system. We will also describe video and telemedicine applications running over the network. We have demonstrated an audio/video codec that is directly interfaced to the optical network, and is capable of transmitting high-rate digitized video signals for broadcast or videoconferencing applications. We have also demonstrated a state-of-the-art radiological workstation that uses the AON to transport 2000 X 2000 X 16 bit images from a remote image server.

  9. Mathematical logic

    CERN Document Server

    Kleene, Stephen Cole

    2002-01-01

    Undergraduate students with no prior instruction in mathematical logic will benefit from this multi-part text. Part I offers an elementary but thorough overview of mathematical logic of 1st order. Part II introduces some of the newer ideas and the more profound results of logical research in the 20th century. 1967 edition.

  10. All-Optical Signal processing using Highly Nonlinear Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas

    2006-01-01

    -optical regeneration is the only possible way of regenerating a signal with the current technology. Transforming the current telecommunication network into an all-optical network will require an all-optical regeneration of the optical signal. At the current time (May 2005) all-optical regeneration is a tool only used...

  11. Fuzziness in abacus logic

    Science.gov (United States)

    Malhas, Othman Qasim

    1993-10-01

    The concept of “abacus logic” has recently been developed by the author (Malhas, n.d.). In this paper the relation of abacus logic to the concept of fuzziness is explored. It is shown that if a certain “regularity” condition is met, concepts from fuzzy set theory arise naturally within abacus logics. In particular it is shown that every abacus logic then has a “pre-Zadeh orthocomplementation”. It is also shown that it is then possible to associate a fuzzy set with every proposition of abacus logic and that the collection of all such sets satisfies natural conditions expected in systems of fuzzy logic. Finally, the relevance to quantum mechanics is discussed.

  12. All-optical dynamical Casimir effect in a three-dimensional terahertz photonic band gap

    Science.gov (United States)

    Hagenmüller, David

    2016-06-01

    We identify an architecture for the observation of all-optical dynamical Casimir effect in realistic experimental conditions. We suggest that by integrating quantum wells in a three-dimensional (3D) photonic band-gap material made out of large-scale (˜200 -μ m ) germanium logs, it is possible to achieve ultrastrong light-matter coupling at terahertz frequencies for the cyclotron transition of a two-dimensional electron gas interacting with long-lived optical modes, in which vacuum Rabi splitting is comparable to the Landau level spacing. When a short, intense electromagnetic transient of duration ˜250 fs and carrying a peak magnetic field ˜5 T is applied to the structure, the cyclotron transition can be suddenly tuned on resonance with a desired photon mode, switching on the light-matter interaction and leading to a Casimir radiation emitted parallel to the quantum well plane. The radiation spectrum consists of sharp peaks with frequencies coinciding with engineered optical modes within the 3D photonic band gap, and its characteristics are extremely robust to the nonradiative damping which can be large in our system. Furthermore, the absence of continuum with associated low-energy excitations for both electromagnetic and electronic quantum states can prevent the rapid absorption of the photon flux which is likely to occur in other proposals for all-optical dynamical Casimir effect.

  13. Probabilistic Logic Programming under Answer Sets Semantics

    Institute of Scientific and Technical Information of China (English)

    王洁; 鞠实儿

    2003-01-01

    Although traditional logic programming languages provide powerful tools for knowledge representation, they cannot deal with uncertainty information (e. g. probabilistic information). In this paper, we propose a probabilistic logic programming language by introduce probability into a general logic programming language. The work combines 4-valued logic with probability. Conditional probability can be easily represented in a probabilistic logic program. The semantics of such a probabilistic logic program i...

  14. Understanding Social Media Logic

    Directory of Open Access Journals (Sweden)

    José van Dijck

    2013-08-01

    Full Text Available Over the past decade, social media platforms have penetrated deeply into the mech­anics of everyday life, affecting people's informal interactions, as well as institutional structures and professional routines. Far from being neutral platforms for everyone, social media have changed the conditions and rules of social interaction. In this article, we examine the intricate dynamic between social media platforms, mass media, users, and social institutions by calling attention to social media logic—the norms, strategies, mechanisms, and economies—underpin­ning its dynamics. This logic will be considered in light of what has been identified as mass me­dia logic, which has helped spread the media's powerful discourse outside its institutional boundaries. Theorizing social media logic, we identify four grounding principles—programmabil­ity, popularity, connectivity, and datafication—and argue that these principles become increas­ingly entangled with mass media logic. The logic of social media, rooted in these grounding principles and strategies, is gradually invading all areas of public life. Besides print news and broadcasting, it also affects law and order, social activism, politics, and so forth. Therefore, its sustaining logic and widespread dissemination deserve to be scrutinized in detail in order to better understand its impact in various domains. Concentrating on the tactics and strategies at work in social media logic, we reassess the constellation of power relationships in which social practices unfold, raising questions such as: How does social media logic modify or enhance ex­isting mass media logic? And how is this new media logic exported beyond the boundaries of (social or mass media proper? The underlying principles, tactics, and strategies may be relat­ively simple to identify, but it is much harder to map the complex connections between plat­forms that distribute this logic: users that employ them, technologies that

  15. Microelectromechanical reprogrammable logic device

    KAUST Repository

    Hafiz, M. A. A.

    2016-03-29

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.

  16. Dispositional logic

    Science.gov (United States)

    Le Balleur, J. C.

    1988-01-01

    The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived.

  17. Nanomagnetic Logic

    Science.gov (United States)

    Carlton, David Bryan

    influenced by thermal fluctuations. The magnetic ground state containing the answer to the computation is reached by a stochastic process very similar to the thermal annealing of crystalline materials. We will discuss how these dynamics affect the expected reliability, speed, and energy dissipation of NML systems operating under these conditions. Next I will show how a slight change in the properties of the nanomagnets that make up a NML circuit can completely alter the dynamics by which computations take place. The addition of biaxial anisotropy to the magnetic energy landscape creates a metastable state along the hard axis of the nanomagnet. This metastability can be used to remove the stochastic nature of the computation and has large implications for reliability, speed, and energy dissipation which will all be discussed. The changes to NML operation by the addition of biaxial anisotropy introduce new challenges to realizing a commercially viable logic architecture. In the final chapter, I will discuss these challenges and talk about the architectural changes that are necessary to make a working NML circuit based on nanomagnets with biaxial anisotropy.

  18. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu; Li, Mo, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-09-07

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  19. All-optical adder/subtractor based on tera-hertz optical asymmetric demultiplexer

    Institute of Scientific and Technical Information of China (English)

    Dilip Kumar Gayen; Rajat Kumar Pal; Jitendra Nath Roy

    2009-01-01

    An all-optical adder/subtractor (A/S) unit with the help of terahertz optical asymmetric demultiplexer (TOAD) is proposed.Tile all-optical A/S unit with a set of all-optical full-adders and optical exclusive-ORs (XORs),can be used to perform a fast central processor unit using optical hardware components.We try to exploit the advantages of TOAD-based optical switch to design an integrated all-optical circuit which can perform binary addition and subtraction.With computer simulation results confirming the described methods,conclusions are given.

  20. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    International Nuclear Information System (INIS)

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities

  1. ALL-OPTICAL BINARY COUNTER BY USING T FLIP-FLOP: AN IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    SAMIR SAHU

    2011-10-01

    Full Text Available All-optical T (Toggle flip-flop with preset (PR and clear (CLR are basic building modules for the development of ultra-high speed all optical binary counter. In this paper, a non-linear material based alloptical switching mechanism is utilized here to realize the all-optical T flip-flop with PR and CLR. A composite slab of linear medium (LM and non-linear medium (NLM is used to design the all-optical switch that exploit the attractive features of NLM. These all-optical T flip-flops can find application in the development of several complex all-optical circuits of enhanced performances. Here we demonstrate an all-optical binary 3-bit ripple counter which is nothing but the successive application of the flip flop. This circuit can elevate to a higher bit different counters. As this all optical circuits are purely all-optical in nature, these are very simple as well as very fast. Also the schemes have capacity of cascading.

  2. All-optical modulator based on a ferrofluid core metal cladding waveguide chip

    International Nuclear Information System (INIS)

    We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding layer. The light matter interaction in the ferrofluid film leads to the formation of a regular nanoparticle pattern, which changes the phase match condition of the ultrahigh order modes in return. When two lasers are incident on the same spot of the waveguide chip, experiments illustrate all-optical modulation of one laser beam by adjusting the intensity of the other laser. A possible theoretical explanation may be due to the optical trapping and Soret effect since the phenomenon is considerable only when the control laser is effectively coupled into the waveguide. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Artificial eye for scotopic vision with bioinspired all-optical photosensitivity enhancer

    Science.gov (United States)

    Liu, Hewei; Huang, Yinggang; Jiang, Hongrui

    2016-04-01

    The ability to acquire images under low-light conditions is critical for many applications. However, to date, strategies toward improving low-light imaging primarily focus on developing electronic image sensors. Inspired by natural scotopic visual systems, we adopt an all-optical method to significantly improve the overall photosensitivity of imaging systems. Such optical approach is independent of, and can effectively circumvent the physical and material limitations of, the electronics imagers used. We demonstrate an artificial eye inspired by superposition compound eyes and the retinal structure of elephantnose fish. The bioinspired photosensitivity enhancer (BPE) that we have developed enhances the image intensity without consuming power, which is achieved by three-dimensional, omnidirectionally aligned microphotocollectors with parabolic reflective sidewalls. Our work opens up a previously unidentified direction toward achieving high photosensitivity in imaging systems.

  4. All-optical trapping and acceleration of heavy particles

    CERN Document Server

    Peano, F; Silva, L O; Mulas, R; Coppa, G

    2008-01-01

    A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum is proposed, in which two counterpropagating lasers with variable frequencies drive a beat-wave structure with variable phase velocity, thus allowing for trapping and acceleration of heavy particles, such as ions or muons. Fine control over the energy distribution and the total charge of the beam is obtained via tuning of the frequency variation. The acceleration scheme is described with a one-dimensional theory, providing the general conditions for trapping and scaling laws for the relevant features of the particle beam. Two-dimensional, electromagnetic particle-in-cell simulations confirm the validity and the robustness of the physical mechanism.

  5. Simultaneous all-optical half-adder, half-subtracter, comparator, and decoder based on nonlinear effects harnessing in highly nonlinear fibers

    Science.gov (United States)

    Singh, Karamdeep; Kaur, Gurmeet; Singh, Maninder Lal

    2016-07-01

    A multifunctional combinational logic module capable of performing several signal manipulation tasks all-optically, such as half-addition/subtraction, single-bit comparison, and 2-to-4 decoding simultaneously is proposed. Several logic functions (A+B¯, A.B, A¯.B, A.B¯, A⊕B, and A⊙B) between two input signals A and B are implemented by harnessing a number of nonlinear effects, such as cross-phase modulation (XPM), cross-gain modulation (XGM), and four-wave mixing (FWM) inside only two highly nonlinear fibers (HNLF) arranged in a parallel structure. The NOR gate (A+B¯) is realized by the means of XPM effect in the first HNLF, whereas, A‾.B, A.B¯, and A.B logics have relied on utilization of XGM and FWM processes, respectively, in parametric medium made up of the second HNLF of parallel arrangement. The remaining A⊕B and A⊙B logics required for successful implementation of the proposed simultaneous scheme are attained by temporally combining previously achieved (A‾.B and A.B‾) and (A.B and A+B‾) logics. Quality-factor ≥7.4 and extinction ratio ≥12.30 dB have been achieved at repetition rates of 100 Gbps for all logic functions (A+B‾, A.B, A¯.B, A.B¯, A⊕B, and A⊙B), suggesting successful simultaneous implementation.

  6. All-optical signal processing at 10 GHz using a photonic crystal molecule

    Energy Technology Data Exchange (ETDEWEB)

    Combrié, Sylvain; Lehoucq, Gaëlle; Junay, Alexandra; De Rossi, Alfredo, E-mail: alfredo.derossi@thalesgroup.com [Thales Research and Technology, 1 Avenue A. Fresnel, 91767 Palaiseau (France); Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano [Department of Engineering, Università di Ferrara, v. Saragat 1, 44122 Ferrara (Italy); Ménager, Loic [Thales Systèmes Aeroportés, 2 Av. Gay Lussac, 78851 Elancourt (France); Peter Reithmaier, Johann [Institute of Nanostructure Technologies and Analytics, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)

    2013-11-04

    We report on 10 GHz operation of an all-optical gate based on an Indium Phosphide Photonic Crystal Molecule. Wavelength conversion and all-optical mixing of microwave signals are demonstrated using the 2 mW output of a mode locked diode laser. The spectral separation of the optical pump and signal is crucial in suppressing optical cross-talk.

  7. 160 Gb/s all-optical packet switching field experiment

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; Herrera, J.; Raz, O.;

    2007-01-01

    We discus an all-optical packet switching experiment over 110 km of field installed optical fiber. The switching node is controlled by solely photonic control circuits.......We discus an all-optical packet switching experiment over 110 km of field installed optical fiber. The switching node is controlled by solely photonic control circuits....

  8. Description Logics

    Science.gov (United States)

    Baader, Franz

    Description Logics (DLs) are a well-investigated family of logic-based knowledge representation formalisms, which can be used to represent the conceptual knowledge of an application domain in a structured and formally well-understood way. They are employed in various application domains, such as natural language processing, configuration, and databases, but their most notable success so far is the adoption of the DL-based language OWL as standard ontology language for the semantic web.

  9. Denial Logic

    CERN Document Server

    Lengyel, Florian

    2012-01-01

    We define Denial Logic DL, a system of justification logic that models an agent whose justified beliefs are false, who cannot avow his own propositional attitudes and who can believe contradictions but not tautologies of classical propositional logic. Using Artemov's natural semantics for justification logic JL, in which justifications are interpreted as sets of formulas, we provide an inductive construction of models of DL, and prove soundness and completeness results for DL. Some logical notions developed for JL, such as constant specifications and the internalization property, are inconsistent with DL. This leads us to define negative constant specifications for DL, which can be used to model agents with justified false beliefs. Denial logic can therefore be relevant to philosophical skepticism. We use DL with what we call coherent negative constant specifications to model a Putnamian brain in a vat with the justified false belief that it is not a brain in a vat, and derive a model of JL in which "I am a b...

  10. EW WEIGHT DEPENDENT ROUTING AND WAVELENGTH ASSIGNMENT STRATEGY FOR ALL OPTICAL NETWORKS IN ABSENCE OF WAVELENGTH CONVERTERS

    Directory of Open Access Journals (Sweden)

    Shilpa S. Patil

    2015-09-01

    Full Text Available In wavelength division multiplexed all optical networks; lightpath establishes a connection between sending and receiving nodes bypassing the electronic processing at intermediate nodes. One of the prime objectives of Routing and Wavelength Assignment (RWA problem is to maximize the number of connections efficiently by choosing the best routes. Although there are several algorithms available, improving the blocking performance in optical networks and finding optimal solutions for RWA problem has still remained a challenging issue. Wavelength conversion can be helpful in restricting the problem of wavelength continuity constraint but it increases complexity in the network. In this paper, we propose new weight dependent routing and wavelength assignment strategy for all optical networks without use of wavelength converters. Proposed weight function reduces blocking probability significantly, improving the network performance at various load conditions. Further, due to absence of wavelength converters, the cost and complexity of network reduces. Results show that the proposed strategy performs better than earlier reported methods.

  11. All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal

    CERN Document Server

    Xia, Kangwei; Wang, Ya; Siyushev, Petr; Reuter, Rolf; Kornher, Thomas; Kukharchyk, Nadezhda; Wieck, Andreas D; Villa, Bruno; Yang, Sen; Wrachtrup, Jörg

    2015-01-01

    All-optical addressing and control of single solid-state based qubits allows for scalable architectures of quantum devices such as quantum networks and quantum simulators. So far, all-optical addressing of qubits was demonstrated only for color centers in diamond and quantum dots. Here, we demonstrate generation of coherent dark state of a single rare earth ion in a solid, namely a cerium ion in yttrium aluminum garnet (YAG). The dark state was formed under the condition of coherent population trapping. Furthermore, high-resolution spectroscopic studies of native and implanted single Ce ions have been performed. They revealed narrow and spectrally stable optical transitions between the spin sublevels of the ground and excited optical states, indicating the feasibility of interfacing single photons with a single electron spin of a cerium ion.

  12. All-optical error-bit amplitude monitor based on NOT and AND gates in cascaded semiconductor optical amplifiers

    Institute of Scientific and Technical Information of China (English)

    Dong Jian-Ji; Zhang Xin-Liang; Huang De-Xiu

    2008-01-01

    This paper proposes and simulates a novel all-optical error-bit amplitude monitor based on cross-gain modulation and four-wave mixing in cascaded semiconductor optical amplifiers (SOAs),which function as logic NOT and logic AND,respectively.The proposed scheme is successfully simulated for 40 Gb/s return-to-zero (RZ) signal with different duty cycles.In the first stage,the SOA is followed by a detuning filter to accelerate the gain recovery as well as improve the extinction ratio.A clock probe signal is used to avoid the edge pulse-pairs in the output waveform.Among these RZ formats,33% RZ format is preferred to obtain the largest eye opening.The normalized error amplitude,defined as error bit amplitude over the standard mark amplitude,has a dynamic range from 0.1 to 0.65 for all RZ formats.The simulations show small input power dynamic range because of the nonlinear gain variation in the first stage.This scheme is competent for nonreturn-to-zero format at 10Gb/s as well.

  13. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  14. A detection method for logic functions suitable for dual-logic synthesis

    Institute of Scientific and Technical Information of China (English)

    Yinshui Xia; Fei Sun; Keyi Mao

    2009-01-01

    Logic functions can be implemented in either AND/OR/NOT-based traditional Boolean (TB) logic or AND/XOR-based Reed-Mul-ler (RM) logic. To the majority of logic functions, it will be beneficial to be partially implemented in both TB logic and RM logic, called dual-logic. In this paper, a detection condition favoring dual-logic synthesis is proposed. A corresponding detection algorithm is devel-oped and implemented in C. The algorithm is applied to test a set of MCNC91 benchmarks for verifying the algorithm. The results show that the proposed algorithm is more efficient than published ones.

  15. Logic and logic-based control

    Institute of Scientific and Technical Information of China (English)

    Hongsheng QI; Daizhan CHENG

    2008-01-01

    This paper gives a matrix expression of logic. Under the matrix expression, a general description of the logical operators is proposed. Using the semi-tensor product of matrices, the proofs of logical equivalences, implications, etc., can be simplified a lot. Certain general properties are revealed. Then, based on matrix expression, the logical operators are extended to multi-valued logic, which provides a foundation for fuzzy logical inference. Finally, we propose a new type of logic, called mix-valued logic, and a new design technique, called logic-based fuzzy control. They provide a numerically computable framework for the application of fuzzy logic for the control of fuzzy systems.

  16. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    Science.gov (United States)

    He, Zhou; Li, Wei; Tao, Zhiyong; Shao, Ji ng; Liang, Xiaojun; Deng, Zhuanhua; Huang, Dexiu

    2011-02-01

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  17. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    International Nuclear Information System (INIS)

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  18. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.;

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can...... the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems...

  19. Engineered materials for all-optical helicity-dependent magnetic switching

    Science.gov (United States)

    Fullerton, Eric

    2014-03-01

    The possibilities of manipulating magnetization without applied magnetic fields have attracted growing attention over the last fifteen years. The low-power manipulation of magnetization, preferably at ultra-short time scales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization of engineered materials and devices using 100 fs optical pulses. We demonstrate that all optical - helicity dependent switching (AO-HDS) can be observed not only in selected rare-earth transition-metal (RE-TM) alloy films but also in a much broader variety of materials, including alloys, multilayers, heterostructures and RE-free Co-Ir-based synthetic ferrimagnets. The discovery of AO-HDS in RE-free TM-based synthetic ferrimagnets can enable breakthroughs for numerous applications since it exploits materials that are currently used in magnetic data storage, memories and logic technologies. In addition, this materials study of AO-HDS offers valuable insight into the underlying mechanisms involved. Indeed the common denominator of the diverse structures showing AO-HDS in this study is that two ferromagnetic sub-lattices exhibit magnetization compensation (and therefore angular momentum compensation) at temperatures near or above room temperature. We are highlighting that compensation plays a major role and that this compensation can be established at the atomic level as in alloys but also over a larger nanometers scale as in the multilayers or in heterostructures. We will also discuss the potential to extend AO-HDS to new classes of magnetic materials. This work was done in collaboration with S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, and M. Aeschlimann. Supported by the ANR-10-BLANC-1005 ``Friends,'' a grant from the Advanced Storage Technology Consortium, Partner University Fund

  20. Separation Logic

    DEFF Research Database (Denmark)

    Reynolds, John C.

    2002-01-01

    In joint work with Peter O'Hearn and others, based on early ideas of Burstall, we have developed an extension of Hoare logic that permits reasoning about low-level imperative programs that use shared mutable data structure. The simple imperative programming language is extended with commands (not...... with the inductive definition of predicates on abstract data structures, this extension permits the concise and flexible description of structures with controlled sharing. In this paper, we will survey the current development of this program logic, including extensions that permit unrestricted address arithmetic...

  1. All-optical demultiplexing and wavelength conversion in an electroabsorption modulator

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Hilliger, E.; Tersigni, Andrea;

    2001-01-01

    Cross-absorption modulation in an all electroabsorption modulator is utilised to perform 80/10 Gb/s all-optical demultiplexing. An improvement in receiver sensitivity at 10 Gb/s is demonstrated when wavelength converting....

  2. All-Optical Regeneration System for Optical Wavelength Division Multiplexed Communication Systems

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to an all-optical regeneration system for regeneration of optical wavelength division multiplexed WDM data signals in an optical WDM communication system. The system comprises a WDM-to-Optical time domain multiplexing OTDM, WDM-to-OTDM, converter, capable of converting....... The system additionally comprises an OTDM-to-WDM converter for converting the output OTDM data signal to an output WDM data signal. An input of the all-optical regenerator unit is in optical communication with an output of the WDM-to-OTDM converter, and an output of the all-optical regenerator unit...... is in optical communication with an input of the OTDM-to-WDM converter. The invention further relates to a method for all-optical regeneration of WDM data signals....

  3. All-optical diode effect of a nonlinear photonic crystal with a defect

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-jiang; ZHOU Jin-yun; XIAO Wan-neng

    2006-01-01

    An all-optical diode behavior that uses a nonlinear one-dimensional photonic crystal (NPC) with a defect Kerr medium is numerically simulated by the use of a nonlinear finite-difference time-domain (NFDTD) method.The numerical results show that for an incident pulse with appropriate intensity and temporal width,the transmittance can be several times greater in one direction of NPC than in the opposite direction at the pulse carrier frequency. This behaves like an all-optical diode and has promising applications in some areas such as optical isolation and all-optical processing.The ways to obtain low threshold of pulse field strength to realize an all-optical diode are also analyzed in detail.

  4. A reconfigurable all-optical VPN based on XGM effect of SOA in WDM PON

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Tao; Su, Yikai

    2010-12-01

    We propose and experimentally demonstrate a reconfigurable all-optical VPN scheme enabling intercommunications among different ONUs in a WDM PON. Reconfiguration is realized by dynamically setting wavelength conversion of optical VPN signal using a SOA in the OLT.

  5. The cascaded amplifier and saturable absorber (CASA) all-optical switch

    DEFF Research Database (Denmark)

    Hilliger, E.; Berger, J.; Weber, H. G.;

    2001-01-01

    The cascaded amplifier and saturable absorber is presented as a new all-optical switching scheme for optical signal processing applications. First demultiplexing experiments demonstrate the principle of operation of this scheme....

  6. All-Optical WDM Buffer System Realized by NOLM and Feedback Loop Structure

    Institute of Scientific and Technical Information of China (English)

    Seungwoo; Yi; Kyeong-Mo; Yoon; Yong-Gi; Lee; Jinseob; Eom

    2003-01-01

    We propose an all-optical WDM buffer for optical packet switching system, which consists of NOLM and feedback loop. The proposed structure provides more than 40 turn buffering and nice output of buffered data when selected by control signal.

  7. All-Optical Signal Processing with Super-Continuum Generated from Optical Fibers

    Institute of Scientific and Technical Information of China (English)

    Kazuro Kikuchi

    2003-01-01

    Super-continuum (SC) generated from optical fibers has many attractive applications in optical communication systems.Discussing the mechanism of wideband and flat SC generation, we describe all-optical signal processing that employs the SC.

  8. All-Optical Signal Processing with Super-Continuum Generated from Optical Fibers

    Institute of Scientific and Technical Information of China (English)

    Kazuro; Kikuchi

    2003-01-01

    Super-continuum (SC) generated from optical fibers has many attractive applications in optical communication systems. Discussing the mechanism of wideband and flat SC generation, we describe all-optical signal processing that employs the SC.

  9. All-optical clock recovery of NRZ-DPSK signals using optical resonator-type filters

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Seoane, Jorge; Ji, Hua

    2009-01-01

    It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock.......It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock....

  10. Device Design and Characteristics for SOA-based All Optical Signal 2R Regeneration

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new scheme based on SOA-MZI for all-optical 2R regeneration is proposed. The characteristics of gain and switching window of this device are investigated in detail. Numerical simulation results indicate that the nonlinear gain compression, the time delay between the input optical signal and the width of the optical pulse are essential parameters for a good performance of all-optical 2R regeneration.

  11. A Chinese View on the Cultural Conditionality of Logic and Epistemology: Zhang Dongsun’s Intercultural Methodology

    Directory of Open Access Journals (Sweden)

    Jana Rošker

    2010-12-01

    Full Text Available Recognizing the fact that comprehension, analysis and transmission of reality are based on diversely structured socio-political contexts as well as on different categorical and essential postulates, offers a prospect of enrichment. Thus, this article presents an analysis and interpretation of one of the first Chinese theoreticians, working in the field of intercultural methodology. Although Zhang Dongsun (1886–1973 can be considered as one of the leading Chinese philosophers of the 20th Century, his criticism of Sinicized Marxist ideologies marked him as a political dissident and he was consequently consigned to oblivion for several decades; only recently has his work been rediscovered by a number of younger Chinese theorists, who have shown a growing interest in his ideas. Although he is still relatively unknown in the West, Zhang definitely deserves to be recognized for his contributions to Chinese and comparative philosophy. The present article focuses on his extraordinary ability to introduce Western thought in a way which was compatible with the specific methodology of traditional Chinese thought. According to such presumptions, culture is viewed as an entity composed of a number of specific discourses and relations. The article shows how the interweaving and interdependence of these discourses form different cultural backgrounds, which manifest themselves in the specific, culturally determined structures of language and logic. It also explains the role of traditional elements in his cultural epistemology.

  12. All-optical prefix tree adder with the help of terahertz optical asymmetric demultiplexer

    Institute of Scientific and Technical Information of China (English)

    Dilip Kumar Gayen; Tanay Chattopadhyay; Rajat Kumar Pal; Jitendra Nath Roy

    2011-01-01

    We propose and describe an all-optical prefix tree adder with the help of a terahertz optical asymmetric demultiplexer (TOAD) using a set of optical switches. The prefix tree adder is useful in compound adder implementation. It is preferred over the ripple carry adder and the carry lookahead adder. We also describe the principle and possibilities of the all-optical prefix tree adder. The theoretical model is presented and verified through numerical simulation. The new method promises higher processing speed and accuracy. The model can be extended for studying more complex all-optical circuits of enhanced functionality in which the prefix tree adder is the basic building block.%@@ We propose and describe an all-optical prefix tree adder with the help of a terahertz optical asymmetric demultiplexer (TOAD) using a set of optical switches.The prefix tree adder is useful in compound adder implementation.It is preferred over the ripple carry adder and the carry lookahead adder.We also describe the principle and possibilities of the all-optical prefix tree adder.The theoretical model is presented and verified through numerical simulation.The new method promises higher processing speed and accuracy.The model can be extended for studying more complex all-optical circuits of enhanced functionality in which the prefix tree adder is the basic building block.

  13. Process algebra with four-valued logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2000-01-01

    We propose a combination of a fragment of four-valued logic and process algebra. We present an operational semantics in SOS-style, and a completeness result for ACP with conditionals and four-valued logic.

  14. The Logic of Parametric Probability

    CERN Document Server

    Norman, Joseph W

    2012-01-01

    The computational method of parametric probability analysis is introduced. It is demonstrated how to embed logical formulas from the propositional calculus into parametric probability networks, thereby enabling sound reasoning about the probabilities of logical propositions. An alternative direct probability encoding scheme is presented, which allows statements of implication and quantification to be modeled directly as constraints on conditional probabilities. Several example problems are solved, from Johnson-Laird's aces to Smullyan's zombies. Many apparently challenging problems in logic turn out to be simple problems in algebra and computer science; often just systems of polynomial equations or linear optimization problems. This work extends the mathematical logic and parametric probability methods invented by George Boole.

  15. Logic Model

    OpenAIRE

    Taylor, Julie

    2013-01-01

    This paper provides a brief overview of the NSPCC/University of Edinburgh Child Protection Research Centre. It highlights the Centre's work, approach, progress to date and direction of travel. The document includes the Centre's Logic Model which details types of research and outcomes.

  16. Choreographies, Logically

    DEFF Research Database (Denmark)

    Carbone, Marco; Montesi, Fabrizio; Schürmann, Carsten

    2014-01-01

    projected from a choreography. We present Linear Compositional Choreographies (LCC), a proof theory for reasoning about programs that modularly combine choreographies with processes. Using LCC, we logically reconstruct a semantics and a projection procedure for programs. For the first time, we also obtain...

  17. Nominal Logic with Equations Only

    CERN Document Server

    Clouston, Ranald

    2011-01-01

    Many formal systems, particularly in computer science, may be captured by equations modulated by side conditions asserting the "freshness of names"; these can be reasoned about with Nominal Equational Logic (NEL). Like most logics of this sort NEL employs this notion of freshness as a first class logical connective. However, this can become inconvenient when attempting to translate results from standard equational logic to the nominal setting. This paper presents proof rules for a logic whose only connectives are equations, which we call Nominal Equation-only Logic (NEoL). We prove that NEoL is just as expressive as NEL. We then give a simple description of equality in the empty NEoL-theory, then extend that result to describe freshness in the empty NEL-theory.

  18. On the fly all-optical packet switching based on hybrid WDM/OCDMA labeling scheme

    Science.gov (United States)

    Brahmi, Houssem; Giannoulis, Giannis; Menif, Mourad; Katopodis, Vasilis; Kalavrouziotis, Dimitrios; Kouloumentas, Christos; Groumas, Panos; Kanakis, Giannis; Stamatiadis, Christos; Avramopoulos, Hercules; Erasme, Didier

    2014-02-01

    We introduce a novel design of an all-optical packet routing node that allows for the selection and forwarding of optical packets based on the routing information contained in hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) labels. A stripping paradigm of optical code-label is adopted. The router is built around an optical-code gate that consists in an optical flip-flop controlled by two fiber Bragg grating correlators and is combined with a Mach-Zehnder interferometer (MZI)-based forwarding gate. We experimentally verify the proof-of-principle operation of the proposed self-routing node under NRZ and OCDMA packet traffic conditions. The successful switching of elastic NRZ payload at 40 Gb/s controlled by DS-OCDMA coded labels and the forwarding operation of encoded data using EQC codes are presented. Proper auto-correlation functions are obtained with higher than 8.1 dB contrast ratio, suitable to efficiently trigger the latching device with a contrast ratio of 11.6 dB and switching times below 3.8 ns. Error-free operation is achieved with 1.5 dB penalty for 40 Gb/s NRZ data and with 2.1 dB penalty for DS-OCDMA packets. The scheme can further be applied to large-scale optical packet switching networks by exploiting efficient optical coders allocated at different WDM channels.

  19. All-optical switching in a symmetric three-waveguide coupler with phase-mismatched absorptive central waveguide.

    Science.gov (United States)

    Chen, Yijing; Ho, Seng-Tiong; Krishnamurthy, Vivek

    2013-12-20

    All-optical switching operation based on manipulation of absorption in a three-waveguide directional coupler is theoretically investigated. The proposed structure consists of one absorptive central waveguide and two identical passive side waveguides. Optically induced absorption change in the central waveguide effectively controls the coupling of light between the two side waveguides, leading to optical switching action. The proposed architecture alleviates the fabrication challenges and waveguide index matching conditions that limit previous demonstrations of similar switching schemes based on a two-waveguide directional coupler. The proposed device accommodates large modal index difference between absorptive and passive waveguides without compromising the switching extinction ratio.

  20. 四值非全序逻辑系统中公式的条件随机真度%The Conditional Randomized Truth Degree of Formulas in R0-Type 4-valued Non-totally Ordered Propositional Logic

    Institute of Scientific and Technical Information of China (English)

    左卫兵; 原胜利

    2012-01-01

    基于条件概率的思想,利用赋值集的随机化方法,在四值非全序逻辑系统中引入公式的条件随机真度,证明了条件随机真度的MP规则和HS规则.引入公式间的条件随机相似度和条件伪距离,建立了条件随机逻辑度量空间,推导出条件伪距离的若干性质,证明了条件随机逻辑度量空间中逻辑运算的连续性,并初步研究了给定条件下的近似推理理论.%Based on conditional probability, using the randomization method of valuation set, the concept of conditional randomized truth degree of formulas is introduced in the Ro-type 4-valued non-totally ordered propositional logic. The MP rule and HS rule of conditional randomized truth degrees are proved. The concepts of conditional randomized similarity and conditional pseudo-metric between formulas are introduced and conditional randomized logic metric space is built. Several properties of conditional pseudo-metric are deduced and it is proved that the logical operations are continuous on conditional randomized logic metric space. Finally the theory of approximate reasoning under certain information is given.

  1. Laser Trimming for Adjustment of Grating Offset in Phase-Shifted Fiber Grating Coupler for All-Optical Switching Application

    Institute of Scientific and Technical Information of China (English)

    Hirohisa; Yokota; Yutaka; Sasaki

    2003-01-01

    We theoretically investigated laser trimming to adjust grating offset in phase-shifted fiber grating coupler (FGC) for all-optical switching application. It was clarified that the trimming made the extinction ratio higher in all-optical FGC switch.

  2. Parametric logic: Foundations

    Institute of Scientific and Technical Information of China (English)

    林作铨; 李未

    1995-01-01

    Parametric logic is introduced. The language, semantics and axiom system of parametric logic are defined. Completeness theorem of parametric logic is provided. Parametric logic has formal ability powerful enough to capture a wide class of logic as its special cases, and therefore can be viewed as a uniform basis for modern logics.

  3. Propositional Logics of Dependence

    OpenAIRE

    Yang, Fan; Väänänen, Jouko

    2014-01-01

    In this paper, we study logics of dependence on the propositional level. We prove that several interesting propositional logics of dependence, including propositional dependence logic, propositional intuitionistic dependence logic as well as propositional inquisitive logic, are expressively complete and have disjunctive or conjunctive normal forms. We provide deduction systems and prove the completeness theorems for these logics.

  4. Frequency-time coherence for all-optical sampling without optical pulse source

    CERN Document Server

    Preussler, Stefan; Schneider, Thomas

    2016-01-01

    Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave, allowing simple integration in appropriate platforms, such as Silicon Photonics. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift.

  5. Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses

    Science.gov (United States)

    El Hadri, M. S.; Pirro, P.; Lambert, C.-H.; Petit-Watelot, S.; Quessab, Y.; Hehn, M.; Montaigne, F.; Malinowski, G.; Mangin, S.

    2016-08-01

    Using a time-dependent electrical investigation of the all-optical switching in ferrimagnetic and ferromagnetic Hall crosses via the anomalous Hall effect, intriguing insights into the rich physics underlying the all-optical switching are provided. We demonstrate that two different all-optical magnetization switching mechanisms can be distinguished; a "single pulse" switching for ferrimagnetic GdFeCo alloys, and a "two regimes" switching process for both ferrimagnetic TbCo alloys and ferromagnetic Pt/Co multilayers. We show that the latter takes place at two different time scales, and consists of a steplike helicity-independent multiple-domain formation within the first 1 ms followed by a helicity-dependent remagnetization on several tens of milliseconds.

  6. Wavelength Routing Algorithm of All Optical Network Based on Traffic Engineering

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    General multi-protocol label switching(GMPLS) based on traffic engineering is one of the possible methods to implement all-optical network. This method implements the network with IP technique and guarantees the quality of service with traffic engineering. Based on the establishment of selecting schemes of optical path and methods of traffic calculation, the wavelength routing algorithm of all-optical network based on traffic engineering is presented by combining with prior route of shortest path and traffic engineering, the algorithm procedures are given, and the actual examples are introduced as well as the analysis on simulation calculation. This research results have certain significance for the achievement of optical switching technique of all-optical network.

  7. Frequency-time coherence for all-optical sampling without optical pulse source

    Science.gov (United States)

    Preußler, Stefan; Raoof Mehrpoor, Gilda; Schneider, Thomas

    2016-09-01

    Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave. Since no optical source is required, a simple integration in appropriate platforms, such as Silicon Photonics might be possible. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift.

  8. All-optical virtual private network and ONUs communication in optical OFDM-based PON system.

    Science.gov (United States)

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun

    2011-11-21

    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible.

  9. Frequency-time coherence for all-optical sampling without optical pulse source

    Science.gov (United States)

    Preußler, Stefan; Raoof Mehrpoor, Gilda; Schneider, Thomas

    2016-01-01

    Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave. Since no optical source is required, a simple integration in appropriate platforms, such as Silicon Photonics might be possible. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift. PMID:27687495

  10. Tunable optoelectronic oscillator incorporating an all-optical microwave photonic filter

    Science.gov (United States)

    Li, Cheng-Xin; Chen, Fu-Shen; Zhang, Jia-Hong

    2015-01-01

    A tunable optoelectronic oscillator (OEO), which employs an all-optical microwave photonic filter (MPF) consisting of two laser sources (LD1 and LD2), an optical coupler (OC, 50:50), a Mach-Zehnder modulator (MZM), and a chirped fiber Bragg grating, is proposed. Because the central frequency of the all-optical MPF can be shifted by changing the wavelength spacing between the two laser sources, the frequency tunability of the OEO can be realized by incorporating such an all-optical MPF into an optical domain dual-loop OEO without any electronic microwave filters. A detailed theoretical analysis is presented and the results are confirmed by an experiment. A microwave signal with a frequency-tuning range from 4.057 to 8.595 GHz is generated. The phase noise, the long-term stability, and the side-mode suppression performance of the generated microwave signal are also investigated.

  11. Security Situation Assessment of All-Optical Network Based on Evidential Reasoning Rule

    Directory of Open Access Journals (Sweden)

    Zhong-Nan Zhao

    2016-01-01

    Full Text Available It is important to determine the security situations of the all-optical network (AON, which is more vulnerable to hacker attacks and faults than other networks in some cases. A new approach of the security situation assessment to the all-optical network is developed in this paper. In the new assessment approach, the evidential reasoning (ER rule is used to integrate various evidences of the security factors including the optical faults and the special attacks in the AON. Furthermore, a new quantification method of the security situation is also proposed. A case study of an all-optical network is conducted to demonstrate the effectiveness and the practicability of the new proposed approach.

  12. An all-optical time-delay relay based n a bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Xu Xu-Xu; Zhang Chun-Ping; Qi Shen-Wen; Song Qi-Wang

    2008-01-01

    Using a special property of dynamic complementary-suppression-modulated transmission (DCSMT) in the bacteriorhodopsin (bR) film,we have demonstrated an all-optical time-delay relay.To extend our work,the relationship between the delay time of the all-optical time-delay relay and parameters of a bR film is numerically studied.We show how the delay time changes with the product of concentration and thickness (PCT) of a bR film.Furthermore,the shortest and longest delay times are given for the relay of 'switch off'.The saturable delay time and maximum delaytime of 'switch on' are also given.How the wavelengths (632.8,568,533 and 412 nm) and intensities of the illuminating light influence the delay time is also discussed.The simulation results are useful for optimizing the design of all-optical time-delay relays.

  13. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip

    DEFF Research Database (Denmark)

    Liu, Liu; Kumar, R.; Huybrechts, K.;

    2010-01-01

    Ultra-small, low-power, all-optical switching and memory elements, such as all-optical flip-flops, as well as photonic integrated circuits of many such elements, are in great demand for all-optical signal buffering, switching and processing. Silicon-on-insulator is considered to be a promising pl...

  14. All-optical WDM Regeneration of DPSK Signals using Optical Fourier Transformation and Phase Sensitive Amplification

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Kjøller, Niels-Kristian;

    2015-01-01

    We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time.......We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time....

  15. Trigonometric Transforms for High-Speed Optical Networks: All-Optical Architectures and Optical OFDM

    Directory of Open Access Journals (Sweden)

    Michela Svaluto Moreolo

    2010-11-01

    Full Text Available In this paper, it is shown that the use of real trigonometric transforms can advantageously replace the Fourier transform in optical communication systems, for both all-optical and electronic signal processing. All-optical discrete Hartley transform (DHT and discrete Cosine transform (DCT architectures for high-speed optical signal processing, filtering and data compression are given and compared to fiber Fourier processing. A trigonometric transform-based orthogonal frequency division multiplexing (OFDM transmission system is also presented. The modulation/demodulation is performed by using the fast Hartley transform (FHT algorithm. The simplified scheme and the real processing make it suitable for direct detection optical systems.

  16. Ultrafast low-energy all-optical switching using a photonic-crystal asymmetric Fano structure

    DEFF Research Database (Denmark)

    Yu, Yi; Hu, Hao; Oxenløwe, Leif Katsuo;

    2015-01-01

    We experimentally demonstrate 20 Gbit/s all-optical switching with low-energy consumption using a simple and ultra-compact InP photonic-crystal structure by employing a well-engineered Fano resonance in combination with broken mirror symmetry.......We experimentally demonstrate 20 Gbit/s all-optical switching with low-energy consumption using a simple and ultra-compact InP photonic-crystal structure by employing a well-engineered Fano resonance in combination with broken mirror symmetry....

  17. All-optical diode action with Thue-Morse quasiperiodic photonic crystals

    CERN Document Server

    Biancalana, Fabio

    2008-01-01

    We theoretically investigate the possibility of realizing a nonlinear all-optical diode by using the unique field-localization properties (known as Anderson-Kohmoto localization) of Thue-Morse quasiperiodic 1D photonic crystals. The interplay between the intrinsic spatial asymmetry in odd-order Thue-Morse lattices and Kerr nonlinearity gives rise to sharp resonances of perfect transmission that can be used to give a polarization-insensitive, nonreciprocal propagation with a contrast close to unity for low optical intensities. Such nonlinear diode would also represent the first all-optical device which is crucially based on Anderson-like localization.

  18. Ultrafast coherent dynamics of a photonic crystal all-optical switch

    CERN Document Server

    Colman, Pierre; Yu, Yi; Mørk, Jesper

    2016-01-01

    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report the observation of an idler pulse. The measurements are in good agreement with a theoretical model that allows us to ascribe the observation to oscillations of the free carrier population in the nanocavity. The effect opens perspectives for the realization of new all-optical photonic crystal switches with unprecedented switching contrast.

  19. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen;

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  20. An all-optical buffer based on temporal cavity solitons operating at 10 Gb/s

    CERN Document Server

    Jang, Jae K; Schröder, Jochen; Eggleton, Benjamin J; Murdoch, Stuart G; Coen, Stéphane

    2016-01-01

    We demonstrate the operation of an all-optical buffer based on temporal cavity solitons stored in a nonlinear passive fiber ring resonator. Unwanted acoustic interactions between neighboring solitons are suppressed by modulating the phase of the external laser driving the cavity. A new locking scheme is presented that allows the buffer to operate with an arbitrarily large number of cavity solitons in the loop. Experimentally, we are able to demonstrate the storage of 4536 bits of data, written all-optically into the fiber ring at 10 Gb/s, for 1 minute.

  1. All-optical transistor action by off-resonant activation at laser threshold

    CERN Document Server

    Andrews, David L

    2009-01-01

    The development of viable all-optical data processing systems has immense importance for both the computing and telecommunication industries, but device realization remains elusive. In this Letter, we propose an innovative mechanism deployed as a basis for all optical transistor action. In detail, it is determined that an optically pumped system, operating just below laser threshold, can exhibit a greatly enhanced output on application of an off-resonant beam of sufficient intensity. The electrodynamics of the underlying, nonlinear optical mechanism is analyzed, model calculations are performed, and the results are illustrated graphically.

  2. An all-optical comparison scheme between two multi-bit data with optical nonlinear material

    Institute of Scientific and Technical Information of China (English)

    Kuladeep Roy Chowdhury; Abhijit Sinha; Sourangshu Mukhopadhyay

    2008-01-01

    Over the last few decades, several all-optical circuits have been proposed to meet the need of high-speed data processing. In some information processing architectures, the role of various analog and digital data comparisons is very important. In this letter, we proposed a multi-bit data comparison scheme. The scheme is based on the switching property of optical nonlinear material. Ultrafast operational speed larger than gigahertz can be expected from this all-optical scheme.OCIS codes: 190.0190, 200.0200, 200.1130, 200.3760.

  3. All-Optical Signal processing using Highly Nonlinear Photonic Crystal Fiber

    OpenAIRE

    Andersen, Peter Andreas; Jeppesen, Palle; Peucheret, Christophe; Clausen, Anders

    2006-01-01

    The use of HNL-PCF in optical communication systems has been investigated in this thesis. The investigation has been done with respect to the future of telecommunications in an all-optical system. The PCFs used have all been used for all-optical signal processing as part of an optical component. A large part of the work performed for this thesis has been on supercontinuum generation in a HNL-PCF and the use of such a supercontinuum in a system experiment. It has been shown how a supercontinuu...

  4. Distributed All-Optical Sensor to Detect dCO2 in Aqueous Environments

    Science.gov (United States)

    Bhatia, S.; Coelho, J.; Melo, L.; Davies, B.; Ahmed, F.; Bao, B.; Wild, P.; Risk, D. A.; Sinton, D.; Jun, M.

    2012-12-01

    Already a proven technology for temperature and stress measurements, an all-optical sensor to detect dCO2 is being developed for deployment in challenging environments. Optical sensors function under high pressure, do not require electronics and therefore experience no magnetic interference. They are also able to transmit signals over long distances with minimal losses. The dCO2 sensor's principal application is in measurement monitoring and verification of carbon capture and storage sites; however, it could also be useful in ocean, fresh water, and transition environments. The objective for the first phase of development was to detect a CO2 signal in laboratory tests. The developmental program incorporated experiments to detect CO2 under high pressure (1400 psi) in aqueous environments. Laboratory testing involved a custom pressure cell, off-the-shelf and custom long period gratings written in SMF125 fiber. Femptosecond laser micromachining was used to test alternative long period grating (LPG) and cutout shapes to maximize evanescent field interaction with the environment. A comprehensive program of geochemical modeling using PHREEQC 2 was used to identify the diversity of species in environments of interest that could exert confounding influence. Purchased UV-LPG responded to changes in concentration of scCO2 in brine at high pressure. Signal differences between CO2-saturated brine and pure brine were also noted under the same, high pressure conditions. Geochemical modeling software, PHREEQC 2, revealed a diversity of species in environments of interest whose concentrations varied strongly with temperature and pH. The modeling program's detailed characterization of environments informed work currently being undertaken as part of Phase 2, to develop a CO2-selective membrane to filter out measurement artifact.

  5. Computational Complexity of Input/Output Logic

    OpenAIRE

    Sun, Xin; Ambrossio, Diego Agustin

    2015-01-01

    Input/output logics are abstract structures designed to represent conditional norms. The complexity of input/output logic has been sparsely developed. In this paper we study the complexity of input/output logics. We show that the lower bound of the complexity of the fulfillment problem of 4 input/output logics is coNP, while the upper bound is either coNP or P^NP.

  6. A Logical Characterisation of Static Equivalence

    DEFF Research Database (Denmark)

    Hüttel, Hans; Pedersen, Michael D.

    2007-01-01

    -order logic for frames with quantification over environment knowledge which, under certain general conditions, characterizes static equivalence and is amenable to construction of characteristic formulae. The logic can be used to reason about environment knowledge and can be adapted to a particular application...... by defining a suitable signature and associated equational theory. The logic can furthermore be extended with modalities to yield a modal logic for e.g. the Applied Pi calculus....

  7. Logical consecutions in discrete linear temporal logic

    OpenAIRE

    Rybakov, V. V.

    2005-01-01

    We investigate logical consequence in temporal logics in terms of logical consecutions, i.e., inference rules. First, we discuss the question: what does it mean for a logical consecution to be ’correct’ in a propositional logic. We consider both valid and admissible consecutions in linear temporal logics and discuss the distinction between these two notions. The linear temporal logic LDTL, consisting of all formulas valid in the frame 〈 , ≤, ≥ 〉 of all integer numbers, is the prime object of...

  8. All-optical microwave signal processing based on optical phase modulation

    Science.gov (United States)

    Zeng, Fei

    This thesis presents a theoretical and experimental study of optical phase modulation and its applications in all-optical microwave signal processing, which include all-optical microwave filtering, all-optical microwave mixing, optical code-division multiple-access (CDMA) coding, and ultrawideband (UWB) signal generation. All-optical microwave signal processing can be considered as the use of opto-electronic devices and systems to process microwave signals in the optical domain, which provides several significant advantages such as low loss, low dispersion, light weight, high time bandwidth products, and immunity to electromagnetic interference. In conventional approaches, the intensity of an optical carrier is modulated by a microwave signal based on direct modulation or external modulation. The intensity-modulated optical signal is then fed to a photonic circuit or system to achieve specific signal processing functionalities. The microwave signal being processed is usually obtained based on direct detection, i.e., an opto-electronic conversion by use of a photodiode. In this thesis, the research efforts are focused on the optical phase modulation and its applications in all-optical microwave signal processing. To avoid using coherent detection which is complicated and costly, simple and effective phase modulation to intensity modulation (PM-IM) conversion schemes are pursued. Based on a theoretical study of optical phase modulation, two approaches to achieving PM-IM conversions are proposed. In the first approach, the use of chromatic dispersion induced by a dispersive device to alter the phase relationships among the sidebands and the optical carrier of a phase-modulated optical signal to realize PM-IM conversion is investigated. In the second approach, instead of using a dispersive device, the PM-IM conversion is realized based on optical frequency discrimination implemented using an optical filter. We show that the proposed PM-IM conversion schemes can be

  9. Logical Behaviorism

    OpenAIRE

    Malcolm, Norman; Altuner, Ilyas

    2014-01-01

    The paper deals exclusively with the doctrine called ‘Logical Behaviorism’. Although this position does not vogue it enjoyed in the 1930s and 1940s, it will always possess a compelling attraction for anyone who is perplexed by the psychological concepts, who has become aware of worthlessness of an appeal to introspection as an account of how we learn those concepts, and he has no inclination to identify mind with brain. There, of course, are other forms of behaviorism, and of reductionism, wh...

  10. The D-conditional Divergence of Theory and Approximate Reasoning in Classical Propositional Logic System%经典命题逻辑中理论的D-条件发散度与近似推理

    Institute of Scientific and Technical Information of China (English)

    崔美华

    2013-01-01

    In the classical propositional logic system, the D-conditional divergence of theory and the D-conditional pseudo-distance from formula to theory are introduced in D-r logic metric space. Their several properties are deduced. Furthermore, based on them, some related questions on approximate reasoning in D-r logic metric space are studied.%在经典命题逻辑系统中,给出了D-г逻辑度量空间中理论的D-条件发散度和公式到理论的D-条件距离的真度表达式,推出了它们的若干性质;并利用这些性质研究了D-г逻辑度量空间中近似推理的相关问题.

  11. A Highly Linear All Optical Gate Based on Coupled Photonic Crystal Cavities

    OpenAIRE

    Moille, Gregory; De Rossi, Alfredo; Lehoucq, Gaelle; Martin, Aude; Bramerie, Laurent; Gay, Mathilde; Combrie, Sylvain

    2014-01-01

    International audience A photonic crystal molecule is used as an all-optical gate to perform sampling of microwave signals. We demonstrate a very linear operation over a 50dB still with a 1.2mW power consumption.

  12. Ultra compact and fast All Optical Flip Flop design in photonic crystal platform

    Science.gov (United States)

    Abbasi, Amin; Noshad, Morteza; Ranjbar, Reza; Kheradmand, Reza

    2012-11-01

    In this work we present a heterostructure All Optical Flip-Flop configuration based on all optical switching with Kerr nonlinear photonic crystal. In this square-hexagonal structure, we propose three different schemes for the cavities in order to show the trade-off between switching time and triggering power. Loss in the system is reasonably low because of the perfect band gap matching at bending points where two lattices join. The proposed RS-Flip Flop has exceptional features, which make it one of the well optimized and most practical structures to be used in the all optical integrated circuits. The novel design has a fast switching action (on the order of a few picoseconds), and low input power (on the order of 100 mW). Furthermore, high contrast of the output signals for ON and OFF states, can help the easy detection or its coupling to the other devices. The structure is fascinatingly uncomplicated, which results in ultra small dimensions which make it suitable to be placed in an all optical integrated circuit. Besides, we provide a profound analytical view on the functioning of the system, as analyzed by the finite difference time domain (FDTD) method.

  13. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    2000-01-01

    All-optical wavelength conversion and signal regeneration based on cross-absorption modulation in an InGaAsP quantum well electroabsorption modulator (EAM) is studied at different bit rates. We present theoretical results showing wavelength conversion efficiency in agreement with existing...

  14. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    1999-01-01

    All-optical wavelength conversion in an InGaAsP quantum well electroabsorption modulator is studied at different bit-rates. We present theoretical results showing wavelength conversion efficiency in agreement with existing experimental results, and signal regeneration capability is demonstrated....

  15. All-optical integrated Mach-Zehnder switching in lithium niobate waveguides due to cascaded nonlinearities

    NARCIS (Netherlands)

    Baek, Y.; Schiek, R.; Krijnen, G.J.M.; Stegeman, G.I.; Baumann, I.; Sohler, W.

    1996-01-01

    In all-optical switching the required phase shift is produced by the light itself. Typically this shift has been achieved via the intensity-dependent refractive index. But recently the fact that the so-called cascaded second-order nonlinearity can imitate the third-order nonlinearity was proven expe

  16. Improving the All-Optical Response of SOAs Using a Modulated Holding Signal

    DEFF Research Database (Denmark)

    Bischoff, Svend; Nielsen, Mads Lønstrup; Mørk, Jesper

    2004-01-01

    A method for increasing the all-optical modulation bandwidth of semiconductor optical amplifiers (SOAs) by use of a cross-gain-modulated (XGM) holding signal is suggested and analyzed. The bandwidth improvement is numerically demonstrated by studying wavelength conversion in an SOA-based Mach...

  17. All-optical Data Vortex node using an MZI-SOA switch array

    DEFF Research Database (Denmark)

    Jung, H.D.; Tafur Monroy, Idelfonso; Koonen, A.M.J.;

    2007-01-01

    We propose and demonstrate a new structure of a Data Vortex switch node for all-optical routing of wavelength-division-multiplexing (WDM) 10-Gb/s optical packets. The proposed node consists of two Mach-Zehnder interferometers with integrated semiconductor optical amplifier: an optical AND gate an...

  18. All-optical broadcast and multicast technologies based on PPLN waveguide

    DEFF Research Database (Denmark)

    Ye, Lingyun; Wang, Ju; Hu, Hao;

    2013-01-01

    All-optical 1×4 broadcast and 1×3 multicast experiments of a 40-Gb/s return-to-zero on-off keying (RZ-OOK) signal based on a periodically poled lithium niobate (PPLN) waveguide are demonstrated in this letter. Clear opened eye diagrams and error-free performance are achieved for the broadcast...

  19. Linear all-optical signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing;

    2016-01-01

    Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus...

  20. All-Optical Signal Processing for 640 Gbit/s Applications

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen

    2008-01-01

    This thesis concerns all-optical signal processing technologies for ultra-high serial data rates up to 640 Gbit/s. Firstly, time-division add-drop multiplexing at 640 Gbit/s is demonstrated for the first time using two different fibre-based switching techniques. Secondly, a novel principle...

  1. All-optical 2R regeneration based on interometic structure incoporating semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Wolfson, David; Hansen, Peter Bukhave; Kloch, Allan;

    1999-01-01

    All-optical 2R regeneration in an SOA-based interferometric Michelson structure using a novel technique is experimentally demonstrated. An output extinction ratio of ~10 dB is measured for an input extinction ratio of 6 dB and a noise suppression capability of ~4.5 dB is obtained, clearly...

  2. A Novel All-optical Wavelength Converter Based on Self-pump Four-wave Mixing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianxiao; CHEN Zhangyuan; TAO Zhenning; WU Deming; XU Anshi; WANG Ziyu

    2002-01-01

    A novel scheme of all-optical wavelength converter(AOWC) based on dual pump four-wave mixing(DP-FWM) was demonstrated. To suppress the ASE noise of the semiconductor optical amplifier (SOA), one of the two pumps was generated interiorly from a loop laser constructed mainly by tunable optical filter and SOA. The theoretical model and some experimental results were presented.

  3. All-optical subcarrier labeling based on the carrier suppression of the payload

    DEFF Research Database (Denmark)

    Chi, Nan; Zhang, Jianfeng; Jeppesen, Palle

    2003-01-01

    We report on a new approach to all-optical subcarrier labeling based on sideband generation through carrier-suppression of the payload. The experimental transmission over 50-km standard fiber of a 10-Gb/s payload data multiplexed with a synchronized 1.25-Gb/s subcarrier label is carried out with...

  4. Research of Asymmetric Y-Branching Total Internal Reflection All-Optical Switch

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Y-branching TIR all-optical switch have been fabricated. When the switching optical intensity is 149.9W/mm2, the extinction ratio is 18dB. A theoretical model was also proposed which provided a good fit to the experimental data.

  5. All-Optical Switching Using Fabry-Perot Laser Diodes(Invited paper)

    Institute of Scientific and Technical Information of China (English)

    P. K. A. Wai; L. Y. Chan; H. Y. Tam

    2003-01-01

    In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.

  6. Ultrafast all-optical modulation using a photonic-crystal Fano structure with broken symmetry

    DEFF Research Database (Denmark)

    Yu, Yi; Hu, Hao; Oxenløwe, Leif Katsuo;

    2015-01-01

    We experimentally demonstrate ultrafast all-optical modulation using an ultracompact InP photonic-crystal Fanostructure. In contrast to symmetric configurations previously considered, the use of a structure with broken symmetryin combination with a well-engineered Fano resonance is shown to...

  7. Ultrafast dynamics in semiconductor optical amplifiers and all-optical processing: Bulk versus quantum dot devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg;

    2003-01-01

    We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...

  8. Optical parametric chirped pulse amplifier at 1600 nm with all-optical synchronization

    Directory of Open Access Journals (Sweden)

    Leitenstorfer Alfred

    2013-03-01

    Full Text Available We demonstrate the amplification of 1.6 μm pulses by a KTA optical parametric chirped-pulse amplifier based on an all-optical synchronization scheme as a scalable approach to generation of high power tunable mid infrared.

  9. All-Optical Wavelength Conversion with Amplitude Equalization and Pulse Shaping

    Institute of Scientific and Technical Information of China (English)

    C.W.Chow; C.S.Wong; H.K.Tsang

    2003-01-01

    A dual-wavelength-injection-locked (DWIL) Fabry-Perot (FP) laser is used as an all-optical wavelength converter and regenerator. Regenerated pulses have narrower pulse-width of 37ps. Power penalty and extinction-ratio improvement of 1.5dB and 4dB respectively were achieved.

  10. 8x40 Gb/s RZ all-optical broadcasting utilizing an electroabsorption modulator

    DEFF Research Database (Denmark)

    Xu, Lin; Chi, Nan; Yvind, Kresten;

    2004-01-01

    We experimentally demonstrate all-optical broadcasting through simultaneous 8 × 40 Gb/s wavelength conversion in the RZ format based on cross absorption modulation in an electroabsorption modulator. The original intensity-modulated information is successfully duplicated onto eight wavelengths that...

  11. Comparison of delay-interferometer and time-lens-based all-optical OFDM demultiplexers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Galili, Michael;

    2015-01-01

    In this paper we present the first detailed numerical comparison of two promising all-optical schemes to demultiplex orthogonal frequency-division multiplexing (OFDM) signals. The investigated schemes are the optical discrete Fourier transformation (O-DFT) and the optical spectral magnification (...

  12. Comparison of Delay-Interferometer and Time- Lens-Based All-Optical OFDM Demultiplexers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Galili, Michael;

    2015-01-01

    In this letter, we present the first detailed numerical comparison of two promising all-optical schemes to demultiplex orthogonal frequency-division multiplexing (OFDM) signals. The investigated schemes are the optical discrete Fourier transformation (O-DFT) and the optical spectral magnification...

  13. All-Optical Switching Using Fabry-Perot Laser Diodes (Invited paper)

    Institute of Scientific and Technical Information of China (English)

    P.; K.; A.; Wai; L.; Y.; Chan; H.; Y.; Tam

    2003-01-01

    In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.

  14. Characterisation of a MQW electroabsorption modulator as an all-optical demultiplexer

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Romstad, Francis Pascal; Tersigni, Andrea;

    2001-01-01

    A detailed experimental investigation of the all-optical switching properties of an InGaAsP MQW electroabsorption modulator has been performed. Using high pump pulse energies and high reverse bias settings, switching windows were demonstrated with extinction ratios up to 25 dB and widths down to ...

  15. High-speed integrated optical logic based on the protein bacteriorhodopsin.

    Science.gov (United States)

    Mathesz, Anna; Fábián, László; Valkai, Sándor; Alexandre, Daniel; Marques, Paulo V S; Ormos, Pál; Wolff, Elmar K; Dér, András

    2013-08-15

    The principle of all-optical logical operations utilizing the unique nonlinear optical properties of a protein was demonstrated by a logic gate constructed from an integrated optical Mach-Zehnder interferometer as a passive structure, covered by a bacteriorhodopsin (bR) adlayer as the active element. Logical operations were based on a reversible change of the refractive index of the bR adlayer over one or both arms of the interferometer. Depending on the operating point of the interferometer, we demonstrated binary and ternary logical modes of operation. Using an ultrafast transition of the bR photocycle (BR-K), we achieved high-speed (nanosecond) logical switching. This is the fastest operation of a protein-based integrated optical logic gate that has been demonstrated so far. The results are expected to have important implications for finding novel, alternative solutions in all-optical data processing research. PMID:23500476

  16. Logic and truth: Some logics without theorems

    Directory of Open Access Journals (Sweden)

    Jayanta Sen

    2008-08-01

    Full Text Available Two types of logical consequence are compared: one, with respect to matrix and designated elements and the other with respect to ordering in a suitable algebraic structure. Particular emphasis is laid on algebraic structures in which there is no top-element relative to the ordering. The significance of this special condition is discussed. Sequent calculi for a number of such structures are developed. As a consequence it is re-established that the notion of truth as such, not to speak of tautologies, is inessential in order to define validity of an argument.

  17. Tribological Performance Optimization of Electroless Ni-B Coating under Lubricated Condition using Hybrid Grey Fuzzy Logic

    Science.gov (United States)

    Mukhopadhyay, Arkadeb; Duari, Santanu; Barman, Tapan Kumar; Sahoo, Prasanta

    2015-11-01

    Deposition of nickel coating and its alloys using electroless method has received wide acceptance by researchers and even the industries because of their excellent tribological properties. The present experimental investigation deals with the behaviour of electroless Ni-B coating under lubricated condition on a pin-on-disc tribotester. An attempt is made to minimize the friction and wear characteristics simultaneously by optimizing three test parameters i.e. the applied normal load, speed and time of sliding using grey fuzzy reasoning analysis. The friction and wear tests are carried out based on Taguchi's L27 orthogonal array of experiments. 3D surface and contour plots are generated to analyze the trends in variation of friction and wear of the deposits considering the combined effect of the design variables. Analysis of variance is done to find out the contribution of each test parameter and their interactions in controlling the friction and wear behaviour of electroless Ni-B coating. Surface morphology, phase transformation and coating composition analysis are done with the help of scanning electron microscopy, X-ray diffraction analysis and energy dispersive X-ray analysis respectively.

  18. Advances in Modal Logic

    DEFF Research Database (Denmark)

    is the proceedings of the conference of record in its fi eld, Advances in Modal Logic. Its contributions are state-of-the-art papers. The topics include decidability and complexity results for specifi c modal logics, proof theory of modal logic, logics for reasoning about time and space, provability logic, dynamic......Modal logic is a subject with ancient roots in the western logical tradition. Up until the last few generations, it was pursued mainly as a branch of philosophy. But in recent years, the subject has taken new directions with connections to topics in computer science and mathematics. This volume...... epistemic logic, and the logic of evidence....

  19. Logic Reasoning

    Institute of Scientific and Technical Information of China (English)

    小雨

    2006-01-01

    A teacher was giving her pu- pils a lesson on logic(逻辑).“Here is the situation(情景),”she said,“a man is stand- ing up in a boat in the middle of a river,fishing.He loses his bal- ance(平衡),falls in,and begins splashing(泼水)and yelling(叫喊)for help.His wife hears the commotion(喧闹),knows that he can’t swim,and runs down to the bank (河岸).Why did she run to the bank?” A girl raised her hand and asked,“To draw out(提取)all of his savings(存款).”

  20. Properties of Measure-based Fuzzy Logic

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Measure-based fuzzy logic, which is constructed on the basis of eight axioms, is a seemingly powerful fuzzy logic. It possesses several remarkable properties. (1) It is an extended Boolean logic, satisfying all the properties of Boolean algebra, including the law of excluded middle and the law of contradiction. (2) It is conditional. Conditional membership functions play an important role in this logic. (3) The negation operator is not independently defined with the conjunction and disjunction operators, but on the contrary, it is derived from them. (4) Zadehs fuzzy logic is included in it as a particular case. (5) It gives more hints to the relationship between fuzzy logic and probability logic.

  1. Optical packet header identification utilizing an all-optical feedback chaotic reservoir computing

    Science.gov (United States)

    Qin, Jie; Zhao, Qingchun; Xu, Dongjiao; Yin, Hongxi; Chang, Ying; Huang, Degen

    2016-06-01

    In this paper, an all-optical reservoir computing (RC) setup is proposed for identifying the types of optical packet headers in optical packet switching (OPS) network. The numerical simulation identification results of 3 bits and 32 bits optical headers with the bit rate of 10 Gbps are as low as 0.625% and 2.25%, respectively. The identification errors with the variation of the feedback strength and feedback delay are presented separately. Hence, the optimal feedback parameters are obtained. The all-optical feedback RC setup is robust to the white Gaussian noise. The recognition error is acceptable when the signal-to-noise ratio (SNR) is greater than 15 dB.

  2. Recovery Management in All Optical Networks Using Biologically-Inspired Complex Adaptive System

    Directory of Open Access Journals (Sweden)

    Inadyuti Dutt

    2013-01-01

    Full Text Available All-Optical Networks have the ability to display varied advantages like performance efficiency, throughput etc but their efficiency depends on their survivability as they are attack prone. These attacks can be categorised as active or passive because they try to access information within the network or alter the information in the network. The attack once detected has to be recovered by formulating back-up or alternative paths. The proposed heuristic uses biologically inspired Complex Adaptive System, inspired by Natural Immune System. The study shows that natural immune system exhibit unique behaviour of detecting foreign bodies in our body and removing them on their first occurrences. This phenomenon is being utilised in the proposed heuristic for recovery management in All-optical Network

  3. All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal.

    Science.gov (United States)

    Martelli, P; Boffi, P; Ferrario, M; Marazzi, L; Parolari, P; Siano, R; Pusino, V; Minzioni, P; Cristiani, I; Langrock, C; Fejer, M M; Martinelli, M; Degiorgio, V

    2009-09-28

    We present the results of an in-depth experimental investigation about all-optical wavelength conversion of a 100-Gb/s polarization-multiplexed (POLMUX) signal. Each polarization channel is modulated at 25 Gbaud by differential quadrature phase-shift keying (DQPSK). The conversion is realized exploiting the high nonlinear chi((2)) coefficient of a periodically poled lithium niobate waveguide, in a polarization-independent configuration. We find that slight non-idealities in the polarization independent setup of the wavelength converter can significantly impair the performance of POLMUX systems. We show that high-quality wavelength conversion can be nevertheless achieved for both the polarization channels, provided that an accurate optimization of the setup is performed. This is the first demonstration, to the best of our knowledge, of the possibility to obtain penalty-free all-optical wavelength conversion in a 100-Gb/s POLMUX transmission system using direct-detection. PMID:19907562

  4. Efficient ultra-fast all-optical wavelength converters with Ti:PPLN waveguides

    DEFF Research Database (Denmark)

    Nouroozi, Rahman; Suche, Hubertus; Hu, Hao;

    2014-01-01

    Applications of packaged and pigtailed (tunable) integrated all-optical Ti:PPLN wavelength converters (AOWC) with different modulation formats (RZ-DQPSK, 16-ary QAM) are reported. The devices take advantage of cascaded second order nonlinear interactions allowing tuning with either one or two...... control waves via cSHG/DFG or cSFG/DFG. Operation of polarization insensitive AOWCs on a variety of presented high-bit-rate (up to 320 Gb/s) transmission experiments and mid-span chromatic dispersion compensation in the C-band with negligible penalties promises great potential for application in...... transparent all-optical networks (TAON). In addition recent progress with respect to bandwidth and efficiency of the cSHG/DFG-based wavelength converters is reported. The efficiency is increased by pump-resonant wavelength conversion and by increased interaction length in a phase controlled double-pass scheme...

  5. Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers

    Institute of Scientific and Technical Information of China (English)

    KONG Duan-Hua; ZHU Hong-Liang; LIANG Song; WANG Bao-Jun; BIAN Jing; MA Li; YU Wen-Ke; LOU Cai-Yun

    2011-01-01

    @@ All-optical clock recovery by a two-section DFB laser with different injection wavelengths is demonstrated exper-imentally at 38.5GHz.An optical clock with a root-mean-square timing jitter of 250fs and an extinction ratio of 12.1 dB is obtained with 1551 run injection.The timing jitter of the recovered clock is further investigated for various intensity ratios of the two DFB emission modes.%All-optical clock recovery by a Iwu-wcliuii DFIS laser v, Uh different ijijcciiuii wavnk'U^lhs is dt-iwm^.ttnind experimentally af 3H.5GBz. An optical clock with a root-mean-square timing jitter of 2.50& and an extinction ratio of !2.idB is obtained with 1551 nm injection. The timing jitter of the recovered duck is Further invesUgui id fo: various intensity ratios of [Jit two DFB emission modes.

  6. All-optical control of microfiber resonator by graphene's photothermal effect

    Science.gov (United States)

    Wang, Yadong; Gan, Xuetao; Zhao, Chenyang; Fang, Liang; Mao, Dong; Xu, Yiping; Zhang, Fanlu; Xi, Teli; Ren, Liyong; Zhao, Jianlin

    2016-04-01

    We demonstrate an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect. Wrapping graphene onto a microfiber resonator, the light-graphene interaction can be strongly enhanced via the resonantly circulating light, which enables a significant modulation of the resonance with a resonant wavelength shift rate of 71 pm/mW when pumped by a 1540 nm laser. The optically controlled resonator enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB. The thin and compact structure promises a fast response speed of the control, with a rise (fall) time of 294.7 μs (212.2 μs) following the 10%-90% rule. The proposed device, with the advantages of compact structure, all-optical control, and low power acquirement, offers great potential in the miniaturization of active in-fiber photonic devices.

  7. Study of all-optical sampling using a semiconductor optical amplifier

    Science.gov (United States)

    Wu, Chen; Wang, Yongjun; Wang, Lina; Wang, Fu

    2016-08-01

    All-optical sampling is an important research content of all-optical signal processing. In recent years, the application of the semiconductor optical amplifier (SOA) in optical sampling has attracted lots of attention because of its small volume and large nonlinear coefficient. We propose an optical sampling model based on nonlinear polarization rotation effect of the SOA. The proposed scheme has the advantages of high sampling speed and small input pump power, and a transfer curve with good linearity was obtained through simulation. To evaluate the performance of sampling, we analyze the linearity and efficiency of sampling pulse considering the impact of pulse width and analog signal frequency. We achieve the sampling of analog signal to high frequency pulse and exchange the positions of probe light and pump light to study another sampling.

  8. All Optical Stabilization of a Soliton Frequency Comb in a Crystalline Microresonator

    CERN Document Server

    Jost, J D; Herr, T; Lecaplain, C; Brasch, V; Pfeiffer, M H P; Kippenberg, T J

    2015-01-01

    Microresonator based optical frequency combs (MFC) have demonstrated promise in extending the capabilities of optical frequency combs. Here we demonstrate all optical stabilization of a low noise temporal soliton based MFC in a crystalline resonator via a new technique to control the repetition rate. This is accomplished by thermally heating the microresonator with an additional probe laser coupled to an auxiliary optical resonator mode. The offset frequency is controlled by stabilization of the pump laser frequency to a reference optical frequency comb. We analyze the stabilization by performing an out of loop comparison and measure the overlapping Allan deviation. This all optical stabilization technique can prove useful as a low added noise actuator for self-referenced microresonator frequency combs.

  9. An all-optical vector atomic magnetometer for fundamental physics applications

    Science.gov (United States)

    Wurm, David; Mateos, Ignacio; Zhivun, Elena; Patton, Brian; Fierlinger, Peter; Beck, Douglas; Budker, Dmitry

    2014-05-01

    We have developed a laboratory prototype of a compact all-optical vector magnetometer. Due to their high precision and absolute accuracy, atomic magnetometers are crucial sensors in fundamental physics experiments which require extremely stable magnetic fields (e.g., neutron EDM searches). This all-optical sensor will allow high-resolution measurements of the magnitude and direction of a magnetic field without perturbing the magnetic environment. Moreover, its absolute accuracy makes it calibration-free, an advantage in space applications (e.g., space-based gravitational-wave detection). Magnetometry in precision experiments or space applications also demands long-term stability and well-understood noise characteristics at frequencies below 10-4 Hz. We have characterized the low-frequency noise floor of this sensor and will discuss methods to improve its long-time performance.

  10. An all-optical modulation method in sub-micron scale.

    Science.gov (United States)

    Yang, Longzhi; Pei, Chongyang; Shen, Ao; Zhao, Changyun; Li, Yan; Li, Xia; Yu, Hui; Li, Yubo; Jiang, Xiaoqing; Yang, Jianyi

    2015-01-01

    We report a theoretical study showing that by utilizing the illumination of an external laser, the Surface Plasmon Polaritons (SPP) signals on the graphene sheet can be modulated in the sub-micron scale. The SPP wave can propagate along the graphene in the middle infrared range when the graphene is properly doped. Graphene's carrier density can be modified by a visible laser when the graphene sheet is exfoliated on the hydrophilic SiO2/Si substrate, which yields an all-optical way to control the graphene's doping level. Consequently, the external laser beam can control the propagation of the graphene SPP between the ON and OFF status. This all-optical modulation effect is still obvious when the spot size of the external laser is reduced to 400 nm while the modulation depth is as high as 114.7 dB/μm. PMID:25777581

  11. All-Optical Detection of Acoustic Pressure Waves with applications in Photo-Acoustic Spectroscopy

    CERN Document Server

    Westergaard, Philip G

    2016-01-01

    An all-optical detection method for the detection of acoustic pressure waves is demonstrated. The detection system is based on a stripped (bare) single-mode fiber. The fiber vibrates as a standard cantilever and the optical output from the fiber is imaged to a displacement-sensitive optical detector. The absence of a conventional microphone makes the demonstrated system less susceptible to the effects that a hazardous environment might have on the sensor. The sensor is also useful for measurements in high temperature (above $200^{\\circ}$C) environments where conventional microphones will not operate. The proof-of-concept of the all-optical detection method is demonstrated by detecting sound waves generated by the photo-acoustic effect of NO$_2$ excited by a 455 nm LED, where a detection sensitivity of approximately 50 ppm was achieved.

  12. Efficient all-optical quantum computing based on a hybrid approach

    CERN Document Server

    Lee, Seung-Woo

    2011-01-01

    Quantum computers are expected to offer phenomenal increases of computational power. In spite of many proposals based on various physical systems, scalable quantum computation in a fault-tolerant manner is still beyond current technology. Optical models have some prominent advantages such as relatively quick operation time compared to decoherence time. However, massive resource requirements and the gap between the fault tolerance limit and the realistic error rate should be significantly reduced. Here, we develop a novel approach with all-optical hybrid qubits devised to combine advantages of well-known previous approaches. It enables one to efficiently perform universal gate operations in a simple and near-deterministic way using all-optical hybrid entanglement as off-line resources. Remarkably, our approach outperforms the previous ones when considering both the resource requirements and fault tolerance limits. Our work paves an efficient way for the optical realization of scalable quantum computation.

  13. Experimental study on an all-optical switching based on MF-NOLM

    Institute of Scientific and Technical Information of China (English)

    SONG Xue-peng; REN Xiao-min; ZHANG Xia; YANG Guang-qiang; HUANG Yong-qing

    2006-01-01

    In this paper,the experiment on an all-optical switching is reported based on a microstructure fiber(MF)-nonlinear optical loop mirror(NOLM).In the experiment,a 25-meter-long MF(γ=36W-1km-1@1 550 nm) is used as a nonlinear medium of the nonlinear optical loop mirror and the input signal is generated by a 10 GHz tunable picosecond laser source,with a full-width at half-maximum (FWHM) of 2 ps and centered at 1 550 nm.With the increase of input power,a π nonlinear phase shift is obtained by a 40/60 coupler in the experiment,but the same result can not be found by a 48/52 coupler.Additionally,the switching devices can also be used as an all-optical regeneration.

  14. Tunable all-optical plasmonic diode based on Fano resonance in nonlinear waveguide coupled with cavities.

    Science.gov (United States)

    Fan, Cairong; Shi, Fenghua; Wu, Hongxing; Chen, Yihang

    2015-06-01

    Tunable all-optical plasmonic diode is proposed based on the Fano resonance in an asymmetric and nonlinear system, comprising metal-insulator-metal waveguides coupled with nanocavities. The spatial asymmetry of the system gives rise to the nonreciprocity of the field localizations at the nonlinear gap between the coupled cavities and to the nonreciprocal nonlinear response. Nonlinear Fano resonance, originating from the interference between the discrete cavity mode and the continuum traveling mode, is observed and effectively tuned by changing the input power. By combining the unidirectional nonlinear response with the steep dispersion of the Fano asymmetric line shape, a transmission contrast ratio up to 41.46 dB can be achieved between forward and backward transmission. Our all-optical plasmonic diode with compact structure can find important applications in integrated optical nanocircuits. PMID:26030529

  15. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper

    Institute of Scientific and Technical Information of China (English)

    DONG Jian-Ji; LUO Bo-Wen; ZHANG Yin; LEI Lei; HUANG De-Xiu; ZHANG Xin-Liang

    2012-01-01

    We experimentally demonstrate an all-optical temporal differentiator using a high resolution optical arbitrary waveform shaper, which is based on liquid crystal on silicon switching elements, and both amplitude and phase of the spectrum are programmable. By designing specific transfer functions with the optical waveform shaper, we obtain first-, second-, and third-order differentiators for periodic pulses with small average errors. We also theoretically analyze the bandwidth limitation of optical waveform shaper on the differentiator.%We experimentally demonstrate an all-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,which is based on liquid crystal on silicon switching elements,and both amplitude and phase of the spectrum are programmable.By designing specific transfer functions with the optical waveform shaper,we obtain first-,second-,and third-order differentiators for periodic pulses with small average errors.We also theoretically analyze the bandwidth limitation of optical waveform shaper on the differentiator.

  16. Paraconsistent Computational Logic

    DEFF Research Database (Denmark)

    Jensen, Andreas Schmidt; Villadsen, Jørgen

    2012-01-01

    In classical logic everything follows from inconsistency and this makes classical logic problematic in areas of computer science where contradictions seem unavoidable. We describe a many-valued paraconsistent logic, discuss the truth tables and include a small case study.......In classical logic everything follows from inconsistency and this makes classical logic problematic in areas of computer science where contradictions seem unavoidable. We describe a many-valued paraconsistent logic, discuss the truth tables and include a small case study....

  17. All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals

    Science.gov (United States)

    Lucchetta, D. E.; Vita, F.; Simoni, F.

    2010-12-01

    We report the realization and the characterization of an all-optical switching device based on a transmission grating recorded in a polymeric substrate infiltrated with a methyl red-doped liquid crystal. The properties of this highly nonlinear mixture are exploited to modulate the diffraction of the grating by a pump beam when a static electric field is applied. The behavior of the device is in agreement with the existing model for methyl red-doped liquid crystals.

  18. An efficient all-optical gate based on photonic crystals cavities and applications

    OpenAIRE

    Combrié, Sylvain; Martin, Aude; Moille, Gregory; Lehoucq, Gaëlle; De Rossi, Alfredo; Reithmaier, Johann-Peter; Bramerie, Laurent; Gay, Mathilde

    2014-01-01

    International audience We use two coupled photonic crystal cavities to build an all-optical gate. The control and the modulated signal are separated spectrally by about 10 nm. This device was uperated at a rate ranging from 1 to 10 GHz with maximum coupled average power of less than 1 mW in the control signal, which translates to about 100 fJ per control pulse .

  19. All-Optical RZ-to-NRZ Format Conversion with a Tunable Fibre Based Delay Interferometer

    Institute of Scientific and Technical Information of China (English)

    YU Yu; ZHANG Xin-Liang; HUANG De-Xiu

    2007-01-01

    All-optical format conversion from return-to-zero (RZ) to non-return-to-zero (NRZ) is demonstrated with temperaturecontrolled all-fibre delay interferometer (DI) at 20 Gb/s. The operation principle is theoretical analysed with the help of numerical simulation and spectra analysis. Theoretical analysis results are consistent well with the experimental results. The format conversion can be achieved with power penalty of 0.54 Db and with output extinction ratio 20 Db.

  20. Electroabsorption modulators used for all-optical signal processing and labelling

    DEFF Research Database (Denmark)

    Xu, Lin

    2004-01-01

    This thesis concerns the applications of semiconductor components, primarily electroabsorption modulators (EAMs), in optical signal processing and labelling for future all optical communication networks. An introduction to electroabsorption modulators is given and several mechanisms that form...... and various signal-processing functions based on Polarization Shift Keying (PolSK) modulation format are demonstrated. Polarization modulation is implemented by a normal Mach Zednder Modulator operating in a special but simple way. Detection and erasure of polarization information are realised by a device...

  1. Semiconductor Devices for All Optical Signal Processing: Just How Fast can They Go?

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, A

    1999-01-01

    Several different semiconductor device structures for accomplishing all-optical signal processing have been proposed, but they nearly all employ the semiconductor optical amplifier (SOA) as a central element. In this talk we will discuss the physical processes in SOA's that are important in deter...... determining the speed of SOA based switches. We shall consider both devices based on incoherent processes, such as optically induced cross-gain and cross-phase modulation as well as devices employing coherent four-wave mixing....

  2. Patterning Effects in Ultrafast All-Optical Photonic Crystal Nanocavity Switches

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    All-optical switches are expected to play a key role in increasing the bandwidth of future communication networks by replacing slower electronic components for certain signal processing tasks. Previous work has demonstrated the possibility of switching a single pulse [1,2]. However, a more...... is on a photonic crystal material system, which facilitates a high level of integration with other components such as waveguides, light sources, beam splitters, etc....

  3. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator

    OpenAIRE

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    2000-01-01

    All-optical wavelength conversion and signal regeneration based on cross-absorption modulation in an InGaAsP quantum well electroabsorption modulator (EAM) is studied at different bit rates. We present theoretical results showing wavelength conversion efficiency in agreement with existing experimental results, and the signal regeneration capability of the device is investigated. In particular, we demonstrate the dependence of the extinction ratio of both the converted signal and the control s...

  4. Femtojoule-Scale All-Optical Latching and Modulation via Cavity Nonlinear Optics

    Science.gov (United States)

    Kwon, Yeong-Dae; Armen, Michael A.; Mabuchi, Hideo

    2013-11-01

    We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.

  5. Comparison of Delay-Interferometer and Time- Lens-Based All-Optical OFDM Demultiplexers

    OpenAIRE

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Galili, Michael; Oxenløwe, Leif Katsuo

    2015-01-01

    In this letter, we present the first detailed numerical comparison of two promising all-optical schemes to demultiplex orthogonal frequency-division multiplexing (OFDM) signals. The investigated schemes are the optical discrete Fourier transformation (O-DFT) and the optical spectral magnification (SM) based on time lenses. In the former scheme, cascaded delay-interferometers (DIs) are used to perform the O-DFT, with subsequent active optical gating to remove the intercarrier interference (ICI...

  6. Electroabsorption modulators used for all-optical signal processing and labelling

    OpenAIRE

    Xu, Lin; Jeppesen, Palle; Mørk, Jesper

    2004-01-01

    This thesis concerns the applications of semiconductor components, primarily electroabsorption modulators (EAMs), in optical signal processing and labelling for future all optical communication networks. An introduction to electroabsorption modulators is given and several mechanisms that form the basis of electroabsorption are briefly discussed including Franz Keldysh effect, Quantum-Confined Stark Effect (QCSE) and Quantum-Confined Franz-Keldysh effect. QCSE is found to be more effective for...

  7. Logic, Reasoning and the Logical Constants

    OpenAIRE

    Engel, Pascal

    2006-01-01

    What is the relationship between logic and reasoning? How do logical norms guide inferential performance? This paper agrees with Gilbert Harman and most of the psychologists that logic is not directly relevant to reasoning. It argues, however, that the mental model theory of logical reasoning allows us to harmonise the basic principles of deductive reasoning and inferential performances, and that there is a strong connexion between our inferential norms and actual reasoning, along the lines o...

  8. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  9. All-optical tuning of a nonlinear silicon microring assisted microwave photonic filter: theory and experiment.

    Science.gov (United States)

    Long, Yun; Wang, Jian

    2015-07-13

    We propose and demonstrate an all-optical tuning mechanism to tune the response of a microwave photonic filter (MPF) based on a nonlinear silicon microring resonator (MRR). The tuning mechanism relies on the optical nonlinearities induced resonant wavelength shift in the silicon MRR, leading to the change of frequency difference between the optical carrier frequency and resonant frequency of the silicon MRR. A detailed theoretical model is established to describe the operation of the proposed all-optical tunable MPF. Two cases are studied in the experiment, i.e. the optical carrier frequency is located at the left or right side of the MRR resonant frequency. Both forward and backward pumping configurations in each case are demonstrated. Using the fabricated silicon MRR and exploiting light to control light, the central frequency of the notch MPF can be flexibly tuned by adjusting the pump light power. Moreover, the presented all-optical tuning mechanism might also facilitate interesting applications such as microwave switching and microwave modulation. PMID:26191838

  10. All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator.

    Science.gov (United States)

    Liu, Yang; Shi, Lei; Xu, Xinbiao; Zhao, Ping; Wang, Zheqi; Pu, Shengli; Zhang, Xinliang

    2014-08-21

    An all-optical tunable optofluidic ring resonator (OFRR) is proposed and experimentally demonstrated. The all-optical control of a silica microresonator is highly attractive, but it is difficult to realize because of the relatively weak Kerr effect and the absence of a plasma dispersion effect of silica. Here, we infuse a silica microcapillary-based optofluidic ring resonator with a magnetic fluid, into which pump light is injected by a fiber taper. Iron oxide nanoparticles dispersed in the magnetic fluid produce a strong pump light absorption, and this leads to a resonance shift of the silica microresonator due to the photothermal effect. To the best of our knowledge, this is the first scheme for all-optical tuning of an OFRR. A tuning sensitivity of up to 0.15 nm mW(-1) and a tuning range of 3.3 nm are achieved. With such excellent performance, the magnetic-fluid-filled OFRR has great potential in filtering, sensing, and signal processing applications. PMID:24941312

  11. Cavity enhanced second-order nonlinear quantum photonic logic circuits

    CERN Document Server

    Trivedi, Rahul; Majumdar, Arka

    2015-01-01

    A large obstacle for realizing quantum photonic logic is the weak optical nonlinearity of available materials, which results in large power consumption. In this paper, we argue that second order ($\\chi^{(2)}$) nonlinear optical devices are more suitable for achieving low power photonic logic. We present the theoretical design of all-optical logic with $\\chi^{(2)}$ nonlinear bimodal cavities and their networks. Using semiclassical models derived from the Wigner quasi-probability distribution function, we analyze the power consumption of networks implementing an optical AND gate and an optical latch. Comparison between the second and third order $(\\chi^{(3)})$ optical logic reveals that the $\\chi^{(2)}$ design outperforms the corresponding $\\chi^{(3)}$ design in terms of the gate power consumption at high quality factors. Specifically, using realistic estimates for the $\\chi^{(2)}$ and $\\chi^{(3)}$ susceptibilities of available materials we show that at cavity quality factors $\\sim 10^4$, optical logic designed...

  12. All optical wavelength converter and its application in optical network%全光波长变换器及其在光网络中的应用

    Institute of Scientific and Technical Information of China (English)

    方捻

    2006-01-01

    @@ All optical network (AON) is a hot topic in recent studies of optical fiber communications. Key techniques in AON include optical switching/routing, optical cross connection (OXC), all optical wavelength conversion (AOWC), all optical buffering, etc.

  13. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-09-01

    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  14. All-optical sensitive phase shifting based on nonlinear out-of-plane coupling through 1-D slab photonic crystal with a layer of graphene.

    Science.gov (United States)

    Asadi, Reza; Ouyang, Zhengbiao; Yu, Quanqiang; Ruan, Shuangchen

    2014-06-16

    We realize all-optical sensitive phase shifting based on nonlinear out-of-plane coupling to a slab waveguide through Fano resonance of a slab 1-D photonic crystal (PhC). We use a graphene layer as the nonlinear material and change its refractive index by the input light intensity through Kerr nonlinear effect to obtain a shift in the Fano resonance frequency. The Fano resonance and self-focusing effect lead to light-intensity enhancement on the graphene in the PhC, reinforcing the nonlinear effect of refractive index in the graphene. Through finite-difference time-domain simulation, we demonstrate that the phase changing sensitivity obtained can be 4 orders higher than that by a single graphene under the same input light intensity. Moreover the threshold pump intensity for all-optical sensitive phase shifting in the coupled light to the waveguide is as low as ~4 MW per square centimeter. The results are applicable in micro optical integrated circuits for phase shifters, phase modulators, power limiters, and phase logic elements for optical computation, digital phase shift keying in communication systems, and non-contact sensitive signal detectors.

  15. All-optical design for inherently energy-conserving reversible gates and circuits

    Science.gov (United States)

    Cohen, Eyal; Dolev, Shlomi; Rosenblit, Michael

    2016-04-01

    As energy efficiency becomes a paramount issue in this day and age, reversible computing may serve as a critical step towards energy conservation in information technology. The inputs of reversible computing elements define the outputs and vice versa. Some reversible gates such as the Fredkin gate are also universal; that is, they may be used to produce any logic operation. It is possible to find physical representations for the information, so that when processed with reversible logic, the energy of the output is equal to the energy of the input. It is suggested that there may be devices that will do that without applying any additional power. Here, we present a formalism that may be used to produce any reversible logic gate. We implement this method over an optical design of the Fredkin gate, which utilizes only optical elements that inherently conserve energy.

  16. Logic and probability

    OpenAIRE

    Quznetsov, G. A.

    2003-01-01

    The propositional logic is generalized on the real numbers field. The logical analog of the Bernoulli independent tests scheme is constructed. The variant of the nonstandard analysis is adopted for the definition of the logical function, which has all properties of the classical probability function. The logical analog of the Large Number Law is deduced from properties of this function.

  17. Henkin and Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria;

    2014-01-01

    Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...

  18. Logic, Truth and Probability

    OpenAIRE

    Quznetsov, Gunn

    1998-01-01

    The propositional logic is generalized on the real numbers field. The logical analog of the Bernoulli independent tests scheme is constructed. The variant of the nonstandard analysis is adopted for the definition of the logical function, which has all properties of the classical probability function. The logical analog of the Large Number Law is deduced from properties of this function.

  19. Multi-band radio over fiber system with all-optical halfwave rectification, transmission and frequency down-conversion

    DEFF Research Database (Denmark)

    Prince, Kamau; Tafur Monroy, Idelfonso

    2011-01-01

    We introduce a novel application of all-optical half-wave rectification in the transportation and delivery of multi-frequency radio-over fiber signals. System evaluation was performed of transmission over various optical fiber types and all-optical envelope detection was implemented to achieve...

  20. All-optical signal processing of OTDM and OFDM signals based on time-domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Clausen, Anders; Guan, Pengyu; Mulvad, Hans Christian Hansen;

    2014-01-01

    All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented.......All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented....

  1. Ultrafast defect dynamics: A new approach to all optical broadband switching employing amorphous selenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rituraj; Adarsh, K. V., E-mail: drabold@ohio.edu, E-mail: adarsh@iiserb.ac.in [Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066 (India); Prasai, Kiran; Drabold, D. A., E-mail: drabold@ohio.edu, E-mail: adarsh@iiserb.ac.in [Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701 (United States)

    2015-07-15

    Optical switches offer higher switching speeds than electronics, however, in most cases utilizing the interband transitions of the active medium for switching. As a result, the signal suffers heavy losses. In this article, we demonstrate a simple and yet efficient ultrafast broadband all-optical switching on ps timescale in the sub-bandgap region of the a-Se thin film, where the intrinsic absorption is very weak. The optical switching is attributed to short-lived transient defects that form localized states in the bandgap and possess a large electron-phonon coupling. We model these processes through first principles simulation that are in agreement with the experiments.

  2. Instability in Self-Pulsation in Laser Diodes and its Effect on All-Optical Synchonization

    OpenAIRE

    Hyland, Jonathan; Farrell, Gerald

    1994-01-01

    The effect of short- and long-term frequency instability in self pulsation on all-optical synchronization using a twin-section laser diode is experimentally investigated. Short-term frequency instability broadens the unlocked full width at half maximum (FWHM) of the fundamental of the rf spectrum of the self-pulsating laser diode. We show experimentally that the value of the unlocked FWHM, and thus the level of short-term instability, has a direct effect on the optical power required to maint...

  3. All-optical chaotic MQW laser repeater for long-haul chaotic communications

    Institute of Scientific and Technical Information of China (English)

    Senlin Yan

    2005-01-01

    We present an all-optical chaotic multi-quantum-well (MQW) laser repeater system to be used in long-haul chaotic communications. Chaotic synchronization is achieved among transmitter, repeater, and receiver. Chaotic repeater communications with a sinusoidal signal of 0.2-GHz modulation frequency and a digital signal of 0.4-Gb/s bit rate are numerically simulated, respectively. Calculation results illustrate that the signals are well decoded by the chaotic repeaters. Its bandwidth and the characteristics at much high bit rate are also analyzed. Simulation shows that the repeater can improve decoding quality, especially in higher bit rate chaotic communications.

  4. Mechanism of all-optical control of ferromagnetic multilayers with circularly polarized light

    CERN Document Server

    Medapalli, Rajasekhar; Kim, Dokyun; Quessab, Yassine; Monotoya, Sergio A; Kirilyuk, Andrei; Rasing, Theo; Kimel, Alexey V; Fullerton, Eric E

    2016-01-01

    Time-resolved imaging reveals that the helicity dependent all-optical switching (HD-AOS) of Co/Pt ferromagnetic multilayers proceeds by two stages. First one involves the helicity independent and stochastic nucleation of reversed magnetic domains. At the second stage circularly polarized light breaks the degeneracy between the magnetic domains and promotes the preferred direction of domain wall (DW) motion. The growth of the reversed domain from the nucleation cite, for a particular helicity, leads to full magnetic reversal. This study demonstrates a novel mechanism of HD-AOS mediated by the deterministic displacement of DWs.

  5. Polarization insensitive all-optical wavelength conversion of polarization multiplexed signals using co-polarized pumps.

    Science.gov (United States)

    Anthur, Aravind P; Zhou, Rui; O'Duill, Sean; Walsh, Anthony J; Martin, Eamonn; Venkitesh, Deepa; Barry, Liam P

    2016-05-30

    We study and experimentally validate the vector theory of four-wave mixing (FWM) in semiconductor optical amplifiers (SOA). We use the vector theory of FWM to design a polarization insensitive all-optical wavelength converter, suitable for advanced modulation formats, using non-degenerate FWM in SOAs and parallelly polarized pumps. We demonstrate the wavelength conversion of polarization-multiplexed (PM)-QPSK, PM-16QAM and a Nyquist WDM super-channel modulated with PM-QPSK signals at a baud rate of 12.5 GBaud, with total data rates of 50 Gbps, 100 Gbps and 200 Gbps respectively. PMID:27410100

  6. All-optical encryption based on interleaved waveband switching modulation for optical network security.

    Science.gov (United States)

    Fok, Mable P; Prucnal, Paul R

    2009-05-01

    All-optical encryption for optical code-division multiple-access systems with interleaved waveband-switching modulation is experimentally demonstrated. The scheme explores dual-pump four-wave mixing in a 35 cm highly nonlinear bismuth oxide fiber to achieve XOR operation of the plaintext and the encryption key. Bit 0 and bit 1 of the encrypted data are represented by two different wavebands. Unlike on-off keying encryption methods, the encrypted data in this approach has the same intensity for both bit 0 and bit 1. Thus no plaintext or ciphertext signatures are observed.

  7. Single Shot Radiography Using an All-optical Compton Backscattering Source

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Lifschitz, A.; Conejero, E.; Ruiz, C.; Malka, V.; Rousse, A.; Phuoc, K. Ta

    The development of compact laser-based synchrotron sources is a field of active research. Here we present recent results on an all-optical Compton backscattering source using laser-accelerated electrons and a plasma mirror, as introduced in [K. Ta Phuoc et al., Nature Photonics 6 (5) (2012) 308-311]. Scattering of quasi-monoenergetic electrons of up to 200 MeV energy with their proper drive-beam leads to emission of femtosecond X-ray pulses, whose energies exceed 100 keV. We demonstrate that the photon yield from the source is sufficient to illuminate a centimeter-size sample placed 90 centimeters behind the source.

  8. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators

    CERN Document Server

    Pelc, Jason S; Vo, Sonny; Santori, Charles; Fattal, David A; Beausoleil, Raymond G

    2014-01-01

    We utilize cross-phase modulation to observe all-optical switching in microring resonators fabricated with hydrogenated amorphous silicon (a-Si:H). Using 2.7-ps pulses from a mode-locked fiber laser in the telecom C-band, we observe optical switching of a cw telecom-band probe with full-width at half-maximum switching times of 14.8 ps, using approximately 720 fJ of energy deposited in the microring. In comparison with telecom-band optical switching in crystalline silicon microrings, a-Si:H exhibits substantially higher switching speeds due to reduced impact of free-carrier processes.

  9. Phase-sensitive fiber-based parametric all-optical switch.

    Science.gov (United States)

    Parra-Cetina, Josué; Kumpera, Aleš; Karlsson, Magnus; Andrekson, Peter A

    2015-12-28

    We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented. PMID:26832007

  10. All optical wavelength multicaster and regenerator based on four-mode phase-sensitive parametric mixer.

    Science.gov (United States)

    Liu, Lan; Temprana, Eduardo; Ataie, Vahid; Wiberg, Andreas O J; Kuo, Bill P-P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan

    2015-11-30

    Four-mode phase-sensitive (4MPS) process has been employed in a parametric mixer based wavelength multicaster, enhancing the multicasting conversion efficiency and signal-to-noise ratio. In addition, the 4MPS parametric multicaster is an outstanding candidate for all-optical regeneration, owing to its inherent capabilities to clamp amplitude fluctuations by the saturated parametric effect and to squeeze phase distortions by the phase sensitive process. The investigation in this paper focuses on the 4MPS multicaster operated in the saturation gain regime, including theoretical simulations and experimental demonstrations on amplitude and phase noise regeneration over 20 multicasting signal copies. PMID:26698727

  11. Ultrafast all-optical clock recovery based on phase-only linear optical filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael;

    2014-01-01

    We report on a novel, efficient technique for all-optical clock recovery from RZ-OOK data signals based on spectral phase-only (all-pass) optical filtering. This technique significantly enhances both the recovered optical clock quality and energy efficiency in comparison with conventional amplitu...... optical filtering approaches using a Fabry-Perot filter. The proposed concept is validated through recovery of the optical clock from a 640 Gbit/s RZ-OOK data signal using a commercial linear optical waveshaper. (C) 2014 Optical Society of America...

  12. All-optical modulation in wavelength-sized epsilon-near-zero media

    CERN Document Server

    Ciattoni, Alessandro; Rizza, Carlo

    2016-01-01

    We investigate the interaction of two pulses (pump and probe) scattered by a nonlinear epsilon-near-zero (ENZ) slab whose thickness is comparable with the ENZ wavelength. We show that when the probe has a narrow spectrum localized around the ENZ wavelength its transmission is dramatically affected by the intensity of the pump. Conversely, if the probe is not in the ENZ regime, its propagation is not noticeably affected by the pump. Such all-optical modulation is due to the oversensitive character of the ENZ regime and it is so efficient to even occur in a wavelength thick slab.

  13. Improving Multi Access Interference Suppression in Optical CDMA by using all-Optical Signal Processing

    Directory of Open Access Journals (Sweden)

    T. B. Osadola

    2013-06-01

    Full Text Available This paper presents the study of a novel all-optical method for processing optical CDMA signals towards improving suppression of multi access interference. The main focus is on incoherent OCDMA systems using multiwavelength 2D-WH/TS codes generated using FBG based encoders and decoders. The MAI suppression capabilities based on its ability to eliminate selective wavelength pulse processing have been shown. A novel transmitter architecture that achieves up to 3dB power saving was also presented. As a result of hardware savings, processing cost will be significantly reduced and power budget improvement resulted in improved performance.

  14. Ultrafast defect dynamics: A new approach to all optical broadband switching employing amorphous selenium thin films

    Directory of Open Access Journals (Sweden)

    Rituraj Sharma

    2015-07-01

    Full Text Available Optical switches offer higher switching speeds than electronics, however, in most cases utilizing the interband transitions of the active medium for switching. As a result, the signal suffers heavy losses. In this article, we demonstrate a simple and yet efficient ultrafast broadband all-optical switching on ps timescale in the sub-bandgap region of the a-Se thin film, where the intrinsic absorption is very weak. The optical switching is attributed to short-lived transient defects that form localized states in the bandgap and possess a large electron-phonon coupling. We model these processes through first principles simulation that are in agreement with the experiments.

  15. Microwave photonic quadrature filter based on an all-optical programmable Hilbert transformer.

    Science.gov (United States)

    Huang, Thomas X H; Yi, Xiaoke; Minasian, Robert A

    2011-11-15

    A microwave photonic quadrature filter, new to our knowledge, based on an all-optical Hilbert transformer is presented. It is based on mapping of a Hilbert transform transfer function between the optical and electrical domains, using a programmable Fourier-domain optical processor and high-speed photodiodes. The technique enables the realization of an extremely wide operating bandwidth, tunable programmable bandwidth, and a highly precise amplitude and phase response. Experimental results demonstrate a microwave quadrature filter from 10 to 20 GHz, which achieves an amplitude imbalance of less than ±0.23 dB and a phase imbalance of less than ±0.5°. PMID:22089590

  16. Spectral amplitude and phase measurement of ultrafast pulses using all-optical differential tomography.

    Science.gov (United States)

    Londero, Pablo; Kuzucu, Onur; Gaeta, Alexander L

    2011-05-01

    We demonstrate a simple, all-optical, fiber-based method for characterizing the spectral amplitude and phase of ultrafast pulses using a differential tomographic measurement realized via four-wave mixing. The technique is applied to subpicosecond pulses in the C-band of the telecommunication spectrum. Characterization of amplified pulses and propagation through dispersive media is demonstrated and compared with autocorrelation measurements and calculated predictions. We show how our approach can be extended to larger bandwidths in similar systems, extending tomographic reconstruction of coherent fields to nearly an octave of bandwidth while maintaining a robust, waveguide-based geometry.

  17. All-optical mitigation of amplitude and phase-shift drift noise in semiconductor optical amplifiers

    Science.gov (United States)

    Rocha, Peterson; Gallep, Cristiano M.; Conforti, Evandro

    2015-10-01

    An all-optical scheme aimed at minimizing distortions induced by semiconductor optical amplifiers (SOAs) over modulated optical carriers is presented. The scheme employs an additional SOA properly biased to act as a saturated absorber, and thus counteract the distortions induced by the first amplifying device. The scheme here is demonstrated in silico, for 40 and 100 Gb/s (10 and 25 Gbaud, 16 QAM), with reasonable total gain (>20 dB) for symbol error rate below the forward error correction limit.

  18. Nanoresonator Enabled Ultrafast All-optical Terahertz Switching Based on Vanadium Dioxide Thin Film

    Science.gov (United States)

    Kyoung, J. S.; Choi, S. B.; Kim, H. S.; Kim, B. J.; Ahn, Y. H.; Kim, H. T.; Kim, D. S.

    2011-12-01

    We demonstrate nanoresonator enabled ultrafast all-optical switching of terahertz transmission based on phase transition of vanadium dioxide (VO2) thin film. Nanoresonators, nm-width slot antenna patterns on the gold layer, are fabricated on the VO2 films. Without nanoresonators, THz wave shows negligible change through bare VO2 film even though optical pumping exists, while about 20 percents switching ratio is clearly seen with nanoresonator patterns on the VO2. The switching time is in a few hundreds femtosecond time scales.

  19. All-Optical Frequency Modulated High Pressure MEMS Sensor for Remote and Distributed Sensing

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present the design, fabrication and characterization of a new all-optical frequency modulated pressure sensor. Using the tangential strain in a circular membrane, a waveguide with an integrated nanoscale Bragg grating is strained longitudinally proportional to the applied pressure causing...... a shift in the Bragg wavelength. The simple and robust design combined with the small chip area of 1 × 1.8 mm2 makes the sensor ideally suited for remote and distributed sensing in harsh environments and where miniaturized sensors are required. The sensor is designed for high pressure applications up...

  20. Photoinduced Birefringence and Broadband All-Optical Photonic Switch in a Bacteriorhodopsin/Polymer Composite Film

    Institute of Scientific and Technical Information of China (English)

    WEI Lai; TENG Xue-Lei; Lu Ming; ZHAO You-Yuan; MA De-Wang; DING Jian-Dong

    2007-01-01

    Photoinduced birefringence with large optical nonlinearity in a bacteriorhodopsin/polymer composite film is observed.A high refractive index change of 8.5×10-5 photoinduced by 476nm pumping beam is reached at the low intensity of 6.5mW/cm2.Based on it,a broadband all-optical photonic switch is realized with an optical controlling switch system.Because of controlling beam's selectivity in switching,the transporting beams of different wavelengths with different intensities and shapes can be modulated by adjusting the wavelength and intensity of the controlling beam.

  1. All-optical tailoring of single-photon spectra in a quantum-dot microcavity system

    CERN Document Server

    Breddermann, Dominik; Binder, Rolf; Zrenner, Artur; Schumacher, Stefan

    2016-01-01

    Semiconductor quantum-dot cavity systems are promising sources for solid-state based on-demand generation of single photons for quantum communication. Commonly, the spectral characteristics of the emitted single photon are fixed by system properties such as electronic transition energies and spectral properties of the cavity. In the present work we study single-photon generation from the quantum-dot biexciton through a partly stimulated non-degenerate two-photon emission. We show that frequency and linewidth of the single photon can be fully controlled by the stimulating laser pulse, ultimately allowing for efficient all-optical spectral shaping of the single photon.

  2. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard;

    2004-01-01

    Photonic crystal fibers (PCFs) have attracted significant attention during the last years and much research has been devoted to develop fiber designs for various applications, hereunder tunable fiber devices. Recently, thermally and electrically tunable PCF devices based on liquid crystals (LCs......) have been demonstrated. However, optical tuning of the LC PCF has until now not been demonstrated. Here we demonstrate an all-optical modulator, which utilizes a pulsed 532nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid...

  3. Ultrafast all-optical shutter based on two-photon absorption

    CERN Document Server

    Versteegh, Marijn A M

    2016-01-01

    An ultrafast all-optical shutter is presented, based on a simple two-color two-photon absorption technique. For time-resolved luminescence measurements this shutter is an interesting alternative to the optical Kerr gate. The rejection efficiency is 99%, the switching-off and switching-on speeds are limited by the pulse length only, the rejection time is determined by the crystal slab thickness, and the bandwidth spans the entire visible spectrum. We show that our shutter can also be used for accurate measurement of group velocity inside a transparent material.

  4. Propositional Team Logics

    OpenAIRE

    Yang, Fan; Väänänen, Jouko

    2016-01-01

    We consider team semantics for propositional logic. In team semantics the truth of a propositional formula is considered in a set of valuations, called a team, rather than in an individual valuation. This offers the possibility to give meaning to concepts such as dependence, independence and inclusion. We define an expressively maximal propositional team logic. This requires going beyond the logical operations of classical propositional logic. We exhibit a hierarchy of logics between the smal...

  5. Real Islamic Logic

    OpenAIRE

    Bergstra, J. A.

    2011-01-01

    Four options for assigning a meaning to Islamic Logic are surveyed including a new proposal for an option named "Real Islamic Logic" (RIL). That approach to Islamic Logic should serve modern Islamic objectives in a way comparable to the functionality of Islamic Finance. The prospective role of RIL is analyzed from several perspectives: (i) parallel distributed systems design, (ii) reception by a community structured audience, (iii) informal logic and applied non-classical logics, and (iv) (in...

  6. Real Islamic Logic

    CERN Document Server

    Bergstra, Jan Aldert

    2011-01-01

    Four options for assigning a meaning to Islamic Logic are surveyed including a new proposal for an option named "Real Islamic Logic" (RIL). That approach to Islamic Logic should serve modern Islamic objectives in a way comparable to the functionality of Islamic Finance. The prospective role of RIL is analyzed from several perspectives: (i) parallel distributed systems design, (ii) reception by a community structured audience, (iii) informal logic and applied non-classical logics, and (iv) (in)tractability and artificial intelligence.

  7. Metamathematics of fuzzy logic

    CERN Document Server

    Hájek, Petr

    1998-01-01

    This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference' can be naturally understood as logical deduction.

  8. The development of the system of pedagogical monitoring of the development of students’ logical thinking and logical reflection

    Directory of Open Access Journals (Sweden)

    Elena Morozova

    2014-10-01

    Full Text Available The paper theoretically justifies and describes the main stages of monitoring of the reflexively conditioned students’ logical thinking; the content of the pedagogical monitoring of the development of students’ logical thinking; possible approaches to the organization of work on the diagnosis of developmental levels of students’ logical thinking and logical reflection and the readiness of students to the logical self-development.

  9. Logical-semantic Relations in Conditional Clauses of Unconditional Compound Sentences of "Many Enumerates" Type%无条件句列举式条件分句内部的逻辑语义关系

    Institute of Scientific and Technical Information of China (English)

    李丹; 赖玮

    2011-01-01

    The paper discusses logical-semantic relations in conditional clauses of unconditional compound sentences of"many enumerates"type.%本文主要考察"不管"等连接的无条件句的多面列举式,结合句法特征,抓住关联词语,探讨条件分句内部的逻辑语义关系。

  10. Handbook of philosophical logic v.14

    CERN Document Server

    Wick, Manfred; Guenthner, Franz

    2007-01-01

    The fourteenth volume of the Second Edition covers central topics in philosophical logic that have been studied for thousands of years, since Aristotle: Inconsistency, Causality, Conditionals, and Quantifiers. These topics are central in many applications of logic in central disciplines such as computer science, artificial intelligence, linguistics, and philosophy. This book is indispensable to any advanced student or researcher using logic in these areas. The chapters are comprehensive and written by major figures in the field.

  11. Formation and all-optical control of optical patterns in semiconductor microcavities

    Science.gov (United States)

    Binder, R.; Tsang, C. Y.; Tse, Y. C.; Luk, M. H.; Kwong, N. H.; Chan, Chris K. P.; Leung, P. T.; Lewandowski, P.; Schumacher, Stefan; Lafont, O.; Baudin, E.; Tignon, J.

    2016-05-01

    Semiconductor microcavities offer a unique way to combine transient all-optical manipulation of GaAs quantum wells with the benefits of structural advantages of microcavities. In these systems, exciton-polaritons have dispersion relations with very small effective masses. This has enabled prominent effects, for example polaritonic Bose condensation, but it can also be exploited for the design of all-optical communication devices. The latter involves non-equilibrium phase transitions in the spatial arrangement of exciton-polaritons. We consider the case of optical pumping with normal incidence, yielding a spatially homogeneous distribution of exciton-polaritons in optical cavities containing the quantum wells. Exciton-exciton interactions can trigger instabilities if certain threshold behavior requirements are met. Such instabilities can lead, for example, to the spontaneous formation of hexagonal polariton lattices (corresponding to six-spot patterns in the far field), or to rolls (corresponding to two-spot far field patterns). The competition among these patterns can be controlled to a certain degree by applying control beams. In this paper, we summarize the theory of pattern formation and election in microcavities and illustrate the switching between patterns via simulation results.

  12. All-Optical Formation of Coherent Dark States of Silicon-Vacancy Spins in Diamond

    Science.gov (United States)

    Pingault, Benjamin; Becker, Jonas N.; Schulte, Carsten H. H.; Arend, Carsten; Hepp, Christian; Godde, Tillmann; Tartakovskii, Alexander I.; Markham, Matthew; Becher, Christoph; Atatüre, Mete

    2014-12-01

    Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities that offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted much interest because of its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2* , exceeding 45 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses.

  13. 160 km all-optical OFDM transmission system with inline chromatic dispersion compensation

    Institute of Scientific and Technical Information of China (English)

    Xingyao Gu; Hongwei Chen; Minghua Chen; Shizhong Xie

    2012-01-01

    An experimental demonstration of an all-optical sampling orthogonal frequency division multiplexing (AOS-OFDM) transmission system with inline chromatic dispersion (CD) compensation is carried out to test the nonlinear influence. With five subcarriers non-return-to-zero (NRZ) modulated, the total bit rate is 50 Gb/s without polarization multiplexing. The receiver end is highly simplified with direct detection using optical Fourier transform filter. After transmission in 160-km standard single-mode fiber (SSMF) link with 130-ps/nm residual CD, an optimum input optical power for the system performance is achieved.%An experimental demonstration of an all-optical sampling orthogonal frequency division multiplexing (AOS-OFDM) transmission system with inline chromatic dispersion (CD) compensation is carried out to test the nonlinear influence.With five subcarriers non-return-to-zero (NRZ) modulated,the total bit rate is 50 Gb/s without polarization multiplexing.The receiver end is highly simplified with direct detection using optical Fourier transform filter.After transmission in 160-km standard single-mode fiber (SSMF) link with 130-ps/nm residual CD,an optimum input optical power for the system performance is achieved.Optical orthogonal frequency division multiplexing (OOFDM) method has recently drawn increasing attention as a promising technology for future high-speed optical communication systems[1,2].O-OFDM has high tolerance to chromatic dispersion (CD),polarization mode dispersion,and optical nonlinearity[3-5].

  14. M-Burst: A Framework of SRLG Failure Localization in All-Optical Networks

    KAUST Repository

    Ali, Mohammed L.

    2012-07-27

    Fast and unambiguous failure localization for shared risk link groups (SRLGs) with multiple links is essential for building a fully survivable and functional transparent all-optical mesh network. Monitoring trails (m-trails) have been proposed as an effective approach to achieve this goal. However, each m-trail traverses through each link by constantly taking a wavelength channel, causing a significant amount of resource consumption. In this paper, a novel framework of all-optical monitoring for SRLG failure localization is proposed. We investigate the feasibility of periodically launching optical bursts along each m-trail instead of assigning it a dedicated supervisory lightpath to probe the set of fiber segments along the m-trail, aiming to achieve a graceful compromise between resource consumption and failure localization latency. This paper defines the proposed framework and highlights the relevant issues regarding its feasibility. We provide theoretical justifications of the scheme. As a proof of concept, we formulate the optimal burst scheduling problem via an integer linear program (ILP) and implement the method in networks of all possible SRLGs with up to d=3 links. A heuristic method is also proposed and implemented for multiple-link SRLG failure localization, keeping all the assumptions the same as in the ILP method. Numerical results for small networks show that the scheme is able to localize single-link and multiple-link SRLG failures unambiguously with a very small amount of failure localization latency.

  15. Design of an All-Optical Network Based on LCoS Technologies

    Science.gov (United States)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  16. Ultrasmall all-optical plasmonic switch and its application to superresolution imaging

    Science.gov (United States)

    Wu, Hsueh-Yu; Huang, Yen-Ta; Shen, Po-Ting; Lee, Hsuan; Oketani, Ryosuke; Yonemaru, Yasuo; Yamanaka, Masahito; Shoji, Satoru; Lin, Kung-Hsuan; Chang, Chih-Wei; Kawata, Satoshi; Fujita, Katsumasa; Chu, Shi-Wei

    2016-04-01

    Because of their exceptional local-field enhancement and ultrasmall mode volume, plasmonic components can integrate photonics and electronics at nanoscale, and active control of plasmons is the key. However, all-optical modulation of plasmonic response with nanometer mode volume and unity modulation depth is still lacking. Here we show that scattering from a plasmonic nanoparticle, whose volume is smaller than 0.001 μm3, can be optically switched off with less than 100 μW power. Over 80% modulation depth is observed, and shows no degradation after repetitive switching. The spectral bandwidth approaches 100 nm. The underlying mechanism is suggested to be photothermal effects, and the effective single-particle nonlinearity reaches nearly 10‑9 m2/W, which is to our knowledge the largest record of metallic materials to date. As a novel application, the non-bleaching and unlimitedly switchable scattering is used to enhance optical resolution to λ/5 (λ/9 after deconvolution), with 100-fold less intensity requirement compared to similar superresolution techniques. Our work not only opens up a new field of ultrasmall all-optical control based on scattering from a single nanoparticle, but also facilitates superresolution imaging for long-term observation.

  17. High speed all optical Nyquist signal generation and full-band coherent detection.

    Science.gov (United States)

    Zhang, Junwen; Yu, Jianjun; Fang, Yuan; Chi, Nan

    2014-08-21

    Spectrum efficient data transmission is of key interest for high capacity optical communication systems considering the limited available bandwidth. Transmission of the high speed signal with higher-order modulation formats within the Nyquist bandwidth using coherent detection brings attractive performance advantages. However, high speed Nyquist signal generation with high order modulation formats is challenging. Electrical Nyquist pulse generation is restricted by the limited sampling rate and processor capacities of digital-to-analog convertor devices, while the optical Nyquist signals can provide a much higher symbol rate using time domain multiplexing method. However, most optical Nyquist signals are based on direct detection with simple modulation formats. Here we report the first experimental demonstration of high speed all optical Nyquist signal generation based on Sinc-shaped pulse generation and time-division multiplexing with high level modulation format and full-band coherent detection. Our experiments demonstrate a highly flexible and compatible all optical high speed Nyquist signal generation and detection scheme for future fiber communication systems.

  18. Logic, probability, and human reasoning.

    Science.gov (United States)

    Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P

    2015-04-01

    This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction.

  19. Structural Logical Relations

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Sarnat, Jeffrey

    2008-01-01

    , such as Twelf, and yet they are often straightforward in proof assistants with stronger meta-logics. In this paper, we propose structural logical relations as a technique for conducting these proofs in systems with limited meta-logical strength by explicitly representing and reasoning about an auxiliary logic......Tait's method (a.k.a. proof by logical relations) is a powerful proof technique frequently used for showing foundational properties of languages based on typed lambda-calculi. Historically, these proofs have been extremely difficult to formalize in proof assistants with weak meta-logics...

  20. Pulse coded safety logic for PFBR

    International Nuclear Information System (INIS)

    Full text: Reactor safety logic is designed to initiate safety action against design basis events. The reactor is shutdown by de-energizing electromagnets and dropping the absorber rods under gravity. In prototype fast breeder reactor (PFBR), shutdown is affected by two independent shutdown systems, viz., control and safety rod drive mechanism (CSRDM) and diverse safety rod drive mechanism (DSRDM). Two separate safety logics are proposed for CSRDM and DSRDM, i.e. solid state logic with on-line fine impulse test (FIT) for CSRDM and pulse coded safety logic (PCSL) for DSRDM. The PCSL primarily utilizes the fact that the vast majority of faults in the logic circuitry result in static conditions at the output. It is arranged such that the presence of pulses are required to hold the shutdown actuators and any DC logic state, either logic 0 or logic 1 releases them. It is a dynamic, self-testing logic and used in a number of reactors. This paper describes the principle of operation of PCSL, its advantages, the concept of guard line logic (GLL), detection of stuck at 0 and stuck at 1 faults, fail safe and diversity features. The implementation of PCSL using Altera Max+Plus II software for PFBR trip signals and the results of simulation are discussed. This paper also describes a test jig using 80186 based system for testing PCSL for various input parameter's combinations and monitoring the outputs

  1. Large-scale photonic integration for advanced all-optical routing functions

    Science.gov (United States)

    Nicholes, Steven C.

    Advanced InP-based photonic integrated circuits are a critical technology to manage the increasing bandwidth demands of next-generation all-optical networks. Integrating many of the discrete functions required in optical networks into a single device provides a reduction in system footprint and optical losses by eliminating the fiber coupling junctions between components. This translates directly into increased system reliability and cost savings. Although many key network components have been realized via InP-based monolithic integration over the years, truly large-scale photonic ICs have only recently emerged in the marketplace. This lag-time has been mostly due to historically low device yields. In all-optical routing applications, large-scale photonic ICs may be able to address two of the key roadblocks associated with scaling modern electronic routers to higher capacities---namely, power and size. If the functions of dynamic wavelength conversion and routing are moved to the optical layer, we can eliminate the need for power-hungry optical-to-electrical (O/E) and electrical-to-optical (E/O) data conversions at each router node. Additionally, large-scale photonic ICs could reduce the footprint of such a system by combining the similar functions of each port onto a single chip. However, robust design and manufacturing techniques that will enable high-yield production of these chips must be developed. In this work, we demonstrate a monolithic tunable optical router (MOTOR) chip consisting of an array of eight 40-Gbps wavelength converters and a passive arrayed-waveguide grating router that functions as the packet-forwarding switch fabric of an all-optical router. The device represents one of the most complex InP photonic ICs ever reported, with more than 200 integrated functional elements in a single chip. Single-channel 40 Gbps wavelength conversion and channel switching using 231-1 PRBS data showed a power penalty as low as 4.5 dB with less than 2 W drive power

  2. Experimental and theoretical investigation of semiconductor optical amplifier (SOA)-based all-optical wavelength converters

    Science.gov (United States)

    Dailey, James M.

    Use of fiber-optical networks has increased along with the growing demand for higher data throughputs. As data bandwidths increase, physical switching technologies must also scale accordingly. Optical-electrical-optical (OEO) switching technologies are widely utilized, where incoming optical signals are converted into and processed as electrical signals before conversion back into the optical domain. However, issues such as speed, cost, and power consumption have driven interest in the development of all-optical techniques, where data remains in the optical domain while being processed. Semiconductor optical amplifiers (SOAs) have shown great promise for realizing all-optical technologies. Our work begins with the experimental characterization of SOAs, and we discuss the use of a time-resolved spectroscopy technique. We present a detailed analysis clarifying measurement requirements, though we conclude that this simple technique provides insufficient resolution for characterizing high-speed optical systems. We discuss the measurement theory for spectrograms, which provide high signal-to-noise ratios, excellent temporal resolution, and are sensitive to phase dynamics. We apply the spectrogram measurement to the characterization of an SOA. We develop a system of rate equations for modeling SOA dynamics, beginning with a detailed density matrix analysis providing expressions for gain and chirp without invoking the linewidth-enhancement factor. In accordance with the measurement results, we include a carrier temperature rate calculation in order to capture ultrafast dynamics. The traveling wave partial differential equations are solved so that both forward and reverse propagating signals are accurately modeled, and the results show good agreement with the spectrogram measurement. We identify the free-carrier plasma and the asymmetrical broadening terms in the real and imaginary parts of the refractive index as driving factors in the relatively larger ultrafast response

  3. The Axioms of Team Logic

    OpenAIRE

    Lück, Martin

    2016-01-01

    A framework is developed that extends calculi for propositional, modal and predicate logics to calculi for team-based logics. This method is applied to classical and quantified propositional logic, first-order logic and the modal logic K. Complete axiomatizations for propositional team logic PTL, quantified propositional team logic QPTL, modal team logic MTL and the dependence-atom-free fragment of first-order team logic TL are presented.

  4. ZnO nanowire-based all-optical switch with Reset-Set flip-flop function

    Science.gov (United States)

    Mu, L. X.; Shi, W. S.; Zhang, T. P.; Zhang, H. Y.; Wang, Y.; She, G. W.; Gao, Y. H.; Wang, P. F.; Chang, J. C.; Lee, S. T.

    2011-04-01

    An all-optical switch with Reset-Set (RS) flip-flop function has been developed by attaching a derivative of spiropyran on the surface of zinc oxide (ZnO) Nanowire. Using UV/visible irradiation and the fluorescence of spiropyran-modified ZnO nanowire as inputs—set/reset and output, RS flip-flop function can be performed on a single ZnO nanowire or a nanowire array. The configuration of the current all-optical switch represents a potential for developing small-sized all-optical devices, which could be further exploited at higher level of integration.

  5. Quantum logic as a dynamic logic

    NARCIS (Netherlands)

    Baltag, Alexandru; Smets, Sonja

    2011-01-01

    We address the old question whether a logical understanding of Quantum Mechanics requires abandoning some of the principles of classical logic. Against Putnam and others (Among whom we may count or not E. W. Beth, depending on how we interpret some of his statements), our answer is a clear "no". Phi

  6. Nexus Authorization Logic (NAL): Logical Results

    OpenAIRE

    Hirsch, Andrew K.; Clarkson, Michael R.

    2012-01-01

    Nexus Authorization Logic (NAL) [Schneider et al. 2011] is a logic for reasoning about authorization in distributed systems. A revised version of NAL is given here, including revised syntax, a revised proof theory using localized hypotheses, and a new Kripke semantics. The proof theory is proved sound with respect to the semantics, and that proof is formalized in Coq.

  7. A Survey of Paraconsistent Logics

    CERN Document Server

    Middelburg, C A

    2011-01-01

    A survey of paraconsistent logics that are prominent representatives of the different approaches that have been followed to develop paraconsistent logics is provided. The paraconsistent logics that will be discussed are an enrichment of Priest's logic LP, the logic RM3 from the school of relevance logic, da Costa's logics Cn, Jaskowski's logic D2, and Subrahmanian's logics Ptau. A deontic logic based on the first of these logics will be discussed as well. Moreover, some proposed adaptations of the AGM theory of belief revision to paraconsistent logics will be mentioned.

  8. Orientation of azobenzene molecules in polymer films induced by all-optical poling

    Institute of Scientific and Technical Information of China (English)

    Xiaoxia Zhong(钟晓霞); Shouyu Luo(罗售余); Xiuqin Yu(虞秀琴); Qu Li(李劬); Yingli Chen(陈英礼); Yu Sui(隋郁); Jie Yin(印杰)

    2003-01-01

    A model of the alignment of azobenzene molecules in polymer film induced by all-optical poling is proposedand verified by experiment. We found that when the writing beams of frequencies ω and 2ω are both linearlypolarized with their polarization directions parallel to each other, azobenzene molecules tend to reorientto the direction perpendicular to the writing beams polarization. At the end of the writing process, moremolecules orient to the direction perpendicular to the writing beams polarization than those which orientto the parallel direction. The alignment of molecules parallel or perpendicular to the polarization of thewriting beams is characteristic of polarity or no polarity, respectively. The alignment of molecules alongthe polarization of writing beams results in the second order nonlinearity in the polymer film. Accordingto the model, a new method to improve the optical poling efficiency is put forward.

  9. All-optical sampling and magnification based on XPM-induced focusing

    CERN Document Server

    Nuno, J; Guasoni, M; Finot, C; Fatome, J

    2016-01-01

    We theoretically and experimentally investigate the design of an all-optical noiseless magnification and sampling function free from any active gain medium and associated high-power continuous wave pump source. The proposed technique is based on the co-propagation of an arbitrary shaped signal together with an orthogonally polarized intense fast sinusoidal beating within a normally dispersive optical fiber. Basically, the strong nonlinear phase shift induced by the sinusoidal pump beam on the orthogonal weak signal through cross-phase modulation turns the defocusing regime into localized temporal focusing effects. This periodic focusing is then responsible for the generation of a high-repetition-rate temporal comb upon the incident signal whose amplitude is directly proportional to its initial shape. This internal redistribution of energy leads to a simultaneous sampling and magnification of the signal intensity profile. This process allows us to experimentally demonstrate a 40-GHz sampling operation as well ...

  10. Ultra-low phase noise all-optical microwave generation setup based on commercial devices

    CERN Document Server

    Didier, A; Grop, S; Dubois, B; Bigler, E; Rubiola, E; Lacroûte, C; Kersalé, Y

    2015-01-01

    In this paper, we present a very simple design based on commercial devices for the all-optical generation of ultra-low phase noise microwave signals. A commercial, fibered femtosecond laser is locked to a laser that is stabilized to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted from the femtosecond laser output exhibits a single sideband phase noise $\\mathcal{L}(f)=-104 \\ \\mathrm{dBc}/\\mathrm{Hz}$ at 1 Hz Fourier frequency, at the level of the best value obtained with such "microwave photonics" laboratory experiments \\cite{Fortier2011}. Close-to-the-carrier ultra-low phase noise microwave signals will now be available in laboratories outside the frequency metrology field, opening up new possibilities in various domains.

  11. Photonic Routing Systems Using All-optical, Hybrid Integrated Wavelength Converter Arrays

    Directory of Open Access Journals (Sweden)

    Leontios Stampoulidis

    2010-02-01

    Full Text Available The integration of a new generation of all-optical wavelength converters within European project ISTMUFINS has enabled the development of compact and multi-functional photonic processing systems. Here we present the realization of demanding functionalities required in high-capacity photonic routers using these highly integrated components including: Clock recovery, data/label recovery, wavelength routing and contention resolution; all implemented with multi-signal processing using a single photonic chip – a quadruple array of SOAMZI wavelength converters which occupies a chip area of only 15 x 58 mm2. In addition, we present the capability of the technology to build WDM signal processing systems with the simultaneous operation of four quad devices in a four wavelength burst-mode regenerator. Finally, the potential of the technology to provide photonic systems-onchip is demonstrated with the first hybrid integrated alloptical burst-mode receiver prototype.

  12. Few-Photon All-Optical {\\pi} Phase modulation Based on a Double-{\\Lambda} System

    CERN Document Server

    Chen, Yen-Chun; Lo, Hsiang-Yu; Tsai, Bing-Ru; Yu, Ite A; Chen, Ying-Cheng; Chen, Yong-Fan

    2013-01-01

    We propose an efficient all-optical phase modulation based on a double-{\\Lambda} system and demonstrate a {\\pi} phase shift of a few-photon pulse induced by another few-photon pulse in cold rubidium atoms with this scheme. By changing the phases of the applied laser fields, one can control the property of the double-{\\Lambda} medium. This phase-dependent mechanism makes the double-{\\Lambda} system different form the conventional cross-Kerr-based system which only depends on the applied laser intensities. The proposed scheme provides a new route to generate strong nonlinear interactions between photons, and may have potential for applications in quantum information technologies.

  13. Silicon Nanowires for All-Optical Signal Processing in Optical Communication

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua;

    2012-01-01

    such as four-wave mixing (FWM) which is an imperative process for optical signal processing. Since the current mature silicon fabrication technology enables a precise dimension control on nanowires, dispersion engineering can be performed by tailoring nanowire dimensions to realize an efficient nonlinear...... process. In the last four years, we investigated and demonstrated different ultra-fast all-optical nonlinear signal processing applications in silicon nanowires for optical time domain multiplexing (OTDM) systems, including wavelength conversion, signal regeneration, ultra-fast waveform sampling......, demultiplexing, and multicasting, which shows great potentials in the future optical communication systems. Although the strong light confinement in nanowires allows efficient nonlinear optical signal processing, it also leads to coupling difficulty between on-chip sub-micron nanowires and micro-size fibers due...

  14. All-Optical Photorefractive Effect in Bihole-Transporting System Polymeric Composites

    Institute of Scientific and Technical Information of China (English)

    HUANG Mao-Mao; ZHOU Qi-Feng; CHEN Zhi-Jian; ZHANG Jie; WEI Qun; LIU Yi-Hong; GONG Qi-Huang; BAI Yao-Wen; CHEN Xiao-Fang; WAN Xin-Hua

    2004-01-01

    Photorefractive (PR) composites based on poly(N-vinylcarbozale) and azobenzene have been fabricated. Two beam-coupling and four-wave-mixing phenomena were observed in the absence of an external electric field or prepoling. The maximum two-beam-coupling gain coefficient and the refractive index modulation were measured to be 79 cm-1 and 2.2 × 10-4 respectively. The all-optical-PR phenomenon is explained based on the photoassisted poling of the azo dye by the synergism of the photoisomerization and the longitudinal electric field due to longitudinal intensity gradient of writing light beams. The bi-hole-transporting system provides more chargecarrier traps resulting in improvement of PR performance.

  15. Robustness estimation of software-synchronized all-optical sampling for fiber communication systems

    Institute of Scientific and Technical Information of China (English)

    Aiying Yang; Xiangyu Wu; Yu'nan Sun

    2009-01-01

    The robustness of the software-synchronized all-optical sampling for optical performance monitoring is estimated for 10-Gb/s fiber communication systems. It reveals that the software-synchronized algorithm is sensitive to the signal degradation caused by chromatic dispersion and nonlinearity in optical fibers. The influence of timing jitter and amplitude fluctuation of the sampling pulses is also investigated. It is found that stringent requirements are imposed on the quality of the sampling pulse and the tolerance of l-dB Q penalty is measured. Considering the practically available optical sampling pulse sources, the results indicate that the amplitude fluctuation of the sampling pulses has the dominant impacts on the software-synchronized method.

  16. An all-optical spatial light modulator for field-programmable silicon photonic circuits

    CERN Document Server

    Bruck, Roman; Lalanne, Philippe; Mills, Ben; Thomson, David J; Mashanovich, Goran Z; Reed, Graham T; Muskens, Otto L

    2016-01-01

    Reconfigurable photonic devices capable of routing the flow of light enable flexible integrated-optic circuits that are not hard-wired but can be externally controlled. Analogous to free-space spatial light modulators, we demonstrate all-optical wavefront shaping in integrated silicon-on-insulator photonic devices by modifying the spatial refractive index profile of the device employing ultraviolet pulsed laser excitation. Applying appropriate excitation patterns grants us full control over the optical transfer function of telecommunication-wavelength light travelling through the device, thus allowing us to redefine its functionalities. As a proof-of-concept, we experimentally demonstrate routing of light between the ports of a multimode interference power splitter with more than 97% total efficiency and negligible losses. Wavefront shaping in integrated photonic circuits provides a conceptually new approach toward achieving highly adaptable and field-programmable photonic circuits with applications in optica...

  17. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  18. A New All-Optical Switching Node Including Virtual Memory and Synchronizer

    Directory of Open Access Journals (Sweden)

    Selma Batti

    2010-02-01

    Full Text Available This paper presents an architecture for an all optical switching node. The architecture is suitable for optical packet and optical burst switching and provides appropriate contention resolution schemes and QoS guarantees. A concept, called virtual memory, is developed to allow controllable and reasonable periods for delaying optical traffics. Related to its implementation, several engineering issues are discussed, including the use of loopbased optical delay lines, fiber Bragg gratings, and limited number of signal amplifications. In particular, two implementations using optical flip-flop and laser neuron network based control units are analyzed. This paper also discusses the implementation and performance of an alloptical synchronizer that is able to synchronize arriving data units to be aligned on the clock signal associated with the beginning time of slots, in the node, with an acceptable error.

  19. A novel noninvasive all optical technique to monitor physiology of an exercising muscle

    Science.gov (United States)

    Saxena, Vishal; Marcu, Laura; Karunasiri, Gamani

    2008-11-01

    An all optical technique based on near-infrared spectroscopy and mid-infrared imaging (MIRI) is applied as a noninvasive, in vivo tool to monitor the vascular status of skeletal muscle and the physiological changes that occur during exercise. A near-infrared spectroscopy (NIRS) technique, namely, steady state diffuse optical spectroscopy (SSDOS) along with MIRI is applied for monitoring the changes in the values of tissue oxygenation and thermometry of an exercising muscle. The NIRS measurements are performed at five discrete wavelengths in a spectral window of 650-850 nm and MIRI is performed in a spectral window of 8-12 µm. The understanding of tissue oxygenation status and the behavior of the physiological parameters derived from thermometry may provide a useful insight into muscle physiology, therapeutic response and treatment.

  20. Tunable all-optical devices based on liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.;

    of discrete and nonlinear light propagation in extended two-dimensional periodic systems. We experimentally demonstrate strongly tunable beam diffraction in a triangular waveguide array created by infiltration of a high index liquid into the cladding holes of a standard PCF, and employ the thermal...... nonlinearity of the liquid to achieve beam self-defocusing at higher light intensity. Based on the observed effects we devise a compact all-optical power limiter device with tunable characteristics. The use of commercially available PCFs in combination with liquid infiltration avoids the need for specialized...... high-precision fabrication procedures, and provides high tunability and nonlinearity at moderate laser powers while taking advantage of a compact experimental setup. The increasingly broad range of PCF structures available could stimulate further efforts in applying them in discrete nonlinear optics...

  1. Architectures and algorithms for all-optical 3D signal processing

    Science.gov (United States)

    Giglmayr, Josef

    1999-07-01

    All-optical signal processing by >= 2D lightwave circuits (LCs) is (i) aimed to allow the (later) inclusion of the frequency domain and is (ii) subject to photonic integration and thus the architectural and algorithmic framework has to be prepared carefully. Much work has been done in >= 2D algebraic system theory/modern control theory which has been applied in the electronic field of signal and image processing. For the application to modeling, analysis and design of the proposed 3D lightwave circuits (LCs) some elements are needed to describe and evalute the system efficiency as the number of system states of 3D LCs increases dramatically with regard to the number of i/o. Several problems, arising throughput such an attempt, are made transparent and solutions are proposed.

  2. Numerical simulation for all-optical Thomson scattering X-ray source

    Science.gov (United States)

    Tan, Fang; Zhu, Bin; Han, Dan; Xin, Jian-Ting; Zhao, Zong-Qing; Cao, Lei-Feng; Gu, Yu-Qiu; Zhang, Bao-Han

    2014-03-01

    Energy spectra, angular distributions, and temporal profiles of the photons produced by an all-optical Thomson scattering X-ray source are explored through numerical simulations based on the parameters of the SILEX-I laser system (800 nm, 30 fs, 300 TW) and the previous wakefield acceleration experimental results. The simulation results show that X-ray pulses with a duration of 30 fs and an emission angle of 50 mrad can be produced from such a source. Using the optimized electron parameters, X-ray pulses with better directivity and narrower energy spectra can be obtained. Besides the electron parameters, the laser parameters such as the wavelength, pulse duration, and spot size also affect the X-ray yield, the angular distribution, and the maximum photon energy, except the X-ray pulse duration which is slightly changed for the case of ultrafast laser—electron interaction.

  3. All-optical NRZ wavelength conversion using a Sagnac loop with optimized SOA characteristics

    International Nuclear Information System (INIS)

    We investigated the all-optical wavelength conversion technique for non-return-to-zero (NRZ) signals based on a Sagnac loop interferometer using an SOA. For the wavelength conversion of the NRZ signal at and above 40 Gbit/s, we used an in-house numerical SOA model to analyze the influence of the SOA carrier characteristics and the SOA length on the performance of the Sagnac loop. We found that the SOA carrier recovery time should be between 2 and 3 times of one bit duration in order to get optimum NRZ wavelength conversion. In addition to the carrier recovery time requirement, SOAs with a shorter physical length are preferred to be used in the Sagnac interferometer. (semiconductor devices)

  4. Remoted all optical instantaneous frequency measurement system using nonlinear mixing in highly nonlinear optical fiber.

    Science.gov (United States)

    Bui, Lam Anh; Mitchell, Arnan

    2013-04-01

    A novel remoted instantaneous frequency measurement system using all optical mixing is demonstrated. This system copies an input intensity modulated optical carrier using four wave mixing, delays this copy and then mixes it with the original signal, to produce an output idler tone. The intensity of this output can be used to determine the RF frequency of the input signal. This system is inherently broadband and can be easily scaled beyond 40 GHz while maintaining a DC output which greatly simplifies receiving electronics. The remoted configuration isolates the sensitive and expensive receiver hardware from the signal sources and importantly allows the system to be added to existing microwave photonic implementations without modification of the transmission module. PMID:23571944

  5. Ultrafast Nyquist OTDM demultiplexing using optical Nyquist pulse sampling in an all-optical nonlinear switch.

    Science.gov (United States)

    Hirooka, Toshihiko; Seya, Daiki; Harako, Koudai; Suzuki, Daiki; Nakazawa, Masataka

    2015-08-10

    We propose the ultrahigh-speed demultiplexing of Nyquist OTDM signals using an optical Nyquist pulse as both a signal and a sampling pulse in an all-optical nonlinear switch. The narrow spectral width of the Nyquist pulses means that the spectral overlap between data and control pulses is greatly reduced, and the control pulse itself can be made more tolerant to dispersion and nonlinear distortions inside the nonlinear switch. We apply the Nyquist control pulse to the 640 to 40 Gbaud demultiplexing of DPSK and DQPSK signals using a nonlinear optical loop mirror (NOLM), and demonstrate a large performance improvement compared with conventional Gaussian control pulses. We also show that the optimum spectral profile of the Nyquist control pulse depends on the walk-off property of the NOLM.

  6. All-Optical Clock Recovery from NRZ-DPSK Signals at Flexible Bit Rates

    Institute of Scientific and Technical Information of China (English)

    YU Yu; ZHANG Xin-Liang; DONG Jian-Ji; HUANG De-Xiu

    2008-01-01

    We propose and demonstrate all-optical clock recovery (CR) from nonreturn-to-zero differential phase-shift-keying (NRZ-DPSK) signals at different bit rates theoretically and experimentally.By pre-processing with a single optical filter,clock component can be enhanced significantly and thus clock signal can be extracted from the preprocessed signals,by cascading a CR unit with a semiconductor optical amplifier based fibre ring laser.Compared with the previous preprocessing schemes,the single filter is simple and suitable for different bit rates.The clock signals can be achieved with extinction ratio over 10 dB and rms timing fitter of 0.86 and 0.9 at 10 and 20 Gb/s,respectively.The output performances related to the bandwidth and the detuning of the filter are analysed.By simply using a filter with larger bandwidth,much higher operation can be achieved easily.

  7. Nonlinear Transient Dynamics of Photoexcited Silicon Nanoantenna for Ultrafast All-Optical Signal Processing

    CERN Document Server

    Baranov, Denis G; Milichko, Valentin A; Kudryashov, Sergey I; Krasnok, Alexander E; Belov, Pavel A

    2016-01-01

    Optically generated electron-hole plasma in high-index dielectric nanostructures was demonstrated as a means of tuning of their optical properties. However, until now an ultrafast operation regime of such plasma driven nanostructures has not been attained. Here, we perform pump-probe experiments with resonant silicon nanoparticles and report on dense optical plasma generation near the magnetic dipole resonance with ultrafast (about 2.5 ps) relaxation rate. Basing on experimental results, we develop an analytical model describing transient response of a nanocrystalline silicon nanoparticle to an intense laser pulse and show theoretically that plasma induced optical nonlinearity leads to ultrafast reconfiguration of the scattering power pattern. We demonstrate 100 fs switching to unidirectional scattering regime upon irradiation of the nanoparticle by an intense femtosecond pulse. Our work lays the foundation for developing ultracompact and ultrafast all-optical signal processing devices.

  8. High efficiency all-optical diode based on photonic crystal waveguide

    Science.gov (United States)

    Liu, Bin; Liu, Yun-Feng; Li, Shu-Jing; He, Xing-Dao

    2016-06-01

    A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a Fano cavity containing nonlinear Kerr medium and a F-P cavity in PC waveguide. Because of interference between two cavities, Fano peak and F-P peak can both appear in transmission spectra. Working wavelength is set between the two peaks and approaching to Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can be excited. It would result in red shift of Fano peak and achieving forward transmission. But due to the asymmetric design, backward launch need stronger incidence light to excite Kerr effect. This design has many advantages, including high maximum transmittance (>90%), high transmittance contrast ratio, low power threshold, short response time (picosecond level), ease of integration.

  9. Photo-generated THz antennas: All-optical control of plasmonic materials

    CERN Document Server

    Georgiou, Giorgos; Mulder, Peter; Bauhuis, Gerard J; Schermer, John J; Rivas, Jaime Gómez

    2013-01-01

    Localized surface plasmon polaritons in conducting structures give rise to enhancements of electromagnetic local fields and extinction efficiencies. Resonant conducting structures are conventionally fabricated with a fixed geometry that determines their plasmonic response. Here, we challenge this conventional approach by demonstrating the photo-generation of plasmonic materials (THz plasmonic antennas) on a flat semiconductor layer by the structured optical illumination through a spatial light modulator. Free charge carriers are photo-excited only on selected areas, which enables the definition of different plasmonic antennas on the same sample by simply changing the illumination pattern, thus without the need of physically structuring the sample. These results open a wide range of possibilities for an all-optical spatial and temporal control of resonances on plasmonic surfaces and the concomitant control of THz extinction and local field enhancements.

  10. Real-time wavefront-shaping through scattering media by all optical feedback

    CERN Document Server

    Nixon, Micha; Small, Eran; Bromberg, Yaron; Friesem, Asher A; Silberberg, Yaron; Davidson, Nir

    2013-01-01

    Focusing light through dynamically varying heterogeneous media is a sought-after goal with important applications ranging from free-space communication to nano-surgery. The underlying challenge is to control the optical wavefront with a large number of degrees-of-freedom (DOF) at timescales shorter than the medium dynamics. Recently, many advancements have been reported following the demonstration of focusing through turbid samples by wavefront-shaping, using spatial light modulators (SLMs) having >1000 DOF. Unfortunately, SLM-based wavefront-shaping requires feedback from a detector/camera and is limited to slowly-varying samples. Here, we demonstrate a novel approach for wavefront-shaping using all-optical feedback. We show that the complex wavefront required to focus through highly scattering samples, including thin biological tissues, can be generated at sub-microsecond timescales by the process of field self-organization inside a multimode laser cavity, without requiring electronic feedback or SLMs. This...

  11. A novel noninvasive all optical technique to monitor physiology of an exercising muscle

    International Nuclear Information System (INIS)

    An all optical technique based on near-infrared spectroscopy and mid-infrared imaging (MIRI) is applied as a noninvasive, in vivo tool to monitor the vascular status of skeletal muscle and the physiological changes that occur during exercise. A near-infrared spectroscopy (NIRS) technique, namely, steady state diffuse optical spectroscopy (SSDOS) along with MIRI is applied for monitoring the changes in the values of tissue oxygenation and thermometry of an exercising muscle. The NIRS measurements are performed at five discrete wavelengths in a spectral window of 650-850 nm and MIRI is performed in a spectral window of 8-12 μm. The understanding of tissue oxygenation status and the behavior of the physiological parameters derived from thermometry may provide a useful insight into muscle physiology, therapeutic response and treatment.

  12. All-Optical Quantum Random Bit Generation from Intrinsically Binary Phase of Parametric Oscillators

    CERN Document Server

    Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L

    2012-01-01

    True random number generators (RNGs) are desirable for applications ranging from cryptogra- phy to computer simulations. Quantum phenomena prove to be attractive for physical RNGs due to their fundamental randomness and immunity to attack [1]- [5]. Optical parametric down conversion is an essential element in most quantum optical experiments including optical squeezing [9], and generation of entangled photons [10]. In an optical parametric oscillator (OPO), photons generated through spontaneous down conversion of the pump initiate the oscillation in the absence of other inputs [11, 12]. This quantum process is the dominant effect during the oscillation build-up, leading to selection of one of the two possible phase states above threshold in a degenerate OPO [13]. Building on this, we demonstrate a novel all-optical quantum RNG in which the photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We implement a synchronously pumped twin degenerate O...

  13. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    Science.gov (United States)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  14. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  15. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  16. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    Science.gov (United States)

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-03-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices.

  17. Logic an introductory course

    CERN Document Server

    Newton-Smith, WH

    2003-01-01

    A complete introduction to logic for first-year university students with no background in logic, philosophy or mathematics. In easily understood steps it shows the mechanics of the formal analysis of arguments.

  18. A modal nonmonotonic logic

    Institute of Scientific and Technical Information of China (English)

    林作铨

    1996-01-01

    A modal nonmonotonic logic is presented based on an experiential modal semantics on typicality and exception.The syntactic and semantics of modal nonmonotonic logic are provided,and the completeness theorem and the theorems relating it to major nonmonotonic logics are proved.It directly formalizes the intuition of nonmonotonic reasoning.Among other things,it provides us a first-order extension of default logic and autoepistemic logic,and simultaneously has the capability of circumscription to infer universal statement.It has important applications in logic programming and deductive data base.As a result,it provides a uniform basis for various nonmonotonic logics,from which the correspondent relationship among major nonmonotonic logics can coincide.

  19. Logic with Verbs

    OpenAIRE

    Tanaka, Jun

    2009-01-01

    The aim of this paper is to introduce a logic in which nouns and verbs are handled together as a deductive reasoning, and also to observe the relationship between nouns and verbs as well as between logics and conversations.

  20. Anticoincidence logic using PALs

    International Nuclear Information System (INIS)

    This paper describes the functioning principle of an anticoincidence logic and a design of this based on programing logic. The circuit was included in a discriminator of an equipment for single-photon absorptiometry

  1. Many-valued logics

    CERN Document Server

    Bolc, Leonard

    1992-01-01

    Many-valued logics were developed as an attempt to handle philosophical doubts about the "law of excluded middle" in classical logic. The first many-valued formal systems were developed by J. Lukasiewicz in Poland and E.Post in the U.S.A. in the 1920s, and since then the field has expanded dramatically as the applicability of the systems to other philosophical and semantic problems was recognized. Intuitionisticlogic, for example, arose from deep problems in the foundations of mathematics. Fuzzy logics, approximation logics, and probability logics all address questions that classical logic alone cannot answer. All these interpretations of many-valued calculi motivate specific formal systems thatallow detailed mathematical treatment. In this volume, the authors are concerned with finite-valued logics, and especially with three-valued logical calculi. Matrix constructions, axiomatizations of propositional and predicate calculi, syntax, semantic structures, and methodology are discussed. Separate chapters deal w...

  2. Logical concepts in cryptography

    OpenAIRE

    Kramer, Simon

    2007-01-01

    This thesis is about a breadth-first exploration of logical concepts in cryptography and their linguistic abstraction and model-theoretic combination in a comprehensive logical system, called CPL (for Cryptographic Protocol Logic). We focus on two fundamental aspects of cryptography. Namely, the security of communication (as opposed to security of storage) and cryptographic protocols (as opposed to cryptographic operators). The primary logical concepts explored are the following: the modal co...

  3. Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique

    CERN Document Server

    Ho, Sze Phing; Shalaby, Mostafa; Peccianti, Marco; Clerici, Matteo; Pasquazi, Alessia; Ozturk, Yavuz; Ali, Jalil; Morandotti, Roberto

    2015-01-01

    We propose an all-optical Knife Edge characterization technique and we demonstrate its working principle by characterizing the sub-{\\lambda} features of a spatially modulated Terahertz source directly on the nonlinear crystal employed for the Terahertz generation.

  4. The semantics of fuzzy logic

    Science.gov (United States)

    Ruspini, Enrique H.

    1991-01-01

    Summarized here are the results of recent research on the conceptual foundations of fuzzy logic. The focus is primarily on the principle characteristics of a model that quantifies resemblance between possible worlds by means of a similarity function that assigns a number between 0 and 1 to every pair of possible worlds. Introduction of such a function permits one to interpret the major constructs and methods of fuzzy logic: conditional and unconditional possibility and necessity distributions and the generalized modus ponens of Zadeh on the basis of related metric relationships between subsets of possible worlds.

  5. What are Institutional Logics

    DEFF Research Database (Denmark)

    Berg Johansen, Christina; Waldorff, Susanne Boch

    This study presents new insights into the explanatory power of the institutional logics perspective. With outset in a discussion of seminal theory texts, we identify two fundamental topics that frame institutional logics: overarching institutional orders guides by institutional logics, as well...

  6. Tutorial On Fuzzy Logic

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1998-01-01

    A logic based on the two truth values True and False is sometimes inadequate when describing human reasoning. Fuzzy logic uses the whole interval between 0 (False) and 1 (True) to describe human reasoning. As a result, fuzzy logic is being applied in rule based automatic controllers, and this paper...

  7. Coordinate-free logic

    NARCIS (Netherlands)

    Leo, Joop

    2015-01-01

    A new logic is presented without predicates-except equality. Yet its expressive power is the same as that of predicate logic, and relations can faithfully be represented in it. In this logic we also develop an alternative for set theory. There is a need for such a new approach, since we do not live

  8. Fuzzy Description Logic Programs

    OpenAIRE

    Straccia, Umberto

    2005-01-01

    emph{Description Logic Programs} (DLPs), which combine the expressive power of classical description logics and logic programs, are emerging as an important ontology description language paradigm. In this work, we present fuzzy DLPs, which extend DLPs by allowing the representation of vague/imprecise information.

  9. Regular database update logics

    NARCIS (Netherlands)

    Spruit, Paul; Wieringa, Roel; Meyer, John-Jules

    2001-01-01

    We study regular first-order update logic (FUL), which is a variant of regular dynamic logic in which updates to function symbols as well as to predicate symbols are possible. We fi1rst study FUL without making assumptions about atomic updates. Second, we look at relational algebra update logic (RAU

  10. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco;

    2016-01-01

    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  11. All-optical cryptography of M-QAM formats by using two-dimensional spectrally sliced keys.

    Science.gov (United States)

    Abbade, Marcelo L F; Cvijetic, Milorad; Messani, Carlos A; Alves, Cleiton J; Tenenbaum, Stefan

    2015-05-10

    There has been an increased interest in enhancing the security of optical communications systems and networks. All-optical cryptography methods have been considered as an alternative to electronic data encryption. In this paper we propose and verify the use of a novel all-optical scheme based on cryptographic keys applied on the spectral signal for encryption of the M-QAM modulated data with bit rates of up to 200 gigabits per second.

  12. Ultra-Fast All-Optical Self-Aware Protection Switching Based on a Bistable Laser Diode

    DEFF Research Database (Denmark)

    An, Yi; Vukovic, Dragana; Lorences Riesgo, Abel;

    2014-01-01

    We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps.......We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps....

  13. Fuzzy Logic Reliability Centered Maintenance

    Directory of Open Access Journals (Sweden)

    Felecia .

    2014-01-01

    Full Text Available Reliability Centered Maintenence (RCM is a systematic maintenence strategy based on system reliability. Application of RCM process will not always come out with a binary output of “yes” and “no”. Most of the time they are not supported with available detail information to calculate system reliability. The fuzzy logic method attempts to eliminate the uncertainty by providing “truth” in different degrees.Data and responses from maintenance department will be processed using the two methods (reliability centered maintenance and fuzzy logic to design maintenance strategy for the company. The results of the fuzzy logic RCM application are maintenance strategy which fit with current and future condition.

  14. n-ary Fuzzy Logic and Neutrosophic Logic Operators

    OpenAIRE

    Smarandache, Florentin; V. Christianto

    2008-01-01

    We extend Knuth's 16 Boolean binary logic operators to fuzzy logic and neutrosophic logic binary operators. Then we generalize them to n-ary fuzzy logic and neutrosophic logic operators using the smarandache codification of the Venn diagram and a defined vector neutrosophic law. In such way, new operators in neutrosophic logic/set/probability are built.

  15. PERFORMANCE OF A NEW DECODING METHOD USED IN OPEN-LOOP ALL-OPTICAL CHAOTIC COMMUNICATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liu Huijie; Feng Jiuchao

    2011-01-01

    A new decoding method with decoder is used in open-loop all-optical chaotic communication system under strong injection condition.The performance of the new decoding method is numerically investigated by comparing it with the common decoding method without decoder.For new decoding method,two cases are analyzed,including whether or not the output of the decoder is adjusted by its input to receiver.The results indicate the decoding quality can be improved by adjusting for the new decoding method.Meanwhile,the injection strength of decoder can be restricted in a certain range.The adjusted new decoding method with decoder can achieve better decoding quality than decoding method without decoder when the bit rate of message is under 5 Gb/s.However,a stronger injection for receiver is needed.Moreover,the new decoding method can broaden the range of injection strength acceptable for good decoding quality.Different message encryption techniques are tested,and the result is similar to that of the common decoding method,indicative of the fact that the message encoded by using Chaotic Modulation (CM) can be best recovered by the new decoding method owning to the essence of this encryption technique.

  16. Domain size criterion for the observation of all-optical helicity-dependent switching in magnetic thin films

    Science.gov (United States)

    El Hadri, Mohammed Salah; Hehn, Michel; Pirro, Philipp; Lambert, Charles-Henri; Malinowski, Grégory; Fullerton, Eric E.; Mangin, Stéphane

    2016-08-01

    To understand the necessary condition for the observation of all-optical helicity-dependent switching (AO-HDS) of magnetization in thin films, we investigated ferromagnetic Co/Pt and Co/Ni multilayers as well as ferrimagnetic TbCo alloys as a function of magnetic layer compositions and thicknesses. We show that both ferro- and ferrimagnets with high saturation magnetization show AO-HDS if their magnetic thickness is strongly reduced below a material-dependent threshold thickness. By taking into account the demagnetizing energy and the domain wall energy, we are able to define a criterion to predict whether AO-HDS or thermal demagnetization (TD) will be observed. This criterion for the observation of AO-HDS is that the equilibrium size of magnetic domains forming during the cooling process should be larger than the laser spot size. From these results we anticipate that more magnetic materials are expected to show AO-HDS. However, the effect of the optical pulses' helicity is hidden by the formation of small magnetic domains during the cooling process.

  17. All-optical devices based on carrier nonlinearities for optical filtering and spectral equalization

    Science.gov (United States)

    Burger, Johan Petrus

    InGaAsP-based quantum wells can display nonlinear refractive index changes of ~0.1 near the band-edge for intrawell carrier density changes of 1 × 1018cm-3, due to effects like bandfilling and the plasma effect, which make these materials promising for the realization of all-optical signal processing devices, as demonstrated here. A novel single passband filter with sub-gigahertz bandwidth and greater than 40nm of tunability was experimentally demonstrated. The filter uses the detuning characteristics of nearly degenerate four-wave mixing in a broad area semiconductor optical amplifier to obtain frequency selectivity. The key to this demonstration was the spatial separation of the filtered signal from the input signal, based on their different propagation directions. An analysis of an analogous integrated optic dual-order mode nonlinear mode-converter, with integrated mode sorters which separate the signal from the interacting modes, was also undertaken. This device is promising as a filter, a wavelength converter, notch filter, and a wavelength recognizing switch. Novel ways to prevent carrier diffusion, which washes out the nonlinear grating, were suggested. It is important to have a large mutual overlap to modal overlap ratio of the two interacting modes on the nonlinear medium, because the mixing efficiency scales as the fourth power of this number. Three types of integrated optic limiters (based on Kerr- like nonlinearities) namely an all-optical cutoff modulator, a nonlinear Y-branch and an interferometer with an internal Kerr element, were theoretically investigated. A beam propagation program, which can solve the propagation of an optical field in a semiconductor in the presence of carrier diffusion, was developed for the numerical analysis of these structures. A negative feedback mechanism was identified in the Y-branch devices and a new limiting configuration was discovered in a Y- branch with a selectively placed defocusing nonlinearity. Dichroic

  18. Fuzzy branching temporal logic.

    Science.gov (United States)

    Moon, Seong-ick; Lee, Kwang H; Lee, Doheon

    2004-04-01

    Intelligent systems require a systematic way to represent and handle temporal information containing uncertainty. In particular, a logical framework is needed that can represent uncertain temporal information and its relationships with logical formulae. Fuzzy linear temporal logic (FLTL), a generalization of propositional linear temporal logic (PLTL) with fuzzy temporal events and fuzzy temporal states defined on a linear time model, was previously proposed for this purpose. However, many systems are best represented by branching time models in which each state can have more than one possible future path. In this paper, fuzzy branching temporal logic (FBTL) is proposed to address this problem. FBTL adopts and generalizes concurrent tree logic (CTL*), which is a classical branching temporal logic. The temporal model of FBTL is capable of representing fuzzy temporal events and fuzzy temporal states, and the order relation among them is represented as a directed graph. The utility of FBTL is demonstrated using a fuzzy job shop scheduling problem as an example. PMID:15376850

  19. Dense all-optical WDM-SCM technology for high-speed computer interconnects

    Science.gov (United States)

    Ih, Charles S.; Tian, Rongsheng; Zhou, H. X.; Xia, Xiang-Gen

    1993-07-01

    We describe a dense and flexible all optical multi-channel communication system for high speed computer interconnects. The system can provide 10 Gb/s for each individual node with a total system capacity to 250 Gb/s using currently available technologies. The system capacity can be scaled to 1 Tb/s using optical amplifiers with a broader bandwidth and higher modulations. The system is based on the multi-beam (heterodyne) modulator (MBM) recently demonstrated in our laboratory and other current technologies in tunable laser arrays and acousto-optical tunable filter (AOTF). Each MBM automatically forms a high frequency microwave sub-carrier multiplexing (SCM) with sub-carrier frequency to tens of GHz. A MBM with sub-carriers at 17 and 21 GHz has already been demonstrated and can be scaled to higher frequencies by using a higher frequency detector. Each SCM group may consist of up to 10 one-Gb/s channels and occupies only 1 nm spectral width. Therefore we can form a conventional WDM with 25 divisions within the bandwidth of commercially available optical amplifiers.

  20. All-optical OFDM transmitter design using AWGRs and low-bandwidth modulators.

    Science.gov (United States)

    Lowery, Arthur James; Du, Liang

    2011-08-15

    An Arrayed-Waveguide Grating Router (AWGR) can be used as a demultiplexer for an optical OFDM system, as it provides both the serial-to-parallel converter and the optical Fourier transform (FT) in one component. Because an inverse FT is topologically identical to a Fourier transform, the AWGR can also be used as a FT in an OFDM transmitter. In most all-optical OFDM systems the optical modulators are fed with CW tones; however, the subcarriers (SC) will only be perfectly orthogonal if the bandwidth of the data modulators is similar to the total bandwidth of all subcarriers. Using simulations, this paper investigates the reduction in modulator bandwidth that could be achieved if the modulators are placed before an AWGR designed as a FT. This arrangement also allows the complex (IQ) modulators to be replaced with simpler and more-compact phase modulators. We show that these design improvements enable 7.5-GHz bandwidth modulators to be used in a 4 × 10 Gsymbol/s (80 Gbit/s) per polarization per wavelength system. PMID:21934931

  1. Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips

    KAUST Repository

    Bruck, Roman

    2016-06-08

    The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all-optical laser-driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump-probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators. (Figure presented.) . © 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  2. Polyimide-etalon all-optical ultrasound transducer for high frequency applications

    Science.gov (United States)

    Sheaff, Clay; Ashkenazi, Shai

    2014-03-01

    We have enhanced our design for an all-optical high frequency ultrasound transducer consisting of a UV-absorbing polyimide film integrated into an etalon receiver operating in the NIR range. A dielectric stack having high NIR reflectivity and high UV transmittance was chosen as the first mirror for increased sensitivity and the allowance of polyimide as the etalon medium. A 13 ns, 0.7 μJ optical pulse at 355 nm and a continuous-wave NIR laser were focused onto the structure with a spot diameter of 120 and 35 μm, respectively. In receive mode the etalon had a noise-equivalent pressure of 4.1 kPa over a bandwidth of 5 - 50 MHz (0.61 Pa/√Hz ). The device generated a pressure of 270 kPa at a depth of 200 μm, and the -3 dB bandwidth of the emission extended from 27 to 60 MHz. In transmit/receive mode, the pulse-echo had a center frequency of 35 MHz with a -6 dB bandwidth of 49 MHz (140 %). Lastly, wire targets were imaged by scanning the UV spot to create a synthetic aperture of transmitters centered upon a single receiver.

  3. All-optical OFDM transmitter design using AWGRs and low-bandwidth modulators

    Science.gov (United States)

    Lowery, Arthur James; Du, Liang

    2011-08-01

    An Arrayed-Waveguide Grating Router (AWGR) can be used as a demultiplexer for an optical OFDM system, as it provides both the serial-to-parallel converter and the optical Fourier transform (FT) in one component. Because an inverse FT is topologically identical to a Fourier transform, the AWGR can also be used as a FT in an OFDM transmitter. In most all-optical OFDM systems the optical modulators are fed with CW tones; however, the subcarriers (SC) will only be perfectly orthogonal if the bandwidth of the data modulators is similar to the total bandwidth of all subcarriers. Using simulations, this paper investigates the reduction in modulator bandwidth that could be achieved if the modulators are placed before an AWGR designed as a FT. This arrangement also allows the complex (IQ) modulators to be replaced with simpler and more-compact phase modulators. We show that these design improvements enable 7.5-GHz bandwidth modulators to be used in a 4 - 10 Gsymbol/s (80 Gbit/s) per polarization per wavelength system.

  4. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Julien Perchoux

    2016-05-01

    Full Text Available Optical feedback interferometry (OFI sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  5. Imaging and detection of early stage dental caries with an all-optical photoacoustic microscope

    Science.gov (United States)

    Hughes, D. A.; Sampathkumar, A.; Longbottom, C.; Kirk, K. J.

    2015-01-01

    Tooth decay, at its earliest stages, manifests itself as small, white, subsurface lesions in the enamel. Current methods for detection in the dental clinic are visual and tactile investigations, and bite-wing X-ray radiographs. These techniques suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease due to the small size (<100μm) of the lesion. A fine-resolution (600 nm) ultra-broadband (200 MHz) all-optical photoacoustic microscopy system was is used to image the early signs of tooth decay. Ex-vivo tooth samples exhibiting white spot lesions were scanned and were found to generate a larger (one order of magnitude) photoacoustic (PA) signal in the lesion regions compared to healthy enamel. The high contrast in the PA images potentially allows lesions to be imaged and measured at a much earlier stage than current clinical techniques allow. PA images were cross referenced with histology photographs to validate our experimental results. Our PA system provides a noncontact method for early detection of white-spot lesions with a high detection bandwidth that offers advantages over previously demonstrated ultrasound methods. The technique provides the sensing depth of an ultrasound system, but with the spatial resolution of an optical system.

  6. Imaging and detection of early stage dental caries with an all-optical photoacoustic microscope

    International Nuclear Information System (INIS)

    Tooth decay, at its earliest stages, manifests itself as small, white, subsurface lesions in the enamel. Current methods for detection in the dental clinic are visual and tactile investigations, and bite-wing X-ray radiographs. These techniques suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease due to the small size (<100μm) of the lesion. A fine-resolution (600 nm) ultra-broadband (200 MHz) all-optical photoacoustic microscopy system was is used to image the early signs of tooth decay. Ex-vivo tooth samples exhibiting white spot lesions were scanned and were found to generate a larger (one order of magnitude) photoacoustic (PA) signal in the lesion regions compared to healthy enamel. The high contrast in the PA images potentially allows lesions to be imaged and measured at a much earlier stage than current clinical techniques allow. PA images were cross referenced with histology photographs to validate our experimental results. Our PA system provides a noncontact method for early detection of white-spot lesions with a high detection bandwidth that offers advantages over previously demonstrated ultrasound methods. The technique provides the sensing depth of an ultrasound system, but with the spatial resolution of an optical system

  7. An all-optical Compton source for single-exposure x-ray imaging

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Andriyash, I.; Lifschitz, A.; Malka, V.; Rousse, A.; Phuoc, K. Ta

    2016-03-01

    All-optical Compton sources are innovative, compact devices to produce high energy femtosecond x-rays. Here we present results on a single-pulse scheme that uses a plasma mirror to reflect the drive beam of a laser plasma accelerator and to make it collide with the highly-relativistic electrons in its wake. The accelerator is operated in the self-injection regime, producing quasi-monoenergetic electron beams of around 150 MeV peak energy. Scattering with the intense femtosecond laser pulse leads to the emission of a collimated high energy photon beam. Using continuum-attenuation filters we measure significant signal content beyond 100 keV and with simulations we estimate a peak photon energy of around 500 keV. The source divergence is about 13 mrad and the pointing stability is 7 mrad. We demonstrate that the photon yield from the source is sufficiently high to illuminate a centimeter-size sample placed 90 centimeters behind the source, thus obtaining radiographs in a single shot.

  8. All-optical central-frequency-programmable and bandwidth-tailorable radar.

    Science.gov (United States)

    Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution. PMID:26795596

  9. Fast all-optical nuclear spin echo technique based on EIT

    Science.gov (United States)

    Walther, Andreas; Nilsson, Adam N.; Li, Qian; Rippe, Lars; Kröll, Stefan

    2016-08-01

    We demonstrate an all-optical Raman spin echo technique, using electromagnetically induced transparency (EIT) to create the pulses required for a spin echo sequence: initialization, pi-rotation, and readout. The first pulse of the sequence induces coherence directly from a mixed state, and the technique is used to measure the nuclear spin coherence of an inhomogeneously broadened ensemble of rare-earth ions (Pr3 +) in a crystal. The rephasing pi-rotation is shown to offer an advantage of combining the rephasing action with the operation of a phase gate, particularly useful in e.g. dynamic decoupling sequences. In contrast to many previous experiments the sequence does not require any preparatory hole burning, which greatly shortens the total duration of the sequence. The effect of the different pulses is characterized by quantum state tomography and compared with simulations. We demonstrate two applications of the technique: compensating the magnetic field across our sample by monitoring T 2 reductions from stray magnetic fields, and measuring coherence times at temperatures up to 11 K, where standard preparation techniques are difficult to implement. We explore the potential of the technique, in particular for systems with much shorter T 2, and other possible applications.

  10. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity

    International Nuclear Information System (INIS)

    An InP photonic crystal nanocavity with an embedded InGaAsP active region is a unique technology that has realized an all-optical memory with a sub-micro-watt operating power and limitless storage time. In this study, we employed an L3 design with systematic multi-hole tuning, which realized a higher loaded Q factor (>40 000) and a lower mode volume (0.9 μm3) than a line-defect-based buried-heterostructure nanocavity (16 000 and 2.2 μm3). Excluding the active region realized a record loaded Q factor (210 000) in all for InP-based nanocavities. The minimum bias power for bistable memory operation was reduced to 2.3 ± 0.3 nW, which is about 1/10 of the previous record of 30 nW. This work further established the capability of a bistable nanocavity memory for use in future ultralow-power-consumption on-chip integrated photonics

  11. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    Science.gov (United States)

    Simin, D.; Soltamov, V. A.; Poshakinskiy, A. V.; Anisimov, A. N.; Babunts, R. A.; Tolmachev, D. O.; Mokhov, E. N.; Trupke, M.; Tarasenko, S. A.; Sperlich, A.; Baranov, P. G.; Dyakonov, V.; Astakhov, G. V.

    2016-07-01

    We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-28SiC) and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3 /2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100 nT /√{Hz } within a volume of 3 ×10-7m m3 at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3 mm3 , the projection noise limit is below 100 fT /√{Hz } .

  12. Proposal of all-optical sensor based on nonlinear MMI coupler for multi-purpose usage

    Science.gov (United States)

    Tajaldini, M.; MatJafri, M. Z.

    2015-10-01

    In this study, we propose an all-optical sensor based on consideration the nonlinear effects on modal propagation and output intensity based on ultra-compact nonlinear multimode interference (NLMMI) coupler. The sensor can be tuned to highest sensitivity in the wavelength and refractive index ranges sufficient to detect water- soluble chemical, air pollutions, and heart operation. The results indicate high output sensitivity to input wavelength. This sensitivity guides us to propose a wave sensor both transverse and longitudinal waves such as acoustic and light wave, when an external wave interacts with input waveguide. For instance, this sensor can be implemented by long input that inserted in the land, then any wave could detected from earth. The visible changes of intensity at output facet in various surrounding layer refractive index show the high sensitivity to the refractive index of surrounding layer that is foundation of introducing a sensor. Also, the results show the high distinguished changes on modal expansion and output throat distribution in various refractive indices of surrounding layer.

  13. All-optical central-frequency-programmable and bandwidth-tailorable radar

    Science.gov (United States)

    Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution.

  14. Design of photonic crystal-based all-optical AND gate using T-shaped waveguide

    Science.gov (United States)

    haq Shaik, Enaul; Rangaswamy, Nakkeeran

    2016-05-01

    We present a new configuration of all-optical AND gate based on two-dimensional photonic crystal composed of Si rods in air. Two AND gate structures with and without probe input are proposed. The proposed structures are designed with T-shaped waveguide without using nonlinear materials and optical amplifiers. The performance of the proposed AND gate structures is analyzed and simulated by plane-wave expansion and finite difference time domain methods. The AND gate without probe input needs only one T-shaped waveguide, whereas the AND gate with probe input needs two T-shaped waveguides. The former AND gate offers a bit rate of 6.26 Tbps with a contrast ratio of 5.74 dB, whereas the latter AND gate offers a bit rate of 3.58 Tbps whose contrast ratio is 9.66 dB. It can be expected that these small size T-shaped structures are suitable for large-scale integration and can potentially be used in on-chip photonic integrated circuits.

  15. Probabilistic Logic Programming under Inheritance with Overriding

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We present probabilistic logic programming under inheritance with overriding. This approach is based on new notions of entailment for reasoning with conditional constraints, which are obtained from the classical notion of logical entailment by adding the principle of inheritance with overriding. This is done by using recent approaches to probabilistic default reasoning with conditional constraints. We analyze the semantic properties of the new entailment relations. We also present algorithms ...

  16. Applications of all optical signal processing for advanced optical modulation formats

    Science.gov (United States)

    Nuccio, Scott R.

    signal processing may play a role in the future development of more efficient optical transmission systems. The hope is that performing signal processing in the optical domain may reduce optical-to-electronic conversion inefficiencies, eliminate bottlenecks and take advantage of the ultrahigh bandwidth inherent in optics. While 40 to 50 Gbit/s electronic components are the peak of commercial technology and 100 Gbit/s capable RF components are still in their infancy, optical signal processing of these high-speed data signals may provide a potential solution. Furthermore, any optical processing system or sub-system must be capable of handling the wide array of data formats and data rates that networks may employ. It is also worth noting that future networks may use a combination of data-rates and formats while it has been estimated that "we may start seeing the first commercial use of Terabit Ethernets by 2015". -Robert Metcalfe. To this end, the work presented in this Ph.D. dissertation is aimed at addressing the issue of optical processing for advanced optical modulation formats. All optical multiplexing and demultiplexing of Pol-MUX and phase and QAM encoded signals at the 100 Gbit/s Ethernet standard is addressed. The creation and development of an extremely large continuously tunable all-optical delay capable of handling a variety of modulation formats and data rates is presented. As optical delays are viewed as a critical element to achieve efficient and reconfigurable signal processing, the presented delay line is also utilized to enable a tunable packet buffer capable of handling data packets of varying rate, varying size, and multiple modulation formats.

  17. State of the Art of the all-Optical Radiocarbon Detection (Invited)

    Science.gov (United States)

    Cancio Pastor, P.; Mazzotti, D.; Galli, I.; Giusfredi, G.; Bartalini, S.; Cappelli, F.; De Natale, P.

    2013-12-01

    Radiocarbon (14C), the 'natural clock' for dating organic matter, is a very elusive atom. Its present concentration is about one part per trillion. For the past 30 years, accelerator mass spectrometry (AMS) has been adopted as the standard method for detecting such carbon isotope at concentrations well below its natural abundance (3 parts per quadrillion). AMS requires a smaller carbon mass and shorter measurement times than the old standard method of liquid scintillation counting. However, AMS requires huge, expensive and high-maintenance experimental facilities. We have developed a laser spectroscopy technique that is sensitive enough to detect the radiocarbon dioxide molecules at very low concentrations with an all-optical setup that is orders of magnitude more compact and less expensive than AMS [1]. The optical spectroscopy approach is based in the detection of very weak absorption of IR laser light by a 14C-containing molecule as 14C-Carbon Dioxide. Spectroscopic techniques as Cavity Ring Down (CRD) spectroscopy that uses the kilometric absorption paths provided by high-Finesse Fabry-Perot cavities have revolutionized the trace gas detection of molecular species in terms of ultimate sensitivity. Nevertheless CRD has been not capable to detect very elusive molecules as radiocarbon Dioxide. The new developed technique, named SCAR (saturated-absorption cavity ring-down), makes use of molecular absorption saturation to enhance resolution and sensitivity with respect to conventional CRD [2]. By combining SCAR with a frequency-comb-linked CW coherent source, which delivers tunable radiation (around 4.5-μm wavelength) [3], we could set an unprecedented limit in trace gas detection, accessing the part-per-quadrillion concentration range. Comparison between AMS and SCAR techniques to detect 14C by measuring the same carbon samples shows SCAR-based results are currently one order of magnitude shy of challenging AMS, but there is still room for improvement [4

  18. Logic and structure

    CERN Document Server

    Dalen, Dirk

    1983-01-01

    A book which efficiently presents the basics of propositional and predicate logic, van Dalen’s popular textbook contains a complete treatment of elementary classical logic, using Gentzen’s Natural Deduction. Propositional and predicate logic are treated in separate chapters in a leisured but precise way. Chapter Three presents the basic facts of model theory, e.g. compactness, Skolem-Löwenheim, elementary equivalence, non-standard models, quantifier elimination, and Skolem functions. The discussion of classical logic is rounded off with a concise exposition of second-order logic. In view of the growing recognition of constructive methods and principles, one chapter is devoted to intuitionistic logic. Completeness is established for Kripke semantics. A number of specific constructive features, such as apartness and equality, the Gödel translation, the disjunction and existence property have been incorporated. The power and elegance of natural deduction is demonstrated best in the part of proof theory cal...

  19. Fictional Separation Logic

    DEFF Research Database (Denmark)

    Jensen, Jonas Buhrkal; Birkedal, Lars

    2012-01-01

    Separation logic formalizes the idea of local reasoning for heap-manipulating programs via the frame rule and the separating conjunction P * Q, which describes states that can be split into \\emph{separate} parts, with one satisfying P and the other satisfying Q. In standard separation logic...... overlap. We demonstrate, via a range of examples, how fictional separation logic can be used to reason locally and modularly about mutable abstract data types, possibly implemented using sophisticated sharing. Fictional separation logic is defined on top of standard separation logic, and both the meta......, separation means physical separation. In this paper, we introduce \\emph{fictional separation logic}, which includes more general forms of fictional separating conjunctions P * Q, where "*" does not require physical separation, but may also be used in situations where the memory resources described by P and Q...

  20. Action Type Deontic Logic

    DEFF Research Database (Denmark)

    Bentzen, Martin Mose

    2014-01-01

    A new deontic logic, Action Type Deontic Logic, is presented. To motivate this logic, a number of benchmark cases are shown, representing inferences a deontic logic should validate. Some of the benchmark cases are singled out for further comments and some formal approaches to deontic reasoning...... are evaluated with respect to the benchmark cases. After that follows an informal introduction to the ideas behind the formal semantics, focussing on the distinction between action types and action tokens. Then the syntax and semantics of Action Type Deontic Logic is presented and it is shown to meet...... the benchmarks. Finally, possibilities for further research are indicated. In the appendix, decidability of the satisfiability of formulas is proved via a technique known from monadic First Order Logic....

  1. Efficient Traffic Engineering Strategies for Optimizing Network Throughput in WDM All-Optical Networks

    Directory of Open Access Journals (Sweden)

    Mohamed Koubàa

    2015-05-01

    Full Text Available In this paper we investigate traffic-engineering issues in Wavelength Division Multiplexing (WDM all-optical networks. In such networks, the wavelength continuity constraint along with the wavelength clash constraint, lead to poor network performances when dealing with the lightpath provisioning problem. The impact of these constraints is especially severe when traffic demands are unpredictable and characterized by random arrivals and departures. In order to alleviate the impact of these constraints, we propose to employ intentional/active rerouting. Active lightpath rerouting is to intentionally reroute already established lightpaths, during their life period, so as to achieve a better blocking performance. We here assume that due to the large geographic area an optical WDM network can cover, upgrading such a network to support the huge demand for network bandwidth can be costly. Thereby, it is extremely important for network operators to apply traffic-engineering strategies to cost-effectively optimize network throughput. Two new routing and wavelength assignment (RWA algorithms applying intentional rerouting are proposed. Both algorithms dynamically reroute some already established lightpaths from longer paths to vacant shorter ones so as to reduce the network resources consumption and hence improve the network throughput. The first algorithm, namely, Timer-Based Active Lightpath Rerouting (TB-ALR initiates the rerouting procedure every time a timer expires. The second algorithm, namely, Sequential Routing with Active Lightpath Rerouting (SeqRwALR initiates the rerouting procedure when a connection leaves and its lightpaths are released. To the best of our knowledge, our global approach has not already been investigated in the literature. Simulation results show that the proposed active rerouting algorithms yield much lower connection rejection ratios than rerouting algorithms previously presented in the literature while rerouting a small

  2. Adaptive Light Modulation for Improved Resolution and Efficiency in All-Optical Pulse-Echo Ultrasound.

    Science.gov (United States)

    Alles, Erwin J; Colchester, Richard J; Desjardins, Adrien E

    2016-01-01

    In biomedical all-optical pulse-echo ultrasound systems, ultrasound is generated with the photoacoustic effect by illuminating an optically absorbing structure with a temporally modulated light source. Nanosecond range laser pulses are typically used, which can yield bandwidths exceeding 100 MHz. However, acoustical attenuation within tissue or nonuniformities in the detector or source power spectra result in energy loss at the affected frequencies and in a reduced overall system efficiency. In this work, a laser diode is used to generate linear and nonlinear chirp optical modulations that are extended to microsecond time scales, with bandwidths constrained to the system sensitivity. Compared to those obtained using a 2-ns pulsed laser, pulse-echo images of a phantom obtained using linear chirp excitation exhibit similar axial resolution (99 versus 92 μm, respectively) and signal-to-noise ratios (SNRs) (10.3 versus 9.6 dB). In addition, the axial point spread function (PSF) exhibits lower sidelobe levels in the case of chirp modulation. Using nonlinear (time-stretched) chirp excitations, where the nonlinearity is computed from measurements of the spectral sensitivity of the system, the power spectrum of the imaging system was flattened and its bandwidth broadened. Consequently, the PSF has a narrower axial extent and still lower sidelobe levels. Pulse-echo images acquired with time-stretched chirps as optical modulation have higher axial resolution (64 μm) than those obtained with linear chirps, at the expense of a lower SNR (6.8 dB). Using a linear or time-stretched chirp, the conversion efficiency from optical power to acoustical pressure improved by a factor of 70 or 61, respectively, compared to that obtained with pulsed excitation.

  3. Honesty in partial logic

    OpenAIRE

    Hoek, van, E.; Jaspars, J.O.M.; Thijsse, E.

    1995-01-01

    We propose an epistemic logic in which knowledge is fully introspective and implies truth, although truth need not imply epistemic possibility. The logic is presented in sequential format and is interpreted in a natural class of partial models, called balloon models. We examine the notions of honesty and circumscription in this logic: What is the state of an agent that `only knows $phi$' and which honest $phi$ enable such circumscription? Redefining {em stable sets enables us to provide suita...

  4. Abductive Logic Grammars

    DEFF Research Database (Denmark)

    Christiansen, Henning; Dahl, Veronica

    2009-01-01

    By extending logic grammars with constraint logic, we give them the ability to create knowledge bases that represent the meaning of an input string. Semantic information is thus defined through extra-grammatical means, and a sentence's meaning logically follows as a by-product of string rewriting...... norm -- arbitrary (i.e., order-independent) derivations. We show that rich and accurate knowledge extraction from text can be achieved through the use of this new formalism...

  5. Structures for Epistemic Logic

    OpenAIRE

    Bezhanishvili, N.; W. Van Hoek

    2013-01-01

    Epistemic modal logic in a narrow sense studies and formalises reasoning about knowledge. In a wider sense, it gives a formal account of the informational attitude that agents may have, and covers notions like knowledge, belief, uncertainty, and hence incomplete or partial information. As is so often the case in modal logic, such formalised notions become really interesting when studied in a broader context. When doing so, epistemic logic in a wider sense in fact relates to most of the other ...

  6. One reason, several logics

    OpenAIRE

    Evandro Agazzi

    2011-01-01

    Humans have used arguments for defending or refuting statements long before the creation of logic as a specialized discipline. This can be interpreted as the fact that an intuitive notion of "logical consequence" or a psychic disposition to articulate reasoning according to this pattern is present in common sense, and logic simply aims at describing and codifying the features of this spontaneous capacity of human reason. It is well known, however, that several arguments easily accepted by com...

  7. Logical database design principles

    CERN Document Server

    Garmany, John; Clark, Terry

    2005-01-01

    INTRODUCTION TO LOGICAL DATABASE DESIGNUnderstanding a Database Database Architectures Relational Databases Creating the Database System Development Life Cycle (SDLC)Systems Planning: Assessment and Feasibility System Analysis: RequirementsSystem Analysis: Requirements Checklist Models Tracking and Schedules Design Modeling Functional Decomposition DiagramData Flow Diagrams Data Dictionary Logical Structures and Decision Trees System Design: LogicalSYSTEM DESIGN AND IMPLEMENTATION The ER ApproachEntities and Entity Types Attribute Domains AttributesSet-Valued AttributesWeak Entities Constraint

  8. Embedding Description Logic Programs into Default Logic

    CERN Document Server

    Wang, Yisong; Yuan, Li Yan; Shen, Yi-Dong; Eiter, Thomas

    2011-01-01

    Description logic programs (dl-programs) under the answer set semantics formulated by Eiter {\\em et al.} have been considered as a prominent formalism for integrating rules and ontology knowledge bases. A question of interest has been whether dl-programs can be captured in a general formalism of nonmonotonic logic. In this paper, we study the possibility of embedding dl-programs into default logic. We show that dl-programs under the strong and weak answer set semantics can be embedded in default logic by combining two translations, one of which eliminates the constraint operator from nonmonotonic dl-atoms and the other translates a dl-program into a default theory. For dl-programs without nonmonotonic dl-atoms but with the negation-as-failure operator, our embedding is polynomial, faithful, and modular. In addition, our default logic encoding can be extended in a simple way to capture recently proposed weakly well-supported answer set semantics, for arbitrary dl-programs. These results reinforce the argument ...

  9. Indexical Hybrid Tense Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin

    2012-01-01

    operator N) and prove completeness results for both logical and contextual validity. We then add propositional constants to handle yesterday, today and tomorrow; our system correctly treats sentences like “Niels will die yesterday” as contextually unsatisfiable. Building on our completeness results for now......In this paper we explore the logic of now, yesterday, today and tomorrow by combining the semantic approach to indexicality pioneered by Hans Kamp [9] and refined by David Kaplan [10] with hybrid tense logic. We first introduce a special now nominal (our @now corresponds to Kamp’s original now......, we prove completeness for the richer language, again for both logical and contextual validity....

  10. Introduction to mathematical logic

    CERN Document Server

    Mendelson, Elliott

    2015-01-01

    The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing.The sixth edition incorporates recent work on Gödel's second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in th

  11. What is mathematical logic?

    CERN Document Server

    Crossley, J N; Brickhill, CJ; Stillwell, JC

    2010-01-01

    Although mathematical logic can be a formidably abstruse topic, even for mathematicians, this concise book presents the subject in a lively and approachable fashion. It deals with the very important ideas in modern mathematical logic without the detailed mathematical work required of those with a professional interest in logic.The book begins with a historical survey of the development of mathematical logic from two parallel streams: formal deduction, which originated with Aristotle, Euclid, and others; and mathematical analysis, which dates back to Archimedes in the same era. The streams beg

  12. A Logic for Choreographies

    DEFF Research Database (Denmark)

    Lopez, Hugo Andres; Carbone, Marco; Hildebrandt, Thomas;

    2010-01-01

    We explore logical reasoning for the global calculus, a coordination model based on the notion of choreography, with the aim to provide a methodology for specification and verification of structured communications. Starting with an extension of Hennessy-Milner logic, we present the global logic (GL...... ), a modal logic describing possible interactions among participants in a choreography. We illustrate its use by giving examples of properties on service specifications. Finally, we show that, despite GL is undecidable, there is a significant decidable fragment which we provide with a sound and complete proof...

  13. 基于LOA-XGM全光逻辑与门的理论研究%Study of All Optical Logic AND Gate Using LOA-based XGM

    Institute of Scientific and Technical Information of China (English)

    李茜; 潘炜; 李海涛; 罗斌

    2009-01-01

    提出了基于线性光放大器(LOA)的交叉增益调制(XGM)原理来实现全光逻辑与(AND)运算的理论模型,通过Simulink模块构建,使其更好地仿真出逻辑输出结果,并且分析不同参数对与输出结果的影响.结果表明:由于LOA利用有源区两侧的分布式布拉格反射镜(DBR)对入射光的增益形成了很好的钳制,使其具有良好的线性增益特性,因而利用级联LOA实现逻辑门运算时所发生的畸变远比在SOA中小;适当地选择输入信号光的波长范围和光功率,会得到更优的逻辑与运算结果.

  14. Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Kong, Deming; Røge, Kasper Meldgaard;

    2014-01-01

    We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km.......We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km....

  15. All-Optical Wavelength Conversion of a High-Speed RZ-OOK Signal in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael;

    2011-01-01

    All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits.......All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits....

  16. All-Optical 40 Gbit/s Regenerative Wavelength Conversion Based on Cross-Phase Modulation in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Hu, Hao; Ji, Hua;

    2013-01-01

    We successfully demonstrate all-optical regeneration of a 40 Gbit/s signal based on cross-phase modulation in a silicon nanowire. Bit-error-rate measurements show an average of 1.7dB improvement in receiver sensitivity after the regeneration.......We successfully demonstrate all-optical regeneration of a 40 Gbit/s signal based on cross-phase modulation in a silicon nanowire. Bit-error-rate measurements show an average of 1.7dB improvement in receiver sensitivity after the regeneration....

  17. All-Optical 2R Regeneration of a 160-Gbit/s RZOOK Serial Data Signal Using a FOPA

    DEFF Research Database (Denmark)

    Wang, Ju; Ji, Hua; Hu, Hao;

    2012-01-01

    All-optical 2R regeneration of a 160-Gbit/s RZ-OOK signal is demonstrated in a fiber optical parametric amplifier using a highly nonlinear fiber with the data as pump. Bit error rate bathtub curves validate the regeneration performance.......All-optical 2R regeneration of a 160-Gbit/s RZ-OOK signal is demonstrated in a fiber optical parametric amplifier using a highly nonlinear fiber with the data as pump. Bit error rate bathtub curves validate the regeneration performance....

  18. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide.

    Science.gov (United States)

    Tan, Kang; Marpaung, David; Pant, Ravi; Gao, Feng; Li, Enbang; Wang, Jian; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Sun, Junqiang; Eggleton, Benjamin J

    2013-01-28

    We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As₂S₃ chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.

  19. Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach - Zehnder-type all-optical switch

    International Nuclear Information System (INIS)

    We investigate the effect of intraband carrier dynamics on a nonlinear phase shift induced in a semiconductor optical amplifier (SOA) in terms of its applicability to the Symmetric Mach - Zehnder (SMZ) all-optical switch. Nonlinear phase shifts in an SOA and a passive semiconductor waveguide are compared under control-pulse durations ranging from 3.2 to 0.4 ps. The results show that femtosecond switching with higher efficiency is still possible by using the SOA. We experimentally achieve femtosecond (670 fs), femtojoule (140 fJ) switching with the SOA-based SMZ all-optical switch. [copyright] 2001 American Institute of Physics

  20. On the feasibility of full pattern-operated all-optical XOR gate with single semiconductor optical amplifier-based ultrafast nonlinear interferometer

    Science.gov (United States)

    Siarkos, T.; Zoiros, K. E.; Nastou, D.

    2009-07-01

    The possibility of implementing an ultrafast all-optical XOR gate using a single semiconductor optical amplifier (SOA)-based ultrafast nonlinear interferometer (UNI) is theoretically investigated and demonstrated. For this purpose a comprehensive model that characterizes the performance of a SOA when it is successively driven by two strong pseudorandom binary sequences is applied to simulate the specific module under dual rail switching mode of operation. In this manner an extensive set of curves is obtained allowing to analyze and evaluate the impact of the input data, SOA and interferometer critical parameters on the fully loaded Q-factor. Their thorough study and interpretation reveals that the satisfaction of their requirements in order to render acceptable this metric is feasible from a technological perspective and thus if their selection is made according to the extracted guidelines then pattern-free and error-free modulo-2 arithmetic can be straightforwardly realized at 20 Gb/s. This prediction can be of practical interest in simplifying and assisting the design of more sophisticated interconnections of enhanced combinatorial and sequential functionality in which the XOR gate is the core logical unit.

  1. Honesty in partial logic

    NARCIS (Netherlands)

    Hoek, W. van der; Jaspars, J.O.M.; Thijsse, E.

    1995-01-01

    We propose an epistemic logic in which knowledge is fully introspective and implies truth, although truth need not imply epistemic possibility. The logic is presented in sequential format and is interpreted in a natural class of partial models, called balloon models. We examine the notions of hones

  2. Linear Logical Voting Protocols

    DEFF Research Database (Denmark)

    DeYoung, Henry; Schürmann, Carsten

    2012-01-01

    . In response, we promote linear logic as a high-level language for both specifying and implementing voting protocols. Our linear logical specifications of the single-winner first-past-the-post (SW- FPTP) and single transferable vote (STV) protocols demonstrate that this approach leads to concise...

  3. Identifying Logical Necessity

    Science.gov (United States)

    Yopp, David

    2010-01-01

    Understanding logical necessity is an important component of proof and reasoning for teachers of grades K-8. The ability to determine exactly where young students' arguments are faulty offers teachers the chance to give youngsters feedback as they progress toward writing mathematically valid deductive proofs. As defined, logical necessity is the…

  4. Contract agreements via logic

    Directory of Open Access Journals (Sweden)

    Massimo Bartoletti

    2013-10-01

    Full Text Available We relate two contract models: one based on event structures and game theory, and the other one based on logic. In particular, we show that the notions of agreement and winning strategies in the game-theoretic model are related to that of provability in the logical model.

  5. Indexical Hybrid Tense Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin

    2012-01-01

    In this paper we explore the logic of now, yesterday, today and tomorrow by combining the semantic approach to indexicality pioneered by Hans Kamp [9] and refined by David Kaplan [10] with hybrid tense logic. We first introduce a special now nominal (our @now corresponds to Kamp’s original now...

  6. One reason, several logics

    Directory of Open Access Journals (Sweden)

    Evandro Agazzi

    2011-06-01

    Full Text Available Humans have used arguments for defending or refuting statements long before the creation of logic as a specialized discipline. This can be interpreted as the fact that an intuitive notion of "logical consequence" or a psychic disposition to articulate reasoning according to this pattern is present in common sense, and logic simply aims at describing and codifying the features of this spontaneous capacity of human reason. It is well known, however, that several arguments easily accepted by common sense are actually "logical fallacies", and this indicates that logic is not just a descriptive, but also a prescriptive or normative enterprise, in which the notion of logical consequence is defined in a precise way and then certain rules are established in order to maintain the discourse in keeping with this notion. Yet in the justification of the correctness and adequacy of these rules commonsense reasoning must necessarily be used, and in such a way its foundational role is recognized. Moreover, it remains also true that several branches and forms of logic have been elaborated precisely in order to reflect the structural features of correct argument used in different fields of human reasoning and yet insufficiently mirrored by the most familiar logical formalisms.

  7. Institutional Logics in Action

    DEFF Research Database (Denmark)

    Lounsbury, Michael; Boxenbaum, Eva

    2013-01-01

    This double volume presents state-of-the-art research and thinking on the dynamics of actors and institutional logics. In the introduction, we briefly sketch the roots and branches of institutional logics scholarship before turning to the new buds of research on the topic of how actors engage...

  8. Concurrent weighted logic

    DEFF Research Database (Denmark)

    Xue, Bingtian; Larsen, Kim Guldstrand; Mardare, Radu Iulian

    2015-01-01

    We introduce Concurrent Weighted Logic (CWL), a multimodal logic for concurrent labeled weighted transition systems (LWSs). The synchronization of LWSs is described using dedicated functions that, in various concurrency paradigms, allow us to encode the compositionality of LWSs. To reflect these,...

  9. Why combine logics?

    NARCIS (Netherlands)

    Blackburn, P.; Rijke, M. de

    1995-01-01

    Combining logics has become a rapidly expanding enterprise that is inspired mainly by concerns about modularity and the wish to join together tailored made logical tools into more powerful but still manageable ones. A natural question is whether it offers anything new over and above existing standar

  10. Anselm's logic of agency

    NARCIS (Netherlands)

    S.L. Uckelman

    2009-01-01

    The origins of treating agency as a modal concept go back at least to the 11th century when Anselm, Archbishop of Canterbury, provided a modal explication of the Latin facere ‘to do’, which can be formalized within the context of modern modal logic and neighborhood semantics. The agentive logic indu

  11. A bit-rate flexible and power efficient all-optical demultiplexer realised by monolithically integrated Michelson interferometer

    DEFF Research Database (Denmark)

    Vaa, Michael; Mikkelsen, Benny; Jepsen, Kim Stokholm;

    1996-01-01

    A novel bit-rate flexible and very power efficient all-optical demultiplexer using differential optical control of a monolithically integrated Michelson interferometer with MQW SOAs is demonstrated at 40 to 10 Gbit/s. Gain switched DFB lasers provide ultra stable data and control signals....

  12. New all-optical RIN suppressing, image rejection receiver with efficient use of LO- and signal-power

    DEFF Research Database (Denmark)

    Pedersen, Rune Johan Skullerud; Ebskamp, F.

    1993-01-01

    An all-optical method of achieving a heterodyne signal is presented whereby the local oscillator (LO) relative intensity noise (RIN) and the image channel have been suppressed while efficient use of both LO and signal power is made. This is achieved with only one photodetector, compared to four...

  13. All-optical 2R regeneration at 40 Gbit/s in an SOA-based Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Wolfson, David; Hansen, Peter Bukhave; Fjelde, Tina;

    1999-01-01

    All-optical 2 R regeneration, with wavelength conversion, at 40 Gbit/s is demonstarted in an all-active Mach-Zehnder interferometer showing the capability of improving the signal-to-noise ratio by more than 20 db....

  14. Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.

    Science.gov (United States)

    Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H

    2015-02-23

    The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.

  15. All-Optical flip-flop operation using a SOA and DFB laser diode optical feedback combination

    DEFF Research Database (Denmark)

    D'Oosterlinck, W.; Öhman, Filip; Buron, Jakob Due;

    2007-01-01

    We report on the switching of an all-optical flip-flop consisting of a semiconductor optical amplifier (SOA) and a distributed feedback laser diode (DFB), bidirectionally coupled to each other. Both simulation and experimental results are presented. Switching times as low as 50ps, minimal required...

  16. All-Optical Flip-Flop Based on an SOA/DFB-Laser Diode Optical Feedback Scheme

    DEFF Research Database (Denmark)

    D'Oosterlinck, W.; Buron, Jakob Due; Öhman, Filip;

    2007-01-01

    We report on the dynamic all-optical flip-flop (AOFF) operation of an optical feedback scheme consisting of a semiconductor optical amplifier (SOA) and a distributed feedback laser diode (DFB-LD), bidirectionally coupled to each other. The operation of the AOFF relies on the interplay between...

  17. All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes

    DEFF Research Database (Denmark)

    Jiang, H.; Chaen, Y.; Hagio, T.;

    2011-01-01

    We demonstrate fast and low energy all optical flip-flop devices based on asymmetric active-multimode interferometer using high-mesa waveguide structure. The implemented devices showed high speed alloptical flip-flop operation with 25ps long pulses. The rising and falling times of the output sign...

  18. Advanced Information Technology of Slot-Switching Network Schemes for on All-Optical Variable-Length Packet

    Directory of Open Access Journals (Sweden)

    Soung Y. Liew

    2010-01-01

    Full Text Available Problem statement: The purpose of this paper was to investigate all optical packet switching, because it was the key to the success of the future Internet. It can meet the stringent bandwidth requirement of future Internet applications, such as real-time video streaming. Due to the lack of optical Random Access Memory (RAM, however, the all-optical schemes studied in the literature were either not flexible enough to accommodate Internet packets, which were variable-length in nature, or fail to schedule packets at switches to achieve low loss rate. Approach: The aim of this paper was thus to tackle the flexibility and utilization issues in all-optical packet switches, even at the absence of optical RAM. We approached this paper by first studied a new slotted model for all-optical variable-length packet switching, which was called Variable-length-Packet Fixed-Length Slot (VPFS switching. Results: We proved by mathematical analysis the theoretical maximum utilizations that can be achieved by the model in two variant schemes. Then we proposed a new scheduling algorithm for shared-fiber-delay-line switches in order to achieve low loss rate when the utilization approaches the maximum. We justified our design by simulation. In our finding, through mathematical analysis and computer simulation, our proposed switching model and scheduling algorithm can be coupled well to achieve good performance for all-optical packet switches. We also found that the selection of the slot size in the network was very critical as it determined the transmission overhead and hence the utilization of the all-optical network. Our research limitation depended on slot size. Although a small slot size was critical for high utilization with our model, it was not always preferable. It was because a small slot size increased the switching and scheduling complexity at the switch. Thus the selection of an optimum slot size for the network was a compromise between

  19. AN IMPROVED DESIGN OF A MULTIPLIER USING REVERSIBLE LOGIC GATES

    Directory of Open Access Journals (Sweden)

    H.R.BHAGYALAKSHMI

    2010-08-01

    Full Text Available Reversible logic gates are very much in demand for the future computing technologies as they are known to produce zero power dissipation under ideal conditions. This paper proposes an improved design of a multiplier using reversible logic gates. Multipliers are very essential for the construction of various computational units of a quantum computer. The quantum cost of a reversible logic circuit can be minimized by reducing the number of reversible logic gates. For this two 4*4 reversible logic gates called a DPG gate and a BVF gate are used.

  20. All optical wavelength conversion and parametric amplification in Ti:PPLN channel waveguides for telecommunication applications

    Energy Technology Data Exchange (ETDEWEB)

    Nouroozi, Rahman

    2010-10-19

    Efficient ultra-fast integrated all-optical wavelength converters and parametric amplifiers transparent to the polarization, phase, and modulation-level and -format are investigated. The devices take advantage of the optical nonlinearity of Ti:PPLN waveguides exploiting difference frequency generation (DFG). In a DFG, the signal ({lambda}{sub s}) is mixed with a pump ({lambda}{sub p}) to generate a wavelength shifted idler (1/{lambda}{sub i}=1/{lambda}{sub p}-1/{lambda}{sub s}). Efficient generation of the pump in Ti:PPLN channel guides is investigated using different approaches. In the waveguide resonators, first a resonance of the fundamental wave alone is considered. It is shown that the maximum power enhancement of the fundamental wave, and therefore the maximum second-harmonic generation (SHG) efficiency, can be achieved with low loss matched resonators. By this way, SHG efficiency of {proportional_to}10300%/W (10.3 %/mW) has been achieved in a 65 mm long waveguide resonator. Its operation for cSHG/DFG requires narrowband reflector for fundamental wave only. Thus, the SH (pump) wave resonator is investigated. The SH-wave resonator enhances the intracavity SH power only. Based on this scheme, an improvement of {proportional_to}10 dB for cSHG/DFG based wavelength conversion efficiency has been achieved with 50 mW of coupled fundamental power in a 30 mm long Ti:PPLN. However, operation was limited to relatively small fundamental power levels (<50 mW) due to the onset of photorefractive instabilities destroying the cavity stabilization. The cSHG/DFG efficiency can be considerably improved by using a double-pass configuration in which all the interacting waves were reflected by a broadband dielectric mirror deposited on the one endface of the waveguide. Three different approaches are investigated and up to 9 dB improvement of the wavelength conversion efficiency in comparison with the single-pass configuration is achieved. Polarization-insensitive wavelength

  1. Equivalence in Logic-Based Argumentation

    OpenAIRE

    Amgoud, Leila; Besnard, Philippe; Vesic, Srdjan

    2014-01-01

    International audience This paper investigates when two abstract logic-based argumentation systems are equivalent. It defines various equivalence criteria, investigates the links between them, and identifies cases where two systems are equivalent with respect to each of the proposed criteria. In particular, it shows that under some reasonable conditions on the logic underlying an argumentation system, the latter has an equivalent finite subsystem, called core. This core constitutes a thres...

  2. Dynamic Logic with Trace Semantics

    OpenAIRE

    Beckert, Bernhard; Bruns, Daniel

    2013-01-01

    Dynamic logic is an established instrument for program verification and for reasoning about the semantics of programs and programming languages. In this paper, we define an extension of dynamic logic, called Dynamic Trace Logic (DTL), which combines the expressiveness of program logics such as dynamic logic with that of temporal logic. And we present a sound and relatively complete sequent calculus for proving validity of DTL formulae. Due to its expressiveness, DTL can serve as a basis for p...

  3. Logic and Learning

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Gierasimczuk, Nina; de Jong, Dick

    2014-01-01

    Learning and learnability have been long standing topics of interests within the linguistic, computational, and epistemological accounts of inductive in- ference. Johan van Benthem’s vision of the “dynamic turn” has not only brought renewed life to research agendas in logic as the study...... of information processing, but likewise helped bring logic and learning in close proximity. This proximity relation is examined with respect to learning and belief revision, updating and efficiency, and with respect to how learnability fits in the greater scheme of dynamic epistemic logic and scientific method....

  4. Continuous Markovian Logics

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Cardelli, Luca; Larsen, Kim Guldstrand

    2012-01-01

    Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates...... characterizes stochastic bisimilarity and it supports the definition of a quantified extension of the satisfiability relation that measures the "compatibility" between a model and a property. In this context, the metaproperties allows us to prove two robustness theorems for the logic stating that one can...

  5. Logic in elementary mathematics

    CERN Document Server

    Exner, Robert M

    2011-01-01

    This applications-related introductory treatment explores facets of modern symbolic logic useful in the exposition of elementary mathematics. The authors convey the material in a manner accessible to those trained in standard elementary mathematics but lacking any formal background in logic. Topics include the statement calculus, proof and demonstration, abstract mathematical systems, and the restricted predicate calculus. The final chapter draws upon the methods of logical reasoning covered in previous chapters to develop solutions of linear and quadratic equations, definitions of order and

  6. Soap Bubbles and Logic.

    Science.gov (United States)

    Levine, Shellie-helane; And Others

    1986-01-01

    Introduces questions and activities involving soap bubbles which provide students with experiences in prediction and logic. Examines commonly held false conceptions related to the shapes that bubbles take and provides correct explanations for the phenomenon. (ML)

  7. Advances in temporal logic

    CERN Document Server

    Fisher, Michael; Gabbay, Dov; Gough, Graham

    2000-01-01

    Time is a fascinating subject that has captured mankind's imagination from ancient times to the present. It has been, and continues to be studied across a wide range of disciplines, from the natural sciences to philosophy and logic. More than two decades ago, Pnueli in a seminal work showed the value of temporal logic in the specification and verification of computer programs. Today, a strong, vibrant international research community exists in the broad community of computer science and AI. This volume presents a number of articles from leading researchers containing state-of-the-art results in such areas as pure temporal/modal logic, specification and verification, temporal databases, temporal aspects in AI, tense and aspect in natural language, and temporal theorem proving. Earlier versions of some of the articles were given at the most recent International Conference on Temporal Logic, University of Manchester, UK. Readership: Any student of the area - postgraduate, postdoctoral or even research professor ...

  8. Dialectic operator fuzzy logic

    Institute of Scientific and Technical Information of China (English)

    程晓春; 姜云飞; 刘叙华

    1996-01-01

    Dialectic operator fuzzy logic (DOFL) is presented which is relevant,paraconsistent and nonmonotonic.DOFL can vividly describe the belief revision in the cognitive process and can infer reasonably well while the knowledge is inconsistent,imprecise or incomplete.

  9. Analysis and logic

    CERN Document Server

    Henson, C Ward; Kechris, Alexander S; Odell, Edward; Finet, Catherine; Michaux, Christian; Cassels, J W S

    2003-01-01

    This volume comprises articles from four outstanding researchers who work at the cusp of analysis and logic. The emphasis is on active research topics; many results are presented that have not been published before and open problems are formulated.

  10. Reasoning, logic, and psychology.

    Science.gov (United States)

    Stenning, Keith; van Lambalgen, Michiel

    2011-09-01

    We argue that reasoning has been conceptualized so narrowly in what is known as 'psychology of reasoning' that reasoning's relevance to cognitive science has become well-nigh invisible. Reasoning is identified with determining whether a conclusion follows validly from given premises, where 'valid' is taken to mean 'valid according to classical logic'. We show that there are other ways to conceptualize reasoning, more in line with current logical theorizing, which give it a role in psychological processes ranging from (verbal) discourse comprehension to (nonverbal) planning. En route we show that formal logic, at present marginalized in cognitive science, can be an extremely valuable modeling tool. In particular, there are cases in which probabilistic modeling must fail, whereas logical models do well. WIREs Cogni Sci 2011 2 555-567 DOI: 10.1002/wcs.134 For further resources related to this article, please visit the WIREs website.

  11. Towards "Propagation = Logic + Control"

    OpenAIRE

    Brand, Sebastian; Yap, Roland H. C.

    2006-01-01

    Constraint propagation algorithms implement logical inference. For efficiency, it is essential to control whether and in what order basic inference steps are taken. We provide a high-level framework that clearly differentiates between information needed for controlling propagation versus that needed for the logical semantics of complex constraints composed from primitive ones. We argue for the appropriateness of our controlled propagation framework by showing that it c...

  12. Logic and declarative language

    CERN Document Server

    Downward, M

    2004-01-01

    Logic has acquired a reputation for difficulty, perhaps because many of the approaches adopted have been more suitable for mathematicians than computer scientists. This book shows that the subject is not inherently difficult and that the connections between logic and declarative language are straightforward. Many exercises have been included in the hope that these will lead to a much greater confidence in manual proofs, therefore leading to a greater confidence in automated proofs.

  13. Introduction to logic design

    CERN Document Server

    Yanushkevich, Svetlana N

    2008-01-01

    Preface Design Process and Technology Theory of logic design Analysis and synthesis Implementation technologies Predictable technologies Contemporary CAD of logic networks Number Systems Positional numbers Counting in a positional number system Basic arithmetic operations in various number systems Binary arithmetic Radix-complement representations Techniques for conversion of numbers in various radices Overflow Residue arithmetic Other binary codes Redundancy and reliability Graphical Data Structures Graphs in discrete devices and systems design Basic definitions T

  14. Duration Calculus: Logical Foundations

    DEFF Research Database (Denmark)

    Hansen, Michael Reichhardt; Chaochen, Zhou

    1997-01-01

    The Duration Calculus (abbreviated DC) represents a logical approach to formal design of real-time systems, where real numbers are used to model time and Boolean valued functions over time are used to model states and events of real-time systems. Since it introduction, DC has been applied to many...... case studies and it has been extended in several directions. The aim of this paper is to provide a thorough presentation of the logic....

  15. Logic for Language Learning

    Institute of Scientific and Technical Information of China (English)

    Simon Mumford takes a more 'logical' view of gramm

    2010-01-01

    @@ Many people enjoy puzzles and solving prob lems,and the use of an element of logic can make grammar exercises more interesting.Exercises such as putting words in order and clozes can be consid ered forms of puzzles,but there are many more op portunities to challenge more logically-minded stu dents.Here are some language puzzles for students and teachers alike.

  16. Reversible arithmetic logic unit

    OpenAIRE

    zhou, Rigui; Shi, Yang; Zhang, Manqun

    2011-01-01

    Quantum computer requires quantum arithmetic. The sophisticated design of a reversible arithmetic logic unit (reversible ALU) for quantum arithmetic has been investigated in this letter. We provide explicit construction of reversible ALU effecting basic arithmetic operations. By provided the corresponding control unit, the proposed reversible ALU can combine the classical arithmetic and logic operation in a reversible integrated system. This letter provides actual evidence to prove the possib...

  17. A Conceptual Space Logic

    DEFF Research Database (Denmark)

    Nilsson, Jørgen Fischer

    1999-01-01

    Conceptual spaces have been proposed as topological or geometric means for establishing conceptual structures and models. This paper, after briey reviewing conceptual spaces, focusses on the relationship between conceptual spaces and logical concept languages with operations for combining concept...... to form concepts. Speci cally is introduced an algebraic concept logic, for which conceptual spaces are installed as semantic domain as replacement for, or enrichment of, the traditional....

  18. Probabilistic Disjunctive Logic Programming

    OpenAIRE

    Ngo, Liem

    2013-01-01

    In this paper we propose a framework for combining Disjunctive Logic Programming and Poole's Probabilistic Horn Abduction. We use the concept of hypothesis to specify the probability structure. We consider the case in which probabilistic information is not available. Instead of using probability intervals, we allow for the specification of the probabilities of disjunctions. Because minimal models are used as characteristic models in disjunctive logic programming, we apply the principle of ind...

  19. Performance analysis of relay-assisted all-optical FSO networks over strong atmospheric turbulence channels with pointing errors

    KAUST Repository

    Yang, Liang

    2014-12-01

    In this study, we consider a relay-assisted free-space optical communication scheme over strong atmospheric turbulence channels with misalignment-induced pointing errors. The links from the source to the destination are assumed to be all-optical links. Assuming a variable gain relay with amplify-and-forward protocol, the electrical signal at the source is forwarded to the destination with the help of this relay through all-optical links. More specifically, we first present a cumulative density function (CDF) analysis for the end-to-end signal-to-noise ratio. Based on this CDF, the outage probability, bit-error rate, and average capacity of our proposed system are derived. Results show that the system diversity order is related to the minimum value of the channel parameters.

  20. Routing and wavelength assignment algorithms for all-optical WDM networks based on virtual multiple self-healing ring architecture

    Science.gov (United States)

    Ishikawa, Akio; Kishi, Yoji

    2000-09-01

    This paper newly proposes a self-healing architecture in all- optical WDM networks based on virtual embedded multiple rings (Virtual Multiple Self Healing Rings: VM-SHR). Focusing upon the network design aspect of the proposed architecture, this paper describes design methodologies for VM-SHR networks. For two major problems in all-optical WDM network design, that is, the connection routing and wavelength assignment problems, we first established solution models based on mathematical programming formulation, each of which can be solved by common integer programming algorithms, respectively. In addition, we also developed an efficient heuristic algorithm for the wavelength assignment problem. Their usefulness and performance are demonstrated through the extensive simulation results.

  1. Asynchronous, all-optical signal processing based on the self-frequency shift of a gigahertz Raman soliton.

    Science.gov (United States)

    Kato, Masao; Fujiura, Kazuo; Kurihara, Takashi

    2005-03-10

    Ultrafast asynchronous all-optical signal processing is experimentally demonstrated. It is based on the intensity-dependent, self-frequency shift of a gigahertz Raman soliton. We demonstrate error-free, asynchronous, all-optical, bit-by-bit, self-signal recognition and demultiplexing from contended optical packets without use of an optical buffer, control pulse, or bit-phase synchronization. Fourfold, contended, 9.95-Gbit/s optical packets are transmitted through a conventional repeater span of 80 km and simultaneously demultiplexed to multiwavelength 9.95-Gbit/s optical packets with 0.5-dB processing sensitivity. Furthermore, we successfully accomplish demultiplexing from overlapping signals in contended optical packets with better than 3-dB recognition sensitivity. We confirm the capability of realizing a 3x cascade operation from bit-error-rate measurements.

  2. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen;

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  3. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches

    CERN Document Server

    Bruck, Roman

    2013-01-01

    The performance of plasmonic nanoantenna structures on top of SOI wire waveguides as coherent perfect absorbers for modulators and all-optical switches is explored. The absorption, scattering, reflection and transmission spectra of gold and aluminum nanoantenna-loaded waveguides were calculated by means of 3D finite-difference time-domain simulations for single waves propagating along the waveguide, as well as for standing wave scenarios composed from two counterpropagating waves. The investigated configurations showed losses of roughly 1% and extinction ratios greater than 25 dB for modulator and switching applications, as well as plasmon effects such as strong field enhancement and localization in the nanoantenna region. The proposed plasmonic coherent perfect absorbers can be utilized for ultracompact all-optical switches in coherent networks as well as modulators and can find applications in sensing or in increasing nonlinear effects.

  4. Multiple neural representations of elementary logical connectives.

    Science.gov (United States)

    Baggio, Giosuè; Cherubini, Paolo; Pischedda, Doris; Blumenthal, Anna; Haynes, John-Dylan; Reverberi, Carlo

    2016-07-15

    A defining trait of human cognition is the capacity to form compounds out of simple thoughts. This ability relies on the logical connectives AND, OR and IF. Simple propositions, e.g., 'There is a fork' and 'There is a knife', can be combined in alternative ways using logical connectives: e.g., 'There is a fork AND there is a knife', 'There is a fork OR there is a knife', 'IF there is a fork, there is a knife'. How does the brain represent compounds based on different logical connectives, and how are compounds evaluated in relation to new facts? In the present study, participants had to maintain and evaluate conjunctive (AND), disjunctive (OR) or conditional (IF) compounds while undergoing functional MRI. Our results suggest that, during maintenance, the left posterior inferior frontal gyrus (pIFG, BA44, or Broca's area) represents the surface form of compounds. During evaluation, the left pIFG switches to processing the full logical meaning of compounds, and two additional areas are recruited: the left anterior inferior frontal gyrus (aIFG, BA47) and the left intraparietal sulcus (IPS, BA40). The aIFG shows a pattern of activation similar to pIFG, and compatible with processing the full logical meaning of compounds, whereas activations in IPS differ with alternative interpretations of conditionals: logical vs conjunctive. These results uncover the functions of a basic cortical network underlying human compositional thought, and provide a shared neural foundation for the cognitive science of language and reasoning.

  5. All-Optical Programmable Disaggregated Data Centre Network realized by FPGA-based Switch and Interface Card

    OpenAIRE

    Yan, Yan; Saridis, George; Shu, Yi; R. Rofoee, Bijan; Yan, Shuang Yi; Arslan, Murat; Richardson, David; Poole, Simon; Zervas, Georgios; Simeonidou, Dimitra; Bradley, Tom; Wheeler, Natalie V.; Wong, Nicholas H.L.; Poletti, Francesco; Petrovich, Marco N.

    2016-01-01

    This paper reports a FPGA-based Switch and Interface Card (SIC) and its application scenario in an all-optical, programmable disaggregated Data Centre Network (DCN). Our novel SIC is designed and implemented to replace traditional optical Network Interface Cards (NICs), plugged into the server directly, supporting Optical Packet Switching (OPS)/ Optical Circuit Switching (OCS) or Time Division Multiplexing (TDM)/ Wavelength Division Multiplexing (WDM) traffic on demand. Placing the SIC in eac...

  6. High-Capacity Wireless Signal Generation and Demodulation in 75- to 110-GHz Band Employing All-Optical OFDM

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Caballero Jambrina, Antonio;

    2011-01-01

    We present a radio-frequency (RF) and bit-rate scalable technique for multigigabit wireless signal generation based on all-optical orthogonal frequency-division multiplexing (OFDM) and photonic up-conversion. Coherent detection supported by digital signal processing is used for signal demodulatio...... generation and demodulation. The wireless transmission is not considered in this letter. Additionally, a novel digital carrier phase/frequency recovery structure is employed to enable robust phase and frequency tracking between the beating lasers....

  7. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format

    Science.gov (United States)

    Tian, Yue; Leng, Lufeng; Su, Yikai

    2008-11-01

    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  8. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range.

    Science.gov (United States)

    Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang

    2013-01-01

    Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm(2) order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials.

  9. Arthur Prior and medieval logic

    NARCIS (Netherlands)

    S.L. Uckelman

    2012-01-01

    Though Arthur Prior is now best known for his founding of modern temporal logic and hybrid logic, much of his early philosophical career was devoted to history of logic and historical logic. This interest laid the foundations for both of his ground-breaking innovations in the 1950s and 1960s. Becaus

  10. Relational Parametricity and Separation Logic

    DEFF Research Database (Denmark)

    Birkedal, Lars; Yang, Hongseok

    2008-01-01

    Separation logic is a recent extension of Hoare logic for reasoning about programs with references to shared mutable data structures. In this paper, we provide a new interpretation of the logic for a programming language with higher types. Our interpretation is based on Reynolds's relational...... parametricity, and it provides a formal connection between separation logic and data abstraction. Udgivelsesdato: 2008...

  11. A Paraconsistent Higher Order Logic

    DEFF Research Database (Denmark)

    Villadsen, Jørgen

    2004-01-01

    of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order...... logic with countable infinite indeterminacy, where each basic formula can get its own indeterminate truth value (or as we prefer: truth code). The meaning of the logical operators is new and rather different from traditional many-valued logics as well as from logics based on bilattices. The adequacy...

  12. All-optical ultrafast wavelength and mode converter based on inter-modal four-wave mixing in few-mode fibers

    Science.gov (United States)

    Weng, Yi; He, Xuan; Wang, Junyi; Pan, Zhongqi

    2015-08-01

    An ultrafast all-optical simultaneous wavelength and mode conversion scheme is purposed based on intermodal four-wave mixing (IM-FWM), with the capability of switching state of polarization (SOP) and mode degeneracy orientation (MDO) in few-mode fibers (FMF). The relation among the conversion efficiency, pump power and phase matching conditions is investigated in theory analysis and simulation. Using this scheme, cross-polarization modulation (XPolM) and cross-mode modulation (XMM) can be achieved, by in the best case up to 50% conversion efficiency. Furthermore, numerical results further indicate that the proposed configuration has the potential application for generating doughnut modes by the mixing of three characteristic spatial frequencies.

  13. Research on network coding technique appropriate for all-optical multicast networks%适合全光组播网络的网络编码技术研究

    Institute of Scientific and Technical Information of China (English)

    曲志坚; 谭晓; 张先伟; 石少俭; 曹雁锋; 赵明波

    2014-01-01

    Owing to the need for performing linear operation,the traditional network coding/decoding algorithms are only suit-able to be applied in the electric domain,while thanks to the development of the current all-optical devices,it is possible to re-alize logic calculus and shift operations.In order to introduce network coding into all-optical multicast networks,this paper studies the algorithms for generating network coding multicast trees and the methods for selecting the coding vector appropriate for optical network coding and simulates and analyzes the presented algorithm.The results indicate that the application of net-work coding to all-optical multicast can significantly improve the multicast performances.%传统的网络编解码算法需要进行线性运算,只适合在电域中实现。而当前全光器件的发展已经能够实现逻辑运算和移位操作。为了将网络编码引入到全光组播网络当中,文章研究了生成网络编码组播树的算法,以及适合于光网络编码的编码向量选取方法,并对所提出的算法进行了仿真分析。结果表明,将网络编码应用于全光组播中能够显著提高组播性能。

  14. Discourse Preferences in Dynamic Logic

    CERN Document Server

    Jaspars, J; Jaspars, Jan; Kameyama, Megumi

    1997-01-01

    In order to enrich dynamic semantic theories with a `pragmatic' capacity, we combine dynamic and nonmonotonic (preferential) logics in a modal logic setting. We extend a fragment of Van Benthem and De Rijke's dynamic modal logic with additional preferential operators in the underlying static logic, which enables us to define defeasible (pragmatic) entailments over a given piece of discourse. We will show how this setting can be used for a dynamic logical analysis of preferential resolutions of ambiguous pronouns in discourse.

  15. Connections among quantum logics. Pt. 1. Quantum propositional logics

    Energy Technology Data Exchange (ETDEWEB)

    Lock, P.F. (Saint Lawrence Univ., Canton, New York (USA). Dept. of Mathematics); Hardegree, G.M. (Massachusetts Univ., Amherst (USA). Dept. of Philosophy)

    1985-01-01

    In this paper, a theory of quantum logics is proposed which is general enough to enable us to reexamine a previous work on quantum logics in the context of this theory. It is then easy to assess the differences between the different systems studied. The quantum logical systems which are incorporated are divided into two groups which we call ''quantum propositional logics'' and ''quantum event logics''. The work of Kochen and Specker (partial Boolean algebras) is included and so is that of Greechie and Gudder (orthomodular partially ordered sets), Domotar (quantum mechanical systems), and Foulis and Randall (operational logics) in quantum propositional logics; and Abbott (semi-Boolean algebras) and Foulis and Randall (manuals) in quantum event logics, In this part of the paper, an axiom system for quantum propositional logics is developed and the above structures in the context of this system examined.

  16. On the suitability of fibre optical parametric amplifiers for use in all-optical agile photonic networks

    Science.gov (United States)

    Gryspolakis, Nikolaos

    B. Next, we introduce modulated channels to the amplifier in order to compare their effect on the Bit Error Rate (BER) performance. We consider the impact on FOPAs when employing different modulation formats, such as RZ, NRZ and RZ-DPSK. Carefully selected modulation formats can improve BER performance and reduce the effects of cross-phase modulation, four wave mixing (FWM) products generation or dispersion (non-linear and linear inter-channel interference). Especially for the case of FOPAs, because of the ultra-fast interaction times of the FWM phenomenon, cross gain modulation can be a great deterrent for using FOPAs. We use RZ-DPSK in order to suppress the WDM signal crosstalk. Only by using RZ-DPSK, we obtain an improved receiver sensitivity of 5 dB when operating at 40 Gb/s. Finally, we investigate ways to mitigate such effects as the ones described above (gain excursions, gain tilt, etc.). We demonstrate that by using a ring configuration with optical feedback for the first time in FOPAs, we can achieve all-optical gain clamping (AOGC), mitigating gain excursions and attaining gain, independent of channel input power for a large range of PCIP. For example, with the use of AOGC, we reduce the add/drop-induced gain excursions from 4 dB to 0.6 dB. Also, by the combined use of AOGC and RZ-DPSK, we mitigate most of the aforementioned hindrances described above.

  17. Dispersion compensation in an open-loop all-optical chaotic communication system

    Institute of Scientific and Technical Information of China (English)

    Liu Hui-Jie; Ren Bin; Feng Jiu-Chao

    2012-01-01

    The optical chaotic communication system using open-loop fiber transmission is studied under strong injection conditions.The optical chaotic communication system with open-loop configuration is studied using fiber transmission under strong injection conditions.The performances of fiber links composed of two types of fiber segments in different dispersion compensation maps are compared by testing the quality of the recovered message with different bit rates and encrypted by chaotic modulation (CM) or chaotic shift keying (CSK).The result indicates that the performance of the pre-compensation map is always worst.Two types of symmetrical maps are identical whatever the encryption method and bit-rate of message are.For the transmitting and the recovering of message of lower bit rate (1 Gb/s),the post-compensation map is the best scheme.However,for the message of higher bit rate (2.5 Gb/s),the parameters in communication system need to be modified properly in order to adapt to the high-speed application.Meanwhile,two types of symmetrical maps are the best scheme.In addition,the CM method is superior to the CSK method for high-speed applications.It is in accordance with the result in a back-to-back configuration system.

  18. All-optical mode conversion via spatially-multimode four-wave mixing

    CERN Document Server

    Danaci, Onur; Glasser, Ryan T

    2016-01-01

    We experimentally demonstrate the conversion of a Gaussian beam to an approximate Bessel-Gauss mode by making use of a non-collinear four-wave mixing process in hot atomic vapor. The presence of a strong, spatially non-Gaussian pump both converts the probe beam into a non-Gaussian mode, and generates a conjugate beam that is in a similar non-Gaussian mode. The resulting probe and conjugate modes are compared to the output of a Gaussian beam incident on an annular aperture that is then spatially filtered according to the phase-matching conditions imposed by the four-wave mixing process. We find that the resulting experimental data agrees well with both numerical simulations, as well as analytical formulae describing the effects of annular apertures on Gaussian modes. These results show that spatially-multimode gain platforms may be used as a new method of mode conversion.

  19. All-optical mode conversion via spatially multimode four-wave mixing

    Science.gov (United States)

    Danaci, Onur; Rios, Christian; Glasser, Ryan T.

    2016-07-01

    We experimentally demonstrate the conversion of a Gaussian beam to an approximate Bessel–Gauss mode by making use of a non-collinear four-wave mixing (4WM) process in hot atomic vapor. The presence of a strong, spatially non-Gaussian pump both converts the probe beam into a non-Gaussian mode, and generates a conjugate beam that is in a similar non-Gaussian mode. The resulting probe and conjugate modes are compared to the output of a Gaussian beam incident on an annular aperture that is then spatially filtered according to the phase-matching conditions imposed by the 4WM process. We find that the resulting experimental data agrees well with both numerical simulations, as well as analytical formulae describing the effects of annular apertures on Gaussian modes. These results show that spatially multimode gain platforms may be used as a new method of mode conversion.

  20. All-optical cavity-based simulator of noise-assisted transport

    CERN Document Server

    Viciani, Silvia; Bellini, Marco; Caruso, Filippo

    2015-01-01

    Recent theoretical and experimental efforts have shown the remarkable and counter-intuitive role of noise in enhancing the transport efficiency of complex systems. Here, we realize simple, scalable, and controllable optical fiber cavity networks that allow us to simulate the performance of transport networks for different conditions of interference, dephasing and disorder. In particular, we experimentally demonstrate that the transport efficiency reaches a maximum when varying the external dephasing noise, i.e. a bell-like shape behavior that had been predicted only theoretically. These optical platforms are very promising simulators of transport phenomena, and could be used, in particular, to design and test optimal topologies of artificial light-harvesting structures for future solar energy technologies.