WorldWideScience

Sample records for all terrain vehicles

  1. 75 FR 5767 - All Terrain Vehicle Chinese Language Webinar; Meeting

    Science.gov (United States)

    2010-02-04

    ... COMMISSION All Terrain Vehicle Chinese Language Webinar; Meeting AGENCY: Consumer Product Safety Commission... Terrain Vehicle Chinese Language Webinar. The webinar will focus on CPSC's requirements for ATV's... February 4, 2010 at 6:00 am Eastern Standard Time. Location: The meeting will be held live via...

  2. Lunar All-Terrain Utility Vehicle for EVA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("LATUV") to assist extra-vehicular activities in...

  3. Lunar All-Terrain Utility Vehicle for EVA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("Lunar ATV") to assist extra-vehicular...

  4. 32 CFR 636.29 - Go-carts, minibikes, and all terrain vehicles (ATV's).

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Go-carts, minibikes, and all terrain vehicles... (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.29 Go-carts, minibikes, and all terrain vehicles (ATV's). (a) Operators of “go-carts,” “minibikes,” and ATV's 16 years of age or older, must comply...

  5. A Trial of an All-Terrain Vehicle Safety Education Video in a Community-Based Hunter Education Program

    Science.gov (United States)

    Williams, Robert S.; Graham, James; Helmkamp, James C.; Dick, Rhonda; Thompson, Tonya; Aitken, Mary E.

    2011-01-01

    Purpose: All-terrain vehicle (ATV) injury is an increasingly serious problem, particularly among rural youth. There have been repeated calls for ATV safety education, but little study regarding optimal methods or content for such education. The purpose of this study was to determine if an ATV safety video was effective in increasing ATV safety…

  6. Imaging findings in 512 children following all-terrain vehicle injuries

    International Nuclear Information System (INIS)

    Injuries related to all-terrain vehicle (ATV) use by children have increased in recent years, and the pattern of these injuries is not well known among radiologists. Our purpose was to identify different radiologically diagnosed injuries in children suffering ATV-related trauma and determine associations among various injuries as well as between injuries and outcome. The study included 512 consecutive children suffering from ATV injuries treated at a tertiary care pediatric hospital. All imaging studies were reviewed and correlated with injury frequency and outcome using multivariate analysis. Head injuries occurred in 244 children (48%) and in five of six deaths. Calvarial skull fractures occurred in 104 children and were associated with brain, subdural and epidural injuries. Brain and orbit injuries were associated with long-term disability. A total of 227 extremity fractures were present in 172 children (34%). The femur was the most commonly fractured bone. Nine children had partial foot amputations. Multiorgan injuries occurred in nearly half of the 97 children with torso injuries. Determinants for long-term disability or death were head injuries (odds ratio 3.4) and extremity fractures (odds ratio 3.3). Head and extremity injuries are the two most common injuries in children suffering ATV injuries and are associated with long-term disability. ATV use by children is dangerous and is a significant threat to child safety. (orig.)

  7. Youth Personality Factors as Predictors of Risky All-Terrain Vehicle (ATV) Driving Behaviors.

    Science.gov (United States)

    Jinnah, H A; Stoneman, Z

    2016-04-01

    Children and youth account for a disproportionately high number of all-terrain vehicle (ATV) related injuries and deaths. This study explored whether and how youth personality factors such as sensation seeking (including thrill seeking and behavioral intensity) and youth safety consciousness predict risky A TV riding behaviors. Survey information was collected from farm families in Georgia having youth who were active on farms. Data were analyzed from 104 youth between the ages 10 through 14 years who were active users ofATVs. Boys and girls had similar exposure to ATVs. Risky ATV riding behaviors were associated with age but not with gender. Boys and girls were equally likely to drive adult-sized ATVs, drive ATVs on public roads, drive ATVs fast, and carry extra passengers on single-seat ATVs. Boys had higher scores than girls on personality factors like thrill seeking and behavioral intensity. Hierarchical regression revealed that although there were multiple determinants of risky ATV riding behaviors of youth, thrill seeking appeared to be an important factor, which was moderated by safety consciousness. Youth who are low in thrill seeking and have a high level of safety consciousness reported less risky ATV riding behaviors. High thrill seekers were more likely to report indulging in risky ATV riding behaviors regardless of their level of safety consciousness. Our results suggest that personality traits (such as sensation seeking) of the target population should be considered when developing ATV safety interventions, as these traits will likely influence an intervention's level of success. Low thrill seekers would be prime candidates for safety training, as an increase in their safety consciousness may be more likely to result in decreased risky riding behaviors. High thrill seekers may be less amenable to training and will more likely require interventions external to the individual, including legislation, improved ATV safety design, use of crush protection

  8. 40 CFR 1051.107 - What are the exhaust emission standards for all-terrain vehicles (ATVs) and offroad utility...

    Science.gov (United States)

    2010-07-01

    ... as § 1051.615, but not including vehicles certified under other parts in this chapter (such as 40 CFR... operating life from advertisements or other marketing materials for any vehicles in the engine family....

  9. Single-Frame Terrain Mapping Software for Robotic Vehicles

    Science.gov (United States)

    Rankin, Arturo L.

    2011-01-01

    This software is a component in an unmanned ground vehicle (UGV) perception system that builds compact, single-frame terrain maps for distribution to other systems, such as a world model or an operator control unit, over a local area network (LAN). Each cell in the map encodes an elevation value, terrain classification, object classification, terrain traversability, terrain roughness, and a confidence value into four bytes of memory. The input to this software component is a range image (from a lidar or stereo vision system), and optionally a terrain classification image and an object classification image, both registered to the range image. The single-frame terrain map generates estimates of the support surface elevation, ground cover elevation, and minimum canopy elevation; generates terrain traversability cost; detects low overhangs and high-density obstacles; and can perform geometry-based terrain classification (ground, ground cover, unknown). A new origin is automatically selected for each single-frame terrain map in global coordinates such that it coincides with the corner of a world map cell. That way, single-frame terrain maps correctly line up with the world map, facilitating the merging of map data into the world map. Instead of using 32 bits to store the floating-point elevation for a map cell, the vehicle elevation is assigned to the map origin elevation and reports the change in elevation (from the origin elevation) in terms of the number of discrete steps. The single-frame terrain map elevation resolution is 2 cm. At that resolution, terrain elevation from 20.5 to 20.5 m (with respect to the vehicle's elevation) is encoded into 11 bits. For each four-byte map cell, bits are assigned to encode elevation, terrain roughness, terrain classification, object classification, terrain traversability cost, and a confidence value. The vehicle s current position and orientation, the map origin, and the map cell resolution are all included in a header for each

  10. 3D position tracking for all-terrain robots

    OpenAIRE

    Lamon, Pierre; Siegwart, Roland

    2007-01-01

    Rough terrain robotics is a fast evolving field of research and a lot of effort is deployed towards enabling a greater level of autonomy for outdoor vehicles. Such robots find their application in scientific exploration of hostile environments like deserts, volcanoes, in the Antarctic or on other planets. They are also of high interest for search and rescue operations after natural or artificial disasters. The challenges to bring autonomy to all terrain rovers are wide. In particular, it requ...

  11. 3D position tracking for all-terrain robots

    OpenAIRE

    Lamon, Pierre

    2005-01-01

    Rough terrain robotics is a fast evolving field of research and a lot of effort is deployed towards enabling a greater level of autonomy for outdoor vehicles. Such robots find their application in scientific exploration of hostile environments like deserts, volcanoes, in the Antarctic or on other planets. They are also of high interest for search and rescue operations after natural or artificial disasters. The challenges to bring autonomy to all terrain rovers are wide. In particular, it requ...

  12. All terrain robot for remote radiation measurement

    International Nuclear Information System (INIS)

    In view of recent nuclear accidents like that in Fukushima Daiichi, the necessity for remote radiation measurement, as a first step in crisis management has been felt in the nuclear technology community. Also, some regular maintenance works in nuclear facilities result in substantial radiation exposure to human workers. All these have provided an impetus to the development of an All-Terrain Robot capable of remote radiation mapping inside nuclear installations; accordingly a prototype system has been developed at DRHR, Bhabha Atomic Research Centre. This robot has been designed to negotiate uneven terrain including staircases. Also, the robot is equipped with three onboard cameras and a retractable radiation detector and it is remotely controlled over wireless communication links with a computer. The control software, through its seamless interface, allows for easy viewing and logging of radiation data in real time. The system has been deployed and field trials have been taken

  13. Simulation of Nano-TiO2 Spraying Uniformity in All-terrain Vehicle Device%车载纳米TiO2装备喷洒均匀度计算模拟

    Institute of Scientific and Technical Information of China (English)

    王汝佳; 于建国

    2012-01-01

    根据纳米TiO2的特性,在全路况车上设计装备纳米TiO2喷洒装备,并在4种车速下对平面喷洒量进行数值计算模拟,利用Delaunay三角剖分法和MATLAB科学计算软件,对平面上纳米TiO2喷洒点的分布均匀度,通过三次样条多次插值计算,将喷头的喷洒点分布数据转换为网格型。对喷头的方形组合喷洒特性情况进行理论分析,结果表明在喷洒面积相同情况下,全路况车速为2.0m/s(7.2km/h)时,正方形组合布置喷洒点的数据分布较为均匀。%In this paper,according to the characteristics of nano-TiO2,the nano-TiO2 spraying device is designed and equipped on the all-terrain vehicle.The Delaunay triangulation method and MATLAB scientific computer software are used to analysis the all-terrain vehicle spray equipment spraying characteristics at different speeds.Based on the all-terrain vehicle TiO2 nanometer spraying point’s data distribution uniformity,the method of cubic spline interpolation is used to convert the data of the nozzle spray distribution to a grid type.Based on theoretical analysis,the square combination of the nozzle spraying characteristics is analyzed;the result shows that in the spraying area,when the all-terrain vehicle speeds at 2.0m/s(7.2km/h),the spray point data of the square combination arrangement are more uniform.

  14. Brief Talk about the International Trade After-sales Service of All-terrain Vehicle Enterprises%浅谈全地形车企业国际贸易售后服务

    Institute of Scientific and Technical Information of China (English)

    唐正捷

    2014-01-01

    In view of different regions and markets of all-terrain vehicle enterprise both at home and abroad, a brief review of the domestic after-sales mode at the early stage is given and the necessity for domestic enterprises to conduct international sales and services in this filed in future is briefly analyzed.%针对全地形车的国内外不同地域和市场,简单回顾了国内早期的售后服务模式;针对不同销售市场和典型全地形车的性能特点,对国内企业未来在该领域进行国际销售和服务的必要性做了简要分析。

  15. Terrain aided navigation for autonomous underwater vehicles with coarse maps

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian

    2016-09-01

    Terrain aided navigation (TAN) is a form of geophysical localization technique for autonomous underwater vehicles (AUVs) operating in GPS-denied environments. TAN performance on sensor-rich AUVs has been evaluated in sea trials. However, many challenges remain before TAN can be successfully implemented on sensor-limited AUVs, especially with coarse maps. To improve TAN performance over coarse maps, a Gaussian process (GP) is proposed for the modeling of bathymetric terrain and integrated into the particle filter (GP-PF). GP is applied to provide not only the bathymetric value prediction through learning a set of bathymetric data from coarse maps but also the variance of the prediction. As a measurement update, calculated on bathymetric deviation is performed through the PF to obtain absolute and bounded positioning accuracy. Through the analysis of TAN performance on experimental data for two different terrains with map resolutions of 10–50 m, both the ability of the proposed model to represent the actual bathymetric terrain with accuracy and the effect of the GP-PF for TAN on sensor-limited systems in suited terrain are demonstrated. The experiment results further verify that there is an inverse relationship between the coarseness of the map and the overall TAN accuracy in rough terrains, but there is hardly any relationship between them in relatively flat terrains.

  16. A method for separation of the terrain and non-terrain from Vehicle-borne Laser Scanning Data

    International Nuclear Information System (INIS)

    Half the points from vehicle-borne laser scanning data are terrain data. If you want to extract features such as trees, street lights and buildings, terrain points must be removed. Nowadays, either airborne or vehicle-borne laser data, are mostly used to set an elevation threshold based on the scanning line or POS data to determine whether the point is a terrain point or not, but the disadvantage is part of low buildings or other feature objects will be lost. If the study area has high differences in the horizontal or the forward direction, this method is not applicable. This paper investigates a new methodology to extract the terrain points, which has great significance for data reduction and classification. The procedure includes the following steps: 1)Pre-processing: to remove discrete points and abnormal points. 2) Divided all the points into grid, calculating the average value of the XY and the minimum value of the Z of all the points in the same grid as the central point of the grid.3) Choose nearest six points which are close to the centre point to fitting the quadratic surface.4)Compare the normal vector of the fitting surface of the grid to the normal vector of the 8-neighborhood, if the difference is too big, it will be smoothed.5) Determine whether the point in the grid is on the surface, if the point belongs to the surface, it will be classified as terrain point. The results and evaluation have shown the effectiveness of the method and its potential in separation of the terrain of various areas

  17. Autonomous terrain characterization and modelling for dynamic control of unmanned vehicles

    Science.gov (United States)

    Talukder, A.; Manduchi, R.; Castano, R.; Owens, K.; Matthies, L.; Castano, A.; Hogg, R.

    2002-01-01

    This end-to-end obstacle negotiation system is envisioned to be useful in optimized path planning and vehicle navigation in terrain conditions cluttered with vegetation, bushes, rocks, etc. Results on natural terrain with various natural materials are presented.

  18. Tractive performance analysis of diameter-variable wheel for 4WD all-terrain vehicle on soft soil%四驱全地形车可变直径轮软土牵引特性分析

    Institute of Scientific and Technical Information of China (English)

    陈新波; 高峰; 徐国艳; 药晓江

    2012-01-01

    为解决常规地面车辆及传统车轮在沙地、滩涂等松软地域行驶或作业时存在通过性差、效率低、能耗大甚至无法行驶的问题,自主创新设计出四驱可变直径轮轻型全地形探测车,车轮具有可张开成为弹性步行轮和合拢成为刚性圆车轮2种工作轮态.基于贝克模型的经典地面力学理论,分别建立了可变直径轮张开轮及合拢轮态时与3种典型松软沙土交互作用关系的力学简化模型,计算并对比分析了可变直径轮两种工作轮态的挂钩牵引力和驱动力矩、牵引效率等随滑转率的变化关系及车轮接近角与沉陷量关系.结果表明车轮的挂钩牵引力、驱动力矩和牵引效率等均受到车轮滑转率及软土特性参数的制约,在松软路面上可变直径轮张开步行轮比合拢圆轮能产生更大的挂钩牵引力、驱动力矩、牵引效率和更小的沉陷量,更有利于提高车轮的软土牵引通过性.分析结果可作为后续实验研究对比的参考.%Four-wheel drive all-terrain light exploration vehicle with diameter-variable wheels was innova tively designed out to solve the problems when conventional ground vehicles and wheels driving on soft terrain, such as poor traffieability, low efficiency, big energy consumption and even can't drive. The wheel has two ex treme working status: elastic extended walking-wheel and folded rigid wheel. Based on classical terrameehan ies theory, the dynamics models of interactions between two types of working wheel status and three kinds of typical soft soils were established. The drawbar pull, driving torque and driving efficiency as well as sinkage of diameter-variable wheel were analyzed under the condition of different slip. The results indicate that traction trafficability indexes are limited by wheel slip and soft soil parameters. The simulation provides theoretical ba sis for that the elastic extended wheel can improve significantly

  19. Aerial Terrain Mapping Using Unmanned Aerial Vehicle Approach

    Science.gov (United States)

    Tahar, K. N.

    2012-08-01

    This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV) technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior orientation process and to determine the accuracy of the photogrammetric products by using UAV images. Recently, UAV technology has been used in several applications such as mapping, agriculture and surveillance. The aim of this study is to scrutinize the usage of UAV to map the semi-development areas. The performance of the low cost UAV mapping study was established on a study area with two image processing methods so that the results could be comparable. A non-metric camera was attached at the bottom of UAV and it was used to capture images at both sites after it went through several calibration steps. Calibration processes were carried out to determine focal length, principal distance, radial lens distortion, tangential lens distortion and affinity. A new method in image registration for a non-metric camera is discussed in this paper as a part of new methodology of this study. This method used the UAV Global Positioning System (GPS) onboard to register the UAV image for interior orientation process. Check points were established randomly at both sites using rapid static Global Positioning System. Ground control points are used for exterior orientation process, and check point is used for accuracy assessment of photogrammetric product. All acquired images were processed in a photogrammetric software. Two methods of image registration were applied in this study, namely, GPS onboard registration and ground control point registration. Both registrations were processed by using photogrammetric software and the result is discussed. Two results were produced in this study, which are the digital orthophoto and the digital terrain model. These results were analyzed by using the root mean square

  20. PRIMUS: autonomous navigation in open terrain with a tracked vehicle

    Science.gov (United States)

    Schaub, Guenter W.; Pfaendner, Alfred H.; Schaefer, Christoph

    2004-09-01

    The German experimental robotics program PRIMUS (PRogram for Intelligent Mobile Unmanned Systems) is focused on solutions for autonomous driving in unknown open terrain, over several project phases under specific realization aspects for more than 12 years. The main task of the program is to develop algorithms for a high degree of autonomous navigation skills with off-the-shelf available hardware/sensor technology and to integrate this into military vehicles. For obstacle detection a Dornier-3D-LADAR is integrated on a tracked vehicle "Digitized WIESEL 2". For road-following a digital video camera and a visual perception module from the Universitaet der Bundeswehr Munchen (UBM) has been integrated. This paper gives an overview of the PRIMUS program with a focus on the last program phase D (2001 - 2003). This includes the system architecture, the description of the modes of operation and the technology development with the focus on obstacle avoidance and obstacle classification using a 3-D LADAR. A collection of experimental results and a short look at the next steps in the German robotics program will conclude the paper.

  1. Motion planning of a robotic arm on a wheeled vehicle on a rugged terrain

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong K.

    1996-03-01

    This paper presents a set of motion planners for an exploration vehicle on a simulated rugged terrain. The vehicle has four wheels for its movement and a robotic arm mounted on the vehicle for object manipulation. Given a target point to reach with the hand of the arm, our planners first compute a path for the vehicle to the vicinity of the target, then compute an optimal vehicle position from which the arm can reach the target point, and then plans a path for the arm to reach the target. The vehicle path is planned in two stages. A rough path is planned considering only global features of the terrain, and the path is modified by a local planner to avoid more detailed features of the terrain. The planners are expected to increase the autonomy of robots and improve the efficiencies of exploration missions.

  2. Low-cost multi-terrain autonomous vehicle for hostile environments

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M. L., LLNL

    1996-12-03

    This paper describes an innovative and unique autonomous vehicle being developed at the Lawrence Livermore National Laboratory (LLNL) for versatile use in hostile environments. Conventional vehicles used in decommissioning and decontaminating, police activity, and unmanned military operations typically are designed with four-wheels or track in contact with the environment. Although four-wheel and track vehicles work well, they are limited in negotiating saturated terrain, steep hills and soft soils. The Spiral Track Autonomous Robot (STAR) is a versatile and maneuverable multi-terrain mobile vehicle that uses the latest available computer technology and two Archimedes screws, in contact with the local environment to intelligently negotiate a hostile environment.

  3. Navigation of military and space unmanned ground vehicles in unstructured terrains

    Science.gov (United States)

    Lescoe, Paul; Lavery, David; Bedard, Roger

    1991-01-01

    Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.

  4. A stochastic analysis of terrain evaluation variables for path selection. [roving vehicle navigation

    Science.gov (United States)

    Donohue, J. G.; Shen, C. N.

    1978-01-01

    A stochastic analysis was performed on the variables associated with the characteristics of the terrain encountered by a roving system with an autonomous navigation system. A laser rangefinder is employed to detect terrain features at ranges up to 75 m. Analytic expressions and a numerical scheme were developed to calculate the variance of data on these four variables: (1) body clearance, (2) in-path slope, (3) tilt slope, and (4) wheel deviation. The variance is due to noise in the range data. It was found that the standard deviation of these terrain variables is large enough to warrant the use of a safety margin to aid the roving vehicle in avoiding high risk areas.

  5. Modelling of the optimal vehicle route in terrain in emergency situations using GIS data

    International Nuclear Information System (INIS)

    Most navigation systems in transport are oriented towards the search for optimal paths (shortest or fastest), using vector GIS data. At the time of natural disasters and emergency situations is necessary to consider roads and terrain for transport. This article is focused on finding optimal routes in terrain, which contains a number of point, line and area obstacles. The most frequent point obstacles are trees in the forest. The paper analyzes the typical structure of tree stands in the forest, their characteristics in GIS databases, as well as dimensional parameters of vehicles moving in the forest. The quality of these data is a prerequisite for finding routes between point obstacles. Searching for the fastest or shortest route of the vehicle described in this article is based on the use of the relationship between the Delaunay triangulation and Voronoi graph, the application of Dijkstra's algorithm and the optimization of fractional line. The above-mentioned methods are also exploitable for searching for the shortest route of movement among line obstructions and area obstructions, such route can be apprehended as the joining of points defining impassable terrain. In such a case, the condition must be met that the distance of terminal points of joins has to be adjusted to the extent that it will be shorter than a vehicle width increased by safe margin

  6. Modelling of the optimal vehicle route in terrain in emergency situations using GIS data

    Science.gov (United States)

    Rybansky, M.

    2014-02-01

    Most navigation systems in transport are oriented towards the search for optimal paths (shortest or fastest), using vector GIS data. At the time of natural disasters and emergency situations is necessary to consider roads and terrain for transport. This article is focused on finding optimal routes in terrain, which contains a number of point, line and area obstacles. The most frequent point obstacles are trees in the forest. The paper analyzes the typical structure of tree stands in the forest, their characteristics in GIS databases, as well as dimensional parameters of vehicles moving in the forest. The quality of these data is a prerequisite for finding routes between point obstacles. Searching for the fastest or shortest route of the vehicle described in this article is based on the use of the relationship between the Delaunay triangulation and Voronoi graph, the application of Dijkstra's algorithm and the optimization of fractional line. The above-mentioned methods are also exploitable for searching for the shortest route of movement among line obstructions and area obstructions, such route can be apprehended as the joining of points defining impassable terrain. In such a case, the condition must be met that the distance of terminal points of joins has to be adjusted to the extent that it will be shorter than a vehicle width increased by safe margin.

  7. Terrain-surface Estimation from Body Configurations of Passive Linkages

    OpenAIRE

    Daisuke Chugo; Kuniaki Kawabata; Hayato Kaetsu; Hajime Asama; Taketoshi Mishima

    2014-01-01

    A passive linkage mechanism is used for increasing the mobile performance of a wheeled vehicle on uneven ground. The mechanism changes its shape according to the terrain and enables all the wheels to remain grounded while the vehicle operates over rough terrain. This means that the shape of the passive linkage mechanism must correspond to that of the terrain surface, so that the vehicle can estimate the shape of the surface while passing over it. This paper proposes a new terrain- surface est...

  8. Control and learning for intelligent mobility of unmanned ground vehicles in complex terrains

    Science.gov (United States)

    Trentini, M.; Beckman, B.; Digney, B.

    2005-05-01

    The Autonomous Intelligent Systems program at Defence R&D Canada-Suffield envisions autonomous systems contributing to decisive operations in the urban battle space. Creating effective intelligence for these systems demands advances in perception, world representation, navigation, and learning. In the land environment, these scientific areas have garnered much attention, while largely ignoring the problem of locomotion in complex terrain. This is a gap in robotics research, where sophisticated algorithms are needed to coordinate and control robotic locomotion in unknown, highly complex environments. Unlike traditional control problems, intuitive and systematic control tools for robotic locomotion do not readily exist thus limiting their practical application. This paper addresses the mobility problem for unmanned ground vehicles, defined here as the autonomous maneuverability of unmanned ground vehicles in unknown, highly complex environments. It discusses the progress and future direction of intelligent mobility research at Defence R&D Canada-Suffield and presents the research tools, topics and plans to address this critical research gap.

  9. Towards digital terrain modeling with unmanned aerial vehicles and SfM point clouds

    Science.gov (United States)

    Anders, Niels; Masselink, Rens; Keesstra, Saskia

    2015-04-01

    Unmanned Aerial Vehicles (UAVs) are excellent tools for the acquisition of very high-resolution digital surface models using low altitude aerial photography and photogrammetric, 'Structure-from-Motion' (SfM), processing. Terrain reconstructions are produced by interpolating ground points after removal of non-ground points. While extremely detailed in non-vegetated areas, UAV point clouds are less suitable for terrain reconstructions of vegetated areas due to the inability of aerial photography to penetrate through vegetation for collecting ground points. This hinders for example detailed modeling of sediment transport on hillslopes towards vegetated lower areas and channels with riparian vegetation. We propose complementing UAV SfM point cloud data with alternative data sources to fill in the data gaps in vegetated areas. Firstly, SfM point clouds are classified into ground and non-ground points based on both color values and neighborhood statistics. Secondly, non-ground points are removed and data gaps are complemented with external data points. Thirdly, the combined point cloud is interpolated into a digital terrain model (DTM) using the natural neighbor interpolation technique. We demonstrate the methodology with three scenarios of terrain reconstructions in two study areas in North and Southeast Spain: i.e. a linear slope below sparsely distributed trees without the need of supplementary data points (1), and a gully with riparian vegetation combined with 5 m LiDAR data (2) or with manually measured dGPS data points (3). While the spatial resolution is significantly less below vegetated areas compared to non-vegetated areas, the results suggest significant improvements of the reconstructed topography, making the DTM more useful for soil erosion studies and sediment modeling.

  10. An ultracompact laser terrain mapper for deployment onboard unmanned aerial vehicles

    Science.gov (United States)

    Hussein, Marwan W.; Tripp, Jeffrey W.; Hill, Brian R.

    2009-05-01

    Airborne laser terrain mapping systems have redefined the realm of topographic mapping. Lidars with kilohertz collection rates and long ranges have made airborne surveying a quick, efficient and highly productive endeavor. Despite the current industry efforts toward improving airborne lidar range, collection rate, resolution and accuracies, and with the advent of Unmanned Aerial Vehicles (UAVs) and their myriad advantages, military and civil applications alike are looking for very compact and rugged lidar systems that can fit within the tight volumetric, form-factor, mass and power constraints imposed by UAVs. Optech has developed a very compact airborne laser terrain mapper that's geared toward UAV deployment. The system is composed of a highly integrated unit that combines a lidar transceiver, a position orientation sensor and control electronics in a 1 cubic foot - 57 lb package. Such level of compactness is achieved by employing the latest laser technology trends along with featuring very compact optical design, and using the latest control and data collection architecture technology. This paper describes the UAV requirements that drove the system design, the technology employed and optimizations implemented in the system to achieve its ultra-compact size.

  11. A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)

    Energy Technology Data Exchange (ETDEWEB)

    Klarer, P.

    1994-03-01

    The design of a multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER) is described. The control system design attempts to ameliorate some of the problems noted by some researchers when implementing subsumption or behavioral control systems, particularly with regard to multiple processor systems and real-time operations. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules by taking advantage of intertask communications channels, and by implementing each behavior module and each interconnection node as a stand-alone task. The potential advantages of this approach over those previously described in the field are discussed. An implementation of the architecture is planned for a prototype Robotic All Terrain Lunar Exploration Rover (RATLER) currently under development, and is briefly described.

  12. High rate-localization for high-speed all-terrain robots

    OpenAIRE

    Roussillon, Cyril; Lacroix, Simon

    2012-01-01

    International audience Localization plays a central role in autonomous robot navigation, and a vast number of contributions can be found in the robotics literature. High speed all terrain robots raise new challenges for localization, that must run at higher rates, while being more accurate than for walking speed robots. The article presents a SLAM setup that satisfies these requirements, using vision and low-cost inertial sensors as its core. Other localization sensors can also be incorpor...

  13. A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)

    Science.gov (United States)

    Klarer, P.

    1994-01-01

    An alternative methodology for designing an autonomous navigation and control system is discussed. This generalized hybrid system is based on a less sequential and less anthropomorphic approach than that used in the more traditional artificial intelligence (AI) technique. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules. This is accomplished by intertask communications channels which implement each behavior module and each interconnection node as a stand-alone task. The proposed design architecture allows for construction of hybrid systems which employ both subsumption and traditional AI techniques as well as providing for a teleoperator's interface. Implementation of the architecture is planned for the prototype Robotic All Terrain Lunar Explorer Rover (RATLER) which is described briefly.

  14. A multitasking behavioral control system for the Robotic All-Terrain Lunar Exploration Rover (RATLER)

    Science.gov (United States)

    Klarer, Paul

    1993-01-01

    An approach for a robotic control system which implements so called 'behavioral' control within a realtime multitasking architecture is proposed. The proposed system would attempt to ameliorate some of the problems noted by some researchers when implementing subsumptive or behavioral control systems, particularly with regard to multiple processor systems and realtime operations. The architecture is designed to allow synchronous operations between various behavior modules by taking advantage of a realtime multitasking system's intertask communications channels, and by implementing each behavior module and each interconnection node as a stand-alone task. The potential advantages of this approach over those previously described in the field are discussed. An implementation of the architecture is planned for a prototype Robotic All Terrain Lunar Exploration Rover (RATLER) currently under development and is briefly described.

  15. Hardware and software package for search, detection and first aid means delivery in rough terrain on basis of a three rotor unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Sergii FIRSOV

    2014-06-01

    Full Text Available The unmanned aerial vehicles are used for dangerous tasks solution. The search and detection of injured in rough terrain is one of them. Thus, vertical take-off unmanned aerial vehicles are of a special interest. A hardware and software package for the task solving is proposed in the article.

  16. The All Terrain Bio nano Gear for Space Radiation Detection System

    International Nuclear Information System (INIS)

    This paper discusses about the relevance of detecting space radiations which are very harmful and pose numerous health issues for astronauts. There are many ways to detect radiations, but we present a non-invasive way of detecting them in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one such concept where we propose to detect various levels of space radiations depending on their intensity and warn the astronaut of probable biological damage. A basic framework for radiation detection system which utilizes bio-nano machines is discussed. This radiation detection system is termed as 'radiation-responsive molecular assembly' (RMA) for the detection of space radiations. Our objective is to create a device which could detect space radiations by creating an environment equivalent to human cells within its structure and bio-chemically sensing the effects induced therein. For creating such an environment and further bio-chemically sensing space radiations bio-nano systems could be potentially used. These bio-nano systems could interact with radiations and signal based on the intensity of the radiations their relative biological effectiveness. Based on the energy and kind of radiation encountered, a matrix of signals has to be created which corresponds to a particular biological effect. The key advantage of such a design is its ability to interact with the radiation at e molecular scale; characterize its intensity based on energy deposition and relate it to the relative biological effectiveness based on the correspondence established through molecular structures and bond strengths of the bio-nano system

  17. Methods for Improving Long-Range Wireless Communication Between Extreme Terrain Vehicles

    Science.gov (United States)

    Johnson, Paul; Zarzhitsky, Dimitri

    2012-01-01

    Axel is an extreme terrain, two-wheeled rover designed to traverse rocky surface and sub-surface landscapes in order to conduct remote science experiments in hard-to-reach locations. The rover's design meets many requirements for a mobile research platform capable of reaching water seeps on Martian cliff sides. Axel was developed by the Mobility and Robotic Systems section at the Caltech Jet Propulsion Laboratory. Unique design criteria associated with extreme terrain mobility led to a unique rover solution, consisting of a central module, which provides long-term energy storage and space for large-scale science payloads, and two detachable Axels that can detach and explore extreme terrain locations that are inaccessible to conventional rovers. The envisioned mission could involve a four-wheeled configuration of Axel called 'DuAxel' that is able to traverse the benign, flattened terrain of a landing site and approach the edge of the targeted crater or cave where it would deploy anchoring legs and detach one of the Axel rovers [1]. A tether provides a secure link between the Axel rover and the central module, acting as an anchor to allow Axel to descend along steep crater walls to collect data from the scientifically relevant sites along the water seeps or crater ledges. After completing its scientific mission Axel would hoist itself up to the central module and dock autonomously (using its on-board stereo cameras), allowing the once-again recombined DuAxel to travel to another location to repeat data collection.

  18. Analysis of terrain map matching using multisensing techniques for applications to autonomous vehicle navigation

    Science.gov (United States)

    Page, Lance; Shen, C. N.

    1991-01-01

    This paper describes skyline-based terrain matching, a new method for locating the vantage point of laser range-finding measurements on a global map previously prepared by satellite or aerial mapping. Skylines can be extracted from the range-finding measurements and modelled from the global map, and are represented in parametric, cylindrical form with azimuth angle as the independent variable. The three translational parameters of the vantage point are determined with a three-dimensional matching of these two sets of skylines.

  19. Proposal for the award of a contract for the supply of an all-terrain telescopic mobile crane

    CERN Document Server

    2004-01-01

    This document concerns the award of a contract for the supply of an all-terrain telescopic mobile crane for handling of LHC magnets. The Finance Committee is invited to agree to the negotiation of a contract with LIEBHERR-WERK (DE), the lowest bidder, for the supply of an all-terrain telescopic mobile crane for a total amount of 830 000 euros (1 286 417 Swiss francs), not subject to revision, with an option for CERN to sell the crane back to the manufacturer for 500 000 euros (774 950 Swiss francs) after three years. The rate of exchange used is that applicable at the closing date of the call for tenders.

  20. Proposal for the award of a contract for the supply of an all-terrain telescopic mobile crane

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the supply of an all-terrain telescopic mobile crane for the handling of the LHC magnets. A call for tenders (IT-2977/ST/LHC) was sent on 29 May 2001 to 11 firms in six Member States. By the closing date, CERN had received three tenders from three firms in two Member States. The Finance Committee is invited to agree to the negotiation of a contract with LIEBHERR-WERK (DE), the lowest bidder, for the supply of an all-terrain telescopic mobile crane for a total amount of 788 983 euros (1 211 483 Swiss francs) including two years of maintenance and not subject to revision. The rate of exchange which has been used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: DE - 72%; CH - 10%; FR - 8%; US - 6%; SE - 2%; AT - 2%.

  1. Terrain perception for robot navigation

    Science.gov (United States)

    Karlsen, Robert E.; Witus, Gary

    2007-04-01

    This paper presents a method to forecast terrain trafficability from visual appearance. During training, the system identifies a set of image chips (or exemplars) that span the range of terrain appearance. Each chip is assigned a vector tag of vehicle-terrain interaction characteristics that are obtained from simple performance models and on-board sensors, as the vehicle traverses the terrain. The system uses the exemplars to segment images into regions, based on visual similarity to the terrain patches observed during training, and assigns the appropriate vehicle-terrain interaction tag to them. This methodology will therefore allow the online forecasting of vehicle performance on upcoming terrain. Currently, the system uses a fuzzy c-means clustering algorithm for training. In this paper, we explore a number of different features for characterizing the visual appearance of the terrain and measure their effect on the prediction of vehicle performance.

  2. A Tire Model for Off-Highway Vehicle Simulation on Short Wave Irregular Terrain

    DEFF Research Database (Denmark)

    Langer, Thomas Heegaard; Kristensen, Lars B; Mouritsen, Ole Ø.;

    2010-01-01

    requirements that prescribe the maximum limit on the vibration exposure on the operator which is a measure for ride comfort. The second is the importance of knowing the dynamic loading of the structural parts. In order to use the wide variety of computer-aided design tools to size and optimize mechanical...... joints, spring-damper elements and the welded structures it is crucial to have information on the time history of the loads. For trucks carrying payloads the most important load contribution is undoubtedly the reaction forces between terrain and tires. By use of virtual prototypes it is possible to...... evaluate accelerations of different machine parts and reaction forces in joints. Hence it is possible to find loads for sizing components and structures and prevent fatigue, and also the influence of design changes on ride comfort can be evaluated. This poses a non-trivial challenge: To be able to describe...

  3. Real-time adaptive off-road vehicle navigation and terrain classification

    Science.gov (United States)

    Muller, Urs A.; Jackel, Lawrence D.; LeCun, Yann; Flepp, Beat

    2013-05-01

    We are developing a complete, self-contained autonomous navigation system for mobile robots that learns quickly, uses commodity components, and has the added benefit of emitting no radiation signature. It builds on the au­tonomous navigation technology developed by Net-Scale and New York University during the Defense Advanced Research Projects Agency (DARPA) Learning Applied to Ground Robots (LAGR) program and takes advantage of recent scientific advancements achieved during the DARPA Deep Learning program. In this paper we will present our approach and algorithms, show results from our vision system, discuss lessons learned from the past, and present our plans for further advancing vehicle autonomy.

  4. Terrain-surface Estimation from Body Configurations of Passive Linkages

    Directory of Open Access Journals (Sweden)

    Daisuke Chugo

    2014-02-01

    Full Text Available A passive linkage mechanism is used for increasing the mobile performance of a wheeled vehicle on uneven ground. The mechanism changes its shape according to the terrain and enables all the wheels to remain grounded while the vehicle operates over rough terrain. This means that the shape of the passive linkage mechanism must correspond to that of the terrain surface, so that the vehicle can estimate the shape of the surface while passing over it. This paper proposes a new terrain- surface estimation scheme that uses a passive linkage mechanism. Our key concept is to enable changes in the vehicle body’s configuration to correspond to those in the terrain’s shape. Using this concept, our mobile platform estimates the shape of terrain surfaces without using external sensors; the estimated surface shapes are used to adjust the reference velocities of individual wheels, thereby improving the mobile performance of the vehicle. We test our proposed scheme by experiments using a prototype vehicle.

  5. Scannerless terrain mapper

    Energy Technology Data Exchange (ETDEWEB)

    Sackos, J.; Bradley, B.; Diegert, C. [Sandia National Laboratories, Albuquerque, NM (United States); Ma, P.; Gary, C. [NASA-Ames Research Center, Moffett Field, CA (United States)

    1996-09-01

    NASA-Ames Research Center, in collaboration with Sandia National Laboratories, is developing a Scannerless Terrain Mapper (STM) for autonomous vehicle guidance through the use of virtual reality. The STM sensor is based on an innovative imaging optical radar technology that is being developed by Sandia National Laboratories. The sensor uses active flood-light scene illumination and an image intensified CCD camera receiver to rapidly produce and record very high quality range imagery of observed scenes. The STM is an all solid-state device (containing no moving parts) and offers significant size, performance, reliability, simplicity, and affordability advantages over other types of 3-D sensor technologies, such as scanned laser radar, stereo vision, and structured lighting. The sensor is based on low cost, commercially available hardware, and is very well suited for affordable application to a wide variety of military and commercial uses, including: munition guidance, target recognition, robotic vision, automated inspection, driver enhanced vision, collision avoidance, site security and monitoring, and facility surveying. This paper reviews the sensor technology, discusses NASA`s terrain mapping applications, and presents results from the initial testing of the sensor at NASA`s planetary landscape simulator.

  6. Electric Vehicle Simulation and Animation

    OpenAIRE

    Yang, Li

    2010-01-01

    Range anxiety is a chief concern for all electric vehicles (EVs). Range anxiety summarizes the fear of being stranded in an electric vehicle due to insufficient battery. Therefore, we need a way to simulate and animate use and charging of battery for electric vehicles to assure users of the range of EVs. The application we designed can provide simulation and animation of EVs energy use and charging based on the physical characteristics of specific vehicles, terrain information, and driving ro...

  7. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin

    2014-07-01

    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  8. 75 FR 76708 - Extension of the Date by Which Youth All-Terrain Vehicles Must Be Tested and Certified

    Science.gov (United States)

    2010-12-09

    ... FR 52616) (accessible at http://www.cpsc.gov/businfo/frnotices/fr10/atv.pdf ), the Commission...'' testing performed by a third party conformity assessment body (75 FR at 52618). The notice also asked for... 1420. 75 FR at 52619. Obviously, the date specified in that notice for acceptance of...

  9. 76 FR 5565 - Notice of Stay of Enforcement of Testing and Certification Pertaining to Youth All-Terrain Vehicles

    Science.gov (United States)

    2011-02-01

    ... proceeding or addressed various topics, such as the family activity nature of ATV riding, government regulation, the CPSIA, or the role of parents to decide what is best for their child. Only one comment...). In the Federal Register of August 27, 2010 (75 FR 52616), we published a notice of requirements...

  10. Coupling fast all-season soil strength land surface model with weather research and forecasting model to assess low-level icing in complex terrain

    Science.gov (United States)

    Sines, Taleena R.

    Icing poses as a severe hazard to aircraft safety with financial resources and even human lives hanging in the balance when the decision to ground a flight must be made. When analyzing the effects of ice on aviation, a chief cause for danger is the disruption of smooth airflow, which increases the drag force on the aircraft therefore decreasing its ability to create lift. The Weather Research and Forecast (WRF) model Advanced Research WRF (WRF-ARW) is a collaboratively created, flexible model designed to run on distributed computing systems for a variety of applications including forecasting research, parameterization research, and real-time numerical weather prediction. Land-surface models, one of the physics options available in the WRF-ARW, output surface heat and moisture flux given radiation, precipitation, and surface properties such as soil type. The Fast All-Season Soil STrength (FASST) land-surface model was developed by the U.S. Army ERDC-CRREL in Hanover, New Hampshire. Designed to use both meteorological and terrain data, the model calculates heat and moisture within the surface layer as well as the exchange of these parameters between the soil, surface elements (such as snow and vegetation), and atmosphere. Focusing on the Presidential Mountain Range of New Hampshire under the NASA Experimental Program to Stimulate Competitive Research (EPSCoR) Icing Assessments in Cold and Alpine Environments project, one of the main goals is to create a customized, high resolution model to predict and assess ice accretion in complex terrain. The purpose of this research is to couple the FASST land-surface model with the WRF to improve icing forecasts in complex terrain. Coupling FASST with the WRF-ARW may improve icing forecasts because of its sophisticated approach to handling processes such as meltwater, freezing, thawing, and others that would affect the water and energy budget and in turn affect icing forecasts. Several transformations had to take place in order

  11. All auto shredding: evaluation of automotive shredder residue generated by shredding only vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Duranceau, C. M.; Spangenberger, J. S. (Energy Systems); (Vehicle Recycling Partnership, LLC); (American Chemistry Counsel, Plastics Division)

    2011-09-26

    manufacturing company and location. Each category of vehicles was processed individually through the shredder plant and the resulting shredder residue was analyzed for its materials composition and presence of PCBs and leachable metals. The results show that shredder residue from all vehicle categories tested are not significant contributors of PCBs and leachable metals. It was evident that leachable cadmium levels have decreased in newer vehicles. The composition of the shredder residue from each of the four categories is similar to the others. In addition, these compositions are approximately equal to the composition of typical shredder residues, not limited to automotive materials.

  12. An Analysis of Fuel Cell Options for an All-electric Unmanned Aerial Vehicle

    Science.gov (United States)

    Kohout, Lisa L.; Schmitz, Paul C.

    2007-01-01

    A study was conducted to assess the performance characteristics of both PEM and SOFC-based fuel cell systems for an all-electric high altitude, long endurance Unmanned Aerial Vehicle (UAV). Primary and hybrid systems were considered. Fuel options include methane, hydrogen, and jet fuel. Excel-based models were used to calculate component mass as a function of power level and mission duration. Total system mass and stored volume as a function of mission duration for an aircraft operating at 65 kft altitude were determined and compared.

  13. HTS machines as enabling technology for all-electric airborne vehicles

    International Nuclear Information System (INIS)

    Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development

  14. Integrating Terrain Maps Into a Reactive Navigation Strategy

    Science.gov (United States)

    Howard, Ayanna; Werger, Barry; Seraji, Homayoun

    2006-01-01

    An improved method of processing information for autonomous navigation of a robotic vehicle across rough terrain involves the integration of terrain maps into a reactive navigation strategy. Somewhat more precisely, the method involves the incorporation, into navigation logic, of data equivalent to regional traversability maps. The terrain characteristic is mapped using a fuzzy-logic representation of the difficulty of traversing the terrain. The method is robust in that it integrates a global path-planning strategy with sensor-based regional and local navigation strategies to ensure a high probability of success in reaching a destination and avoiding obstacles along the way. The sensor-based strategies use cameras aboard the vehicle to observe the regional terrain, defined as the area of the terrain that covers the immediate vicinity near the vehicle to a specified distance a few meters away.

  15. Cooperative robotic sentry vehicles

    Science.gov (United States)

    Feddema, John T.; Lewis, Christopher L.; Klarer, Paul; Eisler, G. R.; Caprihan, Rahul

    1999-08-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories' Intelligent Systems and Robotics Center is developing and testing the feasibility of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform a surround task. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight 'Roving All Terrain Lunar Explorer Rovers' (RATLER), a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. For the surround task, both potential field and A* search path planners have been added to the base-station and vehicles. At the base-station, the operator specifies goal and exclusion regions on a GIS map. The path planner generates vehicles paths that are previewed by the operator. Once the operator has validated the path, the appropriate information is downloaded t the vehicles. For the potential field path planner, the polygons and line segments that represent the obstacles and goals are downloaded to the vehicles, instead of the simulated paths. On board the vehicles, the same potential field path planner generates the path except that it uses the true location of itself and the nearest neighboring vehicle. For the A* path planner, the actual path is downloaded to the vehicles because of limited on-board computational power.

  16. Conceptual Design and Simulation of a Multibody Passive-Legged Crawling Vehicle

    OpenAIRE

    Stulce, John R.

    2002-01-01

    Rugged terrains, including much of the earthâ s surface, other planets, and many man-made structures, are inaccessible to wheeled and tracked vehicles. This has inspired research into legged vehicles. Prior to the research described here, virtually all legged vehicle designs relied on the concept of mounting actuated leg-type mechanisms onto a single rigid frame or chassis. This dissertation research explores and advances a novel vehicle concept that uses passive legs attached to an actu...

  17. Stereo based Obstacle Detection with Uncertainty in Rough Terrain

    NARCIS (Netherlands)

    Mark, W. van der; Heuvel, J.C. van den; Groen, F.C.A.

    2007-01-01

    Autonomous robot vehicles that operate in offroad terrain should avoid obstacle hazards. In this paper we present a stereo vision based method that is able to cluster reconstructed terrain points into obstacles by evaluating their relative angles and distances. In our approach, constraints are enfor

  18. High performance robotic traverse of desert terrain.

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, William (Carnegie Mellon University, Pittsburgh, PA)

    2004-09-01

    This report presents tentative innovations to enable unmanned vehicle guidance for a class of off-road traverse at sustained speeds greater than 30 miles per hour. Analyses and field trials suggest that even greater navigation speeds might be achieved. The performance calls for innovation in mapping, perception, planning and inertial-referenced stabilization of components, hosted aboard capable locomotion. The innovations are motivated by the challenge of autonomous ground vehicle traverse of 250 miles of desert terrain in less than 10 hours, averaging 30 miles per hour. GPS coverage is assumed to be available with localized blackouts. Terrain and vegetation are assumed to be akin to that of the Mojave Desert. This terrain is interlaced with networks of unimproved roads and trails, which are a key to achieving the high performance mapping, planning and navigation that is presented here.

  19. Complementary terrain/single beacon-based AUV navigation

    Digital Repository Service at National Institute of Oceanography (India)

    Maurya, P.; Curado, T.F.; António, P.

    This paper describes work done towards the development of advanced geophysical-based navigation systems for autonomous underwater vehicles (AUVs). The specific problem that we tackle is that of combining terrain-aided navigation (TAN) with single...

  20. Motor Vehicle Occupant Death Rate, by Age and Gender, 2012, All States

    Data.gov (United States)

    U.S. Department of Health & Human Services — Rate of deaths by age/gender (per 100,000 population) for motor vehicle occupants killed in crashes, 2012 Source: Fatality Analysis Reporting System (FARS) Note:...

  1. Modeling and validation of off-road vehicle ride dynamics

    Science.gov (United States)

    Pazooki, Alireza; Rakheja, Subhash; Cao, Dongpu

    2012-04-01

    Increasing concerns on human driver comfort/health and emerging demands on suspension systems for off-road vehicles call for an effective and efficient off-road vehicle ride dynamics model. This study devotes both analytical and experimental efforts in developing a comprehensive off-road vehicle ride dynamics model. A three-dimensional tire model is formulated to characterize tire-terrain interactions along all the three translational axes. The random roughness properties of the two parallel tracks of terrain profiles are further synthesized considering equivalent undeformable terrain and a coherence function between the two tracks. The terrain roughness model, derived from the field-measured responses of a conventional forestry skidder, was considered for the synthesis. The simulation results of the suspended and unsuspended vehicle models are derived in terms of acceleration PSD, and weighted and unweighted rms acceleration along the different axes at the driver seat location. Comparisons of the model responses with the measured data revealed that the proposed model can yield reasonably good predictions of the ride responses along the translational as well as rotational axes for both the conventional and suspended vehicles. The developed off-road vehicle ride dynamics model could serve as an effective and efficient tool for predicting vehicle ride vibrations, to seek designs of primary and secondary suspensions, and to evaluate the roles of various operating conditions.

  2. Revolutionary High Mobility Rovers for Rugged Terrain

    Science.gov (United States)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C. Y.; Wesenberg, R. P.; Dorband, J. E.; Lunsford, A. W.

    2006-05-01

    Reconfigurable architecture is essential in exploration because reaching features of the great potential interest, whether searching for life in volcanic terrain or water in at the bottom of craters, will require crossing a wide range of terrains. Such areas of interest are largely inaccessible to permanently appendaged vehicles. For example, morphology and geochemistry of interior basins, walls, and ejecta blankets of volcanic or impact structures must all be studied to understand the nature of a geological event. One surface might be relatively flat and navigable, while another could be rough, variably sloping, broken, or dominated by unconsolidated debris. To be totally functional, structures must form pseudo-appendages varying in size, rate, and manner of deployment (gait). We have already prototyped a simple robotic walker from a single reconfigurable tetrahedron (with struts as sides and nodes as apices) capable of tumbling and are simulating and building a prototype of the more evolved 12Tetrahedral Walker (Autonomous Moon or Mars Investigator) which has interior nodes for payload, more continuous motion, and is commandable through a user friendly interface. We are currently developing a more differentiated architecture to form detachable, reconfigurable, reshapable linearly extendable bodies to act as manual assistant subsystems on rovers, with extensions terminating in a wider range of sensors. We are now simulating gaits for and will be building a prototype rover arm. Ultimately, complex continuous n-tetrahedral structures will have deployable outer skin, and even higher degrees of freedom. Tetrahedral rover advantages over traditional wheeled or tread robots are being demonstrated and include abilities to: 1) traverse terrain more rugged in terms of slope, roughness, and obstacle size; 2) precisely place and lower instruments into hard-to-reach crevices; 3) sample more locations per unit time; 4) conform to virtually any terrain; 5) avoid falling down or

  3. Ganymede's Varied Terrain

    Science.gov (United States)

    1979-01-01

    Voyager 2 took this picture of Ganymede as the spacecraft was nearing its encounter with the ice giant. It was taken from a range of 312,000 kilometers (195,000 miles), and it shows features down to about 5 to 6 kilometers across. Clear examples of several of the different types of terras in common on Ganymede s surface are visible (right).. The boundary of the largest region of dark ancient terrain on Ganymede can be seen to the east (right), revealing some of the light linear features which may be all that remains of a large ancient impact structure similar to the large ring structure on Callisto. The broad light regions running through the image are the typical grooved structures seen within most of the light regions on Ganymede. To the lower left is another example of what might be evidence of large scale lateral motion in Ganymede's crust. The band of grooved terrain (about 100 kilometers wide) in this region appears to be offset by 50 kilometers or more on the left hand edge by a linear feature perpendicular to it. A feature similar to this one was previously discovered by Voyager 1. These are the first clear examples of strike-slip style faulting on any planet other than Earth. Many examples of craters of all ages can be seen in this image, ranging from fresh, bright ray craters to large, subdued circular markings thought to be the 'scars' of large ancient impacts that have been flattened by glacier-like flows.

  4. Self-Supervised Learning of Terrain Traversability from Proprioceptive Sensors

    Science.gov (United States)

    Bajracharya, Max; Howard, Andrew B.; Matthies, Larry H.

    2009-01-01

    Robust and reliable autonomous navigation in unstructured, off-road terrain is a critical element in making unmanned ground vehicles a reality. Existing approaches tend to rely on evaluating the traversability of terrain based on fixed parameters obtained via testing in specific environments. This results in a system that handles the terrain well that it trained in, but is unable to process terrain outside its test parameters. An adaptive system does not take the place of training, but supplements it. Whereas training imprints certain environments, an adaptive system would imprint terrain elements and the interactions amongst them, and allow the vehicle to build a map of local elements using proprioceptive sensors. Such sensors can include velocity, wheel slippage, bumper hits, and accelerometers. Data obtained by the sensors can be compared to observations from ranging sensors such as cameras and LADAR (laser detection and ranging) in order to adapt to any kind of terrain. In this way, it could sample its surroundings not only to create a map of clear space, but also of what kind of space it is and its composition. By having a set of building blocks consisting of terrain features, a vehicle can adapt to terrain that it has never seen before, and thus be robust to a changing environment. New observations could be added to its library, enabling it to infer terrain types that it wasn't trained on. This would be very useful in alien environments, where many of the physical features are known, but some are not. For example, a seemingly flat, hard plain could actually be soft sand, and the vehicle would sense the sand and avoid it automatically.

  5. TERRAIN, LEON COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  6. TERRAIN, LAWRENCE COUNTY, ARKANSAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  7. TERRAIN, CALVERT COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  8. TERRAIN, HANCOCK COUNTY, OH

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  9. TERRAIN, Lincoln County, AR

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  10. TERRAIN, PIKE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  11. TERRAIN, Norfolk County, Massachusetts

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  12. TERRAIN, TROUSDALE COUNTY, TENNESSEE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  13. TERRAIN, WAYNE COUNTY, TENNESSEE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  14. TERRAIN, TULSA COUNTY, OKLAHOMA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  15. TERRAIN, CLALLAM COUNTY, WASHINGTON

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  16. TERRAIN, MERCER COUNTY, OHIO

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  17. TERRAIN, SNOHOMISH COUNTY, WASHINGTON

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  18. TERRAIN, WORTH COUNTY, IOWA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  19. TERRAIN, BARNSTABLE COUNTY, MASSACHUSETTS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  20. TERRAIN, ALLEN COUNTY, OH

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  1. TERRAIN, HARDIN COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  2. TERRAIN, JONES COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  3. TERRAIN, BERKS COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  4. TERRAIN, Mecklenburg County, NC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  5. TERRAIN, WOOD COUNTY, OH

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  6. TERRAIN, WRIGHT COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  7. TERRAIN, UNION PARISH, LOUSIANA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  8. TERRAIN, Northampton COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that were used to create...

  9. TERRAIN, POTTER COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that were used to create...

  10. TERRAIN, HOWARD COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  11. TERRAIN, KENDALL COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  12. Probing the Terrain

    DEFF Research Database (Denmark)

    Johannessen, Runa

    2016-01-01

    Whether manifest in built structures or invisible infrastructures, architectures of control in the occupied Palestinian West Bank is structurally defined by endemic uncertainty. Shifting lines and frontiers are recorded on the terrain, creating elastic zones of uncertainty necessitating navigatio......Whether manifest in built structures or invisible infrastructures, architectures of control in the occupied Palestinian West Bank is structurally defined by endemic uncertainty. Shifting lines and frontiers are recorded on the terrain, creating elastic zones of uncertainty necessitating...

  13. Winter seismic vehicle impacts in permafrost terrain

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Seismic exploration was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, during the winters of 1984 and 1985. Approximately 2000 km of...

  14. Construction Method of the Topographical Features Model for Underwater Terrain Navigation

    Directory of Open Access Journals (Sweden)

    Wang Lihui

    2015-09-01

    Full Text Available Terrain database is the reference basic for autonomous underwater vehicle (AUV to implement underwater terrain navigation (UTN functions, and is the important part of building topographical features model for UTN. To investigate the feasibility and correlation of a variety of terrain parameters as terrain navigation information metrics, this paper described and analyzed the underwater terrain features and topography parameters calculation method. Proposing a comprehensive evaluation method for terrain navigation information, and constructing an underwater navigation information analysis model, which is associated with topographic features. Simulation results show that the underwater terrain features, are associated with UTN information directly or indirectly, also affect the terrain matching capture probability and the positioning accuracy directly.

  15. Sakhalin Island terrain intelligence

    Science.gov (United States)

    U.S. Geological Survey Military Geology Branch

    1943-01-01

    This folio of maps and explanatory tables outlines the principal terrain features of Sakhalin Island. Each map and table is devoted to a specialized set of problems; together they cover the subjects of terrain appreciation, climate, rivers, water supply, construction materials, suitability for roads, suitability for airfields, fuels and other mineral resources, and geology. In most cases, the map of the island is divided into two parts: N. of latitude 50° N., Russian Sakhalin, and south of latitude 50° N., Japanese Sakhalin or Karafuto. These maps and data were compiled by the United States Geological Survey during the period from March to September, 1943.

  16. Ultramaneuverable steering control algorithms for terrain transitions

    Science.gov (United States)

    Torrie, Mel W.; Koch, Ralf; Bahl, Vikas; Cripps, Don

    1999-07-01

    The Center for Self-Organizing and Intelligent Systems has built several vehicles with ultra-maneuverable steering capability. Each drive wheel on the vehicle can be independently set at any angle with respect to the vehicle body and the vehicles can rotate or translate in any direction. The vehicles are expected to operate on a wide range of terrain surfaces and problems arise in effectively controlling changes in wheel steering angles as the vehicle transitions from one extreme running surface to another. Controllers developed for smooth surfaces may not perform well on rough or 'sticky' surfaces and vice versa. The approach presented involves the development of a model of the steering motor with the static and viscous friction of the steering motor load included. The model parameters are then identified through a series of environmental tests using a vehicle wheel assembly and the model thus obtained is used for control law development. Four different robust controllers were developed and evaluated through simulation and vehicle testing. The findings of this development will be presented.

  17. Flow on noisy terrains

    DEFF Research Database (Denmark)

    Tsirogiannis, Konstantinos; Haverkort, Herman

    2011-01-01

    Computing watersheds on triangulated terrain models in a robust manner is a difficult task as it is sensitive to noise that appears in the elevation values of the input. This is amplified by the existence of many very small watersheds (corresponding to spurious minima) that obscure the overall hy...... use a robust flow model together with exact arithmetic....

  18. Digital Surface and Terrain Models (DSM,DTM), DSM & DTM products.The tile-based DSMs were created from the first return of all classified LiDAR points with a 1 meter cell size,DTMs created from the class 2 - ground LiDAR points .Their pixel size and alignment matches the DEM pixel size and alignment, Published in 2012, Not Applicable scale, Eastern Shore Regional GIS Cooperative.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Surface and Terrain Models (DSM,DTM) dataset, published at Not Applicable scale, was produced all or in part from LIDAR information as of 2012. It is...

  19. Control of multiple robotic sentry vehicles

    Science.gov (United States)

    Feddema, John T.; Lewis, Christopher L.; Klarer, Paul

    1999-07-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight 'Roving All Terrain Lunar Explorer Rover' (RATLERTM) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, expect additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  20. Control of Multiple Robotic Sentry Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  1. On-the-sphere block-based 3D terrain rendering using a wavelet-encoded terrain database for SVS

    Science.gov (United States)

    Baxes, Gregory A.; Linger, Tim

    2006-05-01

    Successful integration and the ultimate adoption of 3D Synthetic Vision (SV) systems into the flight environment as a cockpit aid to pilot situational awareness (SA) depends highly on overcoming two primary engineering obstacles: 1) storing on-board terrain databases with sufficient accuracy, resolution and coverage areas; and 2) achieving real-time, deterministic, accurate and artifact-free 3D terrain rendering. These combined elements create a significant, inversely-compatible challenge to deployable SV systems that has not been adequately addressed in the realm of proliferous VisSim terrain-rendering approaches. Safety-critical SV systems for flight-deployed use, ground-control of flight systems such as UAVs and accurate mission rehearsal systems require a solution to these challenges. This paper describes the TerraMetrics TerraBlocks method of storing wavelet-encoded terrain datasets and a tightly-coupled 3D terrain-block rendering approach. Large-area terrain datasets are encoded using a wavelet transform, producing a hierarchical quadtree, powers-of-2 structure of the original terrain data at numerous levels of detail (LODs). The entire original raster terrain mesh (e.g., DTED) is transformed using either lossless or lossy wavelet transformation and is maintained in an equirectangular projection. The lossless form retains all original terrain mesh data integrity in the flight dataset. A side-effect benefit of terrain data compression is also achieved. The TerraBlocks run-time 3D terrain-block renderer accesses arbitrary, uniform-sized blocks of terrain data at varying LODs, depending on scene composition, from the wavelet-transformed terrain dataset. Terrain data blocks retain a spatially-filtered depiction of the original mesh data at the retrieved LOD. Terrain data blocks are processed as discrete objects and placed into spherical world space, relative to the viewpoint. Rendering determinacy is achieved through terrain-block LOD management and spherical

  2. Robotic Vehicle Proxy Simulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes the development of a digital simulation to replace robotic vehicles in field studies. It will model the dynamics, terrain interaction,...

  3. Ladar-based terrain cover classification

    Science.gov (United States)

    Macedo, Jose; Manduchi, Roberto; Matthies, Larry H.

    2001-09-01

    An autonomous vehicle driving in a densely vegetated environment needs to be able to discriminate between obstacles (such as rocks) and penetrable vegetation (such as tall grass). We propose a technique for terrain cover classification based on the statistical analysis of the range data produced by a single-axis laser rangefinder (ladar). We first present theoretical models for the range distribution in the presence of homogeneously distributed grass and of obstacles partially occluded by grass. We then validate our results with real-world cases, and propose a simple algorithm to robustly discriminate between vegetation and obstacles based on the local statistical analysis of the range data.

  4. Multi-sensor integration for unmanned terrain modeling

    Science.gov (United States)

    Sukumar, Sreenivas R.; Yu, Sijie; Page, David L.; Koschan, Andreas F.; Abidi, Mongi A.

    2006-05-01

    State-of-the-art unmanned ground vehicles are capable of understanding and adapting to arbitrary road terrain for navigation. The robotic mobility platforms mounted with sensors detect and report security concerns for subsequent action. Often, the information based on the localization of the unmanned vehicle is not sufficient for deploying army resources. In such a scenario, a three dimensional (3D) map of the area that the ground vehicle has surveyed in its trajectory would provide a priori spatial knowledge for directing resources in an efficient manner. To that end, we propose a mobile, modular imaging system that incorporates multi-modal sensors for mapping unstructured arbitrary terrain. Our proposed system leverages 3D laser-range sensors, video cameras, global positioning systems (GPS) and inertial measurement units (IMU) towards the generation of photo-realistic, geometrically accurate, geo-referenced 3D terrain models. Based on the summary of the state-of-the-art systems, we address the need and hence several challenges in the real-time deployment, integration and visualization of data from multiple sensors. We document design issues concerning each of these sensors and present a simple temporal alignment method to integrate multi-sensor data into textured 3D models. These 3D models, in addition to serving as a priori for path planning, can also be used in simulators that study vehicle-terrain interaction. Furthermore, we show our 3D models possessing the required accuracy even for crack detection towards road surface inspection in airfields and highways.

  5. Performance of an all-electric vehicle under UN ECE R101 test conditions: A feasibility study for the city of Kaunas, Lithuania

    International Nuclear Information System (INIS)

    Transport activity has been a key facilitator and driver of economic prosperity in Lithuanian (hereinafter LIT) and it is likely to continue to grow. It can produce both positive and negative effects on the quality of life and the environment depending on country-specific circumstances. This research paper sets the stage for a look at the LIT passenger vehicle fleet and its transition towards sustainable mobility through the use of all-electric vehicles. The large multi purpose vehicle from French car-maker Renault, model Renault Espace, was used for test drives, according ECE R101 (urban cycle) requirements. The conventional spark ignited internal combustion engine of the vehicle was replaced by the electric one and equipped with the new generation LiFePO4 Lithium-ion rechargeable batteries. Three streets of Kaunas city (LIT) with different categories B1, B2 and C2 were selected for the test procedure. Estimation of the power demand (depending on displacement and daytime) and evaluation of battery performance characteristics were discussed in detail. Calculation of the driving distance of the one charge of the traction battery estimates several driving conditions and variation of the mass of the investigated vehicle. Comparison of consumption of different fuel grades for 1 km showed that costs of electric power driven vehicle is 4 times as low as with A95 grade petrol and 2.4 times as low as with diesel fuel. - Highlights: • This paper examines the perspectives for electric vehicles use in Lithuania. • We used standardized test procedure UN ECE R101 (urban cycle). • The study found that the BEVs (battery-only electric vehicles) can cover approximately 75% of all daily driving. • Inspection of the results highlights the importance of BEVs introduction. • We have shown that battery-only electric vehicles are economically rational

  6. Triste terrain de jeu

    OpenAIRE

    Collard, Chantal

    2008-01-01

    Fondé sur une recherche de terrain conduite entre 1999 et 2002, cet article dresse un tableau de l’adoption internationale en Haïti resitué dans le contexte socioéconomique et l’ethos du pays. Il fait le lien entre la circulation traditionnelle des enfants et l’adoption internationale, montrant comment celle-ci est venue se greffer sur la première. Il souligne aussi la particularité d’Haïti comme pays donneur d’enfants, parmi les autres pays source. Il conclut que l’adoption internationale es...

  7. Navigating Hypermasculine Terrains

    DEFF Research Database (Denmark)

    Henriksen, Ann-Karina Eske

    2015-01-01

    The study addresses how young women navigate urban terrains that are characterized by high levels of interpersonal aggression and crime. It is argued that young women apply a range of gendered tactics to establish safety and social mastery, and that these are framed by the limits and possibilities...... imposed by a street-based hypermasculine script. The analysis rests on an ethnographic study among 25 young Danish women aged 13 to 23 experienced in engaging in street-based physical violence. The study suggests that explorations of female tactics can provide a useful method of analysis for understanding...

  8. Eastern Siberia terrain intelligence

    Science.gov (United States)

    U.S. Geological Survey Military Geology Branch

    1942-01-01

    The following folio of terrain intelligence maps, charts and explanatory tables represent an attempt to bring together available data on natural physical conditions such as will affect military operations in Eastern Siberia. The area covered is the easternmost section of the U.S.S.R.; that is the area east of the Yenisei River. Each map and accompanying table is devoted· to a specialized set of problems; together they cover such subjects as geology, construction materials, mineral fuels, terrain, water supply, rivers and climate. The data is somewhat generalized due to the scale of treatment as well as to the scarcity of basic data. Each of the maps are rated as to reliability according to the reliability scale on the following page. Considerable of the data shown is of an interpretative nature, although precise data from literature was used wherever possible. The maps and tables were compiled  by a special group from the United States Geological Survey in cooperation with the Intelligence Branch of the Office, Chief of Engineers, War Department.

  9. Cooperative control of a squad of mobile vehicles

    International Nuclear Information System (INIS)

    Tasks such as the localization of chemical sources, demining, perimeter control, surveillance and search and rescue missions are usually performed by teams of people. At least conceptually, large groups of relatively cheap mobile vehicles outfitted with sensors should be able to automatically accomplish some of these tasks. Sandia National Labs is currently developing a swarm of semi-autonomous all terrain vehicles for remote cooperative sensing applications. This paper will describe the capabilities of this system and outline some of its possible applications. Cooperative control and sensing strategies will also be described. Eight Roving All Terrain Lunar Explorer Rovers (RATLERs) have been built at Sandia as a test platform for cooperative control and sensing applications. This paper will first describe the hardware capabilities of the RATLER system. Then it will describe the basic control algorithm for GPS based navigation and obstacle avoidance. A higher level cooperative control task will then be described

  10. Cooperative control of a squad of mobile vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C.; Feddema, J.; Klarer, P.

    1998-09-01

    Tasks such as the localization of chemical sources, demining, perimeter control, surveillance and search and rescue missions are usually performed by teams of people. At least conceptually, large groups of relatively cheap mobile vehicles outfitted with sensors should be able to automatically accomplish some of these tasks. Sandia National Labs is currently developing a swarm of semi-autonomous all terrain vehicles for remote cooperative sensing applications. This paper will describe the capabilities of this system and outline some of its possible applications. Cooperative control and sensing strategies will also be described. Eight Roving All Terrain Lunar Explorer Rovers (RATLERs) have been built at Sandia as a test platform for cooperative control and sensing applications. This paper will first describe the hardware capabilities of the RATLER system. Then it will describe the basic control algorithm for GPS based navigation and obstacle avoidance. A higher level cooperative control task will then be described.

  11. Turbulence in complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.

  12. The Complexity of Guarding Terrains

    CERN Document Server

    King, James

    2009-01-01

    A set $G$ of points on a 1.5-dimensional terrain, also known as an $x$-monotone polygonal chain, is said to guard the terrain if any point on the terrain is 'seen' by a point in $G$. Two points on the terrain see each other if and only if the line segment between them is never strictly below the terrain. The minimum terrain guarding problem asks for a minimum guarding set for the given input terrain. We prove that the decision version of this problem is NP-hard. This solves a significant open problem and complements recent positive approximability results for the optimization problem. Our proof uses a reduction from PLANAR 3-SAT. We build gadgets capable of 'mirroring' a consistent variable assignment back and forth across a main valley. The structural simplicity of 1.5-dimensional terrains makes it difficult to build general clause gadgets that do not destroy this assignment when they are evaluated. However, we exploit the structure in instances of PLANAR 3-SAT to find very specific operations involving only...

  13. Underwater terrain positioning method based on least squares estimation for AUV

    Science.gov (United States)

    Chen, Peng-yun; Li, Ye; Su, Yu-min; Chen, Xiao-long; Jiang, Yan-qing

    2015-12-01

    To achieve accurate positioning of autonomous underwater vehicles, an appropriate underwater terrain database storage format for underwater terrain-matching positioning is established using multi-beam data as underwater terrainmatching data. An underwater terrain interpolation error compensation method based on fractional Brownian motion is proposed for defects of normal terrain interpolation, and an underwater terrain-matching positioning method based on least squares estimation (LSE) is proposed for correlation analysis of topographic features. The Fisher method is introduced as a secondary criterion for pseudo localization appearing in a topographic features flat area, effectively reducing the impact of pseudo positioning points on matching accuracy and improving the positioning accuracy of terrain flat areas. Simulation experiments based on electronic chart and multi-beam sea trial data show that drift errors of an inertial navigation system can be corrected effectively using the proposed method. The positioning accuracy and practicality are high, satisfying the requirement of underwater accurate positioning.

  14. Underwater terrain-aided navigation based on multibeam bathymetric sonar images

    Science.gov (United States)

    Song, Ziqi; Bian, Hongyu; Zielinski, Adam

    2015-12-01

    Underwater terrain-aided navigation is used to complement traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map. This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge corner pixels are then defined and used to construct an edge corner histogram, which it employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.

  15. Underwater Terrain-Aided Navigation Based on Multibeam Bathymetric Sonar Images

    Institute of Scientific and Technical Information of China (English)

    Ziqi Song; Hongyu Bian; Adam Zielinski

    2015-01-01

    Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map. This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge corner pixels are then defined and used to construct an edge corner histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.

  16. Experimental Semiautonomous Vehicle

    Science.gov (United States)

    Wilcox, Brian H.; Mishkin, Andrew H.; Litwin, Todd E.; Matthies, Larry H.; Cooper, Brian K.; Nguyen, Tam T.; Gat, Erann; Gennery, Donald B.; Firby, Robert J.; Miller, David P.; Loch, John L.; Slack, Marc G.

    1993-01-01

    Semiautonomous rover vehicle serves as testbed for evaluation of navigation and obstacle-avoidance techniques. Designed to traverse variety of terrains. Concepts developed applicable to robots for service in dangerous environments as well as to robots for exploration of remote planets. Called Robby, vehicle 4 m long and 2 m wide, with six 1-m-diameter wheels. Mass of 1,200 kg and surmounts obstacles as large as 1 1/2 m. Optimized for development of machine-vision-based strategies and equipped with complement of vision and direction sensors and image-processing computers. Front and rear cabs steer and roll with respect to centerline of vehicle. Vehicle also pivots about central axle, so wheels comply with almost any terrain.

  17. Complex Terrain and Wind Lidars

    DEFF Research Database (Denmark)

    Bingöl, Ferhat

    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in...... complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar...

  18. Advances in digital terrain analysis

    CERN Document Server

    Zhou, Qiming; Tang, Guo-An

    2008-01-01

    Terrain analysis has been an active study field for years and attracted research studies from geographers, surveyors, engineers and computer scientists. With the rapid growth of Geographical Information System (GIS) technology, particularly the establishment of high resolution Digital Elevation Models (DEM) at national level, the challenge is now focused on delivering justifiable socio-economical and environmental benefits. The contributions in this book represent the state-of-the-art of terrain analysis methods and techniques in areas of digital representation, morphological and hydrological models, uncertainty and applications of terrain analysis.

  19. Semi-Empiric Algorithm for Assessment of the Vehicle Mobility

    Directory of Open Access Journals (Sweden)

    Ticusor CIOBOTARU

    2009-12-01

    Full Text Available The mobility of military vehicles plays a key role in operation. The ability to reach the desired area in war theatre represents the most important condition for a successful accomplishment of the mission for military vehicles. The off-road vehicles face a broad spectrum of terrains to cross. These terrains differ by geometry and the soil characteristics.NATO References Mobility Model (NRMM software is based on empirical relationship between the terrain characteristics, running conditions and vehicles design. The paper presents the main results of a comparative mobility analysis for M1 and HMMWV vehicles obtained using NRMM.

  20. TERRAIN, JESSAMINE COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  1. TERRAIN, MADISON COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  2. TERRAIN, RUSSELL COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  3. TERRAIN, MADISON COUNTY, Missouri USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  4. TERRAIN, DEKALB COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  5. TERRAIN, PIKE COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  6. TERRAIN, CUMBERLAND COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  7. TERRAIN, POWESHIEK COUNTY, IOWA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  8. TERRAIN, VERNON PARISH, LA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  9. TERRAIN, LYON COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  10. TERRAIN, POWELL COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  11. TERRAIN, GRAYSON COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  12. TERRAIN, MCCREARY COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  13. TERRAIN, Metcalfe COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  14. TERRAIN, COLBERT COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  15. TERRAIN, TALBOT COUNTY, MARYLAND USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  16. TERRAIN, LAWRENCE COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  17. TERRAIN, Webster COUNTY, Missouri USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  18. TERRAIN, CLINTON COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  19. TERRAIN, GRAVES COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  20. TERRAIN, GARRARD COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  1. TERRAIN, SHELBY COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  2. TERRAIN, MONROE COUNTY, Michigan USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  3. TERRAIN, DALLAS COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  4. TERRAIN, OHIO COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  5. TERRAIN, Sedgwick COUNTY, Kansas USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  6. TERRAIN, BALLARD COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  7. TERRAIN, LEWIS COUNTY, Missouri USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  8. TERRAIN, CRITTENDEN COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  9. TERRAIN, MADISON PARISH, LA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  10. TERRAIN, ANNE ARUNDEL COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  11. TERRAIN, LEE COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  12. TERRAIN, HALE COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  13. Terrain for Karnes County TX

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  14. TERRAIN, CHEROKEE COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  15. TERRAIN, WASHINGTON COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  16. TERRAIN, TANEY COUNTY, Missouri USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  17. TERRAIN, TALLAPOOSA COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  18. TERRAIN, MADISON COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  19. TERRAIN, Webster COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  20. TERRAIN, SANTA CRUZ COUNTY, AZ

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  1. Terrain Data, Caroline COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  2. TERRAIN, BRACKEN COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  3. TERRAIN, BIBB COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  4. TERRAIN, STEWART COUNTY, TN, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  5. TERRAIN, CARTER COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  6. TERRAIN, WILCOX COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  7. TERRAIN, NEW KENT COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  8. TERRAIN, LEVY COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  9. TERRAIN, WINSTON COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  10. TERRAIN, LAWRENCE COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  11. TERRAIN, RANDOLPH COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  12. Synthetic vision helicopter flights using high resolution LIDAR terrain data

    Science.gov (United States)

    Sindlinger, A.; Meuter, M.; Barraci, N.; Güttler, M.; Klingauf, U.; Schiefele, J.; Howland, D.

    2006-05-01

    Helicopters are widely used for operations close to terrain such as rescue missions; therefore all-weather capabilities are highly desired. To minimize or even avoid the risk of collision with terrain and obstacles, Synthetic Vision Systems (SVS) could be used to increase situational awareness. In order to demonstrate this, helicopter flights have been performed in the area of Zurich, Switzerland A major component of an SVS is the three-dimensional (3D) depiction of terrain data, usually presented on the primary flight display (PFD). The degree of usability in low level flight applications is a function of the terrain data quality. Today's most precise, large scale terrain data are derived from airborne laser scanning technologies such as LIDAR (light detection and ranging). A LIDAR dataset provided by Swissphoto AG, Zurich with a resolution of 1m was used. The depiction of high resolution terrain data consisting of 1 million elevation posts per square kilometer on a laptop in an appropriate area around the helicopter is challenging. To facilitate the depiction of the high resolution terrain data, it was triangulated applying a 1.5m error margin making it possible to depict an area of 5x5 square kilometer around the helicopter. To position the camera correctly in the virtual scene the SVS had to be supplied with accurate navigation data. Highly flexible and portable measurement equipment which easily could be used in most aircrafts was designed. Demonstration flights were successfully executed in September, October 2005 in the Swiss Alps departing from Zurich.

  13. Natural Hazaed Mitigation Planning for Karst Terrains in Virginia

    OpenAIRE

    Belo, Bradley Paul

    2003-01-01

    Amendments to the Robert T. Stafford Act require state and local governments to adopt natural hazard mitigation plans to qualify for pre- and post-disaster federal hazard mitigation funding. State and local governments must consider all potential hazards within their jurisdictions including flooding, hurricanes, blizzards, and earthquakes. In western Virginia, local governments should plan for karst terrain natural hazards. Karst terrain hazards include sinkhole subsidence, sinkhole flood...

  14. Novel battery model of an all-electric personal rapid transit vehicle to determine state-of-health through subspace parameter estimation and a Kalman Estimator

    OpenAIRE

    Gould, C.; Bingham, Chris; Stone, D.A.; Bentley, P.

    2008-01-01

    Abstract--The paper describes a real-time adaptive battery model for use in an all-electric Personal Rapid Transit vehicle. Whilst traditionally, circuit-based models for lead-acid batteries centre on the well-known Randles’ model, here the Randles’ model is mapped to an equivalent circuit, demonstrating improved modelling capabilities and more accurate estimates of circuit parameters when used in Subspace parameter estimation techniques. Combined with Kalman Estimator...

  15. Complete Scene Recovery and Terrain Classification in Textured Terrain Meshes

    Directory of Open Access Journals (Sweden)

    Kyhyun Um

    2012-08-01

    Full Text Available Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D and two-dimensional (2D datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor. However, parts of objects that are outside the measurement range of the range sensor will not be detected. To overcome this problem, this paper describes an edge estimation method for complete scene recovery and complete terrain reconstruction. Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds. Further, a masking method is proposed to classify buildings and trees in a terrain mesh.

  16. Prevention of MSD by means of ergonomic risk assessment (tools) in all phases of the vehicle development process.

    Science.gov (United States)

    Karlheinz, Schaub; Michaela, Kugler; Max, Bierwirth; Andrea, Sinn-Behrendt; Ralph, Bruder

    2012-01-01

    In industrialized countries musculoskeletal disorders (MSD) play an import role and are often responsible for almost one third of the total sick leave. The changes in the demographic profiles, i.e. aging work forces might even worsen this situation in the future. For a highly productive and sustainable use of human resources in production systems, ergonomics offers high potentials. In the recent years the authors have developed several ergonomic risk assessment tools, especially for the use in automotive industries. These methods may be used during the planning phases in the Tech Centers as well as during the production phase at shop floor level. The tools might also be used for a standardized communication in between the Tech Center and the plants to improve the effects of "lessons learned" for the design and layout of workstations and processes and the optimization of vehicle components. This paper describes suitable risk assessment tools as well as the integration of these tools into the vehicle development process. It introduces a comprehensive management approach for the integration of ergonomics into the management of production systems. PMID:22317397

  17. Vegetation-terrain feature relationships in southeast Arizona

    Science.gov (United States)

    Schrumpf, B. J. (Principal Investigator); Mouat, D. A.

    1972-01-01

    There are no author-identified significant results in this report. Studies of relationships of vegetation distribution to geomorphic characteristics of the landscape and of plant phenological patterns to vegetation identification of satellite imagery indicate that there exists positive relationships between certain plant species and certain terrain features. Not all species were found to exhibit positive relationships with all terrain feature variables, but enough positive relationships seem to exist to indicate that terrain feature variable-vegetation relationship studies have a definite place in plant ecological investigations. Even more importantly, the vegetation groups examined appeared to be successfully discriminated by the terrain feature variables. This would seem to indicate that spatial interpretations of vegetation groups may be possible. While vegetational distributions aren't determined by terrain feature differences, terrain features do mirror factors which directly influence vegetational response and hence distribution. As a result, those environmental features which can be readily and rapidly ascertained on relatively small-scale imagery may prove to be valuable indicators of vegetation distribution.

  18. Processing Terrain Point Cloud Data

    KAUST Repository

    DeVore, Ronald

    2013-01-10

    Terrain point cloud data are typically acquired through some form of Light Detection And Ranging sensing. They form a rich resource that is important in a variety of applications including navigation, line of sight, and terrain visualization. Processing terrain data has not received the attention of other forms of surface reconstruction or of image processing. The goal of terrain data processing is to convert the point cloud into a succinct representation system that is amenable to the various application demands. The present paper presents a platform for terrain processing built on the following principles: (i) measuring distortion in the Hausdorff metric, which we argue is a good match for the application demands, (ii) a multiscale representation based on tree approximation using local polynomial fitting. The basic elements held in the nodes of the tree can be efficiently encoded, transmitted, visualized, and utilized for the various target applications. Several challenges emerge because of the variable resolution of the data, missing data, occlusions, and noise. Techniques for identifying and handling these challenges are developed. © 2013 Society for Industrial and Applied Mathematics.

  19. Flow Computations on Imprecise Terrains

    CERN Document Server

    Driemel, Anne; Löffler, Maarten

    2011-01-01

    We study the computation of the flow of water on imprecise terrains. We consider two approaches to modeling flow on a terrain: one where water flows across the surface of a polyhedral terrain in the direction of steepest descent, and one where water only flows along the edges of a predefined graph, for example a grid or a triangulation. In both cases each vertex has an imprecise elevation, given by an interval of possible values, while its (x,y)-coordinates are fixed. For the first model, we show that the problem of deciding whether one vertex may be contained in the watershed of another is NP-hard. In contrast, for the second model we give a simple O(n log n) time algorithm to compute the minimal and the maximal watershed of a vertex, where n is the number of edges of the graph. On a grid model, we can compute the same in O(n) time.

  20. Complex terrain and wind lidars

    Energy Technology Data Exchange (ETDEWEB)

    Bingoel, F.

    2009-08-15

    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar can be of the order of 3-4% in moderately-complex terrain and up to 10% in complex terrain. The findings were based on experiments involving collocated lidars and meteorological masts, together with flow calculations over the same terrains. The lidar performance was also simulated with the commercial software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to approx6h. At the forest edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17 deg.. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method. The SCADIS model worked better than the LINCOM model at the forest edge but the model reported closer results to the measurements at upwind than the downwind and this should be

  1. Dynamic Analysis of a Military- Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    V. Balamurugan

    2000-04-01

    Full Text Available 'The ride dynamic characteristics of a typical medium weight, high speed military-tracked vehicle for negotiating rough cross-counlry terrain have been studied. The vehicle is modelled using finiteelement simulation method with beam and shell elements. An eigenvalue analysis has been done to estimate natural modes ofNibration of the vehicle. The dynamic response of certain salient locations is obtained by carrying out a transient dynamic analysis using implicit Newmark beta method. A constant forwar vehicle speed and non-deformable sinusoidal terrain profile are assumed.

  2. Stratigraphy of the layered terrain in Valles Marineris, Mars

    Science.gov (United States)

    Komatsu, G.; Strom, Roger G.

    1991-01-01

    The layered terrain in Valles Marineris provides information about its origin and the geologic history of this canyon system. Whether the terrain is sedimentary material deposited in a dry or lacustrine environment, or volcanic material related to the tectonics of the canyon is still controversial. However, recent studies of Gangis Layered Terrain suggests a cyclic sequence of deposition and erosion under episodic lacustrine conditions. The stratigraphic studies are extended to four other occurrences of layered terrains in Valles Marineris in an attempt to correlate and distinguish between depositional environments. The Juvantae Chasma, Hebes Chasma, Ophir and Candor Chasmata, Melas Chasma, and Gangis Layered Terrain were examined. Although there are broad similarities among the layered terrains, no two deposits are exactly alike. This suggests that there was no synchronized regional depositional processes to form all the layered deposits. However, the similar erosional style of the lower massive weakly bedded unit in Hebes, Gangis, and Ophir-Candor suggests it may have been deposited under similar circumstances.

  3. Path planning strategies for autonomous ground vehicles

    Science.gov (United States)

    Gifford, Kevin Kent

    Several key issues involved with the planning and executing of optimally generated paths for autonomous vehicles are addressed. Two new path planning algorithms are developed, and examined, which effectively minimize replanning as unmapped hazards are encountered. The individual algorithms are compared via extensive simulation. The search strategy results are implemented and tested using the University of Colorado's autonomous vehicle test-bed, RoboCar, and results show the advantages of solving the single-destination all-paths problem for autonomous vehicle path planning. Both path planners implement a graph search methodology incorporating dynamic programming that solves the single-destination shortest-paths problem. Algorithm 1, termed DP for dynamic programming, searches a state space where each state represents a potential vehicle location in a breadth-first fashion expanding from the goal to all potential start locations in the state space. Algorithm 2, termed DP*, couples the heuristic search power of the well-known A* search procedure (Nilsson-80) with the dynamic programming principle applied to graph searching to efficiently make use of overlapping subproblems. DP* is the primary research contribution of the work contained within this thesis. The advantage of solving the single-destination shortest-paths problem is that the entire terrain map is solved in terms of reaching a specified goal. Therefore, if the robot is diverted from the pre-planned path, an alternative path is already computed. The search algorithms are extended to include a probabilistic approach using empirical loss functions to incorporate terrain map uncertainties into the path considering terrain planning process. The results show the importance of considering terrain uncertainty. If the map representation ignores uncertainty by marking any area with less than perfect confidence as unpassable or assigns it the worst case rating, then the paths are longer than intuitively necessary. A

  4. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  5. Morphological modeling of terrains and volume data

    CERN Document Server

    Comic, Lidija; Magillo, Paola; Iuricich, Federico

    2014-01-01

    This book describes the mathematical background behind discrete approaches to morphological analysis of scalar fields, with a focus on Morse theory and on the discrete theories due to Banchoff and Forman. The algorithms and data structures presented are used for terrain modeling and analysis, molecular shape analysis, and for analysis or visualization of sensor and simulation 3D data sets. It covers a variety of application domains including geography, geology, environmental sciences, medicine and biology. The authors classify the different approaches to morphological analysis which are all ba

  6. Impact of Helmet Use in Traumatic Brain Injuries Associated with Recreational Vehicles

    Directory of Open Access Journals (Sweden)

    Latha Ganti

    2013-01-01

    Full Text Available Objective. To study the impact of helmet use on outcomes after recreational vehicle accidents. Methods. This is an observational cohort of adult and pediatric patients who sustained a TBI while riding a recreational vehicle. Recreational vehicles included bicycles, motorcycles, and all-terrain vehicles (ATVs, as well as a category for other vehicles such as skateboards and scooters. Results. Lack of helmet use was significantly associated with having a more severe traumatic brain injury and being admitted to the hospital. Similarly, 25% of those who did wearing a helmet were admitted to the ICU versus 36% of those who did not (P=0.0489. The hospital length of stay was significantly greater for patients who did not use helmets. Conclusion. Lack of helmet use is significantly correlated with abnormal neuroimaging and admission to the hospital and ICU; these data support a call for action to implement more widespread injury prevention and helmet safety education and advocacy.

  7. Guidelines for siting WECS relative to small-scale terrain features

    Science.gov (United States)

    Frost, W.; Shieh, C. F.

    1981-12-01

    Guidelines for siting wind energy conversion systems (WECS) relative to small-scale terrain features are presented to assess the influence of small or microscale terrain features on a proposed wind turbine site. Three categories of terrain were considered: (1) protrusions, topographical features that protrude well above the general level of their neighboring terrain; (2) depressions, valleys, canyons, or passes; and (3) complex terrain, so rugged or irregular that no well defined protrusion or depression can be easily distinguished. The optimum site on a protrusion is always at the highest point. The smoother the peak of the protrusion and the more gentle the slopes on all sides the more optimum the site, providing the geometry and orientation of the depression are such that full advantage can be taken of existing strong valley winds or outflow. Where the terrain is very complex and tortuous, the highest point of the topography will be the optimum site.

  8. Walking Algorithm of Humanoid Robot on Uneven Terrain with Terrain Estimation

    OpenAIRE

    Jiang Yi; Qiuguo Zhu; Rong Xiong; Jun Wu

    2016-01-01

    Humanoid robots are expected to achieve stable walking on uneven terrains. In this paper, a control algorithm for humanoid robots walking on previously unknown terrains with terrain estimation is proposed, which requires only minimum modification to the original walking gait. The swing foot trajectory is redesigned to ensure that the foot lands at the desired horizontal positions under various terrain height. A compliant terrain adaptation method is applied to the landing foot to achieve a fi...

  9. Prediction models in complex terrain

    DEFF Research Database (Denmark)

    Marti, I.; Nielsen, Torben Skov; Madsen, Henrik; Navarro, J.; Barquero, C.G.

    2001-01-01

    The objective of the work is to investigatethe performance of HIRLAM in complex terrain when used as input to energy production forecasting models, and to develop a statistical model to adapt HIRLAM prediction to the wind farm. The features of the terrain, specially the topography, influence the...... performance of HIRLAM in particular with respect to wind predictions. To estimate the performance of the model two spatial resolutions (0,5 Deg. and 0.2 Deg.) and different sets of HIRLAM variables were used to predict wind speed and energy production. The predictions of energy production for the wind farms...... are calculated using on-line measurements of power production as well as HIRLAM predictions as input thus taking advantage of the auto-correlation, which is present in the power production for shorter pediction horizons. Statistical models are used to discribe the relationship between observed energy...

  10. Hyperspectral Infrared Images of Terrain

    Science.gov (United States)

    Vane, G.; Goetz, A. F. H.; Wellman, J. B.; Labaw, C. C.

    1986-01-01

    Images at 128 wavelengths allow direct identification of many earth surface materials. Two reports describe advanced airborne spectrometer that creates images of terrain at many wavelengths. Airborne imaging spectrometer (AIS) produces two-dimensional images in 128 spectral bands in 1.2-to-2.4-micrometer wavelength region. Images created by 32-by-32 array of mercury cadmium telluride detector elements. Array views swath of Earth below moving aircraft. Used for agricultural, geological, and other surveys.

  11. On autonomous terrain model acquistion by a mobile robot

    Science.gov (United States)

    Rao, N. S. V.; Iyengar, S. S.; Weisbin, C. R.

    1987-01-01

    The following problem is considered: A point robot is placed in a terrain populated by an unknown number of polyhedral obstacles of varied sizes and locations in two/three dimensions. The robot is equipped with a sensor capable of detecting all the obstacle vertices and edges that are visible from the present location of the robot. The robot is required to autonomously navigate and build the complete terrain model using the sensor information. It is established that the necessary number of scanning operations needed for complete terrain model acquisition by any algorithm that is based on scan from vertices strategy is given by the summation of i = 1 (sup n) N(O sub i)-n and summation of i = 1 (sup n) N(O sub i)-2n in two- and three-dimensional terrains respectively, where O = (O sub 1, O sub 2,....O sub n) set of the obstacles in the terrain, and N(O sub i) is the number of vertices of the obstacle O sub i.

  12. Robotic concepts for operation in barren terrain. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dowling, K. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)

    1993-01-01

    We have performed a series of studies and configurations for robots that are capable of operating in rough barren terrains. The environments we are targeting are like those of the moon or other planets in the roughness and starkness of the terrains, the loose and hard materials that range from sandy slopes to boulder fields, and the extremes of temperature that are encountered in such places. We present a mission scenario, requirements and then present and evaluate a mechanism design. Additional subsystem issues of power, communication, sensing, and computing are all addressed with respect to these requirements.

  13. GIS-based terrain analysis of linear infrastructure corridors in the Mackenzie River Valley, NWT

    Energy Technology Data Exchange (ETDEWEB)

    Ednie, M.; Wright, J.F.; Duchesne, C. [Natural Resources Canada, Ottawa, ON (Canada). Geological Survey of Canada

    2007-07-01

    The impact of global warming on permafrost terrain was discussed with particular reference to the structural stability and performance reliability of the proposed pipelines and roads in the Mackenzie River Valley in the Northwest Territories. Engineers, regulators and decision makers responsible for the development of these networks must have access to information about current and future terrain conditions, both local and regional. The Geological Survey of Canada is developing an ArcGIS resident, multi-component terrain analysis methodology for evaluating permafrost terrain in terms of the probable geothermal and geomorphological responses to climate warming. A GIS-integrated finite-element transient ground thermal model (T-ONE) can predict local-regional permafrost conditions and future responses of permafrost to climate warming. The influences of surface and channel hydrology on local erosion potentials can be determined by analyzing the topographic and topologic characteristics of the terrain. A weights of evidence-based landscape-process model, currently under development, will consider multiple terrain factors for mapping terrain that is susceptible to slope failure, subsidence or erosion. This terrain analysis methodology is currently being applied to a 2 km buffer spanning the proposed Mackenzie Gas Pipeline right-of-way, and along winter and all-weather road networks in the Mackenzie River Valley. Initial ground thermal modeling has identified thermally sensitive terrain for which permafrost will either completely disappear or warm significantly to near isothermal conditions within the next 25 to 55 years.

  14. GIS-based terrain analysis of linear infrastructure corridors in the Mackenzie River Valley, NWT

    International Nuclear Information System (INIS)

    The impact of global warming on permafrost terrain was discussed with particular reference to the structural stability and performance reliability of the proposed pipelines and roads in the Mackenzie River Valley in the Northwest Territories. Engineers, regulators and decision makers responsible for the development of these networks must have access to information about current and future terrain conditions, both local and regional. The Geological Survey of Canada is developing an ArcGIS resident, multi-component terrain analysis methodology for evaluating permafrost terrain in terms of the probable geothermal and geomorphological responses to climate warming. A GIS-integrated finite-element transient ground thermal model (T-ONE) can predict local-regional permafrost conditions and future responses of permafrost to climate warming. The influences of surface and channel hydrology on local erosion potentials can be determined by analyzing the topographic and topologic characteristics of the terrain. A weights of evidence-based landscape-process model, currently under development, will consider multiple terrain factors for mapping terrain that is susceptible to slope failure, subsidence or erosion. This terrain analysis methodology is currently being applied to a 2 km buffer spanning the proposed Mackenzie Gas Pipeline right-of-way, and along winter and all-weather road networks in the Mackenzie River Valley. Initial ground thermal modeling has identified thermally sensitive terrain for which permafrost will either completely disappear or warm significantly to near isothermal conditions within the next 25 to 55 years

  15. Terrain Classification using Multiple Image Features

    Directory of Open Access Journals (Sweden)

    Jharna Majumdar

    2008-05-01

    Full Text Available A wide variety of image processing applications require segmentation and classification ofimages. The problem becomes complex when the images are obtained in an uncontrolledenvironment with a non-uniform illumination. The selection of suitable features is a critical partof an image segmentation and classification process, where the basic objective is to identify theimage regions that are homogeneous but dissimilar to all spatially adjacent regions. This paperproposes an automatic method for the classification of a terrain using image features such asintensity, texture, and edge. The textural features are calculated using statistics of geometricalattributes of connected regions in a sequence of binary images obtained from a texture image.A pixel-wise image segmentation scheme using a multi-resolution pyramid is used to correct thesegmentation process so as to get homogeneous image regions. Localisation of texture boundariesis done using a refined-edge map obtained by convolution, thinning, thresholding, and linking.The individual regions are classified using a database generated from the features extracted fromknown samples of the actual terrain. The algorithm is used to classify airborne images of a terrainobtained from the sensor mounted on an aerial reconnaissance platform and the results arepresented.

  16. Ride Dynamics of a Tracked Vehicle with a Finite Element Vehicle Model

    Directory of Open Access Journals (Sweden)

    S. Jothi

    2016-01-01

    Full Text Available Research on tracked vehicle dynamics is by and large limited to multi-rigid body simulation. For realistic prediction of vehicle dynamics, it is better to model the vehicle as multi-flexible body. In this paper, tracked vehicle is modelled as a mass-spring system with sprung and unsprung masses of the physical tracked vehicle by Finite element method. Using the equivalent vehicle model, dynamic studies are carried out by imparting vertical displacement inputs to the road wheels. Ride characteristics of the vehicle are captured by modelling the road wheel arms as flexible elements using Finite element method. In this work, a typical tracked vehicle test terrain viz., Trapezoidal blocks terrain (APG terrain is considered. Through the simulations, the effect of the road wheel arm flexibility is monitored. Result of the analysis of equivalent vehicle model with flexible road wheel arms, is compared with the equivalent vehicle model with rigid road wheel arms and also with the experimental results of physical tracked vehicle. Though there is no major difference in the vertical bounce response between the flexible model and the rigid model, but there is a visible difference in the roll condition. Result of the flexible vehicle model is also reasonably matches with the experimental result.Defence Science Journal, Vol. 66, No. 1, January 2016, pp. 19-25, DOI: http://dx.doi.org/10.14429/dsj.66.9201

  17. Advanced computer technology - An aspect of the Terminal Configured Vehicle program. [air transportation capacity, productivity, all-weather reliability and noise reduction improvements

    Science.gov (United States)

    Berkstresser, B. K.

    1975-01-01

    NASA is conducting a Terminal Configured Vehicle program to provide improvements in the air transportation system such as increased system capacity and productivity, increased all-weather reliability, and reduced noise. A typical jet transport has been equipped with highly flexible digital display and automatic control equipment to study operational techniques for conventional takeoff and landing aircraft. The present airborne computer capability of this aircraft employs a multiple computer simple redundancy concept. The next step is to proceed from this concept to a reconfigurable computer system which can degrade gracefully in the event of a failure, adjust critical computations to remaining capacity, and reorder itself, in the case of transients, to the highest order of redundancy and reliability.

  18. Digital Surface and Terrain Models (DSM,DTM), Lafayette County Digital Terrain Model, Published in 1995, 1:24000 (1in=2000ft) scale, Lafayette County Land Records.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Surface and Terrain Models (DSM,DTM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of...

  19. Digital Terrain Models from Mobile Laser Scanning Data in Moravian Karst

    Science.gov (United States)

    Tyagur, N.; Hollaus, M.

    2016-06-01

    During the last ten years, mobile laser scanning (MLS) systems have become a very popular and efficient technology for capturing reality in 3D. A 3D laser scanner mounted on the top of a moving vehicle (e.g. car) allows the high precision capturing of the environment in a fast way. Mostly this technology is used in cities for capturing roads and buildings facades to create 3D city models. In our work, we used an MLS system in Moravian Karst, which is a protected nature reserve in the Eastern Part of the Czech Republic, with a steep rocky terrain covered by forests. For the 3D data collection, the Riegl VMX 450, mounted on a car, was used with integrated IMU/GNSS equipment, which provides low noise, rich and very dense 3D point clouds. The aim of this work is to create a digital terrain model (DTM) from several MLS data sets acquired in the neighbourhood of a road. The total length of two covered areas is 3.9 and 6.1 km respectively, with an average width of 100 m. For the DTM generation, a fully automatic, robust, hierarchic approach was applied. The derivation of the DTM is based on combinations of hierarchical interpolation and robust filtering for different resolution levels. For the generation of the final DTMs, different interpolation algorithms are applied to the classified terrain points. The used parameters were determined by explorative analysis. All MLS data sets were processed with one parameter set. As a result, a high precise DTM was derived with high spatial resolution of 0.25 x 0.25 m. The quality of the DTMs was checked by geodetic measurements and visual comparison with raw point clouds. The high quality of the derived DTM can be used for analysing terrain changes and morphological structures. Finally, the derived DTM was compared with the DTM of the Czech Republic (DMR 4G) with a resolution of 5 x 5 m, which was created from airborne laser scanning data. The vertical accuracy of the derived DTMs is around 0.10 m.

  20. Bandwidth based methodology for designing a hybrid energy storage system for a series hybrid electric vehicle with limited all electric mode

    Science.gov (United States)

    Shahverdi, Masood

    The cost and fuel economy of hybrid electrical vehicles (HEVs) are significantly dependent on the power-train energy storage system (ESS). A series HEV with a minimal all-electric mode (AEM) permits minimizing the size and cost of the ESS. This manuscript, pursuing the minimal size tactic, introduces a bandwidth based methodology for designing an efficient ESS. First, for a mid-size reference vehicle, a parametric study is carried out over various minimal-size ESSs, both hybrid (HESS) and non-hybrid (ESS), for finding the highest fuel economy. The results show that a specific type of high power battery with 4.5 kWh capacity can be selected as the winning candidate to study for further minimization. In a second study, following the twin goals of maximizing Fuel Economy (FE) and improving consumer acceptance, a sports car class Series-HEV (SHEV) was considered as a potential application which requires even more ESS minimization. The challenge with this vehicle is to reduce the ESS size compared to 4.5 kWh, because the available space allocation is only one fourth of the allowed battery size in the mid-size study by volume. Therefore, an advanced bandwidth-based controller is developed that allows a hybridized Subaru BRZ model to be realized with a light ESS. The result allows a SHEV to be realized with 1.13 kWh ESS capacity. In a third study, the objective is to find optimum SHEV designs with minimal AEM assumption which cover the design space between the fuel economies in the mid-size car study and the sports car study. Maximizing FE while minimizing ESS cost is more aligned with customer acceptance in the current state of market. The techniques applied to manage the power flow between energy sources of the power-train significantly affect the results of this optimization. A Pareto Frontier, including ESS cost and FE, for a SHEV with limited AEM, is introduced using an advanced bandwidth-based control strategy teamed up with duty ratio control. This controller

  1. Remote sensing of earth terrain

    Science.gov (United States)

    Kong, J. A.

    1988-01-01

    Two monographs and 85 journal and conference papers on remote sensing of earth terrain have been published, sponsored by NASA Contract NAG5-270. A multivariate K-distribution is proposed to model the statistics of fully polarimetric data from earth terrain with polarizations HH, HV, VH, and VV. In this approach, correlated polarizations of radar signals, as characterized by a covariance matrix, are treated as the sum of N n-dimensional random vectors; N obeys the negative binomial distribution with a parameter alpha and mean bar N. Subsequently, and n-dimensional K-distribution, with either zero or non-zero mean, is developed in the limit of infinite bar N or illuminated area. The probability density function (PDF) of the K-distributed vector normalized by its Euclidean norm is independent of the parameter alpha and is the same as that derived from a zero-mean Gaussian-distributed random vector. The above model is well supported by experimental data provided by MIT Lincoln Laboratory and the Jet Propulsion Laboratory in the form of polarimetric measurements.

  2. Enveloping Relief Surfaces of Landslide Terrain

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two relief surfaces that envelop the rock fall region in a part of Garhwal Himalayas around Chamoli have been identified. Relative relief and absolute relief have been analyzed and the enveloping surfaces recorded at two levels of relief in the landscape. All landslide activity lies within these surfaces. The lower enveloping surface (800 m) dips due south by 7-8 degrees, due to an elevation rise of 100 meters within 12 km from south to north, i.e., a gradient of 8 percent. The nature of the surface is smooth. The upper enveloping surface (> 2500 m) is almost parallel to the lower one but its surface is undulatory due to landslides and denudation. The area has been a seismically active region and has undergone seismic activity up until recently, as evidenced by the Chamoli earthquake of 29th March 1999. The effects of earthquakes are seen at higher levels in the form of landslide imprints on the terrain.

  3. Online Energy Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range Based on Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2015-01-01

    Full Text Available The employed energy management strategy plays an important role in energy saving performance and exhausted emission reduction of plug-in hybrid electric vehicles (HEVs. An application of dynamic programming for optimization of power allocation is implemented in this paper with certain driving cycle and a limited driving range. Considering the DP algorithm can barely be used in real-time control because of its huge computational task and the dependence on a priori driving cycle, several online useful control rules are established based on the offline optimization results of DP. With the above efforts, an online energy management strategy is proposed finally. The presented energy management strategy concerns the prolongation of all-electric driving range as well as the energy saving performance. A simulation study is deployed to evaluate the control performance of the proposed energy management approach. All-electric range of the plug-in HEV can be prolonged by up to 2.86% for a certain driving condition. The energy saving performance is relative to the driving distance. The presented energy management strategy brings a little higher energy cost when driving distance is short, but for a long driving distance, it can reduce the energy consumption by up to 5.77% compared to the traditional CD-CS strategy.

  4. Soil Parameter Identification for Wheel-terrain Interaction Dynamics and Traversability Prediction

    Institute of Scientific and Technical Information of China (English)

    Suksun Hutangkabodee; Yahya Hashem Zweiri; Lakmal Dasarath Seneviratne; Kaspar Althoefer

    2006-01-01

    This paper presents a novel technique for identifying soil parameters for a wheeled vehicle traversing unknown terrain. The identified soil parameters are required for predicting vehicle drawbar pull and wheel drive torque, which in turn can be used for traversability prediction, traction control, and performance optimization of a wheeled vehicle on unknown terrain. The proposed technique is based on the Newton Raphson method. An approximated form of a wheel-soil interaction model based on Composite Simpson's Rule is employed for this purpose. The key soil parameters to be identified are internal friction angle, shear deformation modulus, and lumped pressure-sinkage coefficient. The fourth parameter, cohesion, is not too relevant to vehicle drawbar pull, and is assigned an average value during the identification process. Identified parameters are compared with known values, and shown to be in agreement. The identification method is relatively fast and robust.The identified soil parameters can effectively be used to predict drawbar pull and wheel drive torque with good accuracy.The use of identified soil parameters to design a traversability criterion for wheeled vehicles traversing unknown terrain is presented.

  5. AN EXPERIMENTAL EVALUATION OF 3D TERRAIN MAPPING WITH AN AUTONOMOUS HELICOPTER

    Directory of Open Access Journals (Sweden)

    B. P. Hudzietz

    2012-09-01

    Full Text Available We demonstrate a method for unmanned aerial vehicle based structure from motion mapping and show it to be a viable option for large scale, high resolution terrain modeling. Current methods of large scale terrain modeling can be cost and time prohibitive. We present a method for integrating low cost cameras and unmanned aerial vehicles for the purpose of 3D terrain mapping. Using structure from motion, aerial images taken of the landscape can be reconstructed into 3D models of the terrain. This process is well suited for use on unmanned aerial vehicles due to the light weight and low cost of equipment. We discuss issues of flight path planning and propose an algorithm to assist in the generation of these paths. The structure from motion mapping process is experimentally evaluated in three distinct environments: ground based testing on man-made environments, ground based testing on natural environments, and airborne testing on natural environments. Ground based testing on natural environments was shown to be extremely useful for camera calibration, and the resulting models were found to have a maximum error of 4.26 cm and standard deviation of 1.50 cm. During airborne testing, several areas of approximately 30,000 m2 were mapped. These areas were mapped with acceptable accuracy and a resolution of 1.24 cm.

  6. Development of new all-terrain chip harvester

    International Nuclear Information System (INIS)

    The objective of the project is to develop a new, efficient, reliable and profitable wood harvesting machine for serial production, which could be applied for chipping of logging residues and forest energy from thinnings at the lot, and which would fit into the harvesting chain. The project has been carried out by developing first a method prototype. Biowatti Oy, mastering the harvesting chains of forest energy, has tested the method and the concept, and approved it to be operable. The machine has been delivered to an experienced forest entrepreneur for testing in actual field conditions. Final productivity tests have not been finished yet, and the results have not been analyzed. Preliminary results show that when chipping the residues at the lot, using 300-m haulage distance and unloading into a chip lorry, the productivity to be about 60 bulk-m3/h, and the fuel consumption to be 1,1 liters/bulk m3. The machine can be fueled by tax-free fuel oil. The PIKA LOCH 2000 chipper, developed in the project, will first be marketed in Finland, Sweden and other parts of Europe. In Finland there is a need for lot- chippers and employment of them so they can get investment subsidies from the Finnish Ministry of Trade and Industry, which is expected to increase the share of lot-chippers in harvesting of wood energy. (orig.)

  7. Comparing seismic susceptibility models of the Himalayan terrain

    Science.gov (United States)

    Som, S. K.; Dasarwar, P.; Mohan, Murali; Hindayar, J. N.; Kumar, N. Thrideep; Chowdhuri, S. N.; Darmwal, G. S.; Singh, Harbans

    2016-03-01

    The ongoing intra-continental collision between the Indian and Eurasian plates along the Himalayas has resulted in many damaging earthquakes with severe damages to man-made structures and natural landscapes due to ground shaking and ground failure, which in turn depends on geomorphological, geological and geophysical variables. Seismic susceptibility models are developed for Gangtok City by combining all the three variables using both knowledge-driven and data-driven methods on facet and grid cell terrain units. Finally, the results are critically evaluated by validation with the earthquake intensity data recorded during earthquake events. First-stage modelling attempt using different knowledge-driven methods on different terrain units shows bi-modal data distribution with low predictability due to extremely rugged topography with wide altitudinal variations within short distances. Second-stage modelling of separated population by using the same methodologies increases model predictability in which one model method describes the higher topographic levels better and the other model method is found to be better for lower topographic levels. Seismic susceptibility of the area is best described by composite models, combining different best methods of fine classification for lower and higher topographic levels having the same mapping/terrain units. Comparison of the composite models shows that the terrain unit does not play a significant role but the type of models selected determines the best possible seismic susceptibility map of the area.

  8. Comparing seismic susceptibility models of the Himalayan terrain

    Science.gov (United States)

    Som, S. K.; Dasarwar, P.; Mohan, Murali; Hindayar, J. N.; Kumar, N. Thrideep; Chowdhuri, S. N.; Darmwal, G. S.; Singh, Harbans

    2016-07-01

    The ongoing intra-continental collision between the Indian and Eurasian plates along the Himalayas has resulted in many damaging earthquakes with severe damages to man-made structures and natural landscapes due to ground shaking and ground failure, which in turn depends on geomorphological, geological and geophysical variables. Seismic susceptibility models are developed for Gangtok City by combining all the three variables using both knowledge-driven and data-driven methods on facet and grid cell terrain units. Finally, the results are critically evaluated by validation with the earthquake intensity data recorded during earthquake events. First-stage modelling attempt using different knowledge-driven methods on different terrain units shows bi-modal data distribution with low predictability due to extremely rugged topography with wide altitudinal variations within short distances. Second-stage modelling of separated population by using the same methodologies increases model predictability in which one model method describes the higher topographic levels better and the other model method is found to be better for lower topographic levels. Seismic susceptibility of the area is best described by composite models, combining different best methods of fine classification for lower and higher topographic levels having the same mapping/terrain units. Comparison of the composite models shows that the terrain unit does not play a significant role but the type of models selected determines the best possible seismic susceptibility map of the area.

  9. Geomorphological Mapping of Sputnik Planum and Surrounding Terrain on Pluto

    Science.gov (United States)

    White, Oliver; Stern, Alan; Weaver, Hal; Olkin, Cathy; Ennico, Kimberly; Young, Leslie; Moore, Jeff

    2015-11-01

    The New Horizons flyby of Pluto in July 2015 has provided the first few close-up images of the Kuiper belt object, which reveal it to have a highly diverse range of terrains, implying a complex geological history. The highest resolution images that have yet been returned are seven lossy 400 m/pixel frames that cover the majority of the prominent Plutonian feature informally named Sputnik Planum (all feature names are currently informal), and its surroundings. This resolution is sufficient to allow detailed geomorphological mapping of this area to commence. Lossless versions of all 15 frames that make up the mosaic will be returned in September 2015, and the map presented at DPS will incorporate the total area covered by these frames.Sputnik Planum, with an area of ~650,000 km2, is notable for its smooth appearance and apparent total lack of impact craters at 400 m/pixel resolution. The Planum actually displays a wide variety of textures across its expanse, which includes smooth and pitted plains to the south, polygonal terrain at its center (the polygons can reach tens of kilometers in size and are bounded by troughs that sometimes feature central ridges), and, to the north, darker polygonal terrain displaying patterns indicative of glacial flow. Within these plains there exist several well-defined outcrops of a mottled, light/dark unit that reach from several to tens of kilometers across. Separating Sputnik Planum from the dark, cratered equatorial terrain of Cthulhu Regio on its south-western margin is a unit of chaotically arranged mountains (Hillary Montes); similar mountainous units exist on the south and western margins. The northern margin is bounded by rugged, hilly, cratered terrain (Cousteau Rupes) into which ice of Sputnik Planum appears to be intruding in places. Terrain of similar relief exists to the east, but is much brighter than that to the north. The southernmost extent of the mosaic features a unit of rough, undulating terrain (Pandemonium Dorsa

  10. Walking Algorithm of Humanoid Robot on Uneven Terrain with Terrain Estimation

    Directory of Open Access Journals (Sweden)

    Jiang Yi

    2016-02-01

    Full Text Available Humanoid robots are expected to achieve stable walking on uneven terrains. In this paper, a control algorithm for humanoid robots walking on previously unknown terrains with terrain estimation is proposed, which requires only minimum modification to the original walking gait. The swing foot trajectory is redesigned to ensure that the foot lands at the desired horizontal positions under various terrain height. A compliant terrain adaptation method is applied to the landing foot to achieve a firm contact with the ground. Then a terrain estimation method that takes into account the deformations of the linkages is applied, providing the target for the following correction and adjustment. The algorithm was validated through walking experiments on uneven terrains with the full-size humanoid robot Kong.

  11. Development of All-Electric Combat Vehicle visual simulation platform%全电战斗车辆性能可视化仿真平台开发

    Institute of Scientific and Technical Information of China (English)

    夏乙; 王冬; 刘富林; 易海舰; 陈玉林; 郑程

    2012-01-01

    Aimed at All-Electric Combat Vehicle(AECV) performance demonstration, a visualization platform of AECV based on Open Graphic Library(OpenGL) is designed. The 3D model of AECV made by the 3D graphics software is read into virtual scene in Visual C++. In virtual scenes, the off-line data is read to. simulate AECV acceleration and braking processes. The processes of electrothermal chemistry gun firing and electromagnetism armor defense after being hit by missile are simulated by using the method based on particle system. Experimental results demonstrate that the proposed method is effective.%针对全电坦克性能演示的需求,实现了基于OpenGL的全电坦克性能可视化平台开发.用三维图形软件制作全电坦克三维模型,在Visual C++中将模型导入虚拟场景.在虚拟场景中,读取离线仿真数据来仿真全电坦克的加速、制动过程.使用基于粒子系统的方法模拟全电坦克电热化学炮开火、导弹击中后电磁装甲防护等过程.最后通过实验证明了该方法的有效性.

  12. Human Robotic Systems (HRS): Extreme Terrain Mobility Element

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2014, the Extreme Terrain Mobility project element is developing five technologies:Exoskeleton Development for ISS EvaluationExtreme Terrain Mobility...

  13. Terrain identification for RHex-type robots

    Science.gov (United States)

    Ordonez, Camilo; Shill, Jacob; Johnson, Aaron; Clark, Jonathan; Collins, Emmanuel

    2013-05-01

    Terrain identification is a key enabling ability for generating terrain adaptive behaviors that assist both robot planning and motor control. This paper considers running legged robots from the RHex family) which the military plans to use in the field to assist troops in reconnaissance tasks. Important terrain adaptive behaviors include the selection of gaits) modulation of leg stiffness) and alteration of steering control laws that minimize slippage) maximize speed and/or reduce energy consumption. These terrain adaptive behaviors can be enabled by a terrain identification methodology that combines proprioceptive sensors already available in RHex-type robots. The proposed classification approach is based on the characteristic frequency signatures of data from leg observers) which combine current sensing with a dynamic model of the leg motion. The paper analyzes the classification accuracy obtained using both a single leg and groups of legs (through a voting scheme) on different terrains such as vinyl) asphalt) grass) and pebbles. Additionally) it presents a terrain classifier that works across various gait speeds and in fact almost as good as an overly specialized classifier.

  14. Comparing English, Mandarin, and Russian Hydrographic and Terrain Categories

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Chen-Chieh [National University of Singapore; Sorokine, Alexandre [ORNL

    2013-01-01

    The paper compares hydrographic and terrain categories in the geospatial data standards of the US, Taiwan, and Russian Federation where the dominant languages used are from di erent language families. It aims to identify structural and semantic di erences between similar categories across three geospatial data standards. By formalizing the data standard structures and identifying the properties that di erentiate sibling categories in each geospatial data standard using well-known formal relations and quality universals, we develop a common basis on which hydrographic and terrain categories in the three data standards can be compared. The result suggests that all three data standards structure categories with a mixture of relations with di erent meaning even though most of them are well-known relations in top-level ontologies. Similar categories can be found across all three standards but exact match between similar categories are rare.

  15. DCS Terrain Submission for Cass County, MO

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  16. TERRAIN, Priest Lake, Bonner County, Idaho USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  17. TERRAIN DATA, CITY OF CARSON CITY, NV

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describe the digital topographic data that were used to create...

  18. DCS Terrain Submission for Nacogdoches County TX

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  19. TERRAIN-FREMONT COUNTY, WY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  20. DCS Terrain for Greene County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  1. DCS Terrain Submission for Cass County, TX

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  2. DCS Terrain Submission for Fox Lake PMR

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  3. DCS Terrain Submission for Polk County, Wisconsin

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  4. TERRAIN Submission for Outagamie Countywide DFIRM

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  5. TERRAIN Submission for Dodge Countywide DFIRM

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  6. TERRAIN, UPPER CUMBERLAND WATERSHED, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  7. DCS Terrain Submission for Bark River PMR

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  8. DCS TERRAIN SUBMISSION FOR SHELBY COUNTY, TN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographic data that were used to create...

  9. TERRAIN, CITY OF DALLAS, DALLAS COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  10. DCS Terrain Submission for Sequoyah, OK

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  11. DCS Terrain Submission for Chippewa County, Wisconsin

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  12. TERRAIN, McCRACKEN COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  13. DCS Terrain Submission for Benton County, AR

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographic data that were used to create...

  14. DCS Terrain Submission for Chemung County, NY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  15. TERRAIN, ST. LOUIS COUNTY, Missouri USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  16. DCS Terrain Submission for Lewis County, KY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that were used to create...

  17. TERRAIN, CANNON COUNTY, TENNESSEE and INCORPORATED AREAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  18. DCS Terrain Submission for Garvin, OK

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  19. DCS Terrain for Cobb County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  20. DCS Terrain for Heard County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  1. DCS Terrain for Oswego County, NY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that were used to create...

  2. DCS Terrain Submission for Greenup County, KY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that were used to create...

  3. DCS Terrain for Lincoln County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  4. DCS Terrain for Quitman County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  5. TERRAIN Submission for Lincoln Countywide DFIRM

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  6. DCS Terrain Submission for Floyd County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  7. DCS Terrain for Wilkinson County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  8. DCS Terrain Submission for Stephens, OK

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  9. TERRAIN Submission for Waushara Countywide DFIRM

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  10. DCS Terrain Submission for Rusk County, Wisconsin

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  11. DCS Terrain Submission for Dunn County, Wisconsin

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  12. TERRAIN Submission for Douglas Countywide DFIRM

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  13. DCS TERRAIN Submission for STEARNS COUNTY, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  14. DCS Terrain Submission for Sioux Falls

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  15. Automatic terrain elevation mapping and registration

    Science.gov (United States)

    Ramapriyan, H. K.; Murray, C. W.; Strong, J. P.; Blodget, H. W.

    1984-01-01

    Optimum radar illumination geometries for stereoscopic analysis of surface topography are determined. Correlation and image processing experiments on synthetic aperture radar (SAR) data for improved information extraction are conducted. Model of the geometry of the multiple SIR-B views of the Earth are developed the sensitivity of the derived terrain altitude data to the various system parameters is established. The limits of accuracy of terrain data achievable with shuttle imaging radar (SIR-B) are derived. Algorithms for matching multiple SIR-B images to generate digital terrain maps are developed. Finally, the use of such terrain maps in geometric correction and registration of SIR-B and LANDSAT Thematic Mapper data is demonstrated.

  16. DCS TERRAIN SUBMISSION FOR PUTNAM COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographic data that were used to create...

  17. DCS TERRAIN SUBMISSION FOR VOLUSIA COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographic data that were used to create...

  18. DCS Terrain for Williamson County, TX

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  19. DCS Terrain Submission for Delaware, OK

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  20. TERRAIN, UPPER CUMBERLAND WATERSHED, PMR, TENNESSEE, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  1. DCS Terrain Submission for Gunnison County, CO

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  2. DCS Terrain Submission for Brazos TX

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  3. DCS Terrain Submission for Ulster County NY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describe the digital topographic data that were used to create...

  4. DCS Terrain Submission for Carter, OK

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  5. Airborne laser scanner aided inertial for terrain referenced navigation in unknown environments

    Science.gov (United States)

    Vadlamani, Ananth Kalyan

    A dead-reckoning terrain referenced navigation (TRN) system that uses airborne laser ranging sensors to aid an aircraft inertial navigation system (INS) is presented. Improved navigation performance is achieved through estimation of vehicle velocity and position using terrain measurements. The system only uses aircraft sensors and simultaneously performs the dual functions of mapping and navigation in unknown environments. The theory, algorithms and results of the system performance are presented using simulations and flight test data. This dissertation focuses primarily on the use of dual airborne laser scanners (ALS) for aiding an INS. Dual ALS measurements are used to generate overlapping terrain models, which are then used to estimate the INS velocity and position errors and constrain its drift. By keeping track of its errors, a navigation-grade INS is aided in a feed-forward manner. This dead-reckoning navigation algorithm is generic enough to be easily extendable to use other optical sensors. Data integrity, sensor alignment and the effects of vegetation noise, attitude and heading accuracy are analyzed. Furthermore, a feedback coupled aiding scheme is presented in which a tactical-grade inertial measurement unit (IMU) is aided with dual ALS measurements by feeding the estimated velocity back into the IMU computations. The proposed system can potentially serve as a backup during temporary Global Positioning System (GPS) signal outages, or it can be used to coast for extended periods of time. Although it has elements of conventional TRN, this system does not require a terrain database since its in-flight mapping capability generates the terrain data for navigation. Hence, the system can be used in both non-GPS as well as unknown terrain environments. The navigation system is dead-reckoning in nature and errors accumulate over time, unless the system can be reset periodically by geo-referenced terrain data or a position estimate from another navigation aid.

  6. Automatic terrain modeling using transfinite element analysis

    KAUST Repository

    Collier, Nathaniel O.

    2010-05-31

    An automatic procedure for modeling terrain is developed based on L2 projection-based interpolation of discrete terrain data onto transfinite function spaces. The function space is refined automatically by the use of image processing techniques to detect regions of high error and the flexibility of the transfinite interpolation to add degrees of freedom to these areas. Examples are shown of a section of the Palo Duro Canyon in northern Texas.

  7. Periodic spring-mass running over uneven terrain through feedforward control of landing conditions.

    Science.gov (United States)

    Palmer, Luther R; Eaton, Caitrin E

    2014-09-01

    This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles. The algorithm is shown here implemented on a spring-loaded inverted pendulum model in simulation, and can be configured to approach fixed running height over uneven terrain or self-stable terrain following. Offline search identifies unique landing conditions that achieve a desired apex height with a constant stride period over varying ground levels. Because the time between the apex and touchdown events is directly related to ground height, the landing conditions can be computed in real time as continuous functions of this falling time. Enforcing a constant stride period reduces the need for inertial sensing of the apex event, which is nontrivial for physical systems, and allows for clocked feedfoward control of the swing leg. PMID:25162480

  8. CONTEXT-BASED URBAN TERRAIN RECONSTRUCTION FROM UAV-VIDEOS FOR GEOINFORMATION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. Bulatov

    2012-09-01

    Full Text Available Urban terrain reconstruction has many applications in areas of civil engineering, urban planning, surveillance and defense research. Therefore the needs of covering ad-hoc demand and performing a close-range urban terrain reconstruction with miniaturized and relatively inexpensive sensor platforms are constantly growing. Using (miniaturized unmanned aerial vehicles, (MUAVs, represents one of the most attractive alternatives to conventional large-scale aerial imagery. We cover in this paper a four-step procedure of obtaining georeferenced 3D urban models from video sequences. The four steps of the procedure – orientation, dense reconstruction, urban terrain modeling and geo-referencing – are robust, straight-forward, and nearly fully-automatic. The two last steps – namely, urban terrain modeling from almost-nadir videos and co-registration of models 6ndash; represent the main contribution of this work and will therefore be covered with more detail. The essential substeps of the third step include digital terrain model (DTM extraction, segregation of buildings from vegetation, as well as instantiation of building and tree models. The last step is subdivided into quasi- intrasensorial registration of Euclidean reconstructions and intersensorial registration with a geo-referenced orthophoto. Finally, we present reconstruction results from a real data-set and outline ideas for future work.

  9. Periodic spring–mass running over uneven terrain through feedforward control of landing conditions

    International Nuclear Information System (INIS)

    This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles. The algorithm is shown here implemented on a spring-loaded inverted pendulum model in simulation, and can be configured to approach fixed running height over uneven terrain or self-stable terrain following. Offline search identifies unique landing conditions that achieve a desired apex height with a constant stride period over varying ground levels. Because the time between the apex and touchdown events is directly related to ground height, the landing conditions can be computed in real time as continuous functions of this falling time. Enforcing a constant stride period reduces the need for inertial sensing of the apex event, which is nontrivial for physical systems, and allows for clocked feedfoward control of the swing leg. (paper)

  10. Optimisation of LiDAR derived terrain models for river flow modelling

    OpenAIRE

    G. Mandlburger; C. Hauer; B. Höfle; H. Habersack; Pfeifer, N

    2009-01-01

    Airborne LiDAR (Light Detection And Ranging) combines cost efficiency, high degree of automation, high point density of typically 1–10 points per m2 and height accuracy of better than ±15 cm. For all these reasons LiDAR is particularly suitable for deriving precise Digital Terrain Models (DTM) as geometric basis for hydrodynamic-numerical (HN) simulations. The application of LiDAR for river flow modelling requires a series of preprocessing steps. Terrain poin...

  11. Navigating a Mobile Robot Across Terrain Using Fuzzy Logic

    Science.gov (United States)

    Seraji, Homayoun; Howard, Ayanna; Bon, Bruce

    2003-01-01

    A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.

  12. System for real-time generation of georeferenced terrain models

    Science.gov (United States)

    Schultz, Howard J.; Hanson, Allen R.; Riseman, Edward M.; Stolle, Frank; Zhu, Zhigang; Hayward, Christopher D.; Slaymaker, Dana

    2001-02-01

    A growing number of law enforcement applications, especially in the areas of border security, drug enforcement and anti- terrorism require high-resolution wide area surveillance from unmanned air vehicles. At the University of Massachusetts we are developing an aerial reconnaissance system capable of generating high resolution, geographically registered terrain models (in the form of a seamless mosaic) in real-time from a single down-looking digital video camera. The efficiency of the processing algorithms, as well as the simplicity of the hardware, will provide the user with the ability to produce and roam through stereoscopic geo-referenced mosaic images in real-time, and to automatically generate highly accurate 3D terrain models offline in a fraction of the time currently required by softcopy conventional photogrammetry systems. The system is organized around a set of integrated sensor and software components. The instrumentation package is comprised of several inexpensive commercial-off-the-shelf components, including a digital video camera, a differential GPS, and a 3-axis heading and reference system. At the heart of the system is a set of software tools for image registration, mosaic generation, geo-location and aircraft state vector recovery. Each process is designed to efficiently handle the data collected by the instrument package. Particular attention is given to minimizing geospatial errors at each stage, as well as modeling propagation of errors through the system. Preliminary results for an urban and forested scene are discussed in detail.

  13. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-07-13

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  14. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  15. Law as a Contested Terrain under Authoritarianism

    Directory of Open Access Journals (Sweden)

    Ching Kwan Lee

    2013-12-01

    Full Text Available Two recent publications, one by Waikeung Tam (Lingnan University and the other by Rachel Stern (UC Berkeley School of Law, offer refreshing views on law and social change under Chinese authoritarianism, a topic that has been marginalized by both the law and society and China studies literatures. After all, rule of law and state authoritarianism seem like oxymorons, especially in the People’s Republic of China, where the leadership of the Chinese Communist Party is enshrined in the Constitution, the country’s highest law. Yet in recent years, a number of studies have spotlighted how ordinary Chinese citizens take the Chinese legal system more seriously than scholars, and these citizens’ collective mobilization of the law has compelled us to rethink the relationship among law, society, and politics. The two newly published monographs discussed here, both of which grew out of doctoral dissertations written around the same time and addressing the same phenomenon—the rise of public interest litigation—reinforce the need for such a perspectival shift. Together they show that the law has become a contested terrain with varying potential for enabling rights activism under different types of state authoritarianism in a single country: in Tam’s case, postcolonial Hong Kong, and in Stern’s case, postsocialist China...

  16. A SWITCHED-ANTENNA NADIR-LOOKING INTERFEROMETRIC SAR ALTIMETER FOR TERRAIN-AIDED NAVIGATION

    OpenAIRE

    Inchan Paek; Jonghun Jang; Joohwan Chun; Jinbae Suh

    2016-01-01

    Conventional terrain-aided navigation (TAN) technique uses an altimeter to locate the position of an aerial vehicle. However, a major problem with a radar altimeter is that its beam (or pulse) footprint on the ground could be large, and therefore the nadir altitude cannot be estimated accurately. To overcome this difficulty, one may use the nadir-looking synthetic aperture radar (SAR) technique to reduce the along-track beam width, while the cross-track ambiguity is resolved wi...

  17. Intelligent mobility research for robotic locomotion in complex terrain

    Science.gov (United States)

    Trentini, Michael; Beckman, Blake; Digney, Bruce; Vincent, Isabelle; Ricard, Benoit

    2006-05-01

    The objective of the Autonomous Intelligent Systems Section of Defence R&D Canada - Suffield is best described by its mission statement, which is "to augment soldiers and combat systems by developing and demonstrating practical, cost effective, autonomous intelligent systems capable of completing military missions in complex operating environments." The mobility requirement for ground-based mobile systems operating in urban settings must increase significantly if robotic technology is to augment human efforts in these roles and environments. The intelligence required for autonomous systems to operate in complex environments demands advances in many fields of robotics. This has resulted in large bodies of research in areas of perception, world representation, and navigation, but the problem of locomotion in complex terrain has largely been ignored. In order to achieve its objective, the Autonomous Intelligent Systems Section is pursuing research that explores the use of intelligent mobility algorithms designed to improve robot mobility. Intelligent mobility uses sensing, control, and learning algorithms to extract measured variables from the world, control vehicle dynamics, and learn by experience. These algorithms seek to exploit available world representations of the environment and the inherent dexterity of the robot to allow the vehicle to interact with its surroundings and produce locomotion in complex terrain. The primary focus of the paper is to present the intelligent mobility research within the framework of the research methodology, plan and direction defined at Defence R&D Canada - Suffield. It discusses the progress and future direction of intelligent mobility research and presents the research tools, topics, and plans to address this critical research gap. This research will create effective intelligence to improve the mobility of ground-based mobile systems operating in urban settings to assist the Canadian Forces in their future urban operations.

  18. Online Energy Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range Based on Dynamic Programming

    OpenAIRE

    Zeyu Chen; Weiguo Liu; Ying Yang; Weiqiang Chen

    2015-01-01

    The employed energy management strategy plays an important role in energy saving performance and exhausted emission reduction of plug-in hybrid electric vehicles (HEVs). An application of dynamic programming for optimization of power allocation is implemented in this paper with certain driving cycle and a limited driving range. Considering the DP algorithm can barely be used in real-time control because of its huge computational task and the dependence on a priori driving cycle, several onlin...

  19. Artificial intelligence technologies applied to terrain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.C. (Army Training and Doctrine Command, Fort Monroe, VA (USA)); Powell, D.R. (Los Alamos National Lab., NM (USA))

    1990-01-01

    The US Army Training and Doctrine Command is currently developing, in cooperation with Los Alamos National Laboratory, a Corps level combat simulation to support military analytical studies. This model emphasizes high resolution modeling of the command and control processes, with particular attention to architectural considerations that enable extension of the model. A planned future extension is the inclusion of an computer based planning capability for command echelons that can be dynamical invoked during the execution of then model. Command and control is the process through which the activities of military forces are directed, coordinated, and controlled to achieve the stated mission. To perform command and control the commander must understand the mission, perform terrain analysis, understand his own situation and capabilities as well as the enemy situation and his probable actions. To support computer based planning, data structures must be available to support the computer's ability to understand'' the mission, terrain, own capabilities, and enemy situation. The availability of digitized terrain makes it feasible to apply artificial intelligence technologies to emulate the terrain analysis process, producing data structures for uses in planning. The work derived thus for to support the understanding of terrain is the topic of this paper. 13 refs., 5 figs., 6 tabs.

  20. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.

    Science.gov (United States)

    Li, Chen; Pullin, Andrew O; Haldane, Duncan W; Lam, Han K; Fearing, Ronald S; Full, Robert J

    2015-08-01

    Many animals, modern aircraft, and underwater vehicles use fusiform, streamlined body shapes that reduce fluid dynamic drag to achieve fast and effective locomotion in air and water. Similarly, numerous small terrestrial animals move through cluttered terrain where three-dimensional, multi-component obstacles like grass, shrubs, vines, and leaf litter also resist motion, but it is unknown whether their body shape plays a major role in traversal. Few ground vehicles or terrestrial robots have used body shape to more effectively traverse environments such as cluttered terrain. Here, we challenged forest-floor-dwelling discoid cockroaches (Blaberus discoidalis) possessing a thin, rounded body to traverse tall, narrowly spaced, vertical, grass-like compliant beams. Animals displayed high traversal performance (79 ± 12% probability and 3.4 ± 0.7 s time). Although we observed diverse obstacle traversal strategies, cockroaches primarily (48 ± 9% probability) used a novel roll maneuver, a form of natural parkour, allowing them to rapidly traverse obstacle gaps narrower than half their body width (2.0 ± 0.5 s traversal time). Reduction of body roundness by addition of artificial shells nearly inhibited roll maneuvers and decreased traversal performance. Inspired by this discovery, we added a thin, rounded exoskeletal shell to a legged robot with a nearly cuboidal body, common to many existing terrestrial robots. Without adding sensory feedback or changing the open-loop control, the rounded shell enabled the robot to traverse beam obstacles with gaps narrower than shell width via body roll. Such terradynamically 'streamlined' shapes can reduce terrain resistance and enhance traversability by assisting effective body reorientation via distributed mechanical feedback. Our findings highlight the need to consider body shape to improve robot mobility in real-world terrain often filled with clutter, and to develop better locomotor-ground contact models to understand

  1. Improved Inlet Conditions for Terrain CFD

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard

    The atmospheric boundary layer flow over different types of terrain is studied through simulations made with the finite volume CFD code of Ellipsys 2D and 3D. The simulations are compared to measurements made at the Høvsøre test site and over the hill of Askervein.The primary objective of these...... describing the flow after a change in the surface roughness. The derivation of these expressions is based on a range of simulations of flows over flat terrain with different types of roughness changes.The derived expressions show good agreement with simulations and could, as intended, be used to define inlet...... conditions for flow simulations over terrain, where an upstream roughness change is thought to have an influence. More thorough experimental verification is however, thought necessary to make the expressions sufficiently reliable. The same goes for the simulations-based conclusions regarding the flow over...

  2. Terrain Simplification Research in Augmented Scene Modeling

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    environment. As one of the most important tasks in augmented scene modeling, terrain simplification research has gained more and more attention. In this paper, we mainly focus on point selection problem in terrain simplification using triangulated irregular network. Based on the analysis and comparison of traditional importance measures for each input point, we put forward a new importance measure based on local entropy. The results demonstrate that the local entropy criterion has a better performance than any traditional methods. In addition, it can effectively conquer the "short-sight" problem associated with the traditional methods.

  3. Environmental modeling and recognition for an autonomous land vehicle

    Science.gov (United States)

    Lawton, D. T.; Levitt, T. S.; Mcconnell, C. C.; Nelson, P. C.

    1987-01-01

    An architecture for object modeling and recognition for an autonomous land vehicle is presented. Examples of objects of interest include terrain features, fields, roads, horizon features, trees, etc. The architecture is organized around a set of data bases for generic object models and perceptual structures, temporary memory for the instantiation of object and relational hypotheses, and a long term memory for storing stable hypotheses that are affixed to the terrain representation. Multiple inference processes operate over these databases. Researchers describe these particular components: the perceptual structure database, the grouping processes that operate over this, schemas, and the long term terrain database. A processing example that matches predictions from the long term terrain model to imagery, extracts significant perceptual structures for consideration as potential landmarks, and extracts a relational structure to update the long term terrain database is given.

  4. Terrain Hazard Detection and Avoidance During the Descent and Landing Phase of the Altair Mission

    Science.gov (United States)

    Strhan, Alan L.; Johnson, Andrew E.

    2010-01-01

    This paper describes some of the environmental challenges associated with landing a crewed or robotic vehicle at any certified location on the lunar surface (i.e. not a mountain peak, permanently dark crater floor or overly steep terrain), with a specific focus on how hazard detection technology may be incorporated to mitigate these challenges. For this discussion, the vehicle of interest is the Altair Lunar Lander, being the vehicle element of the NASA Constellation Program aimed at returning humans to the moon. Lunar environmental challenges for such global lunar access primarily involve terrain and lighting. These would include sizable rocks and slopes, which are more concentrated in highland areas; small craters, which are essentially everywhere independent of terrain type; and for polar regions, low-angle sunlight, which leaves significant terrain in shadow. To address these issues, as well as to provide for precision landing, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was charted by NASA Headquarters, and has since been making significant progress. The ALHAT team considered several sensors for real-time hazard detection, settling on the use of a Flash Lidar mounted to a high-speed gimbal, with computationally intense image processing and elevation interpretation software. The Altair Project has been working with the ALHAT team to understand the capabilities and limitations of their concept, and has incorporated much of the ALHAT hazard detection system into the Altair baseline design. This integration, along with open issues relating to computational performance, the need for system redundancy, and potential pilot interaction, will be explored further in this paper.

  5. Digital Surface and Terrain Models (DSM,DTM), lidar-derived digital terrain model for San Mateo County, Published in unknown, 1:1200 (1in=100ft) scale, US Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Surface and Terrain Models (DSM,DTM) dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of unknown....

  6. Processes Modifying Cratered Terrains on Pluto

    Science.gov (United States)

    Moore, J. M.

    2015-01-01

    The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as approximately 100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto's existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.

  7. Processes Modifying Cratered Terrains on Pluto

    Science.gov (United States)

    Moore, Jeffrey M.; Howard, Alan D.; White, Oliver L.; Umurhan, Orkan M.; Schenk, Paul M.; Beyer, Ross A.; McKinnon, William B.; Singer, Kelsi N.; Spencer, John; Stern, S. A.; Weaver, H. A.; Young, Leslie A.; Ennico, Kimberly; Olkin, Cathy B.

    2015-11-01

    The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as ~100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto’s existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.

  8. Spectra of Velocity components over Complex Terrain

    DEFF Research Database (Denmark)

    Panofsky, H. A.; Larko, D.; Lipschut, R.; Stone, G.; Bradley, E. F.; Bowen, Anthony John; Højstrup, Jørgen

    1982-01-01

    horizontal, and decrease when the flow is uphill, for the longitudinal velocity component only. Since vertical-velocity spectra contain relatively less low wavenumber energy than horizontal-velocity spectra, energetic vertical-velocity fluctuations tend to be in equilibrium with local terrain....

  9. Terrain slugging in near horizontal oilwells

    OpenAIRE

    Fozard, J.

    2001-01-01

    In this thesis we consider the problem of terrain slugging in near horizontal producing wells. We formulate a simple model for stratified two-phase flow, and consider the linear stability of steady states. We then study the possibility of the formation of roll waves, and make a tentative attempt at a resolution of the problem.

  10. Modelling Canopy Flows over Complex Terrain

    Science.gov (United States)

    Grant, Eleanor R.; Ross, Andrew N.; Gardiner, Barry A.

    2016-06-01

    Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO_2 and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required.

  11. Visualization of Large Terrains Made Easy

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, P; Pascucci, V

    2001-08-07

    We present an elegant and simple to implement framework for performing out-of-core visualization and view-dependent refinement of large terrain surfaces. Contrary to the recent trend of increasingly elaborate algorithms for large-scale terrain visualization, our algorithms and data structures have been designed with the primary goal of simplicity and efficiency of implementation. Our approach to managing large terrain data also departs from more conventional strategies based on data tiling. Rather than emphasizing how to segment and efficiently bring data in and out of memory, we focus on the manner in which the data is laid out to achieve good memory coherency for data accesses made in a top-down (coarse-to-fine) refinement of the terrain. We present and compare the results of using several different data indexing schemes, and propose a simple to compute index that yields substantial improvements in locality and speed over more commonly used data layouts. Our second contribution is a new and simple, yet easy to generalize method for view-dependent refinement. Similar to several published methods in this area, we use longest edge bisection in a top-down traversal of the mesh hierarchy to produce a continuous surface with subdivision connectivity. In tandem with the refinement, we perform view frustum culling and triangle stripping. These three components are done together in a single pass over the mesh. We show how this framework supports virtually any error metric, while still being highly memory and compute efficient.

  12. Conically scanning lidar error in complex terrain

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Mann, Jakob; Foussekis, Dimitri

    2009-01-01

    Conically scanning lidars assume the flow to be homogeneous in order to deduce the horizontal wind speed. However, in mountainous or complex terrain this assumption is not valid implying a risk that the lidar will derive an erroneous wind speed. The magnitude of this error ismeasured by collocating...

  13. Night time fluxes in sloping terrain

    Czech Academy of Sciences Publication Activity Database

    Janouš, Dalibor; Havránková, Kateřina; Pavelka, Marian; Acosta, Manuel; Zvěřinová, Zuzana

    2003-01-01

    Roč. 2, č. 30 (2003), s. 191-198. ISSN 1336-5266 R&D Projects: GA AV ČR(CZ) KJB3087301; GA MŠk(CZ) LN00A141 Institutional research plan: CEZ:AV0Z6087904 Keywords : CO2 efflux * drainge flow * terrain effects Subject RIV: EH - Ecology, Behaviour

  14. Hybrid and Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  15. Path selection system simulation and evaluation for a Martian roving vehicle

    Science.gov (United States)

    Frederick, D. K.

    1975-01-01

    A comprehensive digital computer simulation program has been developed for evaluating the path-selection system performance of an autonomous roving vehicle being designed for the exploration of Mars. Vehicle performance over realistic three-dimensional terrains in the presence of random motion disturbances and sensor measurement noise is simulated and plotted on a terrain contour map. In addition, a numerical figure-of-merit is computed automatically for each run.

  16. A method to harness global crowd-sourced data to understand travel behavior in avalanche terrain.

    Science.gov (United States)

    Hendrikx, J.; Johnson, J.

    2015-12-01

    To date, most studies of the human dimensions of decision making in avalanche terrain has focused on two areas - post-accident analysis using accident reports/interviews and, the development of tools as decision forcing aids. We present an alternate method using crowd-sourced citizen science, for understanding decision-making in avalanche terrain. Our project combines real-time GPS tracking via a smartphone application, with internet based surveys of winter backcountry users as a method to describe and quantify travel practices in concert with group decision-making dynamics, and demographic data of participants during excursions. Effectively, we use the recorded GPS track taken within the landscape as an expression of the decision making processes and terrain usage by the group. Preliminary data analysis shows that individual experience levels, gender, avalanche hazard, and group composition all influence the ways in which people travel in avalanche terrain. Our results provide the first analysis of coupled real-time GPS tracking of the crowd while moving in avalanche terrain combined with psychographic and demographic correlates. This research will lead to an improved understanding of real-time decision making in avalanche terrain. In this paper we will specifically focus on the presentation of the methods used to solicit, and then harness the crowd to obtain data in a unique and innovative application of citizen science where the movements within the terrain are the desired output data (Figure 1). Figure 1: Example GPS tracks sourced from backcountry winter users in the Teton Pass area (Wyoming), from the 2014-15 winter season, where tracks in red represent those recorded as self-assessed experts (as per our survey), and where tracks in blue represent those recorded as self-assessed intermediates. All tracks shown were obtained under similar avalanche conditions. Statistical analysis of terrain metrics showed that the experts used steeper terrain than the

  17. Digital Surface and Terrain Models (DSM,DTM), Published in 2000, Rock County Planning, Economic, and Community Development Agency.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Surface and Terrain Models (DSM,DTM) dataset, was produced all or in part from LIDAR information as of 2000. Data by this publisher are often provided...

  18. The Cliff Reconnaissance Vehicle: a tool to improve astronaut exploration efficiency.

    Science.gov (United States)

    Souchier, Alain

    2014-05-01

    The close examination of cliff strata on Mars may reveal important information about conditions that existed in the past on that planet. To have access to such difficult-to-reach locations, the Association Planète Mars (France) has, since 2001, been experimenting with designs of manually operated, instrumented vehicles capable of being lowered down the faces of cliffs. The latest tests in the series in which the Cliff Reconnaissance Vehicle (CRV) or Cliffbot was used were conducted as part of the Austrian Space Forum's MARS2013 field analog project in Morocco in February 2013. Experimentation centered on vehicle configuration for maximum all-terrain capabilities; operational procedures, which included use while the operator was wearing an analog space suit; and imaging, mapping, and geological/biological feature detection capabilities. The exercise demonstrated that Cliffbot is capable of examining hard-to-reach rock strata in cliff faces but that it needs further mechanical modification to improve its ability to overcome some particular terrain obstacles and situational awareness by the operator. PMID:24823801

  19. Hybrid and Plug-In Electric Vehicles (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  20. Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots

    Science.gov (United States)

    Padgett, Curtis; Liebe, Carl; Chang, Johnny; Brown, Kenneth

    2007-01-01

    A proposed optoelectronic system, to be mounted aboard an exploratory robotic vehicle, would be used to generate a three-dimensional (3D) map of nearby terrain and obstacles for purposes of navigating the vehicle across the terrain and avoiding the obstacles. The difference between this system and the other systems would lie in the details of implementation. In this system, the illumination would be provided by a laser. The beam from the laser would pass through a two-dimensional diffraction grating, which would divide the beam into multiple beams propagating in different, fixed, known directions. These beams would form a grid of bright spots on the nearby terrain and obstacles. The centroid of each bright spot in the image would be computed. For each such spot, the combination of (1) the centroid, (2) the known direction of the light beam that produced the spot, and (3) the known baseline would constitute sufficient information for calculating the 3D position of the spot.

  1. Complex geomorphologic assemblage of terrains in association with the banded terrain in Hellas basin, Mars

    Science.gov (United States)

    Diot, X.; El-Maarry, M. R.; Schlunegger, F.; Norton, K. P.; Thomas, N.; Grindrod, P. M.; Chojnacki, M.

    2016-02-01

    Hellas basin acts as a major sink for the southern highlands of Mars and is likely to have recorded several episodes of sedimentation and erosion. The north-western part of the basin displays a potentially unique Amazonian landscape domain in the deepest part of Hellas, called "banded terrain", which is a deposit characterized by an alternation of narrow band shapes and inter-bands displaying a sinuous and relatively smooth surface texture suggesting a viscous flow origin. Here we use high-resolution (HiRISE and CTX) images to assess the geomorphological interaction of the banded terrain with the surrounding geomorphologic domains in the NW interior of Hellas to gain a better understanding of the geological evolution of the region as a whole. Our analysis reveals that the banded terrain is associated with six geomorphologic domains: a central plateau named Alpheus Colles, plain deposits (P1 and P2), reticulate (RT1 and RT2) and honeycomb terrains. Based on the analysis of the geomorphology of these domains and their cross-cutting relationships, we show that no widespread deposition post-dates the formation of the banded terrain, which implies that this domain is the youngest and latest deposit of the interior of Hellas. Therefore, the level of geologic activity in the NW Hellas during the Amazonian appears to have been relatively low and restricted to modification of the landscape through mechanical weathering, aeolian and periglacial processes. Thermophysical data and cross-cutting relationships support hypotheses of modification of the honeycomb terrain via vertical rise of diapirs such as ice diapirism, and the formation of the plain deposits through deposition and remobilization of an ice-rich mantle deposit. Finally, the observed gradual transition between honeycomb and banded terrain suggests that the banded terrain may have covered a larger area of the NW interior of Hellas in the past than previously thought. This has implications on the understanding of

  2. Method for surmounting an obstacle by a robot vehicle

    Science.gov (United States)

    Wilcox, Brian H.; Ohm, Timothy R.

    1994-12-01

    Surmounting obstacles in the path of a robot vehicle is accomplished by rotating the wheel forks of the vehicle about their transverse axes with respect to the vehicle body so as to shift most of the vehicle weight onto the rear wheels, and then driving the vehicle forward so as to drive the now lightly-loaded front wheels (only) over the obstacle. Then, after the front wheels have either surmounted or completely passed the obstacle (depending upon the length of the obstacle), the forks are again rotated about their transverse axes so as to shift most of the vehicle weight onto the front wheels. Then the vehicle is again driven forward so as to drive the now lightly-loaded rear wheels over the obstacle. Once the obstacle has been completely cleared and the vehicle is again on relatively level terrain, the forks are again rotated so as to uniformly distribute the vehicle weight between the front and rear wheels.

  3. A method for surmounting an obstacle by a robot vehicle

    Science.gov (United States)

    Wilcox, Brian H.; Ohm, Timothy R.

    1992-10-01

    Surmounting obstacles in the path of a robot vehicle is accomplished by rotating the wheel forks of the vehicle about their transverse axes with respect to the vehicle body so as to shift most of the vehicle weight onto the rear wheels, and then driving the vehicle forward so as to drive the now lightly-loaded front wheels (only) over the obstacle. Then, after the front wheels have either surmounted or completely passed the obstacle (depending upon the length of the obstacle), the forks are again rotated about their transverse axes so as to shift most of the vehicle weight onto the front wheels. Then the vehicle is again driven forward so as to drive the now lightly-loaded rear wheels over the obstacle. Once the obstacle has been completely cleared and the vehicle is again on relatively level terrain, the forks are again rotated so as to uniformly distribute the vehicle weight between the front and rear wheels.

  4. Axillary breast: Navigating uncharted terrain

    OpenAIRE

    Bhave, Medha A

    2015-01-01

    Introduction: Axillary breast is a common condition that leads to discomfort and cosmetic problems. Liposuction alone and open excision are two techniques used for treatment. Materials and Methods: This study assesses the results of treatment in 24 consecutive patients, operated between 2005 and 2015. All patients had Kajava class IV masses. Three were treated by liposuction alone, while 21 were treated by open axillaplasty with limited liposuction. Results: One patient treated by liposuction...

  5. Local-scale stratigraphy of grooved terrain on Ganymede

    Science.gov (United States)

    Murchie, Scott L.; Head, James W.; Helfenstein, Paul; Plescia, Jeffrey B.

    1987-01-01

    The surface of the Jovian satellite, Ganymede, is divided into two main units, dark terrain cut by arcuate and subradial furrows, and light terrain consisting largely of areas with pervasive U-shaped grooves. The grooved terrain may be subdivided on the basis of pervasive morphology of groove domains into four terrain types: (1) elongate bands of parallel grooves (groove lanes); (2) polygonal domains of parallel grooves (grooved polygons); (3) polygonal domains of two orthogonal groove sets (reticulate terrain); and (4) polygons having two to several complexly cross-cutting groove sets (complex grooved terrain). Reticulate terrain is frequently dark and not extensively resurfaced, and grades to a more hummocky terrain type. The other three grooved terrain types have almost universally been resurfaced by light material during their emplacement. The sequence of events during grooved terrain emplacement has been investigated. An attempt is made to integrate observed geologic and tectonic patterns to better constrain the relative ages and styles of emplacement of grooved terrain types. A revised model of grooved terrain emplacement is proposed and is tested using detailed geologic mapping and measurement of crater density.

  6. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk

    2008-01-01

    location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services...... connectivity, mobility, and availability of services. The dissertation consists of two parts. Part I gives an overview of service oriented architecture for pervasive computing systems and describes the contributions of the publications listed in part II. We investigate architecture for vehicular technology...... and governing the flow of data among them. In pervasive computing, composing services is, however, not the whole story. To fully realize their potential, applications must also deal with challenges such as device heterogeneity, context awareness, openendedness, and resilience to dynamism in network...

  7. Online 3D terrain visualisation using Unity 3D game engine: A comparison of different contour intervals terrain data draped with UAV images

    Science.gov (United States)

    Hafiz Mahayudin, Mohd; Che Mat, Ruzinoor

    2016-06-01

    The main objective of this paper is to discuss on the effectiveness of visualising terrain draped with Unmanned Aerial Vehicle (UAV) images generated from different contour intervals using Unity 3D game engine in online environment. The study area that was tested in this project was oil palm plantation at Sintok, Kedah. The contour data used for this study are divided into three different intervals which are 1m, 3m and 5m. ArcGIS software were used to clip the contour data and also UAV images data to be similar size for the overlaying process. The Unity 3D game engine was used as the main platform for developing the system due to its capabilities which can be launch in different platform. The clipped contour data and UAV images data were process and exported into the web format using Unity 3D. Then process continue by publishing it into the web server for comparing the effectiveness of different 3D terrain data (contour data) draped with UAV images. The effectiveness is compared based on the data size, loading time (office and out-of-office hours), response time, visualisation quality, and frame per second (fps). The results were suggest which contour interval is better for developing an effective online 3D terrain visualisation draped with UAV images using Unity 3D game engine. It therefore benefits decision maker and planner related to this field decide on which contour is applicable for their task.

  8. Hydrologic Terrain Processing Using Parallel Computing

    Science.gov (United States)

    Tarboton, D. G.; Watson, D. W.; Wallace, R. M.; Schreuders, K.; Tesfa, T. K.

    2009-12-01

    Topography in the form of Digital Elevation Models (DEMs), is widely used to derive information for the modeling of hydrologic processes. Hydrologic terrain analysis augments the information content of digital elevation data by removing spurious pits, deriving a structured flow field, and calculating surfaces of hydrologic information derived from the flow field. The increasing availability of high-resolution terrain datasets for large areas poses a challenge for existing algorithms that process terrain data to extract this hydrologic information. This paper will describe parallel algorithms that have been developed to enhance hydrologic terrain pre-processing so that larger datasets can be more efficiently computed. Message Passing Interface (MPI) parallel implementations have been developed for pit removal, flow direction, and generalized flow accumulation methods within the Terrain Analysis Using Digital Elevation Models (TauDEM) package. The parallel algorithm works by decomposing the domain into striped or tiled data partitions where each tile is processed by a separate processor. This method also reduces the memory requirements of each processor so that larger size grids can be processed. The parallel pit removal algorithm is adapted from the method of Planchon and Darboux that starts from a high elevation then progressively scans the grid, lowering each grid cell to the maximum of the original elevation or the lowest neighbor. The MPI implementation reconciles elevations along process domain edges after each scan. Generalized flow accumulation extends flow accumulation approaches commonly available in GIS through the integration of multiple inputs and a broad class of algebraic rules into the calculation of flow related quantities. It is based on establishing a flow field through DEM grid cells, that is then used to evaluate any mathematical function that incorporates dependence on values of the quantity being evaluated at upslope (or downslope) grid cells

  9. Using the lead vehicle as preview sensor in convoy vehicle active suspension control

    Science.gov (United States)

    Rahman, Mustafizur; Rideout, Geoff

    2012-12-01

    Both ride quality and roadholding of actively suspended vehicles can be improved by sensing the road ahead of the vehicle and using this information in a preview controller. Previous applications have used look-ahead sensors mounted on the front bumper to measure terrain beneath. Such sensors are vulnerable, potentially confused by water, snow, or other soft obstacles and offer a fixed preview time. For convoy vehicle applications, this paper proposes using the overall response of the preceding vehicle(s) to generate preview controller information for follower vehicles. A robust observer is used to estimate the states of a quarter-car vehicle model, from which road profile is estimated and passed on to the follower vehicle(s) to generate a preview function. The preview-active suspension, implemented in discrete time using a shift register approach to improve simulation time, reduces sprung mass acceleration and dynamic tyre deflection peaks by more than 50% and 40%, respectively. Terrain can change from one vehicle to the next if a loose obstacle is dislodged, or if the vehicle paths are sufficiently different so that one vehicle misses a discrete road event. The resulting spurious preview information can give suspension performance worse than that of a passive or conventional active system. In this paper, each vehicle can effectively estimate the road profile based on its own state trajectory. By comparing its own road estimate with the preview information, preview errors can be detected and suspension control quickly switched from preview to conventional active control to preserve performance improvements compared to passive suspensions.

  10. 全轮独立电驱动车辆双重转向控制策略的研究%A Research on the Dual-Steering Control Strategy for All-Wheel Independent Electric Drive Vehicle

    Institute of Scientific and Technical Information of China (English)

    范晶晶; 罗禹贡; 张海林; 李克强

    2011-01-01

    为全轮独立电驱动车辆提出一种双重转向的控制策略,设计了双重转向的总体控制结构.它是包括三自由度参考车辆模型、横摆力矩确定层和转矩分配层的分层控制体系.在横摆力矩确定层中,设计了基于PID的横摆力矩控制策略;在转矩分配层中,设计了基于纵向驱动力总和不变的转矩分配策略.在此基础上,开发了双重转向控制策略仿真平台,进行了仿真分析和实车试验,试验结果与仿真结果吻合度较高,表明所提出的双重转向控制策略对减小车辆转向半径有明显效果.%A dual-steering control strategy is proposed for an all-wheel independent drive electric vehicle, and an overall control architecture for dual steering is designed. It is a layered control system consisting of a 3 DOF vehicle model, a yaw moment determining layer and a torque distribution layer. In yaw moment determining layer, a PID-based yaw moment control strategy is designed, and in torque distribution layer, torque distribution strategy is incorporated with the sum of longitudinal driving force remaining constant. On this basis, a simulation platform for dual-steering control strategy is developed, and a simulation and a real vehicle test are conducted. The simulation results well agree with test data, indicating that dual-steering control strategy proposed has obvious effect on reducing the turn radius of vehicle.

  11. ATHLETE: A Cargo-Handling Vehicle for Solar System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2011-01-01

    As part of the NASA Exploration Technology Development Program, the Jet Propulsion Laboratory is developing a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. Each vehicle is based on six wheels at the ends of six multi-degree-of-freedom limbs. Because each limb has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as feet to walk out of excessively soft or other extreme terrain. Since the vehicle has this alternative mode of traversing through or at least out of extreme terrain, the wheels and wheel actuators can be sized for nominal terrain. There are substantial mass savings in the wheel and wheel actuators associated with designing for nominal instead of extreme terrain. These mass savings are comparable-to or larger-than the extra mass associated with the articulated limbs. As a result, the entire mobility system, including wheels and limbs, can be about 25% lighter than a conventional mobility chassis. A side benefit of this approach is that each limb has sufficient degrees-of-freedom to use as a general-purpose manipulator (hence the name "limb" instead of "leg"). Our prototype ATHLETE vehicles have quick-disconnect tool adapters on the limbs that allow tools to be drawn out of a "tool belt" and maneuvered by the limb. A power-take-off from the wheel actuates the tools, so that they can take advantage of the 1+ horsepower motor in each wheel to enable drilling, gripping or other power-tool functions. Architectural studies have indicated that one useful role for ATHLETE in planetary (moon or Mars) exploration is to "walk" cargo off the payload deck of a lander and transport it across the surface. Recent architectural approaches are focused on the concept that the lander descent stage will use liquid hydrogen as a propellant. This is the highest performance chemical fuel, but it requires very large tanks. A natural geometry for the lander is to have a single throttleable rocket engine on

  12. Large Terrain Continuous Level of Detail 3D Visualization Tool

    Science.gov (United States)

    Myint, Steven; Jain, Abhinandan

    2012-01-01

    This software solved the problem of displaying terrains that are usually too large to be displayed on standard workstations in real time. The software can visualize terrain data sets composed of billions of vertices, and can display these data sets at greater than 30 frames per second. The Large Terrain Continuous Level of Detail 3D Visualization Tool allows large terrains, which can be composed of billions of vertices, to be visualized in real time. It utilizes a continuous level of detail technique called clipmapping to support this. It offloads much of the work involved in breaking up the terrain into levels of details onto the GPU (graphics processing unit) for faster processing.

  13. Axillary breast: Navigating uncharted terrain

    Directory of Open Access Journals (Sweden)

    Medha A Bhave

    2015-01-01

    Full Text Available Introduction: Axillary breast is a common condition that leads to discomfort and cosmetic problems. Liposuction alone and open excision are two techniques used for treatment. Materials and Methods: This study assesses the results of treatment in 24 consecutive patients, operated between 2005 and 2015.All patients had Kajava class IV masses. Three were treated by liposuction alone, while 21 were treated by open axillaplasty with limited liposuction. Results: One patient treated by liposuction alone had to be re-operated for a residual lump, while with axillaplasty, no major complications were observed and the results were uniformly good. Discussion: Certain points of technique emerged as major determinants in obtaining the best results. In brief, these are: a limited skin excision; b placing elliptical incisions within the most lax, apical axillary skin, irrespective of the location of the lump; c raising skin flaps at the level of superficial fascia; dmeticulous dissection and preservation of the nerves, especially the second intercostobrachial; f judicious liposuction for eliminating dog ears and axillary sculpting only; g avoiding drains. Conclusion: Open axillaplasty with limited liposuction is the best way to minimise complications and produce good results.

  14. Terrains d'Égypte, Anthropologies contemporaines

    OpenAIRE

    Battesti, Vincent; Puig, Nicolas

    2007-01-01

    Des terrains d'Égypte aussi nombreux et variés que les chercheurs qui les défrichent, c'est ce qu'illustre ce numéro d'Égypte/Monde arabe. Ces pages présentent l'écriture d'anthropologues qui ont durablement travaillé en Égypte et mettent en lumière leurs différentes façons d'aborder l'enquête anthropologique ; autant de déclinaisons liées aux dispositions et inclinations des chercheurs. Que l'on soit partisan d'une forme d'anthropologie qui ne fasse pas l'économie du terrain va " sans dire "...

  15. Surface wind regionalization in complex terrain

    OpenAIRE

    Jiménez, P. A.; González Rouco, J. Fidel; Montávez, J. P.; Navarro, J.; García Bustamante, E.; Valero Rodríguez, Francisco

    2008-01-01

    Daily wind variability in the Comunidad Foral de Navarra in northern Spain was studied using wind observations at 35 locations to derive subregions with homogeneous temporal variability. Two different methodologies based on principal component analysis were used to regionalize: 1) cluster analysis and 2) the rotation of the selected principal components. Both methodologies produce similar results and lead to regions that are in general agreement with the topographic features of the terrain. T...

  16. Terrain modelling by kinematical GPS survey

    OpenAIRE

    Nico, G.; P. Rutigliano; Benedetto, C.; F. Vespe

    2005-01-01

    This work presents the first results of an experiment aiming to derive a high resolution Digital Terrain Model (DTM) by kinematic GPS surveying. The accuracy of the DTM depends on both the operational GPS precision and the density of GPS samples. The operational GPS precision, measured in the field, is about 10cm. A Monte Carlo analysis is performed to study the dependence of the DTM error on the sampling procedure. The outcome of this analysis is that the accuracy of the to...

  17. Carbon dioxide transport over complex terrain

    OpenAIRE

    Sun, RC

    2004-01-01

    The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.

  18. TERRAIN TECTONICS OF THE CENTRAL ASIAN FOLDED BELT

    Directory of Open Access Journals (Sweden)

    M. M. Buslov

    2015-09-01

    Full Text Available The terrain analysis concept envisages primarily a possibility of approximation of fragments / terrains of various geodynamic settings which belong to different plates. The terrain analysis can supplement the theory of plate tectonics in solving problems of geodynamics and tectonics of regions of the crust with complex structures. The Central Asian belt is among such complicated regions. Terrain structures occurred as a result of combined movements in the system of 'frontal' and/or oblique subduction – collision. In studies of geological objects, it is required first of all to prove their (vertical and horizontal autochthony in relations to each other and then proceed to paleogeodynamic, paleotectonic and paleogeographic reconstructions. Obviously, such a complex approach needs data to be obtained by a variety of research methods, including those applied to study geologic structures, stratigraphy, paleontology, paleogeography, lithothlogy, geochemistry, geochronology, paleomagnetism etc. Only by correlating such data collected from inter-disciplinary studies of the regions, it is possible to establish reliable characteristics of the geological settings and avoid mistakes and misinterpretations that may be associated with the 'stratigraphic' approach to solutions of both regional and global problems of geodynamics and tectonics of folded areas. The terrain analysis of the Central Asian folded belt suggests that its tectonic structure combines marginal continental rock complexes that were formed by the evolution of two major oceanic plates. One of them is the plate of the Paleo-Asian Ocean. As the analogue of the current Indo-Atlantic segment of Earth, it is characterised by the presence of continental blocks in the composition of the oceanic crust and the formation of oceanic basins resulting from the breakup of Rodinia and Gondvana. In the course of its evolution, super-continents disintegrated, and the blocks were reunited into the Kazakhstan

  19. From Antarctica to space: Use of telepresence and virtual reality in control of remote vehicles

    Science.gov (United States)

    Stoker, Carol; Hine, Butler P., III; Sims, Michael; Rasmussen, Daryl; Hontalas, Phil; Fong, Terrence W.; Steele, Jay; Barch, Don; Andersen, Dale; Miles, Eric

    1994-01-01

    In the Fall of 1993, NASA Ames deployed a modified Phantom S2 Remotely-Operated underwater Vehicle (ROV) into an ice-covered sea environment near McMurdo Science Station, Antarctica. This deployment was part of the antarctic Space Analog Program, a joint program between NASA and the National Science Foundation to demonstrate technologies relevant for space exploration in realistic field setting in the Antarctic. The goal of the mission was to operationally test the use of telepresence and virtual reality technology in the operator interface to a remote vehicle, while performing a benthic ecology study. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using the standard Phantom control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link was accomplished using the Virtual Environment Vehicle Interface (VEVI) control software developed at NASA Ames. The remote operator interface included either a stereo display monitor similar to that used locally or a stereo head-mounted head-tracked display. The compressed video signal from the vehicle was transmitted to NASA Ames over a 768 Kbps satellite channel. Another channel was used to provide a bi-directional Internet link to the vehicle control computer through which the command and telemetry signals traveled, along with a bi-directional telephone service. In addition to the live stereo video from the satellite link, the operator could view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The virtual environment contained an animate graphic model of the vehicle which reflected the state of the actual vehicle, along with ancillary information such

  20. Pitted terrains on Vesta: Thermophysical analysis

    Science.gov (United States)

    Capria, M.; Tosi, F.; De Sanctis, M.; Turrini, D.; Ammannito, E.; Capaccioni, F.; Fonte, S.; Frigeri, A.; Longobardo, A.; Palomba, E.; Zambon, F.; Schroeder, S.; Denevi, B.; Williams, D.; Scully, J.; Russell, C.; Raymond, C.

    2014-07-01

    Launched in 2007, the Dawn spacecraft, after one year spent orbiting Vesta, is now on its way to Ceres. In the science payload, the Visible and Infrared mapping spectrometer (VIR) is devoted to the study of the mineralogical composition and thermophysical properties of Vesta's surface [1]. Disk-resolved surface temperatures of Vesta have been determined from the infrared spectra measured by VIR [2]. The observed temperatures, together with a thermophysical model, have been used to constrain the thermal properties of a large part of the surface of the asteroid [3]. The average thermal inertia of the surface is quite low, consistent with a widespread presence of a dust layer. While the global thermal inertia is low, the characterization of its surface in terms of regions showing peculiar thermophysical properties gives us the possibility to identify specific areas with different thermal and structural characteristics. These variations can be linked to strong albedo variations that have been observed, or to other physical and structural characteristics of the first few centimeters of the soil. The highest values of thermal inertia have been determined on areas coinciding with locations where pitted terrains have been found [4]. Pitted terrains, first identified on Mars, have been found in association with 4 craters on Vesta: Marcia, Cornelia, Licinia, and Numisia. The Marcia area is characterized by high hydrogen and OH content [5]. By analogy with Mars, the formation of these terrains is thought to be due to the rapid release of volatiles, triggered by heating from an impact event. A question arises on the origin of volatiles: hydrated minerals, or ground, buried ice? In order to discuss the second hypothesis, we have to assume that a comet impact delivers ice that gets buried under a layer of regolith. Successively, another impact on the same area would give origin to the pitted terrain. The buried ice has obviously to survive for the time between the two impacts

  1. A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data

    Science.gov (United States)

    Nie, Sheng; Wang, Cheng; Zeng, Hongcheng; Xi, Xiaohuan; Xia, Shaobo

    2015-10-01

    Although spaceborne Geoscience Laser Altimeter System (GLAS) can measure forest canopy height directly, the measurement accuracy is often affected by footprint size, shape and orientation, and terrain slope. Previous terrain correction methods only took into account the effect of terrain slope and footprint size when estimating forest canopy height. In this study, an improved terrain correction method was proposed to remove the effect of all aforementioned factors when estimating canopy height over sloped terrains. The revised method was found significantly better than the traditional ones according to the canopy height tested using small footprint LiDAR data in China. It reduced the RMSE of the canopy height estimates by up to 1.2 m. The effect of slope on canopy height estimation is almost eliminated by the proposed method since the slope had little correlation with the canopy heights estimated by revised method. When the footprint eccentricity is small, the canopy height error due to the footprint shape and orientation is small. However, when the footprint eccentricity is large enough, the height estimation error due to footprint shape and orientation is large. Therefore, it is necessary to take into account the influence of footprint shape and orientation on forest canopy estimation.

  2. Research on 3-D terrain correction methods of airborne gamma-ray spectrometry survey

    International Nuclear Information System (INIS)

    The general method of height correction is not effectual in complex terrain during the process of explaining airborne gamma-ray spectrometry data, and the 2-D terrain correction method researched in recent years is just available for correction of section measured. A new method of 3-D sector terrain correction is studied. The ground radiator is divided into many small sector radiators by the method, then the irradiation rate is calculated in certain survey distance, and the total value of all small radiate sources is regarded as the irradiation rate of the ground radiator at certain point of aero- survey, and the correction coefficients of every point are calculated which then applied to correct to airborne gamma-ray spectrometry data. The method can achieve the forward calculation, inversion calculation and terrain correction for airborne gamma-ray spectrometry survey in complex topography by dividing the ground radiator into many small sectors. Other factors are considered such as the un- saturated degree of measure scope, uneven-radiator content on ground, and so on. The results of for- ward model and an example analysis show that the 3-D terrain correction method is proper and effectual. (authors)

  3. Cooperative Exploration of Rough Martian Terrains with the "Scorpion" Legged Robot as an Adjunct to a Rover.

    Science.gov (United States)

    Colombano, Silvano P.; Kirchner, Frank; Spenneberg, Dirk; Starman, Jared; Hanratty, James; Kovsmeyer, David (Technical Monitor)

    2003-01-01

    NASA needs autonomous robotic exploration of difficult (rough and/or steep) scientifically interesting Martian terrains. Concepts involving distributed autonomy for cooperative robotic exploration are key to enabling new scientific objectives in robotic missions. We propose to utilize a legged robot as an adjunct scout to a rover for access to difficult - scientifically interesting - terrains (rocky areas, slopes, cliffs). Our final mission scenario involves the Ames rover platform "K9" and Scorpion acting together to explore a steep cliff, with the Scorpion robot rappelling down using the K9 as an anchor as well as mission planner and executive. Cooperation concepts, including wheeled rappelling robots have been proposed before. Now we propose to test the combined advantages of a wheeled vehicle with a legged scout as well as the advantages of merging of high level planning and execution with biologically inspired, behavior based robotics. We propose to use the 8-legged, multifunctional autonomous robot platform Scorpion that is currently capable of: Walking on different terrains (rocks, sand, grass, ...). Perceiving its environment and modifying its behavioral pattern accordingly. These capabilities would be extended to enable the Scorpion to: communicate and cooperate with a partner robot; climb over rocks, rubble piles, and objects with structural features. This will be done in the context of exploration of rough terrains in the neighborhood of the rover, but inaccessible to it, culminating in the added capability of rappelling down a steep cliff for both vertical and horizontal terrain observation.

  4. Simulating Sand Behavior through Terrain Subdivision and Particle Refinement

    Science.gov (United States)

    Clothier, M.

    2013-12-01

    Advances in computer graphics, GPUs, and parallel processing hardware have provided researchers with new methods to visualize scientific data. In fact, these advances have spurred new research opportunities between computer graphics and other disciplines, such as Earth sciences. Through collaboration, Earth and planetary scientists have benefited by using these advances in hardware technology to process large amounts of data for visualization and analysis. At Oregon State University, we are collaborating with the Oregon Space Grant and IGERT Ecosystem Informatics programs to investigate techniques for simulating the behavior of sand. In addition, we have also been collaborating with the Jet Propulsion Laboratory's DARTS Lab to exchange ideas on our research. The DARTS Lab specializes in the simulation of planetary vehicles, such as the Mars rovers. One aspect of their work is testing these vehicles in a virtual "sand box" to test their performance in different environments. Our research builds upon this idea to create a sand simulation framework to allow for more complex and diverse environments. As a basis for our framework, we have focused on planetary environments, such as the harsh, sandy regions on Mars. To evaluate our framework, we have used simulated planetary vehicles, such as a rover, to gain insight into the performance and interaction between the surface sand and the vehicle. Unfortunately, simulating the vast number of individual sand particles and their interaction with each other has been a computationally complex problem in the past. However, through the use of high-performance computing, we have developed a technique to subdivide physically active terrain regions across a large landscape. To achieve this, we only subdivide terrain regions where sand particles are actively participating with another object or force, such as a rover wheel. This is similar to a Level of Detail (LOD) technique, except that the density of subdivisions are determined by

  5. Intelligent coverage path planning for agricultural robots and autonomous machines on three-dimensional terrain

    DEFF Research Database (Denmark)

    Hameed, Ibahim

    2014-01-01

    Field operations should be done in a manner that minimizes time and travels over the field surface. Automated and intelligent path planning can help to find the best coverage path so that costs of various field operations can be minimized. The algorithms for generating an optimized field coverage...... energy requirements when the driving angle is optimized by taking into account the 3D field terrain was 6.5 % as an average for all the examined scenarios compared to the case when the applied driving angle is optimized assuming even field terrain. Additional reduction is achieved when sequence of field...

  6. Automated Generation of Digital Terrain Model using Point Clouds of Digital Surface Model in Forest Area

    Directory of Open Access Journals (Sweden)

    Yoshikazu Kamiya

    2011-04-01

    Full Text Available At present, most of the digital data acquisition methods generate Digital Surface Model (DSM and not a Digital Elevation Model (DEM. Conversion from DSM to DEM still has some drawbacks, especially the removing of off terrain point clouds and subsequently the generation of DEM within these spaces even though the methods are automated. In this paper it was intended to overcome this issue by attempting to project off terrain point clouds to the terrain in forest areas using Artificial Neural Networks (ANN instead of removing them and then filling gaps by interpolation. Five sites were tested and accuracies assessed. They all give almost the same results. In conclusion, the ANN has ability to obtain the DEM by projecting the DSM point clouds and greater accuracies of DEMs were obtained. If the size of the hollow areas resulting from the removal of DSM point clouds are larger the accuracies are reduced.

  7. Geomorphologic Mapping of Titan's Polar Terrains: Constraining Surface Processes and Landscape Evolution

    CERN Document Server

    Birch, Samuel; Dietrich, William; Howard, Alan; Bristow, Charlie; Malaska, Michael; Moore, Jeff; Mastrogiuseppe, Marco; Hofgartner, Jason; Williams, David; White, Oliver; Soderblom, Jason; Barnes, Jason; Turtle, Elizabeth; Lunine, Jonathan; Wood, Charles; Neish, Catherine; Kirk, Randy; Stofan, Ellen; Lorenz, Ralph; Lopes, Rosaly

    2016-01-01

    We present a geomorphologic map of Titan's polar terrains. The map was generated from a combination of Cassini Synthetic Aperture Radar (SAR) and Imaging Science Subsystem imaging products, as well as altimetry, SARTopo and radargrammetry topographic datasets. In combining imagery with topographic data, our geomorphologic map reveals a stratigraphic sequence from which we infer process interactions between units. In mapping both polar regions with the same geomorphologic units, we conclude that processes that formed the terrains of the north polar region also acted to form the landscape we observe at the south. Uniform, SAR-dark plains are interpreted as sedimentary deposits, and are bounded by moderately dissected uplands. These plains contain the highest density of filled and empty lake depressions, and canyons. These units unconformably overlay a basement rock that outcrops as mountains and SAR-bright dissected terrains at various elevations across both poles. All these units are then superposed by surfici...

  8. Enabling Persistent Autonomy for Underwater Gliders with Ocean Model Predictions and Terrain Based Navigation

    Directory of Open Access Journals (Sweden)

    Andrew eStuntz

    2016-04-01

    Full Text Available Effective study of ocean processes requires sampling over the duration of long (weeks to months oscillation patterns. Such sampling requires persistent, autonomous underwater vehicles, that have a similarly long deployment duration. The spatiotemporal dynamics of the ocean environment, coupled with limited communication capabilities, make navigation and localization difficult, especially in coastal regions where the majority of interesting phenomena occur. In this paper, we consider the combination of two methods for reducing navigation and localization error; a predictive approach based on ocean model predictions and a prior information approach derived from terrain-based navigation. The motivation for this work is not only for real-time state estimation, but also for accurately reconstructing the actual path that the vehicle traversed to contextualize the gathered data, with respect to the science question at hand. We present an application for the practical use of priors and predictions for large-scale ocean sampling. This combined approach builds upon previous works by the authors, and accurately localizes the traversed path of an underwater glider over long-duration, ocean deployments. The proposed method takes advantage of the reliable, short-term predictions of an ocean model, and the utility of priors used in terrain-based navigation over areas of significant bathymetric relief to bound uncertainty error in dead-reckoning navigation. This method improves upon our previously published works by 1 demonstrating the utility of our terrain-based navigation method with multiple field trials, and 2 presenting a hybrid algorithm that combines both approaches to bound navigational error and uncertainty for long-term deployments of underwater vehicles. We demonstrate the approach by examining data from actual field trials with autonomous underwater gliders, and demonstrate an ability to estimate geographical location of an underwater glider to 2

  9. Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors

    Science.gov (United States)

    Alexander, James; Goldberg, Hannah; Montgomery, James; Spiers, Gary; Liebe, Carl; Johnson, Andrew; Gromov, Konstantin; Konefat, Edward; Lam, Raymond; Meras, Patrick

    2008-01-01

    To be certain that a candidate sensor system will perform as expected during missions, we have developed a field test system and have executed test flights with a helicopter-mounted sensor platform over desert terrains, which simulate Lunar features. A key advantage to this approach is that different sensors can be tested and characterized in an environment relevant to the flight needs prior to flight. Testing the various sensors required the development of a field test system, including an instrument to validate the truth of the sensor system under test. The field test system was designed to be flexible enough to cover the test needs of many sensors (lidar, radar, cameras) that require an aerial test platform, including helicopters, airplanes, unmanned aerial vehicles (UAV), or balloons. To validate the performance of the sensor under test, the dynamics of the test platform must be known with sufficient accuracy to provide accurate models for input into algorithm development. The test system provides support equipment to measure the dynamics of the field test sensor platform, and allow computation of the truth position, velocity, attitude, and time.

  10. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    Energy Technology Data Exchange (ETDEWEB)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  11. Smart Vehicle Tracking System

    Directory of Open Access Journals (Sweden)

    K.P.Kamble

    2012-08-01

    Full Text Available It is amazing to know how simple ideas can give a whole new dimension to the tracking and navigation industry and smart vehicle tracking system is used for tracking the vehicles. You can optimize driver routes, save petrol or gas and time, reduce theft and control the vehicle functions. Many a times it is not required to track your vehicle or target globally. In majority of cases tracking is more restricted to local purposes only, such as tracking movement of vehicle within city, tracking the raw materials within industrial estate or to know the present position of your daughter or son within city. But unfortunately in the pursuit of making things complex this simple idea is forgotten. This simple yet powerful idea forms the basis of this revolutionary project. All this coupled with a very low cost, a robust design and tremendous market potential makes this model even more attractive.

  12. Stereoscopic Vision System For Robotic Vehicle

    Science.gov (United States)

    Matthies, Larry H.; Anderson, Charles H.

    1993-01-01

    Distances estimated from images by cross-correlation. Two-camera stereoscopic vision system with onboard processing of image data developed for use in guiding robotic vehicle semiautonomously. Combination of semiautonomous guidance and teleoperation useful in remote and/or hazardous operations, including clean-up of toxic wastes, exploration of dangerous terrain on Earth and other planets, and delivery of materials in factories where unexpected hazards or obstacles can arise.

  13. False Color Terrain Model of Phoenix Workspace

    Science.gov (United States)

    2008-01-01

    This is a terrain model of Phoenix's Robotic Arm workspace. It has been color coded by depth with a lander model for context. The model has been derived using images from the depth perception feature from Phoenix's Surface Stereo Imager (SSI). Red indicates low-lying areas that appear to be troughs. Blue indicates higher areas that appear to be polygons. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Propagation over Terrain Considering Refractivity Profiles

    Czech Academy of Sciences Publication Activity Database

    Schejbal, V.; Doleček, R.; Fišer, Ondřej; Brázda, V.; NĚMEC, Z.

    Košice: Technical University of Košice, 2016 - (Staš, J.; Pleva, M.; Ondáš, S.), s. 481-485 ISBN 978-1-5090-1673-0. [International Conference Radioelektronika 2016 /26th/. Košice (SK), 19.04.2016-20.04.2016] Institutional support: RVO:68378289 Keywords : physical optics * enhanced analysis * propagation over uneven terrain * parabolic equation method * long term measurements Subject RIV: DG - Athmosphere Sciences, Meteorology http://kemt.fei.tuke.sk/radioelektronika2016/

  15. Digital terrain model evaluation and computation of the terrain correction and indirect effect in South America

    Directory of Open Access Journals (Sweden)

    Denizar Blitzkow

    2009-12-01

    Full Text Available The main objectives of this paper are to compare digital terrain models, to show the generated models for South America and to present two applications. Shuttle Radar Topography Mission (SRTM produced the most important and updated height information in the world. This paper addresses the attention to comparisons of the following models: SRTM3, DTM2002, GLOBE, GTOPO30, ETOPO2 and ETOPO5, at the common points of the grid. The comparisons are limited by latitudes 60º S and 25 º N and longitudes 100 º W and 25 º W. All these data, after some analysis, have been used to create three models for South America: SAM_1mv1, SAM_1mv2 (both of 1' grid spacing and SAM_30s (30" grid spacing. Besides this effort, the three models as well as STRM were evaluated using Bench Marks (BM in Brazil and Argentina. This paper also shows two important geodesy and geophysics applications using the SAM_1mv1: terrain correction (one of the reductions applied to the gravity acceleration and indirect effect (a consequence of the reduction of the external mass to the geoid. These are important at Andes for a precise geoid computation.Los objetivos principales de este documento son comparar modelos digitales del continente; enseñar los modelos generados para Sudamérica y presentar dos aplicaciones. Shuttle Radar Topography Mission (SRTM produjo la información más importante y más actualizada de las altitudes del mundo. Este trabajo centra su atención en las comparaciones de los modelos siguientes: SRTM3, DTM2002, GLOBO, GTOPO30, ETOPO2 y ETOPO5, en los puntos comunes de la rejilla. Las comparaciones son limitadas por las latitudes 60º S y 25 º N y longitudes 100 º W y 25 º W. Todos estos datos, después de los análisis, se han utilizado para crear tres modelos para Sudamérica: SAM_1mv1, SAM_1mv2 (1' de espaciamiento de la rejilla y SAM_30s (30" de espaciamiento de la rejilla. Los tres modelos bien como el STRM fueron evaluados usando puntos de referencia de

  16. Learning Long-range Terrain Perception for Autonomous Mobile Robots

    OpenAIRE

    Mingjun Wang; Jun Zhou; Jun Tu; Chengliang Liu

    2010-01-01

    Long-range terrain perception has a high value in performing efficient autonomous navigation and risky intervention tasks for field robots, such as earlier recognition of hazards, better path planning, and higher speeds. However, Stereo-based navigation systems can only perceive near-field terrain due to the nearsightedness of stereo vision. Many near-to-far learning methods, based on regions' appearance features, are proposed to predict the far-field terrain. We p...

  17. Multiattribute prediction of terrain stability above underground mining operations

    OpenAIRE

    Vujić Slobodan; Miljanović Igor; Milutinović Aleksandar; Đorđević Dragan; Gojković Nebojša; Gajić Grozdana

    2011-01-01

    This paper is dedicated to the problem of stability prediction of the terrain above underground mining operations. After the initial introduction to the problem, then the short analysis of the model approaches used to solve it, and giving the algorithm for rock massif stability prediction, we describe the concept of the multiattirbute terrain stability prediction method. The application of the multiattribute prediction method for stability of the terrain above underground mining operati...

  18. Mathematical Modeling Of The Terrain Around A Robot

    Science.gov (United States)

    Slack, Marc G.

    1992-01-01

    In conceptual system for modeling of terrain around autonomous mobile robot, representation of terrain used for control separated from representation provided by sensors. Concept takes motion-planning system out from under constraints imposed by discrete spatial intervals of square terrain grid(s). Separation allows sensing and motion-controlling systems to operate asynchronously; facilitating integration of new map and sensor data into planning of motions.

  19. Design of a Smart Unmanned Ground Vehicle for Hazardous Environments

    CERN Document Server

    Chakraborty, Saurav

    2010-01-01

    A smart Unmanned Ground Vehicle (UGV) is designed and developed for some application specific missions to operate predominantly in hazardous environments. In our work, we have developed a small and lightweight vehicle to operate in general cross-country terrains in or without daylight. The UGV can send visual feedbacks to the operator at a remote location. Onboard infrared sensors can detect the obstacles around the UGV and sends signals to the operator.

  20. Neuro-fuzzy controller to navigate an unmanned vehicle

    OpenAIRE

    Selma, Boumediene; Chouraqui, Samira

    2013-01-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Contro...

  1. LUNAR TERRAIN AND ALBEDO RECONSTRUCTION FROM APOLLO IMAGERY

    Data.gov (United States)

    National Aeronautics and Space Administration — LUNAR TERRAIN AND ALBEDO RECONSTRUCTION FROM APOLLO IMAGERY ARA V NEFIAN*, TAEMIN KIM, MICHAEL BROXTON, AND ZACH MORATTO Abstract. Generating accurate three...

  2. UNIFIED REPRESENTATION FOR COLLABORATIVE VISUALIZATION OF PLANETARY TERRAIN DATA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to apply to planetary terrain mapping an alternative, multiresolution method, subdivision surfaces (subdivs), in place of conventional digital elevation...

  3. T-transformation: traversability analysis for navigation on rugged terrain

    Science.gov (United States)

    Ye, Cang; Borenstein, Johann

    2004-09-01

    In order to maneuver autonomously on rough terrain, a mobile robot must constantly decide whether to traverse or circumnavigate terrain features ahead. This ability is called Obstacle Negotiation (ON). A critical aspect of ON is the so-called traversability analysis, which evaluates the level of difficulty associated with the traversal of the terrain. This paper presents a new method for traversability analysis, called T-transformation. It is implemented in a local terrain map as follows: (1) For each cell in the local terrain map, a square terrain patch is defined that symmetrically overlays the cell; (2) a plane is fitted to the data points in the terrain patch using a least-square approach and the slope of the least-squares plane and the residual of the fit are computed and used to calculate the Traversability Index (TI) for that cell; (3) after each cell is assigned a TI value, the local terrain map is transformed into a traversability map. The traversability map is further transformed into a traversability field histogram where each element represents the overall level of difficulty to move along the corresponding direction. Based on the traversability field histogram our reactive ON system then computes the steering and velocity commands to move the robot toward the intended goal while avoiding areas of poor traversability. The traversability analysis algorithm and the overall ON system were verified by extensive simulation. We verified our method partially through experiments on a Segway Robotics Mobility Platform (RMP), albeit only on flat terrain.

  4. Creating improved ASTER DEMs over glacierized terrain

    Science.gov (United States)

    Raup, B. H.; Khalsa, S. S.; Armstrong, R.

    2006-12-01

    Digital elevation models (DEMs) produced from ASTER stereo imagery over glacierized terrain frequently contain data voids, which some software packages fill by interpolation. Even when interpolation is applied, the results are often not accurate enough for studies of glacier thickness changes. DEMs are created by automatic cross-correlation between the image pairs, and rely on spatial variability in the digital number (DN) values for this process. Voids occur in radiometrically homogeneous regions, such as glacier accumulation areas covered with uniform snow, due to lack of correlation. The same property that leads to lack of correlation makes possible the derivation of elevation information from photoclinometry, also known as shape-from-shading. We demonstrate a technique to produce improved DEMs from ASTER data by combining the results from conventional cross-correlation DEM-generation software with elevation information produced from shape-from-shading in the accumulation areas of glacierized terrain. The resulting DEMs incorporate more information from the imagery, and the filled voids more accurately represent the glacier surface. This will allow for more accurate determination of glacier hypsometry and thickness changes, leading to better predictions of response to climate change.

  5. Terrain modelling by kinematical GPS survey

    Directory of Open Access Journals (Sweden)

    G. Nico

    2005-01-01

    Full Text Available This work presents the first results of an experiment aiming to derive a high resolution Digital Terrain Model (DTM by kinematic GPS surveying. The accuracy of the DTM depends on both the operational GPS precision and the density of GPS samples. The operational GPS precision, measured in the field, is about 10cm. A Monte Carlo analysis is performed to study the dependence of the DTM error on the sampling procedure. The outcome of this analysis is that the accuracy of the topographic reconstruction is less than 1m even in areas with a density of samples as low as one sample per 100m2, and becomes about 30cm in areas with at least one sample per 10m2. The kinematic GPS technique gives a means for a fast and accurate mapping of terrain surfaces with an extension of a few km2. Examples of application are the investigation of archaeological sites and the stability analysis of landslide prone areas.

  6. Advanced Vehicle Testing and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Garetson, Thomas [The Clarity Group, Incorporated, Chicago, IL (United States)

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  7. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  8. Wind modelling over complex terrain using CFD

    Science.gov (United States)

    Avila, Matias; Owen, Herbert; Folch, Arnau; Prieto, Luis; Cosculluela, Luis

    2015-04-01

    The present work deals with the numerical CFD modelling of onshore wind farms in the context of High Performance Computing (HPC). The CFD model involves the numerical solution of the Reynolds-Averaged Navier-Stokes (RANS) equations together with a κ-ɛ turbulence model and the energy equation, specially designed for Atmospheric Boundary Layer (ABL) flows. The aim is to predict the wind velocity distribution over complex terrain, using a model that includes meteorological data assimilation, thermal coupling, forested canopy and Coriolis effects. The modelling strategy involves automatic mesh generation, terrain data assimilation and generation of boundary conditions for the inflow wind flow distribution up to the geostrophic height. The CFD model has been implemented in Alya, a HPC multi physics parallel solver able to run with thousands of processors with an optimal scalability, developed in Barcelona Supercomputing Center. The implemented thermal stability and canopy physical model was developed by Sogachev in 2012. The k-ɛ equations are of non-linear convection diffusion reaction type. The implemented numerical scheme consists on a stabilized finite element formulation based on the variational multiscale method, that is known to be stable for this kind of turbulence equations. We present a numerical formulation that stresses on the robustness of the solution method, tackling common problems that produce instability. The iterative strategy and linearization scheme is discussed. It intends to avoid the possibility of having negative values of diffusion during the iterative process, which may lead to divergence of the scheme. These problems are addressed by acting on the coefficients of the reaction and diffusion terms and on the turbulent variables themselves. The k-ɛ equations are highly nonlinear. Complex terrain induces transient flow instabilities that may preclude the convergence of computer flow simulations based on steady state formulation of the

  9. Conically scanning lidar error in complex terrain

    Directory of Open Access Journals (Sweden)

    Ferhat Bingöl

    2009-05-01

    Full Text Available Conically scanning lidars assume the flow to be homogeneous in order to deduce the horizontal wind speed. However, in mountainous or complex terrain this assumption is not valid implying a risk that the lidar will derive an erroneous wind speed. The magnitude of this error is measured by collocating a meteorological mast and a lidar at two Greek sites, one hilly and one mountainous. The maximum error for the sites investigated is of the order of 10 %. In order to predict the error for various wind directions the flows at both sites are simulated with the linearized flow model, WAsP Engineering 2.0. The measurement data are compared with the model predictions with good results for the hilly site, but with less success at the mountainous site. This is a deficiency of the flow model, but the methods presented in this paper can be used with any flow model.

  10. IFSAR for the Rapid Terrain Visualization Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    BURNS,BRYAN L.; EICHEL,PAUL H.; HENSLEY JR.,WILLIAM H.; KIM,THEODORE J.

    2000-10-31

    The Rapid Terrain Visualization Advanced Concept Technology Demonstration (RTV-ACTD) is designed to demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies. The primary sensor for this mission is an interferometric synthetic aperture radar (IFSAR) designed at Sandia National Laboratories. This paper will outline the design of the system and its performance, and show some recent flight test results. The RTV IFSAR will meet DTED level III and IV specifications by using a multiple-baseline design and high-accuracy differential and carrier-phase GPS navigation. It includes innovative near-real-time DEM production on-board the aircraft. The system is being flown on a deHavilland DHC-7 Army aircraft.

  11. Digital terrain modeling with the Chebyshev polynomials

    CERN Document Server

    Florinsky, I V

    2015-01-01

    Mathematical problems of digital terrain analysis include interpolation of digital elevation models (DEMs), DEM generalization and denoising, and computation of morphometric variables by calculation of partial derivatives of elevation. Traditionally, these procedures are based on numerical treatments of two-variable discrete functions of elevation. We developed a spectral analytical method and algorithm based on high-order orthogonal expansions using the Chebyshev polynomials of the first kind with the subsequent Fejer summation. The method and algorithm are intended for DEM analytical treatment, such as, DEM global approximation, denoising, and generalization as well as computation of morphometric variables by analytical calculation of partial derivatives. To test the method and algorithm, we used a DEM of the Northern Andes including 230,880 points (the elevation matrix 480 $\\times$ 481). DEMs were reconstructed with 480, 240, 120, 60, and 30 expansion coefficients. The first and second partial derivatives ...

  12. Mottled terrain - A continuing Martian enigma

    Science.gov (United States)

    Scott, D. H.; Underwood, J. R., Jr.

    1991-01-01

    The mottled plains material found in the northern Martian lowlands is discussed in terms of Mariner and Viking images as well as geologic mapping based on Viking images. The mottling in Mariner 9 images of this area was associated with albedo contrasts between bright crater-ejecta blankets and dark intercrater material, and dark-crested knobs. The interpretation of the plains material based on the Mariner images is compared to an interpretation of the higher-quality Viking images. Based on the newer images, the mottled terrain is theorized to be comprised of the four constituent members of the Vastitas Borealis formation of Late Hesperian age. Fluvial, aeolian, and glaciotectonic processes are responsible for the extensive modifications of the apparently volcanic formations. The northern plains are not completely understood in spite of the Viking images, and the varied geology in those plains requires more sampling to confirm the theories.

  13. Predicting Potential Evaporation in Topographically Complex Terrain

    Science.gov (United States)

    Koohafkan, M.; Thompson, S. E.; Hamilton, M. P.

    2012-12-01

    Predicting and understanding the water cycle in topographically complex terrain poses challenges for upscaling point-scale measurements of water and energy balance and for downscaling observations made from remote sensing or predictions made via global circulation models. This study evaluates hydrologic and climate data drawn from a spatially-distributed wireless sensor network at the Blue Oak Ranch Reserve near San Jose, California to investigate the influence of topographic variation, landscape position, and local ecology (vegetation) on one core component of the water balance: potential evaporation. High-resolution observations of solar radiation, ambient temperature, wind speed, and relative humidity are combined with canopy maps generated from LiDAR flyovers to develop spatially-distributed predictions of potential evaporation. These data are compared to estimates of EP based on inverse modeling of surface soil moisture data. Preliminary results suggest that the spatial structure of microclimate at Blue Oak Ranch Reserve is dominated by variations around the elevation gradient, with strong nocturnal inversions hypothesized to reflect the influence of the coastal marine layer. Estimates of EP based on the Penman-Monteith equation suggest that EP could vary by up to a factor of 5 across the site, with differences in vapor pressure deficit and canopy height largely responsible for this variability. The results suggest that a) large differences in the timing and magnitude of water stress could arise in topographically complex terrain due to localized differences in energy balance, and b) both localized and regional effects need to be accounted for when downscaling climate data over topographically complex sites. 2) Color map showing preliminary estimates of annual EP incorporating canopy information (spatially-distributed values of aerodynamic resistance and LAI) drawn from LiDAR imagery. The effect of the resistance on the dynamics is striking in its ability to

  14. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs. PMID:27026933

  15. Intelligent behaviors through vehicle-to-vehicle and vehicle-to-infrastructure communication

    Science.gov (United States)

    Garcia, Richard D.; Sturgeon, Purser; Brown, Mike

    2012-06-01

    The last decade has seen a significant increase in intelligent safety devices on private automobiles. These devices have both increased and augmented the situational awareness of the driver and in some cases provided automated vehicle responses. To date almost all intelligent safety devices have relied on data directly perceived by the vehicle. This constraint has a direct impact on the types of solutions available to the vehicle. In an effort to improve the safety options available to a vehicle, numerous research laboratories and government agencies are investing time and resources into connecting vehicles to each other and to infrastructure-based devices. This work details several efforts in both the commercial vehicle and the private auto industries to increase vehicle safety and driver situational awareness through vehicle-to-vehicle and vehicle-to-infrastructure communication. It will specifically discuss intelligent behaviors being designed to automatically disable non-compliant vehicles, warn tractor trailer vehicles of unsafe lane maneuvers such as lane changes, passing, and merging, and alert drivers to non-line-of-sight emergencies.

  16. Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming

    Science.gov (United States)

    Hubicki, Christian; Goldman, Daniel; Ames, Aaron

    In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.

  17. NPSNET vehicle database: an object-oriented database in a real-time vehicle simulation

    OpenAIRE

    Borden Davis, Susan C.

    1996-01-01

    Approved for public release; distribution is unlimited. The Naval Postgraduate School has actively explored the design and implementation of NPSNET, a real-time three-dimensional simulator on low-cost, readily accessible workstations. NPSNET involves a tremendous amount of interaction between vehicle, terrain, obstacle and ordnance objects in a dynamic simulation system. There exists a need for an organized, efficient storage structure that allows real-time retrieval of objects and their i...

  18. Digital Surface and Terrain Models (DSM,DTM), Our DSM was created by our LiDAR vendor, Sanborne., Published in 2012, Not Applicable scale, Chippewa County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Surface and Terrain Models (DSM,DTM) dataset, published at Not Applicable scale, was produced all or in part from Field Observation information as of...

  19. Digital Surface and Terrain Models (DSM,DTM), Published in 2003, 1:2400 (1in=200ft) scale, County of Lexington.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Surface and Terrain Models (DSM,DTM) dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Orthoimagery information as of...

  20. Digital Surface and Terrain Models (DSM,DTM), Published in 2008, 1:4800 (1in=400ft) scale, LaCrosse County Zoning Planning & Land Information.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Surface and Terrain Models (DSM,DTM) dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from LIDAR information as of 2008....

  1. Digital Surface and Terrain Models (DSM,DTM), Published in 2008, 1:4800 (1in=400ft) scale, Phillips County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Surface and Terrain Models (DSM,DTM) dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Not Provided information as of...

  2. Handbook of Intelligent Vehicles

    CERN Document Server

    2012-01-01

    The Handbook of Intelligent Vehicles provides a complete coverage of the fundamentals, new technologies, and sub-areas essential to the development of intelligent vehicles; it also includes advances made to date, challenges, and future trends. Significant strides in the field have been made to date; however, so far there has been no single book or volume which captures these advances in a comprehensive format, addressing all essential components and subspecialties of intelligent vehicles, as this book does. Since the intended users are engineering practitioners, as well as researchers and graduate students, the book chapters do not only cover fundamentals, methods, and algorithms but also include how software/hardware are implemented, and demonstrate the advances along with their present challenges. Research at both component and systems levels are required to advance the functionality of intelligent vehicles. This volume covers both of these aspects in addition to the fundamentals listed above.

  3. The Improved Kriging Interpolation Algorithm for Local Underwater Terrain Based on Fractal Compensation

    OpenAIRE

    2014-01-01

    The interpolation-reconstruction of local underwater terrain using the underwater digital terrain map (UDTM) is an important step for building an underwater terrain matching unit and directly affects the accuracy of underwater terrain matching navigation. The Kriging method is often used in terrain interpolation, but, with this method, the local terrain features are often lost. Therefore, the accuracy cannot meet the requirements of practical application. Analysis of the geographical features...

  4. Abandoned vehicles

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  5. Robotic vehicle

    Science.gov (United States)

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  6. Environmental impacts of forest road construction on mountainous terrain

    Science.gov (United States)

    2013-01-01

    Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas. As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities. PMID:23497078

  7. Environmental Impacts of Forest Road Construction on Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Erhan Caliskan

    2013-03-01

    Full Text Available Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2 and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient and very steep terrain (51-80% gradient. Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities.

  8. Environmental impacts of forest road construction on mountainous terrain.

    Science.gov (United States)

    Caliskan, Erhan

    2013-01-01

    Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities. PMID:23497078

  9. Format for Interchange and Display of 3D Terrain Data

    Science.gov (United States)

    Backes, Paul; Powell, Mark; Vona, Marsette; Norris, Jeffrey; Morrison, Jack

    2004-01-01

    Visible Scalable Terrain (ViSTa) is a software format for production, interchange, and display of three-dimensional (3D) terrain data acquired by stereoscopic cameras of robotic vision systems. ViSTa is designed to support scalability of data, accuracy of displayed terrain images, and optimal utilization of computational resources. In a ViSTa file, an area of terrain is represented, at one or more levels of detail, by coordinates of isolated points and/or vertices of triangles derived from a texture map that, in turn, is derived from original terrain images. Unlike prior terrain-image software formats, ViSTa includes provisions to ensure accuracy of texture coordinates. Whereas many such formats are based on 2.5-dimensional terrain models and impose additional regularity constraints on data, ViSTa is based on a 3D model without regularity constraints. Whereas many prior formats require external data for specifying image-data coordinate systems, ViSTa provides for the inclusion of coordinate-system data within data files. ViSTa admits highspeed loading and display within a Java program. ViSTa is designed to minimize file sizes and maximize compressibility and to support straightforward reduction of resolution to reduce file size for Internet-based distribution.

  10. On the Expected Complexity of Voronoi Diagrams on Terrains

    CERN Document Server

    Driemel, Anne; Raichel, Benjamin

    2011-01-01

    We investigate the combinatorial complexity of geodesic Voronoi diagrams on polyhedral terrains using a probabilistic analysis. Aronov etal [ABT08] prove that, if one makes certain realistic input assumptions on the terrain, this complexity is \\Theta(n + m \\sqrt n) in the worst case, where n denotes the number of triangles that define the terrain and m denotes the number of Voronoi sites. We prove that under a relaxed set of assumptions the Voronoi diagram has expected complexity O(n+m), given that the sites have a uniform distribution on the domain of the terrain(or the surface of the terrain). Furthermore, we present a worst-case construction of a terrain which implies a lower bound of Vmega(n m2/3) on the expected worst-case complexity if these assumptions on the terrain are dropped. As an additional result, we can show that the expected fatness of a cell in a random planar Voronoi diagram is bounded by a constant.

  11. MRO CTX-based Digital Terrain Models

    Science.gov (United States)

    Dumke, Alexander

    2016-04-01

    In planetary surface sciences, digital terrain models (DTM) are paramount when it comes to understanding and quantifying processes. In this contribution an approach for the derivation of digital terrain models from stereo images of the NASA Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) are described. CTX consists of a 350 mm focal length telescope and 5000 CCD sensor elements and is operated as pushbroom camera. It acquires images with ~6 m/px over a swath width of ~30 km of the Mars surface [1]. Today, several approaches for the derivation of CTX DTMs exist [e. g. 2, 3, 4]. The discussed approach here is based on established software and combines them with proprietary software as described below. The main processing task for the derivation of CTX stereo DTMs is based on six steps: (1) First, CTX images are radiometrically corrected using the ISIS software package [5]. (2) For selected CTX stereo images, exterior orientation data from reconstructed NAIF SPICE data are extracted [6]. (3) In the next step High Resolution Stereo Camera (HRSC) DTMs [7, 8, 9] are used for the rectification of CTX stereo images to reduce the search area during the image matching. Here, HRSC DTMs are used due to their higher spatial resolution when compared to MOLA DTMs. (4) The determination of coordinates of homologous points between stereo images, i.e. the stereo image matching process, consists of two steps: first, a cross-correlation to obtain approximate values and secondly, their use in a least-square matching (LSM) process in order to obtain subpixel positions. (5) The stereo matching results are then used to generate object points from forward ray intersections. (6) As a last step, the DTM-raster generation is performed using software developed at the German Aerospace Center, Berlin. Whereby only object points are used that have a smaller error than a threshold value. References: [1] Malin, M. C. et al., 2007, JGR 112, doi:10.1029/2006JE002808 [2] Broxton, M. J. et al

  12. Mobile robots traversability awareness based on terrain visual sensory data fusion

    Science.gov (United States)

    Shirkhodaie, Amir

    2007-04-01

    In this paper, we have presented methods that significantly improve the robot awareness of its terrain traversability conditions. The terrain traversability awareness is achieved by association of terrain image appearances from different poses and fusion of extracted information from multimodality imaging and range sensor data for localization and clustering environment landmarks. Initially, we describe methods for extraction of salient features of the terrain for the purpose of landmarks registration from two or more images taken from different via points along the trajectory path of the robot. The method of image registration is applied as a means of overlaying (two or more) of the same terrain scene at different viewpoints. The registration geometrically aligns salient landmarks of two images (the reference and sensed images). A Similarity matching techniques is proposed for matching the terrain salient landmarks. Secondly, we present three terrain classifier models based on rule-based, supervised neural network, and fuzzy logic for classification of terrain condition under uncertainty and mapping the robot's terrain perception to apt traversability measures. This paper addresses the technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on

  13. Long's equation in terrain following coordinates

    Directory of Open Access Journals (Sweden)

    M. Humi

    2009-08-01

    Full Text Available Long's equation describes two dimensional stratified atmospheric flow over terrain which is represented by the geometry of the domain. The solutions of this equation over simple topography were investigated analytically and numerically by many authors. In this paper we derive a new terrain following formulation of this equation which incorporates the terrain as part of the differential equation rather than the geometry of the domain. This new formulation enables us to compute analytically steady state gravity wave patterns over complex topography in some limiting cases of the parameters that appear in this equation.

  14. Terrain mapping camera for Chandrayaan-1

    Indian Academy of Sciences (India)

    A S Kiran Kumar; A Roy Chowdhury

    2005-12-01

    The Terrain Mapping Camera (TMC)on India ’s first satellite for lunar exploration,Chandrayaan-1, is for generating high-resolution 3-dimensional maps of the Moon.With this instrument,a complete topographic map of the Moon with 5 m spatial resolution and 10-bit quantization will be available for scienti fic studies.The TMC will image within the panchromatic spectral band of 0.4 to 0.9 m with a stereo view in the fore,nadir and aft directions of the spacecraft movement and have a B/H ratio of 1.The swath coverage will be 20 km.The camera is configured for imaging in the push broom-mode with three linear detectors in the image plane.The camera will have four gain settings to cover the varying illumination conditions of the Moon.Additionally,a provision of imaging with reduced resolution,for improving Signal-to-Noise Ratio (SNR)in polar regions,which have poor illumination conditions throughout,has been made.SNR of better than 100 is expected in the ± 60° latitude region for mature mare soil,which is one of the darkest regions on the lunar surface. This paper presents a brief description of the TMC instrument.

  15. DCS Terrain Submission for Los Angeles County, CA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  16. DCS Terrain Submittal for Thomas County, Georgia, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  17. DIGITAL TERRAIN DCS DATABASE for ALLEN PARISH, LA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  18. DCS Terrain Submission for Eau Claire County, Wisconsin

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  19. DCS Terrain Submission for McCurtain, OK

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  20. LandingNav: Terrain Guided Automated Precision Landing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I effort successfully demonstrated the feasibility of a terrain guided automated precision landing sensor using an innovative multi-field-of-view stereo...

  1. DCS Terrain Submission for Lewis and Clark County, Montana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  2. DCS Terrain Submission for McCook County, SD

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that were used to create...

  3. DCS Terrain Submission for Randolph County, AR, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  4. DCS Terrain Submittal for Crisp County, Georgia, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  5. Classification of Mars Terrain Using Multiple Data Sources

    Data.gov (United States)

    National Aeronautics and Space Administration — Classification of Mars Terrain Using Multiple Data Sources Alan Kraut1, David Wettergreen1 ABSTRACT. Images of Mars are being collected faster than they can be...

  6. DCS Terrain Submission for Pope County, AR, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  7. DCS Terrain Submittal for Spalding County, Georgia, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  8. DCS Terrain Submittal for Lee County, Georgia, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  9. TERRAIN, CITY OF SEWARD, KENAI PENINSULA BOROUGH, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  10. DCS Terrain Submission for Jackson County, AR, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  11. DCS Terrain Submission for Clay County, AR, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  12. TERRAIN, CITY OF GRAND PRAIRIE, DALLAS COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  13. DCS Terrain for Johnson County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  14. DCS Terrain for Evans County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  15. DCS Terrain Submittal for Dougherty County, Georgia, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  16. DCS Terrain Submittal for Rains County, Texas, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  17. DCS Terrain Submission for LeFlore, OK

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  18. DCS Terrain Submittal for Mitchell County, Georgia, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  19. DCS Terrain Submission for Johnson County, AR, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  20. DCS Terrain Submittal for Washita County, Oklahoma, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  1. DCS Terrain Submission for Chippewa County, MI (Countywide DFIRM)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographic data that were used to create...

  2. DCS Terrain Submission for Oceana County, MI (Countywide DFIRM)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographic data that were used to create...

  3. Terrain Submission for Menominee County, MI (Countywide DFIRM)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographic data that were used to create...

  4. TERRAIN submission for Rock River RiskMap DFIRM

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  5. DCS Terrain for Wayne County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  6. DCS Terrain for Toombs County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  7. DCS Terrain Submission for Wilkin County, MN (Countywide DFIRM)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  8. DCS Terrain for Chatham Co GA (FY2010)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  9. DCS TERRAIN SUBMISSION for MORRIS COUNTY, NEW JERSEY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that were used to create...

  10. DCS Terrain for Laurens County GA MAPMOD04-08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  11. DCS Terrain Submittal for Pike County, Georgia, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  12. DCS Terrain Submission for Los Alamos County, New Mexico, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  13. DCS Terrain submission for Washoe County NV PMR

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  14. DCS Terrain Submission for La Paz County, AZ

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that were used to create...

  15. DCS Terrain for Treutlen County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  16. DCS Terrain Submission for Washburn County, Wisconsin, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  17. On the Measurement of Turbulence Over Complex Mountainous Terrain

    Science.gov (United States)

    Stiperski, Ivana; Rotach, Mathias W.

    2016-04-01

    The theoretical treatment of turbulence is largely based on the assumption of horizontally homogeneous and flat underlying surfaces. Correspondingly, approaches developed over the years to measure turbulence statistics in order to test this theoretical understanding or to provide model input, are also largely based on the same assumption of horizontally homogeneous and flat terrain. Here we discuss aspects of turbulence measurements that require special attention in mountainous terrain. We especially emphasize the importance of data quality (flux corrections, data quality assessment, uncertainty estimates) and address the issues of coordinate systems and different post-processing options in mountainous terrain. The appropriate choice of post-processing methods is then tested based on local scaling arguments. We demonstrate that conclusions drawn from turbulence measurements obtained in mountainous terrain are rather sensitive to these post-processing choices and give suggestions as to those that are most appropriate.

  18. DCS Terrain Submission for La Crosse County, Wisconsin

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  19. DCS Terrain for Emanuel County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  20. DCS Terrain for Wilcox County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  1. DCS Terrain for Burke County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  2. DCS Terrain for Tattnall County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  3. DCS Terrain for Lanier County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  4. DCS Terrain for Appling County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  5. DCS Terrain for Candler County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  6. DCS Terrain for Bullcoh County GA MAPMOD04-08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  7. DCS Terrain for Jenkins County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  8. DCS Terrain for Montgomery County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  9. DCS Terrain for Wheeler County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  10. Terrain Submission for Dickinson County, MI (Countywide DFIRM)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographic data that were used to create...

  11. Terrain Submission for Crawford County, MI (Countywide DFIRM)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographic data that were used to create...

  12. Terrain Submission for Alcona County, MI (Countywide DFIRM)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographic data that were used to create...

  13. DCS Terrain for Tift County GA MapMod08

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  14. DCS Terrain for Roscommon County, MI (Countywide DFIRM)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  15. TERRAIN DATA, DELANEY CREEK WATERSHED, HILLSBOROUGH COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describe the digital topographic data that were used to create...

  16. DCS Terrain Submission for Monmouth County, New Jersey

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  17. DCS Terrain Submission for Lake Kaweah PMR - Tulare County, California

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  18. DCS Terrain Submittal for Santa Fe County, New Mexico, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  19. DCS Terrain Submission for Gold Star Canyon Study

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  20. DCS Terrain Submission for Miller County, AR, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  1. TERRAIN, CITY OF NORWALK, FAIRFIELD COUNTY, CONNECTICUT - Levee PMR

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  2. TERRAIN, CITY OF ANSONIA, NEW HAVEN COUNTY, CONNECTICUT - Levee PMR

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  3. TERRAIN, CITY OF Derby, NEW HAVEN COUNTY, CONNECTICUT - Levee PMR

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  4. Solar powered model vehicle races

    Science.gov (United States)

    Yılmaz, Nazmi; Serpengüzel, Ali

    2014-09-01

    Koç University SPIE student chapter has been organizing the solar powered model vehicle race and outreaching K-12 students. The solar powered model vehicle race for car, boat, blimp, all solar panel boat, submarine, underwater rower, amphibian, and glider have been successfully organized.

  5. Physically Based Terrain Generation : Procedural Heightmap Generation Using Plate Tectonics

    OpenAIRE

    Viitanen, Lauri

    2012-01-01

    This thesis explores the usefulness of the theory of plate tectonics in procedural terrain generation. The objective is to produce a model that's based on plate tectonics and use it to investigate the benefits and drawbacks of simulating the movement and dynamics of tectonic plates. The study briefly reviews the procedural methods that are currently used in the game and film industries to produce artificial terrain and discusses their strengths and weaknesses. Utilization of plate tectoni...

  6. Influence of Terrain on Scaling Laws for River Networks

    OpenAIRE

    Vasquez, D.A.; Smith, D. H.; Edwards, Boyd F.

    2002-01-01

    The upper Cheat River network departs from scaling laws describing a large number of river networks in North America. This departure is traced to its corrugated terrain. The more typical random terrain of the lower Cheat River network obeys the standard scaling laws. We modify the random network model of Scheidegger to include the effects of topography, reproducing the behavior observed in the Cheat River basin.

  7. Terrain intelligence Chita Oblast (U.S.S.R.)

    Science.gov (United States)

    U.S. Geological Survey

    1943-01-01

    The following folio of maps and explanatory tables outlines the principal terrain features of the Chita Oblast.  Each map and table is devoted to a specialized set of problems; together they cover such subjects as terrain appreciations, rivers, surface-water and ground-water supplies, construction materials, fuels, suitability for temporary roads and airfields, mineral resources, and geology.  These maps and data were complied by the United States Geological Survey.

  8. On-board computational efficiency in real time UAV embedded terrain reconstruction

    Science.gov (United States)

    Partsinevelos, Panagiotis; Agadakos, Ioannis; Athanasiou, Vasilis; Papaefstathiou, Ioannis; Mertikas, Stylianos; Kyritsis, Sarantis; Tripolitsiotis, Achilles; Zervos, Panagiotis

    2014-05-01

    In the last few years, there is a surge of applications for object recognition, interpretation and mapping using unmanned aerial vehicles (UAV). Specifications in constructing those UAVs are highly diverse with contradictory characteristics including cost-efficiency, carrying weight, flight time, mapping precision, real time processing capabilities, etc. In this work, a hexacopter UAV is employed for near real time terrain mapping. The main challenge addressed is to retain a low cost flying platform with real time processing capabilities. The UAV weight limitation affecting the overall flight time, makes the selection of the on-board processing components particularly critical. On the other hand, surface reconstruction, as a computational demanding task, calls for a highly demanding processing unit on board. To merge these two contradicting aspects along with customized development, a System on a Chip (SoC) integrated circuit is proposed as a low-power, low-cost processor, which natively supports camera sensors and positioning and navigation systems. Modern SoCs, such as Omap3530 or Zynq, are classified as heterogeneous devices and provide a versatile platform, allowing access to both general purpose processors, such as the ARM11, as well as specialized processors, such as a digital signal processor and floating field-programmable gate array. A UAV equipped with the proposed embedded processors, allows on-board terrain reconstruction using stereo vision in near real time. Furthermore, according to the frame rate required, additional image processing may concurrently take place, such as image rectification andobject detection. Lastly, the onboard positioning and navigation (e.g., GNSS) chip may further improve the quality of the generated map. The resulting terrain maps are compared to ground truth geodetic measurements in order to access the accuracy limitations of the overall process. It is shown that with our proposed novel system,there is much potential in

  9. How much do terrain effects impact the IHFC borehole paleoclimate data set?

    Science.gov (United States)

    Heinle, S.; Gosnold, W.

    2005-12-01

    Comparison of measured T-z profiles in the IHFC borehole-climate database with synthetic T-z profiles generated from the NCDC Climate Division annual data reveals some good agreement and some problems in linking the ground surface temperature (GST) with the surface air temperature (SAT). The change from the long-term annual mean temperature occurred several decades prior to the beginning of the instrumental record. The magnitude of change, warming or cooling, recorded in borehole data is greater than predicted by the meteorological data. Although the ensemble approach to analysis of the borehole data set has been generally accepted, this analysis indicates that the data could be greatly improved by consideration of terrain effects on the ground surface temperature. In this case, terrain effect implies all possible noise signals in the near surface thermal regime, e.g., topography, groundwater, deforestation, and urbanization. This research is supported by NSF ATM-038384

  10. Fast recognition algorithm of underwater micro-terrain based on ultrasonic detection

    Institute of Scientific and Technical Information of China (English)

    LUO Bo-wen; ZHOU Zhi-jin; BU Ying-yong; ZHAO Hai-ming

    2008-01-01

    An algorithm was proposed to fast recognize three types of underwater micro-terrain, i.e. the level, the gradient and the uneven. With pendulum single beam bathymeter, the hard level concrete floor, the random uneven floor and the gradient wood panel (8°) were ultrasonically detected 20 times, respectively. The results show that the algorithm is right from fact that the first clustering values of the uneven are all less than the threshold value of 60.0% that is obtained by the level and gradient samples. The algorithm based on the dynamic clustering theory can effectively eliminate the influences of the exceptional elevation values produced by the disturbances resulted from the grazing angle, the characteristic of bottom material and environmental noises, and its real-time capability is good. Thus, the algorithm provides a foundation for the next restructuring of the micro-terrain.

  11. Evolutionary View Planning for Optimized UAV Terrain Modeling in a Simulated Environment

    Directory of Open Access Journals (Sweden)

    Ronald A. Martin

    2015-12-01

    Full Text Available This work demonstrates the use of genetic algorithms in optimized view planning for 3D reconstruction applications using small unmanned aerial vehicles (UAVs. The quality of UAV site models is currently highly dependent on manual pilot operations or grid-based automation solutions. When applied to 3D structures, these approaches can result in gaps in the total coverage or inconsistency in final model resolution. Genetic algorithms can effectively explore the search space to locate image positions that produce high quality models in terms of coverage and accuracy. A fitness function is defined, and optimization parameters are selected through semi-exhaustive search. A novel simulation environment for evaluating view plans is demonstrated using terrain generation software. The view planning algorithm is tested in two separate simulation cases: a water drainage structure and a reservoir levee, as representative samples of infrastructure monitoring. The optimized flight plan is compared against three alternate flight plans in each case. The optimized view plan is found to yield terrain models with up to 43% greater accuracy than a standard grid flight pattern, while maintaining comparable coverage and completeness.

  12. Passive legged, multi-segmented, robotic vehicle.

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, David R.

    2003-11-01

    The Passive-legged, Multi-segmented, Robotic Vehicle concept is a simple legged vehicle that is modular and scaleable, and can be sized to fit through confined areas that are slightly larger than the size of the vehicle. A specific goal of this project was to be able to fit through the opening in the fabric of a chain link fence. This terrain agile robotic platform will be composed of multiple segments that are each equipped with appendages (legs) that resemble oars extending from a boat. Motion is achieved by pushing with these legs that can also flex to fold next to the body when passing through a constricted area. Each segment is attached to another segment using an actuated joint. This joint represents the only actuation required for mobility. The major feature of this type of mobility is that the terrain agility advantage of legs can be attained without the complexity of the multiple-actuation normally required for the many joints of an active leg. The minimum number of segments is two, but some concepts require three or more segments. This report discusses several concepts for achieving this type of mobility, their design, and the results obtained for each.

  13. Observing river stages using unmanned aerial vehicles

    Science.gov (United States)

    Niedzielski, Tomasz; Witek, Matylda; Spallek, Waldemar

    2016-08-01

    We elaborated a new method for observing water surface areas and river stages using unmanned aerial vehicles (UAVs). It is based on processing multitemporal five orthophotomaps produced from the UAV-taken visible light images of nine sites of the river, acquired with a sufficient overlap in each part. Water surface areas are calculated in the first place, and subsequently expressed as fractions of total areas of water-covered terrain at a given site of the river recorded on five dates. The logarithms of the fractions are later calculated, producing five samples, each consisted of nine elements. In order to detect statistically significant increments of water surface areas between two orthophotomaps, we apply the asymptotic and bootstrapped versions of the Student's t test, preceded by other tests that aim to check model assumptions. The procedure is applied to five orthophotomaps covering nine sites of the Ścinawka river (south-western (SW) Poland). The data have been acquired during the experimental campaign, at which flight settings were kept unchanged over nearly 3 years (2012-2014). We have found that it is possible to detect transitions between water surface areas associated with all characteristic water levels (low, mean, intermediate and high stages). In addition, we infer that the identified transitions hold for characteristic river stages as well. In the experiment we detected all increments of water level: (1) from low stages to mean, intermediate and high stages; (2) from mean stages to intermediate and high stages; and (3) from intermediate stages to high stages. Potential applications of the elaborated method include verification of hydrodynamic models and the associated predictions of high flows as well as monitoring water levels of rivers in ungauged basins.

  14. Aerial thermography from low-cost UAV for the generation of thermographic digital terrain models

    Science.gov (United States)

    Lagüela, S.; Díaz-Vilariño, L.; Roca, D.; Lorenzo, H.

    2015-03-01

    Aerial thermography is performed from a low-cost aerial vehicle, copter type, for the acquisition of data of medium-size areas, such as neighbourhoods, districts or small villages. Thermographic images are registered in a mosaic subsequently used for the generation of a thermographic digital terrain model (DTM). The thermographic DTM can be used with several purposes, from classification of land uses according to their thermal response to the evaluation of the building prints as a function of their energy performance, land and water management. In the particular case of buildings, apart from their individual evaluation and roof inspection, the availability of thermographic information on a DTM allows for the spatial contextualization of the buildings themselves and the general study of the surrounding area for the detection of global effects such as heat islands.

  15. Remote vehicle survey tool

    International Nuclear Information System (INIS)

    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs

  16. Planning and design considerations in karst terrain

    Science.gov (United States)

    Fischer, J. A.; Greene, R. W.; Ottoson, R. S.; Graham, T. C.

    1988-10-01

    This article discusses the various steps that the authors feel are necessary to the successful progression of an engineered project sited in karst terrain. The procedures require a multidisciplined approach with liaison and cooperation among the various parties to the project. Initially, the prospective owner must have sufficient understanding of the potential engineering problems to incorporate the engineering geologist into the early stages of any planned acquisition. The first step in an investigation should include a review of the available geologic information, aerial photo interpretation, consultation with the State Geological Survey, and a geologic reconnaissance of the prospective site and surrounding area. A go-no-go decision as to purchase can often been made at an early time. Although, in some instances, more study is needed for a particularly intriguing property. The second stage should consider the various planning alternatives that are feasible based upon the limited available information. At this stage planning/purchase decisions can be made as to purchasing options, value of the property, design constraints, and the possible economic penalties that could be associated with the potential site construction. Various planning and construction alternatives should be considered in this phase of the work. The third stage should include a site investigation program of moderate size, consisting of test pits and/or exploratory borings. The borings should be drilled using water as the drilling fluid, with an experienced crew and qualified technical inspection. The authors find the use of geophysical techniques can be extremely misleading unless used in conjunction with exploratory drilling. Successful evaluations using geophysical procedures occur only under ideal conditions. The geotechnical viability of the plan and preliminary design should be investigated in the fourth phase. Additionally, the physical parameters required for the design of structures

  17. Assessing the complexity of topographic mass in complex terrains

    Science.gov (United States)

    Kurmankozhayev, Azimkhan; Nemec, Vaclav; Sarybaev, Edil

    2014-05-01

    To assess the structure of terrain more objectively it is necessary to supplement and clarify the available characteristics with a number of numerical statistical indicators and formulas that reflect the actual links between separate features of terrain. Results from analysis of traditional variability assessment methods for characteristics of georesources allow concluding that a characteristic's variability usually has oscillatory and wavelike geometric image in the form of broken, polygonal, zigzagging, polyhedral and, less frequently, regular geometric shapes, defined by deviation amplitude and period of irregularities. It is established that variability cannot be evaluated with one universal indicator since variability consists of a random and a regular component, thus it is considered reasonable to assess the characteristic's variability depending on current mining and geometrical tasks and by stages of georesources development. The recommended topographic terrain mass complexity assessment method is based on the leading concept of using properties of specific anti-entropy that, unlike regular entropy, allows accounting for changes in total number of component elements in stable populations for the topographic terrain mass. Concept of utilizing value of specific anti-entropy, widely used in information theory, is taken as an assessment criterion for integral complexity of topographic terrain mass. Modification of specific anti-entropy formula, as applied to substance of formation of the georesource development target's topographic mass integral complexity, is based on qualimetric model of its assessment. Essence of the model comes down to determining the topographic mass complexity using the topographic mass structure uncertainty measure, assessed using the quantity of heterogeneous morphometric elements contained in the topographic surface of terrain. The main basic reference value in qualimetric model of the topographic terrain mass complexity is the

  18. Personal Air Vehicle Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a low aspect ratio all-lifting configuration for personal air vehicles. This configuration uses an architecture fundamentally different from...

  19. Optimal surveillance coverage for teams of micro aerial vehicles in GPS-Denied environments using onboard vision

    OpenAIRE

    Doitsidis, Lefteris; Weiss, Stephan; Renzaglia, Alessandro; Achtelik, Markus; Kosmatopoulos, Elias; Siegwart, Roland; Scaramuzza, Davide

    2012-01-01

    International audience This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain's morphology. The focus of this paper is on the implementation of a two-step procedure that allows us to optimally align a team of flying vehicles for the aforementioned task. Initially, a single robot construc...

  20. Efficient parallel implementations of approximation algorithms for guarding 1.5D terrains

    Directory of Open Access Journals (Sweden)

    Goran Martinović

    2015-03-01

    Full Text Available In the 1.5D terrain guarding problem, an x-monotone polygonal line is dened by k vertices and a G set of terrain points, i.e. guards, and a N set of terrain points which guards are to observe (guard. This involves a weighted version of the guarding problem where guards G have weights. The goal is to determine a minimum weight subset of G to cover all the points in N, including a version where points from N have demands. Furthermore, another goal is to determine the smallest subset of G, such that every point in N is observed by the required number of guards. Both problems are NP-hard and have a factor 5 approximation [3, 4]. This paper will show that if the (1+ϵ-approximate solver for the corresponding linear program is a computer, for any ϵ > 0, an extra 1+ϵ factor will appear in the final approximation factor for both problems. A comparison will be carried out the parallel implementation based on GPU and CPU threads with the Gurobi solver, leading to the conclusion that the respective algorithm outperforms the Gurobi solver on large and dense inputs typically by one order of magnitude.

  1. Generating color terrain images in an emergency response system

    International Nuclear Information System (INIS)

    The Atmospheric Release Advisory Capability (ARAC) provides real-time assessments of the consequences resulting from an atmospheric release of radioactive material. In support of this operation, a system has been created which integrates numerical models, data acquisition systems, data analysis techniques, and professional staff. Of particular importance is the rapid generation of graphical images of the terrain surface in the vicinity of the accident site. A terrain data base and an associated acquisition system have been developed that provide the required terrain data. This data is then used as input to a collection of graphics programs which create and display realistic color images of the terrain. The graphics system currently has the capability of generating color shaded relief images from both overhead and perspective viewpoints within minutes. These images serve to quickly familiarize ARAC assessors with the terrain near the release location, and thus permit them to make better informed decisions in modeling the behavior of the released material. 7 refs., 8 figs

  2. Dynamic modeling and mobility analysis of the transforming roving-rolling explorer (TRREx) as it Traverses Rugged Martian Terrain

    Science.gov (United States)

    Edwin, Lionel E.; Mazzoleni, Andre P.

    2016-03-01

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that the most scientifically interesting missions require exploration platforms with capabilities for navigating such types of rugged terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This work analyzes one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This paper investigates the mobility of the TRREx when it is in its rolling mode, i.e. when it is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. A mathematical model describing the dynamics of the rover in this spherical configuration is presented, and actuated rolling is demonstrated through computer simulation. Parametric analyzes that investigate the rover's mobility as a function of its design parameters are also presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future.

  3. 新旧版美国四轮全地形车安全标准ANSI/SVIA 1分析与研究%Analysis and Research of The New and Old Editions United States Four-Wheeled All-Terrain Vehicle Standard ANSI / SVIA 1

    Institute of Scientific and Technical Information of China (English)

    唐良富; 张旻旻; 解如风; 李凌; 陈鎏; 王楠

    2012-01-01

    本文通过对美国四轮ATV强制性安全标准ANSI/SVIA 1-2010与ANSI/SVIA 1-2007的分析研究,阐述了2010版标准中许多修改内容是对2007版标准编辑性的修改,其目的是改善标准清晰度和一致性;实质性修改主要包括8项,其目的主要是适应安全性要求。同时也提出我国ATV产品在设计、配置和性能等方面面临的技术壁垒和安全技术改进方向,这对我国ATV产品出口美国和制定国家、行业标准具有重要指导意义。%Based on the analysis and research of mandatory safety standards, four-wheeled ATV ANSI / SVIA 1 - 2010 and ANSI / SVIA 1 - 2007 of the United States, this paper describes that a number of changes in the 2010 version of the standard 2007 version of the standard content is edited of change, which aims to improve the standard definition and consistency; other hand, substantive changes include eight, its main purpose to adapt to security requirements. Thus , the improvement direction of technical barriers and safety technical what our ATV products facing in design, configuration and performance are also demonstrated, which has important significance to our ATV products exporting to the U.S. and the development of national and industry standards.

  4. Aggregate vehicle travel forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

    1995-05-01

    This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

  5. On-line trajectory planning for autonomous spraying vehicles

    OpenAIRE

    Urcola, Pablo; Duckett, Tom; Cielniak, Grzegorz

    2014-01-01

    In this paper, we present a new application of on-line trajectory planning for autonomous sprayers. The current generation of these vehicles use automatic controllers to maintain the height of the spraying booms above the crop. However, such systems are typically based on ultrasonic sensors mounted directly on the booms, which limits the response of the controller to changes in the terrain, resulting in a suboptimal spraying process. To overcome these limitations, we propose to use 3D maps...

  6. Autonomous Vehicle Path Planning with Remote Sensing Data

    OpenAIRE

    Dalton, Aaron James

    2008-01-01

    Long range path planning for an autonomous ground vehicle with minimal a-priori data is still very much an open problem. Previous research has demonstrated that least cost paths generated from aerial LIDAR and GIS data could play a role in automatically determining suitable routes over otherwise unknown terrain. However, most of this research has been theoretical. Consequently, there is very little literature the effectiveness of these techniques in plotting paths of an actual autonomous v...

  7. Investigating the Mobility of Light Autonomous Tracked Vehicles using a High Performance Computing Simulation Capability

    Science.gov (United States)

    Negrut, Dan; Mazhar, Hammad; Melanz, Daniel; Lamb, David; Jayakumar, Paramsothy; Letherwood, Michael; Jain, Abhinandan; Quadrelli, Marco

    2012-01-01

    This paper is concerned with the physics-based simulation of light tracked vehicles operating on rough deformable terrain. The focus is on small autonomous vehicles, which weigh less than 100 lb and move on deformable and rough terrain that is feature rich and no longer representable using a continuum approach. A scenario of interest is, for instance, the simulation of a reconnaissance mission for a high mobility lightweight robot where objects such as a boulder or a ditch that could otherwise be considered small for a truck or tank, become major obstacles that can impede the mobility of the light autonomous vehicle and negatively impact the success of its mission. Analyzing and gauging the mobility and performance of these light vehicles is accomplished through a modeling and simulation capability called Chrono::Engine. Chrono::Engine relies on parallel execution on Graphics Processing Unit (GPU) cards.

  8. The Improved Kriging Interpolation Algorithm for Local Underwater Terrain Based on Fractal Compensation

    Directory of Open Access Journals (Sweden)

    Pengyun Chen

    2014-01-01

    Full Text Available The interpolation-reconstruction of local underwater terrain using the underwater digital terrain map (UDTM is an important step for building an underwater terrain matching unit and directly affects the accuracy of underwater terrain matching navigation. The Kriging method is often used in terrain interpolation, but, with this method, the local terrain features are often lost. Therefore, the accuracy cannot meet the requirements of practical application. Analysis of the geographical features is performed on the basis of the randomness and self-similarity of underwater terrain. We extract the fractal features of local underwater terrain with the fractal Brownian motion model, compensating for the possible errors of the Kriging method with fractal theory. We then put forward an improved Kriging interpolation method based on this fractal compensation. Interpolation-reconstruction tests show that the method can simulate the real underwater terrain features well and that it has good usability.

  9. Selection of key terrain attributes for SOC model

    DEFF Research Database (Denmark)

    Greve, Mogens Humlekrog; Adhikari, Kabindra; Chellasamy, Menaka;

    As an important component of the global carbon pool, soil organic carbon (SOC) plays an important role in the global carbon cycle. SOC pool is the basic information to carry out global warming research, and needs to sustainable use of land resources. Digital terrain attributes are often use of...... predictors in Digital soil mapping of SOC. But there are no rules only few empirical guidelines on which digital terrain attributes to use. The aim of this paper was to select and the evaluate 21 digital terrain attributes and use the best for mapping. A typical 7500 km2 region located in Denmark was...... selected, total 2,514,820 data mining models were constructed by 71 differences grid from 12m to 2304m and 22 attributes, 21 attributes derived by DTM and the original elevation. Relative importance and usage of each attributes in every model were calculated. Comprehensive impact rates of each attribute...

  10. Dynamic Terrain Visualization Based on ROAM and OGRE

    Institute of Scientific and Technical Information of China (English)

    FU Hui; WANG Quanmin

    2009-01-01

    Terrain Visualization is an important part of visualization systems of battlefield,and the visualization of dynamic terrain is also important for dynamic battle environment.In this paper,special attention has been paid on real-time optimally adapting meshes (ROAM) algorithm,which is a candidate for dynamic terrain,and its mesh representation,mesh continuity algorithm and error metrics are discussed.The DEXTER-ROAM algorithm is discussed and analyzed.By revising the mesh representation of ROAM,a dynamic ROAM algorithm based on partial-regular grid is established.By introducing transition region,mesh discontinuity of dynamic partial-regular grid is resolved.Error metric blocks are removed for computation complexity and culling blocks are introduced to accelerate view frustum culling.The algorithm is implemented in a 3D rendering engine called OGRE.In the end,an example of dynamic crater is given to examine the dynamic ROAM algorithm.

  11. Hybrid RANS/LES applied to complex terrain

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.

    2011-01-01

    Large Eddy Simulation (LES) of the wind in complex terrain is limited by computational cost. The number of computational grid points required to resolve the near-ground turbulent structures (eddies) are very high. The traditional solution to the problem has been to apply a wall function that...... accounts for the whole near-wall region. Recently, a hybrid method was proposed in which the eddies close to the ground were modelled in a Reynolds-averaged sense (RANS) and the eddies above this region were simulated using LES. The advantage of the approach is the ability to use shallow cells of high...... aspect ratio in the RANS layer and thereby resolve the mean near-wall velocity profile. The method is applicable to complex terrain and the benefits of traditional LES are kept intact. Using the hybrid method, simulations of the wind over a natural complex terrain near Wellington in New Zealand are...

  12. ISOSTATICALLY DISTURBED TERRAIN OF NORTHWESTERN ANDES MOUNTAINS FROM SPECTRALLY CORRELATED FREE-AIR AND GRAVITY TERRAIN DATA

    Directory of Open Access Journals (Sweden)

    Hernández P Orlando

    2006-12-01

    Full Text Available Recently revised models on global tectonics describe the convergence of the North Andes, Nazca, Caribbean and South American Plates and their seismicity, volcanism, active faulting and extreme
    topography. The current plate boundaries of the area are mainly interpreted from volcanic and seismic datasets with variable confidence levels. New insights on the isostatic state and plate boundaries of
    the northwestern Andes Mountains can be obtained from the spectral analysis of recently available gravity and topography data.
    Isostatically disturbed terrain produces free-air anomalies that are highly correlated with the gravity effects of the terrain. The terrain gravity effects (TGE and free air gravity anomalies (FAGA of the
    Andes mountains spectral correlation data confirms that these mountains are isostatically disturbed. Strong negative terrain-correlated FAGA along western South America and the Greater and Lesser Antilles are consistent with anomalously deepened mantle displaced by subducting oceanic plates.

    Inversion of the compensated terrain gravity effects (CTGE reveals plate subduction systems with alternating shallower and steeper subduction angles. The gravity modeling highlights crustal
    deformation from plate collision and subduction and other constraints on the tectonism of the plate boundary zones for the region.

  13. Irregular Morphing for Real-Time Rendering of Large Terrain

    Science.gov (United States)

    Kalem, Sid'Ali; Kourgli, Assia

    2016-06-01

    The following paper proposes an alternative approach to the real-time adaptive triangulation problem. A new region-based multi-resolution approach for terrain rendering is described which improves on-the-fly the distribution of the density of triangles inside the tile after selecting appropriate Level-Of-Detail by an adaptive sampling. This proposed approach organizes the heightmap into a QuadTree of tiles that are processed independently. This technique combines the benefits of both Triangular Irregular Network approach and region-based multi-resolution approach by improving the distribution of the density of triangles inside the tile. Our technique morphs the initial regular grid of the tile to deformed grid in order to minimize approximation error. The proposed technique strives to combine large tile size and real-time processing while guaranteeing an upper bound on the screen space error. Thus, this approach adapts terrain rendering process to local surface characteristics and enables on-the-fly handling of large amount of terrain data. Morphing is based-on the multi-resolution wavelet analysis. The use of the D2WT multi-resolution analysis of the terrain height-map speeds up processing and permits to satisfy an interactive terrain rendering. Tests and experiments demonstrate that Haar B-Spline wavelet, well known for its properties of localization and its compact support, is suitable for fast and accurate redistribution. Such technique could be exploited in client-server architecture for supporting interactive high-quality remote visualization of very large terrain.

  14. Trends in Hydrogen Vehicles

    International Nuclear Information System (INIS)

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  15. Future Armoured Troop Carrying Vehicles

    Directory of Open Access Journals (Sweden)

    Sebastian Balos

    2010-08-01

    Full Text Available Present-day reliance on wheeled and tracked armour personnel carriers (APCs and infantry fighting vehicles (IFVs, may be changed in the future. Shaped charge grenades and impovised explosive devices (IEDsrepresent a considerable threat, even to well protected main battle tanks (MBTs. Paradoxically, the crew of wheeled and tracked troop-carrying vehicles is numerically three to four times larger than that of MBTs, however, their protection in all aspects is significantly lower. Therefore, heavier vehicles may get more attention in the future, where sharing the chassis and a number of components with MBTs could provide significant reductions in procurement costs and maintenance, as well as a simplified logistics in relation to the latest tracked. Obviously, the IFVs mobility of heavy vehicles would be lower than that of lighter vehicles. However, by applying various degrees of modular armour protection, a significant rise in strategic, operational, and tactical mobility could be achieved. Such heavy tracked vehicles, built on a common chassis as MBTs, may equip the future heavy brigades, which will be in contrast to the lighter wheeled vehicles included in rapid deployment brigades. As a result, tracked personnel carrying vehicles may extinct in the future.Defence Science Journal, 2010, 60(5, pp.483-490, DOI:http://dx.doi.org/10.14429/dsj.60.550

  16. A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles

    OpenAIRE

    Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

    1996-01-01

    The vehicle choice model developed here is one component in a micro-simulation demand forecasting system being designed to produce annual forecasts of new and used vehicle demand by vehicle type and geographic area in California. The system will also forecast annual vehicle miles traveled for all vehicles and recharging demand by time of day for electric vehicles. The choice model specification differs from past studies by directly modeling vehicle transactions rather than vehicle holdings. T...

  17. Landsat analysis of tropical forest succession employing a terrain model

    Science.gov (United States)

    Barringer, T. H.; Robinson, V. B.; Coiner, J. C.; Bruce, R. C.

    1980-01-01

    Landsat multispectral scanner (MSS) data have yielded a dual classification of rain forest and shadow in an analysis of a semi-deciduous forest on Mindonoro Island, Philippines. Both a spatial terrain model, using a fifth side polynomial trend surface analysis for quantitatively estimating the general spatial variation in the data set, and a spectral terrain model, based on the MSS data, have been set up. A discriminant analysis, using both sets of data, has suggested that shadowing effects may be due primarily to local variations in the spectral regions and can therefore be compensated for through the decomposition of the spatial variation in both elevation and MSS data.

  18. Terrain Mapping and Obstacle Detection Using Gaussian Processes

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Massaro, Alessandro Salvatore; Bayramoglu, Enis;

    2011-01-01

    In this paper we consider a probabilistic method for extracting terrain maps from a scene and use the information to detect potential navigation obstacles within it. The method uses Gaussian process regression (GPR) to predict an estimate function and its relative uncertainty. To test the new...... show that the estimated maps follow the terrain shape, while protrusions are identified and may be isolated as potential obstacles. Representing the data with a covariance function allows a dramatic reduction of the amount of data to process, while maintaining the statistical properties of the measured...

  19. Terrain Mapping and Obstacle Detection using Gaussian Processes

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Massaro, Alessandro Salvatore; Bayramoglu, Enis;

    2011-01-01

    In this paper we consider a probabilistic method for extracting terrain maps from a scene and use the information to detect potential navigation obstacles within it. The method uses Gaussian process regression (GPR) to predict an estimate function and its relative uncertainty. To test the new...... show that the estimated maps follow the terrain shape, while protrusions are identified and may be isolated as potential obstacles. Representing the data with a covariance function allows a dramatic reduction of the amount of data to process, while maintaining the statistical properties of the measured...

  20. The Derivation of Skeleton Lines for Terrain Features

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The geometric and physical analysis methods are conventional methods for the derivation of skeleton lines in the fields of cartography,digital photogrammetry,and related areas.This paper proposes a stepwise approach that uses the physical analysis method in the first stage and the geometric analysis method in the subsequent stage.The physical analysis method analyses the terrain globally to obtain a rough set of skeleton lines for a terrain surface.The rough skeleton lines help to structure the ordering of feature points by the geometric analysis method.

  1. Real-Time Visualization of Large Textured Terrains

    DEFF Research Database (Denmark)

    Brodersen, Anders Torp

    In this paper, we present a framework for real-time rendering of large scale terrains with texture maps larger than what the graphics hardware can display in a single texture. The presented system is compact and efficient, yet very simple and easy to implement.......In this paper, we present a framework for real-time rendering of large scale terrains with texture maps larger than what the graphics hardware can display in a single texture. The presented system is compact and efficient, yet very simple and easy to implement....

  2. Terrain dependant hop count selection for transparent relay transmissions

    Directory of Open Access Journals (Sweden)

    Cibile K. Kanjirathumkal

    2013-12-01

    Full Text Available In this Letter, the selection of the best hop count for a particular topography, in the context of enhanced connectivity using multi-hop transparent relay communication is addressed. Based on the coefficient of variation and the terrain specific fading severity factor of the distribution, it is possible to estimate the optimal hop count that can provide the required performance at detector. Two distribution models, which can adequately characterise the terrain fading effects on empirical data are considered for performance comparison. The results are useful in selecting branches, with low variability and optimal hop count for connectivity, in multi-stream switched diversity combining systems.

  3. Improved Approximations for Guarding 1.5-Dimensional Terrains

    CERN Document Server

    Elbassioni, K; Mestre, J; Severdija, D

    2008-01-01

    We present a 4-approximation algorithm for the problem of placing a fewest guards on a 1.5D terrain so that every point of the terrain is seen by at least one guard. This improves on the currently best approximation factor of 5. Our method is based on rounding the linear programming relaxation of the corresponding covering problem. Besides the simplicity of the analysis, which mainly relies on decomposing the constraint matrix of the LP into totally balanced matrices, our algorithm, unlike previous work, generalizes to the weighted and partial versions of the basic problem.

  4. Modeling vehicle emissions in different types of Chinese cities: Importance of vehicle fleet and local features

    International Nuclear Information System (INIS)

    We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control. - Highlights: → We examine vehicle emissions in 22 Chinese cities of different types and locations. → Vehicle emission factors of the cities differ by 50-90% due to distinct local features. → Each vehicle type contributes differently to total emissions among the cities. → A substantial increase in vehicle emissions in most Chinese cities is foreseeable. → City-specific fleet and local features are important in research and policy making. - Vehicle emission characteristics of Chinese cities are remarkably different, and local features need to be taken into account in vehicle emission studies and control strategy.

  5. Simulation platform of navigation system for autonomous underwater vehicle

    Institute of Scientific and Technical Information of China (English)

    QIN Zheng; BIAN Xin-qian

    2006-01-01

    In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net communication and the information flow are discussed. The methods of software realization and some key techniques of the Vehicle Computer and the Navigation Equipment Computer are introduced in particular. The software design of Terrain Matching Computer is introduced also. The simulation platform is verified and analyzed through simulation. The results show that the architecture of the platform is reasonable and reliable, and the mathematic models and simulation algorithms of sub-systems are also valid and practicable.

  6. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  7. Evaluation of laser range-finder mapping for agricultural spraying vehicles

    OpenAIRE

    Moreno, Francisco-Angel; Cielniak, Grzegorz; Duckett, Tom

    2013-01-01

    In this paper, we present a new application of laser range-finder sensing to agricultural spraying vehicles. The current generation of spraying vehicles use automatic controllers to maintain the height of the sprayer booms above the crop. However, these control systems are typically based on ultrasonic sensors mounted on the booms, which limits the accuracy of the measurements and the response of the controller to changes in the terrain, resulting in a sub-optimal spraying process. To overcom...

  8. Cosmeceutical vehicles.

    Science.gov (United States)

    Epstein, Howard

    2009-01-01

    Consumers will pay a premium for high-performance skin and hair care products. The demand exists, and in return for the high cost, consumers expect the product to perform as claimed and to meet aesthetic standards beyond many products found in the mass market. To be successful in this highly competitive market, products must function as claimed or consumers will not repurchase. Effective contemporary high-end products must be properly formulated in nonirritating vehicles that consumers will perceive as elegant. PMID:19695476

  9. 5轴底盘油气悬架及转向系统仿真平台开发%Development of Multidisciplinary Co-simulation Platform for Five Axles' All-terrain Crane with Hydro-pneumatic Suspension and Electro-hydraulic Steering System

    Institute of Scientific and Technical Information of China (English)

    覃刚; 张云清

    2011-01-01

    分别利用多体仿真软件ADAMS、流体仿真软件AMESim和数学软件Matlab各自的优点,开发了5轴全路面起重机底盘油气悬架及电液辅助转向系统多学科联合仿真平台。本平台具有参数化自动建模和电液、机械系统的联合仿真功能,应用此联合仿真平台可缩短产品研制周期、降低研制风险、提高设计效益,并为产品性能数据的积累提供软件平台。%The traditional simulation software can only be used in a single physical domain which is not convenient for engineering simulation that usually contains more than one physical domain. We developed a multidisciplinary co-simulation platform for the hydro-pneumatic suspension (HPS) and electro-hydraulic steering system on all-ter- rain crane(ATC) using multi-body simulation software ADAMS, hydraulic simulation software AMESim and math- ematic software Matlab. We can easily study the performance of the suspension system and the control scheme of multi-axle steering system of crane on this platform. Using this platform can shorten the R & D time, reduce the risk of development and improve the design efficiency.

  10. Close-Range Sensing Techniques in Alpine Terrain

    Science.gov (United States)

    Rutzinger, M.; Höfle, B.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Sailer, R.; Scaioni, M.; Stötter, J.; Wujanz, D.

    2016-06-01

    Early career researchers such as PhD students are a main driving force of scientific research and are for a large part responsible for research innovation. They work on specialized topics within focused research groups that have a limited number of members, but might also have limited capacity in terms of lab equipment. This poses a serious challenge for educating such students as it is difficult to group a sufficient number of them to enable efficient knowledge transfer. To overcome this problem, the Innsbruck Summer School of Alpine Research 2015 on close-range sensing techniques in Alpine terrain was organized in Obergurgl, Austria, by an international team from several universities and research centres. Of the applicants a group of 40 early career researchers were selected with interest in about ten types of specialized surveying tools, i.e. laser scanners, a remotely piloted aircraft system, a thermal camera, a backpack mobile mapping system and different grade photogrammetric equipment. During the one-week summer school, students were grouped according to their personal preference to work with one such type of equipment under guidance of an expert lecturer. All students were required to capture and process field data on a mountain-related theme like landslides or rock glaciers. The work on the assignments lasted the whole week but was interspersed with lectures on selected topics by invited experts. The final task of the summer school participants was to present and defend their results to their peers, lecturers and other colleagues in a symposium-like setting. Here we present the framework and content of this summer school which brought together scientists from close-range sensing and environmental and geosciences.

  11. UNMANNED AERIAL VEHICLES IMAGERY FOR MONITORING INTRUDER IN A (DENSE TERRAIN WAR ZONE

    Directory of Open Access Journals (Sweden)

    K. Suresh Kumar

    2010-09-01

    Full Text Available This paper presents the practicality of using embedding devices to autonomously fly a remote controlled helicopter which can be used in Defence. The goal of the paper is to maintain a stable hover using cheap embedding devices when used on an inexpensive small helicopter. We discuss various design decisions and challenges concerning hardware, software, and image processing algorithms. The problem of unmanned flight proved more difficult than expected, but the paper served well as a proof-of-concept that truly autonomous flight could be obtained using mounted Camera and embedded devices. Through the use of mounted sensors, the embedded device responds to the environment and corrects its flight in real time. Development of a suitable lightweight system in which a sensor is airborne for carrying out surveillance by GSM (Mobile communication. The sensor should remain airborne for a minimum of 2 minutes at a minimum height of 30 meter and above to do imaging of a proportionate area below.Recognizable real time video information should be transmitted to the ground receiver point suitably located in the observation area. Sensor should be able to detect man-sized objects in above-mentioned conditions. Proposed solution should take up design of configuration and identification of suitable options for sensor, data link, groundobservation & control points and other support system(s. System configuration details comprising of sensor, data link, observation, data processing mechanism and support system should form part of the design.

  12. Sloped terrain segmentation for autonomous drive using sparse 3D point cloud.

    Science.gov (United States)

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Jeong, Young-Sik; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204

  13. Mobility and dynamics modeling for unmanned ground vehicle motion planning

    Science.gov (United States)

    Witus, Gary

    1999-07-01

    This paper presents an approach to modeling unmanned ground vehicle (UGV) mobility performance and vehicle dynamics for evaluating the feasibility and cost of alternative motion plans. Feasibility constraints include power, traction, and roll stability limits. Sensor stabilization performance is considered in a system-level constraint requiring that the obstacle detection distance exceed the stopping distance. Mission time and power requirements are inputs to a multi- attribute cost function for planning under uncertainty. The modeling approach combines a theoretical first-principles mathematical model with an empirical knowledge-based model. The first-principles model predicts performance in an idealized deterministic environment. On-board vehicle dynamics control, for dynamic load balancing and traction management, legitimize some of the simplifying assumptions. The knowledge- based model uses historical relationships to predict the mean and variance of total system performance accounting for the contributions of unplanned reactive behaviors, local terrain variations, and vehicle response transients.

  14. Vehicle License Plate Recognition Syst

    Directory of Open Access Journals (Sweden)

    Meenakshi,R. B. Dubey

    2012-12-01

    Full Text Available The vehicle license plate recognition system has greater efficiency for vehicle monitoring in automatic zone access control. This Plate recognition system will avoid special tags, since all vehicles possess a unique registration number plate. A number of techniques have been used for car plate characters recognition. This system uses neural network character recognition and pattern matching of characters as two character recognition techniques. In this approach multilayer feed-forward back-propagation algorithm is used. The performance of the proposed algorithm has been tested on several car plates and provides very satisfactory results.

  15. TWO WHEELER VEHICLE SECURITY SYSTEM

    OpenAIRE

    Prashantkumar R.; Sagar V. C.; Santosh S.; Siddharth Nambiar

    2013-01-01

    Vehicle security system has been a topic of great interest over the years due to the increasing vehicle theft cases reported all over the world. Most of the advanced vehicle security systems best suit the four wheelers. As of the security system for two wheelers is concerned, the systems available in market are of no match to the well equipped thieves. When under attack, these systems can only immobilize the engine and sound a loud alarm. It is a serious limitation. In this paper we propose a...

  16. Vehicle License Plate Recognition System

    Directory of Open Access Journals (Sweden)

    Meenakshi

    2012-12-01

    Full Text Available The vehicle license plate recognition system has greater efficiency for vehicle monitoring in automatic zone access control. This Plate recognition system will avoid special tags, since all vehicles possess a unique registration number plate. A number of techniques have been used for car plate characters recognition. This system uses neural network character recognition and pattern matching of characters as two character recognition techniques. In this approach multilayer feed-forward back-propagation algorithm is used. The performance of the proposed algorithm has been tested on several car plates and provides very satisfactory results.

  17. The Falcon I Launch Vehicle

    OpenAIRE

    Koenigsmann, Hans; Musk, Elon; Shotwell, Gwynne; Chinnery, Anne

    2004-01-01

    Falcon I is the first in a family of launch vehicles designed by Space Exploration Technologies to facilitate low cost access to space. Falcon I is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon I can carry over 1000 lbs to sun-synchronous orbit and 1500 lbs due east to 100 NM. To minimize failure modes, the...

  18. A new vehicle detection method

    Directory of Open Access Journals (Sweden)

    Zebbara Khalid

    2011-09-01

    Full Text Available This paper presents a new vehicle detection method from images acquired by cameras embedded in a moving vehicle. Given the sequence of images, the proposed algorithms should detect out all cars in realtime. Related to the driving direction, the cars can be classified into two types. Cars drive in the same direction as the intelligent vehicle (IV and cars drive in the opposite direction. Due to the distinct features of these two types, we suggest to achieve this method in two main steps. The first one detects all obstacles from images using the so-called association combined with corner detector. The second step is applied to validate each vehicle using AdaBoost classifier. The new method has been applied to different images data and the experimental results validate the efficacy of our method.

  19. Interactive Editing of GigaSample Terrain Fields

    KAUST Repository

    Treib, Marc

    2012-05-01

    Previous terrain rendering approaches have addressed the aspect of data compression and fast decoding for rendering, but applications where the terrain is repeatedly modified and needs to be buffered on disk have not been considered so far. Such applications require both decoding and encoding to be faster than disk transfer. We present a novel approach for editing gigasample terrain fields at interactive rates and high quality. To achieve high decoding and encoding throughput, we employ a compression scheme for height and pixel maps based on a sparse wavelet representation. On recent GPUs it can encode and decode up to 270 and 730 MPix/s of color data, respectively, at compression rates and quality superior to JPEG, and it achieves more than twice these rates for lossless height field compression. The construction and rendering of a height field triangulation is avoided by using GPU ray-casting directly on the regular grid underlying the compression scheme. We show the efficiency of our method for interactive editing and continuous level-of-detail rendering of terrain fields comprised of several hundreds of gigasamples. © 2012 The Author(s).

  20. The retrieval of land surface albedo in rugged terrain

    NARCIS (Netherlands)

    Gao, B.; Jia, L.; Menenti, M.

    2012-01-01

    Land surface albedo may be derived from the satellite data through the estimation of a bidirectional reflectance distribution function (BRDF) model and angular integration. However many BRDF models do not consider explicitly the topography. In rugged terrain, the topography influences the observed s