Sample records for alkynes

  1. Cyclic polymers from alkynes (United States)

    Roland, Christopher D.; Li, Hong; Abboud, Khalil A.; Wagener, Kenneth B.; Veige, Adam S.


    Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer.

  2. Asymmetric Total Synthesis of Soraphen A: a Flexible Alkyne Strategy**


    Trost, Barry M.; Sieber, Joshua D.; Qian, Wei; Dhawan, Rajiv; Ball, Zachary T.


    The alkyne functional group can be a valuable handle for organic synthesis since the alkyne can function both as a nucleophile or as an electrophile when activated with an appropriate metal catalyst. Herein, we exploit this dual nature of the alkyne moiety for the concise total synthesis of the natural product soraphen A.

  3. Reactions of strained hydrocarbons with alkene and alkyne metathesis catalysts. (United States)

    Carnes, Matthew; Buccella, Daniela; Siegrist, Theo; Steigerwald, Michael L; Nuckolls, Colin


    Here we describe the metathesis reactions of a strained eight-membered ring that contains both alkene and alkyne functionality. We find that the alkyne metathesis catalyst produces polymer through a ring-opening alkyne metathesis reaction that is driven by the strain release from the monomer. The strained monomer provides unusual reactivity with ruthenium-based alkene metathesis catalysts. We isolate a discrete trimeric species a Dewar benzene derivative that is locked in this form through an unsaturated cyclophane strap. PMID:18826219

  4. Alkenylation of Arenes and Heteroarenes with Alkynes. (United States)

    Boyarskiy, Vadim P; Ryabukhin, Dmitry S; Bokach, Nadezhda A; Vasilyev, Aleksander V


    This review is focused on the analysis of current data on new methods of alkenylation of arenes and heteroarenes with alkynes by transition metal catalyzed reactions, Bronsted/Lewis acid promoted transformations, and others. The synthetic potential, scope, limitations, and mechanistic problems of the alkenylation reactions are discussed. The insertion of an alkenyl group into aromatic and heteroaromatic rings by inter- or intramolecular ways provides a synthetic route to derivatives of styrene, stilbene, chalcone, cinnamic acid, various fused carbo- and heterocycles, etc. PMID:27111159

  5. Hydrostannation of activated alkynes mediated by Stryker's reagent


    Leung, LT; Chiu, P.


    The treatment of activated alkynes with catalytic amounts of Stryker's reagent and tributylstannane resulted in hydrostannation. The reaction proceeds with high regioselectivity to produce α-stannated vinylstannanes exclusively. ©2006 IUPAC.

  6. Palladium(0) alkyne complexes as active species: A DFT-investigation

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fabrizi, Giancarlo; Cacchi, Sandro; Norrby, Per-Ola

    Alkynes have been found to be excellent ligands for Pd(0); the stability of a range of alkyne-Pd(0) complexes, and their reactivity in oxidative addition, have been investigated by DFT methods.......Alkynes have been found to be excellent ligands for Pd(0); the stability of a range of alkyne-Pd(0) complexes, and their reactivity in oxidative addition, have been investigated by DFT methods....

  7. Azide- and alkyne-derivatised α-amino acids

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Pedersen, D.S.


    With the emergence of the copper-catalysed Huisgen cycloaddition the use of azide- and alkyne-derivatised α-amino acids has found widespread use within most chemistry disciplines. Despite a growing interest in these building blocks researchers are struggling to identify the best way for their...... synthesis. In this review we have compiled available methods for synthesising optically active azide- and alkyne-derivatised α-amino acids that can be prepared from readily available α-amino acids. We highlight a number of commonly overlooked problems associated with existing methods and direct attention to...... unexplored possibilities. Azide- and alkyne-derivatised α-amino acids are finding widespread use within most chemistry disciplines. However, it is far from clear what the best way for the synthesis of these useful building blocks is. Herein we show the available methods for synthesis of optically active...

  8. Well-defined (co)polypeptides bearing pendant alkyne groups

    KAUST Repository

    Zhao, Wei


    A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of acetylene-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups. This method provides an efficient way to synthesize novel alkyne-functionalized homopolypeptides (A) and copolypeptides, such as AB diblock (B: non-functionalized), ABA triblock and star-AB diblock, as well as linear and star random copolypeptides, precursors of a plethora complex macromolecular architectures by click chemistry.

  9. Silver-catalysed intramolecular hydroamination of alkynes with trichloroacetimidates. (United States)

    Wong, Valerie H L; Hor, T S Andy; Hii, King Kuok Mimi


    Silver(I) complexes catalyse the intramolecular addition of trichloroacetimidates to alkynes. In the absence of a ligand, the selectivity of the reaction is dependent upon the nature of the counter-anion and solvent. The introduction of non-chelating nitrogeneous ligands suppresses competitive Brønsted acid catalysis, improving the yield and selectivity of the reaction. PMID:23999555

  10. Regio- and stereoselective hydrosilylation of immobilized terminal alkynes

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Henriksen, Jonas; Gotfredsen, Charlotte Held;


    Regio- and stereoselective hydrosilylation of terminal alkynes on solid support using diisopropyl hydrosilanes yielding b-(E)-vinyl silanes with excellent selectivity is reported. The hydrosilylation is catalyzed by Pt(DVDS)/P(iBuNCH2CH2)3N (DVDS = 1,3-divinyl-1,1,3,3-tetramethyl-disiloxane), in ...

  11. A Hydration of an Alkyne Illustrating Steam and Vacuum Distillation. (United States)

    Wasacz, J. P.; Badding, V. G.


    Reports on the conversion 2,5-dimethylhexyne-2,5-diol(I) to 2,2,5,5-tetramethyltetrahydrofuran-3-one(II) using aqueous mercuric sulfate without the use of acid. The experiment has been successfully performed in introductory organic chemistry laboratories demonstrating alkyne hydration, steam distillation, vacuum distillation, drying of organic…

  12. Recent advances in carbocupration of α-heterosubstituted alkynes

    Directory of Open Access Journals (Sweden)

    Ahmad Basheer


    Full Text Available Carbocupration of α-heterosubstituted alkynes leads to the formation of stereodefined functionalized vinyl copper species as single isomer. Recent advances in the field show that a simple pre-association of the organometallic derivative with an additional polar functional group in the vicinity of the reaction center may completely change the stereochemical outcome of the reaction. Representative examples are given in this mini-review.

  13. An Exclusively trans-Selective Chlorocarbamoylation of Alkynes Enabled by a Palladium/Phosphaadamantane Catalyst. (United States)

    Le, Christine M; Hou, Xiao; Sperger, Theresa; Schoenebeck, Franziska; Lautens, Mark


    Pharmaceutically relevant methylene oxindoles are synthesized by a palladium(0)-catalyzed intramolecular chlorocarbamoylation reaction of alkynes. A relatively underexplored class of caged phosphine ligands is uniquely suited for this transformation, enabling high levels of reactivity and exquisite trans selectivity. This report entails the first transition-metal-catalyzed atom-economic addition of a carbamoyl chloride across an alkyne. PMID:26585593

  14. Zirconoarylation of alkynes through p-chloranil-promoted reductive elimination of arylzirconates


    Xiaoyu Yan; Chao Chen; Chanjuan Xi


    A novel method for the zirconoarylation of alkynes was developed. TCQ-promoted reductive elimination of arylzirconate [LiCp2ZrAr(RC≡CR)], which was prepared by the reaction of zirconocene–alkyne complexes with aryllithium compounds, afforded trisubstituted alkenylzirconocenes. This reaction can afford multi-substituted olefins with high stereoselectivity.

  15. Zirconoarylation of alkynes through p-chloranil-promoted reductive elimination of arylzirconates


    Yan, Xiaoyu; Chen, Chao; Xi, Chanjuan


    A novel method for the zirconoarylation of alkynes was developed. TCQ-promoted reductive elimination of arylzirconate [LiCp2ZrAr(RC≡CR)], which was prepared by the reaction of zirconocene–alkyne complexes with aryllithium compounds, afforded trisubstituted alkenylzirconocenes. This reaction can afford multi-substituted olefins with high stereoselectivity.

  16. Palladium-Catalyzed Intermolecular Aerobic Annulation of o-Alkenylanilines and Alkynes for Quinoline Synthesis. (United States)

    Zheng, Jia; Li, Zun; Huang, Liangbin; Wu, Wanqing; Li, Jianxiao; Jiang, Huanfeng


    A new approach to construct 2,3-disubstituted quinolines is described via Pd-catalyzed oxidative cyclization of o-vinylanilines and alkynes with molecular oxygen. This transformation is supposed to undergo intermolecular amination of alkyne, insertion of the olefin, and oxidative cleavage of C-C bond sequence. PMID:27418021

  17. Synthesis of functionalized polyesters by the "click" copper-catalyzed alkyne-azide cycloaddition


    Lecomte, Philippe; Riva, Raphaël; Jérôme, Christine


    The functionalization of aliphatic polyesters by the copper-mediated azide–alkyne Huisgen’s cycloaddition is very efficient under mild conditions, which prevents degradation from occurring. The implementation of this reaction requires the synthesis of aliphatic polyesters bearing pendant alkynes and azides, which can be carried out either by polycondensation or by ring-opening polymerization.

  18. Rhodium-Catalyzed Linear Codimerization and Cycloaddition of Ketenes with Alkynes


    Teruyuki Kondo; Masatsugu Niimi; Yuki Yoshida; Kenji Wada; Take-aki Mitsudo; Yu Kimura; Akio Toshimitsu


    A novel rhodium-catalyzed linear codimerization of alkyl phenyl ketenes with internal alkynes to dienones and a novel synthesis of furans by an unusual cycloaddition of diaryl ketenes with internal alkynes have been developed. These reactions proceed smoothly with the same rhodium catalyst, RhCl(PPh3)3, and are highly dependent on the structure and reactivity of the starting ketenes.

  19. Copper-catalyzed electrophilic carbofunctionalization of alkynes to highly functionalized tetrasubstituted alkenes. (United States)

    Suero, Marcos G; Bayle, Elliott D; Collins, Beatrice S L; Gaunt, Matthew J


    Copper catalysts enable the electrophilic carbofunctionalization of alkynes with vinyl- and diaryliodonium triflates. The new process forms highly substituted alkenyl triflates from a range of alkynes via a pathway that is opposite to classical carbometalation. The alkenyl triflate products can be elaborated through cross-coupling reactions to generate synthetically useful tetrasubstituted alkenes. PMID:23521626

  20. Metal-Free on-Surface Photochemical Homocoupling of Terminal Alkynes. (United States)

    Colazzo, Luciano; Sedona, Francesco; Moretto, Alessandro; Casarin, Maurizio; Sambi, Mauro


    On-surface synthesis involving the homocoupling of aryl-alkynes affords the buildup of bisacetylene derivatives directly at surfaces, which in turn may be further used as ingredients for the production of novel functional materials. Generally, homocoupling of terminal alkynes takes place by thermal activation of molecular precursors on metal surfaces. However, the interaction of alkynes with surface metal atoms often induces unwanted reaction pathways when thermal energy is provided to the system. In this contribution we report about light-induced metal-free homocoupling of terminal alkynes on highly oriented pyrolitic graphite (HOPG). The reaction occurred with high efficiency and selectivity within a self-assembled monolayer (SAM) of aryl-alkynes and led to the generation of large domains of ordered butadiynyl derivatives. Such a photochemical uncatalyzed pathway represents an original approach in the field of topological C-C coupling at the solid/liquid interface. PMID:27437555

  1. The spontaneous formation of single-molecule junctions via terminal alkynes (United States)

    Pla-Vilanova, Pepita; Aragonès, Albert C.; Ciampi, Simone; Sanz, Fausto; Darwish, Nadim; Diez-Perez, Ismael


    Herein, we report the spontaneous formation of single-molecule junctions via terminal alkyne contact groups. Self-assembled monolayers that form spontaneously from diluted solutions of 1, 4-diethynylbenzene (DEB) were used to build single-molecule contacts and assessed using the scanning tunneling microscopy-break junction technique (STM-BJ). The STM-BJ technique in both its dynamic and static approaches was used to characterize the lifetime (stability) and the conductivity of a single-DEB wire. It is demonstrated that single-molecule junctions form spontaneously with terminal alkynes and require no electrochemical control or chemical deprotonation. The alkyne anchoring group was compared against typical contact groups exploited in single-molecule studies, i.e. amine (benzenediamine) and thiol (benzendithiol) contact groups. The alkyne contact showed a conductance magnitude comparable to that observed with amine and thiol groups. The lifetime of the junctions formed from alkynes were only slightly less than that of thiols and greater than that observed for amines. These findings are important as (a) they extend the repertoire of chemical contacts used in single-molecule measurements to 1-alkynes, which are synthetically accessible and stable and (b) alkynes have a remarkable affinity toward silicon surfaces, hence opening the door for the study of single-molecule transport on a semiconducting electronic platform.

  2. Versatility of Alkyne-Modified Poly(Glycidyl Methacrylate) Layers for Click Reactions

    International Nuclear Information System (INIS)

    Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for 'click' chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP). The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using 'click' chemistry, and grafting densities in the range of 0.007-0.95 chains nm-2 were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm-3. The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.

  3. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes. (United States)

    Koschker, Philipp; Breit, Bernhard


    We present a new and efficient strategy for the atom-economic transformation of both alkynes and allenes to allylic functionalized structures via a Rh-catalyzed isomerization/addition reaction which has been developed in our working group. Our methodology thus grants access to an important structural class valued in modern organic chemistry for both its versatility for further functionalization and the potential for asymmetric synthesis with the construction of a new stereogenic center. This new methodology, inspired by mechanistic investigations by Werner in the late 1980s and based on preliminary work by Yamamoto and Trost, offers an attractive alternative to other established methods for allylic functionalization such as allylic substitution or allylic oxidation. The main advantage of our methodology consists of the inherent atom economy in comparison to allylic oxidation or substitution, which both produce stoichiometric amounts of waste and, in case of the substitution reaction, require prefunctionalization of the starting material. Starting out with the discovery of a highly branched-selective coupling reaction of carboxylic acids with terminal alkynes using a Rh(I)/DPEphos complex as the catalyst system, over the past 5 years we were able to continuously expand upon this chemistry, introducing various (pro)nucleophiles for the selective C-O, C-S, C-N, and C-C functionalization of both alkynes and the double-bond isomeric allenes by choosing the appropriate rhodium/bidentate phosphine catalyst. Thus, valuable compounds such as branched allylic ethers, sulfones, amines, or γ,δ-unsaturated ketones were successfully synthesized in high yields and with a broad substrate scope. Beyond the branched selectivity inherent to rhodium, many of the presented methodologies display additional degrees of selectivity in regard to regio-, diastereo-, and enantioselective transformations, with one example even proceeding via a dynamic kinetic resolution. Many advances

  4. Investigation of alkyne regioselectivity in the ni-catalyzed benzannulation of cyclobutenones. (United States)

    Stalling, Timo; Harker, Wesley R R; Auvinet, Anne-Laure; Cornel, Erik J; Harrity, Joseph P A


    A Ni-catalyzed benzannulation reaction of cyclobutenones and alkynes provides a rapid synthesis of heavily substituted phenols. The regioselectivity of this reaction can be modulated by variation of substituents on the alkyne. Though the incorporation of Lewis basic donors provides modest selectivities, the use of aryl substituents can provide high levels of regiocontrol. Finally, alkynylboronates derived from alkyl-substituted acetylenes provide both high yields and regioselectivities. This study suggests that alkynes bearing one sp(2) - and one sp(3) -based substituent can undergo benzannulation with high levels of regiocontrol whereby the sp(3) -based group is incorporated ortho-to the phenolic OH. PMID:25491134

  5. π Activation of Alkynes in Homogeneous and Heterogeneous Gold Catalysis. (United States)

    Bistoni, Giovanni; Belanzoni, Paola; Belpassi, Leonardo; Tarantelli, Francesco


    The activation of alkynes toward nucleophilic attack upon coordination to gold-based catalysts (neutral and positively charged gold clusters and gold complexes commonly used in homogeneous catalysis) is investigated to elucidate the role of the σ donation and π back-donation components of the Au-C bond (where we consider ethyne as prototype substrate). Charge displacement (CD) analysis is used to obtain a well-defined measure of σ donation and π back-donation and to find out how the corresponding charge flows affect the electron density at the electrophilic carbon undergoing the nucleophilic attack. This information is used to rationalize the activity of a series of catalysts in the nucleophilic attack step of a model hydroamination reaction. For the first time, the components of the Dewar-Chatt-Duncanson model, donation and back-donation, are put in quantitative correlation with the kinetic parameters of a chemical reaction. PMID:27119994

  6. Cobalt-Catalyzed Annulation of Salicylaldehydes and Alkynes to Form Chromones and 4-Chromanones. (United States)

    Yang, Junfeng; Yoshikai, Naohiko


    A unique cobalt(I)-diphosphine catalytic system has been identified for the coupling of salicylaldehyde (SA) and an internal alkyne affording a dehydrogenative annulation product (chromone) or a reductive annulation product (4-chromanone) depending on the alkyne substituents. Distinct from related rhodium(I)- and rhodium(III)-catalyzed reactions of SA and alkynes, these annulation reactions feature aldehyde C-H oxidative addition of SA and subsequent hydrometalation of the C=O bond of another SA molecule as common key steps. The reductive annulation to 4-chromanones also involves the action of Zn as a stoichiometric reductant. In addition to these mechanistic features, the Co(I) catalysis described herein is complementary to the Rh(I) - and Rh(III) -catalyzed reactions of SA and internal alkynes, particularly in the context of chromone synthesis. PMID:26804050

  7. Nickel-catalyzed reductive arylation of activated alkynes with aryl iodides (United States)

    Dorn, Stephanie C. M.; Olsen, Andrew K; Kelemen, Rachel E.; Shrestha, Ruja; Weix, Daniel J.


    The direct, regioselective, and stereoselective arylation of activated alkynes with aryl iodides using a nickel catalyst and manganese reductant is described. The reaction conditions are mild (40 °C in MeOH, no acid or base) and an intermediate organomanganese reagent is unlikely. Functional groups tolerated include halides and pseudohalides, free and protected anilines, and a benzyl alcohol. Other activated alkynes including an amide and a ketone also reacted to form arylated products in good yields. PMID:26028781

  8. Versatility of Alkyne-Modified Poly(Glycidyl Methacrylate) Layers for Click Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Cantu, Dr. Erick [University of Tennessee, Knoxville (UTK); Lokitz, Bradley S [ORNL; Hinestrosa Salazar, Juan Pablo [Clemson University; Deodhar, Chaitra [University of Tennessee, Knoxville (UTK); Messman, Jamie M [ORNL; Ankner, John Francis [ORNL; Kilbey, II, S Michael [ORNL


    Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for 'click' chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP). The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using 'click' chemistry, and grafting densities in the range of 0.007-0.95 chains nm{sup -2} were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm{sup -3}. The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.

  9. Scope and limitations of the dual-gold-catalysed hydrophenoxylation of alkynes (United States)

    Gómez-Suárez, Adrián; Oonishi, Yoshihiro; Martin, Anthony R


    Summary Due to the synthetic advantages presented by the dual-gold-catalysed hydrophenoxylation of alkynes, a thorough study of this reaction was carried out in order to fully define the scope and limitations of the methodology. The protocol tolerates a wide range of functional groups, such as nitriles, ketones, esters, aldehydes, ketals, naphthyls, allyls or polyphenols, in a milder and more efficient manner than the previously reported methodologies. We have also identified that while we are able to use highly steric hindered phenols, small changes on the steric bulk of the alkynes have a dramatic effect on the reactivity. More importantly, we have observed that the use of substrates that facilitate the formation of diaurated species such as gem-diaurated or σ,π-digold–acetylide species, hinder the catalytic activity. Moreover, we have identified that the use of directing groups in unsymmetrical alkynes can help to achieve high regioselectivity in the hydrophenoxylation. PMID:26977176

  10. Coupling of terminal alkynes and isonitriles by organo-actinide complexes: Scope and mechanistic insights

    International Nuclear Information System (INIS)

    The coupling reaction of terminal alkynes with several isonitriles, catalyzed by the neutral organo-actinide complexes Cp*2AnMe2 (Cp* = C5Me5, An = Th, U) or the cationic complex [(Et2N)3U][BPh4], yielded substituted α, β-acetylenic aldimines, in good to excellent yields. The reaction proceeded via a 1,1-insertion of the isonitrile carbon into a metal-acetylide bond, followed by a protonolysis by the acidic proton of the terminal alkyne. Additional insertion products were obtained by altering the catalyst and the reactant ratios. A plausible mechanism for the catalytic reaction is also presented, based on kinetics measurements and thermodynamic studies of the coupling reaction with Cp*2ThMe2 or [(Et2N)3U][BPh4] as catalysts. The reaction is first-order in catalyst and isonitrile and zero-order in alkyne. (authors)

  11. Copper-Catalyzed Eglinton Oxidative Homocoupling of Terminal Alkynes: A Computational Study

    Directory of Open Access Journals (Sweden)

    Jesús Jover


    Full Text Available The copper(II acetate mediated oxidative homocoupling of terminal alkynes, namely, the Eglinton coupling, has been studied with DFT methods. The mechanism of the whole reaction has been modeled using phenylacetylene as substrate. The obtained results indicate that, in contrast to some classical proposals, the reaction does not involve the formation of free alkynyl radicals and proceeds by the dimerization of copper(II alkynyl complexes followed by a bimetallic reductive elimination. The calculations demonstrate that the rate limiting-step of the reaction is the alkyne deprotonation and that more acidic substrates provide faster reactions, in agreement with the experimental observations.

  12. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds (United States)

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  13. Mild copper-catalyzed trifluoromethylation of terminal alkynes using an electrophilic trifluoromethylating reagent

    KAUST Repository

    Weng, Zhiqiang


    A catalytic process for trifluoromethylation of terminal alkynes with Togni\\'s reagent has been developed, affording trifluoromethylated acetylenes in good to excellent yields. The reaction is conducted at room temperature and exhibits tolerance to a range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  14. Biocompatible Azide-Alkyne "Click" Reactions for Surface Decoration of Glyco-Engineered Cells. (United States)

    Gutmann, Marcus; Memmel, Elisabeth; Braun, Alexandra C; Seibel, Jürgen; Meinel, Lorenz; Lühmann, Tessa


    Bio-orthogonal copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) has been widely used to modify azide- or alkyne-bearing monosaccharides on metabolic glyco-engineered mammalian cells. Here, we present a systematic study to elucidate the design space for the cytotoxic effects of the copper catalyst on NIH 3T3 fibroblasts and on HEK 293-F cells. Monitoring membrane integrity by flow cytometry and RT-PCR analysis with apoptotic and anti-apoptotic markers elucidated the general feasibility of CuAAC, with exposure time of the CuAAC reaction mixture having the major influence on biocompatibility. A high labeling efficiency of HEK 293-F cells with a fluorescent alkyne dye was rapidly achieved by CuAAC in comparison to copper free strain-promoted azide-alkyne cycloaddition (SPAAC). The study details effective and biocompatible conditions for CuAAC-based modification of glyco-engineered cells in comparison to its copper free alternative. PMID:26818821

  15. Stereoselective synthesis of 2,3-disubstituted dihydrobenzofuran using alkyne Prins type cyclization to vinylogous carbonates

    Indian Academy of Sciences (India)

    Santosh J Gharpure; V Prasath


    An intramolecular, alkyne Prins type cyclization of vinylogous carbonates derived from -alkynyl phenols is developed for the stereoselective construction of trans-2,3-disubstituted dihydrobenzofuran derivatives. Strong Lewis acids like TMSOTf catalyse this reaction efficiently. The presence of mildly electron donating groups on aryl rings increases the efficiency of the reaction.

  16. Copper on Chitosan: A Recyclable Heterogeneous Catalyst for Azide-alkyne Cycloaddition Reactions in Water (United States)

    Copper sulfate is immobilized over chitosan by simply stirring an aqueous suspension of chitosan in water with copper sulfate; the ensuing catalyst has been utilized for the azide-alkyne cycloaddition in aqueous media and it can be recycled and reused many time without loosing it...

  17. Pd-Catalyzed Z-Selective Semihydrogenation of Alkynes : Determining the Type of Active Species

    NARCIS (Netherlands)

    Drost, Ruben M.; Rosar, Vera; Marta, Silvia Dalla; Lutz, Martin; Demitri, Nicola; Milani, Barbara; De Bruin, Bas; Elsevier, Cornelis J.


    A protocol was developed to distinguish between well-defined molecular and nanoparticle-based catalysts for the Pd-catalyzed semihydrogenation reaction of alkynes to Z-alkenes. The protocol applies quantitative partial poisoning and dynamic light scattering methods, which allow the institution of ad

  18. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. (United States)

    Zhu, Lei; Brassard, Christopher J; Zhang, Xiaoguang; Guha, P M; Clark, Ronald J


    The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction regiospecifically produces 1,4-disubstituted-1,2,3-triazole molecules. This heterocycle formation chemistry has high tolerance to reaction conditions and substrate structures. Therefore, it has been practiced not only within, but also far beyond the area of heterocyclic chemistry. Herein, the mechanistic understanding of CuAAC is summarized, with a particular emphasis on the significance of copper/azide interactions. Our analysis concludes that the formation of the azide/copper(I) acetylide complex in the early stage of the reaction dictates the reaction rate. The subsequent triazole ring-formation step is fast and consequently possibly kinetically invisible. Therefore, structures of substrates and copper catalysts, as well as other reaction variables that are conducive to the formation of the copper/alkyne/azide ternary complex predisposed for cycloaddition would result in highly efficient CuAAC reactions. Specifically, terminal alkynes with relatively low pKa values and an inclination to engage in π-backbonding with copper(I), azides with ancillary copper-binding ligands (aka chelating azides), and copper catalysts that resist aggregation, balance redox activity with Lewis acidity, and allow for dinuclear cooperative catalysis are favored in CuAAC reactions. Brief discussions on the mechanistic aspects of internal alkyne-involved CuAAC reactions are also included, based on the relatively limited data that are available at this point. PMID:27216993

  19. Electrocatalytic activities of alkyne-functionalized copper nanoparticles in oxygen reduction in alkaline media (United States)

    Liu, Ke; Song, Yang; Chen, Shaowei


    Stable alkyne-capped copper nanoparticles were prepared by chemical reduction of copper acetate with sodium borohydride in the presence of alkyne ligands. Transmission electron microscopic measurements showed that nanoparticles were well dispersed with a diameter in the range of 4-6 nm. FTIR and photoluminescence spectroscopic measurements confirmed the successful attachment of the alkyne ligands onto the nanoparticle surface most likely forming Cu-Ctbnd interfacial bonds. XPS measurements indicated the formation of a small amount of CuO in the nanoparticles with a satellite peak where the binding energy red-shifted with increasing Cu(II) concentration. Cu2O was also detected in the nanoparticles. Similar results were observed with commercial CuO nanoparticles. Electrochemical studies showed that the as-prepared alkyne-capped copper nanoparticles exhibited apparent electrocatalytic activity in oxygen reduction in alkaline media, a performance that was markedly better than those reported earlier with poly- or single-crystalline copper electrodes; and the fraction of peroxides in the final products decreased with decreasing concentration of oxide components in the nanoparticles.

  20. The mechanism of the phosphine-free palladium-catalyzed hydroarylation of alkynes

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fabrizi, G.; Cacchi, S.;


    The mechanism of the Pd-catalyzed hydroarylation and hydrovinylation reaction of alkynes has been studied by a combination of experimental and theoretical methods (B3LYP), with an emphasis on the phosphine-free version. The regioselectivity of the hydroarylation and hydrovinylation shows unexpect...

  1. Vapor Phase Alkyne Coating of Pharmaceutical Excipients: Discrimination Enhancement of Raman Chemical Imaging for Tablets. (United States)

    Yamashita, Mayumi; Sasaki, Hiroaki; Moriyama, Kei


    Raman chemical imaging has become a powerful analytical tool to investigate the crystallographic characteristics of pharmaceutical ingredients in tablet. However, it is often difficult to discriminate some pharmaceutical excipients from each other by Raman spectrum because of broad and overlapping signals, limiting their detailed assessments. To overcome this difficulty, we developed a vapor phase coating method of excipients by an alkyne, which exhibits a distinctive Raman signal in the range of 2100-2300 cm(-1) . We found that the combination of two volatile reagents, propargyl bromide and triethylamine, formed a thin and nonvolatile coating on the excipient and observed the Raman signal of the alkyne at the surface. We prepared alkyne-coated cellulose by this method and formed a tablet. The Raman chemical imaging of the tablet cross-section using the alkyne peak area intensity of 2120 cm(-1) as the index showed a much clearer particle image of cellulose than using the peak area intensity of 1370 cm(-1) , which originated from the cellulose itself. Our method provides an innovative technique to analyze the solid-state characteristics of pharmaceutical excipients in tablets. PMID:26343262


    Directory of Open Access Journals (Sweden)

    D. Munirajasekhar


    Full Text Available Terminal alkynes undergo oxidative-coupling smoothly in the presence of the Cu(ICl catalytic system. The reaction gives 1,3-diynes in excellent yields under mild conditions. Structures of the all synthesized compounds were established based on TLC, FT-IR, 1H NMR, and MASS spectral data. All the synthesized compounds were examined for antibacterial activity.

  3. Pd-catalyzed three-component coupling of terminal alkynes, arynes, and vinyl cyclopropane dicarboxylate. (United States)

    Garve, Lennart K B; Werz, Daniel B


    A palladium-catalyzed three-component coupling involving in situ generated arynes, terminal alkynes, and vinyl cyclopropane dicarboxylate has been developed. The process demonstrates the first example of aryne chemistry combined with the ring opening of vinyl cyclopropanes. This efficient method using readily available starting materials generates two new carbon-carbon bonds in one pot. PMID:25625685

  4. Double hydrophosphination of alkynes promoted by rhodium: the key role of an N-heterocyclic carbene ligand. (United States)

    Di Giuseppe, Andrea; De Luca, Roberto; Castarlenas, Ricardo; Pérez-Torrente, Jesús J; Crucianelli, Marcello; Oro, Luis A


    The regioselective double hydrophosphination of alkynes mediated by rhodium catalysts is presented. The distinctive stereoelectronic properties of the NHC ligand prevent the catalyst deactivation by diphosphine coordination thereby allowing for the closing of a productive catalytic cycle. PMID:27022648

  5. Annulation of thioimidates and vinyl carbodiimides to prepare 2-aminopyrimidines, competent nucleophiles for intramolecular alkyne hydroamination. Synthesis of (-)-crambidine. (United States)

    Perl, Nicholas R; Ide, Nathan D; Prajapati, Sudeep; Perfect, Hahdi H; Durón, Sergio G; Gin, David Y


    A convergent synthesis of (-)-crambidine is reported. The sequence capitalizes on two novel key transformations, including a [4+2] annulation of thioimidates with vinyl carbodiimides and an alkyne hydroamination employing 2-aminopyrimidine nucleophiles. PMID:20095555

  6. Stereocontrolled Synthesis of Vinyl Boronates and Vinyl Silanes via Atom-Economical Ruthenium-Catalyzed Alkene-Alkyne Coupling. (United States)

    Trost, Barry M; Koester, Dennis C; Herron, Alastair N


    The synthesis of vinyl boronates and vinyl silanes was achieved by employing a Ru-catalyzed alkene-alkyne coupling reaction of allyl boronates or allyl silanes with various alkynes. The double bond geometry in the generated vinyl boronates can be remotely controlled by the juxtaposing boron- and silicon groups on the alkyne substrate. The synthetic utility of the coupling products has been demonstrated in a variety of synthetic transformations, including iterative cross-coupling reactions, and a Chan-Lam-type allyloxylation followed by a Claisen rearrangement. A sequential one-pot alkene-alkyne-coupling/allylation-sequence with an aldehyde to deliver a highly complex α-silyl-β-hydroxy olefin with a handle for further functionalization was also realized. PMID:26572804

  7. The different roles of a cationic gold(i) complex in catalysing hydroarylation of alkynes and alkenes with a heterocycle. (United States)

    Mehrabi, Tahmineh; Ariafard, Alireza


    The mechanism of twofold hydroarylation of terminal alkynes with pyrrole catalyzed by a cationic gold(i) complex was investigated using DFT. It was found that while both the hydroarylation reactions proceed via a Friedel-Crafts-type mechanism, the first hydroarylation is directly promoted by gold(i) but the second hydroarylation by a proton released through interaction of the alkene product with gold-bound acidic organic species such as acetic acid and terminal alkynes. PMID:27377712

  8. Lattice-Directed Formation of Covalent and Organometallic Molecular Wires by Terminal Alkynes on Ag Surfaces. (United States)

    Liu, Jing; Chen, Qiwei; Xiao, Lianghong; Shang, Jian; Zhou, Xiong; Zhang, Yajie; Wang, Yongfeng; Shao, Xiang; Li, Jianlong; Chen, Wei; Xu, Guo Qin; Tang, Hao; Zhao, Dahui; Wu, Kai


    Surface reactions of 2,5-diethynyl-1,4-bis(phenylethynyl)benzene on Ag(111), Ag(110), and Ag(100) were systematically explored and scrutinized by scanning tunneling microscopy, molecular mechanics simulations, and density functional theory calculations. On Ag(111), Glaser coupling reaction became dominant, yielding one-dimensional molecular wires formed by covalent bonds. On Ag(110) and Ag(100), however, the terminal alkynes reacted with surface metal atoms, leading to one-dimensional organometallic nanostructures. Detailed experimental and theoretical analyses revealed that such a lattice dependence of the terminal alkyne reaction at surfaces originated from the matching degree between the periodicities of the produced molecular wires and the substrate lattice structures. PMID:25990647

  9. Catalytic role of nickel in the decarbonylative addition of phthalimides to alkynes

    KAUST Repository

    Poater, Albert


    Density functional theory calculations have been used to investigate the catalytic role of nickel(0) in the decarbonylative addition of phthalimides to alkynes. According to Kurahashi et al. the plausible reaction mechanism involves a nucleophilic attack of nickel at an imide group, giving a six-membered metallacycle, followed by a decarbonylation and insertion of an alkyne leading to a seven-membered metallacycle. Finally a reductive elimination process produces the desired product and regenerates the nickel(0) catalyst. In this paper, we present a full description of the complete reaction pathway along with possible alternative pathways, which are predicted to display higher upper barriers. Our computational results substantially confirm the proposed mechanism, offering a detailed geometrical and energetical understanding of all the elementary steps. © 2013 American Chemical Society.

  10. "Click" Chemistry: Application of Copper Metal in Cu-Catalyzed Azomethine Imine-Alkyne Cycloadditions. (United States)

    Pušavec Kirar, Eva; Grošelj, Uroš; Mirri, Giorgio; Požgan, Franc; Strle, Gregor; Štefane, Bogdan; Jovanovski, Vasko; Svete, Jurij


    A series of 16 copper-catalyzed azomethine imine-alkyne cycloaddition (CuAIAC) reactions between four pyrazolidinone-1-azomethine imines and four terminal ynones gave the corresponding fluorescent cycloadducts as bimane analogues in very high yields. The applicability of CuAIAC was demonstrated by the fluorescent labeling of functionalized polystyrene and by using Cu-C and Cu-Fe as catalysts. Experimental evidence, kinetic measurements, and correlation between a clean catalyst surface and the reaction rate are in agreement with a homotopic catalytic system with catalytic Cu(I)-acetylide formed from Cu(0) by "in situ" oxidation. The availability of azomethine imines, mild reaction conditions, simple workup, and scalability make CuAIAC a viable supplement to the Cu-catalyzed azide-alkyne cycloaddition reaction in "click" chemistry. PMID:27305104

  11. Investigation of the Pyridinium Ylide—Alkyne Cycloaddition as a Fluorogenic Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Simon Bonte


    Full Text Available The cycloaddition of pyridinium ylides with alkynes was investigated under mild conditions. A series of 13 pyridinium salts was prepared by alkylation of 4-substituted pyridines. Their reactivity with propiolic ester or amide in various reaction conditions (different temperatures, solvents, added bases was studied, and 11 indolizines, with three points of structural variation, were, thus, isolated and characterized. The highest yields were obtained when electron-withdrawing groups were present on both the pyridinium ylide, generated in situ from the corresponding pyridinium salt, and the alkyne (X, Z = ester, amide, CN, carbonyl, etc.. Electron-withdrawing substituents, lowering the acid dissociation constant (pKa of the pyridinium salts, allow the cycloaddition to proceed at pH 7.5 in aqueous buffers at room temperature.

  12. Tunable Cascade Reactions of Alkynols with Alkynes under Combined Sc(OTf)3 and Rhodium Catalysis. (United States)

    Li, Deng Yuan; Chen, Hao Jie; Liu, Pei Nian


    Two tunable cascade reactions of alkynols and alkynes have been developed by combining Sc(OTf)3 and rhodium catalysis. In the absence of H2O, an endo-cycloisomerization/C-H activation cascade reaction provided 2,3-dihydronaphtho[1,2-b]furans in good to high yields. In the presence of H2O, the product of alkynol hydration underwent an addition/C-H activation cascade reaction with an alkyne, which led to the formation of 4,5-dihydro-3H-spiro[furan-2,1'-isochromene] derivatives in good yields under mild reaction conditions. Mechanistic studies of the cascade reactions indicated that the rate-determining step involves C-H bond cleavage and that the hydration of the alkynol plays a key role in switching between the two reaction pathways. PMID:26531133

  13. Postfunctionalization of Alkyne-Linked Conjugated Carbazole Polymer by Thermal Addition Reaction of Tetracyanoethylene

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujita


    Full Text Available The postfunctionalization of the main chain alkyne moieties of carbazole containing poly(arylenebutadiynylenes was attempted by using a high yielding addition reaction between electron rich alkynes and a strong acceptor molecule, tetracyanoethylene (TCNE. After successful postfunctionalization, the polymer band gap decreased due to the intramolecular donor-acceptor interactions. The resulting donor-acceptor alternating polymer showed a very broad charge-transfer band in the visible region as well as redox activities in both anodic and cathodic directions. The optical band gap showed good agreement with the electrochemical band gap. Furthermore, the thermal stability was enhanced after postfunctionalization. These features of the donor-acceptor alternating polymer are expected to be useful for high performance activities in organic solar cell applications.

  14. Further studies on hydration of alkynes by the PtCl4-CO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Israelsohn, Osnat; Vollhardt, K. Peter C.; Blum, Jochanan


    Under CO atmosphere, between 80 and 120 C, a glyme solution of PtCl{sub 4} forms a carbonyl compound that promotes hydration of internal as well as terminal alkynes to give aldehyde-free ketones. The catalytic process depends strongly on the electronic and steric nature of the substrates. Part of the carbonyl functions of the catalyst can be replaced by phosphine ligands. Chiral DIOP reacts with the PtCl{sub 4}-CO compound to give a catalyst that promotes partial kinetic resolution of a racemic alkyne. Replacement of part of the CO by polystyrene-bound diphenylphosphine enables to attach the catalyst to the polymeric support. Upon entrapment of the platinum compound in a silica sol-gel matrix, it reacts as a partially recyclable catalyst. A reformulated mechanism for the PdCl{sub 4}-CO catalyzed hydration is suggested on the basis of the present study.

  15. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics. (United States)

    Li, Shanshan; Zhu, He; Wang, Jiajia; Wang, Xiaomin; Li, Xu; Ma, Cheng; Wen, Liuqing; Yu, Bingchen; Wang, Yuehua; Li, Jing; Wang, Peng George


    O-linked β-N-acetylglucosamine (O-GlcNAc) is emerging as an essential protein post-translational modification in a range of organisms. It is involved in various cellular processes such as nutrient sensing, protein degradation, gene expression, and is associated with many human diseases. Despite its importance, identifying O-GlcNAcylated proteins is a major challenge in proteomics. Here, using peracetylated N-azidoacetylglucosamine (Ac4 GlcNAz) as a bioorthogonal chemical handle, we described a gel-based mass spectrometry method for the identification of proteins with O-GlcNAc modification in A549 cells. In addition, we made a labeling efficiency comparison between two modes of azide-alkyne bioorthogonal reactions in click chemistry: copper-catalyzed azide-alkyne cycloaddition (CuAAC) with Biotin-Diazo-Alkyne and stain-promoted azide-alkyne cycloaddition (SPAAC) with Biotin-DIBO-Alkyne. After conjugation with click chemistry in vitro and enrichment via streptavidin resin, proteins with O-GlcNAc modification were separated by SDS-PAGE and identified with mass spectrometry. Proteomics data analysis revealed that 229 putative O-GlcNAc modified proteins were identified with Biotin-Diazo-Alkyne conjugated sample and 188 proteins with Biotin-DIBO-Alkyne conjugated sample, among which 114 proteins were overlapping. Interestingly, 74 proteins identified from Biotin-Diazo-Alkyne conjugates and 46 verified proteins from Biotin-DIBO-Alkyne conjugates could be found in the O-GlcNAc modified proteins database dbOGAP ( These results suggested that CuAAC with Biotin-Diazo-Alkyne represented a more powerful method in proteomics with higher protein identification and better accuracy compared to SPAAC. The proteomics credibility was also confirmed by the molecular function and cell component gene ontology (GO). Together, the method we reported here combining metabolic labeling, click chemistry, affinity-based enrichment, SDS

  16. On Terminal Alkynes That Can React with Active-Site Cysteine Nucleophiles in Proteases


    Reggy Ekkebus; van Kasteren, Sander I.; Yogesh Kulathu; Arjen Scholten; Ilana Berlin; Geurink, Paul P; Annemieke de Jong; Soenita Goerdayal; Jacques Neefjes; Heck, Albert J.R.; David Komander; Huib Ovaa


    Active-site directed probes are powerful in studies of enzymatic function. We report an active-site directed probe based on a warhead so far considered unreactive. By replacing the C-terminal carboxylate of ubiquitin (Ub) with an alkyne functionality, a selective reaction with the active-site cysteine residue of de-ubiquitinating enzymes was observed. The resulting product was shown to be a quaternary vinyl thioether, as determined by X-ray crystallography. Proteomic analysis of proteins boun...

  17. Polymerization of aliphatic alkynes with heterogeneous Mo catalysts supported on mesoporous molecular sieves

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Topka, Pavel; Sedláček, J.; Zedník, J.; Čejka, Jiří


    Roč. 46, č. 7 (2008), s. 2593-2599. ISSN 0887-624X R&D Projects: GA ČR GA203/05/2194; GA AV ČR IAA4040411; GA AV ČR KAN100400701 Institutional research plan: CEZ:AV0Z40400503 Keywords : alkyne polymerization * conjugated polymers * metathesis * Mo heterogeneous catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.821, year: 2008

  18. An Alternative Approach to Aldol Reactions: Gold-Catalyzed Formation of Boron Enolates from Alkynes


    Korner, C; Starkov, P.; Sheppard, T. D.


    A new method for enolate generation via the gold-catalyzed addition of boronic acids to alkynes is reported. The formation of boron enolates from readily accessible ortho-alkynylbenzeneboronic acids proceeds rapidly with 2 mol % PPh3AuNTf2 at ambient temperature. The enolates undergo aldol reaction with an aldehyde present in the reaction mixture to give cyclic boronate esters, which can be subsequently transformed into phenols, biaryls, or dihydrobenzofurans via oxidation, Suzuki-Miyaura, or...

  19. Cyclization of Alkyne-Azide with Isonitrile/CO via Self-Relay Rhodium Catalysis. (United States)

    Zhang, Zhen; Xiao, Fan; Huang, Baoliang; Hu, Jincheng; Fu, Bin; Zhang, Zhenhua


    A self-relay rhodium(I)-catalyzed cyclization of alkyne-azides with two σ-donor/π-acceptor ligands (isonitriles and CO) to form sequentially multiple-fused heterocycle systems via tandem nitrene transformation and aza-Pauson-Khand cyclization has been developed. In this approach, an intriguing chemoselective insertion process of isonitriles superior to CO was observed. This reaction provides an alternative strategy to synthesize functionalized pyrrolo[2,3-b]indole scaffolds. PMID:26907671

  20. Novel Role of Carbon Dioxide as a Selective Agent in Palladium-Catalyzed Cyclotrimerization of Alkynes

    Institute of Scientific and Technical Information of China (English)

    李金恒; 谢叶香


    Carbon dioxide was found as a selective agent to promote the palladium-catalyzed cyclotrimerization of alkynes in water. Both aryl and alkylacetylenes afforded the corresponding cyclotrimerization products regioselectively in high yields using PdCl2, CuCl2, and CO2 as the catalytic system. However, tert-butylacetylene bearing a bulky group gave a dimerization product. Mechanism of this reaction was also discussed.

  1. Ru Catalyzed Alkene-Alkyne Coupling. Total Synthesis of Amphidinolide P


    Trost, Barry M.; Papillon, Julien P. N.; Nussbaumer, Thomas


    A coordinatively unsaturated ruthenium complex catalyzed the formation of a carbon-carbon bond between two judiciously chosen alkene and alkyne partners in good yield, and in a chemo- and regioselective fashion, in spite of the significant degree of unsaturation of the substrates. The resulting 1,4-diene forms the backbone of the cytotoxic marine natural product amphidinolide P. The alkene partner was rapidly assembled from (R)-glycidyl tosylate, which served as a linchpin in a one-flask, seq...

  2. A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization. (United States)

    Hofmann, Kristina; Thiele, Christoph; Schött, Hans-Frieder; Gaebler, Anne; Schoene, Mario; Kiver, Yuriy; Friedrichs, Silvia; Lütjohann, Dieter; Kuerschner, Lars


    Cholesterol is an important lipid of mammalian cells and plays a fundamental role in many biological processes. Its concentration in the various cellular membranes differs and is tightly regulated. Here, we present a novel alkyne cholesterol analog suitable for tracing both cholesterol metabolism and localization. This probe can be detected by click chemistry employing various reporter azides. Alkyne cholesterol is accepted by cellular enzymes from different biological species (Brevibacterium, yeast, rat, human) and these enzymes include cholesterol oxidases, hydroxylases, and acyl transferases that generate the expected metabolites in in vitro and in vivo assays. Using fluorescence microscopy, we studied the distribution of cholesterol at subcellular resolution, detecting the lipid in the Golgi and at the plasma membrane, but also in the endoplasmic reticulum and mitochondria. In summary, alkyne cholesterol represents a versatile, sensitive, and easy-to-use tool for tracking cellular cholesterol metabolism and localization as it allows for manifold detection methods including mass spectrometry, thin-layer chromatography/fluorography, and fluorescence microscopy. PMID:24334219

  3. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server


    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  4. In Quest of “Stereoselective Switch” for On-Water Hydrothiolation of Terminal Alkynes Using Different Additives and Green Synthesis of Vicinal Dithioethers


    Basudeb Basu; Kinkar Biswas; Samir Kundu; Debasish Sengupta


    On-water hydrothiolation reaction between terminal alkyne and thiol has been probed in the presence of various additives. Aromatic alkynes yield corresponding 1-alkenyl sulfides, whereas aliphatic alkynes undergo double-addition yielding vicinal disulfides in good to excellent yields. Formation of 1-alkenyl sulfides proceeds with a high degree of regioselectivity (via anti-Markovnikov addition), and switching the stereoselectivity between E/Z isomers has been noticeably realized in the presen...

  5. Silica-supported tungsten carbynes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; X = 2, y = 1): New efficient catalysts for alkyne cyclotrimerization

    KAUST Repository

    Riache, Nassima


    The activity of silica-supported tungsten carbyne complexes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; x = 2, y = 1) toward alkynes is reported. We found that they are efficient precatalysts for terminal alkyne cyclotrimerization with high TONs. We also demonstrate that this catalyst species is active for alkyne cyclotrimerization without the formation of significant alkyne metathesis products. Additional DFT calculations highlight the importance of the W coordination sphere in supporting this experimental behavior.

  6. Polymer immobilized Cu(I) formation and azide-alkyne cycloaddition: A one pot reaction


    Islam, Rafique Ul; Taher, Abu; Choudhary, Meenakshi; Siwal, Samarjeet; Mallick, Kaushik


    During the polymerization of aniline using copper sulphate, act as an oxidizing agent, the in-situ synthesized Cu(I) ion catalyzed the cyclo-addition between azides and alkynes. This work represents the merging of two steps, synthesis of the catalyst and application of the catalyst, in a one pot reaction. The elimination of the separate catalyst synthesis step is economic in terms of cost and time. As aniline was used as one of the reactant components so there is no requirement to use additio...

  7. Advancements in the mechanistic understanding of the copper-catalyzed azide–alkyne cycloaddition


    Regina Berg; Straub, Bernd F.


    The copper-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the ...

  8. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host–Guest Binding Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Long, Hai; Jin, Yinghua; Zhang, Wei


    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 x 103 M-1) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity.

  9. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host-Guest Binding Study. (United States)

    Yu, Chao; Long, Hai; Jin, Yinghua; Zhang, Wei


    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 × 10(3) M(-1)) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity. PMID:27267936

  10. Azide-Alkyne Huisgen [3+2] Cycloaddition Using CuO Nanoparticles


    Hyunjoon Song; Byeong-Su Kim; Sungkyun Park; Ji Chan Park; Seongwan Jang; Aram Kim; Hyuntae Kang; Hyunje Woo; Kang Hyun Park


    Recent developments in the synthesis of CuO nanoparticles (NPs) and their application to the [3+2] cycloaddition of azides with terminal alkynes are reviewed. With respect to the importance of click chemistry, CuO hollow NPs, CuO hollow NPs on acetylene black, water-soluble double-hydrophilic block copolymer (DHBC) nanoreactors and ZnO–CuO hybrid NPs were synthesized. Non-conventional energy sources such as microwaves and ultrasound were also applied to these click reactions, and good catalyt...

  11. Sequential One-Pot Ruthenium-Catalyzed Azide−Alkyne Cycloaddition from Primary Alkyl Halides and Sodium Azide

    KAUST Repository

    Johansson, Johan R.


    An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition of [RuClCp*(PPh 3) 2] and the alkyne yielded the desired cycloaddition product after further microwave irradiation. © 2011 American Chemical Society.

  12. Use of Aliphatic n-Alkynes To Discriminate Soil Nitrification Activities of Ammonia-Oxidizing Thaumarchaea and Bacteria


    Taylor, Anne E.; Vajrala, Neeraja; Giguere, Andrew T.; Gitelman, Alix I; Arp, Daniel J.; Myrold, David D.; Sayavedra-Soto, Luis; Bottomley, Peter J


    Ammonia (NH3)-oxidizing bacteria (AOB) and thaumarchaea (AOA) co-occupy most soils, yet no short-term growth-independent method exists to determine their relative contributions to nitrification in situ. Microbial monooxygenases differ in their vulnerability to inactivation by aliphatic n-alkynes, and we found that NH3 oxidation by the marine thaumarchaeon Nitrosopumilus maritimus was unaffected during a 24-h exposure to ≤20 μM concentrations of 1-alkynes C8 and C9. In contrast, NH3 oxidation ...

  13. Terminal alkynes as a position abstraction tool: Determination of the molecular parameters by semiempirical method

    International Nuclear Information System (INIS)

    Mechanosynthesis is the fabrication of atomically precise structures by formation of covalent chemical bonds with positional control of mechanical forces. A mechanosynthetic tool should have a chemically active tooltip and a chemically inert handle to which the tooltip is covalently bonded (Temelso, 2006). The suitable molecules for hydrogen abstraction tooltip include the propargyl or ethynyl radical containing two carbon atoms triple bonded together (Drexler, 1992). The unreactive regions of these molecules serve as a handle or attachment point. Hence the terminal alkynes can be used to abstract hydrogen in the production of nano materials (Musgrave 1991, Srinivasakannan, 2008). Semi-empirical methods serve as a tool in modelling and understanding the properties of molecular systems. In the present work, the structure of four terminal alkynes are optimized by AM1, PM3 & PM7 methods using MOPAC2012 (Stewart, 2013), with the available crystallographic data as the starting geometry. Calculated frequencies are compared with the FTIR spectrum to validate the results. Molecular parameters such as EHOMO, ELUMO, the energy gap (ΔE), hardness (η)

  14. Synthesis and Characterization of Rh-Co Butterfly Clusters Capped by Functionally Substituted 1-Alkynes

    Institute of Scientific and Technical Information of China (English)

    朱保华; 胡斌; 张伟强; 边治国; 赵全义; 殷元骐; 孙杰


    By the reactions of [Rh2Co2(CO)12] 1 with functionally substituted alkyne ligands HC≡CR 2 (R = FeCp2) and 3 (R = 2-OH-C6H4COOCH2), respectively in n-hexane at room temperature, two new cluster derivatives [Rh2Co2(CO)6(μ-CO)4(μ4, η2-HC≡CR)] 4 (R = FeCp2) and 5 (R = 2-OH-C6H4COOCH2) were obtained respectively. The alkyne was inserted into the Co-Co bond of cluster 1 to give two butterfly clusters. Cluster 4 has been determined by single-crystal X-ray diffraction. Crystallographic data: C22H10Co2FeO10Rh2, Mr = 813.83, orthorhombic, space group P212121, a = 11.5318(7), b = 12.6572(7), c = 17.018(1) A。, V = 2483.9(3) A。3, Z = 4, Dc = 2.176 g/cm3, F(000) = 1568, μ = 3.233 mm-1, the final R = 0.0366 and wR = 0.0899 for 5367 observed reflections with I > 2σ(I). The two clusters have also been characterized by elemental analysis, IR and 1H-NMR spectroscopy.

  15. Magnetic Hydrogels from Alkyne/Cobalt Carbonyl-Functionalized ABA Triblock Copolymers. (United States)

    Jiang, Bingyin; Hom, Wendy L; Chen, Xianyin; Yu, Pengqing; Pavelka, Laura C; Kisslinger, Kim; Parise, John B; Bhatia, Surita R; Grubbs, Robert B


    A series of alkyne-functionalized poly(4-(phenylethynyl)styrene)-block-poly(ethylene oxide)-block-poly(4-(phenylethynyl)styrene) (PPES-b-PEO-b-PPES) ABA triblock copolymers was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. PESn[Co2(CO)6]x-EO800-PESn[Co2(CO)6]x ABA triblock copolymer/cobalt adducts (10-67 wt % PEO) were subsequently prepared by reaction of the alkyne-functionalized PPES block with Co2(CO)8 and their phase behavior was studied by TEM. Heating triblock copolymer/cobalt carbonyl adducts at 120 °C led to cross-linking of the PPES/Co domains and the formation of magnetic cobalt nanoparticles within the PPES/Co domains. Magnetic hydrogels could be prepared by swelling the PEO domains of the cross-linked materials with water. Swelling tests, rheological studies and actuation tests demonstrated that the water capacity and modulus of the hydrogels were dependent upon the composition of the block copolymer precursors. PMID:26958699

  16. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis. (United States)

    Anderton, Grant I; Bangerter, Alyssa S; Davis, Tyson C; Feng, Zhiyuan; Furtak, Aric J; Larsen, Jared O; Scroggin, Triniti L; Heemstra, Jennifer M


    Bioorthogonal conjugation reactions such as strain-promoted azide-alkyne cycloaddition (SPAAC) have become increasingly popular in recent years, as they enable site-specific labeling of complex biomolecules. However, despite a number of improvements to cyclooctyne design, reaction rates for SPAAC remain significantly lower than those of the related copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Here we explore micellar catalysis as a means to increase reaction rate between a cyclooctyne and hydrophobic azide. We find that anionic and cationic surfactants provide the most efficient catalysis, with rate enhancements of up to 179-fold for reaction of benzyl azide with DIBAC cyclooctyne. Additionally, we find that the presence of surfactant can provide up to 51-fold selectivity for reaction with a hydrophobic over hydrophilic azide. A more modest, but still substantial, 11-fold rate enhancement is observed for micellar catalysis of the reaction between benzyl azide and a DIBAC-functionalized DNA sequence, demonstrating that micellar catalysis can be successfully applied to hydrophilic biomolecules. Together, these results demonstrate that micellar catalysis can provide higher conjugation yields in reduced time when using hydrophobic SPAAC reagents. PMID:26056848

  17. Alkyne-substituted diminazene as G-quadruplex binders with anticancer activities. (United States)

    Wang, Changhao; Carter-Cooper, Brandon; Du, Yixuan; Zhou, Jie; Saeed, Musabbir A; Liu, Jinbing; Guo, Min; Roembke, Benjamin; Mikek, Clinton; Lewis, Edwin A; Lapidus, Rena G; Sintim, Herman O


    G-quadruplex ligands have been touted as potential anticancer agents, however, none of the reported G-quadruplex-interactive small molecules have gone past phase II clinical trials. Recently it was revealed that diminazene (berenil, DMZ) actually binds to G-quadruplexes 1000 times better than DNA duplexes, with dissociation constants approaching 1 nM. DMZ however does not have strong anticancer activities. In this paper, using a panel of biophysical tools, including NMR, FRET melting assay and FRET competition assay, we discovered that monoamidine analogues of DMZ bearing alkyne substitutes selectively bind to G-quadruplexes. The lead DMZ analogues were shown to be able to target c-MYC G-quadruplex both in vitro and in vivo. Alkyne DMZ analogues display respectable anticancer activities (single digit micromolar GI50) against ovarian (OVCAR-3), prostate (PC-3) and triple negative breast (MDA-MB-231) cancer cell lines and represent interesting new leads to develop anticancer agents. PMID:27132164

  18. Dynamic Covalent Synthesis of Aryleneethynylene Cages through Alkyne Metathesis: Dimer, Tetramer, or Interlocked Complex?

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Yu, Chao; Zhang, Chenxi; Long, Hai; Azarnoush, Setareh; Jin, Yinghua; Zhang, Wei


    A dynamic covalent approach towards rigid aryleneethynylene covalent organic polyhedrons (COPs) was explored. Our study on the relationship of the COP structures and the geometry of their building blocks reveals that the topology of aryleneethynylene COPs strongly depends on the size of the building blocks. A tetramer (D2h symmetric), dimer, or interlocked complex can be formed from monomers with the same face-to-edge angle but in different sizes. As alkyne metathesis is a self-exchange reaction and non-directional, the cyclooligomerization of multi-alkyne monomers involves both intramolecular cyclization and intermolecular metathesis reaction, resulting in complicated thermodynamic process disturbed by kinetic competition. Although a tetrahedron-shaped tetramer (Td symmetric) has comparable thermodynamic stability to a D2h symmetric tetramer, its formation is kinetically disfavored and was not observed experimentally. Aryleneethynylene COPs consist of purely unsaturated carbon backbones and exhibit large internal cavities, which would have interesting applications in host-guest chemistry and development of porous materials.

  19. Metal and carbene organocatalytic relay activation of alkynes for stereoselective reactions. (United States)

    Namitharan, Kayambu; Zhu, Tingshun; Cheng, Jiajia; Zheng, Pengcheng; Li, Xiangyang; Yang, Song; Song, Bao-An; Chi, Yonggui Robin


    Transition metal and organic catalysts have established their own domains of excellence. It has been expected that merging the two unique domains should provide complimentary or unprecedented opportunities in converting simple raw materials to functional products. N-heterocyclic carbenes alone are excellent organocatalysts. When used with transition metals such as copper, N-heterocyclic carbenes are routinely practiced as strong-coordinating ligands. Combination of an N-heterocyclic carbene and copper therefore typically leads to deactivation of either or both of the two catalysts. Here we disclose the direct merge of copper as a metal catalyst and N-heterocyclic carbenes as an organocatalyst for relay activation of alkynes. The reaction involves copper-catalysed activation of alkynes to generate ketenimine intermediates that are subsequently activated by an N-heterocyclic carbene organocatalyst for stereoselective reactions. Each of the two catalysts (copper metal catalyst and N-heterocyclic carbene organocatalyst) accomplishes its own missions in the activation steps without quenching each other. PMID:24865392

  20. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds (United States)

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  1. Cu-catalyzed silylation of alkynes: a traceless 2-pyridylsulfonyl controller allows access to either regioisomer on demand. (United States)

    García-Rubia, Alfonso; Romero-Revilla, Jose A; Mauleón, Pablo; Gómez Arrayás, Ramón; Carretero, Juan C


    The Cu-catalyzed silylation of terminal and internal alkynes bearing a 2-pyridyl sulfonyl group (SO2Py) at the propargylic position affords a breadth of vinyl silanes in good yields and with excellent regio- and stereocontrol under mild conditions. The directing SO2Py group is essential in terms of reaction efficiency and chemoselectivity. Importantly, this group also provides the ability to reverse the regiochemical outcome of the reaction, opening the access to either regioisomer without modification of the starting substrate by virtue of an in situ base-promoted alkyne to allene equilibration which takes place prior to the silylcupration process. Furthermore, removal of the directing SO2Py allows for further elaboration of the silylation products. In particular, a one-pot tandem alkyne silylation/allylic substitution sequence, in which both steps are catalyzed by the same Cu species, opens up a new approach for the access to either formal hydrosilylation regioisomer of unsymmetrical aliphatic-substituted internal alkynes from propargyl sulfones. PMID:25955333

  2. A general metal-free approach for the stereoselective synthesis of C-glycals from unactivated alkynes


    Shekaraiah Devari; Manjeet Kumar; Ramesh Deshidi; Masood Rizvi; Bhahwal Ali Shah


    A novel metal-free strategy for a rapid and α-selctive C-alkynylation of glycals was developed. The reaction utilizes TMSOTf as a promoter to generate in situ trimethylsilylacetylene for C-alkynylation. Thanks to this methodology, we can access C-glycosides in a single step from a variety of acetylenes , i.e., arylacetylenes and most importantly aliphatic alkynes.

  3. A general metal-free approach for the stereoselective synthesis of C-glycals from unactivated alkynes


    Devari, Shekaraiah; Kumar, Manjeet; Deshidi, Ramesh; Rizvi, Masood; Shah, Bhahwal Ali


    A novel metal-free strategy for a rapid and α-selctive C-alkynylation of glycals was developed. The reaction utilizes TMSOTf as a promoter to generate in situ trimethylsilylacetylene for C-alkynylation. Thanks to this methodology, we can access C-glycosides in a single step from a variety of acetylenes , i.e., arylacetylenes and most importantly aliphatic alkynes.

  4. Stereoselective single (copper) or double (platinum) boronation of alkynes catalyzed by magnesia-supported copper oxide or platinum nanoparticles. (United States)

    Grirrane, Abdessamad; Corma, Avelino; Garcia, Hermenegildo


    Copper(II) oxide nanoparticles supported on magnesia have been prepared from Cu(II) supported on magnesia by hydrogen reduction at 400 °C followed by storage under ambient conditions. X-ray photoelectron spectroscopy of the material clearly shows that immediately after the reduction copper(0)-metal nanoparticles are present on the magnesia support, but they undergo fast oxidation to copper oxide upon contact with the ambient for a short time. TEM images show that the catalytically active CuO/MgO material is formed of well-dispersed copper oxide nanoparticles supported on fibrous MgO. CuO/MgO exhibits a remarkable catalytic activity for the monoborylation of aromatic, aliphatic, terminal, and internal alkynes, the products being formed with high regio- (borylation at the less substituted carbon) and stereoselectivity (trans-configured). CuO/MgO exhibits complete chemoselectivity towards the monoborylation of alkynes in the presence of alkenes. Other metal nanoparticles such as gold or palladium are inactive towards borylation, but undergo undesirable oligomerization or partial hydrogenation of the C≡C triple bond. In contrast, platinum, either supported on magnesia or on nanoparticulate ceria, efficiently promotes the stereoselective diborylation of alkynes to yield a cis-configured diboronate alkene. By using platinum as the catalyst we have developed a tandem diborylation/hydrogenation reaction that gives vic-diboronated alkanes from alkynes in one pot. PMID:21319239

  5. Rh(iii)-catalyzed chemoselective C-H functionalizations of tertiary aniline N-oxides with alkynes. (United States)

    Huang, Xiaolei; Liang, Wenbo; Shi, Yang; You, Jingsong


    In this work, we report novel Rh(iii)-catalyzed chemoselective functionalizations of tertiary aniline N-oxides with alkynes, including annulation via the sequential C(sp(2))-H and C(sp(3))-N activation for the formation of N-alkylindoles and an O-atom transfer (OAT) process for the synthesis of acetophenones. PMID:27121366

  6. Electrophilic Activation of P-Alkynes in the Synthesis of P-Substituted and P-Centered Heterocycles. (United States)

    Gupta, Akhil; Flynn, Bernard L


    Electrophilic activation of alkynylphosphine oxides and phosphonates provides a novel approach to the synthesis of P-substituted and P-centered heterocycles. Iodocyclization affords a heteroaryl iodide that can, among other things, be used in reiterative alkyne coupling and iodocyclization to give cyclic phosphonates and other cyclization reactions to give π-rich P-heterocycles. PMID:27088459

  7. Construction of Substituted Benzenes via Pd-Catalyzed Cross-Coupling/Cyclization Reaction of Vinyl Halides and Terminal Alkynes. (United States)

    Xie, Meihua; Wang, Shengke; Wang, Jun; Fang, Kuang; Liu, Changqing; Zha, Chao; Jia, Jing


    A tandem Sonogashira coupling/cyclization/aromatization sequence of β-halo vinyl sulfones/ketones with terminal alkynes has been developed for the construction of benzene rings. Polysubstituted functionalized benzenes containing a sulfonyl or an acyl group could be obtained in up to 95% yield. PMID:27015420

  8. Synthesis of trans-disubstituted alkenes by cobalt-catalyzed reductive coupling of terminal alkynes with activated alkenes. (United States)

    Mannathan, Subramaniyan; Cheng, Chien-Hong


    A cobalt-catalyzed reductive coupling of terminal alkynes, RC≡CH, with activated alkenes, R'CH=CH(2), in the presence of zinc and water to give functionalized trans-disubstituted alkenes, RCH=CHCH(2)CH(2)R', is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl(2)/P(OMe)(3)/Zn catalyst system to afford 1,2-trans-disubstituted alkenes with high regio- and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl(2)/P(OPh)(3)/Zn system providing a mixture of 1,2-trans- and 1,1-disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3-enynes and acetylene gas with alkenes. Furthermore, a phosphine-free cobalt-catalyzed reductive coupling of terminal alkynes with enones, affording 1,2-trans-disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air-stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed. PMID:22865622

  9. Fine-tuning alkyne cycloadditions: Insights into photochemistry responsible for the double-strand DNA cleavage via structural perturbations in diaryl alkyne conjugates

    Directory of Open Access Journals (Sweden)

    Igor V. Alabugin


    Full Text Available Hybrid molecules combining photoactivated aryl acetylenes and a dicationic lysine moiety cause the most efficient double-strand (ds DNA cleavage known to date for a small molecule. In order to test the connection between the alkylating ability and the DNA-damaging properties of these compounds, we investigated the photoreactivity of three isomeric aryl–tetrafluoropyridinyl (TFP alkynes with amide substituents in different positions (o-, m-, and p- toward a model π-system. Reactions with 1,4-cyclohexadiene (1,4-CHD were used to probe the alkylating properties of the triplet excited states in these three isomers whilst Stern–Volmer quenching experiments were used to investigate the kinetics of photoinduced electron transfer (PET. The three analogous isomeric lysine conjugates cleaved DNA with different efficiencies (34, 15, and 0% of ds DNA cleavage for p-, m-, and o-substituted lysine conjugates, respectively consistent with the alkylating ability of the respective acetamides. The significant protecting effect of the hydroxyl radical and singlet oxygen scavengers to DNA cleavage was shown only with m-lysine conjugate. All three isomeric lysine conjugates inhibited human melanoma cell growth under photoactivation: The p-conjugate had the lowest CC50 (50% cell cytotoxicity value of 1.49 × 10−7 M.

  10. Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Socaci, Crina [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania); Rybka, Miriam [Humboldt-University Berlin, Department of Chemistry (Germany); Magerusan, Lidia; Nan, Alexandrina; Turcu, Rodica; Liebscher, Juergen, E-mail: [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania)


    New magnetic core shell nanoparticles were synthesized consisting of magnetite cores and poly-(O-propargyl acrylate) shells. Strong fixing of the shells was achieved by primary anchoring phosphates or {alpha}-dihydroxydiphosphonates containing acrylate or methacrylate functionalities. The magnetic nanoparticles are attractive as supports for a variety of function which can be easily introduced by Cu-catalyzed alkyne azide cycloaddition (CuAAC, a click reaction). In this way, also the loading of the magnetic nanoparticles with propargyl units was determined by reaction with 4-azidoacetophenone and analysis of the supernatant. In order to demonstrate the attractiveness of the magnetic nanoparticles a novel azido-containing conjugate with biotin as recognition function and dansyl as fluorescence marker was introduced by CuAAC reaction. All NP show superparamagnetic behavior with high-saturation magnetization values and were further characterized by FTIR, photoelectron spectroscopy and TEM.

  11. Fabrication of carbon nanotube films from alkyne-transition metal complexes (United States)

    Iyer, Vivekanantan S.; Vollhardt, K. Peter C.


    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between C. and more particularly C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  12. Electronic effects of ruthenium-catalyzed [3+2]-cycloaddition of alkynes and azides

    KAUST Repository

    Hou, Duenren


    A combined experimental and theoretical study of ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) reactions is presented and various electronic analyses were conducted to provide a basis in understanding the observed regioselectivity of the 1,2,3-triazole products. Computational studies using density functional theory (DFT) and atoms in molecules quantum theory (AIM) further yield fresh details on the electronic factors that determine the regioselectivity in the RuAAC. It is found that the formation of 1,2,3-triazole products is irreversible and from the Hammett study, the pathway involving a vinyl cationic intermediate is ruled out. The electronic effect favors the formation of 5-electron-donating-group substituted-1,2,3-trizoles. © 2010 Elsevier Ltd. All rights reserved.

  13. Synthesis of Dihydropyridines and Pyridines from Imines and Alkynes via C-H Activation

    Energy Technology Data Exchange (ETDEWEB)

    Ellman, Jonathan A.; Colby, Denise; Bergman, Robert


    A convenient one-pot C-H alkenylation/electrocyclization/aromatization sequence has been developed for the synthesis of highly substituted pyridine derivatives from alkynes and {alpha},{beta}-unsaturated N-benzyl aldimines and ketimines that proceeds through dihydropyridine intermediates. A new class of ligands for C-H activation was developed, providing broader scope for the alkenylation step than could be achieved with previously reported ligands. Substantial information was obtained about the mechanism of the reaction. This included the isolation of a C-H activated complex and its structure determination by X-ray analysis; in addition, kinetic simulations using the Copasi software were employed to determine rate constants for this transformation, implicating facile C-H oxidative addition and slow reductive elimination steps.

  14. Azide-Alkyne Huisgen [3+2] Cycloaddition Using CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hyunjoon Song


    Full Text Available Recent developments in the synthesis of CuO nanoparticles (NPs and their application to the [3+2] cycloaddition of azides with terminal alkynes are reviewed. With respect to the importance of click chemistry, CuO hollow NPs, CuO hollow NPs on acetylene black, water-soluble double-hydrophilic block copolymer (DHBC nanoreactors and ZnO–CuO hybrid NPs were synthesized. Non-conventional energy sources such as microwaves and ultrasound were also applied to these click reactions, and good catalytic activity with high regioselectivity was observed. CuO hollow NPs on acetylene black can be recycled nine times without any loss of activity, and water-soluble DHBC nanoreactors have been developed for an environmentally friendly process.

  15. An approach to mimicking the sesquiterpene cyclase phase by nickel-promoted diene/alkyne cooligomerization. (United States)

    Holte, Dane; Götz, Daniel C G; Baran, Phil S


    Artificially mimicking the cyclase phase of terpene biosynthesis inspires the invention of new methodologies, since working with carbogenic frameworks containing minimal functionality limits the chemist's toolbox of synthetic strategies. For example, the construction of terpene skeletons from five-carbon building blocks would be an exciting pathway to mimic in the laboratory. Nature oligomerizes, cyclizes, and then oxidizes γ,γ-dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP) to all of the known terpenes. Starting from isoprene, the goal of this work was to mimic Nature's approach for rapidly building molecular complexity. In principle, the controlled oligomerization of isoprene would drastically simplify the synthesis of terpenes used in the medicine, perfumery, flavor, and materials industries. This article delineates our extensive efforts to cooligomerize isoprene or butadiene with alkynes in a controlled fashion by zerovalent nickel catalysis building off the classic studies by Wilke and co-workers. PMID:22229741

  16. Advancements in the mechanistic understanding of the copper-catalyzed azide–alkyne cycloaddition

    Directory of Open Access Journals (Sweden)

    Regina Berg


    Full Text Available The copper-catalyzed azide–alkyne cycloaddition (CuAAC is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC’s catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates.

  17. Traceless Azido Linker for the Solid-Phase Synthesis of NH-1,2,3-Triazoles via Cu-Catalyzed Azide-Alkyne Cycloaddition Reactions

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil; Jensen, Jakob Feldthusen; Nielsen, Thomas Eiland


    A broadly useful acid-labile traceless azido linker for the solid-phase synthesis of NH-1,2,3-triazoles is presented. A variety of alkynes were efficiently immobilized on a range of polymeric supports by Cu(I)-mediated azide-alkyne cycloadditions. Supported triazoles showed excellent compatibilit...... with subsequent peptide chemistry. Release of pure material (typically >95%) from the solid support was readily achieved by treatment with aqueous TFA....

  18. Copper-catalyzed cross-coupling of boronic esters with aryl iodides and application to the carboboration of alkynes and allenes. (United States)

    Zhou, Yiqing; You, Wei; Smith, Kevin B; Brown, M Kevin


    Copper-catalyzed Suzuki–Miyaura-type cross-coupling and carboboration processes are reported. The cross-couplings function well with a variety of substituted aryl iodides and aryl boronic esters and allows for orthogonal reactivity compared to palladium-catalyzed processes. The carboboration method includes both alkynes and allenes and provides access to highly substituted and stereodefined vinyl boronic esters. The alkyne carboboration method is highlighted in the simple one-pot synthesis of Tamoxifen. PMID:24677502

  19. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides. (United States)

    Cromm, Philipp M; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N; Waldmann, Herbert


    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets. PMID:27075966

  20. Calculating the properties of C2H2-C9H16 alkynes, based on the additivity of energy contributions (United States)

    Smolyakov, V. M.; Grebeshkov, V. V.


    A ten-constant additive model is obtained for calculating the physicochemical properties of a number of C n H2 n-2 alkynes, based on the group additivity method (with allowance for the initial atomic environment), two topological indices that allow for the second atomic environment, and pairwise non-valence interactions (in implicit form) between three atoms, four atoms, and so forth along the chain of a molecule. Two linear dependences are revealed. The obtained formula is used for numerical calculations of the normal heats of vaporization L NBT and normal boiling temperatures T b of C2H2-C9H16 alkynes, neither of which had been studied experimentally.

  1. Modular Attachment of Appended Boron Lewis Acids to a Ruthenium Pincer Catalyst: Metal-Ligand Cooperativity Enables Selective Alkyne Hydrogenation. (United States)

    Tseng, Kuei-Nin T; Kampf, Jeff W; Szymczak, Nathaniel K


    A new series of bifunctional Ru complexes with pendent Lewis acidic boranes were prepared by late-stage modification of an active hydrogen-transfer catalyst. The appended boranes modulate the reactivity of a metal hydride as well as catalytic hydrogenations. After installing acidic auxiliary groups, the complexes become multifunctional and catalyze the cis-selective hydrogenation of alkynes with higher rates, conversions, and selectivities compared with the unmodified catalyst. PMID:27472301

  2. Palladium-Catalyzed Dearomative Allylic Alkylation of Indoles with Alkynes To Synthesize Indolenines with C3-Quarternary Centers. (United States)

    Gao, Shang; Wu, Zijun; Fang, Xinxin; Lin, Aijun; Yao, Hequan


    A palladium-catalyzed dearomative allylic alkylation of indoles with alkynes to construct indolenines with C3-quarternary centers was reported. The in situ formed arylallene intermediate omitted the need to install leaving groups on the allylic compounds and employ extra oxidants to oxidize the allylic C-H bonds. The reaction exhibited good functional group tolerance and high atom economy. Moreover, the reaction was further expanded to synthesize pyrroloindolines and furanoindolines. PMID:27442021

  3. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and “Abnormal” Silver N-Heterocyclic Carbene Complex

    Directory of Open Access Journals (Sweden)

    Aldo I. Ortega-Arizmendi


    Full Text Available A library of 1,2,3-triazoles was synthesized from diverse alkynes and azides using catalytic amounts of silver chloride instead of copper compounds. In addition, a novel “abnormal” silver N-heterocyclic carbene complex was tested as catalyst in this process. The results suggest that the reaction requires only 0.5% of silver complex, affording 1,2,3-triazoles in good yields.

  4. Quarternization of 3-azido-1-propyne oligomers obtained by copper(I)-catalyzed azide–alkyne cycloaddition polymerization


    Shun Nakano; Akihito Hashidzume; Takahiro Sato


    3-Azido-1-propyne oligomer (oligoAP) samples, prepared by copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) polymerization, were quarternized quantitatively with methyl iodide in sulfolane at 60 °C to obtain soluble oligomers. The conformation of the quarternized oligoAP in dilute DMSO-d6 solution was examined by pulse-field-gradient spin-echo NMR based on the touched bead model.

  5. A highly active and magnetically recoverable tris(triazolyl)-Cu(I) catalyst for alkyne-azide cycloaddition reactions. (United States)

    Wang, Dong; Etienne, Laetitia; Echeverria, María; Moya, Sergio; Astruc, Didier


    Nanoparticle-supported tris(triazolyl)-CuBr, with a diameter of approximately 25 nm measured by TEM spectroscopy, has been easily prepared, and its catalytic activity was evaluated in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. In initial experiments, 0.5 mol % loading successfully promoted the CuAAC reaction between benzyl azide and phenylacetylene, in water at room temperature (25 °C). During this process, the iron oxide nanoparticle-supported tris(triazolyl)-CuBr displayed good monodispersity, excellent recoverability, and outstanding reusability. Indeed, it was simply collected and separated from the reaction medium by using an external magnet, then used for another five catalytic cycles without significant loss of catalytic activity. Inductively coupled plasma (ICP) analysis for the first cycle revealed that the amount of copper leached from the catalyst into the reaction medium is negligible (1.5 ppm). The substrate scope has been examined, and it was found that the procedure can be successfully extended to various organic azides and alkynes and can also be applied to the one-pot synthesis of triazoles, through a cascade reaction involving benzyl bromides, alkynes, and sodium azide. In addition, the catalyst was shown to be an efficient CuAAC catalyst for the synthesis of allyl- and TEG-ended (TEG=triethylene glycol) 27-branch dendrimers. PMID:24574335

  6. Theoretical study on alkyne-linked carbazole polymers for blue-light multifunctional materials

    International Nuclear Information System (INIS)

    This paper studied poly[(3,6-di-tert-butyl-N-hexadecyl-1,8-carbazolylene) butadiynylene] (P1), butadiynylene-linked poly (3,6-carbazole) (P2) and butadiynylene-linked poly (2,7-carbazole) (P3) through the theoretical measurements with Gaussian 03 program package. To investigate the relationship between structures and properties of these multifunctional electroluminescent materials, their geometrical structures of ground and excited-states were optimized by B3LYP/6-31G (d) and CIS/6-31G (d) methods, respectively. The lowest excitation energies (Eg's), and the maximum absorption and emission wavelengths of these polymers were calculated by time-dependent density functional theory methods (TD-DFT). The important parameters for luminescent materials were also predicated including the ionization potentials (Ip's) and electron affinities (Ea's). The calculated results show that the highest-occupied molecular orbital (HOMO) energies lift about 0.27-0.49 eV compared to N,N'-bis(naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), suggesting the significant improved hole-accepting and transporting abilities. In addition, substitution of alkyne for carbazole resulted in a narrow band gap and a red shift of both the absorption and emission peaks. Through above calculations, it is evidenced that these polymers can be considered as candidates for excellent OLEDs with good hole-creating abilities and high blue-light emission. - Highlights: → We studied poly [(3,6-di-tert-butyl-N-hexadecyl-1,8-carbazolylene) butadiynylene] by theoretical method. → The geometrical structures of ground and excited-states had been optimized by B3LYP/6-31G (d) and CIS/6-31G (d). → The relationship between structures and properties of these multifunctional electroluminescent materials had been investigated. → These molecules are excellent candidates for multifunctional OLED materials. → The substitution of alkyne for carbazole results in a narrow band gap and a red shift of both the

  7. Antifouling coatings based on covalently cross-linked agarose film via thermal azide-alkyne cycloaddition. (United States)

    Xu, Li Qun; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Fu, Guo Dong


    Coatings based on thin films of agarose-poly(ethylene glycol) (Agr-PEG) cross-linked systems are developed as environmentally-friendly and fouling-resistant marine coatings. The Agr-PEG cross-linked systems were prepared via thermal azide-alkyne cycloaddition (AAC) using azido-functionalized Agr (AgrAz) and activated alkynyl-containing poly(2-propiolamidoethyl methacrylate-co-poly(ethylene glycol)methyl ether methacrylate) P(PEMA-co-PEGMEMA) random copolymers as the precursors. The Agr-PEG cross-linked systems were further deposited onto a SS surface, pre-functionalized with an alkynyl-containing biomimetic anchor, dopamine propiolamide, to form a thin film after thermal treatment. The thin film-coated SS surfaces can effectively reduce the adhesion of marine algae and the settlement of barnacle cyprids. Upon covalent cross-linking, the covalently cross-linked Agr-PEG films coated SS surfaces exhibit good stability in flowing artificial seawater, and enhanced resistance to the settlement of barnacle cyprids, in comparison to that of the surfaces coated with physically cross-linked AgrAz films. PMID:26836479

  8. Electron and Positron Scattering with a Few Alkyne Molecules - Theoretical Cross sections (United States)

    Patel, U. R.; Joshipura, K. N.; Kothari, H. N.


    Electron molecule scattering processes play an important role in the understanding of the electron driven physiochemical phenomena in diverse environments such as biological media, planetary atmospheres, interstellar clouds and plasmas. In modeling and simulating effects induced by electrons traversing through matter, the relevant cross section data are required as an input. An alternative probe, positron has also been used for the similar study of atoms, molecules and matter in bulk. Interaction of positrons with atoms and molecules differs from electron interactions due to opposite sign of charge and absence of exchange potential. In the present paper, our aim is to apply an identical theoretical method1,2 to electrons as well as positrons interacting with alkyne molecules like acetylene (HC ≡ CH), 1- Butyne (HC ≡ C- CH2 CH3) and Propyne (HC ≡ C- CH3) . We have carried out calculations of total scattering cross sections by starting with complex potential approach followed by the solution of the Schrodinger equation using numerical method. Ionization cross sections are deduced as in1,2. Comparisons have been made with available theoretical and experimental results for both electron (e-) and positron (e+) . The study will be extended to alkanes and alkenes.

  9. Synthesis of Dendronized Poly(l-Glutamate via Azide-Alkyne Click Chemistry

    Directory of Open Access Journals (Sweden)

    Peter Perdih


    Full Text Available Poly(l-glutamate (PGlu was modified with a second-generation dendron to obtain the dendronized polyglutamate, P(Glu-D. Synthesized P(Glu-D exhibited a degree of polymerization (DPn of 46 and a 43% degree of dendronization. Perfect agreement was found between the P(Glu-D expected structure and the results of nuclear magnetic resonance spectroscopy (NMR and size-exclusion chromatography coupled to a multi-angle light-scattering detector (SEC-MALS analysis. The PGlu precursor was modified by coupling with a bifunctional building block (N3-Pr-NH2 in the presence of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl-4-methylmorpholinium chloride (DMTMM coupling reagent. The second-generation polyamide dendron was prepared by a stepwise procedure involving the coupling of propargylamine to the l-lysine carboxyl group, followed by attaching the protected 2,2-bis(methylolpropionic acid (bis-MPA building block to the l-lysine amino groups. The hydroxyl groups of the resulting second-generation dendron were quantitatively deprotected under mild acidic conditions. The deprotected dendron with an acetylene focal group was coupled to the pendant azide groups of the modified linear copolypeptide, P(Glu-N3, in a Cu(I catalyzed azide-alkyne cycloaddition reaction to form a 1,4-disubstituted triazole. The dendronization reaction proceeded quantitatively in 48 hours in aqueous medium as confirmed by 1H NMR and Fourier transform infrared spectroscopy (FT-IR spectroscopy.

  10. Iron-Carbonyl-Catalyzed Redox-Neutral [4+2] Annulation of N-H Imines and Internal Alkynes by C-H Bond Activation. (United States)

    Jia, Teng; Zhao, Chongyang; He, Ruoyu; Chen, Hui; Wang, Congyang


    Stoichiometric C-H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C-H transformations have not been developed. Herein, an iron-catalyzed annulation of N-H imines and internal alkynes to furnish cis-3,4-dihydroisoquinolines is described, and represents the first iron-carbonyl-catalyzed C-H activation reaction of arenes. Remarkablely, this is also the first redox-neutral [4+2] annulation of imines and alkynes proceeding by C-H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C-H bond activation to afford a dinuclear ferracycle and a synergetic diiron-promoted H-transfer to the alkyne as the turnover-determining step. PMID:27002210

  11. Reactivity of sarcosine and 1,3-thiazolidine-4-carboxylic acid towards salicylaldehyde-derived alkynes and allenes


    Laia, Fernanda M. Ribeiro; Gomes, Clara S. B.; Melo, Teresa M.V.D. Pinho e


    The reaction of sarcosine and 1,3-thiazolidine-4-carboxylic acid with salicylaldehyde-derived alkynes and allenes opened the way to new chromeno[4,3-b]pyrrole and chromeno[2,3-b]pyrrole derivatives. Tetrahydro-chromeno[4,3-b]pyrroles were obtained from the reaction of these secondary amino acids with O-propargylsalicylaldehyde. Interestingly, sarcosine reacted with ethyl 4-(2-formylphenoxy)but-2-ynoate to give a monocyclic pyrrole resulting from rearrangement of the initially formed 1,3-dipol...

  12. Crosslinking of Kapok Cellulose Fiber via Azide Alkyne Click Chemistry as a New Material for Filtering System: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Nur Syazwani Abd Rahman


    Full Text Available A new class of green material has been elaborated by grafting the modified kapok fiber, by the means of azidated kapok fiber followed by “click-chemistry” reaction with the terminal alkyne crosslinker. The modified and synthesized product was characterized using Fourier transform infrared spectroscopy (FT-IR, and Scanning electron microscopy (SEM. The study also was undertaken to investigate the effect on the absorption of methylene blue from aqueous solution onto the click fiber prepared. The findings showed that the click kapok absorbed more compared to the untreated kapok. Based on the result, the reaction of click chemistry influenced the properties of the filter made from kapok fiber.

  13. Spectroelectrochemistry: A valuable tool for the study of organometallic-alkyne, -vinylidene, -cumulene, -alkynyl and related complexes

    International Nuclear Information System (INIS)

    This review presents a highly selective summary of spectroelectrochemical methods used in the study of metal alkyne, acetylide, vinylidene and allenylidene complexes. The review is illustrated predominantly by the selected examples from the authors’ group that formed the basis of a lecture at the recent ISE Annual Meeting. Emphasis is placed on the use of spectroelectrochemical methods to study redox-induced ligand isomerisation reactions, and determination of molecular electronic structure, which complement the conventional tools available to the synthetic chemist for characterisation of molecular compounds. The role of computational studies in supporting the interpretation of spectroscopic data is also briefly discussed

  14. The use of azide-alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers (United States)

    Shi, Yi; Cao, Xiaosong; Gao, Haifeng


    The rapid development of efficient organic click coupling reactions has significantly facilitated the construction of synthetic polymers with sophisticated branched nanostructures. This Feature Article summarizes the recent progress in the application of efficient copper-catalyzed and copper-free azide-alkyne cycloaddition (CuAAC and CuFAAC) reactions in the syntheses of dendrimers, hyperbranched polymers, star polymers, graft polymers, molecular brushes, and cyclic graft polymers. Literature reports on the interesting properties and functions of these polytriazole-based nanostructured polymers are also discussed to illustrate their potential applications as self-healing polymers, adhesives, polymer catalysts, opto-electronic polymer materials and polymer carriers for drug and imaging molecules.

  15. Selective coupling reaction between 2,6-diiodoanisoles and terminal alkynes catalyzed by Pd(PPh32Cl2 and CuI

    Directory of Open Access Journals (Sweden)

    Allan F. C. Rossini


    Full Text Available The cross-coupling reaction between aryl halides and terminal alkynes, catalyzed by palladium complexes and copper (I salts, consists in an efficient synthetic tool for the formation of C-C bonds, resulting in disubstituted acetylenic compounds. Accordingly, in this work we present our preliminary results involving the selective cross-coupling reaction between 2,6-diiodoanisoles and terminal alkynes, catalyzed by Pd(PPh32Cl2 and CuI, in the formation of 2-iodo-alkynylanisoles (scheme 1.

  16. Conventional and microwave-assisted multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as heterogeneous base and catalyst in water

    Directory of Open Access Journals (Sweden)

    Sandip Kale


    Full Text Available The conventional and microwave assisted multicomponent synthesis of disubstituted 1,2,3-triazoles from terminal alkynes and in situ generated organic azide using copper apatite catalyst in water is reported. The catalytic activity is intimately connected to the basicity of the catalyst. The best activities were observed with the copper hydroxyapatite. The catalyst could be used ten times without further treatment and activation under controlled microwave heating. The protocol was also applicable for various alkynes and halides which affords desired product in good to excellent yield.

  17. Splitting a Substrate into Three Parts: Gold-Catalyzed Nitrogenation of Alkynes by C-C and C≡C Bond Cleavage. (United States)

    Qin, Chong; Su, Yijin; Shen, Tao; Shi, Xiaodong; Jiao, Ning


    A gold-catalyzed nitrogenation of alkynes for the synthesis of carbamides and amino tetrazoles through C-C and C≡C bond cleavages is described. A diverse set of functionalized carbamide and amino tetrazole derivatives were selectively constructed under mild conditions. The chemoselectivity can be easily switched by the selection of the acid additives. The reaction is characterized by its broad substrate scope, direct construction of high value products, easy operation under air, and mild conditions at room temperature. This chemistry provides a way to transform alkynes by splitting the substrate into three parts. PMID:26494539

  18. Cobalt-Catalyzed Cyclization of N-Methoxy Benzamides with Alkynes using an Internal Oxidant through C-H/N-O Bond Activation. (United States)

    Sivakumar, Ganesan; Vijeta, Arjun; Jeganmohan, Masilamani


    The cyclization of substituted N-methoxy benzamides with alkynes in the presence of an easily affordable cobalt complex and NaOAc provides isoquinolone derivatives in good to excellent yields. The cyclization reaction is compatible with a range of functional group-substituted benzamides, as well as ester- and alcohol-substituted alkynes. The cobalt complex [Co(III) Cp*(OR)2 ] (R=Me or Ac) serves as an efficient catalyst for the cyclization reaction. Later, isoquinolone derivatives were converted into 1-chloro and 1-bromo substituted isoquinoline derivatives in excellent yields in the presence of POCl3 or PBr3 . PMID:26951887

  19. First observation of alkyne radical anions by electron spin resonance spectroscopy: Hexyne/n-hexane mixed crystals

    International Nuclear Information System (INIS)

    The radical anions of alkynes have been first observed by electron spin resonance spectroscopy following alkene anions previously studied. Hexyne radical anions were formed in 1-, 2-, or 3-hexyne/n--hexane mixed crystals irradiated at 4.2 or 77 K. The characters of the anions were as follows; (a) the α-proton hyperfine coupling is very large (∼4.5 mT for the 1-hexyne anion), (b) the β-proton couplings are very small (∼1.0 mT for C--Hβ proton with the conformational angle of 0 degree), and (c) the radicals show a negative g shift (2.0014). From these observations, it was found that the anions have a nonlinear(bent) molecule structure in the anticonfiguration (trans C--C≡C--C) with the bend angle ∼60 degree, and that the unpaired electron orbital is approximately composed of the anticombination of the sp2 hybrid orbitals of the C≡C carbon atoms. A discussion based on complete neglect of differential overlap (CNDO) molecular orbital (MO) calculations was given for the observed negative g shift, which was shown to be characteristic of the alkyne anions which have a high-lying unpaired electron orbital and an antibonding 2p--2p π carbon orbital just above it on the upper energy side

  20. Alkyne versus allene activation in platinum- and gold-catalyzed cycloisomerization of hydroxylated 1,5-allenynes. (United States)

    Zriba, Riadh; Gandon, Vincent; Aubert, Corinne; Fensterbank, Louis; Malacria, Max


    Chemo- and stereoselective transformations of 3-hydroxy-1,5-allenynes 1 into a variety of new and potentially useful cyclic compounds have been achieved. Substrates bearing a silyl group at the alkyne moiety undergo purely thermal or Lewis acid catalyzed Alder-ene type transformations into 2-methylene-3-vinylcyclopent-3-enol derivatives 2. When heated in the presence of a catalytic amount of PtCl(2) or PtCl(4), these incipient cyclopentenols could be further transformed into 3-vinylcyclopent-2-enones 3. On the other hand, alkyl-substituted 3-hydroxy-1,5-allenynes proved to be stable under refluxing conditions. Nevertheless, PtCl(2) and PtCl(4) could selectively activate the alkyne moiety of these substrates toward intramolecular nucleophilic attack of the internal allene double bond to yield unprecedented 6-methylenebicyclo[3.1.0]hexan-3-one derivatives 4. With gold-based catalysts, provided that the reaction is carried out in dichloromethane, both Au(I) and Au(III) complexes selectively activate the allene fragment of the substrates toward intramolecular nucleophilic attack of the hydroxyl group to yield 2-ethynyl-3,6-dihydro-2H-pyrans 5. Compounds of type 4 can also be formed with Au(I) and Au(III) complexes if the reaction is carried out in toluene. The reactivity of these new compounds has been partially investigated, and polycyclic ketones were obtained after oxidation under mild conditions or gold-catalyzed cycloisomerization. PMID:18034446

  1. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account. (United States)

    Wu, Xiao-Feng; Fang, Xianjie; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias


    Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal

  2. Blue-light activated rapid polymerization for defect-free bulk Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) crosslinked networks. (United States)

    Shete, Abhishek U; El-Zaatari, Bassil M; French, Jonathan M; Kloxin, Christopher J


    A visible-light (470 nm wavelength) sensitive Type II photoinitiator system is developed for bulk Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions in crosslinked networks. The accelerated photopolymerization eliminates UV-mediated azide decomposition allowing for the formation of defect-free glassy networks which exhibit a narrow glass transition temperature. PMID:27499057

  3. In situ crystallization of the linear alkynes CnH2n–2 (n = 7, 8, 9, 10)

    DEFF Research Database (Denmark)

    Bond, Andrew; Davies, John E


    A manual in situ crystallization technique is described, for application on a κ-geometry area-detector instrument. The technique has been applied to grow crystals of some linear alkynes: 1-heptyne, 1-octyne, 1-nonyne and 1-decyne, Cn H2n–2 (n=7, 8, 9, 10). The structures with odd n (1-heptyne and 1......-nonyne) crystallize in space group Pca21. The structures with even n (1-octyne and 1-decyne) crystallize in space group P21/c, with two molecules in the asymmetric unit (Z′=2) and an approximately orthorhombic metric. All of the structures contain layers of molecules with a square unit mesh of dimensions...... alternation in crystal density is correlated with an alternation in melting points....

  4. Bivalent alkyne-bisphosphonate as clickable and solid anchor to elaborate multifunctional iron oxide nanoparticles with microwave enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Guenin, Erwann, E-mail: [Universite Paris 13, Sorbonne Paris Cite, CSPBAT Laboratory, UMR 7244 CNRS (France); Hardouin, Julie [University of Rouen, PBS Laboratory, UMR 6270 CNRS (France); Lalatonne, Yoann; Motte, Laurence [Universite Paris 13, Sorbonne Paris Cite, CSPBAT Laboratory, UMR 7244 CNRS (France)


    We report the elaboration of clickable superparamagnetic nanoparticles that act as a scaffold for further modifications by click chemistry. This nano platform is easily obtained by coating iron oxide nanoparticle {gamma}-Fe{sub 2}O{sub 3}, with a new bifunctional molecule (1-hydroxy-1-phosphonopent-4-ynyl)phosphonic acid (HMBPyne). The HMBP and the alkyne functions act respectively as anchoring surface group and click chemistry functionality. We evaluate the functionalization of this new 'clickable' nanoplateform using Huisgen 1,3-cycloaddition as model reaction and demonstrate the potential of microwave irradiation to increase the grafting yield. The effectiveness of click chemistry for the modification of mNPs is explored with a diverse array of functional species.

  5. Catalytic formal [2+2+1] synthesis of pyrroles from alkynes and diazenes via TiII/TiIV redox catalysis (United States)

    Gilbert, Zachary W.; Hue, Ryan J.; Tonks, Ian A.


    Pyrroles are structurally important heterocycles. However, the synthesis of polysubstituted pyrroles is often challenging. Here, we report a multicomponent, Ti-catalysed formal [2+2+1] reaction of alkynes and diazenes for the oxidative synthesis of penta- and trisubstituted pyrroles: a nitrenoid analogue to classical Pauson-Khand-type syntheses of cyclopentenones. Given the scarcity of early transition-metal redox catalysis, preliminary mechanistic studies are presented. Initial stoichiometric and kinetic studies indicate that the mechanism of this reaction proceeds through a formally TiII/TiIV redox catalytic cycle, in which an azatitanacyclobutene intermediate, resulting from [2+2] alkyne + Ti imido coupling, undergoes a second alkyne insertion followed by reductive elimination to yield pyrrole and a TiII species. The key component for catalytic turnover is the reoxidation of the TiII species to a TiIV imido via the disproportionation of an η2-diazene-TiII complex.

  6. Sonogashira Reaction of Aryl and Heteroaryl Halides with Terminal Alkynes Catalyzed by a Highly Efficient and Recyclable Nanosized MCM-41 Anchored Palladium Bipyridyl Complex

    Directory of Open Access Journals (Sweden)

    Chung-Yuan Mou


    Full Text Available A heterogeneous catalyst, nanosized MCM-41-Pd, was used to catalyze the Sonogashira coupling of aryl and heteroaryl halides with terminal alkynes in the presence of CuI and triphenylphosphine. The coupling products were obtained in high yields using low Pd loadings to 0.01 mol%, and the nanosized MCM-41-Pd catalyst was recovered by centrifugation of the reaction solution and re-used in further runs without significant loss of reactivity.

  7. Sonogashira Reaction of Aryl and Heteroaryl Halides with Terminal Alkynes Catalyzed by a Highly Efficient and Recyclable Nanosized MCM-41 Anchored Palladium Bipyridyl Complex


    Chung-Yuan Mou; Fu-Yu Tsai; Wei-Yi Wu; Shao-Hsien Huang; Bo-Nan Lin


    A heterogeneous catalyst, nanosized MCM-41-Pd, was used to catalyze the Sonogashira coupling of aryl and heteroaryl halides with terminal alkynes in the presence of CuI and triphenylphosphine. The coupling products were obtained in high yields using low Pd loadings to 0.01 mol%, and the nanosized MCM-41-Pd catalyst was recovered by centrifugation of the reaction solution and re-used in further runs without significant loss of reactivity.

  8. Lewis acid-catalyzed intramolecular [3+2] cycloaddition of cyclopropane 1,1-diesters with alkynes for the synthesis of cyclopenta[c]chromene skeletons. (United States)

    Xia, Xiao-Feng; Song, Xian-Rong; Liu, Xue-Yuan; Liang, Yong-Min


    An efficient method to construct cyclopenta[c]chromene skeletons by Lewis acid-catalyzed intramolecular [3+2] cycloaddition of cyclopropane 1,1-diesters with alkynes is presented. Two new fused cycles can be formed in one step in moderate to excellent yields (up to 94 %), and the products can be converted into bioactive barbituric acid derivatives (1) under simple reaction conditions. PMID:22488826

  9. Versatile methodology to hydrate alkynes, in the presence of a wide variety of functional groups, with Mercury(II) p-Toluensulfonamidate, under catalytic, mild and neutral conditions


    Corominas, Albert; Montaña Pedrero, Ángel-Manuel


    A method to generate carbonylic compounds from alkynes under mild and neutral conditions, with excellent functional group compatibility and high yields, is described. Hydration takes place under catalytic conditions by using from 0.1 to 0.2 equivalents of the easily available and inexpensive mercury(II) p-toluensulfonamidate in a hydroalcoholic solution. After use the catalyst is iner tized and/or recycled ...

  10. Facile synthesis of linear-dendritic cholesteryl-poly(epsilon-caprolactone)-b-(L-lysine)(G2) by thiol-ene and azide-alkyne "click" reactions

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Binder, W.H.; Tanner, S.;


    The construction of a linear-dendritic block copolymer consisting of terminal cholesteryl moiety, poly(epsilon-caprolactone), and a second generation L-lysine dendron has been accomplished by the combination of copper(I) catalyzed azide-alkyne and UV-triggered thiol-ene "click" reactions. Ring-op...... thiocholesterol. Near to quantitative functionalization of the intermediate and final products has been attained as confirmed by NMR spectroscopy and MALDI-TOF spectrometry....

  11. 1,3-Dipolar Cycloaddition Reactions of 1-(4-Phenylphenacyl)-1,10-phenanthrolinium N-Ylide with Activated Alkynes and Alkenes


    A. Badoiu; Caproiu, M. T.; Draghici, C.; Caira, M. R.; Dumitrascu, F.


    The 3 2 cycloaddition reaction of 1-(4-phenylphenacyl)-1,10-phenanthrolinium ylide with activated alkynes gave pyrrolo[1,2- 4a][1,10]phenanthrolines 6a-d. The "one pot" synthesis of 6a,b,d from 4, activatedalkenes, Et3N and tetrakis-pyridine cobalt (II) dichromate (TPCD) is described. Thehelical chirality of pyrrolophenanthrolines 6b-d was put in evidence by NMRspectroscopy.

  12. Well-defined polyethylene-based graft terpolymers by combining nitroxide-mediated radical polymerization, polyhomologation and azide/alkyne “click” chemistry†

    KAUST Repository

    Alkayal, Nazeeha


    Novel well–defined polyethylene–based graft terpolymers were synthesized via the “grafting onto” strategy by combining nitroxide-mediated radical polymerization (NMP), polyhomologation and copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry. Three steps were involved in this approach: (i) synthesis of alkyne-terminated polyethylene-b-poly(ε-caprolactone) (PE-b-PCL-alkyne) block copolymers (branches) by esterification of PE-b-PCL-OH with 4-pentynoic acid; the PE-b-PCL-OH was obtained by polyhomologation of dimethylsulfoxonium methylide to afford PE-OH, followed by ring opening polymerization of ε-caprolactone using the PE-OH as macroinitiator, (ii) synthesis of random copolymers of styrene (St) and 4-chloromethylstyrene (4-CMS) with various CMS contents, by nitroxide-mediated radical copolymerization (NMP), and conversion of chloride to azide groups by reaction with sodium azide (NaN3) (backbone) and (iii) “click” linking reaction to afford the PE-based graft terpolymers. All intermediates and final products were characterized by high-temperature size exclusion chromatography (HT-SEC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC).

  13. Alkynes as a versatile platform for construction of chemical molecular complexity and realization of molecular 3D printing (United States)

    Galkin, K. I.; Ananikov, V. P.


    The current level of scientific and technological development requires the formation of general tools and techniques. One of the most versatile technologies is 3D printing, which allows fast and efficient creation of materials and biological objects of desired shape and composition. Today, methods have been developed for 3D printing of macro- and nano-sized objects and for production of films and deposited materials with molecular precision but the most promising technology is printing at the molecular level (molecular 3D printing) for the purpose of direct construction of molecular complexity. This process is currently at the initial stage concerning selection of simple molecules to be used as building blocks possessing flexibility, availability and ease of modification. In this review, we examine the possible versatile synthons suitable for preparation of the main types of organic compounds using molecular 3D printing. The surveyed data strongly indicate that alkyne molecules may be used as a building material in a molecular 3D printer working on hydrocarbons. The bibliography includes 428 references.

  14. Hexaphenylbenzene-Stabilized Luminescent Silver Nanoclusters: A Potential Catalytic System for the Cycloaddition of Terminal Alkynes with Isocyanides. (United States)

    Pramanik, Subhamay; Bhalla, Vandana; Kumar, Manoj


    A hexaphenylbenzene (HPB)-based derivative bearing thiol groups has been designed and synthesized that undergoes aggregation-induced emission enhancement in mixed aqueous media to form rodlike fluorescent aggregates. These rodlike aggregates behave as a "not quenched" probe for the detection of silver ions and further act as reactors and stabilizers for reducing-agent-free preparation of blue luminescent silver nanoclusters at room temperature. The utilization of fluorescent supramolecular aggregates for the preparation of Ag NCs in mixed aqueous media is unprecedented in the literature. Moreover, the wet chemical method that we are reporting in the present paper for the preparation of luminescent silver nanoclusters is better than the other methods reported in the literature. Further, these in situ generated Ag NCs showed exceptional catalytic activity in the preparation of pyrroles involving cocyclization of isocyanides and terminal alkynes. Interestingly, the catalytic efficiency of in situ generated Ag NCs was found to be better than the other catalytic systems reported in the literature. PMID:26420310

  15. Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure. (United States)

    Molla, Rostam Ali; Ghosh, Kajari; Banerjee, Biplab; Iqubal, Md Asif; Kundu, Sudipta K; Islam, Sk Manirul; Bhaumik, Asim


    Ag nanoparticles (NPs) has been supported over a porous Co(II)-salicylate metal-organic framework to yield a new nanocatalyst AgNPs/Co-MOF and it has been thoroughly characterized by powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), energy dispersive X-ray spectrometry (EDX), high-resolution transmission electron microscopy (HR-TEM), UV-vis diffuse reflection spectroscopy (DRS) and N2 adsorption/desorption analysis. The AgNPs/Co-MOF material showed high catalytic activity in the carboxylation of terminal alkynes via CO2 fixation reaction to yield alkynyl carboxylic acids under very mild conditions. Due to the presence of highly reactive AgNPs bound at the porous MOF framework the reaction proceeded smoothly at 1atm CO2 pressure. Moreover, the catalyst is very convenient to handle and it can be reused for several reaction cycles without appreciable loss of catalytic activity in this CO2 fixation reaction, which suggested a promising future of AgNPs/Co-MOF nanocatalyst. PMID:27309859

  16. Triphenylene discotic liquid crystal trimers synthesized by Co2(CO8-catalyzed terminal alkyne [2 + 2 + 2] cycloaddition

    Directory of Open Access Journals (Sweden)

    Bin Han


    Full Text Available The synthesis of star-shaped discotic liquid crystal trimers using Co2(CO8-catalyzed terminal alkyne [2 + 2 + 2] cycloaddition reaction is reported. The trimers consist of three triphenylene discotic units linked to a central 1,2,4-trisubstituted benzene ring via flexible spacers. The trimers were synthesized in the yields up to 70% by mixing the monomers with 10 mol % of Co2(CO8 as the catalyst in refluxing 1,4-dioxane. The liquid crystalline properties were investigated by using polarizing optical microscopy (POM, differential scanning calorimetry (DSC and X-ray diffraction (XRD. Trimer 4 with an ester connecting group and a longer spacer exhibited a rectangular columnar mesophase, while 5b and 5c possessing an ether linkage and a shorter spacer display a hexagonal columnar mesophase. The connecting functional group and the length of the flexible spacer between the central benzene ring and the triphenylene units have pivotal influence on the mesomorphism.

  17. Beyond the use of modifiers in selective alkyne hydrogenation: silver and gold nanocatalysts in flow mode for sustainable alkene production (United States)

    Vilé, Gianvito; Pérez-Ramírez, Javier


    We report on the excellent stereo and chemoselectivity of nanosized silver and gold catalysts in the three-phase hydrogenation of acetylenic compounds under flow chemistry conditions. The materials featuring metal nanoparticles in the range of 2-21 nm were prepared by spray deposition or incipient wetness impregnation of silver nitrate and sol immobilisation of gold chloride on different carriers (Al2O3, SiO2, TiO2, and carbon), followed by activation in various atmospheres. The samples were characterised by ICP-OES, N2 sorption, XPS, HAADF-STEM, and HRTEM, and evaluated in a continuous-flow flooded-bed micro-reactor. Both metals display optimal activities for particles below 5 nm, enabling stable operation at T = 373 K and P = 10 bar. While the performance of the silver catalysts is less influenced by the support, the gold nanoparticles exhibit significant activity only when deposited on TiO2, likely due to the strong metal-support interaction. Hydrogenations of functionalised alkynes reveal that silver and gold match, and in some cases exceed, the selectivity of benchmark palladium-based catalysts. Furthermore, in contrast to Pd, the Ag and Au samples require no modifiers, which brings fundamental and practical simplifications for their understanding and large scale manufacture. Therefore, these materials could be advantageously used for the continuous production of olefinic intermediates in the fine chemical and pharmaceutical industries.We report on the excellent stereo and chemoselectivity of nanosized silver and gold catalysts in the three-phase hydrogenation of acetylenic compounds under flow chemistry conditions. The materials featuring metal nanoparticles in the range of 2-21 nm were prepared by spray deposition or incipient wetness impregnation of silver nitrate and sol immobilisation of gold chloride on different carriers (Al2O3, SiO2, TiO2, and carbon), followed by activation in various atmospheres. The samples were characterised by ICP-OES, N2 sorption

  18. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls. (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D; Krische, Michael J


    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo-, and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k, and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k, and 6m, respectively. Primary alcohols 2a, 2l, and 2p were converted to the siloxy-crotylation products 3a, 3l, and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l, and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes. PMID:26418572

  19. α-Selective Ni-Catalyzed Hydroalumination of Aryl- and Alkyl-Substituted Terminal Alkynes. Practical Syntheses of Internal Vinyl Aluminums, Halides or Boronates


    Gao, Fang; Hoveyda, Amir H.


    Methods for Ni-catalyzed hydroalumination of terminal alkynes, leading to the formation of α-vinylaluminum isomers efficiently (>98% conv in 2–12 h) and with high selectivity (95% to >98% α), are described. Catalytic α-selective hydroalumination reactions proceed in the presence of a reagent (diisobutylaluminum hydride; dibal–H) and 3.0 mol % metal complex (Ni(dppp)Cl2) that are commercially available and inexpensive. Under the same conditions, but with Ni(PPh3)2Cl2, hydroalumination becomes ...

  20. Inhibition of Growth of a Graphium sp. on Gaseous n-Alkanes by Gaseous n-Alkynes and n-Alkenes


    Curry, S.; Ciuffetti, L.; Hyman, M.


    The growth of a filamentous fungus, a Graphium sp., on n-alkanes (C(inf2) to C(inf4)) was inhibited by low concentrations of acetylene, propyne, 1-butyne, ethylene, and propylene. Acetylene and other unsaturated hydrocarbons had no effect on the growth of the Graphium sp. on potato dextrose broth, ethanol, or acetate. Our results suggest that n-alkynes and n-alkenes are selective inhibitors of a nonspecific monooxygenase enzyme responsible for the initial oxidation of n-alkanes.

  1. Synthesis and post-synthetic modification of amine-, alkyne-, azide- and nitro-functionalized metal-organic frameworks based on DUT-5. (United States)

    Gotthardt, Meike A; Grosjean, Sylvain; Brunner, Tobias S; Kotzel, Johannes; Gänzler, Andreas M; Wolf, Silke; Bräse, Stefan; Kleist, Wolfgang


    Functionalized 4,4'-biphenyldicarboxylic acid molecules with additional amine, alkyne, azide or nitro groups were prepared and applied in the synthesis of novel metal-organic frameworks and mixed-linker metal-organic frameworks isoreticular to DUT-5. The properties of the frameworks could be tuned by varying the number of functional groups in the materials and the amine groups were employed in post-synthetic modification reactions without changing the framework structure or significantly decreasing the porosity of the materials. PMID:26336838

  2. Application of Azide-Alkyne Cycloaddition “Click Chemistry” for the Synthesis of Grb2 SH2 Domain-Binding Macrocycles


    Choi, Won Jun; Shi, Zhen-Dan; Worthy, Karen M.; Bindu, Lakshman; Karki, Rajeshri G.; Nicklaus, Marc C.; Fisher, Robert J.; Burke, Terrence R


    Copper (I) promoted [3+2] Huisgen cycloaddition of azides with terminal alkynes was used to prepare triazole-containing macrocycles based on the Grb2 SH2 domain-binding motif, “Pmp-Ac6 c-Asn”, where Pmp and Ac6 c stand for 4-phosphonomethylphenylalanine and 1-aminocyclohexanecarboxylic acid, respectively. When cycloaddition reactions were conducted at 1 mM substrate concentrations cyclization of monomeric units occurred. At 2 mM substrate concentrations the predominant products were macrocycl...

  3. Isomerization of Internal Alkynes to Iridium(III Allene Complexes via C–H Bond Activation: Expanded Substrate Scope, and Progress towards a Catalytic Methodology

    Directory of Open Access Journals (Sweden)

    Neha Phadke


    Full Text Available The synthesis of a series of allene complexes (POCOPIr(η2-RC=.=CR’ 1b–4b (POCOP = 2,6-bis(di-tert-butylphosphonitobenzene via isomerization of internal alkynes is reported. We have demonstrated that the application of this methodology is viable for the isomerization of a wide variety of alkyne substrates. Deuterium labeling experiments support our proposed mechanism. The structures of the allene complexes 1b–4b were determined using spectroscopic data analysis. Additionally, the solid-state molecular structure of complex 2b was determined using single crystal X-ray diffraction studies and it confirmed the assignment of an iridium-bound allene isomerization product. The rates of isomerization were measured using NMR techniques over a range of temperatures to allow determination of thermodynamic parameters. Finally, we report a preliminary step towards developing a catalytic methodology; the allene may be liberated from the metal center by exposure of the complex to an atmosphere of carbon monoxide.

  4. Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption. (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Bonduelle, Colin; Rytkönen, Jussi; Raula, Janne; Almeida, Sérgio; Närvänen, Ale; Salonen, Jarno J; Lecommandoux, Sebastien; Hirvonen, Jouni T; Santos, Hélder A


    Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications. PMID:25539741

  5. Alkyne Hydroamination and Trimerization with Titanium Bis(phenolate)pyridine Complexes: Evidence for Low-Valent Titanium Intermediates and Synthesis of an Ethylene Adduct of Titanium(II)

    KAUST Repository

    Tonks, Ian A.


    A class of titanium precatalysts of the type (ONO)TiX2 (ONO = pyridine-2,6-bis(4,6-di-tert-butylphenolate); X = Bn, NMe2) has been synthesized and crystallographically characterized. The (ONO)TiX2 (X = Bn, NMe2, X2 = NPh) complexes are highly active precatalysts for the hydroamination of internal alkynes with primary arylamines and some alkylamines. A class of titanium imido/ligand adducts, (ONO)Ti(L)(NR) (L = HNMe2, py; R = Ph, tBu), have also been synthesized and characterized and provide structural analogues to intermediates on the purported catalytic cycle. Furthermore, these complexes exhibit unusual redox behavior. (ONO)TiBn2 (1) promotes the cyclotrimerization of electron-rich alkynes, likely via a catalytically active TiII species that is generated in situ from 1. Depending on reaction conditions, these TiII species are proposed to be generated through Ti benzylidene or imido intermediates. A formally TiII complex, (ONO)Ti II(η2-C2H4)(HNMe2) (7), has been prepared and structurally characterized. © 2013 American Chemical Society.

  6. Ruthenium(0)-catalyzed hydroarylation of alkynes via ketone-directed C-H functionalization using in situ-generated ruthenium complexes. (United States)

    Hu, Feng; Szostak, Michal


    A versatile method for the Ru(0)-catalyzed hydroarylation of alkynes using weakly-coordinating ketones enabled by the in situ generation of a Ru(0) catalyst from an air-stable, inexpensive and user-friendly Ru(ii) precatalyst is reported for the first time. The method provides straightforward access to a wide range of functionalized ketone building blocks that would be difficult to access by conventional methods. Most crucially, this report demonstrates for the first time that the in situ generated Ru(0) catalysts advance the classic Ru(0)-catalyzed C-H functionalization platform to substrates that would otherwise be unreactive. Product manipulation and mechanistic studies are reported. PMID:27411592

  7. Site-specific bioconjugation of a murine dihydrofolate reductase enzyme by copper(I-catalyzed azide-alkyne cycloaddition with retained activity.

    Directory of Open Access Journals (Sweden)

    Sung In Lim

    Full Text Available Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC is an efficient reaction linking an azido and an alkynyl group in the presence of copper catalyst. Incorporation of a non-natural amino acid (NAA containing either an azido or an alkynyl group into a protein allows site-specific bioconjugation in mild conditions via CuAAC. Despite its great potential, bioconjugation of an enzyme has been hampered by several issues including low yield, poor solubility of a ligand, and protein structural/functional perturbation by CuAAC components. In the present study, we incorporated an alkyne-bearing NAA into an enzyme, murine dihydrofolate reductase (mDHFR, in high cell density cultivation of Escherichia coli, and performed CuAAC conjugation with fluorescent azide dyes to evaluate enzyme compatibility of various CuAAC conditions comprising combination of commercially available Cu(I-chelating ligands and reductants. The condensed culture improves the protein yield 19-fold based on the same amount of non-natural amino acid, and the enzyme incubation under the optimized reaction condition did not lead to any activity loss but allowed a fast and high-yield bioconjugation. Using the established conditions, a biotin-azide spacer was efficiently conjugated to mDHFR with retained activity leading to the site-specific immobilization of the biotin-conjugated mDHFR on a streptavidin-coated plate. These results demonstrate that the combination of reactive non-natural amino acid incorporation and the optimized CuAAC can be used to bioconjugate enzymes with retained enzymatic activity.

  8. Computational Exploration of Rh(III)/Rh(V) and Rh(III)/Rh(I) Catalysis in Rhodium(III)-Catalyzed C-H Activation Reactions of N-Phenoxyacetamides with Alkynes. (United States)

    Yang, Yun-Fang; Houk, K N; Wu, Yun-Dong


    The selective rhodium-catalyzed functionalization of arenes is greatly facilitated by oxidizing directing groups that act both as directing groups and internal oxidants. We report density functional theory (B3LYP and M06) investigations on the mechanism of rhodium(III)-catalyzed redox coupling reaction of N-phenoxyacetamides with alkynes. The results elucidated the role of the internal oxidizing directing group, and the role of Rh(III)/Rh(I) and Rh(III)/Rh(V) catalysis of C-H functionalizations. A novel Rh(III)-Rh(V)-Rh(III) cycle successfully rationalizes recent experimental observations by Liu and Lu et al. ( Liu , G. Angew. Chem. Int. Ed. 2013 , 52 , 6033 ) on the reactions of N-phenoxyacetamides with alkynes in different solvents. Natural Bond Orbital (NBO) analysis confirms the identity of Rh(V) intermediate in the catalytic cycle. PMID:27177448

  9. Synthesis of 2-Substituted Benzofurans from o-Iodophenols and Terminal Alkynes with a Recyclable Palladium Catalyst Supported on Nano-sized Carbon Balls under Copper- and Ligand-Free Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yum, Eul Kgun; Yang, Okkyung; Kim, Jieun; Park, Hee Jank [Chungnam National Univ., Daejeon (Korea, Republic of)


    We have developed a one-step synthesis of benzofurans from o-iodophenol and various terminal alkynes, by using Pd catalyst supported on nano-sized carbon balls (NCB) under copper- and ligand free conditions. This recyclable catalyst could be reused more than 5 times in the same heteroannulation reaction. The results have demonstrated that diverse 2-substituted benzofurans with tolerant functional groups can be prepared simply and conveniently under these conditions.

  10. Mechanism and Selectivity of Ru(II) - and Rh(III) -Catalyzed Oxidative Spiroannulation of Naphthols and Phenols with Alkynes through a C-H Activation/Dearomatization Strategy. (United States)

    Zhang, Mei; Huang, Genping


    The ruthenium- and rhodium-catalyzed oxidative spiroannulation of naphthols and phenols with alkynes was investigated by means of density functional theory calculations. The results show that the reaction undergoes O-H deprotonation/C(sp(2) )-H bond cleavage through a concerted metalation-deprotonation mechanism/migratory insertion of the alkyne into the M-C bond to deliver the eight-membered metallacycle. However, the dearomatization through the originally proposed enol-keto tautomerization/C-C reductive elimination was calculated to be kinetically inaccessible. Alternatively, an unusual metallacyclopropene, generated from the isomerization of the eight-membered metallacycle through rotation of the C-C double bond, was identified as a key intermediate to account for the experimental results. The subsequent C-C coupling between the carbene carbon atom and the carbon atom of the 2-naphthol/phenol ring was calculated to be relatively facile, leading to the formation of the unexpected dearomatized products. The calculations reproduce quite well the experimentally observed formal [5+2] cycloaddition in the rhodium-catalyzed oxidative annulation of 2-vinylphenols with alkynes. The calculations show that compared with the case of 2-alkenylphenols, the presence of conjugation effects and less steric repulsion between the phenol ring and the vinyl moiety make the competing reductive oxyl migration become dominant, which enables the selectivity switch from the spiroannulation to the formal [5+2] cycloaddition. PMID:27225930

  11. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Atif Sarwar

    Full Text Available Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68 demonstrated the safety; suggesting that these derivatives could be

  12. A Two-Component Alkyne Metathesis Catalyst System with an Improved Substrate Scope and Functional Group Tolerance: Development and Applications to Natural Product Synthesis. (United States)

    Schaubach, Sebastian; Gebauer, Konrad; Ungeheuer, Felix; Hoffmeister, Laura; Ilg, Marina K; Wirtz, Conny; Fürstner, Alois


    Although molybdenum alkylidyne complexes such as 1 endowed with triarylsilanolate ligands are excellent catalysts for alkyne metathesis, they can encounter limitations when (multiple) protic sites are present in a given substrate and/or when forcing conditions are necessary. In such cases, a catalyst formed in situ upon mixing of the trisamidomolybenum alkylidyne complex 3 and the readily available trisilanol derivatives 8 or 11 shows significantly better performance. This two-component system worked well for a series of model compounds comprising primary, secondary or phenolic -OH groups, as well as for a set of challenging (bis)propargylic substrates. Its remarkable efficiency is also evident from applications to the total syntheses of manshurolide, a highly strained sesquiterpene lactone with kinase inhibitory activity, and the structurally demanding immunosuppressive cyclodiyne ivorenolide A; in either case, the standard catalyst 1 largely failed to effect the critical macrocyclization, whereas the two-component system was fully operative. A study directed toward the quinolizidine alkaloid lythrancepine I features yet another instructive example, in that a triyne substrate was metathesized with the help of 3/11 such that two of the triple bonds participated in ring closure, while the third one passed uncompromised. As a spin-off of this project, a much improved ruthenium catalyst for the redox isomerization of propargyl alcohols to the corresponding enones was developed. PMID:27203803

  13. Steering the azido-tetrazole equilibrium of 4-azidopyrimidines via substituent variation - implications for drug design and azide-alkyne cycloadditions. (United States)

    Thomann, A; Zapp, J; Hutter, M; Empting, M; Hartmann, R W


    This paper focuses on an interesting constitutional isomerism called azido-tetrazole equilibrium which is observed in azido-substituted N-heterocycles. We present a systematic investigation of substituent effects on the isomer ratio within a 2-substituted 4-azidopyrimidine model scaffold. NMR- and IR-spectroscopy as well as X-ray crystallography were employed for thorough analysis and characterization of synthesized derivatives. On the basis of this data, we demonstrate the possibility to steer this valence tautomerism towards the isomer of choice by means of substituent variation. We show that the tetrazole form can act as an efficient disguise for the corresponding azido group masking its well known reactivity in azide-alkyne cycloadditions (ACCs). In copper(I)-catalyzed AAC reactions, substituent-stabilized tetrazoles displayed a highly decreased or even abolished reactivity whereas azides and compounds in the equilibrium were directly converted. By use of an acid sensitive derivative, we provide, to our knowledge, the first experimental basis for a possible exploitation of this dynamic isomerism as a pH-dependent azide-protecting motif for selective SPAAC conjugations in aqueous media. Finally, we demonstrate the applicability and efficiency of stabilized tetrazolo[1,5-c]pyrimidines for Fragment-Based Drug Design (FBDD) in the field of quorum sensing inhibitors. PMID:26340222

  14. Covalent attachment of diphosphine ligands to glassy carbon electrodes via Cu-catalyzed alkyne-azide cycloaddition. Metallation with Ni(II). (United States)

    Das, Atanu K; Engelhard, Mark H; Lense, Sheri; Roberts, John A S; Bullock, R Morris


    Covalent tethering of P(Ph)2N(C6H4C≡CH)2 ligands (P(Ph)2N(C6H4C≡CH)2 = 1,5-di-(4-ethynylphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) to planar, azide-terminated glassy carbon electrode surfaces has been accomplished using a Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) coupling reaction, using a BH3←P protection-deprotection strategy. Deprotected, surface-confined ligands were metallated using [Ni(II)(MeCN)6](BF4)2. X-ray photoelectron spectroscopic measurements demonstrate that metallation introduced 1.3 equivalents Ni(II) per diphosphine onto the electrode surface. Exposure of the surface to a second diphosphine ligand, P(Ph)2N(Ph)2, resulted in the removal of Ni from the surface. Protection, coupling, deprotection, and metallation conditions were optimized using solution-phase model systems, with benzyl azide as a model for the azide-terminated carbon surface; these reactions generate a [Ni(II)(diphosphine)2](2+) complex. PMID:25811536

  15. Hydrogen Bonds between Acidic Protons from Alkynes (C–H···O and Amides (N–H···O and Carbonyl Oxygen Atoms as Acceptor Partners

    Directory of Open Access Journals (Sweden)

    Pierre Baillargeon


    Full Text Available Crystals of tert-butyl (2S-2-(prop-2-yn-1-ylcarbamoylpyrrolidine-1-carboxylate (Boc-L-Pro-NHCH2CCH have been obtained. The title compound crystallizes easily as sharp needles in orthorhombic system, space group P 21 21 21 with a = 9.2890(2, b = 9.7292(2, c = 15.7918(4 Å, V = 1427.18(6 Å3, and Z = 4. The main feature of the structure is the orientation of the carbamate and amide. Their dipoles add up and the molecule displays an electric dipole moment of 5.61 D from B3LYP/6-31G(d calculations. The antiparallel H bonding of amides and the alignment of dipoles induce columnar stacking (the dipole moment along the columnar a axis is 4.46 D for each molecule. The other components across the other axes are, therefore weaker, (3.17 D and 1.23 D along the b and c axes, resp.. The resulting anisotropic columns pack side by side, in an antiparallel fashion mostly by (alkyne CH···O=C (carbamate interactions.

  16. Scope and Mechanistic Investigations on the Solvent-Controlled Regio- and Stereoselective Formation of Enol Esters from the Ruthenium-Catalyzed Coupling Reaction of Terminal Alkynes and Carboxylic Acids


    Yi, Chae S.; Gao, Ruili


    The ruthenium-hydride complex (PCy3)2(CO)RuHCl was found to be a highly effective catalyst for the alkyne-to-carboxylic acid coupling reaction to give synthetically useful enol ester products. Strong solvent effect was observed for the ruthenium catalyst in modulating the activity and selectivity; the coupling reaction in CH2Cl2 led to the regioselective formation of gem-enol ester products, while the stereoselective formation of (Z)-enol esters was obtained in THF. The coupling reaction was ...

  17. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. (United States)

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad


    During this study, we report the green synthesis of copper nanoparticles (Cu NPs) using Ginkgo biloba L. leaf extract as a reducing and stabilizing agent under surfactant-free conditions. The formation of Cu NPs is monitored by recording the UV-vis absorption spectra. The green synthesized Cu NPs are characterized by TEM, EDS, FT-IR and UV-visible techniques. According to UV-vis results, the synthesized Cu NPs by this method are quite stable even after one month indicating the stability of Cu NPs. In terms of environmental impact and economy, metallic Cu NPs offer several advantages over homogeneous and traditional heterogeneous catalysts. In addition, due to the increased metal surface area, Cu NPs shows very high catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. Furthermore, the catalyst can be simply recovered and reused several times with almost no loss in activity. PMID:26164245


    Energy Technology Data Exchange (ETDEWEB)

    Huggins, John Mitchell


    I. This study reports the rapid reaction under mild conditions of internal or terminal alkynes with methyl (acetyl~ acetonato) (triphenylphosphine) nickel (1) in either aromatic or ether solvents. In all cases vinylnickel products 2 are formed by insertion of the alkyne into the nickel=methyl bond. These complexes may be converted into a variety of organic products (e.g. alkenes, esters, vinyl halides) by treatment with appropriate reagents. Unsymmetrical alkynes give selectively the one regioisomer with the sterically largest substituent next to the nickel atom. In order to investigate the stereochemistry of the initial insertion, a x-ray diffraction study of the reaction of 1 with diphenylacetylene was carried out. This showed that the vinylnickel complex formed by overall trans insertion was the product of the reaction. Furthermore, subsequent slow isomerization of this complex, to a mixture of it and the corresponding cis isomer, demonstrated that this trans addition product is the kinetic product of the reaction. In studies with other alkynes, the product of trans addition was not always exclusively (or even predominantly) formed, but the ratio of the stereoisomers formed kinetically was substantially different from the thermodynamic ratio. Isotope labeling, added phosphine, and other experiments have allowed us to conclude that the mechanism of this reaction does involve initial cis addition. However, a coordinatively unsaturated vinylnickel complex is initially formed which can undergo rapid, phosphine-catalyzed cis-trans isomerization in competition with its conversion to the isolable phosphine-substituted kinetic reaction products. II. The reaction of CpMo(CO){sub 3}H (1a) with CpMo(CO){sub 3}R (2, R= CH{sub 3}, C{sub 2}H{sub 5}) at 50{degrees} C in THF gives the aldehyde RCHO and the dimers [CpMo(CO){sub 3}]{sub 2} (3a) and [CpMo(CO){sub 2}]{sub 2} (4a). Labeling one of the reactants with a methylcyclopentadienyl ligand it was possible to show that the

  19. Utilizing copper(I) catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition for the surface modification of colloidal particles with electroactive and emissive moieties (United States)

    Rungta, Parul

    " chemistry; Aqueous-phase 83 nm poly(propargyl acrylate) (PA) nanoparticles were surface-functionalized with sparingly water soluble fluorescent moieties through a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) (i.e., "click" transformation) to produce fluoroprobes with a large Stokes shift. For moieties which could not achieve extensive surface coverage on the particles utilizing a standard click transformation procedure, the presence of beta-cyclodextrin (beta-CD) during the transformation enhanced the grafting density onto the particles. For an oxadiazole containing molecule (AO), an azide-modified coumarin 6 (AD1) and a polyethylene glycol modified naphthalimide-based emitter (AD2), respectively, an 84%, 17% and 5% increase in the grafting densities were observed, when the transformation was performed in the presence of beta-CD. In contrast, a carbazolyl-containing moiety (AC) exhibited a slight retardation in the final grafting density when beta-CD was employed. Photoluminescence studies indicated that AC & AO when attached to the particles form an exciplex. An efficient energy transfer from the exciplex to the surface attached AD2 resulted in a total Stokes shift of 180 nm for the modified particles. (3) The synthesis and characterization of near-infrared (NIR) emitting particles for potential applications in cancer therapy. PA particles were surface modified through the "click" transformation of an azide-terminated indocyanine green (azICG), an NIR emitter, and poly(ethylene glycol) (azPEG) chains of various molecular weights. The placement of azICG onto the surface of the particles allowed for the chromophores to complex with bovine serum albumin (BSA) when dispersed in PBS that resulted in an enhancement of the dye emission. In addition, the inclusion of azPEG with the chromophores onto the particle surface resulted in a synergistic nine-fold enhancement of the fluorescence intensity, with azPEGs of increasing molecular weight amplifying the response

  20. Simulation of thermally coupled catalytic distillation flowsheets for C3 alkyne selective hydrogenation%C3选择性加氢热耦合催化精馏流程模拟

    Institute of Scientific and Technical Information of China (English)

    王易卓; 罗祎青; 钱行; 袁希钢


    In order to reduce effectively the refrigeration cost for the process of selective hydrogenation of C3 alkyne into alkene, three novel thermally coupled catalytic distillation flowsheets are proposed. In the proposed flowsheets, the reactor for catalytic hydrogenation of C3 components is settled in the lower part of the deethanizer in the original process and the three columns are thermally coupled in different ways. The proposed flowsheets are rigorously simulated and evaluated. The results show that, compared with original process, the proposed processes raise the convert ratio of hydrogenation, and at the same time, significant energy saving can be achieved by the thermal couplings, leading to a decrease in the total annual cost by 4.107%, 6.420%and 10.337%respectively for the three proposed flowsheets.%针对C3选择性加氢过程中冷剂费用过高问题提出将选择性加氢催化反应器设置在脱乙烷精馏塔的提馏段,并通过原流程的3个精馏塔的不同热耦合方式所构成的3种热耦合催化精馏结构;对三热耦合催化精馏结构分别进行严格模拟和评价,表明通过分离和加氢反应的结合增加了加氢反应的转化率,并通过热耦合降低了分离能耗,年度总费用降低显著。模拟结果表明,3种方案的年度总费用节约效果分别为4.107%、6.420%和10.337%。

  1. Ligand Synthesis Catalyst and Complex Metal Ion: Multicomponent Synthesis of 1,3-Bis(4-phenyl-[1,2,3]triazol-1-yl-propan-2-ol Copper(I Complex and Application in Copper-Catalyzed Alkyne-Azide Cycloaddition

    Directory of Open Access Journals (Sweden)

    María Teresa Ramírez-Palma


    Full Text Available A new bistriazole copper complex was synthesized by direct treatment of an alkyne, an azide, and CuI as copper salt through in situ ligand formation under a multicomponent reaction process. This complex was analyzed by XPS, TGA, DSC, and SEM techniques and revealed a triangular-shaped morphology, high thermal stability, and catalytic power in CuAAC reactions, requiring only 2.5% mol catalyst to afford 1,2,3-triazoles in good yields which can be reused at least for 4 cycles.

  2. Catalyst Development for Selective Hydrogenation of Functionalized Alkynes and Nitroarenes


    Yarulin, Artur


    Catalyst design is of major importance for fine chemicals industry due to complexity of the synthesis and high product quality requirements. Moreover, the catalyst formulation has to comply with the standards of health, safety and environmental regulations. The conventional systems often do not satisfy the latter criteria and, therefore, have to be improved to become both efficient and eco-friendly. The advancing technologies of materials synthesis and characterization all...

  3. Modification of inorganic surface with 1-alkenes and 1-alkynes

    NARCIS (Netherlands)

    Maat, ter J.


    Surface modification is important because it allows the tuning of surface properties, thereby enabling new applications of a material. It can change physical properties such as wettability and friction, but can also introduce chemical functionalities and binding specificity. Several techniques are a

  4. Copper-catalyzed selective hydroamination reactions of alkynes


    Shi, Shi-Liang; Buchwald, Stephen L.


    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalys...

  5. Silver(I)-Catalyzed Addition of Phenols to Alkyne Cobalt Cluster Stabilized Carbocations. (United States)

    Valderas, Carolina; Casarrubios, Luis; Lledos, Agusti; Ortuño, Manuel A; de la Torre, María C; Sierra, Miguel A


    A smooth catalytic method to use phenols as the nucleophilic partner in the Nicholas reaction has been developed. The method uses either Ag(I) or Au(I) catalysts with AgClO4 or AgBF4 as the most efficient catalysts tested. Neither additional additives nor cocatalysts were required and the formation of the corresponding phenol adducts occurred in excellent yields. The process has the single limitation of the inability of less nucleophilic phenols (4-nitrophenol) to generate the corresponding adducts. Additionally, the reaction is highly diastereoselective. DFT calculations allow a catalytic cycle to be proposed that involves trimetallic intermediates; the rate-determining step of the reaction is hydroxy-group elimination in a cobalt-silver trimetallic intermediate. PMID:27187529

  6. Construction of a Multifunctional Enzyme Complex via the Strain-Promoted Azide-Alkyne Cycloaddition

    NARCIS (Netherlands)

    Schoffelen, S.; Beekwilder, M.J.; Debets, M.F.; Bosch, H.J.; Hest, van J.C.M.


    Inspired by the multienzyme complexes occurring in nature, enzymes have been brought together in vitro as well. We report a co-localization strategy milder than nonspecific cross-linking, and free of any scaffold and affinity tags. Using non-natural amino acid incorporation, two heterobifunctional l

  7. Allylpalladium(II) Histidylidene Complexes and Their Application in Z-Selective Transfer Semihydrogenation of Alkynes

    NARCIS (Netherlands)

    Drost, Ruben M.; Broere, Daniël L J; Hoogenboom, Jorin; de Baan, Simone N.; Lutz, Martin; de Bruin, B.; Elsevier, C. J.


    We have studied the use of amino acid histidine as a precursor for N-heterocyclic carbene (NHC) ligands. This natural amino acid possesses an imidazole substituent, which makes it an interesting NHC precursor that contains both an acid and an amino functionality. These functionalities may be used fo

  8. Azide- and Alkyne-Functionalised α- and β3-Amino Acids

    DEFF Research Database (Denmark)

    Sminia, T.J.; Pedersen, Daniel Sejer


    The synthesis and full characterisation of bifunctional β -amino acids that have side chains functionalised with terminal azides (S)-4 and (R)-4 or acetylenes 5 and 6 is reported for the first time. The building blocks incorporate a turn-inducing β -segment and a side chain that can be...... functionalised further, for example, through copper-catalysed Huisgen cycloaddition. Moreover, the corresponding α-amino acids 1 and 3 have been synthesised and characterised. All amino acid building blocks were of high optical purity as demonstrated by derivatisation and subsequent NMR analysis. © Georg Thieme...

  9. Synthesis of Dendronized Poly(l-Glutamate) via Azide-Alkyne Click Chemistry


    Peter Perdih; Andrej Kržan; Ema Žagar


    Poly(l-glutamate) (PGlu) was modified with a second-generation dendron to obtain the dendronized polyglutamate, P(Glu-D). Synthesized P(Glu-D) exhibited a degree of polymerization (DPn) of 46 and a 43% degree of dendronization. Perfect agreement was found between the P(Glu-D) expected structure and the results of nuclear magnetic resonance spectroscopy (NMR) and size-exclusion chromatography coupled to a multi-angle light-scattering detector (SEC-MALS) analysis. The PGlu precursor was modifie...

  10. The pyrolysis of a tungsten alkyne complex as a low temperature route to tungsten carbide

    International Nuclear Information System (INIS)

    The synthesis of designed organometallic compounds and their selective activation and transformation into materials of high purity (for electronic applications), high strength and/or high temperature stability (for refractory or structural applications), represents a potential area of extreme growth in organometallic chemistry. Research in this area could provide entirely new, inexpensive, fabrication methods for common and exotic materials. In this paper, the authors develop design principles for the preparation of organometallic precursors, ''premetallics'' that can be selectively converted, in high yields, to a desired refractory metal. They also describe preliminary efforts to prepare tungsten carbides (WC/sub x/) from a prematallic

  11. A general A{sup 3}: coupling reaction based on functionalized alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, Edison P.; Santos, Alcindo A. dos, E-mail: [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica


    A range of hydroxypropargylpiperidones were efficiently obtained by a one-pot three-component coupling reaction of aldehydes, alkynols, and a primary amine equivalent (4-piperidone hydrochloride hydrate) in ethyl acetate using copper(I) chloride as a catalyst. The developed protocol proved to be equally efficient using a range of aliphatic aldehydes, including paraformaldehyde, and using protected and unprotected alkynols. (author)

  12. Steric Effects in Reactions of Decamethyltitanocene Hydride with Internal Alkynes, Conjugated Diynes, and Conjugated Dienes

    Czech Academy of Sciences Publication Activity Database

    Pinkas, Jiří; Gyepes, Robert; Císařová, I.; Kubišta, Jiří; Horáček, Michal; Mach, Karel


    Roč. 33, č. 13 (2014), s. 3399-3413. ISSN 0276-7333 R&D Projects: GA ČR(CZ) GAP207/12/2368; GA ČR GP203/09/P276 Institutional support: RVO:61388955 Keywords : atoms * complexation * Electron spin resonance spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.126, year: 2014

  13. Synthesis and characterization of alkene-extended tetrathiafulvalenes with lateral alkyne appendages

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brønsted; Gisselbrecht, Jean-Paul; Thorup, Niels;


    Tetrathiafulvalene (TTF) derivatives containing a diethynyl-substituted alkene spacer were synthesized and investigated for their electronic and structural properties. Co-planarity of the central diethynylethene unit and the two dithiole rings were confirmed by X-ray crystallographic analysis....

  14. Synthesis and Intramolecular [4+2] Cycloaddition Reactions of 4-Pyridazinecarbonitriles with Alkyne Side Chains


    Norbert Haider; Günther Fülep


    The preparation of a series of new 3-(alkynyl-X)-substituted 4-pyridazinecarbonitriles 2-5 (X = O, NH) is described. The compounds are shown to undergo thermally induced intramolecular Diels-Alder reactions with inverse electron demand, affording the fused benzonitriles 6-8. Incorporation of a 1,2-phenylene unit into the side chain, as in the case of compounds 10 and 13, results in a more favorable conformation of the dienophilic substructure and thus to a pronounced acceleration of the [4+2]...

  15. Tandem aldehyde-alkyne-amine coupling/cycloisomerization: A new synthesis of coumarins. (United States)

    Reddy, Maddi Sridhar; Thirupathi, Nuligonda; Haribabu, Madala


    Cu-catalyzed A(3) coupling of ethoxyacetylene, pyrrolidine and salicylaldehydes led to a concomitant cycloisomerization followed by hydrolysis of the resultant vinyl ether to afford coumarins in a cascade process. The reaction proceeded through exclusive 6-endo-dig cyclization and is compatible with halo and keto groups giving coumarins in good to moderate yields. PMID:23400373

  16. Environmentally Benign Synthesis of Enamides via Waste-Free Catalytic Addition of Amides to Terminal Alkynes


    Salih, Kifah S. M.


    A number of natural products are known that contain an enamide as a key structural feature. This functionality is a very important subunit in various biologically active products and pharmaceutical drug lead compounds. In addition, enamides serve as highly versatile synthetic intermediates, particularly in the pericyclic reaction, formation of heterocycles, cross-coupling and in asymmetric synthesis. As a result, several protocols have been devised for the preparation of enamides. Traditional...

  17. Displacement of ethene from the decamethyltitanocene-ethene complex with internal alkynes, substituent-dependent alkyne-to-allene rearrangement, and the electronic transition relevant to the back-bonding interaction

    Czech Academy of Sciences Publication Activity Database

    Pinkas, Jiří; Gyepes, R.; Císařová, I.; Kubišta, Jiří; Horáček, Michal; Mach, Karel


    Roč. 44, č. 16 (2015), s. 7276-7291. ISSN 1477-9226 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:61388955 Keywords : titanocene-ethene complex * tail dimerization * molecular structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  18. Copper nanoparticles supported on silica coated maghemite as versatile, magnetically recoverable and reusable catalyst for alkyne coupling and cycloadditon reactions


    Nador, Fabiana; Volpe, María A.; Alonso Valdés, Francisco; Feldhoff, Armin; Kirschning, Andreas; Radivoy, Gabriel


    A versatile and magnetically recoverable catalyst consisting of copper nanoparticles on silica coated maghemite nanoparticles (MagSilica®) is presented. The catalyst has been prepared under mild conditions by fast reduction of anhydrous CuCl2 with lithium sand and a catalytic amount of DTBB (4,4’-di-tert-butylbiphenyl) as electron carrier, in the presence of the magnetic support. The catalyst has been fully characterized and its performance in different coupling and cycloaddition reactions of...

  19. Formation of a Ruthenium-Arene Complex, Cyclometallation with a Substituted Benzylamine, and Insertion of an Alkyne (United States)

    Chetcuti, Michael J.; Ritleng, Vincent


    The three step synthesis is presented to allow the functionalization of an aromatic amine by forming new C-C and C-N bonds via an intramolecular C-H activation under mild conditions. The reactions are stoichiometric and allow the students to isolate the different organometallic intermediates.

  20. Monomeric bis(h2-alkyne)copper(I) and -silver(I) halides, pseudohalides and arenethiolates

    NARCIS (Netherlands)

    Koten, G. van; Janssen, M.D.; Herres, M.; Zsolnai, L.; Spek, A.L.; Grove, D.M.; Lang, H.


    The synthesis and characterization of the complexes [(5-C5H4SiMe3)2Ti(CCSiMe3)2]MX (M = Cu, X = OTf (2), SC6H5 (4), SC6H4NMe2-2 (5), SC6H4CH2NMe2-2 (6), S-1-C10H6NMe2-8 (7), Cl (8), (NCMe)PF6 (9); M = Ag, X = OTf (3)) are described. These complexes contain monomeric MX entities, which are 2-bonded b


    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Synthesis of alkynes and alkynyl iodides bearing a protected amino alcohol moiety as functionalized amino acids precursors

    Institute of Scientific and Technical Information of China (English)

    AYED; Charfedinne; PICARD; Julien; LUBIN-GERMAIN; Nadège; UZIEL; Jacques; AUGE; Jacques


    Amino acid precursors in protected amino alcohol form are important synthons that can be used as building-blocks for the hemisynthesis of non-natural amino acids.Serine can be used as a common starting material for the synthesis of such compounds differently protected.Particularly,protected amino alcohols bearing an ethynyl and/or an iodoethynyl group can be used in cross-couplings,in 1,3-dipolar cycloadditions and/or in Nozaki-Hiyama-Kishi type reactions.We thus demonstrated that the efficiently protected amino alcohols derived from serine can be coupled to a sugar derivative by an indium mediated alkynylation reaction.The conditions of this coupling are compatible with such functionalized derivatives and allow envisaging an access to C-glycosylated amino acids.

  3. Synthesis of Substituted 2-Aminoimidazoles via Pd-Catalyzed Alkyne Carboamination Reactions. Application to the Synthesis of Preclathridine Natural Products


    Zavesky, Blane P.; Babij, Nicholas R.; Wolfe, John P.


    A new method for the synthesis of 2-aminoimidazole products is described. The heterocyclic products are generated in good yields via Pd-catalyzed carboamination reactions of N-propargyl guanidines and aryl triflates. This methodology generates both a C–N and C–C bond during the annulation step and facilitates the rapid construction of 2-aminoimidazole products with different aryl groups. The utility of this methodology was demonstrated in the total synthesis of preclathridine A, preclathridin...

  4. Continuous metal scavenging and coupling to one-pot copper-catalyzed azide-alkyne cycloaddition click reaction in flow

    NARCIS (Netherlands)

    Vural - Gursel, Dr. Iris; Aldiansyah, Ferry; Wang, Qi; Noël, Timothy; Hessel, Volker


    Increasing usage of catalytic chemistry calls for efficient removal of metal traces. This paper describes the development and optimization of a scavenger-based extraction in flow to remove metal catalysts. It enables liquid-liquid extraction with slug flow and phase separation with a porous fluoropo

  5. Facile Gold-Catalyzed Heterocyclization of Terminal Alkynes and Cyanamides Leading to Substituted 2-Amino-1,3-Oxazoles. (United States)

    Rassadin, Valentin A; Boyarskiy, Vadim P; Kukushkin, Vadim Yu


    Facile gold-catalyzed heterocyclization based upon intermolecular trapping of the generated α-oxo gold carbenes with various cyanamides R(2)R(3)NCN (R(2)/R(3) = Alk/Alk, -(CH2)2O(CH2)2-, Ar/Ar, Ar/H) has been developed. In most cases, 2-amino-1,3-oxazoles functionalized at the nitrogen atom as well as at the fifth position of the heterocyclic ring (12 examples) were isolated in good to moderate yields. PMID:26135038

  6. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts

    Czech Academy of Sciences Publication Activity Database

    Kosydar, R.; Goral, M.; Drelinkiewicz, A.; Stejskal, Jaroslav


    Roč. 67, č. 8 (2013), s. 1087-1095. ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * palladium * hydrogenation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  7. Citrus Peel Additives for One-Pot Triazole Formation by Decarboxylation, Nucleophilic Substitution, and Azide-Alkyne Cycloaddition Reactions (United States)

    Mendes, Desiree E.; Schoffstall, Allen M.


    This undergraduate organic laboratory experiment consists of three different reactions occurring in the same flask: a cycloaddition reaction, preceded by decarboxylation and nucleophilic substitution reactions. The decarboxylation and cycloaddition reactions occur using identical Cu(I) catalyst and conditions. Orange, lemon, and other citrus fruit…

  8. Theoretical Insights into the Chemistry of Organometallic Compounds with C2 p-ligands: Alkenes and Alkynes


    Carbó Martín, Jorge Juan


    Consultable des del TDX Títol obtingut de la portada digitalitzada Els compostos de metalls de transició presenten una amplia varietat d'estructures, juntament amb una gran diversitat de propietats i de química. Aquesta diversitat ofereix abundants oportunitats per la seva aplicació en síntesi orgànica i en processos de catàlisi selectiva. No obstant, la gran varietat de la química organometàl·lica implica un augment de la complexitat del seu estudi. Aquestes característiques dels compo...

  9. Differences in acetylene chemistry of highly substituted zirconocene and titanocene complexes - thermal stability and linear dimerization of terminal alkynes

    Czech Academy of Sciences Publication Activity Database

    Horáček, Michal; Štěpnička, P.; Kubišta, Jiří; Gyepes, R.; Mach, Karel

    Rende: Centro Editoriale e Librario, 2005 - (Giordano, G.), s. 55-58 ISBN 88-7458-032-0. [Convegno Nazionale Scienza e Tecnologia Delle Zeoliti /7./ joint with Czech-Italian Workshop on Catalysis and Zeolites /1./. Camigliatello Silano (IT), 26.06.2005-30.06.2005] Institutional research plan: CEZ:AV0Z40400503 Keywords : bis(trimethylsilyl)acetylene * zirconocene-BTMSA complexes * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Fluoride-promoted rearrangement of organo silicon compounds : A new synthesis of 2-(arylmethyl)aldehydes from 1-alkynes

    NARCIS (Netherlands)

    Aronica, LA; Raffa, P; Caporusso, AM; Salvadori, P


    A new approach to 2-(arylmethyl)aldehydes 4 based upon a 1,2-anionotropic rearrangement of an aryl group is presented. The synthetic sequence begins with a silylformylation reaction of terminal acetylenes 5 with aryl and heteroaryl silanes 6, followed by treatment of the products (Z)-1 with TBAF. Th

  11. Evidence for alkali metal induced intermolecular acetylenic hydrogen atom transfer between hydrogen-bonded alkyne complexes in solid argon

    International Nuclear Information System (INIS)

    Condensation of acetylene, propyne, and 2-butyne/acetylene mixtures with heavy alkali metal atoms (Na, K, Cs) in an argon matrix at 15 K has led to the appearance of infrared absorptions due to ethylene, propylene, and trans-2-butene, respectively. These results stand in sharp contrast with the products obtained with lithium. Isotopic studies have shown that ethylene formation involved three different acetylene molecules and evidenced a difference in the product yield with hydrogen vs. deuterium as well as a preference for trans- vs. cis-C2H2D2 formation, which is discussed and rationalized by differences in the zero point energies for the different mixed deuterium isotopes of the intermediate vinyl radical. This trend is amplified by methyl substitution. Spectroscopic evidence was found in these experiments for cesium acetylide (Cs+C2H-) and a cesium-acetylene π complex, which are involved in the intermolecular acetylenic hydrogen atom transfer process. 26 references, 3 figures, 2 tables

  12. Complexes of Cu(I) with alkynes. synthesis and crystal structure of Cs[CuCl2(HOCH2C≡CCH2OH)] · H2O

    International Nuclear Information System (INIS)

    Crystals of anionic π-complex Cs[CuCl2(HOCH2C≡CCH2OH)] · H2O were synthesized by reaction of 2-butyne-1,4-diol with CuCl in a saturated aqueous solution of CsCl at 90 deg C and studied by X-ray diffraction. The crystals are triclinic (space group P1-bar; a = 10.155(4) A, b = 7.828(4) A, c = 7.115(3) A, α = 102.62(4) deg, β = 100.77(3) deg, γ = 106.71(4) deg, V = 509(1) A3, Z = 2) and consist of stacks of individual anions [CuCl2(HOCH2C≡CCH2OH)]- and hydrated [Cs · H2O]+ cations between the stacks. In addition to hydrogen bonds O-H...Cl, crystals of the complex also contain O(w)...H-O and O(w')...Cl bonds stabilizing their structure

  13. The isolation of [Pd{OC(O)H}(H)(NHC)(PR3)] (NHC = N-heterocyclic carbene) and its role in alkene and alkyne reductions using formic acid

    KAUST Repository

    Broggi, Julie


    The [Pd(SIPr)(PCy3)] complex efficiently promotes a tandem process involving dehydrogenation of formic acid and hydrogenation of C-C multiple bonds using H2 formed in situ. The isolation of a key catalytic hydridoformatopalladium species, [Pd{OC(O)H}(H)(IPr)(PCy 3)], is reported. The complex plays a key role in the Pd(0)-mediated formation of hydrogen from formic acid. Mechanistic and computational studies delineate the operational role of the palladium complex in this efficient tandem sequence. © 2013 American Chemical Society.

  14. Rare-earth metal π-complexes of reduced arenes, alkenes, and alkynes: Bonding, electronic structure, and comparison with actinides and other electropositive metals


    Huang, W.; Diaconescu, PL


    © 2015 The Royal Society of Chemistry. Rare-earth metal complexes of reduced π ligands are reviewed with an emphasis on their electronic structure and bonding interactions. This perspective discusses reduced carbocyclic and acyclic π ligands; in certain categories, when no example of a rare-earth metal complex is available, a closely related actinide analogue is discussed. In general, rare-earth metals have a lower tendency to form covalent interactions with π ligands compared to actinides, m...

  15. Assessment of the Full Compatibility of Copper(I)-Catalyzed Alkyne-Azide Cycloaddition and Oxime Click Reactions for bis-Labelling of Oligonucleotides


    Estalayo-Adriàn, Sandra; Lartia, Rémy; Meyer, Albert; Vasseur, Jean-Jacques; Morvan, François; Defrancq, Eric


    The conjugation of oligonucleotides with reporters is of great interest for improving their intrinsic properties or endowing new ones. In this context, we report herein a new procedure for the bis-labelling of oligonucleotides through oxime ligation (Click-O) and copper(I)-catalyzed alkyne–azide cycloaddition (Click-H). 5′-Azido and 3′-aldehyde precursors were incorporated into oligonucleotides, and subsequent coupling reactions through Click-O and Click-H (or vice versa) were successfully ac...

  16. An Investigation of the Formation Mechanism of Allene or Alkyne in the 6,7-Benzobicyclo[3.2.1]octane System by Deuterium Labeling Experiments


    Yavuz TAŞKESENLİGİL; Tümer, Ferhan; KAZAZ, Cavit


    In order to reveal the real intermediate in the base-promoted reaction of 1, 3-bromo-4,4-dideuterio-6,7-benzobicyclo[3.2.1]octa-2,6-diene 10 was synthesized and its HBr elimination reaction studied. Reaction of 10 with potassium tert-butoxide yielded butoxyl ether 18 in which proton-deuterium exchange has occured.

  17. In situ construction of three anion-dependent cu(i) coordination networks as promising heterogeneous catalysts for azide-alkyne "click" reactions. (United States)

    Xu, Zhenghu; Han, Lu Lu; Zhuang, Gui Lin; Bai, Jing; Sun, Di


    Three Cu(I) coordination networks, namely, {[Cu2(bpz)2(CN)X]·CH3CN}n, (X = Cl, 1; I, 3), {[Cu6(bpz)6(CH3CN)3(CN)3Br]·2OH·14CH3CN}n, (2, bpz = 3,3',5,5'-tetramethyl-4,4'-bipyrazole), were prepared by using solvothermal method. The cyanide ligands in these networks were generated in situ by cleavage of C-C bond of MeCN under solvothermal condition. The structures of these networks are dependent on halogen anions. Complex 1 is a ladderlike structure with μ2-CN(-) as rung and μ2-bpz as armrest. The Cl(-) in 1 is at terminal position but does not extend the one-dimensional (1D) ladder to higher dimensionalities. Complex 2 is a three-dimensional (3D) framework comprised of novel planar [Cu3Br] triangle and single Cu nodes, which are extended by μ2-bpz and μ2-CN(-) to form a novel (3,9)-connected gfy network. Density functional theory calculations showed that single-electron delocalization of Br atom induces the plane structure of [Cu3Br]. Complex 3 also possesses a similar ladderlike subunit as in 1, but the I(-) acts as bidentate bridge to extend the ladder to 3D framework with a four-connected sra topology. The three networks show notable catalytic activity on the click reaction. The compared catalytic results demonstrate that complex 2 possesses the best catalysis performance among three complexes, which is ascribed to the largest solvent-accessible void (porosity: 2 (29.4%) > 1 (25.7%) > 3 (17.6%)) and the more Cu(I) active sites in 2. The present combined structure-property studies provide not only a new synthetic route to obtain a new kind of catalyst for click reaction but also the new insights on catalyst structure-function relationships. PMID:25941881

  18. Sulfanyl Radical Addition to Alkynes: Revisiting an Old Reaction to Enter the Novel Realms of Green Chemistry, Bioconjugation, and Material Chemistry


    Monesi, Alessandro


    In the last decade considerable attention has been devoted to the rewarding use of Green Chemistry in various synthetic processes and applications. Green Chemistry is of special interest in the synthesis of expensive pharmaceutical products, where suitable adoption of “green” reagents and conditions is highly desirable. Our project especially focused in a search for new green radical processes which might also find useful applications in the industry. In particular, we have explored the po...

  19. Role of ligands in controlling the regioselectivity in ruthenium-catalysed addition of carboxylic acids to terminal alkynes: A DFT study

    Indian Academy of Sciences (India)

    Bholanath Maity; Totan Mondal; Kaustav Dey; Sankarsan Biswas; Debasis Koley


    Density functional studies are performed to understand the role of chelating bi-phosphine ligands [(Ph2P(CH2)mPPh2); m=1–4] in modulating the regio-selectivity of benzoic acid addition to 1-hexyne, in presence of ruthenium(II) catalyst [(Ph2P(CH2)mPPh2)Ru(methallyl)2]. The Markovnikov addition to 1-hexyne is observed when catalyst 1a [(Ph2P(CH2)PPh2)Ru(methallyl)2] is employed, whereas a reverse regio-selectivity is witnessed in presence of 1d [(Ph2P(CH2)4PPh2)Ru(methallyl)2]. Anti-Markovnikov addition occurs via the neutral vinylidene intermediates (5a/d) formed after 1,2-hydrogen shift in hexyne coordinated ruthenium(II) complexes 3a/d. The energy profile shows clear preference for Markovnikov addition by 15.0 kcal/mol ($G^{S}_{L}$) in case of catalyst system 1a. In contrast, anti-Markovnikov pathway following neutral vinylidenes are more favourable by 9.1 kcal/mol ($G^{S}_{L}$) for catalyst system 1d. The Z-enol ester formation is more predominantin the anti-Markovnikov pathway since the activation barrier for this step requires less energy (5.9 kcal/mol, $G^{S}_{L}$) than the one furnishing the E-product. The calculated results are in good agreement with the reported experimental findings.

  20. Revisiting the mechanism of the mono nuclear copper-catalyzed cycloaddition of azide and alkynes (CuAAC) by the topology of ....


    Calvo-Losada, Saturnino; Pino-González, María Soledad; Quirante, José Joaquín


    Se analiza el mecanismo de la reacción de cicloadición, catalizada por Cu(I), de azidas a alquinos (CuAAC), haciendo uso de métodos DFT y de herramientas de análisis de la densidad electrónica basadas en la topología de su laplaciana. Comunicación presentada y aceptada en el CHITEL2013, XXXIX International Conference THEORETICAL CHEMISTS OF LATIN EXPRESSION (XXXIX Congreso Internacional de Químicos de Expresión Latina).

  1. Regioselectivities in alkyne activation: synthesis of 2-(bicyclo[3.1.0]hexan-1-yl)furan derivatives by Au-catalyzed cyclization and cyclopropanation. (United States)

    Oh, Chang Ho; Lee, Su Jin; Lee, Ji Ho; Na, Yoon Jung


    2-Alkynyl-1-cycloalkenecarbaldehydes, in the presence of gold catalysts, undergo aurative cyclization via the 5-exo-dig mode to form Au-carbene intermediates which react with a double bond to form the corresponding cyclopropanes. PMID:19009084

  2. Purification and identification of O-GlcNAc-modified peptides using phosphate-based alkyne CLICK chemistry in combination with titanium dioxide chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Parker, Benjamin L; Gupta, Pankaj; Cordwell, Stuart;


    -containing peptides were enriched using titanium dioxide chromatography. Modified peptides were analyzed using a combination of higher energy collision dissociation for identification and electron transfer dissociation to localize the site of O-GlcNAc attachment. The enrichment method was developed and...

  3. Research Progress in Transition Metal-catalyzed Synthesis of Isoquinoline From Alkyne%过渡金属催化下炔合成异喹啉的研究

    Institute of Scientific and Technical Information of China (English)




  4. Deconstructing selectivity in the gold-promoted cyclization of alkynyl benzothioamides to six-membered mesoionic carbene or acyclic carbene complexes

    KAUST Repository

    Vummaleti, Sai V. C.


    We demonstrate that the experimentally observed switch in selectivity from 5-exo-dig to 6-endo-dig cyclization of an alkynyl substrate, promoted by Au I and AuIII complexes, is connected to a switch from thermodynamic to kinetic reaction control. The AuIII center pushes alkyne coordination toward a single Au-C(alkyne) σ-bond, conferring carbocationic character (and reactivity) to the distal alkyne C atom. © 2014 American Chemical Society.

  5. Alternative approaches to enolate chemistry


    Sheppard, T. D.


    This article highlights recently developed methods for the in situ generation of enolates from noncarbonyl precursors. Suitable enolate precursors include allylic alcohols, vinyl borates, and alkynes.

  6. A photolabile linker for the solid-phase synthesis of 4-substituted NH-1,2,3-triazoles

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Nielsen, Thomas Eiland


    A novel photolabile linker for solid-phase synthesis is presented. The linker displays an azido handle for copper-catalyzed azide–alkyne cycloaddition reactions with a variety of alkynes, remains intact under typical solid-phase reaction conditions, and enables a mild photolytic release of 4-subs......-substituted NH-triazoles in high purity and yield....

  7. Sonogashira Coupling Reaction with Palladium Powder and Potassium Fluoride in Methanol

    Institute of Scientific and Technical Information of China (English)

    王磊; 李品华


    A Sonogashira coupling reaction of aromatic halides with terminal alkynes in the presence of palladium powder,potassium fluoride,cuprous iodide and triphenylphosphine in methanol,giving the corresponding coupling products aryl alkynes in good to excellent yiekls,was investigated.

  8. Microcrystalline cellulose as reinforcing agent in silicone elastomers. (United States)

    Deng, S; Binauld, S; Mangiante, G; Frances, J M; Charlot, A; Bernard, J; Zhou, X; Fleury, E


    Cellulose is commonly used as filler for the reinforcement of polymer materials but data in the case of silicones remain rare. In this work we report the modification of microcrystalline cellulose (MCC) fibers from cotton linters by propargyl bromide, in aqueous medium without alteration of the crystalline domains. The analysis evidenced the efficient grafting of alkyne functions at the surface of the fibers, the DS being 0.5. The resulting MCC-Alkyne fibers were introduced within a bi-component reactive silicone formulation (up to 20wt%), allowing the formation of network through hydrosilylation reaction in which MCC-Alkyne played the role of a reactive fillers. Comparison between the properties of composites prepared with unmodified MCC and MCC-Alkyne highlighted a densification of the network and an enhancement of mechanical and thermal properties when coupling reactions occurred. Mechanical properties of silicone elastomers were better if the load of MCC-Alkyne remains low. PMID:27474638

  9. Cu (I) catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC): Synthesis of 17α-[1-(substituted phenyl)-1,2,3-triazol-4-yl]-19-nor-testosterone-17β-yl acetates targeting progestational and antipro-liferative activities. (United States)

    Mohamed, Z H; El-Koussi, Nawal A; Mahfouz, Nadia M; Youssef, Adel F; Abdel Jaleel, Gehad A; Shouman, Samia A


    The progestational potency and selectivity of synthetic steroidal agonists can be enhanced by even larger chemical moieties at 17α-position of the steroid backbones. Hereby a series 5a-c and 6a-c of novel 17α-[1-(substituted phenyl)-1,2,3-triazol-4-yl]-19-nortestosterone-17β-yl acetates were designed and synthesized using click chemistry approach searching progestogenic derivatives with potential anticancer activity. Compounds 5a,b and 6a,c have affected to different extents the three histopatho-logical parameters considered for evaluation of their progestational activity. The compounds 5a,b and 6a,c showed modifications in rat uterus at 35.7-34.8 nM levels with privileged endometrial thickening effect and least change of uterine weight relative to NEA at 52.9 nM level. Up to 40 mg/kg dose compounds 5b and 6c were non-toxic. Molecular docking of the ligands in PR showed in the majority of cases a conformational fitting into the active site different from that of the reference steroid NEA. Compound 6b revealed about 46.4% growth inhibition of CNS cancer SNB-75 cell line, 56% growth inhibition of renal cancer A498 cell line and 56.7% growth inhibition of prostate cancer PC-3 cell line which was mediated by cell cycle arrest. Drugability of the screened compounds showed tolerated results after being challenged to diverse physicochemical parameters. PMID:25942354

  10. Metal-organic framework materials with ultrahigh surface areas (United States)

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti


    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  11. Nickel Chloride Promoted Glaser Coupling Reaction in Hot Water

    Institute of Scientific and Technical Information of China (English)

    Pin Hua LI; Lei WANG; Min WANG; Jin Can YAN


    A Glaser coupling reaction of terminal alkynes in the presence of nickel chloride without any organics and bases in hot water has been developed, which produces the corresponding homo-coupling products in good yields.

  12. Fast, copper-free click chemistry: a convenient solid-phase approach to oligonucleotide conjugation


    Singh, Ishwar; Vyle, Joseph S.; Heaney, Frances


    Solid-phase oligonucleotide conjugation by nitrile oxide–alkyne click cycloaddition chemistry has been successfully demonstrated; the reaction, compatible with all nucleobases, requires no metal catalyst and proceeds under physiological conditions.

  13. “Clickable” polymer nanoparticles: a modular scaffold for surface functionalization


    Krovi, Sai Archana; Smith, DeeDee; Nguyen, SonBinh T.


    The versatility of copper-catalyzed alkyne-azide coupling (CuAAC) in functionalizing drug-loaded polymer nanoparticles is demonstrated via the modification of surfaces of acetylene-functionalized PNPs with folate, biotin, and gold nanoparticles.

  14. Mild and Phosphine-Free Iron-Catalyzed Cross-Coupling of Nonactivated Secondary Alkyl Halides with Alkynyl Grignard Reagents


    Cheung, Chi Wai; Ren, Peng; Hu, Xile


    A simple protocol for iron-catalyzed cross-coupling of nonactivated secondary alkyl bromides and iodides with alkynyl Grignard reagents at room temperature has been developed. A wide range of secondary alkyl halides and terminal alkynes are tolerated to afford the substituted alkynes in good yields. A slight modification of the reaction protocol also allows for cross-coupling with a variety of primary alkyl halides.

  15. One-Step Derivatization of Reducing Oligosaccharides for Rapid and Live-Cell-Compatible Chelation-Assisted CuAAC Conjugation. (United States)

    Machida, Takuya; Winssinger, Nicolas


    We report a new reagent for the functionalization of unprotected oligosaccharides with a picolyl azide group at the anomeric position for chelation-assisted copper-catalyzed alkyne-azide cycloaddition (CuAAC) glycoconjugation. We show that oligosaccharides functionalized with this moiety react with an apparent second-order rate constant of 193 m(-1)  s(-1) and can be used to functionalize biomolecules bearing alkyne moieties introduced through metabolic labeling, including in live cells. PMID:26852736

  16. The Growing Impact of Bioorthogonal Click Chemistry on the Development of Radiopharmaceuticals


    Zeng, Dexing; Zeglis, Brian M; Lewis, Jason S.; Anderson, Carolyn J.


    Click chemistry has become a ubiquitous chemical tool with applications in nearly all areas of modern chemistry, including drug discovery, bioconjugation, and nanoscience. Radiochemistry is no exception, as the canonical Cu(I)-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, inverse electron demand Diels-Alder reaction, and other types of bioorthogonal click ligations have had a significant impact on the synthesis and development of radiopharmaceuticals. This ...

  17. "Clickable" LNA/DNA probes for fluorescence sensing of nucleic acids and autoimmune antibodies

    DEFF Research Database (Denmark)

    Jørgensen, Anna S; Gupta, Pankaj; Wengel, Jesper; Astakhova, I Kira


    Herein we describe fluorescent oligonucleotides prepared by click chemistry between novel alkyne-modified locked nucleic acid (LNA) strands and a series of fluorescent azides for homogeneous (all-in-solution) detection of nucleic acids and autoimmune antibodies.......Herein we describe fluorescent oligonucleotides prepared by click chemistry between novel alkyne-modified locked nucleic acid (LNA) strands and a series of fluorescent azides for homogeneous (all-in-solution) detection of nucleic acids and autoimmune antibodies....

  18. Exploring architectures displaying multimeric presentations of a trihydroxypiperidine iminosugar

    Directory of Open Access Journals (Sweden)

    Camilla Matassini


    Full Text Available The synthesis of new multivalent architectures based on a trihydroxypiperidine α-fucosidase inhibitor is reported herein. Tetravalent and nonavalent dendrimers were obtained by means of the click chemistry approach involving the copper azide-alkyne-catalyzed cycloaddition (CuAAC between suitable scaffolds bearing terminal alkyne moieties and an azido-functionalized piperidine as the bioactive moiety. A preliminary biological investigation is also reported towards commercially available and human glycosidases.

  19. Novel Haloperoxidase Reaction: Synthesis of Dihalogenated Products


    Geigert, John; Neidleman, Saul L.; Dalietos, Demetrios J.; DeWitt, Susanne K.


    The enzymatic synthesis of vicinal, dihalogenated products from alkenes and alkynes is described. The enzymatic reaction required an alkene or alkyne, dilute hydrogen peroxide, a haloperoxidase, and molar amounts of halide ions. Vicinal dichloro, dibromo, and diiodo products could be formed. A hydroxyl group on the carbon adjacent to the carbon-carbon double or triple bond lowered the halide ion concentration needed to produce the dihalo product. This reaction offers one explanation for the o...

  20. Di(1-benzo[][1,2,3]triazol-1-yl)methane: An efficient ligand for copper and amine-free palladium-catalysed Sonogashira coupling reaction

    Indian Academy of Sciences (India)

    Jaspal Singh; Akhilesh Kumar Verma


    An efficient Pd-catalysed Sonogashira coupling reaction was achieved in the absence of copper and amine with inorganic base using phosphene-free, air stable di(1-benzo[][1,2,3]triazol-1-yl)methane as ligand. The cross coupling of electron-rich, electron-defficient and hindered aryl halides with terminal alkynes afforded the internal alkynes in good to excellent yields.

  1. Synthetic and Mechanistic Studies on the Solvent-Dependent Copper-Catalyzed Formation of Indolizines and Chalcones


    Albaladejo Maricó, María José; Alonso Valdés, Francisco; González Soria, María José


    Copper nanoparticles supported on activated carbon have been found to catalyze the multicomponent synthesis of indolizines from pyridine-2-carbaldehyde derivatives, secondary amines, and terminal alkynes in dichloromethane; in the absence of solvent, however, heterocyclic chalcones are formed. We provide compelling evidence that both processes take place through aldehyde–amine–alkyne coupling intermediates. In contrast to other well-known mechanisms for chalcone formation from aldehydes and a...

  2. Exploring architectures displaying multimeric presentations of a trihydroxypiperidine iminosugar (United States)

    Matassini, Camilla; Mirabella, Stefania; Goti, Andrea; Robina, Inmaculada; Moreno-Vargas, Antonio J


    Summary The synthesis of new multivalent architectures based on a trihydroxypiperidine α-fucosidase inhibitor is reported herein. Tetravalent and nonavalent dendrimers were obtained by means of the click chemistry approach involving the copper azide-alkyne-catalyzed cycloaddition (CuAAC) between suitable scaffolds bearing terminal alkyne moieties and an azido-functionalized piperidine as the bioactive moiety. A preliminary biological investigation is also reported towards commercially available and human glycosidases. PMID:26734108

  3. Polymer End Group Modifications and Polymer Conjugations via " Click" Chemistry Employing Microreactor Technology


    Vandenbergh, Joke; Tura, Tiago; Baeten, Evelien; Junkers, Thomas


    This study presents the development of microreactor protocols for the successful continuous flow end group modification of atom transfer radical polymerization precursor polymers into azide end-capped materials and the subsequent copper-catalyzed azide alkyne click reactions with alkyne polymers, in flow. By using a microreactor, the reaction speed of the azidation of poly(butyl acrylate), poly(methyl acrylate), and polystyrene can be accelerated from hours to seconds and full end group conve...

  4. Gold-Catalyzed 1,2-Migration of Silicon, Tin, and Germanium en route to C-2 Substituted Fused Pyrrole-Containing Heterocycles


    Seregin, Ilya V.; Gevorgyan, Vladimir


    An efficient method for the synthesis of fused pyrroloheterocycles from diverse propargyl-substituted heterocycles in the presence of Au-catalyst has been developed. The cascade transformation proceeds via alkyne-vinylidene isomerization with concomitant 1,2-shift of hydrogen, silyl and stannyl groups. Remarkably, it was also shown that previously unknown 1,2-migration of a germyl group upon alkyne-vinylidene rearrangement occurs under these reaction conditions. This method allows for mild an...

  5. Synthesis of star and H-shape polymers via a combination of cobalt-mediated radical polymerization and nitrone-mediated radical coupling reactions


    Detrembleur, Christophe; Debuigne, Antoine; Altintas, Ozcan; Conradi, Matthias; Wong, Edgar H. H.; Jerome, Christine; Barner-Kowollik, Christopher; Junkers, Thomas


    Via consecutive cobalt-mediated radical polymerization (CMRP), nitrone-mediated radical coupling (NMRC) and copper catalyzed azide-alkyne cycloaddition (CuAAC), polymers with mikto-arm star and H-shape architecture were synthesized. Poly(vinyl acetate)(40)-block-poly(acrylonitrile)(78)-Co(acac)(2) polymers were synthesized via CMRC and subsequently coupled using an alkyne functional nitrone. The coupling efficiency of the NMRC process was assessed employing N-tert-butyl alpha-phenyl nitrone (...

  6. Synthesis of triazolyl methyl-substituted amino- and oxy-undeca-hydro-dodeca-borates for potential application in boron neutron capture therapy

    International Nuclear Information System (INIS)

    A general approach to the synthesis of triazole conjugates containing undeca-hydro-closo-dodeca-borate anions based on Huisgen 1, 3-dipolar cycloaddition is presented. Un-decahydro-closo-dodeca-borate anions bearing terminal alkyne groups were synthesized by the reaction of H3N-B12H11- or HO-B12H112- with alkyne halides in N, N-dimethylformamide using KOH as a base. Variation of reaction time, alkyne halide concentration and steric demands of the alkyne halide resulted in the stepwise introduction of one to three alkyne groups into H3N-B12H11-. Two compounds {(CHCCH2)-N-B12H11- and (CHCCH2)O-B12H112-} were crystallized for single-crystal X-ray diffraction studies. N- and O-alkyne un-decahydro-closo-dodeca-borate anions reacted with various functionalized azides including lipid, carborane, aryl and hydroxyalkyl groups. The current study provides various synthetic applications not only for BNCT but also for boron cluster materials. (authors)

  7. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies. (United States)

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim


    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies. PMID:26878670

  8. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    International Nuclear Information System (INIS)

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe3O4@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe3O4@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe3O4@Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe3O4@Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe3O4@Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe3O4@Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry

  9. Adsorption of Small Hydrocarbons on Rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek


    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes with 1 - 4 carbon atoms of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of an additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  10. Recent advances in transition-metal-catalyzed intermolecular carbomagnesiation and carbozincation

    Directory of Open Access Journals (Sweden)

    Kei Murakami


    Full Text Available Carbomagnesiation and carbozincation reactions are efficient and direct routes to prepare complex and stereodefined organomagnesium and organozinc reagents. However, carbon–carbon unsaturated bonds are generally unreactive toward organomagnesium and organozinc reagents. Thus, transition metals were employed to accomplish the carbometalation involving wide varieties of substrates and reagents. Recent advances of transition-metal-catalyzed carbomagnesiation and carbozincation reactions are reviewed in this article. The contents are separated into five sections: carbomagnesiation and carbozincation of (1 alkynes bearing an electron-withdrawing group; (2 alkynes bearing a directing group; (3 strained cyclopropenes; (4 unactivated alkynes or alkenes; and (5 substrates that have two carbon–carbon unsaturated bonds (allenes, dienes, enynes, or diynes.

  11. The Glaser–Hay reaction

    DEFF Research Database (Denmark)

    Vilhelmsen, Mie Højer; Jensen, Jonas; Tortzen, Christian;


    The oxidative Glaser–Hay coupling of two terminal alkynes to furnish a butadiyne is a key reaction for acetylenic scaffolding. Although the reaction is performed under rather simple conditions [CuCl/TMEDA/O2 (air)], the mechanism is still under debate. Herein we present detailed studies on the...... scope of this reaction by using both 13C NMR and UV/Vis spectroscopic methods. The former method was used to study the kinetics of the coupling of aryl-substituted alkynes as the aryl carbon resonances of the reactants and products have similar NOEs and relaxation times. The reaction was found to be...... zero-order with respect to the terminal alkyne reactant under standard preparative conditions. Moreover, as the reaction proceeded, a clear change to slower reaction kinetics was observed, but it was still apparently zero-order. The onset of this change was found to depend on the catalyst loading. This...

  12. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)


    @@ Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.

  13. Conductive Polymer Functionalization by Click Chemistry

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hvilsted, Søren; Hansen, Thomas Steen;


    Click chemistry is used to obtain new conductive polymer films based on poly(3,4-ethylenedioxythiophene) (PEDOT) from a new azide functional monomer. Postpolymerization, 1,3-dipolar cycloadditions in DMF, using a catalyst system of CUS04 and sodium ascorbate, and different alkynes are performed to...... functionalize films of PEDOT-N3 and copolymers prepared from EDOT-N3 and 3,4-ethylenedioxythiophene (EDOT). This approach enables new functionalities on PEDOT that could otherwise not withstand the polymerization conditions. Reactions on the thin polymer films have been optimized using an alkynated fluorophore......, with reaction times of '"'-'20 h. The applicability of the method is illustrated by coupling of two other alkynes: a short chain fluorocarbon and a MPEG 5000 to the conductive polymer; this alters the advancing water contact angle of the surface by +20° and -20°/-25°, respectively. The targeted...

  14. A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking

    International Nuclear Information System (INIS)

    The reaction pathways leading to aromatic hydrocarbons such as benzene and naphthalene in gas-phase reactions of multi-component mixtures derived from cellulose fast pyrolysis were studied both experimentally and numerically. A two-stage tubular reactor was used for evaluating the reaction kinetics of secondary vapor phase cracking of the nascent pyrolysates at temperature ranging from 400 to 900 °C, residence time from 0.2 to 4.3 s, and at 241 kPa. The products of alkyne and diene were identified from the primary pyrolysis of cellulose even at low temperature range 500–600 °C. These products include acetylene, propyne, propadiene, vinylacetylene, and cyclopentadiene. Experiments were also numerically validated by a detailed chemical kinetic model consisting of more than 8000 elementary step-like reactions with over 500 chemical species. Acceptable capabilities of the kinetic model in predicting concentration profiles of the products enabled us to assess reaction pathways leading to benzene and naphthalene via the alkyne and diene from primary pyrolysates of cellulose. C3 alkyne and diene are primary precursors of benzene at 650 °C, while combination of ethylene and vinylacetylene produces benzene dominantly at 850 °C. Cyclopentadiene is a prominent precursor of naphthalene. Combination of acetylene with propyne or allyl radical leads to the formation of cyclopentadiene. Furan and acrolein are likely important alkyne precursors in cellulose pyrolysis at low temperature, whereas dehydrogenations of olefins are major route to alkyne at high temperatures. - Highlights: • Analytical pyrolysis experiments provided data for kinetic modeling. • Detailed chemical kinetic model was used and evaluated. • Alkyne and diene were important intermediates for aromatic hydrocarbon formation. • Reaction pathways leading to aromatic hydrocarbons were proposed

  15. One-pot synthesis of Au@SiO2 catalysts: A click chemistry approach

    KAUST Repository

    Solovyeva, Vera A.


    Using the copper-catalyzed azide-alkyne cycloaddition "click" reaction, a library of triazole amphiphiles with a variety of functional polar "heads" and hydrophobic or superhydrophobic "tails" was synthesized. The amphiphiles were evaluated for their ability to stabilize small Au nanoparticles, and, at the same time, serve as templates for nanocasting porous SiO2. One of the Au@SiO2 materials thus prepared was found to be a highly active catalyst for the Au nanoparticle-catalyzed regioselective hydroamination of alkynes.

  16. Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Step. (United States)

    Jayakumar, Jayachandran; Cheng, Chien-Hong


    A one-pot reaction of substituted benzaldehydes with alkyne-amines by a Rh-catalyzed C-H activation and annulation to afford various natural and unnatural protoberberine alkaloids is reported. This reaction provides a convenient route for the generation of a compound library of protoberberine salts, which recently have attracted great attention because of their diverse biological activities. In addition, pyridinium salt derivatives can also be formed in good yields from α,β-unsaturated aldehydes and amino-alkynes. This reaction proceeds with excellent regioselectivity and good functional group compatibility under mild reaction conditions by using O2 as the oxidant. PMID:26689172

  17. Direct Light-up of cAMP Derivatives in Living Cells by Click Reactions

    Directory of Open Access Journals (Sweden)

    Yan Xu


    Full Text Available 8-Azidoadenosine 3′,5′-cyclic monophosphate (8-azido cAMP was directly detected in living cells, by applying Cu-free azide-alkyne cycloaddition to probe cAMP derivatives by fluorescence light-up. Fluorescence emission was generated by two non-fluorescent molecules, 8-azido cAMP as a model target and difluorinated cyclooctyne (DIFO reagent as a probe. The azide-alkyne cycloaddition reaction between 8-azido cAMP and DIFO induces fluorescence in 8-azido cAMP. The fluorescence emission serves as a way to probe 8-azido cAMP in cells.

  18. Synthesis and Fluorescence Spectra of Triazolylcoumarin Fluorescent Dyes

    Institute of Scientific and Technical Information of China (English)

    PENG Xian-fu; LI Hong-qi


    Much attention is devoted to fluorescent dyes especially those with potential in versatile applications. Reactions under "click" conditions between nonfluorescent 3 - azidocoumarins and terminal alkynes produced 3 -(1, 2, 3- triazol- 1 - yl)cournarins, a novel type of fluorescent dyes with intense fluorescence. The structures of the new coumarins were characterized by 1H NMR, MS, and IR spectra. Fluorescence spectra measurement demonstrated excellent fluorescence performance of the triazolylcoumarins and this click reaction is a promising candidate for bioconjugation and bioimaging applications since both azide and alkynes are quite inert to biological systems.

  19. Synthesis of 3,4-dihydro-1,8-naphthyridin-2(1H-ones via microwave-activated inverse electron-demand Diels–Alder reactions

    Directory of Open Access Journals (Sweden)

    Salah Fadel


    Full Text Available Substituted 3,4-dihydro-1,8-naphthyridin-2(1H-ones have been synthesized with the inverse electron-demand Diels–Alder reaction from 1,2,4-triazines bearing an acylamino group with a terminal alkyne side chain. Alkynes were first subjected to the Sonogashira cross-coupling reaction with aryl halides, the product of which then underwent an intramolecular inverse electron-demand Diels–Alder reaction to yield 5-aryl-3,4-dihydro-1,8-naphthyridin-2(1H-ones by an efficient synthetic route.

  20. Synthesis of alpha-tetrasubstituted triazoles by copper-catalyzed silyl deprotection/azide cycloaddition

    Directory of Open Access Journals (Sweden)

    Zachary L. Palchak


    Full Text Available Propargylamines are popular substrates for triazole formation, but tetrasubstituted variants have required multistep syntheses involving stoichiometric amounts of metal. A recent cyclohexanone–amine–silylacetylene coupling forms silyl-protected tetrasubstituted propargylamines in a single copper-catalyzed step. The development of the tandem silyl deprotection–triazole formation reported herein offers rapid access to alpha-tetrasubstituted triazoles. A streamlined two-step approach to this uncommon class of hindered triazoles will accelerate exploration of their therapeutic potential. The superior activity of copper(II triflate in the formation of triazoles from sensitive alkyne substrates extends to simple terminal alkynes.

  1. Star-Shaped Polyacrylates: Highly Functionalized Architectures via CuAAC Click Conjugation. (United States)

    Lammens, Mieke; Fournier, David; Fijten, Martin W M; Hoogenboom, Richard; Prez, Filip Du


    Well-defined functional star-shaped polymer structures with up to 29 arms have been successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and click chemistry. First, azide end-functionalized poly(isobornyl acrylate) (PiBA) star-shaped polymers were prepared by successive ATRP and bromine substitution. Subsequently, alkyne end-functionalized molecules and polymers were introduced onto the star-shaped PiBA bearing pendant azide moieties by copper-catalyzed azide-alkyne cycloaddition (CuAAC). The possibilities and limits for the CuAAC on such highly branched polyacrylates are described. PMID:21638494

  2. Tetra-substituted olefin synthesis using palladium-catalysed C-H activation


    Lopez Suarez, Laura; Suarez, Laura Lopez


    In an effort to obtain more efficient and greener chemical transformations, a substantial amount of research interest has been directed towards the use of arene C-H bonds as functional groups. Hydroarylation of alkynes through direct functionalisation of C-H bonds has been studied in recent years leading to the development of high-yielding metal-mediated processes. The main aim of the current work is the addition of a third component in the hydroarylation of alkynes trough C-H activation, in ...

  3. One-step ligand exchange reaction as an efficient way for functionalization of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mrowczynski, Radoslaw [Humboldt-University Berlin, Department of Chemistry (Germany); Rednic, Lidia; Turcu, Rodica [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania); Liebscher, Juergen, E-mail: [Humboldt-University Berlin, Department of Chemistry (Germany)


    Novel magnetic Fe{sub 3}O{sub 4} nanoparticles (NPs) covered by one layer of functionalized fatty acids, bearing entities (Hayashi catalyst, biotin, quinine, proline, and galactose) of high interest for practical application in nanomedicine or organocatalysis, were synthesized. The functionalized fatty acids were obtained by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) of azido fatty acids with alkynes. All the magnetic NPs show superparamagnetic behavior with high values of magnetization and high colloidal stability in DCM solution.

  4. Highly efficient and eco-friendly gold-catalyzed synthesis of homoallylic ketones

    KAUST Repository

    Gómez-Suárez, Adrián


    We report a new catalytic protocol for the synthesis of γ,δ-unsaturated carbonyl units from simple starting materials, allylic alcohols and alkynes, via a hydroxalkoxylation/Claisen rearrangement sequence. This new process is more efficient (higher TON and TOF) and more eco-friendly (increased mass efficiency) than the previous state-of-the-art technique. In addition, this method tolerates both terminal and internal alkynes. Moreover, computational studies have been carried out in order to shed light on how the Claisen rearrangement is initiated. © 2014 American Chemical Society.

  5. [2+2+1] cyclization of allenes. (United States)

    Kitagaki, S; Inagaki, F; Mukai, C


    The [2+2+1] cyclization of an alkyne, an alkene and carbon monoxide, i.e., the Pauson-Khand reaction, is one of the most powerful tools for constructing a five-membered ring. In place of the alkene or alkyne part, the use of an allene functionality has proven to make this reaction more valuable for organic synthesis. This review focuses on the origin and progress of the allenic [2+2+1] cyclocarbonylation, including the chirality transfer of the allene and its synthetic applications. PMID:24514744

  6. Synthesis of furans and pyrroles via migratory and double migratory cycloisomerization reactions of homopropargylic aldehydes and imines (United States)

    Shiroodi, Roohollah Kazem; Vera, Claudia I. Rivera; Dudnik, Alexander S.; Gevorgyan, Vladimir


    A novel gold-catalyzed divergent sysnthesis of furans and pyrroles employing readily available homopropargylic aldehydes and imines have been developed. The regiochemical outcome of this reaction is dependent on the substituent on the terminal alkyne of substrate. Thus, substrates possessing alkyl and aryl substituent at the alkyne moiety produce 2,3,5-substituted furans and pyrroles via a migratory cycloisomerizaton reaction. Whereas, their silicon analogues are capable to undergo a double migratory process leading to 2,3,4-substituted heterocycles. PMID:26185336

  7. A thermally-induced, tandem [3,3]-sigmatropic rearrangement/[2 + 2] cycloaddition approach to carbocyclic spirooxindoles


    Brummond, Kay M.; Osbourn, Joshua M


    The synthesis of C3-carbocyclic spirooxindoles was realized by way of an intramolecular [2 + 2] cycloaddition reaction between a vinylidene indolin-2-one and an alkyne. The cycloaddition reaction occurs selectively with the distal double bond of the allene, is tolerant of a phenyl and trimethylsilyl group on the terminus of the alkyne, and can be used to access bicyclo[4.2.0]octadienes and bicyclo[5.2.0]nonadienes. The allene precursors are not observed, but are likely intermediates of an inf...

  8. ESR studies on the radiolysis of crystalline materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Presently we report our recent works on the radiolysis of crystalline materials that were studied mainly by ESR spectroscopy. They include A)hydrocarbon radiolysis using hydrocarbon mixed crystals with hydrocarbon having a different molecular chain length, alkenes, and with alkynes, B)the structure and reactions of extremely unstable ions of alkenes, alkynes, and halogenated alkanes trapped in crystalline matrices at cryogenic temperatures, and C)transfer and reactions of electrons, holes, and H atoms, and H/D isotope effects in the radiolytic reactions of hydrocarbons and H2O/D2O mixed crystals. (author)

  9. Functional Materials by Click Chemistry

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede

    Dette ph.d.-projekt har fokuseret på fremstilling af nye funktionelle materialer ud fra konceptet bag ”Click” kemi. Her er specielt den selektive 1,3-dipolare cykloaddition imellem azider og alkyner under kobber katalyse anvendt til kobling af funktionelle grupper til polymerer. I projektet er de...

  10. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert


    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  11. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis (United States)

    Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter


    A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments. PMID:26676875

  12. Bioorthogonal fluorescent labeling of functional G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Tian, He; Naganathan, Saranga; Kazmi, Manija A;


    contrast, the strain-promoted [3+2] azide-alkyne cycloaddition (SpAAC) with dibenzocyclooctyne (DIBO) reagents yielded stoichiometric conjugates with azF-rhodopsin while undergoing negligible background reactions. As one application of this technique, we used Alexa488-rhodopsin to measure the kinetics of...

  13. Catalytic Z-Selective Cross-Metathesis with Secondary Silyl- and Benzyl-Protected Allylic Ethers: Mechanistic Aspects and Applications to Natural Product Synthesis**


    Mann, Tyler J.; Speed, Alexander W. H.; Schrock, Richard R.; Hoveyda, Amir H.


    Efficient catalytic cross-metathesis reactions that afford Z-disubstituted allylic silyl or benzyl ethers are reported (see scheme, MAP=monoalkoxide pyrrolide). The approach, in combination with catalytic cross-coupling, provides a general entry to otherwise difficult-to-access alkyne-containing Z olefins.

  14. Microwave-Enhanced Cross-Coupling Reactions Involving Alkynyltrifluoroborates with Aryl Bromides

    Directory of Open Access Journals (Sweden)

    George W. Kabalka


    Full Text Available Palladium-catalyzed alkynylation has emerged as one of the most reliable methods for the synthesis of alkynes which are often used in natural product syntheses and material science. An efficient method for coupling alkynyltrifluoroborates with various aryl bromides in the presence of a palladium catalyst has been developed using microwave irradiation. The microwave reactions are rapid and efficient.

  15. 4-Oxalocrotonate tautomerase, its homologue YwhB, and active vinylpyruvate hydratase : Synthesis and evaluation of 2-fluoro substrate analogues

    NARCIS (Netherlands)

    Johnson, William H; Wang, Susan C; Stanley, Thanuja M; Czerwinski, Robert M; Almrud, Jeffrey J; Poelarends, Gerrit J; Murzin, Alexey G; Whitman, Christian P


    A series of 2-fluoro-4-alkene and 2-fluoro-4-alkyne substrate analogues were synthesized and examined as potential inhibitors of three enzymes: 4-oxalocrotonate tautomerase (4-OT) and vinylpyruvate hydratase (VPH) from the catechol meta-fission pathway and a closely related 4-OT homologue found in B

  16. Modern Reduction Methods

    CERN Document Server

    Andersson, Pher G


    With its comprehensive overview of modern reduction methods, this book features high quality contributions allowing readers to find reliable solutions quickly and easily. The monograph treats the reduction of carbonyles, alkenes, imines and alkynes, as well as reductive aminations and cross and heck couplings, before finishing off with sections on kinetic resolutions and hydrogenolysis. An indispensable lab companion for every chemist.

  17. On-Surface Synthesis by Click Chemistry Investigated by STM and XPS

    DEFF Research Database (Denmark)

    Vadapoo, Sundar Raja


    molecular electronics and surface functionalization. In this thesis, a well-defined click chemistry approach is followed, with the study of azide-alkyne cycloaddition on Cu(111) surface in UHV environment. A successful achievement of the click reaction product via on-surface synthesis has been shown, which...

  18. Well-defined ABA- and BAB-type block copolymers of PDMAEMA and PCL

    DEFF Research Database (Denmark)

    Bruce, Carl; Javakhishvili, Irakli; Fogelstrom, Linda; Carlmark, Anna; Hvilsted, Søren; Malmstrom, Eva


    -opening polymerisation of epsilon-CL, atom transfer radical polymerisation of DMAEMA and end-group conversion, performed through either acylation or azide-alkyne "click" chemistry. All samples were analysed by size exclusion chromatography where it was found that the evaluation of PDMAEMA-containing polymers was...

  19. Miktoarm core-crosslinked star copolymers with biologically active moieties on peripheries

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren


    ) of epsilon-caprolactone (epsilon-CL) initiated by functional alcohols provides alkyne or azide end-capped linear PCL chains. Further derivatization of the hydroxyl chain ends of these hetero-telechelic macromolecules by methacrylic acid (MA), and subsequent Cu(I) mediated "click" coupling of terminal...

  20. Nanoscale Polymeric Amphiphiles by Combination of Controlled Polymerizations and "Click" Reactions: Implications for Drug Delivery

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli

    Denne ph.d.-afhandling er baseret på tre forskellige temaer, der er sammenflettet af den uvurdelige alsidighed og de værdifulde egenskaber af -heterobifunktionel poly(-caprolacton). Et bibliotek af -heterobifunktionelle poly(-caprolacton)er med alkyn, alken, bromoalkyl og -bromoiosbutyryl...

  1. A direct access to isoxazoles from ynones using trimethylsilyl azide as amino surrogate under metal/catalyst free conditions. (United States)

    Kumar, Gadi Ranjith; Kumar, Yalla Kiran; Reddy, Maddi Sridhar


    A general method for isoxazoles from readily available ynones using trimethylsilyl azide as an amino surrogate, likely via an unprecedented hydroazidation of the alkyne and denitrogenative cyclization, is demonstrated. The method neither required any catalyst nor demanded unusual conditions to afford the products with outstanding functional group compatibility. PMID:27109700

  2. Molecular Rods Combining o-Carborane and Bicyclo[1.1.1]pentane Cages: An Insertion of the Triple Bond Located Next to a Highly Strained Cage

    Czech Academy of Sciences Publication Activity Database

    Kaleta, Jiří; Janoušek, Zbyněk; Nečas, M.; Mazal, C.


    Roč. 34, č. 5 (2015), s. 967-972. ISSN 0276-7333 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:61388963 Keywords : dehydrogenative alkyne-insertion * dicobalt octacarbonyl * polyborane reactions Subject RIV: CC - Organic Chemistry Impact factor: 4.126, year: 2014

  3. Facile Synthesis of 3-Substituted Isoquinolines Derivatives via Microwave-assisted Tandem Three-component Coupling Cyclization

    Institute of Scientific and Technical Information of China (English)

    林龙; 吴琼友; 黄绍维; 杨光富


    A novel three-component reaction of o-bromobenzaldehyde, terminal alkynes and tert-butyl amine has been established, which proceeded smoothly to give 3-substituted isoquinolines in good yields in the presence of palladium/copper catalysts under microwave irradiation.

  4. Multicomponent click synthesis of potentially biologically active triazoles catalysed by copper nanoparticles on activated carbon in water


    Alonso Valdés, Francisco; Moglie, Yanina; Radivoy, Gabriel; Yus Astiz, Miguel


    A variety of potentially biologically active 1,2,3-triazoles, derived from (–)-menthol, lactic acid, D-glucose, oestrone, cholesterol, and phenacetin, have been synthesised through the multicomponent alkyne-azide 1,3-dipolar cycloaddition catalysed by copper nanoparticles on activated carbon in neat water.

  5. Solid-Phase Synthesis of PEGylated Lipopeptides Using Click Chemistry

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Berg, Rolf Henrik; Andresen, Thomas Lars


    A versatile methodology for efficient synthesis of PEGylated lipopeptides via CuAAC “Click” conjugation between alkyne-bearing solid-supported lipopeptides and azido-functionalized PEGs is described. This new and very robust method offers a unique platform for synthesizing PEGylated lipopeptides ...

  6. Complex Surface Concentration Gradients by Stenciled "Electro Click Chemistry"

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede;


    Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click...

  7. An efficient synthesis of isocoumarins via a CuI catalyzed cascade reaction process

    Institute of Scientific and Technical Information of China (English)


    3-Alkyl isocoumarins are provided by CuI/amino acid-catalyzed Sonogashira coupling reaction of o-bromo benzoic acids and terminal alkynes and the subsequent additive cyclization. This cascade process allows synthesis of diverse isocoumarins by varying both coupling partners bearing a wide range of functional groups.

  8. Silver iodide nanoparticle as an efficient and reusable catalyst for the one-pot synthesis of benzofurans under aqueous conditions

    Indian Academy of Sciences (India)

    Javad Safaei-Ghomi; Mohammad Ali Ghasemzadeh


    Recyclable heterogeneous AgI nanoparticles were efficiently catalysed one-pot three-component reaction of aldehydes, secondary amines and alkyne in aqueous media. This method provides a novel and improved approach for the synthesis of 2,3-disubstituted benzo[b]furan derivatives to obtain excellent yields, short reaction times and low catalyst loading.

  9. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis. (United States)

    Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter


    A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments. PMID:26676875

  10. Palladium- and Copper-Catalyzed Solution Phase Synthesis of a Diverse Library of Isoquinolines


    Roy, Sudipta; Roy, Sujata; Neuenswander, Benjamin; Hill, David; Larock, Richard C.


    The solution phase synthesis of a 111 member isoquinoline library is described. The isoquinoline scaffold has been accessed through the palladium- and copper-catalyzed cyclization of iminoalkynes and the palladium-catalyzed iminoannulation of internal alkynes, followed by diversification of hydroxyl functionality where it is present.

  11. Oligo switches: photoresponsive oligonucleotide conjugates by solid-supported click chemistry


    Freeman, Colin; Vyle, Joseph S; Heaney, Frances


    Photoresponsive oligonucleotides (ONs) incorporating isoxazole-linked azobenzene (AB) moieties were prepared by resin-supported nitrile oxide-alkyne cycloaddition (NOAC) chemistry. The thermal and photochromic properties of the modified ONs were significantly influenced by the extent of π-conjugation between the isoxazole and the AB modules

  12. Patterned porous silicon photonic crystals with modular surface chemistry for spatial control of neural stem cell differentiation. (United States)

    Huang, Tiffany H; Pei, Yi; Zhang, Douglas; Li, Yanfen; Kilian, Kristopher A


    We present a strategy to spatially define regions of gold and nanostructured silicon photonics, each with materials-specific surface chemistry, for azide-alkyne cycloaddition of different bioactive peptides. Neural stem cells are spatially directed to undergo neurogenesis and astrogenesis as a function of both surface properties and peptide identity. PMID:27173986

  13. The Variable Transition State in Polar Additions to Pi Bonds (United States)

    Weiss, Hilton M.


    A vast majority of polar additions of Bronsted acids to alkynes involve a termolecular transition state. With strong acids, considerable positive charge is developed on carbon and Markovnikov addition predominates. In less acidic solutions, however, the reaction is much slower and the transition state more closely resembles the olefinic product.…

  14. A Rapid and Efficient Sonogashira Protocol and Improved Synthesis of Free Fatty Acid 1 (FFA1) Receptor Agonists

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Due-Hansen, Maria E; Ulven, Trond


    A protocol for rapid and efficient Pd/Cu-catalyzed coupling of aryl bromides and iodides to terminal alkynes has been developed with use of 2-(di-tert-butylphosphino)-N-phenylindole (cataCXium PIntB) as ligand in TMEDA and water. The new protocol successfully couples substrates which failed with...

  15. Heterogeneous Catalysis through Microcontact Printing

    NARCIS (Netherlands)

    Spruell, Jason M.; Sheriff, Bonnie A.; Rozkiewicz, Dorota I.; Dichtel, William R.; Rohde, Rosemary D.; Reinhoudt, David N.; Stoddart, Fraser; Heath, James R.


    Minting a Stamp: The preparation of copper metal-coated elastomeric stamps and their use in catalyzing the Cu-catalyzed azide-alkyne cycloaddition reaction heterogeneously through microcontact printing is described. This StampCat process is compared to other conventional surface-functionalization te

  16. Synthesis of Hexadehydrotribenzo[a,e,i][12]annulenes by Acetylene Insertion into an Open-Chain Precursor

    Czech Academy of Sciences Publication Activity Database

    Dudič, Miroslav; Císařová, I.; Michl, Josef


    Roč. 77, č. 1 (2012), s. 68-74. ISSN 0022-3263 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Institutional research plan: CEZ:AV0Z40550506 Keywords : one-step synthesis * alkyne metathesis * convenient synthesis * derivatives * macrocycle Subject RIV: CC - Organic Chemistry Impact factor: 4.564, year: 2012

  17. Non-Catalyzed Click Reactions of ADIBO Derivatives with 5-Methyluridine Azides and Conformational Study of the Resulting Triazoles

    Czech Academy of Sciences Publication Activity Database

    Smyslová, P.; Popa, I.; Lyčka, A.; Tejral, Gracian; Havlač, J.


    Roč. 10, č. 2 (2015), e0144613. E-ISSN 1932-6203 R&D Projects: GA TA ČR(CZ) TE01020028 Institutional support: RVO:68378041 Keywords : copper-free click * alkyne cycloaddition * chemistry Subject RIV: CC - Organic Chemistry Impact factor: 3.234, year: 2014

  18. Chimerical Pyrene-Based [7]Helicenes as Twisted Polycondensed Aromatics

    Czech Academy of Sciences Publication Activity Database

    Buchta, Michal; Rybáček, Jiří; Jančařík, Andrej; Kudale, A. A.; Buděšínský, Miloš; Vacek Chocholoušová, Jana; Vacek, Jaroslav; Bednárová, Lucie; Císařová, I.; Bodwell, G. J.; Starý, Ivo; Stará, Irena G.


    Roč. 21, č. 24 (2015), s. 8910-8917. ISSN 0947-6539 R&D Projects: GA ČR(CZ) GAP207/10/2207 Institutional support: RVO:61388963 Keywords : alkynes * asymmetric synthesis * chirality * cycloisomerisation * helical structures Subject RIV: CC - Organic Chemistry Impact factor: 5.731, year: 2014

  19. Hydrocarbons. Independent Learning Project for Advanced Chemistry (ILPAC). Unit O1. (United States)

    Inner London Education Authority (England).

    This unit on hydrocarbons is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit is divided into sections dealing with alkanes, alkenes, alkynes, arenes, and several aspects of the petroleum industry. Two experiments, exercises (with answers), and pre- and post-tests are included.…

  20. Biomimetic Mussel Adhesive Inspired Clickable Anchors Applied to the Functionalization of Fe3O4 Nanoparticles

    NARCIS (Netherlands)

    Goldmann, Anja S.; Schoedel, Christine; Walther, Andreas; Yuan, Jiayin; Loos, Katja; Mueller, Axel H. E.; Müller, Axel H.E.


    The functionalization of magnetite (Fe3O4) nanoparticles with dopamine-derived clickable biomimetic anchors is reported. Herein, an alkyne-modified catechol-derivative is employed as the anchor, as i) the catechol-functional anchor groups possess irreversible covalent binding affinity to Fe3O4 nanop

  1. Ambient gold-catalyzed O-vinylation of cyclic 1,3-diketone: A vinyl ether synthesis

    Directory of Open Access Journals (Sweden)

    Yumeng Xi


    Full Text Available Gold-catalyzed O-vinylation of cyclic 1,3-diketones has been achieved for the first time, which provides direct access to various vinyl ethers. A catalytic amount of copper triflate was identified as the significant additive in promoting this transformation. Both aromatic and aliphatic alkynes are suitable substrates with good to excellent yields.

  2. Surface functionalized thiol-ene waveguides for fluorescence biosensing in microfluidic devices

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Lafleur, Josiane P.; Jensen, Thomas Glasdam; Kutter, Jörg Peter

    -ene waveguides were fabricated from 40% excess thiol thiol-ene to ensure the presence of thiol functional groups at the surface of the waveguide. Biotin alkyne was photografted at specific locations using a photomask, directly at the interface between the microfluidic channel and the thiol-ene waveguide prior to...

  3. Encapsulated Hydrogels by E-beam Lithography and Their Use in Enzyme Cascade Reactions. (United States)

    Mancini, Rock J; Paluck, Samantha J; Bat, Erhan; Maynard, Heather D


    Electron beam (e-beam) lithography was employed to prepare one protein immobilized hydrogel encapsulated inside another by first fabricating protein-reactive hydrogels of orthogonal reactivity and subsequently conjugating the biomolecules. Exposure of thin films of eight arm star poly(ethylene glycol) (PEG) functionalized with biotin (Biotin-PEG), alkyne (Alkyne-PEG) or aminooxy (AO-PEG) end-groups to e-beam radiation resulted in cross-linked hydrogels with the respective functionality. It was determined via confocal microscopy that a nominal size exclusion effect exists for streptavidin immobilized on Biotin-PEG hydrogels of feature sizes ranging from 5 to 40 μm. AO-PEG was subsequently patterned as an encapsulated core inside a contiguous outer shell of Biotin-PEG. Similarly, Alkyne-PEG was patterned as a core inside an AO-PEG shell. The hydrogel reactive end-groups were conjugated to dyes or proteins of complementary reactivity, and the three-dimensional (3-D) spatial orientation was determined for both configurations using confocal microscopy. The enzyme glucose oxidase (GOX) was immobilized in the core of the encapsulated Alkyne-PEG core/ AO-PEG shell architecture, and horseradish peroxidase (HRP) was conjugated to the shell periphery. Bioactivity for the HRP-GOX enzyme pair was observed in this encapsulated configuration by demonstrating that the enzyme pair was capable of enzyme cascade reactions. PMID:27078573

  4. Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Kwapiszewski, Radoslaw; Jensen, Thomas Glasdam; Kutter, Jörg Peter


    ! 17 SH nm"2. Biotin alkyne was patterned directly inside thiol–ene microchannels prior to conjugation with fluorescently labelled streptavidin. The surface bound conjugates were detected by evanescent waveinduced fluorescence (EWIF), demonstrating the success of the grafting procedure and its...

  5. Coupling of α,α-difluoro-substituted organozinc reagents with 1-bromoalkynes. (United States)

    Zemtsov, Artem A; Volodin, Alexander D; Levin, Vitalij V; Struchkova, Marina I; Dilman, Alexander D


    α,α-Difluoro-substituted organozinc reagents generated from conventional organozinc compounds and difluorocarbene couple with 1-bromoalkynes affording gem-difluorinated alkynes. The cross-coupling proceeds in the presence of catalytic amounts of copper iodide in dimethylformamide under ligand-free conditions. PMID:26664635

  6. Chloride ion-catalyzed generation of difluorocarbene for efficient preparation of gem-difluorinated cyclopropenes and cyclopropanes

    KAUST Repository

    Wang, Fei


    A chloride ion-catalyzed generation of difluorocarbene from a relatively non-toxic and inexpensive precursor, Me3SiCF2Cl (1), under mild and neutral conditions leads to an efficient preparation of gem-difluorocyclopropenes and difluorocyclopropanes through [2 + 1] cycloaddition reactions with alkynes and alkenes, respectively. © 2011 The Royal Society of Chemistry.

  7. Stereo- and regio-selective one-pot synthesis of triazole-based unnatural amino acids and β- amino triazoles (United States)

    Synthesis of triazole based unnatural amino acids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW conditions. The developed method is applicable to a broad substrate scope a...

  8. Synthesis of a New Class of Triazole-Linked Benzoheterocycles via 1,3-Dipolar Cycloaddition

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Fernanda C.G.; Oliveira, Ronaldo N. de, E-mail: ronaldonoliveira@dq.ufrpe.b [Universidade Federal Rural de Pernambuco (LSCB/UFRPE), Recife, PE (Brazil). Dept. de Quimica. Lab. de Sintese de Compostos Bioativos


    A new series of 1,2,3-triazole derivatives have been synthesized from phthalimides and terminal alkynes in the presence of a catalytic amount of CuI. The present protocol affords 1,2,3-triazoles in moderate to good yields (44-89%). (author)

  9. Solid-phase synthesis of NH-1,2,3-triazoles using 4,4′- bismethoxybenzhydryl azide

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil O'Hanlon; Le Quement, Sebastian Thordal; Nielsen, Thomas Eiland


    Readily available 4,4′-bismethoxybenzhydryl azide was found to be a useful building block for the synthesis of NH-1,2,3-triazoles through copper(I)-catalyzed cycloaddition reactions with solid-supported terminal alkynes, followed by acid-mediated deprotection. Peptide-containing NH-1,2,3-triazoles...

  10. Novel bioluminescent coelenterazine derivatives with imidazopyrazinone C-6 extended substitution for Renilla luciferase. (United States)

    Jiang, Tianyu; Yang, Xiaofeng; Yang, Xingye; Yuan, Mingliang; Zhang, Tianchao; Zhang, Huateng; Li, Minyong


    Two series of novel coelenterazine analogues (alkynes and triazoles) with imidazopyrazinone C-6 extended substitution have been designed and synthesized successfully for the extension of bioluminescent substrates. After extensive evaluation, some compounds display excellent bioluminescence properties compared with DeepBlueC in cellulo, thus becoming potential molecules for bioluminescence techniques. PMID:27197767

  11. Gold Supported on Graphene Oxide: An Active and Selective Catalyst for Phenylacetylene Hydrogenations at Low Temperatures

    DEFF Research Database (Denmark)

    Shao, Lidong; Huang, Xing; Teschner, Detre;


    A constraint to industrial implementation of gold-catalyzed alkyne hydrogenation is that the catalytic activity was always inferior to those of other noble metals. In this work, gold was supported on graphene oxide (Au/GO) and used in a hydrogenation application. A 99% selectivity toward styrene...

  12. RAFT copolymerization of itaconic anhydride and 2-methoxyethyl acrylate: a multifunctional scaffold for preparation of “clickable” gold nanoparticles

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Kasama, Takeshi; Jankova, Katja Atanasova; Hvilsted, Søren


    RAFT copolymerization of 2-methoxyethyl acrylate and itaconic anhydride – a monomer derived from renewable resources – is carried out in a controlled fashion. The copolymer allows preparation of gold nanoparticles with abundant surficial carboxyl and alkyne functional groups that are dendronized...

  13. RAFT copolymerization of itaconic anhydride and 2-methoxyethyl acrylate: a multifunctional scaffold for preparation of "clickable" gold nanoparticles. (United States)

    Javakhishvili, Irakli; Kasama, Takeshi; Jankova, Katja; Hvilsted, Søren


    RAFT copolymerization of 2-methoxyethyl acrylate and itaconic anhydride - a monomer derived from renewable resources - is carried out in a controlled fashion. The copolymer allows preparation of gold nanoparticles with abundant surficial carboxyl and alkyne functional groups that are dendronized via Cu(I)-mediated "click" reaction. PMID:23588100

  14. Synthetic LNA/DNA nano-scaffolds for highly efficient diagnostics of nucleic acids and autoimmune antibodies

    DEFF Research Database (Denmark)

    Astakhova, Irina Kira


    Herein novel fluorescent oligonucleotides for homogeneous (all-in-solution) detection of nucleic acids and autoimmune antibodies (autoantibodies) are described. The probes are prepared by highly efficient copper-catalyzed click chemistry between novel alkyne-modified locked nucleic acid (LNA) str...

  15. Ruthenium-catalyzed C-H/N-O bond functionalization: green isoquinolone syntheses in water.


    Ackermann, Lutz; Fenner, Sabine


    Ruthenium-catalyzed isoquinolone syntheses with ample scope were accomplished through carboxylate assistance in environmentally benign water as a reaction medium. The high chemoselectivity of the ruthenium(II) carboxylate complex also set the stage for the direct use of free hydroxamic acids for annulations of alkynes.

  16. [2+2+2]-Cocyclotrimerization of 6-Alkynyl-7-benzylpurines with alpha, omega-Diynes

    Czech Academy of Sciences Publication Activity Database

    Opekar, S.; Turek, P.; Pohl, Radek; Klepetářová, Blanka; Votruba, Ivan; Hocek, Michal; Kotora, M.


    Roč. 82, č. 1 (2010), s. 895-907. ISSN 0385-5414 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclotrimerization * purine * alkyne * nickel * catalysis Subject RIV: CC - Organic Chemistry Impact factor: 1.093, year: 2010

  17. All-Carbon [3+3] Oxidative Annulations of 1,3-Enynes by Rhodium(III)-Catalyzed C–H Functionalization and 1,4-Migration** (United States)

    Burns, David J; Best, Daniel; Wieczysty, Martin D; Lam, Hon Wai


    1,3-Enynes containing allylic hydrogens cis to the alkyne function as three-carbon components in rhodium(III)-catalyzed, all-carbon [3+3] oxidative annulations to produce spirodialins. The proposed mechanism of these reactions involves the alkenyl-to-allyl 1,4-rhodium(III) migration. PMID:26224377

  18. Synthesis of some novel fluoro isoxazolidine and isoxazoline derivatives using -benzyl fluoro nitrone via cycloaddition reaction in ionic liquid

    Indian Academy of Sciences (India)

    Bhaskar Chakraborty; Govinda Prasad Luitel


    1-Butyl-3-methylimidazolium-based ionic liquids are found to accelerate significantly the intermolecular 1,3-dipolar cycloaddition of -benzyl-fluoro nitrone derived in situ from 2,6-difluoro benzaldehyde and -benzylhydroxylamine, with activated alkenes and electron deficient alkynes to afford enhanced rates and improved yields of novel isoxazolidines and isoxazolines.

  19. Combining Fourier transform nuclear quadrupole resonance (FT-NQR) spectroscopy and mass spectrometry (MS) to study the electronic structure of titanocene dichlorides

    Czech Academy of Sciences Publication Activity Database

    Kubišta, Jiří; Civiš, Martin; Španěl, Patrik; Civiš, Svatopluk


    Roč. 137, č. 6 (2012), s. 1338-1342. ISSN 0003-2654 R&D Projects: GA ČR GP203/09/P276; GA MPO FR-TI1/130 Institutional support: RVO:61388955 Keywords : terminal alkynes * complexes * titanium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.969, year: 2012

  20. In situ generation of the Ohira-Bestmann Reagent from stable sulfonyl azide

    DEFF Research Database (Denmark)

    Jepsen, Tue Heesgaard; Kristensen, Jesper Langgaard


    We report an improved method for in situ generation of the Ohira-Bestmann reagent. Using the recently reported bench stable imidazole-1-sulfonyl azide as diazotransfer reagent, this new method represents a safe and scalable approach for the transformation of aldehydes into terminal alkynes...

  1. Spirastrellolide E: Synthesis of an advanced C(1)-C(24) southern hemisphere (United States)

    Sokolsky, Alexander; Wang, Xiaozhao; Smith, Amos B.


    The synthesis of a C(1)-C(24) advanced southern hemisphere fragment towards the total synthesis of spirastrellolide E has been achieved. Highlights of the route include a highly convergent Type I Anion Relay Chemistry (ARC) tactic for fragment assembly, in conjunction with a directed, regioselective gold-catalyzed alkyne functionalization to generate the central unsaturated [6,6]-spiroketal. PMID:26097261

  2. The Development of a Versatile Trifunctional Scaffold for Biological Applications

    Czech Academy of Sciences Publication Activity Database

    Vaněk, Václav; Pícha, Jan; Fabre, Benjamin; Buděšínský, Miloš; Lepšík, Martin; Jiráček, Jiří


    Roč. 2015, č. 17 (2015), s. 3689-3701. ISSN 1434-193X R&D Projects: GA ČR GA14-17305S Institutional support: RVO:61388963 Keywords : solid-phase synthesis * protein mimics * click chemistry * alkynes * copper * azides Subject RIV: CC - Organic Chemistry Impact factor: 3.065, year: 2014

  3. A cyclic (alkyl)(amido)carbene: synthesis, study and utility as a desulfurization reagent. (United States)

    McCarty, Zachary R; Lastovickova, Dominika N; Bielawski, Christopher W


    The synthesis and study of a cyclic (alkyl)(amido)carbene is described. The carbene was found to undergo C-H insertion at low temperatures, formed cyclopropenes upon exposure to alkynes, and facilitated desulfurization reactions. Spectroscopic studies revealed that the carbene is strongly π-accepting but retains a complimentary degree of σ-donating properties. PMID:27010415

  4. Carbon dioxide as a carbon source in organic transformation: carbon-carbon bond forming reactions by transition-metal catalysts.


    Tsuji, Yasushi; Fujihara, Tetsuaki


    Recent carbon-carbon bond forming reactions of carbon dioxide with alkenes, alkynes, dienes, aryl zinc compounds, aryl boronic esters, aryl halides, and arenes having acidic C-H bonds are reviewed in which transition-metal catalysts play an important role.

  5. Synthesis and Reactions of 2,6-Diazidopurine Deoxynucleoside


    Ozols, K; Bizdēna, Ē


    In recent years number of novel 1,2,3-triazolylpurine nucleosides have been synthesized including compounds with biological activity: adenosine receptor antagonists and agonists, anticancer and antiviral agents. In this research synthesis of 2,6-bistriazolyl deoxynucleosides in Cu catalysed 1,3-dipolar azide-alkyne cycloaddition reaction (Click reaction) has been investigated.

  6. Regioselective Nucleophilic Aromatic Substitution of 2,6-Bis-(1,2,3-Triazolyl)-Purine Derivatives with Various Nucleophiles


    Novosjolova, I; Bizdēna, Ē; Turks, M


    A novel class of bis-triazolyl purine nucleosides were obtained from 2,6-diazido precursors via copper (I) catalyzed azide-alkyne cycloaddition. These intermediates appeared to be very reactive towards N- and S-nucleophiles and thus selectively gave C(6)-substituted analogs with triazolyl moiety at C(2)-position. The obtained 2-triazolyl purine derivatives exhibit interesting fluorescence properties.

  7. Click, Substitute and Fluoresce: Synthesis and Applications of 2,6-Di-(1,2,3-triazolyl)-purine Nucleosides


    Novosjolova, I; Kovaļovs, A; Bižāne, I; Bizdēna, Ē; Turks, M


    A novel class of ditriazolylpurine nucleosides were ob-tained from 2,6-diazido precursors via copper catalyzed azide-alkyne cycloaddition. These intermediates ap-peared to be very reactive towards N- and S-nucleophiles and thus selectively gave C(6)-substituted analogs with triazolyl moiety at C(2)-position. The latter products exhibit interesting fluorescence properties.

  8. "Click" Approach to the Synthesis of 2,6-Bis(1,2,3-triazolyl)purine Deoxynucleosides


    Ozols, K; Bizdēna, Ē


    Azide-alkyne 1,3-dipolar cycloaddition reaction (click reaction) has been found to be useful in nucleoside, nucleotide and oligonucleotide chemistry. In last years a number of 1,2,3-triazolylnucleoside derivatives have been synthesized and investigated, leading to discovery of substances with antiviral and anticancer activity, enzyme inhibitors, adenosine receptor agonists and antagonists.

  9. Sulfonamide bearing oligonucleotides: Simple synthesis and efficient RNA recognition

    DEFF Research Database (Denmark)

    Kumar, P.; Chandak, N.; Nielsen, P.;


    Four pyrimidine nucleosides wherein a benzensulfonamide group is linked to the C-5 position of the uracil nucleobase through a triazolyl or an alkynyl linker were prepared by Cu(I)-assisted azide-alkyne cycloadditions (CuAAC) or Sonogashira reactions, respectively, and incorporated into oligonucl...

  10. Conjugating folate on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles using click chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiaofang, E-mail:; Ge, Zhaoqiang; Pang, Yuehong


    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe{sub 3}O{sub 4}@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe{sub 3}O{sub 4}@Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe{sub 3}O{sub 4}@Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry.

  11. High-yield clicking and dissociation of doxorubicin nanoclusters exhibiting differential cellular uptakes and imaging. (United States)

    Kim, Hye Sung; Yoon, Sujin; Son, Young Ju; Park, Yeonju; Jung, Young Mee; Yoo, Hyuk Sang


    Gold nanoparticles (AuNPs) and quantum dots (Qdots) were clicked into doxorubicin nanoclusters that showed enzyme-dependent dissociation behaviors for differential cellular uptakes and imaging. The AuNPs were co-functionalized with doxorubicin (DOX) and azide-terminated polymer (DOX/azide@AuNP), while an enzyme-cleavable peptide and alkyne-terminated polymer were sequentially conjugated on Qdot surface (Alkyne-MMP@Qdot). Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and fluorescence imaging detected the azide and alkyne groups on DOX/azide@AuNP and Alkyne-MMP@Qdot, respectively, and the click-reactivity was also confirmed. In the presence of the catalyst, two nanoparticles were clicked to doxorubicin nanoclusters, which increased the volume of the particles ca. 343-fold within 30min. Upon matrix metalloproteinase-2 (MMP-2) digestion, the nanoclusters were clearly dissociated into smaller particles, and the fluorescence of the quenched Qdot was also recovered, which suggests that the nanoclusters respond to MMP-2 concentrations and can thus be employed for cancer imaging. Confocal microscopy and an elemental analysis of the cancer cells revealed that the cellular uptakes of doxorubicin nanoclusters significantly increased at higher MMP-2 concentrations, and doxorubicin could also be cleaved for anti-cancer effects. In vivo and in vitro cytotoxicity assay accordingly showed that the cytotoxicity of doxorubicin nanoclusters against cancer cells increased in MMP-2-rich environments such as tumor site. Thus, these nanoclusters containing DOX/azide@AuNP and Alkyne-MMP@Qdot are expected to be multifunctional carriers for targeted anti-cancer treatments and imaging. PMID:26315815

  12. An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation. (United States)

    Ta, Duy Tien; Redeker, Erik Steen; Billen, Brecht; Reekmans, Gunter; Sikulu, Josephine; Noben, Jean-Paul; Guedens, Wanda; Adriaensens, Peter


    In this study, several expression strategies were investigated in order to develop a generic, highly productive and efficient protocol to produce nanobodies modified with a clickable alkyne function at their C-terminus via the intein-mediated protein ligation (IPL) technique. Hereto, the nanobody targeting the vascular cell adhesion molecule 1 (NbVCAM1) was used as a workhorse. The highlights of the protocol can be ascribed to a cytoplasmic expression of the nanobody-intein-chitin-binding domain fusion protein in the Escherichia coli SHuffle(®) T7 cells with a C-terminal extension, i.e. LEY, EFLEY or His6 spacer peptide, in the commonly used Luria-Bertani medium. The combination of these factors led to a high yield (up to 22 mg/l of culture) and nearly complete alkynation efficiency of the C-terminally modified nanobody via IPL. This yield can even be improved to ∼45 mg/l in the EnPresso(®) growth system but this method is more expensive and time-consuming. The resulting alkynated nanobodies retained excellent binding capacity towards the recombinant human VCAM1. The presented protocol benefits from time- and cost-effectiveness, which allows a feasible production up-scaling of generic alkynated nanobodies. The production of high quantities of site-specifically modified nanobodies paves the way to new biosurface applications that demand for a homogeneously oriented nanobody coupling. Prospectively, the alkynated nanobodies can be covalently coupled to a multitude of azide-containing counterparts, e.g. contrast labeling agents, particles or surfaces for numerous innovative applications. PMID:26243885

  13. Strain-promoted copper free click chemistry for 64Cu radiolabeling of integrin-αvβ6 targeted peptide

    International Nuclear Information System (INIS)

    Strain promoted copper free click chemistry offers a fast and efficient method for preparation of radio labeled molecular probes and pre-targeted imaging in vivo. The fast reaction kinetics, driven by the release of strain energy ranging from 10-19 kcal/mol for cyclooctynes, precludes the need for toxic copper catalyst for chemical ligation between alkynes and azides. In particular this catalyst free approach provides a favorable platform for synthesis of radiometalated probes requiring macrocycle chelates for formation of stable and kinetically inert complexes where Cu(I) can interfere with metal chelates. In present studies DOTA-ADIBO (azadibenzocyclooctyne amine), a strained chelate-alkyne system has been constructed for bioconjugation with the azide-modified PEGylated peptide, N3-Ala-PEG28-A20FMDV2 and radiolabeled with (64Cu) Cu for assessment as a integrin-αvβ6, targeting molecular probe

  14. Chemical Architecture and Applications of Nucleic Acid Derivatives Containing 1,2,3-Triazole Functionalities Synthesized via Click Chemistry

    Directory of Open Access Journals (Sweden)

    Wei Gong


    Full Text Available There is considerable attention directed at chemically modifying nucleic acids with robust functional groups in order to alter their properties. Since the breakthrough of copper-assisted azide-alkyne cycloadditions (CuAAC, there have been several reports describing the synthesis and properties of novel triazole-modified nucleic acid derivatives for potential downstream DNA- and RNA-based applications. This review will focus on highlighting representative novel nucleic acid molecular structures that have been synthesized via the “click” azide-alkyne cycloaddition. Many of these derivatives show compatibility for various applications that involve enzymatic transformation, nucleic acid hybridization, molecular tagging and purification, and gene silencing. The details of these applications are discussed. In conclusion, the future of nucleic acid analogues functionalized with triazoles is promising.

  15. Click-to-Chelate: Development of Technetium and Rhenium-Tricarbonyl Labeled Radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Thomas L. Mindt


    Full Text Available The Click-to-Chelate approach is a highly efficient strategy for the radiolabeling of molecules of medicinal interest with technetium and rhenium-tricarbonyl cores. Reaction of azide-functionalized molecules with alkyne prochelators by the Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC; click reaction enables the simultaneous synthesis and conjugation of tridentate chelating systems for the stable complexation of the radiometals. In many cases, the functionalization of (biomolecules with the ligand system and radiolabeling can be achieved by convenient one-pot procedures. Since its first report in 2006, Click-to-Chelate has been applied to the development of numerous novel radiotracers with promising potential for translation into the clinic. This review summarizes the use of the Click-to-Chelate approach in radiopharmaceutical sciences and provides a perspective for future applications.

  16. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation (United States)

    Chan, Chun Wong Aaron; Mahadi, Abdul Hanif; Li, Molly Meng-Jung; Corbos, Elena Cristina; Tang, Chiu; Jones, Glenn; Kuo, Winson Chun Hsin; Cookson, James; Brown, Christopher Michael; Bishop, Peter Trenton; Tsang, Shik Chi Edman


    Lindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases. Here we report that a non-surface modification of palladium gives rise to the formation of an ultra-selective nanocatalyst. Boron atoms are found to take residence in palladium interstitial lattice sites with good chemical and thermal stability. This is favoured due to a strong host-guest electronic interaction when supported palladium nanoparticles are treated with a borane tetrahydrofuran solution. The adsorptive properties of palladium are modified by the subsurface boron atoms and display ultra-selectivity in a number of challenging alkyne hydrogenation reactions, which outclass the performance of Lindlar catalysts.

  17. New highlights of the syntheses of pyrrolo[1,2-a]quinoxalin-4-ones (United States)

    Georgescu, Emilian; Nicolescu, Alina; Georgescu, Florentina; Teodorescu, Florina; Marinescu, Daniela; Macsim, Ana-Maria


    Summary The one-pot three-component reactions of 1-substituted benzimidazoles with ethyl bromoacetate and electron-deficient alkynes, in 1,2-epoxybutane, gave a variety of pyrrolo[1,2-a]quinoxalin-4-ones and pyrrolo[1,2-a]benzimidazoles. The influence of experimental conditions on the course of reaction was investigated. A novel synthetic pathway starting from benzimidazoles unsubstituted at the five membered ring, alkyl bromoacetates and non-symmetrical electron-deficient alkynes in the molar ratio of 1:2:1, in 1,2-epoxybutane at reflux temperature, led directly to pyrrolo[1,2-a]quinoxalin-4-ones in fair yield by an one-pot three-component reaction. PMID:25383108

  18. Vitamin B12 Phosphate Conjugation and Its Effect on Binding to the Human B12 -Binding Proteins Intrinsic Factor and Haptocorrin. (United States)

    Ó Proinsias, Keith; Ociepa, Michał; Pluta, Katarzyna; Chromiński, Mikołaj; Nexo, Ebba; Gryko, Dorota


    The binding of vitamin B12 derivatives to human B12 transporter proteins is strongly influenced by the type and site of modification of the cobalamin original structure. We have prepared the first cobalamin derivative modified at the phosphate moiety. The reaction conditions were fully optimized and its limitations examined. The resulting derivatives, particularly those bearing terminal alkyne and azide groups, were isolated and used in copper-catalyzed alkyne-azide cycloaddition reactions (CuAAC). Their sensitivity towards light revealed their potential as photocleavable molecules. The binding abilities of selected derivatives were examined and compared with cyanocobalamin. The interaction of the alkylated derivatives with haptocorrin was less affected than the interaction with intrinsic factor. Furthermore, the configuration of the phosphate moiety was irrelevant to the binding process. PMID:27120016

  19. Patterned porous silicon photonic crystals with modular surface chemistry for spatial control of neural stem cell differentiation (United States)

    Huang, Tiffany H.; Pei, Yi; Zhang, Douglas; Li, Yanfen; Kilian, Kristopher A.


    We present a strategy to spatially define regions of gold and nanostructured silicon photonics, each with materials-specific surface chemistry, for azide-alkyne cycloaddition of different bioactive peptides. Neural stem cells are spatially directed to undergo neurogenesis and astrogenesis as a function of both surface properties and peptide identity.We present a strategy to spatially define regions of gold and nanostructured silicon photonics, each with materials-specific surface chemistry, for azide-alkyne cycloaddition of different bioactive peptides. Neural stem cells are spatially directed to undergo neurogenesis and astrogenesis as a function of both surface properties and peptide identity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08327c

  20. New highlights of the syntheses of pyrrolo[1,2-a]quinoxalin-4-ones

    Directory of Open Access Journals (Sweden)

    Emilian Georgescu


    Full Text Available The one-pot three-component reactions of 1-substituted benzimidazoles with ethyl bromoacetate and electron-deficient alkynes, in 1,2-epoxybutane, gave a variety of pyrrolo[1,2-a]quinoxalin-4-ones and pyrrolo[1,2-a]benzimidazoles. The influence of experimental conditions on the course of reaction was investigated. A novel synthetic pathway starting from benzimidazoles unsubstituted at the five membered ring, alkyl bromoacetates and non-symmetrical electron-deficient alkynes in the molar ratio of 1:2:1, in 1,2-epoxybutane at reflux temperature, led directly to pyrrolo[1,2-a]quinoxalin-4-ones in fair yield by an one-pot three-component reaction.

  1. Photocrosslinking and click chemistry enable the specific detection of proteins interacting with phospholipids at the membrane interface. (United States)

    Gubbens, Jacob; Ruijter, Eelco; de Fays, Laurence E V; Damen, J Mirjam A; de Kruijff, Ben; Slijper, Monique; Rijkers, Dirk T S; Liskamp, Rob M J; de Kroon, Anton I P M


    New lipid analogs mimicking the abundant membrane phospholipid phosphatidylcholine were developed to photocrosslink proteins interacting with phospholipid headgroups at the membrane interface. In addition to either a phenylazide or benzophenone photoactivatable moiety attached to the headgroup, the lipid analogs contained azides attached as baits to the acyl chains. After photocrosslinking in situ in the biomembrane, these baits were used for the attachment of a fluorescent tetramethylrhodamine-alkyne conjugate or a biotin-alkyne conjugate using click chemistry, allowing for the selective detection and purification of crosslink products, respectively. Proteins crosslinked to the lipid analogs in inner mitochondrial membranes from Saccharomyces cerevisiae were detected and subsequently identified by mass spectrometry. Established interaction partners of phosphatidylcholine were found, as well as known integral and peripheral inner membrane proteins, and proteins that were not previously considered mitochondrial inner membrane proteins. PMID:19171301

  2. Synthesis of C-5, C-2' and C-4'-neomycin-conjugated triplex forming oligonucleotides and their affinity to DNA-duplexes. (United States)

    Tähtinen, Ville; Granqvist, Lotta; Virta, Pasi


    Neomycin-conjugated homopyrimidine oligo 2'-deoxyribonucleotides have been synthesized on a solid phase and their potential as triplex forming oligonucleotides (TFOs) with DNA-duplexes has been studied. For the synthesis of the conjugates, C-5, C-2' and C-4'-tethered alkyne-modified nucleoside derivatives were used as an integral part of the standard automated oligonucleotide chain elongation. An azide-derived neomycin was then conjugated to the incorporated terminal alkynes by Cu(I)-catalyzed 1,3-dipolar cycloaddition (the click chemistry). Concentrated ammonia released the desired conjugates in acceptable purity and yields. The site of conjugation was expectedly important for the Hoogsteen-face recognition: C-5-conjugation showed a notable positive effect, whereas the influence of the C-2' and C-4'-modification remained marginal. In addition to conventional characterization methods (UV- and CD-spectroscopy), (19)F NMR spectroscopy was applied for the monitoring of triplex/duplex/single strand-conversions. PMID:26118338

  3. Phenylglyoxal-Based Visualization of Citrullinated Proteins on Western Blots

    Directory of Open Access Journals (Sweden)

    Sanne M. M. Hensen


    Full Text Available Citrullination is the conversion of peptidylarginine to peptidylcitrulline, which is catalyzed by peptidylarginine deiminases. This conversion is involved in different physiological processes and is associated with several diseases, including cancer and rheumatoid arthritis. A common method to detect citrullinated proteins relies on anti-modified citrulline antibodies directed to a specific chemical modification of the citrulline side chain. Here, we describe a versatile, antibody-independent method for the detection of citrullinated proteins on a membrane, based on the selective reaction of phenylglyoxal with the ureido group of citrulline under highly acidic conditions. The method makes use of 4-azidophenylglyoxal, which, after reaction with citrullinated proteins, can be visualized with alkyne-conjugated probes. The sensitivity of this procedure, using an alkyne-biotin probe, appeared to be comparable to the antibody-based detection method and independent of the sequence surrounding the citrulline.

  4. Synthesis of Dendrimer Containing Dialkylated-fluorene Unit as a Core Chromophore via Click Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Choul; Lee, Jae Wook [Dong-A University, Busan (Korea, Republic of); Jin, Sung Ho [Pusan National University, Busan (Korea, Republic of)


    The convergent synthetic strategy for the emissive dendrimers having the chromophore at core via the coppercatalyzed 1,3-dipolar cycloaddition reaction between alkyne and azide was described. 2,7-Diazido-9,9-dioctyl- 9H-fluorene, designed to serve as the core in dendrimer, was stitched with the alkyne-functionalized Frechettype and PAMAM dendrons by the click chemistry leading to the formation of the corresponding fluorescent dendrimers in high yields. The preliminary photoluminescence studies indicated that 2,7-diazido-9,9-dioctyl- 9H-fluorene showed no fluorescence due to the quenching effect from the electron-rich α-nitrogen of the azido group but the dendrimers fluoresced due to the elimination of the quenching through the formation of the triazole ring.

  5. Demonstration of a sucrose-derived contrast agent for magnetic resonance imaging of the GI tract. (United States)

    Martinez, Gary V; Navath, Suryakiran; Sewda, Kamini; Rao, Venkataramanarao; Foroutan, Parastou; Alleti, Ramesh; Moberg, Valerie E; Ahad, Ali M; Coppola, Domenico; Lloyd, Mark C; Gillies, Robert J; Morse, David L; Mash, Eugene A


    A scaffold bearing eight terminal alkyne groups was synthesized from sucrose, and copies of an azide-terminated Gd-DOTA complex were attached via copper(I)-catalyzed azide-alkyne cycloaddition. The resulting contrast agent (CA) was administered by gavage to C3H mice. Passage of the CA through the gastrointestinal (GI) tract was followed by T1-weighted magnetic resonance imaging (MRI) over a period of 47h, by which time the CA had exited the GI tract. No evidence for leakage of the CA from the GI tract was observed. Thus, a new, orally administered CA for MRI of the GI tract has been developed and successfully demonstrated. PMID:23481651

  6. Modification of porous silicon rugate filters through thiol-yne photochemistry

    International Nuclear Information System (INIS)

    Porous silicon (PSi) has a considerable potential as biosensor platform. In particular, the ability to modify the surface chemistry of porous silicon is of interest. Here we present a generic method to modify the surface of porous silicon through thiol-yne photochemistry initiated by a radical initiator. Firstly, a freshly etched porous silicon substrate is modified through thermal hydrosilylation with 1,8-nonadiyne to passivate the surface and introduce alkyne functionalities. The alkyne functional surface could then be further reacted with thiol species in the presence of a radical initiator and UV light. Functionalization of the PSi rugate filter is followed with optical reflectivity measurements as well as high resolution X-ray photoelectron spectroscopy (XPS)

  7. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry (United States)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong


    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe3O4@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe3O4@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe3O4@Au-FA nanoparticles.



    Kang, Xiongwu


    Metal-organic contact has been recognized to play important roles in regulation of optical and electronic properties of nanoparticles. In this thesis, significant efforts have been devoted into synthesis of ruthenium nanoparticles with various metal-ligand interfacial linkages and investigation of their electronic and optical properties. Ruthenium nanoparticles were prepared by the self-assembly of functional group onto bare Ru colloid surface. As to Ru-alkyne nanoparticles, the formation of ...

  9. Metal and Precursor Effect during 1-Heptyne Selective Hydrogenation Using an Activated Carbon as Support


    Lederhos, Cecilia R.; Badano, Juan M.; Nicolas Carrara; Fernando Coloma-Pascual; M. Cristina Almansa; Domingo Liprandi; Mónica Quiroga


    Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are g...

  10. Nickel N-heterocyclic carbene complexes in homogeneous catalysis


    Berding, Joris


    Described in this thesis are the investigations into the chemistry of N-heterocyclic carbene (NHC) ligands and transition-metal complexes thereof. Specifically, a variety of N-heterocyclic carbene complexes of nickel were prepared, characterized and used as catalysts in three types of homogeneous catalytic processes. First, nickel(II) complexes of monodentate NHC ligands were successfully used as catalysts in the hydrosilylation of internal alkynes. Second, nickel(II) complexes bearing bident...

  11. ‘Clickable’ Polymer-Caged Nanobins as a Modular Drug Delivery Platform


    Lee, Sang-Min; Chen, Haimei; O'Halloran, Thomas V.; Nguyen, SonBinh T.


    Modularly clickable polymer-caged nanobins (PCNs) were prepared from liposome templates using a drop-in cholesterol-modified poly(acrylic acid) reagent followed by crosslinking with alkyne-functionalized diamine linker that can allow for the conjugation of azido-modified targeting ligands via click ligation. These PCNs possess pH-responsive characteristics that can be used to trigger the release of encapsulated doxorubicin (DXR) payload inside the liposomal core under mild acidic conditions. ...

  12. Fluoroalkyl-Substituted Diazomethanes and Their Application in a General Synthesis of Pyrazoles and Pyrazolines. (United States)

    Mertens, Lucas; Hock, Katharina J; Koenigs, Rene M


    A novel continuous-flow approach for the synthesis of fluoroalkyl-substituted diazomethanes has been developed. Utilizing a cheap, self-made microreactor fluoroalkyl-substituted amines were transformed into the corresponding diazomethanes using tert-butyl nitrite and acetic acid as catalyst. These diazomethanes were employed in [2+3] cycloaddition reactions with olefins and alkynes, yielding valuable pyrazolines and pyrazoles in good to excellent yields. PMID:27168358

  13. Stereocontrolled total synthesis of neuroprotectin D1 / protectin D1 and its aspirin-triggered stereoisomer


    Petasis, Nicos A.; Yang, Rong; Winkler, Jeremy W.; Zhu, Min; Uddin, Jasim; Bazan, Nicolas G.; Serhan, Charles N.


    Neuroprotectin D1 / protectin D1, a potent anti-inflammatory, proresolving, and neuroprotective lipid mediator derived biosynthetically from docosahexaenoic acid, was prepared in enantiomerically pure form via total organic synthesis. The synthetic strategy is highly stereocontrolled and convergent, featuring epoxide opening of glycidol starting materials for the introduction of the 10(R) and 17(S) hydroxyl groups. The desired alkene Z geometry was secured via the cis-reduction of alkyne prec...

  14. A simple method for enhancing the bioorthogonality of cyclooctyne reagent. (United States)

    Tian, He; Sakmar, Thomas P; Huber, Thomas


    The cross-reactivity between some cyclooctynes and thiols limits the bioorthogonality of the strain-promoted azide-alkyne cycloaddition reaction. We show that a low concentration of β-mercaptoethanol significantly reduces the undesirable side reaction between bicyclononyne (BCN) and cysteine and while preserving free cysteines. We site-specifically label a genetically-encoded azido group in the visual photoreceptor rhodopsin to demonstrate the utility of the strategy. PMID:27009873

  15. Catalytic Asymmetric [4 + 1] Annulation of Sulfur Ylides with Copper-Allenylidene Intermediates. (United States)

    Wang, Qiang; Li, Tian-Ren; Lu, Liang-Qiu; Li, Miao-Miao; Zhang, Kai; Xiao, Wen-Jing


    The first copper-catalyzed asymmetric decarboxylative [4 + 1] cycloaddition of propargylic carbamates and sulfur ylides was successfully developed. This strategy led to a series of chiral indolines with synthetically flexible alkyne groups in good yields and with high enantio- and diastereoselectivities (up to 99% yield, 98% ee, and >95:5 dr). A possible mechanism and stereoinduction mode with copper-allenylidenes were proposed as the possible dipolar intermediate. PMID:27355096

  16. Total Synthesis of Laulimalide: Assembly of the Fragments and Completion of the Synthesis of the Natural Product and a Potent Analogue


    Trost, Barry M.; Amans, Dominique; Seganish, W. Michael; Chung, Cheol K.


    In this manuscript, we report the full account of our efforts to couple the northern and the southern building blocks, whose synthesis were described in the preceding paper, along with the modifications required which ultimately lead to a successful synthesis of laulimalide. Key highlights include an exceptionally efficient and atom-economical intramolecular ruthenium-catalyzed alkene-alkyne coupling to build the macrocycle followed by a highly stereoselective 1,3-allylic isomerization promot...

  17. Mechanistic Study of Nickel-Catalyzed Ynal Reductive Cyclizations Through Kinetic Analysis


    Baxter, Ryan D.; Montgomery, John


    The mechanism of nickel-catalyzed, silane-mediated reductive cyclization of ynals has been evaluated. The cyclizations are first-order in [Ni] and [ynal] and zeroth-order in [silane]. These results, in combination with the lack of rapid silane consumption upon reaction initiation are inconsistent with mechanisms involving reaction initiation by oxidative addition of Ni(0) to the silane. Silane consumption occurs only when both the alkyne and aldehyde and are present. Mechanisms involving rate...

  18. Facile Synthesis of Functionalized Carbene Metal Complexes from Coordinated Isonitriles. (United States)

    Lothschütz, Christian; Wurm, Thomas; Zeiler, Anna; Freiherr V Falkenhausen, Alexander; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K


    The scope and limitations of the isonitrile-based NHC template synthesis were investigated with a series of precursors containing a nucleophilic amine in combination with tethered electrophiles. In the case of alkynes and phosphonic esters as electrophiles no ring closure was observed and new functionalized NAC gold complexes were obtained. By the use of unsaturated esters and phosphonic esters as Michael acceptors in the amine precursors, ester-modified gold and palladium NHC complexes were accessible in high efficiency. PMID:26033484

  19. Chemical modification of viscose fibres by adsorption of carboxymethyl cellulose and click chemistry


    Anufrijeva, Olga


    Functionalization of cellulosic materials to achieve new and advanced properties is a widely explored research area. This thesis is focused on the novel approach for modification of cellulosic materials by the combination of adsorption of carboxymethyl cellulose (CMC) onto cellulose surface and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) “click” reaction. The literature part gives an overview on the basics of cellulose chemistry, chemical functionalization of cellulose, as wel...

  20. Peptide-Functionalized Click Hydrogels with Independently Tunable Mechanics and Chemical Functionality for 3D Cell Culture


    DeForest, Cole A; Sims, Evan A.; Anseth, Kristi S.


    Click chemistry offers highly selective and orthogonal reactions that proceed rapidly and under a variety of mild conditions with the opportunity to create highly defined and multifunctional materials. This work illustrates a strategy where step-growth networks are formed rapidly via a copper-free, azide−alkyne click chemistry between tetrafunctional poly(ethylene glycol) molecules and difunctionalized synthetic polypeptides. The molecular weight of the polymer precursors (10, 15, or 20 kDa P...

  1. Direct synthesis of 1,5-disubstituted-4-magnesio-1,2,3-triazoles, revisited. (United States)

    Krasiński, Antoni; Fokin, Valery V; Sharpless, K Barry


    After revisiting earlier works reporting the regioselective synthesis of 1,5-disubstituted-1,2,3-triazoles via the addition of bromomagnesium acetylides to azides, much improved yields of the products were obtained for a wide array of azides and alkynes. The intermediates of that reaction can be trapped with different electrophiles to regioselectively form 1,4,5-trisubstituted 1,2,3-triazoles. [reaction: see text] PMID:15070306

  2. Design and Investigation of Novel Porphyrin(oid) Conjugate Systems


    Biedermann, Miriam


    Within the first part of this thesis novel water-soluble donor-acceptor arrays built up by porphyrins and pyrene or perylene derivatives were designed via a copper(I)-catalysed 1,3-dipolar azide-alkyne cycloaddition reaction. For this purpose, suitable precursors, which were available by well-established synthetic literature procedures, were combined with newly developed complementary “click” counterparts. Thus, also the substance library of ortho-benzylic functionalised tetraarylporphyrins w...

  3. Haptotropic Migration of Metal Templates on Arene Surfaces

    Institute of Scientific and Technical Information of China (English)

    K.H.Dtz; H.C.Jahr; J.Bennewitz; J.Dubarle-offner


    1 Results The chromium-templated benzannulation of arylcarbenes by alkynes provides a direct regio- and diastereoselective access to densely functionalized chromium arenes[1]. The chromium fragment undergoes a haptotropic migration along the π-face of the fused arenes which can be controlled by thermodynamics,by the substitution pattern of the arene and by the metal coligand sphere(See Scheme 1).The controlled regioselective labeling of benzene rings can be exploited in diastereoselective C-C bond forma...

  4. Functional Organometallics

    Institute of Scientific and Technical Information of China (English)



    1 Results The lecture will address aspects of functional organometallics related to the development of novel organometallic materials.In chromium complexes of fused arenes-regio-and diastereoselectively accessible by chromium-templated benzannulation of arylcarbenes by alkynes[1]-a haptotropic migration of the chromium fragment along the π-face of fused arenes is controlled by both thermodynamics and the substitution pattern of the arene and the metal coligand sphere,and can be applied towards an organo...

  5. Liquid-Phase Epitaxial Growth of Highly Oriented and Crystalline MOF Thin Films: Post-Synthetic Modification and Different Applications


    Wang, Zhengbang


    The studies for this PhD thesis showed the preparation, characterization and application of new-type surface-mounted metal-organic frameworks (SURMOFs). The aims were to: (1) heteroepitaxially grow MOF-on-MOF multilayer systems with huge lattice mismatch; (2) modify azide-based SURMOFs using alkyne-azide click chemistry; (3) chemically pattern SURMOFs using postsynthetic modification (PSM); (4) engineer UHM-3 SURMOFs with quantitative Cu(I) defects using postsynthetic thermal treatment.

  6. Copper Granule-Catalyzed Microwave-Assisted Click Synthesis of Polyphenol Dendrimers


    Lee, Choon Young; Held, Rich; Sharma, Ajit; Baral, Rom; Nanah, Cyprien; Dumas, Dan; Jenkins, Shannon; Upadhaya, Samik; Du, Wenjun


    Syringaldehyde and vanillin-based antioxidant dendrimers were synthesized via microwave-assisted alkyne-azide 1,3-dipolar cycloaddition using copper granules as a catalyst. The use of Cu(I) as a catalyst resulted in copper contaminated dendrimers. In order to produce copper-free antioxidant dendrimers for biological applications, Cu(I) was substituted with copper granules. Copper granules were ineffective at both room temperature and under reflux conditions (< 5% yield). However, it was an ex...

  7. Cytocompatible Poly(ethylene glycol)-co-polycarbonate Hydrogels Crosslinked by Copper-free, Strain-promoted “Click” Chemistry


    Xu, Jianwen; Filion, Tera M.; Prifti, Fioleda; Song, Jie


    Strategies to encapsulate cells in cytocompatible 3-dimensional hydrogels with tunable mechanical properties and degradability without harmful gelling conditions are highly desired for regenerative medicine applications. Here we reported a method for preparing poly(ethylene glycol)-co-polycarbonate hydrogels through copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC) “Click” chemistry. Hydrogels with varying mechanical properties were formed by “clicking” azido-functionalized poly...

  8. Synthesis of novel C-(o-carboranyl)-2-deoxy-d-ribose conjugates

    Czech Academy of Sciences Publication Activity Database

    Šnajdr, I.; Janoušek, Z.; Kotora, Martin

    Praha: Institute of Organic Chemistry and Biochemistry AS CR, v. v. i., 2011 - (Hocek, M.), s. 465-466. (Collection Symposium Series. 12). ISBN 978-80-86241-37-1. [Chemistry of Nucleic Acid Components /15./. Český Krumlov (CZ), 05.06.2011-10.06.2011] Institutional research plan: CEZ:AV0Z40550506 Keywords : carboranes * nucleosides * alkynes Subject RIV: CC - Organic Chemistry

  9. A new synthetic approach to the polycyclic polyprenylated acylphloroglucinols. (United States)

    Ciochina, Roxana; Grossman, Robert B


    [reaction: see text] The three-carbon alpha,alpha'-annulation of a sterically hindered cyclic beta-keto ester can be achieved by alkynylation with 3,3-diethoxypropyne, syn reduction of the alkyne with Co(2)(CO)(8) and Et(3)SiH, and an intramolecular aldol reaction. The method is potentially useful for the synthesis of nemorosone, hyperforin, and other polycyclic polyprenylated acylphloroglucinols. PMID:14627398

  10. Cycloalkenyl macromonomers from new multifunctional inimers : a platform for graft, bottle-brush and mikto-arm star copolymers


    Nguyen, Duc Anh


    The objective of the present thesis was the preparation of complex macromolecules by the combination of controlled/livingpolymerization methods such as ring-opening (metathesis) polymerization (RO(M)P) and highly efficient orthogonal chemistries: copper-catalyzed azide-alkyne coupling (CuAAC) and thiol-ene reactions.In the first part of this work, a series of well-defined structural (co)polymers containing a cycloolefin (norbornene (NB) oroxanorbornene (ONB)) functionality bearing two polymer...

  11. An activated triple bond linker enables 'click' attachment of peptides to oligonucleotides on solid support


    Wenska, Malgorzata; Alvira, Margarita; Steunenberg, Peter; Stenberg, Åsa; Murtola, Merita; Strömberg, Roger


    A general procedure, based on a new activated alkyne linker, for the preparation of peptide–oligonucleotide conjugates (POCs) on solid support has been developed. With this linker, conjugation is effective at room temperature (RT) in millimolar concentration and submicromolar amounts. This is made possible since the use of a readily attachable activated triple bond linker enhances the Cu(I) catalyzed 1,3-dipolar cycloaddition (‘click’ reaction). The preferred scheme for conjugate preparation ...

  12. Construction of a Reactive Diblock Copolymer, Polyphosphoester-block-Poly(L-lactide), as a Versatile Framework for Functional Materials that are Capable of Full Degradation and Nanoscopic Assembly Formation


    Lim, Young H.; Heo, Gyu Seong; Cho, Sangho; Wooley, Karen L.


    The development of a diblock copolymer, polyphosphoester-block-poly(L-lactide), which has potential for being fully-degradable and biocompatible, was achieved by one-pot sequential ring-opening polymerizations (ROPs) of two cyclic monomers: alkyne-functionalized phospholane and L-lactide (LLA). A kinetic study of the polymerization in each step was investigated in a detailed manner by nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC), revealing living/contr...

  13. Enantiospecific Alkynylation of Alkylboronic Esters


    Wang, Yahui; Noble, Adam; Myers, Eddie L.; Aggarwal, Varinder K.


    Enantioenriched secondary and tertiary alkyl pinacolboronic esters undergo enantiospecific deborylative alkynylation through a Zweifel-type alkenylation followed by a 1,2-elimination reaction. The process involves the use of α-lithio vinyl bromide or vinyl carbamate, species whose application to Zweifel-type reactions has not previously been explored. The resulting functionalized 1,1-disubstituted alkenes undergo facile base-mediated elimination to generate the terminal alkyne products in hig...

  14. Design, synthesis and photochemical properties of the first examples of iminosugar clusters based on fluorescent cores

    Directory of Open Access Journals (Sweden)

    Mathieu L. Lepage


    Full Text Available The synthesis and photophysical properties of the first examples of iminosugar clusters based on a BODIPY or a pyrene core are reported. The tri- and tetravalent systems designed as molecular probes and synthesized by way of Cu(I-catalysed azide–alkyne cycloadditions are fluorescent analogues of potent pharmacological chaperones/correctors recently reported in the field of Gaucher disease and cystic fibrosis, two rare genetic diseases caused by protein misfolding.

  15. Enantioselective organocatalyzed Oxa-Michael-Aldol cascade reactions: Construction of chiral 4H-chromenes with a trifluoromethylated tetrasubstituted carbon stereocenter

    KAUST Repository

    Zhang, Jing


    The first organocatalytic asymmetric synthesis of 4H-chromenes bearing a trifluoromethylated tetrasubstituted carbon center is presented. Chiral secondary amines promote the oxa-Michael-aldol cascade reaction between alkynals and 2-trifluoroacetylphenols via iminium-allenamine activation to produce pharmaceutically important heterocycles with excellent enantioselectivities. The proposed reaction can be scaled-up easily with maintenance of the excellent enantioselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthetic Studies toward Gold(I)-catalyzed preparation of Trifluoromethyl Compounds


    Asplin, Alexander


    In this project gold(I)-catalyzed reactions on triple bonds has been investigated, with the trifluoromethyl group incorporated. Initially the goal was to develop a new gold(I)-catalyzed trifluoromethylation reaction, as shown below. This goal has not been reached. Several attempts in order to prepare a trifluoromethylated di-hydropyran derivate, both by direct trifluoromethylation and via trifluoromethylated precursors. A study of the reactivity of a trifluoromethylated alkyne in regard t...

  17. Synthesis of 2,3-diyne-1,4-naphthoquinone derivatives and evaluation of cytotoxic activity against tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mauro G.; Camara, Celso A.; Silva, Tania M.S., E-mail: [Universidade Federal Rural de Pernambuco (LSCB/UFRPE), Recife, PE (Brazil). Dept. de Ciencias Moleculares. Lab. de Sintese de Compostos Bioativos; Feitosa, Anderson C.S.; Meira, Assuero S.; Pessoa, Claudia [Universidade Federal do Ceara (LOE/UFC), Fortaleza, CE (Brazil). Dept. de Fisiologia e Farmacologia. Lab. de Oncologia Experimental


    A series of 2,3-diyne-1,4-naphthoquinone derivatives was synthesized from 2,3-dibromo- 1,4-naphthoquinone and various functionalized terminal alkynes using palladium-catalyzed Sonogashira cross-coupling reaction. The diynes were evaluated as potential cytotoxic agents against three tumor cell lines: human ovarian adenocarcinoma (OVCAR-8), human metastatic prostate cancer (PC-3M) and human bronchoalveolar lung carcinoma (NCI-H358M), presenting, in general, satisfactory results for inhibition of cell growth. (author)

  18. Application of 1,2,3-triazolylidenes as versatile NHC-type ligands: synthesis, properties, and application in catalysis and beyond


    Donnelly, Kate F.; Petronilho, Ana; Albrecht, Martin


    Triazolylidenes have rapidly emerged as a powerful subclass of N-heterocyclic carbene ligands for transition metals. They are readily available through regioselective [2 + 3] cycloaddition of alkynes and azides and subsequent metallation according to procedures established for related carbenes. Due to their mesoionic character, triazolylidenes are stronger donors than Arduengo-type imidazol-2-ylidenes. Spurred by these attractive attributes and despite their only recent emergence, triazolylid...

  19. The chemistry of half-sandwich vanadium imido-amido complexes


    Batinas, Aurora Alexandra


    Many important industrial processes make use of catalyzed reactions. One of the best known catalytic processes is the production of polyethylene and polypropylene plastics used in everyday life by means of olefin polymerisation (carbon-carbon bond formation). Another catalyzed chemical transformation that received widespread attention is the formation of carbon-heteroatom bonds. The hydroamination reaction, for instance, creates a carbon-nitrogen bond from amines and alkenes or alkynes. It is...

  20. Rhodium(I) catalyzed [2+2+2] cycloaddition reactions: experimental and theoretical studies


    Dachs Soler, Anna


    The [2+2+2] cycloaddition reaction involves the formation of three carbon-carbon bonds in one single step using alkynes, alkenes, nitriles, carbonyls and other unsaturated reagents as reactants. This is one of the most elegant methods for the construction of polycyclic aromatic compounds and heteroaromatic, which have important academic and industrial uses. The thesis is divided into ten chapters including six related publications. The first study based on the Wilkinson’s catalyst, RhCl(PPh3)...

  1. Enantioselective synthesis of 4H-pyranonaphthoquinones via sequential squaramide and silver catalysis. (United States)

    Kaya, Uğur; Chauhan, Pankaj; Hack, Daniel; Deckers, Kristina; Puttreddy, Rakesh; Rissanen, Kari; Enders, Dieter


    An enantioselective one-pot Michael addition/hydroalkoxylation reaction between 2-hydroxy-1,4-naphthoquinones and alkyne-tethered nitroalkenes catalyzed by a cinchona-derived squaramide and a silver(I) salt has been developed. The sequential protocol provides a direct access to 4H-pyranonaphthoquinones in moderate to very good yields and good to excellent enantioselectivities at a very low catalyst loading (0.5 mol%) of the squaramide. PMID:26660230

  2. Fast and Highly Chemoselective Alkynylation of Thiols with Hypervalent Iodine Reagents Enabled through a Low Energy Barrier Concerted Mechanism


    Frei, Reto; Wodrich, Matthew D.; Hari, Durga Prasad; Borin, Pierre-Antoine; Chauvier, Clément; Waser, Jérôme


    Among all functional groups, alkynes occupy a privileged position in synthetic and medicinal chemistry, chemical biology, and materials science. Thioalkynes, in particular, are highly useful, as they combine the enhanced reactivity of the triple bond with a sulfur atom frequently encountered in bioactive compounds and materials. Nevertheless, general methods to access these compounds are lacking. In this article, we describe the mechanism and full scope of the alkynylation of thiols using eth...

  3. Enantioselective Synthesis of Isoquinolines: Merging Chiral-Phosphine and Gold Catalysis. (United States)

    Gao, Yu-Ning; Shi, Feng-Chen; Xu, Qin; Shi, Min


    The highly enantioselective synthesis of dihydroisoquinoline derivatives from aromatic sulfonated imines tethered with an alkyne moiety, through a one-pot asymmetric relay catalysis of chiral-phosphine and gold catalysts, is reported. Enantiomerically enriched dihydroisoquinoline derivatives were afforded in good yields and good-to-excellent ee values under mild conditions, based on the asymmetric aza-Morita-Baylis-Hillman reaction. Dihydroisoquinoline derivatives containing two chiral centers were also synthesized through further transformations. PMID:26990120

  4. Carboxylic acid derivatives via catalytic carboxylation of unsaturated hydrocarbons: whether the nature of a reductant may determine the mechanism of CO2 incorporation?


    Kirillov, E.; Carpentier, J.-F.; Bunel, E


    International audience Application of CO2 as a renewable feedstock and C1 building block for prodn. of commodity and fine chems. is a highly challenging but obvious industry-relevant task. Of particular interest is the catalytic coupling of CO2 with inexpensive unsatd. hydrocarbons (olefins, dienes, styrenes, alkynes), providing direct access to carboxylic acids and their derivs. Although not brand new for the scientific community, it is still a complete challenge, as no truly effective ca...

  5. Stealth Polymeric Vesicles via Metal-free Click Coupling


    Isaacman, Michael J.; Corigliano, Eleonora M.; Theogarajan, Luke S.


    The strain-promoted azide-alkyne cycloaddition represents an optimal metal-free method for the modular coupling of amphiphilic polymer blocks. Hydrophilic poly(oxazoline) (PMOXA) or poly(ethyleneglycol) (PEG) A-blocks were coupled with a hydrophobic poly(siloxane) B-block to provide triblock copolymers capable of self-assembling into vesicular nanostructures. Stealth properties investigated via a complement activation assay revealed the superior in vitro stealth attributes of polymeric vesicl...

  6. Design and Synthesis of an Alkynyl Luciferin Analogue for Bioluminescence Imaging. (United States)

    Steinhardt, Rachel C; O'Neill, Jessica M; Rathbun, Colin M; McCutcheon, David C; Paley, Miranda A; Prescher, Jennifer A


    Herein, the synthesis and characterization of an alkyne-modified luciferin is reported. This bioluminescent probe was accessed using C-H activation methodology and was found to be stable in solution and capable of light production with firefly luciferase. The luciferin analogue was also cell permeant and emitted more redshifted light than d-luciferin, the native luciferase substrate. Based on these features, the alkynyl luciferin will be useful for a variety of imaging applications. PMID:26784889

  7. Click Chemistry-Mediated Nanosensors for Biochemical Assays


    Chen, Yiping; Xianyu, Yunlei; Wu, Jing; Yin, Binfeng; Jiang, Xingyu


    Click chemistry combined with functional nanoparticles have drawn increasing attention in biochemical assays because they are promising in developing biosensors with effective signal transformation/amplification and straightforward signal readout for clinical diagnostic assays. In this review, we focus on the latest advances of biochemical assays based on Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides and alkynes (CuAAC)-mediated nanosensors, as well as the functionalization of nanopro...

  8. Cyclooctyne-based reagents for uncatalyzed click chemistry: A computational survey


    Chenoweth , Kimberly; Chenoweth, David; Goddard, William A. III


    With the goal of identifying alkyne-like reagents for use in click chemistry, but without Cu catalysts, we used B3LYP density function theory (DFT) to investigate the trends in activation barriers for the 1,3-dipolar cycloadditions of azides with various cyclooctyne, dibenzocyclooctyne, and azacyclooctyne compounds. Based on these trends, we find monobenzocyclooctyne-based reagents that are predicted to have dramatically improved reactivity over currently employed reagents.

  9. Synthesis of linked carbon monolayers: Films, balloons, tubes, and pleated sheets


    Schultz, Mitchell J.; Zhang, Xiaoyu; Unarunotai, Sakulsuk; Khang, Dahl-Young; Cao, Qing; Wang, Congjun; Lei, Changhui; MacLaren, Scott; Soares, Julio A. N. T.; Petrov, Ivan; Moore, Jeffrey S.; Rogers, John A.


    Because of their potential for use in advanced electronic, nanomechanical, and other applications, large two-dimensional, carbon-rich networks have become an important target to the scientific community. Current methods for the synthesis of these materials have many limitations including lack of molecular-level control and poor diversity. Here, we present a method for the synthesis of two-dimensional carbon nanomaterials synthesized by Mo- and Cu-catalyzed cross-linking of alkyne-containing s...

  10. A highly efficient group-assisted purification method for the synthesis of poly-functionalized pyrimidin-5-yl-pyrroles via one-pot four-component domino reaction. (United States)

    Dommaraju, Yuvaraj; Prajapati, Dipak


    A highly efficient, catalyst-free group-assisted purification chemical protocol for the construction of pyrimidine containing poly-functionalized pyrroles from a four-component domino reaction of acyclic-1,3-dicarbonyls or electron deficient alkynes, aromatic amines, barbituric acid and arylglyoxal hydrates under mild reaction conditions has been developed. The prominent features of the present protocol are environmentally benign, mild reaction conditions, atom economy, no column chromatography separation, easy isolation of products and excellent yields. PMID:25173493

  11. A copper-catalyzed one-pot, three-component tandem conjugative alkynylation/6-endo cyclization sequence: access to pyrano[2,3-d]-pyrimidines. (United States)

    Rajesh, Nimmakuri; Prajapati, Dipak


    A copper catalyzed one-pot, three component reaction between barbituric acid, aldehydes and terminal alkynes has been developed for the construction of pyrano[2,3-d]pyrimidines via a tandem conjugative alkynylation/6-endo cyclization pattern. Screening of barbituric acid derived organic acceptors in conjugative alkynylation reaction and the synthetic applicability of conjugative addition products under one-pot conditions were documented for the first time. PMID:25799181

  12. Synthesis and light-emitting properties of disubstituted polyacetylenes carrying chromophoric naphthylethynylphenyl pendants. (United States)

    Lam, Jacky W Y; Qin, Anjun; Dong, Yongqiang; Hong, Yuning; Jim, Cathy K W; Liu, Jianzhao; Dong, Yuping; Kwok, Hoi Sing; Tang, Ben Zhong


    Poly(1-phenyl-1-alkyne)s bearing chromophoric pendants and containing alkyl spacers (-{(C 6H 5)CC[(CH 2) m OCOC 6H 4CCNp]} n - [P 1( m) ( m = 3, 4, 9); Np = 1-naphthyl]) were synthesized, and the effects of structural variations on the optical properties, especially electroluminescence, of the polymers were investigated. The monomers were prepared in high yields by esterification and coupling reactions of n-phenyl-( n - 1)-alkyn-1-ols. Selective polymerizations of the 1-phenyl-1-alkyne unit of the monomers were effected by WCl 6-Ph 4Sn catalyst, affording polymers with high molecular weights ( M w up to 63 000) in high yields (up to 83%). Structures and properties of the polymers were characterized and evaluated by IR, NMR, TGA, UV, PL, and EL analyses. All the polymers are thermally very stable, losing almost no weight when heated up to 400 degrees C. Photoexcitation of the polymer solutions induces strong blue light emission at 460 nm, with quantum yields up to 98%. No aggregation quenching was observed when the polymers were fabricated into solid films. Multilayer EL devices with the configuration of ITO/P 1( m):PVK/BCP/Alq 3/LiF/Al were fabricated, which emitted blue light with luminance up to 498 cd/m (2). The device performance varied with the spacer length ( m), with P 1(4) giving the highest external quantum efficiency of 0.47%. The value was further enhanced to 0.86% by optimizing the layer thickness and inserting a hole-injection layer. PMID:18707168

  13. Total synthesis of the endogenous inflammation resolving lipid resolvin D2 using a common lynchpin


    John Li; May May Leong; Alastair Stewart; Mark A. Rizzacasa


    The total synthesis of the endogenous inflammation resolving eicosanoid resolvin D2 (1) is described. The key steps involved a Wittig reaction between aldehyde 5 and the ylide derived from phosphonium salt 6 to give enyne 17 and condensation of the same ylide with aldehyde 7 to afford enyne 11. Desilylation of 11 followed by hydrozirconation and iodination gave the vinyl iodide 4 and Sonogashira coupling between this compound and enyne 3 provided alkyne 18. Acetonide deprotection, partial red...

  14. Synthesis of 2a,8b-Dihydrocyclobuta[a]naphthalene-3,4-diones

    Directory of Open Access Journals (Sweden)

    Kerstin Schmidt


    Full Text Available On irradiation (λ = 350 nm in neat hex-1-yne, naphthalene-1,2-dione monoacetals 1 afford mixtures of pentacyclic photodimers and up to 25% (isolated yield of mixed photocycloadducts 2. Careful acidic hydrolysis of the acetal function of 2 gives the title compounds 3, the overall sequence representing a first approach to a (formal [2 + 2] photocycloadduct of a 1,2-naphthoquinone to an alkyne.

  15. Polyglycerol Based Hydrogels for the Immobilization of Catalytically Active Enzymes and as Scaffolds for Cells


    Dey, Pradip


    Im Rahmen dieser Doktorarbeit wurden Hydrogele basierend auf dendritischem Polyglycerol (dPG) entwickelt, welche unter Verwendung verschiedener Vernetzungsreaktionen, wie z. B. durch Amidverknüpfung oder durch ringspannungsvermittelte Azid-Alkin Cycloaddition (strain promoted azide alkyne cycloaddition, SPAAC), hergestellt wurden. Das Anwendungsspektrum dieser Hydrogele reicht von der Entwicklung enzymbasierter Biosensoren bis hin zu Trägermaterialien für Knorpelzellen. Enzymbasierte Bios...

  16. Evaluating Transition-Metal Catalyzed Transformations for the Synthesis of Laulimalide


    Trost, Barry M.; Amans, Dominique; Seganish, W. Michael; Chung, Cheol K.


    Laulimalide is a structurally unique 20-membered marine macrolide displaying microtubule stabilizing activity similar to that of paclitaxel and the epothilones. The use of atom economical transformations such as a rhodium-catalyzed cycloisomerization to form the endocyclic dihydropyran, a dinuclear zinc-catalyzed asymmetric glycolate aldol to prepare the syn 1,2-diol and an intramolecular ruthenium-catalyzed alkene-alkyne coupling to build the macrocycle enabled us to synthesize laulimalide v...

  17. Membrane Assembly Driven by a Biomimetic Coupling Reaction


    Budin, Itay; Devaraj, Neal K.


    One of the major goals of synthetic biology is the development of non-natural cellular systems. In this work we describe a catalytic biomimetic coupling reaction capable of driving the de novo self-assembly of phospholipid membranes. Our system features a copper catalyzed azide-alkyne cycloaddition that results in the formation of a triazole containing phospholipid analog. Concomitant assembly of membranes occurs spontaneously, not requiring preexisting membranes to house catalysts or precurs...


    Institute of Scientific and Technical Information of China (English)

    Devamani; Srividhya; Sundaram; Manjunathan; Sivashankaran; Nithyanandan; Subramanan; Balamurugan; Sengodan; Senthil


    Liquid crystalline polymers containing 1,2,3-triazole units as linking groups have been synthesized from the monomers containing triad ester diazide and flexible dialkyne ester by 1,3-cycloaddition reaction and were characterized. Click reaction of azide and alkyne functionals catalyzed by Cu(I) yielded target polyesters with 1,2,3-triazole groups.The structure of the polymer was confirmed by spectral techniques.GPC analysis reveals that the polymers have moderate molecular weight with narrow distributio...

  19. A palladium-catalyzed intramolecular carbonylative annulation reaction for the synthesis of 4,5-fused tricyclic 2-quinolones. (United States)

    Zhang, Xiwu; Liu, Haichao; Jia, Yanxing


    A concise and efficient synthetic route to 4,5-fused tricyclic 2-quinolones through the palladium-catalyzed carbonylative annulation of alkyne-tethered N-substituted o-iodoanilines has been developed. This reaction proceeds smoothly under mild reaction conditions and exhibits exceptional tolerance to a variety of functional groups. It has been successfully applied to the efficient synthesis of BI 224436, an HIV integrase inhibitor. PMID:27225232

  20. Ultrasound-assisted synthesis of 1-N-{beta}-D-glucopyranosyl-1H-1,2,3-triazole benzoheterocycles and their anti-inflammatory activities

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gilson B. da; Guimaraes, Bruna M.; Oliveira, Ronaldo N. de, E-mail: [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Ciencias Moleculares; Assis, Shalom P.O.; Lima, Vera L.M. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Bioquimica. Laboratorio de Quimica e Metabolismo de Lipideos e Lipoproteinas


    In this work, the preparation of various glucosyl triazoles from a reaction between 2,3,4,6-tetra-O-acetyl-{beta}-D-glucopyranosyl azide and terminal alkynes was developed in moderate to excellent yields (63-99%). Ultrasound energy was applied at each step of the reaction to increase chemical reactivity. In addition, the compounds conjugated with benzoheterocycles moieties revealed potent anti-inflammatory activity. (author)

  1. Green synthesis of CuO nanoparticles by aqueous extract of Anthemis nobilis flowers and their catalytic activity for the A³ coupling reaction. (United States)

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar


    CuO nanoparticles (NPs) were prepared by Anthemis nobilis flowers extract as a reducing and stabilizing agent and employed in catalyzing an aldehyde-amine-alkyne coupling reaction. The synthesized CuO NPs was characterized by SEM, EDS, XRD, FT-IR and UV-visible techniques. A diverse range of propargylamines were obtained in a good to high yield. Furthermore, the separation and reuse of CuO NPs was very simple, effective and economical. PMID:26291574

  2. 'Clickable' ZnO nanocrystals: the superiority of a novel organometallic approach over the inorganic sol-gel procedure. (United States)

    Grala, Agnieszka; Wolska-Pietkiewicz, Małgorzata; Danowski, Wojciech; Wróbel, Zbigniew; Grzonka, Justyna; Lewiński, Janusz


    We demonstrate for the first time a highly efficient Cu(i)-catalyzed alkyne-azide cycloaddition reaction on the surface of ZnO nanocrystals with retention of their photoluminescence properties. Our comparative studies highlight the superiority of a novel self-supporting organometallic method for the preparation of brightly luminescent and well-passivated ZnO nanocrystals over the traditional sol-gel procedure. PMID:27156855

  3. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore


    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  4. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry


    Hatzenpichler, Roland; Scheller, Silvan; Tavormina, Patricia L.; Babin, Brett M; Tirrell, David A.; Orphan, Victoria J.


    Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l -methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evalua...

  5. Enantioselective Synthesis of Spiroindenes by Enol-Directed Rhodium(III)-Catalyzed C–H Functionalization and Spiroannulation (United States)

    Reddy Chidipudi, Suresh; Burns, David J; Khan, Imtiaz; Lam, Hon Wai


    Chiral cyclopentadienyl rhodium complexes promote highly enantioselective enol-directed C(sp2)-H functionalization and oxidative annulation with alkynes to give spiroindenes containing all-carbon quaternary stereocenters. High selectivity between two possible directing groups, as well as control of the direction of rotation in the isomerization of an O-bound rhodium enolate into the C-bound isomer, appear to be critical for high enantiomeric excesses. PMID:26404643

  6. Synergistic Rhodium/Copper Catalysis: Synthesis of 1,3-Enynes and N-Aryl Enaminones. (United States)

    Wang, Nan-Nan; Huang, Lei-Rong; Hao, Wen-Juan; Zhang, Tian-Shu; Li, Guigen; Tu, Shu-Jiang; Jiang, Bo


    Synergistic rhodium/copper catalysis enables new three-component coupling reactions of terminal alkynes and α-diazoketones and/or arylamines, allowing dediazotized carbene C-H insertion for the synthesis of functionalized 1,3-enynes and N-aryl enaminones with high stereoselectivity. The synthetic utility of these transformations results in subsequent C-C or/and C-N bond-forming reactions to effectively build up functional molecules with potential significance. PMID:26987884

  7. Thermally induced structural transformation of polytriazoleimide to polyindoleimide

    Institute of Scientific and Technical Information of China (English)

    Yan Peng E; Li Qiang Wan; Yu Jing Li; Fa Rong Huang; Lei Du


    A new kind of polytriazoleimide containing bisphenyl-1,2,3-triazole (BPT) was synthesized by copper-catalyzed 1,3-dipolar cycloaddition of azides and alkynes (CuAAC) and polycondensation.The thermal stability and degradation mechanism of the polytriazoleimide were investigated.The results show that the structure of BPT in polytriazoleimide transforms to phenylindole after thermal treatment,accompanying the release of N2.

  8. Synthesis of ferrocene-functionalized monomers for biodegradable polymer formation


    Upton, BM; Gipson, RM; Duhović, S; Lydon, BR; Matsumoto, NM; Maynard, HD; Diaconescu, PL


    This journal is © the Partner Organisations 2014. Cyclic carbonate and δ-valerolactone substrates functionalized with ferrocene were synthesized via alkyne-azide "click" cycloaddition. The cyclic carbonates were polymerized using 1,8-diazabicycloundec-7-ene, 1-(3,5-bis(trifluoromethyl)phenyl)-3-cyclohexylthiourea, and benzyl alcohol. The resulting polymers were characterized by GPC, NMR spectroscopy, and cyclic voltammetry studies. It was found that polycarbonate molecular weights fall in the...

  9. Synthesis of N-substituted phthalimidoalkyl 1H-1,2,3-triazoles: a molecular diversity combining click chemistry and ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Moara T. da; Oliveira, Ronaldo N. de; Valenca, Wagner O.; Barbosa, Fernanda C.G.; Silva, Mauro G. da; Camara, Celso A., E-mail: [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Ciencias Moleculares


    A series of 1,2,3-triazole derivatives was synthesized from N-phthalimidoalkyl-azides (A{sub 1}-A{sub 4}) and alkynes (a-e) under ultrasound irradiation in the presence of CuI, Et{sub 3}N and DMF as solvent. The present protocol afforded 18 new 1,2,3-triazoles (1-4) in good-to-excellent yields (67-98%). (author)

  10. Role of the irradiation temperature on the modifications of swift-heavy-ion irradiated polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Melot, M. E-mail:; Ngono-Ravache, Y.; Balanzat, E


    The damage processes triggered by swift heavy ions, SHI, can be very different to those induced by classical low ionising particles. This is due to the very high electronic stopping power, (dE/dx){sub e}, of SHI. This paper concerns the effects of SHI on polyethylene, PE. In PE, low (dE/dx){sub e} irradiations induce crosslinking and in-chain double bond formation. At high (dE/dx){sub e}, the creation yield of vinyl groups becomes significant. Above a (dE/dx){sub e} threshold, alkyne and allene groups appear. We present results on low temperature irradiations that bring new enlightenment on the damage process by preventing the migration of radiation-induced radicals and molecules. Two SHI specific modifications are studied: vinyl groups and alkyne end groups. We have irradiated PE films with oxygen and sulphur beams at 13.6 and 11.2 MeV/amu, respectively. The modifications were followed by in situ infrared spectroscopy (FTIR). We have performed irradiations at 8 and 290 K. The samples irradiated at 8 K have been annealed up to 290 K for investigating the effect of radical migration. Lowering the irradiation temperature to 8 K increases the creation yield of vinyl groups and alkyne end groups. The enhancement factor between 290 and 8 K is around three. Consequently the formation of defects specific to SHI irradiations is sensitive to radical migration and hence requires some time. During annealing, the alkyne concentration remains stable indicating that the creation of this group cannot be induced by radical recombination. The annealing spectra of vinyl groups are more complex.

  11. Facial Synthesis of o-Carborane-Substituted Alkenes and Allenes by a Regioselective Ene Reaction of 1,3-Dehydro-o-carborane. (United States)

    Zhao, Da; Zhang, Jiji; Xie, Zuowei


    1,3-Dehydro-o-carborane is a useful synthon for selective cage boron functionalization of o-carboranes. It reacts readily with alkenes or alkynes to give a variety of cage B(3)-alkenyl/allenyl o-carboranes by ene reactions in very high yields and excellent regioselectivity. This can be ascribed to the highly polarized cage C-B multiple bond, which lowers the activation barriers of the ene reaction. PMID:26074122

  12. Synthesis of N6-Substituted-2-Triazolyl-Adenine Derivatives


    Novosjolova, I; Bizdēna, Ē; Beļakovs, S; Turks, M


    A novel class of 2,6-bis-triazolylpurine nucleosides were obtained from 2,6-diazido precursors via copper (I) catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction. These intermediates appeared to be very reactive towards N-nucleophiles and thus selectively gave C(6)-substituted analogs with triazolyl moiety at C(2)-position. Thereby, 1,2,3-triazoles act as good leaving groups in regioselective nucleophilic aromatic substitution reactions.

  13. 2,6-Diazidopurine Deoxyribo-Nucleoside as Substrate for the Click Reaction


    Cīrule, D; Ozols, K; Bizdēna, Ē; Novosjolova, I


    The chemistry of triazolyl-substituted purine nucleosides is attractive since some of them exhibit antiviral, anticancer or fluorescent properties. Our group has reported the synthesis of 2,6-bistriazolyl purine arabino- and ribo-nucleosides using Cu(I) catalysed azide - alkyne 1,3-dipolar cycloaddition reaction. Various nucleophilic substitution reactions with the obtained products were carried out. In addition to our previous work, herein we report the synthesis of the novel...

  14. Nickel-Catalyzed Intramolecular [3 + 2 + 2] Cycloadditions of Alkylidenecyclopropanes. A Straightforward Entry to Fused 6,7,5-Tricyclic Systems


    Saya Codesal, Lucía; Fernández, Israel; López, Fernando; Mascareñas Cid, José Luis


    A highly diastereo- and chemoselective intramolecular nickel-catalyzed cycloaddition of alkene- and alkyne-tethered alkynylidenecyclopropanes is reported. The method constitutes the first fully intramolecular [3 + 2 + 2] alkylidenecyclopropropane cycloaddition occurring via a proximal cleavage of the cyclopropane and makes it possible to build relevant 6,7,5-tricyclic frameworks in a single-pot reaction. Importantly, the reaction outcome is highly dependent on the characteristics of the nicke...



    Praveenganesh, Nageswaran


    In the course of our studies on the vinylation of nitrones, we had found that vinylboronic esters, in the presence of dialkylzincs, could transfer their vinylic chain onto nitrones. We had developed this method with pinacol esters, since these reagents offer two important advantages: they are very easily accessible by hydroboration of 1-alkynes, and they are air- and water- stable, thus can be purified and stored.But we also found that these pinacolboronic esters were poorly reactive. We coul...

  16. Concise Total Synthesis of Ivorenolide B. (United States)

    Ungeheuer, Felix; Fürstner, Alois


    An expeditious route to the potential immunosuppressive lead compound ivorenolide B (1) is described, which relies on the formation of the distinctive 1,3-diyne subunit embedded into the 17-membered framework of this target by ring-closing alkyne metathesis (RCAM). This key transformation was accomplished with the aid of the molybdenum alkylidyne complex 7, which turned out to be compatible with the acid sensitive propargylic alcohol substituents as well as the terminal alkyne unit present in the cyclization precursor. As the presence of such functionality had been detrimental for alkyne metathesis until very recently, this example illustrates the excellent application profile of this new catalyst as well as the rapidly increasing scope of the transformation. Its structural outreach can be further increased by subjecting cyclo-1,3-diynes to appropriate post-metathetic transformations, most notably with the help of alkynophilic gold or palladium catalysts. This aspect is illustrated by the conversion of the model compound 4 into various cyclophane products. PMID:26140703

  17. Chelator-Accelerated One-Pot ‘Click’ Labeling of Small Molecule Tracers with 2-[18F]Fluoroethyl Azide

    Directory of Open Access Journals (Sweden)

    Erik Årstad


    Full Text Available 2-[18F]Fluoroethyl azide ([18F]FEA can readily be obtained by nucleophilic substitution of 2-azidoethyl-4-toluenesulfonate with [18F]fluoride (half-life 110 min, and has become widely used as a reagent for ‘click’ labeling of PET tracers. However, distillation of [18F]FEA is typically required, which is time-consuming and unpractical for routine applications. In addition, copper(I-catalyzed cycloaddition of [18F]FEA with non-activated alkynes, and with substrates containing labile functional groups, can be challenging. Herein, we report a highly efficient and practical ligand-accelerated one-pot/two-step method for ‘click’ labeling of small molecule tracers with [18F]FEA. The method exploits the ability of the copper(I ligand bathophenanthrolinedisulfonate to accelerate the rate of the cycloaddition reaction. As a result, alkynes can be added directly to the crude reaction mixture containing [18F]FEA, and as cyclisation occurs almost immediately at room temperature, the reaction is tolerant to labile functional groups. The method was demonstrated by reacting [18F]FEA with a series of alkyne-functionalized 6-halopurines to give the corresponding triazoles in 55–76% analytical radiochemical yield.

  18. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    WANG; JinXian


    Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.……

  19. Plant cell wall imaging by metabolic click-mediated labelling of rhamnogalacturonan II using azido 3-deoxy-d-manno-oct-2-ulosonic acid. (United States)

    Dumont, Marie; Lehner, Arnaud; Vauzeilles, Boris; Malassis, Julien; Marchant, Alan; Smyth, Kevin; Linclau, Bruno; Baron, Aurélie; Mas Pons, Jordi; Anderson, Charles T; Schapman, Damien; Galas, Ludovic; Mollet, Jean-Claude; Lerouge, Patrice


    In plants, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is a monosaccharide that is only found in the cell wall pectin, rhamnogalacturonan-II (RG-II). Incubation of 4-day-old light-grown Arabidopsis seedlings or tobacco BY-2 cells with 8-azido 8-deoxy Kdo (Kdo-N3 ) followed by coupling to an alkyne-containing fluorescent probe resulted in the specific in muro labelling of RG-II through a copper-catalysed azide-alkyne cycloaddition reaction. CMP-Kdo synthetase inhibition and competition assays showing that Kdo and D-Ara, a precursor of Kdo, but not L-Ara, inhibit incorporation of Kdo-N3 demonstrated that incorporation of Kdo-N3 occurs in RG-II through the endogenous biosynthetic machinery of the cell. Co-localisation of Kdo-N3 labelling with the cellulose-binding dye calcofluor white demonstrated that RG-II exists throughout the primary cell wall. Additionally, after incubating plants with Kdo-N3 and an alkynated derivative of L-fucose that incorporates into rhamnogalacturonan I, co-localised fluorescence was observed in the cell wall in the elongation zone of the root. Finally, pulse labelling experiments demonstrated that metabolic click-mediated labelling with Kdo-N3 provides an efficient method to study the synthesis and redistribution of RG-II during root growth. PMID:26676799

  20. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation) (United States)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei


    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  1. Unsaturated hydrocarbons adsorbed on low coordinated Pd surface: A periodic DFT study (United States)

    Belelli, Patricia G.; Ferullo, Ricardo M.; Castellani, Norberto J.


    In this work, the adsorption of several unsaturated hydrocarbon molecules on a stepped Pd(4 2 2) surface was studied. Using a periodic method based on the Density Functional Theory (DFT) formalism, different adsorption geometries for ethylene, three butene isomers ( cis/ trans-2-butene and 1-butene), acetylene and 2-butyne were investigated. The results were compared with those obtained for a free defect surface as Pd(1 1 1). The 1-butene is more stable on the free defect surface than on Pd(4 2 2). On the stepped surface, the olefins adsorb tilted towards the step and increases, in almost all the cases, the magnitude of the adsorption energy. Conversely, the 3-fold site is the most stable for the alkynes adsorption on the stepped surface, as it was found on Pd(1 1 1). The analysis of the dipole moment change indicate a charge transfer from the double bond of the olefin to the metallic surface, being higher for the Pd(1 1 1) surface. In case of the alkynes, an important back-donation is produced. Except the alkynes and the 1-butene molecule, the results show the preference of ethylene and cis/ trans-2-butene to be adsorbed on the stepped surface. These observations are related with experimental catalytic results.

  2. Click Chemistry Immobilization of Antibodies on Polymer Coated Gold Nanoparticles. (United States)

    Finetti, Chiara; Sola, Laura; Pezzullo, Margherita; Prosperi, Davide; Colombo, Miriam; Riva, Benedetta; Avvakumova, Svetlana; Morasso, Carlo; Picciolini, Silvia; Chiari, Marcella


    The goal of this work is to develop an innovative approach for the coating of gold nanoparticles (AuNPs) with a synthetic functional copolymer. This stable coating with a thickness of few nanometers provides, at the same time, stabilization and functionalization of the particles. The polymeric coating consists of a backbone of polydimethylacrylamide (DMA) functionalized with an alkyne monomer that allows the binding of azido modified molecules by Cu(I)-catalyzed azide/alkyne 1,3-dipolar cycloaddition (CuAAC, click chemistry). The thin polymer layer on the surface stabilizes the colloidal suspension whereas the alkyne functions pending from the backbone are available for the reaction with azido-modified proteins. The reactivity of the coating is demonstrated by immobilizing an azido modified anti-mouse IgG antibody on the particle surface. This approach for the covalent binding of antibody to a gold-NPs is applied to the development of gold labels in biosensing techniques. PMID:27367748


    Institute of Scientific and Technical Information of China (English)

    金军挺; 黄吉玲; 陶晓春; 钱延龙


    @@ Transition metal vinylidene complexes (M=C=CHR) have attracted a great deal of attention in recent years as a new type of organometallic intermediates that may have unusual reactivity[1]. Their reactivity has been explored and their application to organic synthesis is developed[2]. Recent reports on the ruthenium-vinylidene complexes[3]suggest that the reaction of ruthenium-vinylidene complexes with a base generates the coordinatively unsaturated ruthenium acetylide species, which are involved in a number of catalytic and stoichiometric reactions of alkynes. For example,the coordinatively unsaturated ruthenium acetylide species C5Me5Ru(PPh3)-C≡CPh,formed from the reaction of the vinylidene complex C5Me5Ru(PPh3) (Cl)=C=CHPh with a base was reactive toward a variety of small molecules and active in catalytic dimerization of terminal alkynes[4]. The dimerization of terminal alkyne is an effective method of forming enynes, but its synthetic application in organic synthesis has been limited dueto low selectivity for dimeric products[5]. In this communication, we report that three ruthenium complexes were used as catalysts for the highly selective dimerization of phenylacetylene.

  4. Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability. (United States)

    Tu, Qin; Tian, Chang; Ma, Tongtong; Pang, Long; Wang, Jinyi


    A quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA) was successfully prepared in this study via click chemistry. Alkyne-functionalized graphene oxide (GO-alkyne) was first synthesized through a two-step amidation reaction of GO-COOH. Meanwhile, azide-terminated poly(dimethylaminoethyl methacrylate) (PDMAEMA-N3) was prepared via the atom-transfer radical-polymerization of dimethylaminoethyl methacrylate (DMAEMA). Subsequently, PDMAEMA-N3 was grafted onto the GO-alkyne through click chemistry to obtain PDMAEMA modified graphene oxide (GO-PDMAEMA). Finally, the tertiary amino groups of GO-PDMAEMA were quaternized by ethyl bromide to provide a quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA). Various characterization techniques, including Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis spectrometry, ζ potential, Raman, contact angle analyses and field emission scanning electron microscope were used to ascertain the successful preparation of the quaternized GO-QPDMAEMA. Furthermore, antibacterial and antifouling activities of GO-QPDMAEMA were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the GO-QPDMAEMA surface exhibited significant antibacterial and antifouling properties, compared with the GO-COOH and GO-PDMAEMA surfaces. PMID:26852103

  5. Using click chemistry to modify block copolymers and their morphologies (United States)

    Wollbold, Johannes

    Microphase separated block copolymers (BCPs) are emerging as promising templates and scaffolds for the fabrication of nanostructured materials. To achieve the desired nanostructures, it is necessary to establish convenient approaches to control the morphology of BCPs. It remains challenging to induce morphological transitions of BCPs via external fields. Click chemistry, especially alkyne/azide click chemistry, has been widely used to synthesize novel functionalized materials. Here, we demonstrate that alkyne/azide click chemistry can be used as an efficient approach to chemically modify BCPs and therefore induce morphological transitions. Alkyne-functionalized diblock copolymers (di-BCPs) poly(ethylene oxide)- block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) have been successfully synthesized. When the di-BCP is blended with an azide additive Rhodamine B azide and annealed at elevated temperatures, click reaction occurs between the two components. With the Rhodamine B structure attached to the polymer backbone, the di-BCP shows dramatic change in the interactions between the two blocks and the volume fraction of each block. As a result, morphological transitions, such as disorder-to-order transitions (DOTs) and order-to-order transitions (OOTs), are observed. The reaction kinetics and morphology evolution during the click chemistry induced DOTs have been investigated by in-situ and ex-situ characterizations, and fast kinetics properties are observed. Microphase separated morphologies after the DOTs or OOTs are dictated by the composition of neat di-BCPs and the mole ratio between the alkyne and azide groups. The DOTs of PEO-b-P(nBMA-r-PgMA) di-BCPs induced by alkyne/azide click chemistry have also been achieved in thin film geometries, with comparable kinetics to bulk samples. The orientation of the microdomains is dependent on the grafting density of Rhodamine B structure as well as film thickness. At higher grafting densities


    Institute of Scientific and Technical Information of China (English)

    Kan Yue; Jinlin He; Chang Liu; Mingjun Huang; Xue-Hui Dong; Kai Guo; Peihong Ni


    "Click chemistry" is,by definition,a general functionalization methodology (GFM) and its marriage with living anionic polymerization is particularly powerful in precise macromolecular synthesis.This paper reports the synthesis of a "clickable" middle-chain azide-functionalized polystyrene (mPS-N3) by anionic polymerization and its application in the preparation of novel shape amphiphiles based on polyhedral oligomeric silsesquioxane (POSS).The mPS-N3 was synthesized by coupling living poly(styryl)lithium chains (PSLi) with 3-chloropropylmethyldichlorosilane and subsequent nucleophilic substitution of the chloro group in the presence of sodium azide.Excess PSLi was end-capped with ethylene oxide to facilitate its removal by flash chromatography.The mPS-N3 was then derived into a giant lipid-like shape amphiphile in two steps following a sequential "click" strategy.The copper(I)-catalyzed azide-alkyne cycloaddition between mPS-N3 and alkyne-functionalized vinyl-substituted POSS derivative (VPOSS-alkyne) ensured quantitative ligation to give polystyrene with VPOSS tethered at the middle of the chain (mPS-VPOSS).The thiol-ene reaction with 1-thioglycerol transforms the vinyl groups on the POSS periphery to hydroxyls,resulting in an amphiphilic shape amphiphile,mPS-DPOSS.This synthetic approach is highly efficient and modular.It demonstrates the "click" philosophy of facile complex molecule construction from a library of simple building blocks and also suggests that mPS-N3 can be used as a versatile "clickable" motif in polymer science for the precise synthesis of complex macromolecules.

  7. Mass Spectra of Tetraselenafulvalenes, Diselenadithiafulvalenes and Tetrathiafulvalenes

    DEFF Research Database (Denmark)

    Andersen, Jan Rud; Egsgaard, Helge; Larsen, Elfinn;


    The mass spectra of 13 heterofulvalenes are reported. The spectra show great similarities within the selenium and within the sulphur series. The main difference between the selenium and the sulphur compounds results from the more facile loss of selenium compared with sulphur, and from the first...... fragmentation of the molecular ion, as the selenium fulvalenes lose an alkyne molecule, whereas the sulphur fulvalenes first lose an (SĊR) radical. An important feature of the spectra of the simple heterofulvalenes is the formation of a rearrangement ion by migration of a heteroatom. The mechanism was...

  8. Ruthenium-Catalyzed Hydroalkynylative Cyclization of 1,6-Enynes Induced by Substituent Effects. (United States)

    Liu, Rui; Ni, Zhenjie; Giordano, Laurent; Tenaglia, Alphonse


    The ruthenium-catalyzed 1,6-enyne cyclization in the presence of bulky substituted terminal alkyne proceeds smoothly at room temperature to afford highly substituted five-membered cyclic compounds featuring a 1,5-enyne motif. Deuterium-labeling experiments showed that the key ruthenacyclopentene intermediate undergoes cleavage of metal-carbon bonds through the metal-assisted σ-bond metathesis reaction, thus leading to the formation of C(sp(2))-H and C(sp(3))-C(sp) bonds. PMID:27504966

  9. Copper (I) iodide nanoparticles on polyaniline as a green, recoverable and reusable catalyst for multicomponent click synthesis of 1,4-disubstituted-1H-1,2,3-triazoles


    Shervin Saadat; Simin Nazari; Mozhgan Afshari; Maryam Shahabi; Mosadegh Keshavarz


    A one-pot procedure for the synthesis of 1,4-disubstituted-1H-1,2,3-triazole derivatives via the three component coupling reaction between terminal alkynes, benzyl halides/α-halo ketones and sodium azide in the presences of CuI nanoparticles supported onto polyaniline (Nano CuI/PANI) catalyst in water has been developed. This heterogeneous catalyst showed high catalytic activity and 1,4-regioselectivity for click cyclization in water as a “green” solvent and good to excellent yields were ob...

  10. An eco-sustainable green approach for the synthesis of propargylamines using LiOTf as a reusable catalyst under solvent-free condition

    Indian Academy of Sciences (India)

    Someshwar D Dindulkar; Baek Kwan; Kwon Taek Lim; Yeon Tae Jeong


    An efficient process has been developed for the synthesis of propargylamines via a threecomponent coupling reaction of aldehyde, secondary alicyclic amine and alkyne (A3) under solvent-free condition using lithium triflate (LiOTf) as expeditious reusable catalyst. This one-pot transformation generates one C-C and one C-N bond, which presumably proceeds by lithium acetylide as well as formation of iminium ion in situ and then undergoes nucleophilic addition to the iminium ion to give the propargyl amine. The solventfree condition, easy recovery of the catalyst, simple, user-friendly and quantitative yield in short time renders the protocol economic and reasonable.

  11. Regio- and stereoselective carbometallation reactions of N-alkynylamides and sulfonamides

    Directory of Open Access Journals (Sweden)

    Yury Minko


    Full Text Available The carbocupration reactions of heterosubstituted alkynes allow the regio- and stereoselective formation of vinyl organometallic species. N-Alkynylamides (ynamides are particularly useful substrates for the highly regioselective carbocupration reaction, as they lead to the stereodefined formation of vinylcopper species geminated to the amide moiety. The latter species are involved in numerous synthetically useful transformations leading to valuable building blocks in organic synthesis. Here we describe in full the results of our studies related to the carbometallation reactions of N-alkynylamides.

  12. (2,2-Dichlorovinylferrocene

    Directory of Open Access Journals (Sweden)


    Full Text Available The title compound, [Fe(C5H5(C7H5Cl2], represents a versatile building block for the preparation of π-conjugated redox-active compounds or polymetallic organometallic systems due to the presence of the electrochemically active ferrocenyl unit. It is therefore a potential starting material for the preperation of the corresponding alkyne. In the crystal, the alkenyl unit and the cyclopentadienide ring are almost parallel, with an angle between the best planes of only 10.6 (4°.

  13. Irradiation effects in polycarbonate induced by 2.1 GeV Kr ions

    International Nuclear Information System (INIS)

    Polycarbonate films were irradiated with 2.1 GeV Kr ions at room temperature in vacuum and in atmosphere, respectively. The ion beam induced effects were studied by means of Fourier transform infrared (FTIR) and ultraviolet visible (UV/VIS) spectroscopies in reflective mode. FTIR measurements indicate that the main effects are bond breaking, chain scissions and bond rearrangement. The creation of alkyne is the result of bond breaking and bond rearrangement. UV/VIS measurements indicate that at wavelengths of 380, 450 and 500 nm, the normalized absorbances follow approximately a linear relationship with the energy deposited density

  14. Superstructures of fluorescent cyclodextrin via click-reaction

    Directory of Open Access Journals (Sweden)

    Arkadius Maciollek


    Full Text Available Mono-(6-azido-6-deoxy-β-cyclodextrin (CD was covalently attached to an alkyne-modified 5-methyl-2-(pyridin-2-ylthiazol-4-ol yielding a fluorophore containing CD in a click-type reaction. Intermolecular complexes were formed by poly(host–guest-interactions. The supramolecular structures were characterized by 1H NMR-ROESY spectroscopy, dynamic light scattering, UV–vis spectroscopy, fluorescence spectroscopy, and asymmetric flow field-flow fractionation. By adding potassium adamantane-1-carboxylate, the thiazol dye is displaced from the CD-cavity and the elongated noncovalent polymeric structures collapse.

  15. Microbial transglutaminase displays broad acyl-acceptor substrate specificity

    DEFF Research Database (Denmark)

    T. Gundersen, Maria; Keillor, Jeffrey W.; Pelletier, Joelle N.


    The great importance of amide bonds in industrial synthesis has encouraged the search for efficient catalysts of amide bond formation. Microbial transglutaminase (MTG) is heavily utilized in crosslinking proteins in the food and textile industries, where the side chain of a glutamine reacts with....... Importantly, very small amines carrying either the electron-rich azide or the alkyne groups required for click chemistry were highly reactive as acyl-acceptor substrates, providing a robust route to minimally modified, “clickable” peptides. These results demonstrate that MTG is tolerant to a variety of...

  16. Regioselective Synthesis of 1,2,3-Triazoles Catalyzed Over ZnO Supported Copper Oxide Nanocatalyst as a New and Efficient Recyclable Catalyst in Water. (United States)

    Albadi, Jalal; Alihosseinzadeh, Amir; Mansournezhad, Azam


    The CuO/ZnO nanocatalysts are reported as efficient and recyclable catalysts for the regioselective synthesis of 1,2,3-triazoles from benzyl halides and terminal alkynes in water. The catalysts are synthesized by a co-precipitation method and characterized by BET surface area, XRD, SEM, TEM and EDS analysis. The effect of CuO loading, catalyst amount and solvent was investigated. The catalyst can be recovered by a simple filtration and applied in consecutive runs with no loss of activity. PMID:26454596

  17. Ni→B Interactions in Nickel Phosphino-Alkynyl-Borane Complexes

    NARCIS (Netherlands)

    Zhao, Xiaoxi; Otten, Edwin; Song, Datong; Stephan, Douglas W.


    The Ni complexes [{tBu2PC≡CB(C6F5)2}Ni(cod)] and [({tBu2PC≡CB(C6F5)2}Ni(NCMe))2] derived from the reaction between the phosphino-alkynyl-borane tBu2PC≡CB(C6F5)2 and [Ni(cod)2] exhibit an unprecedented metal–alkyne interaction in which the borane substituent bends towards the metal affording a Ni→B d

  18. A Double-Clicking Bis-Azide Fluorogenic Dye for Bioorthogonal Self-Labeling Peptide Tags. (United States)

    Demeter, Orsolya; Fodor, Eszter A; Kállay, Mihály; Mező, Gábor; Németh, Krisztina; Szabó, Pál T; Kele, Péter


    Herein, we give the very first example for the development of a fluorogenic molecular probe that combines the two-point binding specificity of biarsenical-based dyes with the robustness of bioorthogonal click-chemistry. This proof-of-principle study reports on the synthesis and fluorogenic characterization of a new, double-quenched, bis-azide fluorogenic probe suitable for bioorthogonal two-point tagging of small peptide tags by double strain-promoted azide-alkyne cycloaddition. The presented probe exhibits remarkable increase in fluorescence intensity when reacted with bis-cyclooctynylated peptide sequences, which could also serve as possible self-labeling small peptide tag motifs. PMID:27010966

  19. Functionalization of PEDOT by Click Chemistry and ATRP

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Daugaard, Anders Egede

    Poly(3,4‐ethylenedioxythiophene) (PEDOT) is a conductive polymer which has received increasing attention and many developments have been investigated. PEDOT has been applied in many different areas such as biosensors or polymer solar cells. This work presents a modification of PEDOT films through...... Click Chemistry with alkynes followed by activator regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) to develop PEDOT films with anti‐fouling properties through application of a model system based on a crosslinked surface of polystyrene PS‐N3....

  20. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.;


    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwaveassisted metal...... establish the trans homodecalin system found in the natural product...... catalysis, and an intramolecular aryne capture cyclization reaction. Pivotal to the successful completion of the synthesis was a sequence involving ring expansion from a [6-5-4] tricycle to a [6-7] bicyclic core followed by stereoselective hydrogenation of a sterically occluded tri-substituted olefin to...

  1. Synthesis of the first examples of iminosugar clusters based on cyclopeptoid cores

    Directory of Open Access Journals (Sweden)

    Mathieu L. Lepage


    Full Text Available Cyclic N-propargyl α-peptoids of various sizes were prepared by way of macrocyclizations of linear N-substituted oligoglycines. These compounds were used as molecular platforms to synthesize a series of iminosugar clusters with different valency and alkyl spacer lengths by means of Cu(I-catalysed azide–alkyne cycloadditions. Evaluation of these compounds as α-mannosidase inhibitors led to significant multivalent effects and further demonstrated the decisive influence of scaffold rigidity on binding affinity enhancements.

  2. Two-chamber hydrogen generation and application: access to pressurized deuterium gas. (United States)

    Modvig, Amalie; Andersen, Thomas L; Taaning, Rolf H; Lindhardt, Anders T; Skrydstrup, Troels


    Hydrogen and deuterium gas were produced and directly applied in a two-chamber system. These gaseous reagents were generated by the simple reaction of metallic zinc with HCl in water for H2 and DCl in deuterated water for D2. The setup proved efficient in classical Pd-catalyzed reductions of ketones, alkynes, alkenes, etc. in near-quantitative yields. The method was extended to the synthesis and isotope labeling of quinoline and 1,2,3,4-tetrahydroquinoline derivatives. Finally, CX-546 and Olaparib underwent efficient Ir-catalyzed hydrogen isotope exchange reactions. PMID:24870212

  3. Synthèse et étude d'un complexe de cuivre(II) tensioactif, fluorophile et photoréductible : application à la chimie click en millieux biphasiques perfluorocarbure-eau et hydrocarbure-eau


    Jochyms, Quentin


    The aim of this thesis was to develop a new metallosurfactant for the catalysis between an alkyne and an azide. The goal of such a system was to keep separated the reactants and the catalyst in two different phases to facilitate the purification of the reaction mixture. The first step was to synthetized the complex [Cu(TF6)(3-benzoylbenzoate)2]. Then it was shown that this complex, insoluble in water and DIPE-water. This complex is also photoreductible to form a copper(I) complex. Finally, it...

  4. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.


    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient catalyst for the selective olefination of aldehydes with ethyl diazoacetate in the presence of triphenylphosphine, and afforded excellent olefin yields with high (E) selectivities. The PEG-supported catalyst 5 was readily recovered by precipitation and filtration, and was recycled through ten runs without significant activity loss. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Solvent Composition Directing Click-Functionalization at the Surface or in the Bulk of Azide-Modified PEDOT

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik; Hansen, Thomas Steen; Daugaard, Anders Egede;


    Thin films of the conducting polymer poly(3,4-(1-azidomethylethylene)dioxythiophene) tosylate (PEDOT−N3) can be functionalized by reaction with alkynated reagents in aqueous solutions. Reaction in pure water resulted in surface specific modification of PEDOT−N3 films, whereas both surface and bulk...... studies showed increasing film thickness with increasing DMSO content, with the measured thickness in pure DMSO being >250% of the thickness in pure water. A similar, but less pronounced, behavior was observed for unmodified poly(3,4-ethylenedioxythiophene) tosylate (PEDOT). High-density grafting of a...

  6. Part I, copper(I) iodide dimethyl sulfide catalyzed 1,4- addition of alkenyl groups from alkenylzirconium and alkenylzinc reagents and their application toward the total synthesis of azaspirene : Part II, aqueous Wittig chemistry employing stabilized ylides and aldehydes


    El-Batta, Amer Adnan


    Hydrozirconation of alkynes, utilizing Schwartz's reagent, }Cp2Zr(H)Cl}, is a superb protocol for making regioselective alkenylzirconocene reagents. We recently reported the direct conjugate addition of the alkenyl group in high yield from an alkenylzirconocene in the presence of a catalytic amount of the CuI0.75SMe2 complex. Specifically, this Cu(I) additive is the most efficient when compared to several other copper(I) and copper(II) sources. While organozirconocenes have been used in many ...

  7. Facile design of biomaterials by 'click' chemistry

    DEFF Research Database (Denmark)

    Hvilsted, Søren


    chemistry is elaborated. The present state of creating functional and biologically active surfaces by click chemistry is presented. Finally, conducting surfaces based on an azide‐functionalized polymer with prospective biological sensor potential are introduced. Copyright © 2012 Society of Chemical Industry......The advent of the so‐called ‘click chemistry’ a decade ago has significantly improved the chemical toolbox for producing novel biomaterials. This review focuses primarily on the application of Cu(I)‐catalysed azide–alkyne 1,3‐cycloadditon in the preparation of numerous, diverse biomaterials and...

  8. Redox-Divergent Hydrogen-Retentive or Hydrogen-Releasing Synthesis of 3,4-Dihydroisoquinolines or Isoquinolines. (United States)

    He, Ke-Han; Zhang, Wei-Dong; Yang, Ming-Yu; Tang, Kai-Li; Qu, Mengnan; Ding, You-Song; Li, Yang


    A rare Ru-catalyzed highly selective synthesis of 3,4-dihydroisoquinolines or isoquinolines is accomplished via a redox-divergent hydrogen-retentive or hydrogen-releasing fashion. Notably, high cis-selectivity of 3,4-dihydroisoquinolines is achieved. Potential applications are shown by gram-scale reactions and very concise synthesis of N-containing polycyclic aromatic compounds. Primary mechanistic investigations indicate that the sequence of the major pathway involves Ru-catalyzed C-H activation, alkyne insertion, and subsequent 6π-electrocyclization. PMID:27249011

  9. Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry


    Zhan-Jiang Zheng; Ding Wang; Zheng Xu; Li-Wen Xu


    The Cu(I)-catalyzed azide-alkyne cycloaddition reaction, also known as click chemistry, has become a useful tool for the facile formation of 1,2,3-triazoles. Specifically, the utility of this reaction has been demonstrated by the synthesis of structurally diverse bi- and bis-1,2,3-triazoles. The present review focuses on the synthesis of such bi- and bistriazoles and the importance of using copper-promoted click chemistry (CuAAC) for such transformations. In addition, the application of bitri...

  10. Triazole-containing N-acyl homoserine lactones targeting the quorum sensing system in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Hansen, Mette Reimert; Jakobsen, Tim H.; Bang, Claus Gunnar;


    pathogenesis and antibiotic tolerance of a bacterial biofilm. To identify the structural elements important for antagonistic or agonistic activity against the Pseudomonas aeruginosa LasR protein, we report the synthesis and screening of new triazole-containing mimics of natural N-acyl homoserine lactones. A...... series of azide- and alkyne-containing homoserine lactone building blocks was used to prepare an expanded set of 123 homoserine lactone analogues through a combination of solution- and solid-phase synthesis methods. The resulting compounds were subjected to cell-based quorum sensing screening assays...

  11. Lewis Acid Catalysis in the Oxidative Cycloaddition of Thiophenes


    Li, Yuanqiang; Thiemann, Thies; Sawada, Tsuyoshi; Mataka, Shuntaro; Tashiro, Masashi


    Thiophenes 1 were treated with m-chloroperbenzoic acid (m-CPBA) under BF3·Et2O catalysis to afford thiophene S-monoxides. These could be reacted in situ as intermediary species with a number of dienophiles to provide arenes (with alkynes as dienophiles) or 7-thiabicyclo[2.2.1]hept-2-ene 7-oxides (with alkenes as dienophiles). It was also possible to isolate thiophene S-monoxides in solution and to cycloadd them in a second step. In either way it could be shown that the use of BF3·Et2O enhance...

  12. Hepatoselectivity of statins: design and synthesis of 4-sulfamoyl pyrroles as HMG-CoA reductase inhibitors. (United States)

    Park, William K C; Kennedy, Robert M; Larsen, Scott D; Miller, Steve; Roth, Bruce D; Song, Yuntao; Steinbaugh, Bruce A; Sun, Kevin; Tait, Bradley D; Kowala, Mark C; Trivedi, Bharat K; Auerbach, Bruce; Askew, Valerie; Dillon, Lisa; Hanselman, Jeffrey C; Lin, Zhiwu; Lu, Gina H; Robertson, Andrew; Sekerke, Catherine


    4-Sulfamoyl pyrroles were designed as novel hepatoselective HMG-CoA reductase inhibitors (statins) to reduce myalgia, a statin-induced adverse effect. The compounds were prepared via a [3+2] cycloaddition of a Münchnone with a sulfonamide-substituted alkyne. We identified compounds with greater selectivity for hepatocytes compared to L6-myocytes than rosuvastatin and atorvastatin. There was an inverse correlation of myocyte potencies and ClogP values. A number of analogs were effective at reducing cholesterol in acute and chronic in vivo models but they lacked sufficient chronic in vivo activity to warrant further development. PMID:18155906

  13. Synthesis and study of a fluorous and photoreductible copper(II) complex with surfactant properties : application to click chemistry in biphasic perfluorocarbon-water and hydrocarbon-water systems


    Jochyms, Quentin


    The aim of this thesis was to develop a new metallosurfactant for the catalysis between an alkyne and an azide. The goal of such a system was to keep separated the reactants and the catalyst in two different phases to facilitate the purification of the reaction mixture. The first step was to synthetized the complex [Cu(TF6)(3-benzoylbenzoate)2]. Then it was shown that this complex, insoluble in water and DIPE-water. This complex is also photoreductible to form a copper(I) complex. Finally, it...

  14. Selective posttranslational modification of phage-displayed polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter


    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2] cycloaddition reactions and Staudinger modifications.

  15. Regioselective Preparation of 1,2,3-Triazoles for Bioactive Studies Based on Marine Bioprospecting


    Hansen, Ole Kudsk


    The azides 1d and 1c were prepared using literature procedures. The azides serve as starting materials in copper- and ruthenium-catalyzed 1,3-dipolar dipolar cycloadditions to N-protected alkynes 2a and 2b, to afford 1,4-disubstituted 1H-1,2,3-triazoles and 1,5-disubstituted 1H-1,2,3-triazoles, respectively. A recently published procedure for preparing 1c in one step from the aldehyde 5a was tested, but no product was obtained. The azide was synthesized by a more traditional approach, via the...

  16. Total synthesis of the endogenous inflammation resolving lipid resolvin D2 using a common lynchpin

    Directory of Open Access Journals (Sweden)

    John Li


    Full Text Available The total synthesis of the endogenous inflammation resolving eicosanoid resolvin D2 (1 is described. The key steps involved a Wittig reaction between aldehyde 5 and the ylide derived from phosphonium salt 6 to give enyne 17 and condensation of the same ylide with aldehyde 7 to afford enyne 11. Desilylation of 11 followed by hydrozirconation and iodination gave the vinyl iodide 4 and Sonogashira coupling between this compound and enyne 3 provided alkyne 18. Acetonide deprotection, partial reduction and ester hydrolysis then gave resolvin D2 (1.

  17. Synthesis, structure and in vitro cytostatic activity of ferrocene-Cinchona hybrids. (United States)

    Kocsis, László; Szabó, Ildikó; Bősze, Szilvia; Jernei, Tamás; Hudecz, Ferenc; Csámpai, Antal


    Exploring copper(I)- and ruthenium(II)-catalyzed azide-alkyne cycloadditions and a Sonogashira protocol, novel cytostatic ferrocene-cinchona hybrids were synthetized displaying significant in vitro activity on HepG-2 and HT-29 cells. Preliminary SAR studies disclosed that compounds incorporating linkers with 1,2,3-triazole and chalchone residues can be considered as promising lead structures. According to the best of our knowledge this is the first letter on the incorporation of ferrocene nucleus in the reputed cinchona family via triazole and chalcone linkers with established pharmaceutical profile. PMID:26739780

  18. Design and Synthesis of New Chacones Substituted with Azide/Triazole Groups and Analysis of Their Cytotoxicity Towards HeLa Cells

    Directory of Open Access Journals (Sweden)

    José A. F. P. Villar


    Full Text Available A series of new chalcones substituted with azide/triazole groups were designed and synthesized, and their cytotoxic activity was evaluated in vitro against the HeLa cell line. O-Alkylation, Claisen-Schmidt condensation and Cu(I-catalyzed cycloaddition of azides with terminal alkynes were applied in key steps. Fifteen compounds were tested against HeLa cells. Compound 8c was the most active molecule, with an IC50 value of 13.03 µM, similar to the value of cisplatin (7.37 µM.

  19. Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry (United States)

    Wang, Ding; Xu, Zheng


    Summary The Cu(I)-catalyzed azide-alkyne cycloaddition reaction, also known as click chemistry, has become a useful tool for the facile formation of 1,2,3-triazoles. Specifically, the utility of this reaction has been demonstrated by the synthesis of structurally diverse bi- and bis-1,2,3-triazoles. The present review focuses on the synthesis of such bi- and bistriazoles and the importance of using copper-promoted click chemistry (CuAAC) for such transformations. In addition, the application of bitriazoles and the related CuAAAC reaction in different fields, including medicinal chemistry, coordination chemistry, biochemistry, and supramolecular chemistry, have been highlighted. PMID:26734102

  20. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators

    DEFF Research Database (Denmark)

    Stacy, Danielle M.; Le Quement, Sebastian T.; Hansen, Casper L.; Clausen, Janie W.; Tolker-Nielsen, Tim; Brummond, Jacob W.; Givskov, Michael; Nielsen, Thomas Eiland; Blackwell, Helen E.


    triazole-containing analogs of natural N-acyl l-homoserine lactone (AHL) signals as non-native QS agonists and antagonists in Gram-negative bacteria. We synthesized 72 triazole derivatives of five broad structure types in high yields and purities using efficient Cu(i)-catalyzed azide–alkyne couplings....... These compounds were evaluated for their ability to activate or inhibit two QS receptors from two prevalent pathogens – LasR from Pseudomonas aeruginosa and AbaR from Acinetobacter baumannii – using bacterial reporter strains. Several triazole derivatives were identified that were capable of strongly...

  1. Triazolyl-Based Molecular Gels as Ligands for Autocatalytic 'Click' Reactions. (United States)

    Araújo, Marco; Díaz-Oltra, Santiago; Escuder, Beatriu


    The catalytic performance of triazolyl-based molecular gels was investigated in the Huisgen 1,3-dipolar cycloaddition of alkynes and azides. Low-molecular-weight gelators derived from l-valine were synthesized and functionalized with a triazole fragment. The resultant compounds formed gels either with or without copper, in a variety of solvents of different polarity. The gelators coordinated Cu(I) and exhibited a high catalytic activity in the gel phase for the model reaction between phenylacetylene and benzylazide. Additionally, the gels were able to participate in autocatalytic synthesis and the influence of small structural changes on their performance was observed. PMID:27168408

  2. A New Multicomponent Multicatalyst Reaction (MC)(2)R: Chemoselective Cycloaddition and Latent Catalyst Activation for the Synthesis of Fully Substituted 1,2,3-Triazoles. (United States)

    Yamamoto, Kosuke; Bruun, Theodora; Kim, Jung Yun; Zhang, Lei; Lautens, Mark


    A multicomponent multicatalyst reaction (MC)(2)R for constructing fully substituted 1,2,3-triazoles is reported. An application of chemoselectivity and latent catalysis in a sequence of multicatalytic reactions confers control over a number of undesired processes, where all of the reagents coexist in the same reaction vessel. The sequence of a chemoselective copper-catalyzed azide alkyne cycloaddition followed by a palladium/copper-catalyzed Sonogashira cross-coupling afforded 1,2,3-triazoles regioselectively with good to high yields and a broad scope. PMID:27213631

  3. Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and ``click'' chemistry (United States)

    Dworak, Andrzej; Lipowska, Daria; Szweda, Dawid; Suwinski, Jerzy; Trzebicka, Barbara; Szweda, Roza


    This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a ``click'' reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species.This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent

  4. Immobilized Palladium on Organic-inorganic Hybrid Materials: A Novel and Reusable Catalyst for the Copper-Free Sonogashira Coupling Reaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Yuan; WANG Lei


    The immobilized palladium on organic-inorganic hybrid materials catalyzing the copper-free Sonogashira cou pling reaction has been described.Terminal alkynes were reacted with aryl iodides and aryl bromides in the pres ence of 3-[N,N-bis(diphenylphosphino)amino]propyl functionalized silica gel immobilized palladium catalyst.The protocol involved the use of ethylene glycol as a solvent,and triethylamine as a base.The reactions generated the corresponding cross-coupling products in excellent yields.Furthermore,the silica-supported phosphine palladium complexes and ethylene glycol could be recovered and recycled for six consecutive trials without significant loss of their activity.

  5. Modern Arylation Methods

    CERN Document Server

    Ackermann, Lutz


    Today, arylation methods are belonging to the most important reaction types in organic synthesis. Lutz Ackermann, a young and ambitious professor has gathered a number of top international authors to present the first comprehensive book on the topic. Starting from a historical review, the book covers hot topics like Palladium-catalyzed arylation of N-H and alpha-C-H-acidic Bonds, Copper-catalyzed arylation of N-H and O-H Bonds, direct arylation reactions, carbanion aromatic synthesis, arylation reactions of alkenes, alkynes and much more. This compact source of high quality information is indi

  6. The copper-free Sonogashira cross-coupling reaction promoted by palladium complexes of nitrogen-containing chelating ligands in neat water at room temperature. (United States)

    Zhong, Hong; Wang, Jinyun; Li, Liuyi; Wang, Ruihu


    The commercially available 2,2'-dipyridylamine was used as a supporting ligand in the palladium-catalyzed Sonogashira cross-coupling reaction. The reactions between aryl iodides and terminal alkynes with different steric hindrance can be efficiently performed in the absence of copper in neat water at room temperature. The superior catalytic performance of the catalytic system was attributed to water solubility of the palladium 2,2'-dipyridylamine complex. Palladium nanoparticles with small size and narrow size distribution were formed after the cross-coupling reaction. PMID:24281778

  7. Gold-catalysed facile access to indene scaffolds via sequential C-H functionalization and 5-endo-dig carbocyclization. (United States)

    Ma, Ben; Wu, Ziang; Huang, Ben; Liu, Lu; Zhang, Junliang


    A concise synthesis of functionalized indene derivatives via the gold(i)-catalysed cascade C-H functionalization/conia-ene type reaction of electron-rich aromatics with o-alkynylaryl α-diazoesters has been developed. In this transformation, the gold catalyst not only catalysed the formation of the zwitterionic intermediate via intermolecular C-H functionalization but promoted the subsequent intramolecular 5-endo-dig cyclization via activation of alkynes. The reaction is characterized by high chemo- and site-selectivity, readily available starting materials, nice functional-group tolerance and mild reaction conditions. PMID:27373228

  8. Gold-catalyzed direct alkynylation of tryptophan in peptides using TIPS-EBX (United States)

    Tolnai, Gergely L; Brand, Jonathan P


    Summary The selective functionalization of peptides containing only natural amino acids is important for the modification of biomolecules. In particular, the installation of an alkyne as a useful handle for bioconjugation is highly attractive, but the use of a carbon linker is usually required. Herein, we report the gold-catalyzed direct alkynylation of tryptophan in peptides using the hypervalent iodine reagent TIPS-EBX (1-[(triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one). The reaction proceeded in 50–78% yield under mild conditions and could be applied to peptides containing other nucleophilic and aromatic amino acids, such as serine, phenylalanine or tyrosine. PMID:27340466

  9. Formal Gold- and Rhodium-Catalyzed Regiodivergent C-H Alkynylation of 2-Pyridones. (United States)

    Li, Yunyun; Xie, Fang; Li, Xingwei


    Formal regiodivergent C-H alkynylation of 2-pyridones bearing different N-substituents has been realized under Au(I) and Rh(III) catalysis using a hypervalent iodine alkyne reagent. When catalyzed by Au(I), the alkynylation occurred at the most electron-rich 5-position via an electrophilic alkynylation pathway. The selectivity was switched to the 6-position under assistance of an N-chelation group when a Rh(III) catalyst was employed. A rhodacylic complex has been isolated as a key intermediate. PMID:26709449

  10. Conjugates of boron clusters with derivatives of natural chlorin and bacteriochlorin

    International Nuclear Information System (INIS)

    Conjugates of bacteriochlorin p and chlorin e6 with cobalt bis(dicarbollide) anion [3,3'-Co(1,2-C2B9H11)2]- were synthesized using different synthetic approaches. The boronated bacteriochlorin p was prepared by reaction of bacteriochlorin N-amino cycloimide with, bis(dicarbollide)-based carboxylic acid. The boronated chlorin e6 conjugates were obtained by both 'click reaction' of containing alkyne group chlorine with azide derivative of cobaltacarborane and reaction of chorin-based amines with cyclic oxonium derivative of cobalt bis(dicarbollide).

  11. Synthesis of click-reactive HPMA copolymers using RAFT polymerization for drug delivery applications

    DEFF Research Database (Denmark)

    Ebbesen, Morten F; Schaffert, D.H.; Crowley, Michael L;


    This study describes a versatile strategy combining reversible addition fragmentation transfer (RAFT) polymerization and click chemistry to synthesize well-defined, reactive copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) for drug delivery applications. A novel azide containing monomer N-(3......-alkyne cycloaddition (CuAAC) was demonstrated by efficient conjugation (up to 92%) of phosphocholine, a near infrared dye, and poly(ethylene glycol) (PEG) with different substitution degrees, either alone or in combination. This study introduces a novel and versatile method to synthesize well-defined click-reactive...

  12. Iron-Catalyzed Hydroboration: Unlocking Reactivity through Ligand Modulation. (United States)

    Espinal-Viguri, Maialen; Woof, Callum R; Webster, Ruth L


    Iron-catalyzed hydroboration (HB) of alkenes and alkynes is reported. A simple change in ligand structure leads to an extensive change in catalyst activity. Reactions proceed efficiently over a wide range of challenging substrates including activated, unactivated and sterically encumbered motifs. Conditions are mild and do not require the use of reducing agents or other additives. Large excesses of borating reagent are not required, allowing control of chemo- and regioselectivity in the presence of multiple double bonds. Mechanistic insight reveals that the reaction is likely to proceed via a highly reactive iron hydride intermediate. PMID:27321704

  13. Antifouling behaviour of silicon surfaces modified with self-assembled monolayers containing both ethylene glycol and charged moieties (United States)

    Ng, Cheuk Chi Albert; Ciampi, Simone; Harper, Jason B.; Gooding, J. Justin


    Herein reported is the synthesis of functionalised oligoethylene glycol molecules, with an azido group at one end and an ionisable group at the other end, and their attachment onto alkyne-terminated silicon(100) surfaces using 'click' chemistry. The modified surfaces were characterised using X-ray photoelectron spectroscopy (XPS) and water contact angle goniometry. The antifouling behaviour of these surfaces was assessed and it was shown that while surfaces presenting both charged and ethylene glycol moieties are antifouling, the antifouling effectiveness is influenced by the surface charge as modulated via the pH of the solution.

  14. Flexible synthesis of isomeric pyranoindolones and evaluation of cytotoxicity towards HeLa cells

    Indian Academy of Sciences (India)



    A hybrid pharmacophore approach for the synthesis of isomeric pyranoindolones was achievedby employing gold(III) chloride-catalyzed cycloisomerization of alkyne-tethered indole carboxylic acids ingood to excellent yield. All the synthesized compounds were evaluated for their tumor cell growth inhibitoryactivity against human cervix adenocarcinoma (HeLa) which revealed that three compounds exhibited activitycomparable with the standard cis-platin $(IC_{50} = 0.μM)$. Molecular docking of all the compounds in Vaccinia H1-Related (VHR) Phosphatase receptor also supported that compound 7d as the most active with a free energyof binding as - 8.27 kcal/mol.

  15. Efficient one-pot synthesis of amino-benzotriazolodiazocinone scaffolds via catalyst-free tandem Ugi-Huisgen reactions. (United States)

    Barlow, T M A; Jida, M; Guillemyn, K; Tourwé, D; Caveliers, V; Ballet, S


    Herein we describe a catalyst-free, one-pot procedure employing an Ugi-4CR between propargyl glycine, functionalised 2-azidoanilines, different isocyanides and aldehydes, followed by a thermal azide-alkyne Huisgen cycloaddition to generate a 14-member set of amino-benzotriazolodiazocine-bearing dipeptides with multiple points of diversification and high atom economy. These structures were derivatized by means of Suzuki-Miyaura cross-coupling reactions at two positions with good to excellent yields, leading to conformationally constrained tricyclic structures. In silico and NMR conformational analysis studies demonstrated that turn conformations are adopted by these structures. PMID:27117259

  16. Polystyrene or Magnetic Nanoparticles as Support in Enantioselective Organocatalysis? A Case Study in Friedel-Crafts Chemistry. (United States)

    Ranjbar, Sara; Riente, Paola; Rodríguez-Escrich, Carles; Yadav, Jagjit; Ramineni, Kishore; Pericàs, Miquel A


    Heterogenized versions of the second-generation MacMillan imidazolidin-4-one are described for the first time. This versatile organocatalyst has been supported on 1% DVB Merrifield resin and Fe3O4 magnetic nanoparticles through a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The resulting catalytic materials have been successfully applied to the asymmetric Friedel-Crafts alkylation of indoles with α,β-unsaturated aldehydes. While both catalytic systems can be easily recovered and admit repeated recycling, the polystyrene-based catalyst shows higher stability and provides better stereoselectivities. PMID:27010999

  17. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    Energy Technology Data Exchange (ETDEWEB)

    Roman Vladimirovich Rozhkov


    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a {beta}-hydrogen in the vinylic halide results in {beta}-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the {alpha}-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  18. Synthesis and behavior of novel sulfonated water-soluble N-heterocyclic carbene (η(4)-diene) platinum(0) complexes. (United States)

    Ruiz-Varilla, Andrea M; Baquero, Edwin A; Silbestri, Gustavo F; Gonzalez-Arellano, Camino; de Jesús, Ernesto; Flores, Juan C


    A series of water-soluble (NHC)Pt(0)(dvtms) and (NHC)Pt(0)(AE) complexes containing different sulfonated NHC ligands (dvtms = divinyltetramethyldisiloxane and AE = diallyl ether) are reported. The dvtms compounds have been found to be quite robust and to display some conformational rigidity, whereas their AE counterparts are less stable and more flexible. The catalytic evaluation of these complexes in the hydrosilylation of alkynes in water revealed no benefits in favor of the complexes containing the more labile spectator diene (AE), and a fairly regular catalytic behavior for all complexes that restricts the location of the sulfonate group to the proximity of the metal site. PMID:26346995

  19. “Flash” Solvent-free Synthesis of Triazoles Using a Supported Catalyst

    Directory of Open Access Journals (Sweden)

    Ibtissem Jlalia


    Full Text Available A solvent-free synthesis of 1,4-disubstituted-1,2,3-triazoles using neat azides and alkynes and a copper(I polymer supported catalyst (Amberlyst® A21•CuI is presented herein. As it provides the products in high yields and purities within minutes, this method thus being characterized as a "flash" synthesis, and was exemplified through the synthesis of a 24-compound library on a small scale.

  20. Copper (I iodide nanoparticles on polyaniline as a green, recoverable and reusable catalyst for multicomponent click synthesis of 1,4-disubstituted-1H-1,2,3-triazoles

    Directory of Open Access Journals (Sweden)

    Shervin Saadat


    Full Text Available A one-pot procedure for the synthesis of 1,4-disubstituted-1H-1,2,3-triazole derivatives via the three component coupling reaction between terminal alkynes, benzyl halides/α-halo ketones and sodium azide in the presences of CuI nanoparticles supported onto polyaniline (Nano CuI/PANI catalyst in water has been developed. This heterogeneous catalyst showed high catalytic activity and 1,4-regioselectivity for click cyclization in water as a “green” solvent and good to excellent yields were obtained in all cases over repeated five runs

  1. Ultrasound-Assisted Synthesis of 1-N-glycosyl-1H-1,2,3-Triazole Derivatives and their Anti-inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Gilson Bezerra Silva


    Full Text Available We have been synthesized various glycosyl triazoles from the reaction between glycosyl azide (1 and terminal alkynes (2a-g. The glycopiranosyl 1,2,3-triazoles (3-9 have been obtained in moderate-to-excellent yields (63-99% through the copper (I-catalyst 1,3-dipolar cycloaddition reaction at room temperature using ultrasound irradiation. In addition, preliminary anti-inflammatory tests have been performed in the compounds conjugates with benzoheterocycles (3-7 moieties that shown moderate activity

  2. Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry

    Directory of Open Access Journals (Sweden)

    Zhan-Jiang Zheng


    Full Text Available The Cu(I-catalyzed azide-alkyne cycloaddition reaction, also known as click chemistry, has become a useful tool for the facile formation of 1,2,3-triazoles. Specifically, the utility of this reaction has been demonstrated by the synthesis of structurally diverse bi- and bis-1,2,3-triazoles. The present review focuses on the synthesis of such bi- and bistriazoles and the importance of using copper-promoted click chemistry (CuAAC for such transformations. In addition, the application of bitriazoles and the related CuAAAC reaction in different fields, including medicinal chemistry, coordination chemistry, biochemistry, and supramolecular chemistry, have been highlighted.

  3. Switching the regioselectivity in the copper-catalyzed synthesis of iodoimidazo[1,2-a]pyridines. (United States)

    Samanta, Sadhanendu; Jana, Sourav; Mondal, Susmita; Monir, Kamarul; Chandra, Swapan K; Hajra, Alakananda


    A unique copper-catalyzed binucleophilic switching of 2-aminopyridine has been developed for the regioselective synthesis of 2- and 3-iodoimidazo[1,2-a]pyridines using alkenes/alkynes as coupling partners in the presence of molecular iodine under aerobic reaction conditions. This method was also applied to the synthesis of 2-iodo-3-phenylbenzo[d]imidazo[2,1-b]thiazoles. This protocol offers an easy route towards the synthesis of 2,3-diarylimidazo[1,2-a]pyridines. PMID:27182027

  4. Synthesis of Donor-Acceptor Conjugated Polymers by "CLICK" Polymerization for OPV applications

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbæk; Yu, Donghong

    The intent of this study was to utilize the Copper(I)-catalyzed Azide Alkyne Cycloaddition (CuAAC) as a polymerization technique (“Click” Polymerization) for synthesizing novel π-conjugated low band gap polymers for organic photovoltaic applications (OPV). The chosen approach was to synthesize an...... alternating electron donating (donor, D) and electron withdrawing (acceptor, A) co-polymer. The chosen monomers were well known units, and the novelty lies in using the monomer units with the click methodology. An insoluble alternating copolymer consisting of 2,7-diazido-9,9-dioctyl-9Hflourene and 1...

  5. Synthesis of a Small Library of Imidazolidin-2-ones using Gold Catalysis on Solid Phase. (United States)

    La-Venia, Agustina; Medran, Noelia S; Krchňák, Viktor; Testero, Sebastián A


    An efficient and high-yielding solid phase synthesis of a small library of imidazolidin-2-ones and imidazol-2-ones was carried out employing a high chemo- and regioselective gold-catalyzed cycloisomerization as a key step. Polymer-supported amino acids derivatized with several alkyne functionalities combined with tosyl- and phenylureas have been subjected to gold-catalysis exhibiting exclusively C-N bond formation. The present work proves the potential of solid phase synthesis and homogeneous gold catalysis as an efficient and powerful synthetic tool for the generation of drug-like heterocycles. PMID:27337593

  6. Atom-Economic and Stereoselective Syntheses of the A- and B-Ring Subunits of the Bryostatins


    Trost, Barry M.; Yang, Hanbiao; Brindle, Cheyenne S.; Dong, Guangbin


    This article describes chemoselective and atom-economical methods for the stereoselective assembly of the A- and B-ring subunits of the bryostatins. A Ru-catalyzed tandem alkene-alkyne coupling/Michael addition was developed and applied to the synthesis of the bryostatin B-ring. We explored an acetylide-mediated epoxide-opening/6-exo-dig cyclization route to access the bryostatin A-ring; and the A-ring was eventually furnished via an acid-catalyzed tandem transketalization/ketalization sequen...

  7. Mechanism of the Intramolecular Hexadehydro-Diels-Alder Reaction. (United States)

    Marell, Daniel J; Furan, Lawrence R; Woods, Brian P; Lei, Xiangyun; Bendelsmith, Andrew J; Cramer, Christopher J; Hoye, Thomas R; Kuwata, Keith T


    Theoretical analysis of the mechanism of the intramolecular hexadehydro-Diels-Alder (HDDA) reaction, validated against prior and newly measured kinetic data for a number of different tethered yne-diynes, indicates that the reaction proceeds in a highly asynchronous fashion. The rate-determining step is bond formation at the alkyne termini nearest the tether, which involves a transition-state structure exhibiting substantial diradical character. Whether the reaction then continues to close the remaining bond in a concerted fashion or in a stepwise fashion (i.e., with an intervening intermediate) depends on the substituents at the remaining terminal alkyne positions. Computational modeling of the HDDA reaction is complicated by the significant diradical character that arises along the reaction coordinate, which leads to instabilities in both restricted singlet Kohn-Sham density functional theory (DFT) and coupled cluster theory based on a Hartree-Fock reference wave function. A consistent picture emerges, however, from comparison of broken-symmetry DFT calculations and second-order perturbation theory based on complete-active-space self-consistent-field (CASPT2) calculations. PMID:26270857

  8. Preparation of reactive fibre interfaces using multifunctional cellulose derivatives. (United States)

    Vega, Beatriz; Wondraczek, Holger; Bretschneider, Leonore; Näreoja, Tuomas; Fardim, Pedro; Heinze, Thomas


    Cellulose fibres have poor reactivity and limited potential for surface engineering with advanced chemical functionalization in water. In this work, cellulose fibres were decorated with azide functions by charge-directed self-assembly of a novel water-soluble multifunctional cellulose derivative yielding reactive fibres. Propargylamine and 1-ethynylpyrene were utilized as a proof of concept that alkyne molecules may react with the azide functions of the reactive fibres via copper(I)-catalyzed azide-alkyne Huisgen cycloaddition (CuAAc) reaction in mild conditions. Chemical characterization of the fibres was carried out using classical techniques such as Raman-, fluorescence-, and UV-vis spectroscopy. Among other techniques, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray spectroscopy (XPS), two-photon microscopy (TPM), and inductively coupled plasma mass spectrometry (ICP-MS) were useful tools for additional characterization of the fibres decorated with amino- or photoactive groups. The information gathered in this work might contribute to the basis for the preparation of reactive cellulose-based interfaces with potential application in CuAAc reactions. PMID:26256349

  9. Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides. (United States)

    Dommerholt, Jan; Rutjes, Floris P J T; van Delft, Floris L


    A nearly forgotten reaction discovered more than 60 years ago-the cycloaddition of a cyclic alkyne and an organic azide, leading to an aromatic triazole-enjoys a remarkable popularity. Originally discovered out of pure chemical curiosity, and dusted off early this century as an efficient and clean bioconjugation tool, the usefulness of cyclooctyne-azide cycloaddition is now adopted in a wide range of fields of chemical science and beyond. Its ease of operation, broad solvent compatibility, 100 % atom efficiency, and the high stability of the resulting triazole product, just to name a few aspects, have catapulted this so-called strain-promoted azide-alkyne cycloaddition (SPAAC) right into the top-shelf of the toolbox of chemical biologists, material scientists, biotechnologists, medicinal chemists, and more. In this chapter, a brief historic overview of cycloalkynes is provided first, along with the main synthetic strategies to prepare cycloalkynes and their chemical reactivities. Core aspects of the strain-promoted reaction of cycloalkynes with azides are covered, as well as tools to achieve further reaction acceleration by means of modulation of cycloalkyne structure, nature of azide, and choice of solvent. PMID:27573141

  10. Effective ascorbate-free and photolatent click reactions in water using a photoreducible copper(II-ethylenediamine precatalyst

    Directory of Open Access Journals (Sweden)

    Redouane Beniazza


    Full Text Available The search for copper catalysts able to perform effectively click reactions in water in the absence of sodium ascorbate is an active area of current research with strong potential for applications in bioconjugation. The water-soluble and photoreducible copper(II–EDA (EDA = ethylenediamine complex 1, which has two 4-benzoylbenzoates acting as both counterion and photosensitizer, has been synthesized and characterized by different techniques including single crystal X-ray diffraction. Highly efficient photoreduction was demonstrated when solutions of 1 in hydrogen atom donating solvents, such as THF or MeOH, were exposed to UVA radiation (350–400 nm provided by a low pressure mercury lamp (type TLC = thin-layer chromatography, 365 nm, or by a 23 W fluorescent bulb, or by ambient/sunlight. In water, a much poorer hydrogen atom donating solvent, the photoreduction of 1 proved inefficient. Interestingly, EPR studies revealed that complex 1 could nonetheless be effectively photoreduced in water when alkynes were present in solution. The catalytic activity of 1 for click reactions involving a range of water-soluble alkynes and azides, in particular saccharides, was tested under various illumination conditions. Complex 1 was found to exhibit a photolatent character, the photogenerated copper(I being very reactive. On irradiating aqueous reaction mixtures containing 1 mol % of 1 at 365 nm (TLC lamp for 1 h, click reactions were shown to proceed to full conversion.

  11. Chemical modification of polycarbonate induced by 1.4 GeV Ar ions

    International Nuclear Information System (INIS)

    Polycarbonate foil stacks were irradiated with 1.4 GeV Ar ions at room temperature. The induced modifications in chemical structure were studied by Fourier transform infrared (FTIR) and ultraviolet/visible absorption (UV/VIS) spectroscopies. FTIR measurements reveal that material degradation through bond breaking are the main effects. Significant reduction in absorbance of the typical infrared bands is observed at energy densities higher than 8x1022 eV/cm3. Alkyne end groups are produced by the irradiations and the electronic energy loss threshold for production of the alkyne end group is found to be below 0.61 keV/nm. UV/VIS measurements indicate a shifting of the absorption edge from ultraviolet towards visible and a strong increase of absorbance in the ultraviolet and visible regions. The irradiation induced changes in absorbance at wavelengths of 380, 450 and 500 nm follow roughly linear relationship with fluence and scale rather good with the square of electronic energy loss. The results are briefly discussed

  12. Synthesis and Complexation of Well-Defined Labeled Poly(N,N-dimethylaminoethyl methacrylates (PDMAEMA

    Directory of Open Access Journals (Sweden)

    Mark Billing


    Full Text Available We present the synthesis and characterization of well-defined polycationic copolymers containing thiazole dyes in the side chain. Atom transfer radical polymerization (ATRP was used for the copolymerization of 3-azidopropyl methacrylate (AzPMA and N,N-dimethylaminoethyl methacrylate (DMAEMA of different composition. Thiazole-based alkyne-functionalized dyes (e.g., 5-methyl-4-(prop-2-yn-1-yloxy-2-(pyridin-2-ylthiazole, (MPPT were afterwards covalently attached using copper catalyzed azide alkyne cycloadditions (CuAAC reaching contents of up to 9 mol % dye. Subsequent quaternization of the tertiary nitrogen of DMAEMA with strong methylation agents (e.g., methyl iodide led to permanently charged polyelectrolytes. The materials were characterized by size exclusion chromatography, as well as NMR- and UV/VIS-spectroscopy. Particular attention is paid to the spectroscopic properties of the dyes in the side chain upon environmental changes such as pH and salinity. We anticipate the application of such precisely functionalized polyelectrolytes as temperature- and pH-responsive sensors in biomedical applications, e.g., within interpolyelectrolyte complexes. Concerning the latter, first complex formation results are demonstrated.

  13. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies

    Directory of Open Access Journals (Sweden)

    Duy Tien Ta


    Full Text Available Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1, an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL. Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I-catalyzed azide-alkyne cycloaddition (CuAAC “click” chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR, respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets—a must for the development of advanced miniaturized, multi-biomarker biosensor platforms.

  14. 'Click chemistry' synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. (United States)

    Carvalho, Ivone; Andrade, Peterson; Campo, Vanessa L; Guedes, Paulo M M; Sesti-Costa, Renata; Silva, João S; Schenkman, Sergio; Dedola, Simone; Hill, Lionel; Rejzek, Martin; Nepogodiev, Sergey A; Field, Robert A


    Trypanosoma cruzi trans-sialidase (TcTS) plays a key role in the recognition and invasion of host cells and in enabling the parasite to escape the human immune response. To explore this potential drug target, we have synthesized a small library of substrate analogues based on 1,4-disubstituted 1,2,3-triazole derivatives of galactose modified at either the C-1 or C-6 positions. This was achieved by coupling the appropriate azido-sugars with a panel of 23 structurally diverse terminal alkynes by using the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, giving a library of 46 derivatives in good to excellent yield and with complete regioselectivity. The sugar triazoles showed weak inhibition towards TcTS-catalyzed hydrolysis of 2'-(4-methylumbelliferyl)-alpha-d-N-acetylneuraminic acid in vitro (<40% inhibition at 1mM concentration); many of the compounds assessed proved to be acceptor substrates for the enzyme. Despite this modest inhibitory activity, in vitro trypanocidal activity assays against the trypomastigote form of T. cruzi Y strain revealed several compounds active in the low 100s of muM range. Further assessment of these compounds against cultured mouse spleen cells suggests a specific mode of anti-parasite action rather than a generic cytotoxic effect. PMID:20335038

  15. Hydrogen-Atom Transfer Reactions. (United States)

    Wang, Liang; Xiao, Jian


    The cascade [1,n]-hydrogen transfer/cyclization, recognized as the tert-amino effect one century ago, has received considerable interest in recent decades, and great achievements have been made. With the aid of this strategy, the inert C(sp(3))-H bonds can be directly functionalized into C-C, C-N, C-O bonds under catalysis of Lewis acids, Brønsted acids, as well as organocatalysts, and even merely under thermal conditions. Hydrogen can be transferred intramolecularly from hydrogen donor to acceptor in the form of hydride, or proton, followed by cyclization to furnish the cyclic products in processes featuring high atom economy. Methylene/methine adjacent to heteroatoms, e.g., nitrogen, oxygen, sulfur, can be exploited as hydride donor as well as methylene/methine without heteroatom assistance. Miscellaneous electrophilic subunits or intermediates, e.g., alkylidene malonate, carbophilic metal activated alkyne or allene, α,β-unsaturated aldehydes/ketone, saturated aldehydes/iminium, ketenimine/carbodiimide, metal carbenoid, electron-withdrawing groups activated allene/alkyne, in situ generated carbocation, can serve as hydride acceptors. This methodology has shown preeminent power to construct 5-, 6-, or 7-membered heterocyclic as well as carbon rings. In this chapter, various hydrogen donors and acceptors are adequately discussed. PMID:27573142

  16. Cationic micellar nanoparticles for DNA and doxorubicin co-delivery. (United States)

    Lin, Jian-Tao; Zou, Ying; Wang, Chao; Zhong, Yue-Chun; Zhao, Yi; Zhu, Hui-Er; Wang, Guan-Hai; Zhang, Li-Ming; Zheng, Xue-Bao


    Cationic micellar nanoparticles for chemotherapeutic drugs and therapeutic gene co-delivery were prepared based on a poly-(N-ε-carbobenzyloxy-l-lysine) (PZLL) and dendritic polyamidoamine (PAMAM) block copolymer (PZLL-D3). PZLL-D3 was synthesized by a copper-catalyzed azide alkyne cyclization (click) reaction between α-alkyne-PZLL and azide focal point PAMAM dendrons. Its structure was characterized by (1)H NMR and FTIR, and its buffering capability was determined by acid-base titration. MTT, agarose gel electrophoresis and flow cytometry studies showed that PZLL-D3 revealed low in vitro cytotoxicity, strong pDNA condensation ability, protection of pDNA against deoxyribonuclease I degradation and high gene transfection efficiency in 293T and HeLa cells. In addition, the micellar nanoparticles delivered pDNA and anticancer drug doxorubicin (DOX) simultaneously and efficiently to tumor cells, and the DOX loaded nanoparticles showed sustained in vitro release at pH=7.4 and 5.8. PMID:25280725

  17. Novel antifouling surface with improved hemocompatibility by immobilization of polyzwitterions onto silicon via click chemistry (United States)

    Zheng, Sunxiang; Yang, Qian; Mi, Baoxia


    A novel procedure is presented to develop an antifouling silicon surface with improved hemocompatibility by using a zwitterionic polymer, poly(sulfobetaine methacrylate) (polySBMA). Functionalization of the silicon surface with polySBMA involved the following three steps: (1) an alkyne terminated polySBMA was synthesized by RAFT polymerization; (2) a self-assembled monolayer with bromine end groups was constructed on the silicon surface, and then the bromine end groups were replaced by azide groups; and (3) the polySBMA was attached to the silicon surface by azide-alkyne cycloaddition click reaction. Membrane characterization confirmed a successful silicon surface modification with almost 100% coverage by polySBMA and an extremely hydrophilic surface after such modification. The polySBMA-modified silicon surface was found to have excellent anti-nonspecific adsorption properties for both bovine serum albumin (BSA) protein and model bacterial cells. Whole blood adsorption experiments showed that the polySBMA-modified silicon surface exhibited excellent hemocompatibility and effective anti-adhesion to blood cells. Silicon membranes with such antifouling and hemocompatible surfaces can be advantageously used to drastically extend the service life of implantable medical devices such as artificial kidney devices.

  18. Synthesis and biological activities of transition metal complexes based on acetylsalicylic acid as neo-anticancer agents. (United States)

    Rubner, Gerhard; Bensdorf, Kerstin; Wellner, Anja; Kircher, Brigitte; Bergemann, Silke; Ott, Ingo; Gust, Ronald


    [(μ(4)-η(2))-(Prop-2-ynyl)-2-acetoxybenzoate]dicobalthexacarbonyl (Co-ASS), a derivative of aspirin (ASS), demonstrated high growth-inhibitory potential against various tumor cells with interference in the arachidonic acid cascade as probable mode of action. The significance of the kind of metal and cluster was verified in this structure-activity study: Co(2)(CO)(6) was respectively exchanged by a tetrameric cobalt-, trimeric ruthenium-, or trimeric ironcarbonyl cluster. Furthermore, the metal binding motif was changed from alkyne to 1,3-butadiene. Compounds were evaluated for growth inhibition, antiproliferative effects, and apoptosis induction in breast (MCF-7, MDA-MB 231) and colon cancer (HT-29) cell lines and for COX-1/2 inhibitory effects at isolated isoenzymes. Additionally, the major COX metabolite prostaglandin E2 (PGE(2)) was quantified in arachidonic acid-stimulated MDA-MB 231 breast tumor cells. It was demonstrated that the metal cluster was of minor importance for effects on cellular activity if an alkyne was used as ligand. Generally, no correlation existed between growth inhibition and COX activity. Cellular growth inhibition and antiproliferative activity at higher concentrations of the most active compounds Prop-ASS-Co(4) and Prop-ASS-Ru(3) correlated well with apoptosis induction. PMID:20857911

  19. Photoresponsive Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Dimitris S Argyropoulos


    Full Text Available In this communication a method for the creation of fluorescent cellulose nanoparticles using click chemistry and subsequent photodimerization of the installed side‐ chains is demonstrated. In the first step, the primary hydroxyl groups on the surface of the CNCs were converted to carboxylic acids by using TEMPO‐mediated hypohalite oxidation. The alkyne groups, essential for the click reaction, were introduced into the surface of TEMPO‐ oxidized CNCs via carbodiimide‐mediated formation of an amide linkage between monomers carrying an amine functionality and carboxylic acid groups on the surface of the TEMPO‐oxidized CNCs. Finally, the reaction of surface‐modified TEMPO‐oxidized cellulose nanocrystals and azido‐bearing coumarin and anthracene monomers were carried out by means of a click chemistry, i.e., Copper(I‐catalyzed Azide‐Alkyne Cycloaddition (CuAAC to produce highly photo‐responsive and fluorescent cellulose nanoparticles. Most significantly, the installed coumarin and/or anthracene side‐chains were shown to undergo UV‐induced [2+2] and [4+4] cycloaddition reactions, bringing and locking the cellulose nanocrystals together. This effort paves the way towards creating, cellulosic photo responsive nano‐arrays with the potential of photo reversibility since these reactions are known to be reversible at varying wavelengths.

  20. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies. (United States)

    Ta, Duy Tien; Guedens, Wanda; Vranken, Tom; Vanschoenbeek, Katrijn; Steen Redeker, Erik; Michiels, Luc; Adriaensens, Peter


    Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids) usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1), an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL). Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR), respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets-a must for the development of advanced miniaturized, multi-biomarker biosensor platforms. PMID:27399790

  1. Coextruded, aligned, and gradient-modified poly(ε-caprolactone) fibers as platforms for neural growth. (United States)

    Kim, Si-Eun; Harker, Emily C; De Leon, Al C; Advincula, Rigoberto C; Pokorski, Jonathan K


    Polymeric fibers are of increasing interest to regenerative medicine, as materials made from these fibers are porous, allowing for cell infiltration, influx of nutrients, and efflux of waste products. Recently, multilayered coextrusion has emerged as a scalable and rapid fabrication method to yield microscale to submicron fibers. In this report, we describe the multilayered coextrusion of aligned poly(ε-caprolactone) (PCL) fibers, followed by a simple photochemical patterning to create surface-immobilized gradients onto the polymer fibers. PCL fibers were photochemically decorated with a linear gradient of propargyl benzophenone using a gradient photomask to control light source intensity. The pendant alkynes were then able to undergo the copper-catalyzed azide-alkyne cycloaddition reaction with an azide-modified IKVAV peptide to further functionalize the surface. Gradient-modified IKVAV fibers were evaluated for neural cell adhesion and neural differentiation, using PC-12 cells cultured onto the fibers. The aligned gradient fibers provided directional cues for neurite outgrowth and alignment of neural cells, as observed by cellular elongation, neurite differentiation, and orientation. The work presented herein describes a scalable fiber system combined with simple chemical patterning to generate aligned fibers with controlled surface gradients as cell-seeding scaffolds. PMID:25715836

  2. Synthesis, chemistry, and catalytic activity of complexes of lanthanide and actinide metals in unusual oxidation states and coordination environments. Progress report, February 1, 1981-January 31, 1982

    International Nuclear Information System (INIS)

    The objectives of this research project are: (1) to demonstrate experimentally that the lanthanide and actinide metals have a more extensive chemistry than is presently known; (2) to develop a better understanding of the special features of the f orbital elements which will allow the design of f orbital complexes possessing unique chemical and physical properties; (3) to provide a basis for seeking unusual catalytic transformations involving these elements; and (4) to synthesize and explore the chemical and physical properties of mixed metal complexes which contain both lanthanide and transition metals. During the past year progress was made in each area. Some of the specific results are: (1) the first activation of CO by an organolanthanide complex was demonstrated; (2) the first, crystallograhically characterized, molecular lanthanide hydride complexes, the bridged dimers, [(C5H4R)2LnH(THF)]2 (R=H, CH3; Ln=Lu, Er, Y), were synthesized by hydrogenolysis of the appropriate (C5H4R)2Ln(C(CH3)3)(THF) complex; (3) [(C5H5)2(THF)ErH]2 was found to catalyze the homogeneous hydrogenation of alkynes; (4) the first trimetallic organolanthanide complex was synthesized; (5) the first polyhydridic organolanthanide complex was synthesized; (6) U(III) hydride was found to catalytically activate molecular hydrogen in alkene and alkyne hydrogenation reactions

  3. Two axles threaded using a single template site: active metal template macrobicyclic [3]rotaxanes. (United States)

    Goldup, Stephen M; Leigh, David A; McGonigal, Paul R; Ronaldson, Vicki E; Slawin, Alexandra M Z


    Template approaches to rotaxanes normally require at least n - 1 template sites to interlock n components. Here we describe the one-pot synthesis of [3]rotaxanes in which a single metal template site induces formation of axles through each cavity of a bicyclic macrocycle. Central to the approach is that a portion of the bicyclic molecule acts as a ligand for a transition metal ion that mediates covalent bond formation through one or other macrocyclic cavity, depending on the ligand's orientation, making a mechanical bond. The ligand can then rotate so that the transition metal can catalyze the formation of a second axle through the other macrocycle. Using this strategy with the Cu(I)-catalyzed azide-alkyne cycloaddition (the CuAAC reaction) generates a [3]rotaxane with two identical axles in up to 86% yield. [3]Rotaxanes with two different axles threaded through the macrobicyclic rings can also be created using a single template site, either by having copper(I) sequentially form both mechanical bonds (via the CuAAC reaction) using different sets of building blocks for each axle or by using two different reactions catalyzed by two different metal ions: a palladium(II)-mediated alkyne homocoupling to assemble the first thread through one cavity, followed by a copper(I)-mediated CuAAC reaction to form the second axle through the other ring. PMID:19968281

  4. Chemical proteomics approaches for identifying the cellular targets of natural products. (United States)

    Wright, M H; Sieber, S A


    Covering: 2010 up to 2016Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied "in situ" - in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide-alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss 'competitive mode' approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed. PMID:27098809

  5. A small azide-modified thiazole-based reporter molecule for fluorescence and mass spectrometric detection

    Directory of Open Access Journals (Sweden)

    Stefanie Wolfram


    Full Text Available Molecular probes are widely used tools in chemical biology that allow tracing of bioactive metabolites and selective labeling of proteins and other biomacromolecules. A common structural motif for such probes consists of a reporter that can be attached by copper(I-catalyzed 1,2,3-triazole formation between terminal alkynes and azides to a reactive headgroup. Here we introduce the synthesis and application of the new thiazole-based, azide-tagged reporter 4-(3-azidopropoxy-5-(4-bromophenyl-2-(pyridin-2-ylthiazole for fluorescence, UV and mass spectrometry (MS detection. This small fluorescent reporter bears a bromine functionalization facilitating the automated data mining of electrospray ionization MS runs by monitoring for its characteristic isotope signature. We demonstrate the universal utility of the reporter for the detection of an alkyne-modified small molecule by LC–MS and for the visualization of a model protein by in-gel fluorescence. The novel probe advantageously compares with commercially available azide-modified fluorophores and a brominated one. The ease of synthesis, small size, stability, and the universal detection possibilities make it an ideal reporter for activity-based protein profiling and functional metabolic profiling.

  6. Diamondoid-Type Copper Coordination Polymers Containing Soft Cyclodiphosphazane Ligands. (United States)

    Siddiqui, Mujahuddin M; Mague, Joel T; Balakrishna, Maravanji S


    Three novel coordination polymers have been synthesized by reacting cis- and trans-alkyne-appended cyclodiphosphazanes with CuX (X = Br, I) salts. The reaction of cis-[(PhC≡CP)2(μ-N(t)Bu)2] (1) with CuBr in a 1:3 molar ratio gave a 3D coordination polymer, [{Cu4(μ3-Br)4}{(cis-(PhC≡CP)2(μ-N(t)Bu)2)Cu4(μ2-Br)4(cis-(PhC≡CP)2(μ-N(t)Bu)2)}4]n (3), having diamondoid topology with an unprecedented copper alkyne coordination, whereas the reaction of 1 with CuI in a 1:4 molar ratio afforded a 1D polymeric complex, [{Cu4(μ3-I)4}(NCCH3)2{cis-(PhC≡CP)2(μ-N(t)Bu)2}2]n (4). In contrast, the reaction of trans-[(PhC≡CP)2(μ-N(t)Bu)2] (2) with CuI was found to be independent of stoichiometry and afforded a 3D coordination polymer, [{Cu4(μ3-I)4}{trans-(PhC≡CP)2(μ-N(t)Bu)2}2]n (5), exclusively. PMID:26086906

  7. Novel fluorine-18 labeled 5-(1-pyrrolidinylsulfonyl)-7-azaisatin derivatives as potential PET tracers for in vivo imaging of activated caspases in apoptosis. (United States)

    Waldmann, Christopher M; Hermann, Sven; Faust, Andreas; Riemann, Burkhard; Schober, Otmar; Schäfers, Michael; Haufe, Günter; Kopka, Klaus


    The programmed type I cell death, defined as apoptosis, is induced by complex regulated signaling pathways that trigger the intracellular activation of executioner caspases-3, -6 and -7. Once activated, these enzymes initiate cellular death through cleavage of proteins which are responsible for DNA repair, signaling and cell maintenance. Several radiofluorinated inhibitors of caspases-3 and -7, comprising a moderate lipophilic 5-(1-pyrrolidinylsulfonyl)isatin lead structure, are currently being investigated for imaging apoptosis in vivo by us and others. The purpose of this study was to increase the intrinsic hydrophilicity of the aforementioned lead structure to alter the pharmacokinetic behavior of the resulting caspase-3 and -7 targeted radiotracer. Therefore, fluorinated and non-fluorinated derivatives of 5-(1-pyrrolidinylsulfonyl)-7-azaisatin were synthesized and tested for their inhibitory properties against recombinant caspases-3 and -7. Fluorine-18 has been introduced by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) of an alkyne precursor with 2-[(18)F]fluoroethylazide. Using dynamic micro-PET biodistribution studies in vivo the kinetic behavior of one promising PET-compatible 5-pyrrolidinylsulfonyl 7-azaisatin derivative has been compared to a previously described isatin based radiotracer. PMID:26210158

  8. Escherichia coli-based cell free production of flagellin and ordered flagellin display on virus-like particles. (United States)

    Lu, Yuan; Welsh, John P; Chan, Wei; Swartz, James R


    Bacterial flagellin has been explored as a potential vaccine adjuvant for enhancing immune responses. In this article, we describe Escherichia coli-based cell-free protein synthesis (CFPS) as a method to rapidly produce soluble phase 1 flagellin (FliC) protein from Salmonella typhimurium. The yield was about 300 µg/mL and the product had much higher affinity for the TLR5 receptor (EC50 = 2.4 ± 1.4 pM) than previously reported. The flagellin coding sequence was first optimized for cell-free expression. We then found that the D0 domain at the C-terminus of flagellin was susceptible to proteolytic degradation in the CFPS system. Proteolysis was reduced by protease inhibitors, the use of protease-deficient cell extracts or deletion of the flagellin D0 domain. A human Toll-Like Receptor 5 (hTLR5)-specific bioactivity analysis of purified flagellin demonstrated that, although the D0 domain is far from the TLR5 recognition region, it is important for flagellin bioactivity. We next incorporated a non-natural amino acid displaying an alkyne moiety into flagellin using the CFPS system and attached flagellin to hepatitis B core virus-like particles (VLPs) using bioorthogonal azide-alkyne cycloaddition reactions. The ordered and oriented VLP display of flagellin increased its specific TLR5 stimulation activity by approximately 10-fold. PMID:23519642

  9. Macroporous Biodegradable Cryogels of Synthetic Poly(α-amino acids). (United States)

    Sedlačík, Tomáš; Proks, Vladimír; Šlouf, Miroslav; Dušková-Smrčková, Miroslava; Studenovská, Hana; Rypáček, František


    We present an investigation of the preparation of highly porous hydrogels based on biodegradable synthetic poly(α-amino acid) as potential tissue engineering scaffolds. Covalently cross-linked gels with permanent pores were formed under cryogenic conditions by free-radical copolymerization of poly[N(5)-(2-hydroxyethyl)-L-glutamine-stat-N(5)-(2-methacryloyl-oxy-ethyl)-L-glutamine] (PHEG-MA) with 2-hydrohyethyl methacrylate (HEMA) and, optionally, N-propargyl acrylamide (PrAAm) as minor comonomers. The morphology of the cryogels showed interconnected polyhedral or laminar pores. The volume content of communicating water-filled pores was >90%. The storage moduli of the swollen cryogels were in the range of 1-6 kPa, even when the water content was >95%. The enzymatic degradation of a cryogel corresponded to the decrease in its storage modulus during incubation with papain, a model enzyme with specificity analogous to wound-healing enzymes. It was shown that cryogels with incorporated alkyne groups can easily be modified with short synthetic peptides using azide-alkyne cycloaddition "click" chemistry, thus providing porous hydrogel scaffolds with biomimetic features. PMID:26474357

  10. Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

    International Nuclear Information System (INIS)

    Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core–shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC “click” reaction of functional Si NPs with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol > dichloromethane > toluene) similar in behavior to hydrogel nanocomposites

  11. Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zejing; Li, Yejia; Zhang, Boyu; Purkait, Tapas [Tulane University, Department of Chemistry (United States); Alb, Alina [Tulane University, Department of Physics and Engineering Physics (United States); Mitchell, Brian S. [Tulane University, Department of Chemical and Biomolecular Engineering (United States); Grayson, Scott M.; Fink, Mark J., E-mail: [Tulane University, Department of Chemistry (United States)


    Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core–shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC “click” reaction of functional Si NPs with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol > dichloromethane > toluene) similar in behavior to hydrogel nanocomposites.

  12. Statistical analysis of coding for molecular properties in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Benjamin eAuffarth


    Full Text Available The relationship between molecular properties of odorants and neural activities is arguably one of the most important issues in olfaction and the rules governing this relationship are still not clear. In the olfactory bulb (OB, glomeruli relay olfactory information to second-order neurons which in turn project to cortical areas. We investigate relevance of odorant properties, spatial localization of glomerular coding sites, and size of coding zones in a dataset of 2-deoxyglucose images of glomeruli over the entire OB of the rat. We relate molecular properties to activation of glomeruli in the OB using a nonparametric statistical test and a support-vector machine classification study. Our method permits to systematically map the topographic representation of various classes of odorants in the OB. Our results suggest many localized coding sites for particular molecular properties and some molecular properties that could form the basis for a spatial map of olfactory information. We found that alkynes, alkanes, alkenes, and amines affect activation maps very strongly as compared to other properties and that amines, sulfur-containing compounds, and alkynes have small zones and high relevance to activation changes, while aromatics, alkanes, and carboxylics acid recruit very big zones in the dataset. Results suggest a local spatial encoding for molecular properties.

  13. Grafting of poly(ethylene glycol) on click chemistry modified Si(100) surfaces. (United States)

    Flavel, Benjamin S; Jasieniak, Marek; Velleman, Leonora; Ciampi, Simone; Luais, Erwann; Peterson, Joshua R; Griesser, Hans J; Shapter, Joe G; Gooding, J Justin


    Poly(ethylene glycol) (PEG) is one of the most extensively studied antifouling coatings due to its ability to reduce protein adsorption and improve biocompatibility. Although the use of PEG for antifouling coatings is well established, the stability and density of PEG layers are often inadequate to provide optimum antifouling properties. To improve on these shortcomings, we employed the stepwise construction of PEG layers onto a silicon surface. Acetylene-terminated alkyl monolayers were attached to nonoxidized crystalline silicon surfaces via a one-step hydrosilylation procedure with 1,8-nonadiyne. The acetylene-terminated surfaces were functionalized via a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction of the surface-bound alkynes with an azide to produce an amine terminated layer. The amine terminated layer was then further conjugated with PEG to produce an antifouling surface. The antifouling surface properties were investigated by testing adsorption of human serum albumin (HSA) and lysozyme (Lys) onto PEG layers from phosphate buffer solutions. Detailed characterization of protein fouling was carried out with X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) combined with principal component analysis (PCA). The results revealed no fouling of albumin onto PEG coatings whereas the smaller protein lysozyme adsorbed to a very low extent. PMID:23790067

  14. Probing Surface-Adlayer Conjugation on Organic-Modified Si(111) Surfaces with Microscopy, Scattering, Spectroscopy, and Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Kellar, Joshua A.; Lin, Jui-Ching; Kim, Jun-Hyun; Yoder, Nathan L.; Bevan, Kirk H.; Stokes, Grace Y.; Geiger, Franz M.; Nguyen, SonBinh T.; Bedzyk, Michael J.; Hersam, Mark C.; (NWU); (Purdue)


    Highly conjugated molecules bound to silicon are promising candidates for organosilicon electronic devices and sensors. In this study, 1-bromo-4-ethynylbenzene was synthesized and reacted with a hydrogen-passivated Si(111) surface via ultraviolet irradiation. Through an array of characterization and modeling tools, the binding configuration and morphology of the reacted molecule were thoroughly analyzed. Atomic force microscopy confirmed an atomically flat surface morphology following reaction, while X-ray photoelectron spectroscopy verified reaction to the surface via the terminal alkyne moiety. In addition, synchrotron X-ray characterization, including X-ray reflectivity, X-ray fluorescence, and X-ray standing wave measurements, enabled sub-angstrom determination of the position of the bromine atom with respect to the silicon lattice. This structural characterization was quantitatively compared with density functional theory (DFT) calculations, thus enabling the {pi}-conjugation of the terminal carbon atoms to be deduced. The X-ray and DFT results were additionally corroborated with the vibrational spectrum of the organic adlayer, which was measured with sum frequency generation. Overall, these results illustrate that the terminal carbon atoms in 1-bromo-4-ethynylbenzene adlayers on Si(111) retain {pi}-conjugation, thus revealing alkyne molecules as promising candidates for organosilicon electronics and sensing.

  15. The search for new amphiphiles: synthesis of a modular, high-throughput library

    Directory of Open Access Journals (Sweden)

    George C. Feast


    Full Text Available Amphiphilic compounds are used in a variety of applications due to their lyotropic liquid-crystalline phase formation, however only a limited number of compounds, in a potentially limitless field, are currently in use. A library of organic amphiphilic compounds was synthesised consisting of glucose, galactose, lactose, xylose and mannose head groups and double and triple-chain hydrophobic tails. A modular, high-throughput approach was developed, whereby head and tail components were conjugated using the copper-catalysed azide–alkyne cycloaddition (CuAAC reaction. The tails were synthesised from two core alkyne-tethered intermediates, which were subsequently functionalised with hydrocarbon chains varying in length and degree of unsaturation and branching, while the five sugar head groups were selected with ranging substitution patterns and anomeric linkages. A library of 80 amphiphiles was subsequently produced, using a 24-vial array, with the majority formed in very good to excellent yields. A preliminary assessment of the liquid-crystalline phase behaviour is also presented.

  16. Functionalization of graphene with self-doped conducting polypyrrole by click coupling. (United States)

    Ramasamy, Madeshwaran Sekkarapatti; Mahapatra, Sibdas Singha; Cho, Jae Whan


    The synthesis of self-doped conducting polypyrrole-grafted graphene sheets (GS-PPy) for non-volatile memory applications is reported. First, the alkyne-modified graphene sheets (GS-alkyne) were covalently functionalized with a water-soluble polymer containing numerous anionic SO3(-) dopants by a copper-catalyzed click reaction. Then, polypyrrole was covalently grafted onto the functionalized graphene sheets by chemical oxidative polymerization to produce GS-PPy hybrids. The GS-PPy hybrids showed a uniform coating of PPy on the GS sheets, good dispersion in aqueous solutions, high electrical conductivity, and red-shifted absorption peak in the UV/Visible spectra. The non-volatile memory device composed of a Al/(GS-PPy/poly(vinyl alcohol))/Al structure, produced by spin coating of the aqueous GS-PPy/poly(vinyl alcohol) solution, showed a good write-once read-many times memory behavior, which was due to good electrical and optical absorption properties of the GS-PPy hybrids. The findings of this study provide a potential solution for the fabrication of water-soluble graphene-based hybrids for non-volatile resistive-memory-based applications. PMID:26057104

  17. Titanium-catalyzed multicomponent couplings: efficient one-pot syntheses of nitrogen heterocycles. (United States)

    Odom, Aaron L; McDaniel, Tanner J


    Nitrogen-based heterocycles are important frameworks for pharmaceuticals, natural products, organic dyes for solar cells, and many other applications. Catalysis for the formation of heterocyclic scaffolds, like many C-C and C-N bond-forming reactions, has focused on the use of rare, late transition metals like palladium and gold. Our group is interested in the use of Earth-abundant catalysts based on titanium to generate heterocycles using multicomponent coupling strategies, often in one-pot reactions. To be of maximal utility, the catalysts need to be easily prepared from inexpensive reagents, and that has been one guiding principle in the research. For this purpose, a series of easily prepared pyrrole-based ligands has been developed. Titanium imido complexes are known to catalyze the hydroamination of alkynes, and this reaction has been used to advantage in the production of α,β-unsaturated imines from 1,3-enynes and pyrroles from 1,4-diynes. Likewise, catalyst design can be used to find complexes applicable to hydrohydrazination, coupling of a hydrazine and alkyne, which is a method for the production of hydrazones. Many of the hydrazones synthesized are converted to indoles through Fischer cyclization by addition of a Lewis acid. However, more complex products are available in a single catalytic cycle through coupling of isonitriles, primary amines, and alkynes to give tautomers of 1,3-diimines, iminoamination (IA). The products of IA are useful intermediates for the one-pot synthesis of pyrazoles, pyrimidines, isoxazoles, quinolines, and 2-amino-3-cyanopyridines. The regioselectivity of the reactions is elucidated in some detail for some of these heterocycles. The 2-amino-3-cyanopyridines are synthesized through isolable intermediates, 1,2-dihydro-2-iminopyridines, which undergo Dimroth rearrangement driven by aromatization of the pyridine ring; the proposed mechanism of the reaction is discussed. The IA-based heterocyclic syntheses can be accomplished

  18. Spherical Nucleic Acids: A New Form of DNA (United States)

    Cutler, Joshua Isaac

    Spherical Nucleic Acids (SNAs) are a new class of nucleic acid-based nanomaterials that exhibit unique properties currently being explored in the contexts of gene-based cancer therapies and in the design of programmable nanoparticle-based materials. The properties of SNAs differ from canonical, linear nucleic acids by virtue of their dense packing into an oriented 3-dimensional array. SNAs can be synthesized from a number of useful nanoparticle templates, such as plasmonic gold and silver, magnetic oxides, luminescent semi-conductor quantum dots, and silica. In addition, by crosslinking the oligonucleotides and dissolving the core, they can be made in a hollow form as well. This dissertation describes the evolution of SNAs from initial studies of inorganic nanoparticle-based materials densely functionalized with oligonucleotides to the proving of a hypothesis that their unique properties can be observed in a core-less structure if the nucleic acids are densely packed and highly oriented. Chapter two describes the synthesis of densely functionalized polyvalent oligonucleotide superparamagnetic iron oxide nanoparticles using the copper-catalyzed azide-alkyne cycloaddition reaction. These particles are shown to exhibit cooperative binding in a density- and salt concentration-dependent fashion, with nearly identical behaviors to those of SNA-functionalized gold nanoparticles. Importantly, these particles are the first non-gold particles shown to be capable of entering cells in high numbers via the SNA-mediated cellular uptake pathway, and provided the first evidence that SNA-mediated cellular uptake is core-independent. In the third chapter, a gold nanoparticle catalyzed alkyne cross-linking reaction is described that is capable of forming hollow organic nanoparticles using polymers with alkyne-functionalized backbones. With this method, the alkyne-modified polymers adsorb to the particle surfaces, cross-link on the surface, allowing the gold nanoparticle to be

  19. Cooperative capture synthesis: yet another playground for copper-free click chemistry. (United States)

    Hou, Xisen; Ke, Chenfeng; Fraser Stoddart, J


    Click chemistry describes a family of modular, efficient, versatile and reliable reactions which have acquired a pivotal role as one of the most useful synthetic tools with a potentially broad range of applications. While copper(i)-catalysed alkyne-azide cycloaddition is the most widely adopted click reaction in the family, the fact that it is cytotoxic restricts its practice in certain situations, e.g., bioconjugation. Consequently, researchers have been exploring the development of copper-free click reactions, the most popular example so far being strain-promoted alkyne-azide cycloadditions. An early example of copper-free click reactions that is rarely mentioned in the literature is the cucurbit[6]uril (CB6) catalysed alkyne-azide cycloaddition (CB-AAC). Despite the unique ability of CB-AAC to generate mechanically interlocked molecules (MIMs) - in particular, rotaxanes - its slow reaction rate and narrow substrate acceptance limit its scope. In this Tutorial Review, we describe our efforts of late in developing the fundamental principles and practical applications of a new copper-free click reaction - namely, cooperative capture synthesis, whereby introducing a cyclodextrin (CD) as an accelerator in CB-AAC, hydrogen bonding networks are formed between the rims of CD and CB6 in a manner that is positively cooperative, giving rise to a high level of pre-organisation during efficient and quick rotaxane formation. For example, [4]rotaxanes can be prepared nearly quantitatively within a minute in water. Furthermore, we have demonstrated that CB-AAC can accommodate a wider substrate tolerance by introducing pillararenes as promoters. To date, we have put cooperative capture synthesis into practice by (i) preparing polyrotaxanes containing up to 200 rings in nearly quantitative yields, (ii) trapping conformational isomers of polymacrocycles as rings in rotaxanes, (iii) demonstrating solid-state fluorescence and Förster resonance energy transfer (FRET) processes by

  20. Synthetic Transformations through Alkynoxy-Palladium Interactions and C-H Activation. (United States)

    Minami, Yasunori; Hiyama, Tamejiro


    Organic synthesis based on straightforward transformations is essential for environmentally benign manufacturing for the invention of novel pharmaceuticals, agrochemicals, and organoelectronic materials in order to ultimately realize a sustainable society. Metal-catalyzed C-H bond-cleaving functionalization has become a promising method for achieving the above goal. For site-selective C-H bond cleavage, so-called directing groups, i.e., ligands attached to substrates, are employed. Commonly utilized directing groups are carbonyls, imines, carboxyls, amides, and pyridyls, which σ-donate electron pairs to metals. On the other hand, unsaturated substrates such as alkenes and alkynes, which participate largely as reactants in organic synthesis, are prepared readily by a wide variety of synthetic transformations and are also employed as reactants in organometallic chemistry. Moreover, such unsaturated groups form complexes with some metals by ligation of their p orbitals via donation and back-donation. However, the use of unsaturated bonds as directing groups has not been studied extensively. We have been involved in the development of methods for the cleavage of C-H bonds by means of transition-metal catalysts to achieve new carbon-carbon bond-forming reactions and incidentally came to focus on the alkynoxy group (-OC≡C-), which shows a ketene-like resonance structure. We expected the alkynoxy group to interact electrophilically with a low-valent transition-metal complex in order to cleave adjacent C-H bonds. In this Account, we summarize our recent achievements on C-H activation based on interactions of palladium with the alkynoxy group in alkynyl aryl ethers. The alkynoxy group plays two roles in the transformation: as a directing group for adjacent C-H bond activation and as an acceptor for the carbon and hydrogen fragments. A typical example is palladium-catalyzed ortho-C-H bond activation in alkynoxyarenes followed by sequential insertion/annulation with