WorldWideScience

Sample records for alkynes

  1. The metathesis of alkynes

    Directory of Open Access Journals (Sweden)

    H. C. M. Vosloo

    1991-07-01

    Full Text Available The alkyne metathesis reaction is a direct result of the known and intensively studied alkene or olefin metathesis reaction. Unfortunately this reaction was never studied as intensively as the alkene metathesis reaction, mainly because of a lack of active catalytic systems. In the alkyn metathesis reaction the carbon-carbon triple bonds are broken and rearranged to give a redistribution of alkylidyne groups.

  2. Cyclic polymers from alkynes

    Science.gov (United States)

    Roland, Christopher D.; Li, Hong; Abboud, Khalil A.; Wagener, Kenneth B.; Veige, Adam S.

    2016-08-01

    Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer.

  3. Modeling of alkynes: synthesis and theoretical properties

    Directory of Open Access Journals (Sweden)

    Renato Rosseto

    2003-06-01

    Full Text Available In this paper we present the synthesis and simulation of alkynes derivatives. Semiempirical calculations were carried out for the ground and first excited states, including the spectroscopic properties of the absorption and emission (fluorescence and phosphorescence spectra by INDO/S-CI and DNdM-INDO/S-CI methods with geometries fully optimized by PM3/CI. The fact that the theoretical spectra are in accord with the experimental absorption spectra gives us a new possible approach on how structure modifications could affect the non-linear optical properties of alkynes.

  4. Diiodination of Alkynes in supercritical Carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 谢叶香; 尹笃林; 江焕峰

    2003-01-01

    A general,green and efficient method for the synthesis of transdiiodoalkenes in CO2(sc) has been developed.Trans-diiodoalkenes were obtained stereospecifically in quantitative yields via diiodination of both electron-rich and electron-deficient alkynes in the presence of KI,Ce(SO4)2 and water in supercritical carbon dioxide [CO2(sc)]at 40℃.

  5. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhang

    2016-12-01

    Full Text Available This work represents our initial effort in identifying azide/alkyne pairs for optimal reactivity in copper-catalyzed azide-alkyne cycloaddition (CuAAC reactions. In previous works, we have identified chelating azides, in particular 2-picolyl azide, as “privileged” azide substrates with high CuAAC reactivity. In the current work, two types of alkynes are shown to undergo rapid CuAAC reactions under both copper(II- (via an induction period and copper(I-catalyzed conditions. The first type of the alkynes bears relatively acidic ethynyl C-H bonds, while the second type contains an N-(triazolylmethylpropargylic moiety that produces a self-accelerating effect. The rankings of reactivity under both copper(II- and copper(I-catalyzed conditions are provided. The observations on how other reaction parameters such as accelerating ligand, reducing agent, or identity of azide alter the relative reactivity of alkynes are described and, to the best of our ability, explained.

  6. Organolanthanide-Catalyzed Cyclodimerizations of Disubstituted Alkynes

    NARCIS (Netherlands)

    Heeres, H.J.; Heeres, Andre; Teuben, J.H.

    1990-01-01

    The lanthanide alkyls Cp2*LnCH(SiMe3)2 (Ln = La, Ce) are efficient catalysts for the cyclodimerization of 2-alkynes MeC≡CR (R = Me, Et, n-Pr) to 1,2-disubstituted 3-alkylidenecyclobutenes. The first step in the reaction is a propargylic metalation of the α-methyl group, giving Cp*2LnCH2C≡CR compound

  7. The Electrophilic Addition to Alkynes Revisited

    Science.gov (United States)

    Tidwell, Thomas T.

    1996-11-01

    A recent claim (Weiss, H. J. Chem. Ed. 1993, 70, 873 - 874) that vinyl cations are not the predominant intermediates in the electrophilic addition to alkynes in disputed on the following grounds: (1) these is a linear free energy correlation between the rates of acid-catalyzed hydration of alkenes and alkynes, and since carbocations are accepted as intermediates in the former reaction, they are implicated in the latter as well; (2) rearrangements are known to be energetically less favorable in vinyl cations compared to alkyl cations, and so the lesser observed tendency for rearrangement in the former case does not argue for the absence of vinyl cation intermediates; (3) there is evidence that alkenes and alkynes react with HBr and HCl in some cases with anti addition and a kinetic term in [HX]2, but this is not an argument for a difference in behavior between the two, or for a pi-complex mechanism; (4) thermochemical calculations show that vinyl cations are not prohbitively destabilized compared to analogous alkyl cations; (5) the observation of an HCl/acetylene pi-complex in the gas phase is not an argument that this represents a rate-limiting transition state in solution.

  8. AZIDE-ALKYNE CLICK POLYMERIZATION: AN UPDATE

    Institute of Scientific and Technical Information of China (English)

    Hong-kun Li; Jing-zhi Sun; An-jun Qin; Ben Zhong Tang

    2012-01-01

    The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field.This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles (PTAs) with linear and hyperbranched structures.The Cu(Ⅰ)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.

  9. Gold-Catalyzed Regioselective Dimerization of Aliphatic Terminal Alkynes.

    Science.gov (United States)

    Sun, Sheng; Kroll, Julien; Luo, Yingdong; Zhang, Liming

    2012-01-01

    A gold-catalyzed regioselective homodimerization of aliphatic terminal alkynes is described. Bulky and less Lewis acidic tBuXPhosAuNTf(2) is the preferred catalyst, and the additive, anhydrous NaOAc, substantially facilitates the reaction.

  10. An alkyne metathesis-based route toortho-dehydrobenzannulenes

    Energy Technology Data Exchange (ETDEWEB)

    Miljanic, Ognjen S.; Vollhardt, Peter C.; Whitener, Glenn D.

    2002-11-07

    An application of alkyne metathesis to 1,2-di(prop-1-ynyl)arenes, producing dehydrobenzannulenes, is described. An efficient method for selective Sonogashira couplings of bromoiodoarenes under conditions of microwave irradiation is also reported.

  11. Well-defined (co)polypeptides bearing pendant alkyne groups

    KAUST Repository

    Zhao, Wei

    2016-03-18

    A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of acetylene-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups. This method provides an efficient way to synthesize novel alkyne-functionalized homopolypeptides (A) and copolypeptides, such as AB diblock (B: non-functionalized), ABA triblock and star-AB diblock, as well as linear and star random copolypeptides, precursors of a plethora complex macromolecular architectures by click chemistry.

  12. Recent advances in the development of alkyne metathesis catalysts

    Directory of Open Access Journals (Sweden)

    Matthias Tamm

    2011-01-01

    Full Text Available The number of well-defined molybdenum and tungsten alkylidyne complexes that are able to catalyze alkyne metathesis reactions efficiently has been significantly expanded in recent years.The latest developments in this field featuring highly active imidazolin-2-iminato- and silanolate–alkylidyne complexes are outlined in this review.

  13. Regio- and stereoselective hydrosilylation of immobilized terminal alkynes

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Henriksen, Jonas; Gotfredsen, Charlotte Held;

    2008-01-01

    Regio- and stereoselective hydrosilylation of terminal alkynes on solid support using diisopropyl hydrosilanes yielding b-(E)-vinyl silanes with excellent selectivity is reported. The hydrosilylation is catalyzed by Pt(DVDS)/P(iBuNCH2CH2)3N (DVDS = 1,3-divinyl-1,1,3,3-tetramethyl-disiloxane), in ...

  14. Metallo-Phosphorylation of Alkynes: Reaction of Alkynes with Cp2Zr(1-butene) ( PR3 ) and Chlorophosphate

    Institute of Scientific and Technical Information of China (English)

    XI Chan-Juan; LAI Chun-Bo; CHEN Chao; HONG Xiao-Yin

    2003-01-01

    @@ Phosphorylation of alkynes is an attractive reaction for the synthesis of stereodefined alkenylphosphonates that are useful intermediates in organic synthesis. Particularly interesting and challenging reactions are those involving the region- and stereo-selective simultaneous introductions of phosphate and other functional groups to multiple carbon-carbon bonds.[1,2

  15. Alkyne hydroarylation with Au N-heterocyclic carbene catalysts

    Directory of Open Access Journals (Sweden)

    Cristina Tubaro

    2013-02-01

    Full Text Available Mono- and dinuclear gold complexes with N-heterocyclic carbene (NHC ligands have been employed as catalysts in the intermolecular hydroarylation of alkynes with simple unfunctionalised arenes. Both mono- and dinuclear gold(III complexes were able to catalyze the reaction; however, the best results were obtained with the mononuclear gold(I complex IPrAuCl. This complex, activated with one equivalent of silver tetrafluoroborate, exhibited under acidic conditions at room temperature much higher catalytic activity and selectivity compared to more commonly employed palladium(II catalysts. Moreover, the complex was active, albeit to a minor extent, even under neutral conditions, and exhibited lower activity but higher selectivity compared to the previously published complex AuCl(PPh3. Preliminary results on intramolecular hydroarylations using this catalytic system indicate, however, that alkyne hydration by traces of water may become a serious competing reaction.

  16. Recent advances in carbocupration of α-heterosubstituted alkynes

    Directory of Open Access Journals (Sweden)

    Ahmad Basheer

    2010-07-01

    Full Text Available Carbocupration of α-heterosubstituted alkynes leads to the formation of stereodefined functionalized vinyl copper species as single isomer. Recent advances in the field show that a simple pre-association of the organometallic derivative with an additional polar functional group in the vicinity of the reaction center may completely change the stereochemical outcome of the reaction. Representative examples are given in this mini-review.

  17. Reactivity of Electron-Deficient Alkynes on Gold Nanoparticles

    OpenAIRE

    Leyva Perez, Antonio; Oliver Meseguer, Judit; Cabrero Antonino, Jose Ramón; Rubio Marqués, Paula; Serna, Pedro; Al-Resayes, Saud I.; Corma Canós, Avelino

    2013-01-01

    Propiolates cyclotrimerize in the presence of catalytic amounts of gold nanoparticles to give aryl benzoates in high yields and with turnover frequencies of thousands per hour. Types of alkynes other than propiolates do not react, and, if molecular oxygen is present and dissociated by the gold nanoparticles, electron-rich arenes engage with the propiolate to form a new C–C bond. The activation of propiolates and electron-rich arenes to form C–C bonds, beyond gold-catalyzed Michael additions, ...

  18. Tri(t-butyl)phosphine-assisted selective hydrosilylation of terminal alkynes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A highly efficient and regio-/stereoselective method of hydrosilylating terminal alkynes was developed using Pt(DVDS)-tri(t-butyl) phosphine catalyst system at room temperature.Trans-products or alpha-products were obtained almost exclusively depending on the alkynes and silanes employed.

  19. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells.

    Science.gov (United States)

    Yamakoshi, Hiroyuki; Dodo, Kosuke; Palonpon, Almar; Ando, Jun; Fujita, Katsumasa; Kawata, Satoshi; Sodeoka, Mikiko

    2012-12-26

    Alkyne has a unique Raman band that does not overlap with Raman scattering from any endogenous molecule in live cells. Here, we show that alkyne-tag Raman imaging (ATRI) is a promising approach for visualizing nonimmobilized small molecules in live cells. An examination of structure-Raman shift/intensity relationships revealed that alkynes conjugated to an aromatic ring and/or to a second alkyne (conjugated diynes) have strong Raman signals in the cellular silent region and can be excellent tags. Using these design guidelines, we synthesized and imaged a series of alkyne-tagged coenzyme Q (CoQ) analogues in live cells. Cellular concentrations of diyne-tagged CoQ analogues could be semiquantitatively estimated. Finally, simultaneous imaging of two small molecules, 5-ethynyl-2'-deoxyuridine (EdU) and a CoQ analogue, with distinct Raman tags was demonstrated.

  20. The development of catalytic nucleophilic additions of terminal alkynes in water.

    Science.gov (United States)

    Li, Chao-Jun

    2010-04-20

    One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in

  1. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.

    Science.gov (United States)

    Hong, Senlian; Chen, Tao; Zhu, Yuntao; Li, Ang; Huang, Yanyi; Chen, Xing

    2014-06-02

    Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state-of-the-art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non-invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live-cell imaging.

  2. π Activation of Alkynes in Homogeneous and Heterogeneous Gold Catalysis.

    Science.gov (United States)

    Bistoni, Giovanni; Belanzoni, Paola; Belpassi, Leonardo; Tarantelli, Francesco

    2016-07-14

    The activation of alkynes toward nucleophilic attack upon coordination to gold-based catalysts (neutral and positively charged gold clusters and gold complexes commonly used in homogeneous catalysis) is investigated to elucidate the role of the σ donation and π back-donation components of the Au-C bond (where we consider ethyne as prototype substrate). Charge displacement (CD) analysis is used to obtain a well-defined measure of σ donation and π back-donation and to find out how the corresponding charge flows affect the electron density at the electrophilic carbon undergoing the nucleophilic attack. This information is used to rationalize the activity of a series of catalysts in the nucleophilic attack step of a model hydroamination reaction. For the first time, the components of the Dewar-Chatt-Duncanson model, donation and back-donation, are put in quantitative correlation with the kinetic parameters of a chemical reaction.

  3. Rhodium-Catalyzed Linear Codimerization and Cycloaddition of Ketenes with Alkynes

    Directory of Open Access Journals (Sweden)

    Teruyuki Kondo

    2010-06-01

    Full Text Available A novel rhodium-catalyzed linear codimerization of alkyl phenyl ketenes with internal alkynes to dienones and a novel synthesis of furans by an unusual cycloaddition of diaryl ketenes with internal alkynes have been developed. These reactions proceed smoothly with the same rhodium catalyst, RhCl(PPh33, and are highly dependent on the structure and reactivity of the starting ketenes.

  4. Copper-catalyzed azide alkyne cycloaddition polymer networks

    Science.gov (United States)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo

  5. BF3·Et2O promoted conjugate addition of ethanethiol to electron-deficient alkynes

    Institute of Scientific and Technical Information of China (English)

    Qing Fa Zhou; Xue Ping Chu; Shen Zhao; Tao Lu; Wei Fang Tang

    2012-01-01

    An effective method for the synthesis of vinyl thioethers through the conjugate addition of ethanethiol to electron-deficient alkynes promoted by BF3·Et2O has been developed.Electron-deficient internal alkynes react with ethanethiol in this system to yield mainly Z-isomer of vinyl thioether adducts,while electron-deficient terminal alkynes afford mainly E-isomer of vinyl thioether adducts.

  6. Ru(ii)-Catalyzed C-H activation and annulation of salicylaldehydes with monosubstituted and disubstituted alkynes.

    Science.gov (United States)

    Baruah, Swagata; Kaishap, Partha Pratim; Gogoi, Sanjib

    2016-10-27

    The Ru(ii)-catalyzed C-H activation and annulation reaction of salicylaldehydes and disubstituted alkynes affords chromones in high yields. This reaction also works with terminal alkynes and tolerates a wide range of sensitive functional groups. The selectivity pattern of this Ru(ii)-catalyzed annulation reaction is different from the known Au(i), Rh(iii)-catalyzed annulation reactions of salicylaldehydes and terminal alkynes.

  7. Antifungal properties of 3-n-alkyn-1-ols and synergism with 2-n-alkyn-1-ols and ketoconazole.

    Science.gov (United States)

    Gershon, H; Jerome, J A; McElwain, K F

    1985-05-01

    Twelve 3-n-alkyn-1-ols (C4-C12, C14, C16, and C18) were tested against Aspergillus oryzae, Aspergillus niger, Trichoderma viride, and Myrothecium verrucaria in Sabouraud dextrose agar at pH 5.6 and 7.0. Toxicity to Candida albicans, Candida tropicalis, Trichophyton mentagrophytes, and Mucor mucedo was determined in the same medium at pH 5.6 and 7.0 in the absence and presence of 10% beef serum. Fungitoxicity was strongly influenced by chain length, slightly by pH of the medium, and significantly but not strongly by the presence of beef serum. 3-n-Decyn-1-ol, 3-n-undecyn-1-ol, and 3-n-dodecyn-1-ol were the most active members of the series. Synergism toward C. albicans and C. tropicalis was observed between 3-n-undecyn-1-ol and ketoconazole, and a mixture of 3-n-undecyn-1-ol, 2-n-undecyn-1-ol, and ketoconazole in Sabouraud dextrose agar at pH 7.0 in the presence of 10% human serum.

  8. Chemically-activatable alkyne-tagged probe for imaging microdomains in lipid bilayer membranes

    Science.gov (United States)

    Yamaguchi, Satoshi; Matsushita, Taku; Izuta, Shin; Katada, Sumika; Ura, Manami; Ikeda, Taro; Hayashi, Gosuke; Suzuki, Yuta; Kobayashi, Koya; Tokunaga, Kyoya; Ozeki, Yasuyuki; Okamoto, Akimitsu

    2017-01-01

    A chemically-activatable alkynyl steroid analogue probe has been synthesized for visualizing the lipid raft membrane domains by Raman microscopy. The Raman probe, in which ring A of its steroid backbone is replaced with an alkynyl group, was designed to enable activation of the alkyne signal through the Eschenmoser-Tanabe fragmentation reaction of the oxidized cholesterol precursor in lipid bilayer membranes. The alkynyl steroid analogue was observed to form liquid-ordered raft-like domains on a model giant-liposome system in a similar manner as cholesterol, and the large alkyne signal of the accumulated probe at 2120 cm−1 was mapped on the microdomains with a Raman microscope. The alkyne moiety of the probe was confirmed to be converted from the α,β-epoxy ketone group of its precursor by reaction with p-toluensulfonyl hydrazine under a mild condition. Through the reaction, the alkyne signal of the probe was activated on the lipid bilayer membrane of liposomes. Furthermore, the signal activation of the probe was also detected on living cells by stimulated Raman scattering microscopy. The ring-A-opened alkyne steroid analogue, thus, provides a first chemically-activatable Raman probe as a promising tool for potentially unravelling the intracellular formation and trafficking of cholesterol-rich microdomains. PMID:28117375

  9. Electrochemically protected copper(I)-catalyzed azide-alkyne cycloaddition.

    Science.gov (United States)

    Hong, Vu; Udit, Andrew K; Evans, Richard A; Finn, M G

    2008-06-16

    The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has found broad application in myriad fields. For the most demanding applications that require high yields at low substrate concentrations, highly active but air-sensitive copper complexes must be used. We describe here the use of an electrochemical potential to maintain catalysts in the active Cu(I) oxidation state in the presence of air. This simple procedure efficiently achieves excellent yields of CuAAC products from both small-molecule and protein substrates without the use of potentially damaging chemical reducing agents. A new water-soluble carboxylated version of the popular tris(benzyltriazolylmethyl)amine (TBTA) ligand is also described. Cyclic voltammetry revealed reversible or quasi-reversible electrochemical redox behavior of copper complexes of the TBTA derivative (2; E(1/2)=60 mV vs. Ag/AgCl), sulfonated bathophenanthroline (3; E(1/2)=-60 mV), and sulfonated tris(benzimidazoylmethyl)amine (4; E(1/2) approximately -70 mV), and showed catalytic turnover to be rapid relative to the voltammetry time scale. Under the influence of a -200 mV potential that was established by using a reticulated vitreous carbon working electrode, CuSO4 and 3 formed a superior catalyst. Electrochemically protected bioconjugations in air were performed by using bacteriophage Qbeta that was derivatized with azide moieties at surface lysine residues. Complete derivatization of more than 600 reactive sites per particle was demonstrated within 12 h of electrolysis with substoichiometric quantities of Cu3.

  10. Recent advances in the ruthenium-catalyzed hydroarylation of alkynes with aromatics: synthesis of trisubstituted alkenes.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2015-11-14

    The hydroarylation of alkynes with substituted aromatics in the presence of a metal catalyst via chelation-assisted C-H bond activation is a powerful method to synthesize trisubstituted alkenes. Chelation-assisted C-H bond activation can be done by two ways: (a) an oxidative addition pathway and (b) a deprotonation pathway. Generally, a mixture of cis and trans stereoisomeric as well as regioisomeric trisubstituted alkenes was observed in an oxidative addition pathway. In the deprotonation pathway, the hydroarylation reaction can be done in a highly regio- and stereoselective manner, and enables preparation of the expected trisubstituted alkenes in a highly selective manner. Generally, ruthenium, rhodium and cobalt complexes are used as catalysts in the reaction. In this review, a ruthenium-catalyzed hydroarylation of alkynes with substituted aromatics is covered completely. The hydroarylation reaction of alkynes with amide, azole, carbamate, phosphine oxide, amine, acetyl, sulfoxide and sulphur directed aromatics is discussed.

  11. Evaluating the Effect of Catalyst Nuclearity in Ni-Catalyzed Alkyne Cyclotrimerizations.

    Science.gov (United States)

    Pal, Sudipta; Uyeda, Christopher

    2015-07-01

    An evaluation of catalyst nuclearity effects in Ni-catalyzed alkyne oligomerization reactions is presented. A dinuclear complex, featuring a Ni-Ni bond supported by a naphthyridine-diimine (NDI) ligand, promotes rapid and selective cyclotrimerization to form 1,2,4-substituted arene products. Mononickel congeners bearing related N-donor chelates (2-iminopyridines, 2,2'-bipyridines, or 1,4,-diazadienes) are significantly less active and yield complex product mixtures. Stoichiometric reactions of the dinickel catalyst with hindered silyl acetylenes enable characterization of the alkyne complex and the metallacycle that are implicated as catalytic intermediates. Based on these experiments and supporting DFT calculations, the role of the dinuclear active site in promoting regioselective alkyne coupling is discussed. Together, these results demonstrate the utility of exploring nuclearity as a parameter for catalyst optimization.

  12. Metal- and Protection-Free [4 + 2] Cycloadditions of Alkynes with Azadienes: Assembly of Functionalized Quinolines.

    Science.gov (United States)

    Saunthwal, Rakesh K; Patel, Monika; Verma, Akhilesh K

    2016-05-06

    A base promoted, protection-free, and regioselective synthesis of highly functionalized quinolines via [4 + 2] cycloaddition of azadienes (generated in situ from o-aminobenzyl alcohol) with internal alkynes has been discovered. The reaction tolerates a wide variety of functional groups which has been successfully extended with diynes, (2-aminopyridin-3-yl)methanol, and 1,4-bis(phenylethynyl)benzene to afford (Z)-phenyl-2-styrylquinolines, phenylnaphthyridine, and alkyne-substituted quinolines, respectively. The proposed mechanism and significant role of the solvent were well supported by isolating the azadiene intermediate and deuterium-labeling studies.

  13. Stereodivergent Coupling of Aldehydes and Alkynes via Synergistic Catalysis Using Rh and Jacobsen's Amine.

    Science.gov (United States)

    Cruz, Faben A; Dong, Vy M

    2017-01-25

    We report an enantioselective coupling between α-branched aldehydes and alkynes to generate vicinal quaternary and tertiary carbon stereocenters. The choice of Rh and organocatalyst combination allows for access to all possible stereoisomers with high enantio-, diastereo-, and regioselectivity. Our study highlights the power of catalysis to activate two common functional groups and provide access to divergent stereoisomers and constitutional structures.

  14. N-heterocyclic carbene-catalyzed internal redox reaction of alkynals: an efficient synthesis of allenoates.

    Science.gov (United States)

    Zhao, Yu-Ming; Tam, Yik; Wang, Yu-Jie; Li, Zigang; Sun, Jianwei

    2012-03-16

    An efficient N-heterocyclic carbene (NHC)-catalyzed internal redox reaction of alkynals that bear a γ leaving group has been developed. This process provides a new access to a range of allenoates in good yields. Preliminary results demonstrate that the enantioselective variant can also be achieved.

  15. A photocleavable affinity tag for the enrichment of alkyne-modified biomolecules

    NARCIS (Netherlands)

    Koopmans, Timo; Dekker, Frank J.; Martin, Nathaniel I.

    2012-01-01

    A new photocleavable affinity tag for use in the enrichment of alkyne-labelled biomolecules is reported. The tag is prepared via a concise synthetic route using readily available materials. The photolytic conditions employed for cleavage of the tag provide for a clean release of enriched biomolecule

  16. The mechanism of the phosphine-free palladium-catalyzed hydroarylation of alkynes

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fabrizi, G.; Cacchi, S.;

    2006-01-01

    The mechanism of the Pd-catalyzed hydroarylation and hydrovinylation reaction of alkynes has been studied by a combination of experimental and theoretical methods (B3LYP), with an emphasis on the phosphine-free version. The regioselectivity of the hydroarylation and hydrovinylation shows unexpected...

  17. A simple and effective approach to the synthesis of alkynyl selenides from terminal alkynes

    Institute of Scientific and Technical Information of China (English)

    Barahman Movassagh; Mozhgan Navidi

    2012-01-01

    Alkynyl selenides were prepared under very mild conditions by reacting terminal alkynes with respective diorganic diselenides in the presence of potassium t-butoxide.The advantages of this protocol include the use of readily available substrates and reagent and good yield of the products.

  18. Stereoselective synthesis of 2,3-disubstituted dihydrobenzofuran using alkyne Prins type cyclization to vinylogous carbonates

    Indian Academy of Sciences (India)

    Santosh J Gharpure; V Prasath

    2011-11-01

    An intramolecular, alkyne Prins type cyclization of vinylogous carbonates derived from -alkynyl phenols is developed for the stereoselective construction of trans-2,3-disubstituted dihydrobenzofuran derivatives. Strong Lewis acids like TMSOTf catalyse this reaction efficiently. The presence of mildly electron donating groups on aryl rings increases the efficiency of the reaction.

  19. Ligand-guided pathway selection in nickel-catalyzed couplings of enals and alkynes.

    Science.gov (United States)

    Li, Wei; Montgomery, John

    2012-01-28

    Nickel-catalyzed couplings of enals and alkynes utilizing triethylborane as the reducing agent illustrate a significant dependence on ligand structure. Simple variation of monodentate phosphines allows selective access to alkylative couplings or reductive cycloadditions, while further variation of reaction conditions provides clean access to reductive couplings and redox-neutral couplings.

  20. N-Terminal dual protein functionalization by strain-promoted alkyne-nitrone cycloaddition

    NARCIS (Netherlands)

    Temming, R.P.; Eggermont, L.J.; Eldijk, M.B. van; Hest, J.C. van; Delft, F.L. van

    2013-01-01

    Strain-promoted alkyne-nitrone cycloadditon (SPANC) was optimized as a versatile strategy for dual functionalization of peptides and proteins. The usefulness of the dual labeling protocol is first exemplified by the simultaneous introduction of a chloroquine and a stearyl moiety, two endosomal escap

  1. Vapor Phase Alkyne Coating of Pharmaceutical Excipients: Discrimination Enhancement of Raman Chemical Imaging for Tablets.

    Science.gov (United States)

    Yamashita, Mayumi; Sasaki, Hiroaki; Moriyama, Kei

    2015-12-01

    Raman chemical imaging has become a powerful analytical tool to investigate the crystallographic characteristics of pharmaceutical ingredients in tablet. However, it is often difficult to discriminate some pharmaceutical excipients from each other by Raman spectrum because of broad and overlapping signals, limiting their detailed assessments. To overcome this difficulty, we developed a vapor phase coating method of excipients by an alkyne, which exhibits a distinctive Raman signal in the range of 2100-2300 cm(-1) . We found that the combination of two volatile reagents, propargyl bromide and triethylamine, formed a thin and nonvolatile coating on the excipient and observed the Raman signal of the alkyne at the surface. We prepared alkyne-coated cellulose by this method and formed a tablet. The Raman chemical imaging of the tablet cross-section using the alkyne peak area intensity of 2120 cm(-1) as the index showed a much clearer particle image of cellulose than using the peak area intensity of 1370 cm(-1) , which originated from the cellulose itself. Our method provides an innovative technique to analyze the solid-state characteristics of pharmaceutical excipients in tablets.

  2. Phosphoramidite accelerated copper(I)-catalyzed [3+2] cycloadditions of azides and alkynes

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Mirfeizi, Leila; Dierckx, Rudi A.; Elsinga, Philip H.; Feringa, Ben L.

    2009-01-01

    Monodentate phosphoramidite ligands are used to accelerate the copper(I)-catalyzed 1,3-dipolar cycloaddition of azides and alkynes (CuAAC) rapidly yielding a wide variety of functionalized 1,4-disubstituted-1,2,3-triazoles; Cu(I) and Cu(II) salts both function as the copper source in aqueous solutio

  3. Mild copper-catalyzed trifluoromethylation of terminal alkynes using an electrophilic trifluoromethylating reagent

    KAUST Repository

    Weng, Zhiqiang

    2012-03-01

    A catalytic process for trifluoromethylation of terminal alkynes with Togni\\'s reagent has been developed, affording trifluoromethylated acetylenes in good to excellent yields. The reaction is conducted at room temperature and exhibits tolerance to a range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  4. Biocompatible Azide-Alkyne "Click" Reactions for Surface Decoration of Glyco-Engineered Cells.

    Science.gov (United States)

    Gutmann, Marcus; Memmel, Elisabeth; Braun, Alexandra C; Seibel, Jürgen; Meinel, Lorenz; Lühmann, Tessa

    2016-05-03

    Bio-orthogonal copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) has been widely used to modify azide- or alkyne-bearing monosaccharides on metabolic glyco-engineered mammalian cells. Here, we present a systematic study to elucidate the design space for the cytotoxic effects of the copper catalyst on NIH 3T3 fibroblasts and on HEK 293-F cells. Monitoring membrane integrity by flow cytometry and RT-PCR analysis with apoptotic and anti-apoptotic markers elucidated the general feasibility of CuAAC, with exposure time of the CuAAC reaction mixture having the major influence on biocompatibility. A high labeling efficiency of HEK 293-F cells with a fluorescent alkyne dye was rapidly achieved by CuAAC in comparison to copper free strain-promoted azide-alkyne cycloaddition (SPAAC). The study details effective and biocompatible conditions for CuAAC-based modification of glyco-engineered cells in comparison to its copper free alternative.

  5. Copper-catalyzed oxidative alkynylation of diaryl imines with terminal alkynes: a facile synthesis of ynimines.

    Science.gov (United States)

    Laouiti, Anouar; Rammah, Mohamed M; Rammah, Mohamed B; Marrot, Jérome; Couty, François; Evano, Gwilherm

    2012-01-06

    An efficient copper-mediated method for the oxidative alkynylation of diaryl imines with terminal alkynes is reported. This reaction provides the first catalytic and general synthesis of ynimines and allows for an easy preparation of these useful building blocks. An improved copper-catalyzed oxidative dimerization of imines to azines and the synthesis of dienes and azadienes from ynimines are also described.

  6. Magnetic Fe@g‑C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    Data.gov (United States)

    U.S. Environmental Protection Agency — A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically...

  7. Ruthenium-catalyzed decarbonylative addition reaction of anhydrides with alkynes: a facile synthesis of isocoumarins and α-pyrones.

    Science.gov (United States)

    Prakash, Rashmi; Shekarrao, Kommuri; Gogoi, Sanjib; Boruah, Romesh C

    2015-06-21

    A novel ruthenium catalyzed straightforward and efficient synthesis of isocoumarin and α-pyrone derivatives has been accomplished by the decarbonylative addition reaction of anhydrides with alkynes under thermal conditions.

  8. Halide-promoted reactions of alkynes with Ru sub 3 (CO) sub 12

    Energy Technology Data Exchange (ETDEWEB)

    Rivomanana, S.; Lavigne, G.; Lugan, N.; Bonnet, J.; Yanez, R.; Mathieu, R. (Universite Paul Sabatier, Toulouse (France))

    1989-11-22

    The promoter effect of anionic nucleophiles on reactions of metal carbonyl complexes is of high current interest. In particular, several novel catalytic processes of potential industrial relevance are based on Ru{sub 3}(CO){sub 12}/halide systems as catalyst precursors. The authors have found that the activated complex (PPN)(Ru{sub 3}({mu}-Cl)(CO){sub 10}) ((PPN)(3)), which is readily obtained from the initial halide adduct (PPN)(Ru{sub 3}({eta}{sup 1}-Cl)(CO){sub 11}) ((PPN)(2)) (PPN = bis(triphenylphosphine)iminium), reacts with alkynes at 25{degree}C in THF (reaction 1) to produce a labile species (PPN)(Ru{sub 3}({mu}-Cl)({mu}-{eta}{sup 2}-RCCR{prime})(CO){sub 9}) ((PPN)(4)) that serves as a convenient precursor to new and known alkyne-substituted derivatives of Ru{sub 3}(CO){sub 12}.

  9. Catalytic role of nickel in the decarbonylative addition of phthalimides to alkynes

    KAUST Repository

    Poater, Albert

    2013-11-11

    Density functional theory calculations have been used to investigate the catalytic role of nickel(0) in the decarbonylative addition of phthalimides to alkynes. According to Kurahashi et al. the plausible reaction mechanism involves a nucleophilic attack of nickel at an imide group, giving a six-membered metallacycle, followed by a decarbonylation and insertion of an alkyne leading to a seven-membered metallacycle. Finally a reductive elimination process produces the desired product and regenerates the nickel(0) catalyst. In this paper, we present a full description of the complete reaction pathway along with possible alternative pathways, which are predicted to display higher upper barriers. Our computational results substantially confirm the proposed mechanism, offering a detailed geometrical and energetical understanding of all the elementary steps. © 2013 American Chemical Society.

  10. Further studies on hydration of alkynes by the PtCl4-CO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Israelsohn, Osnat; Vollhardt, K. Peter C.; Blum, Jochanan

    2002-01-18

    Under CO atmosphere, between 80 and 120 C, a glyme solution of PtCl{sub 4} forms a carbonyl compound that promotes hydration of internal as well as terminal alkynes to give aldehyde-free ketones. The catalytic process depends strongly on the electronic and steric nature of the substrates. Part of the carbonyl functions of the catalyst can be replaced by phosphine ligands. Chiral DIOP reacts with the PtCl{sub 4}-CO compound to give a catalyst that promotes partial kinetic resolution of a racemic alkyne. Replacement of part of the CO by polystyrene-bound diphenylphosphine enables to attach the catalyst to the polymeric support. Upon entrapment of the platinum compound in a silica sol-gel matrix, it reacts as a partially recyclable catalyst. A reformulated mechanism for the PdCl{sub 4}-CO catalyzed hydration is suggested on the basis of the present study.

  11. Investigation of the Pyridinium Ylide—Alkyne Cycloaddition as a Fluorogenic Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Simon Bonte

    2016-03-01

    Full Text Available The cycloaddition of pyridinium ylides with alkynes was investigated under mild conditions. A series of 13 pyridinium salts was prepared by alkylation of 4-substituted pyridines. Their reactivity with propiolic ester or amide in various reaction conditions (different temperatures, solvents, added bases was studied, and 11 indolizines, with three points of structural variation, were, thus, isolated and characterized. The highest yields were obtained when electron-withdrawing groups were present on both the pyridinium ylide, generated in situ from the corresponding pyridinium salt, and the alkyne (X, Z = ester, amide, CN, carbonyl, etc.. Electron-withdrawing substituents, lowering the acid dissociation constant (pKa of the pyridinium salts, allow the cycloaddition to proceed at pH 7.5 in aqueous buffers at room temperature.

  12. Dinuclear thiazolylidene copper complex as highly active catalyst for azid–alkyne cycloadditions

    Science.gov (United States)

    Schöffler, Anne L; Makarem, Ata; Rominger, Frank

    2016-01-01

    Summary A dinuclear N-heterocyclic carbene (NHC) copper complex efficiently catalyzes azide–alkyne cycloaddition (CuAAC) “click” reactions. The ancillary ligand comprises two 4,5-dimethyl-1,3-thiazol-2-ylidene units and an ethylene linker. The three-step preparation of the complex from commercially available starting compounds is more straightforward and cost-efficient than that of the previously described 1,2,4-triazol-5-ylidene derivatives. Kinetic experiments revealed its high catalytic CuAAC activity in organic solvents at room temperature. The activity increases upon addition of acetic acid, particularly for more acidic alkyne substrates. The modular catalyst design renders possible the exchange of N-heterocyclic carbene, linker, sacrificial ligand, and counter ion. PMID:27559407

  13. Novel Role of Carbon Dioxide as a Selective Agent in Palladium-Catalyzed Cyclotrimerization of Alkynes

    Institute of Scientific and Technical Information of China (English)

    李金恒; 谢叶香

    2004-01-01

    Carbon dioxide was found as a selective agent to promote the palladium-catalyzed cyclotrimerization of alkynes in water. Both aryl and alkylacetylenes afforded the corresponding cyclotrimerization products regioselectively in high yields using PdCl2, CuCl2, and CO2 as the catalytic system. However, tert-butylacetylene bearing a bulky group gave a dimerization product. Mechanism of this reaction was also discussed.

  14. Iron- Catalyzed 1,2-Addition of Perfluoroalkyl Iodides to Alkynes and Alkenes

    OpenAIRE

    Xu, Tao; Cheung, Chi Wai; Hu, Xile

    2014-01-01

    Iron catalysis has been developed for the intermolecular 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes. The catalysis has a wide substrate scope and high functional-group tolerance. A variety of perfluoroalkyl iodides including CF3I can be employed. The resulting perfluoroalkylated alkyl and alkenyl iodides can be further functionalized by cross-coupling reactions. This methodology provides a straightforward and streamlined access to perfluoroalkylated organic molecules.

  15. Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide–Alkyne Cycloadditions

    OpenAIRE

    Worrell, B. T.; Malik, J.A.; FOKIN, V.V.

    2013-01-01

    The copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) has become a commonly employed method for the synthesis of complex molecular architectures under challenging conditions. Despite the widespread use of copper-catalyzed cycloaddition reactions, the mechanism of these processes has remained difficult to establish due to the involvement of multiple equilibria between several reactive intermediates. Real-time monitoring of a representative cycloaddition process via heat flow reaction calo...

  16. Regioselective reductive hydration of alkynes to form branched or linear alcohols.

    Science.gov (United States)

    Li, Le; Herzon, Seth B

    2012-10-24

    The regioselective reductive hydration of terminal alkynes using two complementary dual catalytic systems is described. Branched or linear alcohols are obtained in 75-96% yield with ≥25:1 regioselectivity from the same starting materials. The method is compatible with terminal, di-, and trisubstituted alkenes. This reductive hydration constitutes a strategic surrogate to alkene oxyfunctionalization and may be of utility in multistep settings.

  17. Synthesis of Fluorescent Indazoles by Palladium-Catalyzed Benzannulation of Pyrazoles with Alkynes.

    Science.gov (United States)

    Kim, Og Soon; Jang, Jin Hyeok; Kim, Hyun Tae; Han, Su Jin; Tsui, Gavin Chit; Joo, Jung Min

    2017-03-17

    The synthesis of indazoles from pyrazoles and internal alkynes is described. Instead of complex benzenoid compounds, readily available pyrazoles were used for the preparation of indazoles by reaction of the C-H bonds of the heterocyclic ring. Oxidative benzannulation was also applied to imidazoles, providing benzimidazoles. This convergent strategy enabled alteration of the photochemical properties of benzo-fused diazoles by varying the substituents at the benzene ring, thus leading to the development of tetraarylindazoles as new fluorophores.

  18. Pressure-accelerated azide-alkyne cycloaddition: micro capillary versus autoclave reactor performance.

    Science.gov (United States)

    Borukhova, Svetlana; Seeger, Andreas D; Noël, Timothy; Wang, Qi; Busch, Markus; Hessel, Volker

    2015-02-01

    Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel-process-window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide-alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide-alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space-time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide-alkyne cycloadditions to widen the scope of the presented methodology.

  19. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  20. Evaluation of alkyne-modified isoprenoids as chemical reporters of protein prenylation.

    Science.gov (United States)

    DeGraw, Amanda J; Palsuledesai, Charuta; Ochocki, Joshua D; Dozier, Jonathan K; Lenevich, Stepan; Rashidian, Mohammad; Distefano, Mark D

    2010-12-01

    Protein prenyltransferases catalyze the attachment of C15 (farnesyl) and C20 (geranylgeranyl) groups to proteins at specific sequences localized at or near the C-termini of specific proteins. Determination of the specific protein prenyltransferase substrates affected by the inhibition of these enzymes is critical for enhancing knowledge of the mechanism of such potential drugs. Here, we investigate the utility of alkyne-containing isoprenoid analogs for chemical proteomics experiments by showing that these compounds readily penetrate mammalian cells in culture and become incorporated into proteins that are normally prenylated. Derivatization via Cu(I) catalyzed click reaction with a fluorescent azide reagent allows the proteins to be visualized and their relative levels to be analyzed. Simultaneous treatment of cells with these probes and inhibitors of prenylation reveals decreases in the levels of some but not all of the labeled proteins. Two-dimensional electrophoretic separation of these labeled proteins followed by mass spectrometric analysis allowed several labeled proteins to be unambiguously identified. Docking experiments and density functional theory calculations suggest that the substrate specificity of protein farnesyl transferase may vary depending on whether azide- or alkyne-based isoprenoid analogs is employed. These results demonstrate the utility of alkyne-containing analogs for chemical proteomic applications.

  1. Functionalisation of lanthanide complexes via microwave-enhanced Cu(I)-catalysed azide-alkyne cycloaddition.

    Science.gov (United States)

    Szíjjártó, Csongor; Pershagen, Elias; Borbas, K Eszter

    2012-07-07

    Cu(I)-catalysed azide-alkyne cycloaddition reactions were used to functionalise lanthanide(III)-complexes (Ln; La, Eu and Tb) incorporating alkyne or azide reactive groups. Microwave irradiation significantly accelerated the reactions, enabling full conversion to the triazole products in some cases in 5 min. Alkyl and aryl azides and alkyl and aryl alkynes could all serve as coupling partners. These reaction conditions proved efficient for cyclen-tricarboxylates and previously unreactive cyclen-tris-primary amide chelates. The synthesis of heterobimetallic (Eu/Tb, EuTb17 and Eu/La, EuLa17) and heterotrimetallic (Eu/La/Eu) complexes was achieved in up to 60% isolated yield starting from coumarin 2-appended alkynyl complexes Tb16 or La16 and an azido-Eu complex Eu4, and bis-alkynyl La-complex La5 and Eu4, respectively. EuTb17 displayed dual Eu(III) and Tb(III)-emission upon antenna-centred excitation.

  2. Synthesis of ferrocene-labeled steroids via copper-catalyzed azide-alkyne cycloaddition. Reactivity difference between 2β-, 6β- and 16β-azido-androstanes.

    Science.gov (United States)

    Fehér, Klaudia; Balogh, János; Csók, Zsolt; Kégl, Tamás; Kollár, László; Skoda-Földes, Rita

    2012-06-01

    Copper-catalyzed cycloaddition of steroidal azides and ferrocenyl-alkynes were found to be an efficient methodology for the synthesis of ferrocene-labeled steroids. At the same time, a great difference between the reactivity of 2β- or 16β-azido-androstanes and a sterically hindered 6β-azido steroid toward both ferrocenyl-alkynes and simple alkynes, such as phenylacetylene, 1-octyne, propargyl acetate and methyl propiolate, was observed.

  3. Assembly of an allenylidene ligand, a terminal alkyne, and an acetonitrile molecule: formation of osmacyclopentapyrrole derivatives.

    Science.gov (United States)

    Bolaño, Tamara; Castarlenas, Ricardo; Esteruelas, Miguel A; Oñate, Enrique

    2006-03-29

    Treatment in acetonitrile at -30 C of the hydride-alkenylcarbyne complex [OsH([triple bond]CCH=CPh2)(CH3CN)2(P(i)Pr3)2][BF4]2 (1) with (t)BuOK produces the selective deprotonation of the alkenyl substituent of the carbyne and the formation of the bis-solvento hydride-allenylidene derivative [OsH(=C=C=CPh2)(CH3CN)2(P(i)Pr3)2]BF4 (2), which under carbon monoxide atmosphere is converted into [Os(CH=C=CPh2)(CO)(CH3CN)2(P(i)Pr3)2]BF4 (3). When the treatment of 1 with (t)BuOK is carried out in dichloromethane at room temperature, the fluoro-alkenylcarbyne [OsHF([triple bond]CCH=CPh2)(CH3CN)(P(i)Pr3)2]BF4 (4) is isolated. Complex 2 reacts with terminal alkynes. The reactions with phenylacetylene and cyclohexylacetylene afford [Os[(E)-CH=CHR](=C=C=CPh2)(CH3CN)2(P(i)Pr3)2]BF4 (R = Ph (5), Cy (6)), containing an alkenyl ligand beside the allenylidene, while the reaction with acetylene in dichloromethane at -20 degrees C gives the hydride-allenylidene-pi-alkyne [OsH(=C=C=CPh2)(eta2-HC[triple bond]CH)(P(i)Pr3)2]BF4 (7), with the alkyne acting as a four-electron donor ligand. In acetonitrile under reflux, complexes 5 and 6 are transformed into the osmacyclopentapyrrole compounds [Os[C=C(CPh2CR=CH)CMe=NH](CH3CN)2]BF4 (R = Ph (8), Cy (9)), as a result of the assembly of the allenylidene ligand, the alkenyl group, and an acetonitrile molecule. The X-ray structures of 2, 5, and 8 are also reported.

  4. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host–Guest Binding Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Long, Hai; Jin, Yinghua; Zhang, Wei

    2016-06-17

    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 x 103 M-1) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity.

  5. Acid, silver, and solvent-free gold-catalyzed hydrophenoxylation of internal alkynes

    Directory of Open Access Journals (Sweden)

    Marcia E. Richard

    2013-10-01

    Full Text Available A range of arylgold compounds have been synthesized and investigated as single-component catalysts for the hydrophenoxylation of unactivated internal alkynes. Both carbene and phosphine-ligated compounds were screened as part of this work, and the most efficient catalysts contained either JohnPhos or IPr/SIPr. Phenols bearing either electron-withdrawing or electron-donating groups were efficiently added using these catalysts. No silver salts, acids, or solvents were needed for the catalysis, and either microwave or conventional heating afforded moderate to excellent yields of the vinyl ethers.

  6. Acid, silver, and solvent-free gold-catalyzed hydrophenoxylation of internal alkynes

    Science.gov (United States)

    Richard, Marcia E; Fraccica, Daniel V; Garcia, Kevin J; Miller, Erica J; Ciccarelli, Rosa M; Holahan, Erin C; Resh, Victoria L; Shah, Aakash; Findeis, Peter M

    2013-01-01

    Summary A range of arylgold compounds have been synthesized and investigated as single-component catalysts for the hydrophenoxylation of unactivated internal alkynes. Both carbene and phosphine-ligated compounds were screened as part of this work, and the most efficient catalysts contained either JohnPhos or IPr/SIPr. Phenols bearing either electron-withdrawing or electron-donating groups were efficiently added using these catalysts. No silver salts, acids, or solvents were needed for the catalysis, and either microwave or conventional heating afforded moderate to excellent yields of the vinyl ethers. PMID:24204410

  7. Metal-catalyzed decaborane-alkyne hydroboration reactions: efficient routes to alkenyldecaboranes.

    Science.gov (United States)

    Chatterjee, Shahana; Carroll, Patrick J; Sneddon, Larry G

    2010-04-05

    Transition-metal-catalyzed decaborane-alkyne hydroboration reactions have been developed that provide high-yield routes to the previously unknown di- and monoalkenyldecaboranes. These alkenyl derivatives should be easily modified starting materials for many biomedical and/or materials applications. Unusual catalyst product selectivity was observed that suggests quite different mechanistic steps, with the reactions catalyzed by the [RuCl(2)(p-cymene)](2) and [Cp*IrCl(2)](2) complexes giving the beta-E alkenyldecaboranes and the corresponding reactions with the [RuI(2)(p-cymene)](2) complex giving the alpha-alkenyldecaborane isomers.

  8. Access to pyrrolo-pyridines by gold-catalyzed hydroarylation of pyrroles tethered to terminal alkynes

    Directory of Open Access Journals (Sweden)

    Elena Borsini

    2011-10-01

    Full Text Available In a simple procedure, the intramolecular hydroarylation of N-propargyl-pyrrole-2-carboxamides was accomplished with the aid of gold(III catalysis. The reaction led to differently substituted pyrrolo[2,3-c]pyridine and pyrrolo[3,2-c]pyridine derivatives arising either from direct cyclization or from a formal rearrangement of the carboxamide group. Terminal alkynes are essential to achieve bicyclic pyrrolo-fused pyridinones by a 6-exo-dig process, while the presence of a phenyl group at the C–C triple bond promotes the 7-endo-dig cyclization giving pyrrolo-azepines.

  9. Selective synthesis of indazoles and indoles via triazene-alkyne cyclization switched by different metals.

    Science.gov (United States)

    Fang, Yan; Wang, Chengming; Su, Shengqin; Yu, Haizhu; Huang, Yong

    2014-02-21

    We described two orthogonal heterocycle syntheses, where an arene bearing both an alkyne and a triazene functionality underwent two distinct cyclization pathways mediated by different transition metals. Starting from the same substrates, a synthesis of 2H-indazole was accomplished by a Cu(II) salt promoted oxidative cyclization, while 2-substituted indoles could be accessed via a Ag(I) salt mediated N-N bond cleavage. This method represents the first synthesis of indoles from alkynyl triazenes. Computational analysis was performed for both reaction pathways, supporting a Lewis acid role for Cu and a π-acid catalysis for Ag.

  10. Selective oxygenation of alkynes: a direct approach to diketones and vinyl acetate.

    Science.gov (United States)

    Xia, Xiao-Feng; Gu, Zhen; Liu, Wentao; Wang, Ningning; Wang, Haijun; Xia, Yongmei; Gao, Haiyan; Liu, Xiang

    2014-12-28

    Arylalkynes can be converted into α-diketones with the use of a copper catalyst, and also be transformed into vinyl acetates under metal-free conditions, both in the presence of PhI(OAc)2 as an oxidant at room temperature. A series of substituted α-diketones were prepared in moderate to good yields. A variety of vinyl halides could be regio- and stereo-selectively synthesized under mild conditions, and I, Br and Cl could be all easily embedded into the alkynes.

  11. C-Terminal acetylene derivatized peptides via silyl-based alkyne immobilization.

    Science.gov (United States)

    Strack, Martin; Metzler-Nolte, Nils; Albada, H Bauke

    2013-06-21

    A new Silyl-based Alkyne Modifying (SAM)-linker for the synthesis of C-terminal acetylene-derivatized peptides is reported. The broad scope of this SAM2-linker is illustrated by manual synthesis of peptides that are side-chain protected, fully deprotected, and disulfide-bridged. Synthesis of a 14-meric (KLAKLAK)2 derivative by microwave-assisted automated SPPS and a one-pot cleavage click procedure yielding protected 1,2,3-triazole peptide conjugates are also described.

  12. Silica-supported tungsten carbynes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; X = 2, y = 1): New efficient catalysts for alkyne cyclotrimerization

    KAUST Repository

    Riache, Nassima

    2015-02-23

    The activity of silica-supported tungsten carbyne complexes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; x = 2, y = 1) toward alkynes is reported. We found that they are efficient precatalysts for terminal alkyne cyclotrimerization with high TONs. We also demonstrate that this catalyst species is active for alkyne cyclotrimerization without the formation of significant alkyne metathesis products. Additional DFT calculations highlight the importance of the W coordination sphere in supporting this experimental behavior.

  13. Synthesis of 1,3-Amino Alcohols, 1,3-Diols, Amines, and Carboxylic Acids from Terminal Alkynes.

    Science.gov (United States)

    Zeng, Mingshuo; Herzon, Seth B

    2015-09-04

    The half-sandwich ruthenium complexes 1-3 activate terminal alkynes toward anti-Markovnikov hydration and reductive hydration under mild conditions. These reactions are believed to proceed via addition of water to metal vinylidene intermediates (4). The functionalization of propargylic alcohols by metal vinylidene pathways is challenging owing to decomposition of the starting material and catalytic intermediates. Here we show that catalyst 2 can be employed to convert propargylic alcohols to 1,3-diols in high yield and with retention of stereochemistry at the propargylic position. The method is also amenable to propargylic amine derivatives, thereby establishing a route to enantioenriched 1,3-amino alcohol products. We also report the development of formal anti-Markovnikov reductive amination and oxidative hydration reactions to access linear amines and carboxylic acids, respectively, from terminal alkynes. This chemistry expands the scope of products that can be prepared from terminal alkynes by practical and high-yielding metal-catalyzed methods.

  14. Traceless Azido Linker for the Solid-Phase Synthesis of NH-1,2,3-Triazoles via Cu-Catalyzed Azide-Alkyne Cycloaddition Reactions

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil; Jensen, Jakob Feldthusen; Nielsen, Thomas Eiland

    2010-01-01

    A broadly useful acid-labile traceless azido linker for the solid-phase synthesis of NH-1,2,3-triazoles is presented. A variety of alkynes were efficiently immobilized on a range of polymeric supports by Cu(I)-mediated azide-alkyne cycloadditions. Supported triazoles showed excellent compatibility...

  15. Sequential One-Pot Ruthenium-Catalyzed Azide−Alkyne Cycloaddition from Primary Alkyl Halides and Sodium Azide

    KAUST Repository

    Johansson, Johan R.

    2011-04-01

    An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition of [RuClCp*(PPh 3) 2] and the alkyne yielded the desired cycloaddition product after further microwave irradiation. © 2011 American Chemical Society.

  16. Dynamic Covalent Synthesis of Aryleneethynylene Cages through Alkyne Metathesis: Dimer, Tetramer, or Interlocked Complex?

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Yu, Chao; Zhang, Chenxi; Long, Hai; Azarnoush, Setareh; Jin, Yinghua; Zhang, Wei

    2016-05-01

    A dynamic covalent approach towards rigid aryleneethynylene covalent organic polyhedrons (COPs) was explored. Our study on the relationship of the COP structures and the geometry of their building blocks reveals that the topology of aryleneethynylene COPs strongly depends on the size of the building blocks. A tetramer (D2h symmetric), dimer, or interlocked complex can be formed from monomers with the same face-to-edge angle but in different sizes. As alkyne metathesis is a self-exchange reaction and non-directional, the cyclooligomerization of multi-alkyne monomers involves both intramolecular cyclization and intermolecular metathesis reaction, resulting in complicated thermodynamic process disturbed by kinetic competition. Although a tetrahedron-shaped tetramer (Td symmetric) has comparable thermodynamic stability to a D2h symmetric tetramer, its formation is kinetically disfavored and was not observed experimentally. Aryleneethynylene COPs consist of purely unsaturated carbon backbones and exhibit large internal cavities, which would have interesting applications in host-guest chemistry and development of porous materials.

  17. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.

    Science.gov (United States)

    Anderton, Grant I; Bangerter, Alyssa S; Davis, Tyson C; Feng, Zhiyuan; Furtak, Aric J; Larsen, Jared O; Scroggin, Triniti L; Heemstra, Jennifer M

    2015-08-19

    Bioorthogonal conjugation reactions such as strain-promoted azide-alkyne cycloaddition (SPAAC) have become increasingly popular in recent years, as they enable site-specific labeling of complex biomolecules. However, despite a number of improvements to cyclooctyne design, reaction rates for SPAAC remain significantly lower than those of the related copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Here we explore micellar catalysis as a means to increase reaction rate between a cyclooctyne and hydrophobic azide. We find that anionic and cationic surfactants provide the most efficient catalysis, with rate enhancements of up to 179-fold for reaction of benzyl azide with DIBAC cyclooctyne. Additionally, we find that the presence of surfactant can provide up to 51-fold selectivity for reaction with a hydrophobic over hydrophilic azide. A more modest, but still substantial, 11-fold rate enhancement is observed for micellar catalysis of the reaction between benzyl azide and a DIBAC-functionalized DNA sequence, demonstrating that micellar catalysis can be successfully applied to hydrophilic biomolecules. Together, these results demonstrate that micellar catalysis can provide higher conjugation yields in reduced time when using hydrophobic SPAAC reagents.

  18. Development of a general methodology for labelling peptide-morpholino oligonucleotide conjugates using alkyne-azide click chemistry.

    Science.gov (United States)

    Shabanpoor, Fazel; Gait, Michael J

    2013-11-11

    We describe a general methodology for fluorescent labelling of peptide conjugates of phosphorodiamidate morpholino oligonucleotides (PMOs) by alkyne functionalization of peptides, subsequent conjugation to PMOs and labelling with a fluorescent compound (Cy5-azide). Two peptide-PMO (PPMO) examples are shown. No detrimental effect of such labelled PMOs was seen in a biological assay.

  19. Silver(I) triflate-catalyzed direct synthesis of N-PMP protected alpha-aminopropargylphosphonates from terminal alkynes.

    Science.gov (United States)

    Dodda, Rajasekhar; Zhao, Cong-Gui

    2007-01-01

    [reaction: see text] N-PMP protected alpha-aminopropargylphosphonates have been synthesized by using a silver(I) triflate-catalyzed one-pot three-component reaction of terminal alkynes, p-anisidine, and diethyl formylphosphonate hydrate. Good to excellent yields of the desired products may be obtained with a very simple procedure.

  20. Fine-tuning alkyne cycloadditions: Insights into photochemistry responsible for the double-strand DNA cleavage via structural perturbations in diaryl alkyne conjugates

    Directory of Open Access Journals (Sweden)

    Igor V. Alabugin

    2011-06-01

    Full Text Available Hybrid molecules combining photoactivated aryl acetylenes and a dicationic lysine moiety cause the most efficient double-strand (ds DNA cleavage known to date for a small molecule. In order to test the connection between the alkylating ability and the DNA-damaging properties of these compounds, we investigated the photoreactivity of three isomeric aryl–tetrafluoropyridinyl (TFP alkynes with amide substituents in different positions (o-, m-, and p- toward a model π-system. Reactions with 1,4-cyclohexadiene (1,4-CHD were used to probe the alkylating properties of the triplet excited states in these three isomers whilst Stern–Volmer quenching experiments were used to investigate the kinetics of photoinduced electron transfer (PET. The three analogous isomeric lysine conjugates cleaved DNA with different efficiencies (34, 15, and 0% of ds DNA cleavage for p-, m-, and o-substituted lysine conjugates, respectively consistent with the alkylating ability of the respective acetamides. The significant protecting effect of the hydroxyl radical and singlet oxygen scavengers to DNA cleavage was shown only with m-lysine conjugate. All three isomeric lysine conjugates inhibited human melanoma cell growth under photoactivation: The p-conjugate had the lowest CC50 (50% cell cytotoxicity value of 1.49 × 10−7 M.

  1. Binuclear metal carbonyl DAB complexes X. Activation of h2-C=N coordinated DAB ligands towards C-C bond formation with alkynes. The X-ray structure of {2-phenyl-3-(tert-butylamino)-4-(tertbutyl-imino)-1-butene-1-yl}Ru2(CO)5. Application to the catalytic cyclotrimerization of alkynes

    NARCIS (Netherlands)

    Koten, G. van; Staal, L.H.; Vrieze, K.; Santen, B. van; Stam, C.H.

    1981-01-01

    Ru,(CO),(DAB) (DAB = 1,4-diazabutadiene) complexes react with alkynes forming RU,(CO)~(AIB) complexes (AIB = 3-amino-4-imino-1-buten-1-ylI)n. these products the DAB ligand and the alkyne are coupled via a C-C bond. The molecular structure of these complexes has been determined by a single-crystal X-

  2. Rh-Catalyzed Decarbonylation of Conjugated Ynones via Carbon–Alkyne Bond Activation: Reaction Scope and Mechanistic Exploration via DFT Calculations

    Science.gov (United States)

    Dermenci, Alpay; Whittaker, Rachel E.; Gao, Yang; Cruz, Faben A.; Yu, Zhi-Xiang; Dong, Guangbin

    2015-01-01

    In this full article, detailed development of a catalytic decarbonylation of conjugated monoynones to synthesize disubstituted alkynes is described. The reaction scope and limitation has been thoroughly investigated, and a broad range of functional groups including heterocycles were compatible under the catalytic conditions. Mechanistic exploration via DFT calculations has also been executed. Through the computational study, a proposed catalytic mechanism has been carefully evaluated. These efforts are expected to serve as an important exploratory study for developing catalytic alkyne-transfer reactions via carbon−alkyne bond activation. PMID:26229587

  3. Rh(III)-Catalyzed Carbocyclization of 3-(Indolin-1-yl)-3-oxopropanenitriles with Alkynes and Alkenes through C-H Activation.

    Science.gov (United States)

    Zhou, Tao; Wang, Yanwei; Li, Bin; Wang, Baiquan

    2016-10-07

    Rh(III)-catalyzed carbocyclization reactions of 3-(indolin-1-yl)-3-oxopropanenitriles with alkynes and alkenes have been developed to form 1,7-fused indolines through C-H activation. These reactions have a broad range of substrates and high yields. Unsymmetrical aryl-alkyl substituted alkynes proceeded smoothly with high regioselectivity. Electron-rich alkynes could undergo further oxidative coupling reaction to form polycyclic compounds. For alkenes, 1,2-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-4-ones were formed via C(sp(2))-H bond alkenylation and C(sp(2))-H, C(sp(3))-H oxidative coupling reactions.

  4. Polymerization or Cyclic Dimerization: Solvent Dependent Homo-Coupling of Terminal Alkynes at HOPG Surface

    Science.gov (United States)

    Zhang, Xuemei; Liao, Lingyan; Wang, Shuai; Hu, Fangyun; Wang, Chen; Zeng, Qingdao

    2014-01-01

    Surface reactivity has become one of the most important issues in surface chemistry over the past few years. In this work, we, for the first time, have investigated the homo-coupling of a special terminal alkyne derivative on the highly oriented pyrolitic graphite (HOPG) surface. Using scanning tunneling microscopy (STM) technique, we have found that such coupling reaction seriously depends on the supramolecular assembly of the monomer on the studied substrate, whereas the latter appears an obvious solvent effect. As a result, the reaction in our system undergoes polymerization and cyclic dimerization process in 1-phenyloctane and 1,2,4-trichlorobenzene, respectively. That is to say, the solvent effect can be extended from the two-dimensional (2D) supramolecular self-assembly to surface chemical reactions, and the selective homo-coupling has been successfully achieved at the solid/liquid interface.

  5. Synthesis of Dihydropyridines and Pyridines from Imines and Alkynes via C-H Activation

    Energy Technology Data Exchange (ETDEWEB)

    Ellman, Jonathan A.; Colby, Denise; Bergman, Robert

    2007-11-20

    A convenient one-pot C-H alkenylation/electrocyclization/aromatization sequence has been developed for the synthesis of highly substituted pyridine derivatives from alkynes and {alpha},{beta}-unsaturated N-benzyl aldimines and ketimines that proceeds through dihydropyridine intermediates. A new class of ligands for C-H activation was developed, providing broader scope for the alkenylation step than could be achieved with previously reported ligands. Substantial information was obtained about the mechanism of the reaction. This included the isolation of a C-H activated complex and its structure determination by X-ray analysis; in addition, kinetic simulations using the Copasi software were employed to determine rate constants for this transformation, implicating facile C-H oxidative addition and slow reductive elimination steps.

  6. Synthesis, characterization, and alkyne trimerization catalysis of a heteroleptic two-coordinate fe(i) complex.

    Science.gov (United States)

    Lipschutz, Michael I; Chantarojsiri, Teera; Dong, Yuyang; Tilley, T Don

    2015-05-20

    The synthesis of the first heteroleptic, two-coordinate Fe(I) complex IPr-Fe-N(SiMe3)DIPP (1) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; DIPP = 2,6-(i)Pr2-C6H3) is reported. Protonation of the Fe(II) bis(amido) complex Fe[N(SiMe3)DIPP]2 followed by addition of IPr and reduction by potassium graphite in a one-pot reaction results in good yields of 1. The redox activity of 1 and comparison between 1 and its reduction product by (57)Fe Mössbauer spectroscopy are discussed, and the reduction was found to be metal-based rather than ligand-based. The activity of 1 toward the catalytic cyclotrimerization of terminal and internal alkynes is described.

  7. Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Socaci, Crina [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania); Rybka, Miriam [Humboldt-University Berlin, Department of Chemistry (Germany); Magerusan, Lidia; Nan, Alexandrina; Turcu, Rodica; Liebscher, Juergen, E-mail: liebscher@chemie.hu-berlin.de [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania)

    2013-06-15

    New magnetic core shell nanoparticles were synthesized consisting of magnetite cores and poly-(O-propargyl acrylate) shells. Strong fixing of the shells was achieved by primary anchoring phosphates or {alpha}-dihydroxydiphosphonates containing acrylate or methacrylate functionalities. The magnetic nanoparticles are attractive as supports for a variety of function which can be easily introduced by Cu-catalyzed alkyne azide cycloaddition (CuAAC, a click reaction). In this way, also the loading of the magnetic nanoparticles with propargyl units was determined by reaction with 4-azidoacetophenone and analysis of the supernatant. In order to demonstrate the attractiveness of the magnetic nanoparticles a novel azido-containing conjugate with biotin as recognition function and dansyl as fluorescence marker was introduced by CuAAC reaction. All NP show superparamagnetic behavior with high-saturation magnetization values and were further characterized by FTIR, photoelectron spectroscopy and TEM.

  8. On the Mechanism of the Digold(I)-Hydroxide-Catalysed Hydrophenoxylation of Alkynes

    KAUST Repository

    Gómez-Suárez, Adrián

    2015-12-13

    Herein, we present a detailed investigation of the mechanistic aspects of the dual gold-catalysed hydrophenoxylation of alkynes by both experimental and computational methods. The dissociation of [{Au(NHC)}2(μ-OH)][BF4] is essential to enter the catalytic cycle, and this step is favoured by the presence of bulky, non-coordinating counter ions. Moreover, in silico studies confirmed that phenol does not only act as a reactant, but also as a co-catalyst, lowering the energy barriers of several transition states. A gem-diaurated species might form during the reaction, but this lies deep within a potential energy well, and is likely to be an "off-cycle" rather than an "in-cycle" intermediate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electronic effects of ruthenium-catalyzed [3+2]-cycloaddition of alkynes and azides

    KAUST Repository

    Hou, Duenren

    2010-11-01

    A combined experimental and theoretical study of ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) reactions is presented and various electronic analyses were conducted to provide a basis in understanding the observed regioselectivity of the 1,2,3-triazole products. Computational studies using density functional theory (DFT) and atoms in molecules quantum theory (AIM) further yield fresh details on the electronic factors that determine the regioselectivity in the RuAAC. It is found that the formation of 1,2,3-triazole products is irreversible and from the Hammett study, the pathway involving a vinyl cationic intermediate is ruled out. The electronic effect favors the formation of 5-electron-donating-group substituted-1,2,3-trizoles. © 2010 Elsevier Ltd. All rights reserved.

  10. Gold-alkynyls in catalysis: alkyne activation, gold cumulenes and nuclearity.

    Science.gov (United States)

    Halliday, Connor J V; Lynam, Jason M

    2016-08-09

    The use of cationic gold(i) species in the activation of substrates containing C[triple bond, length as m-dash]C bonds has become a valuable tool for synthetic chemists. Despite the seemingly simple label of 'alkyne activation', numerous patterns of reactivity and product structure are observed in systems employing related substrates and catalysts. The complications of mechanistic determination are compounded as the number of implicated gold(i) centres involved in catalysis increases and debate about the bonding in proposed intermediates clouds the number and importance of potential reaction pathways. This perspective aims to illustrate some of the principles underpinning gold-alkynyl interactions whilst highlighting some of the contentious areas in the field and offering some insight into other, often ignored, mechanistic possibilities based on recent findings.

  11. Hybrid NS ligands supported Cu(I)/(II) complexes for azide-alkyne cycloaddition reactions.

    Science.gov (United States)

    Bai, Shi-Qiang; Jiang, Lu; Zuo, Jing-Lin; Hor, T S Andy

    2013-08-21

    Three copper complexes of nitrogen-sulfur donor ligands, [CuBr₂(L1)] (1), [CuCl₂(L2)₂] (2) and [Cu₂I₂(L3)]n (3) (L1 = bis(2-cyclohexylsulfanylethyl)amine, L2 = 2-(benzylsulfanylmethyl)pyridine and L3 = 2-(4-pyridylsulfanylmethyl)pyridine), have been synthesized and characterized by single-crystal X-ray diffraction (XRD), powder XRD and TGA analysis. Complexes 1 and 2 are mononuclear Cu(II) complexes and are EPR active with distorted square-pyramidal and octahedral geometry, respectively. Complex 3 is a two-dimensional tetrahedral Cu(I) coordination polymer with 16- and 20-membered metallocycles. These complexes show good catalytic activities for one-pot azide-alkyne cycloaddition reactions in CH₃OH-H₂O.

  12. Solvent-free copper-catalyzed azide-alkyne cycloaddition under mechanochemical activation.

    Science.gov (United States)

    Rinaldi, Laura; Martina, Katia; Baricco, Francesca; Rotolo, Laura; Cravotto, Giancarlo

    2015-02-09

    The ball-mill-based mechanochemical activation of metallic copper powder facilitates solvent-free alkyne-azide click reactions (CuAAC). All parameters that affect reaction rate (i.e., milling time, revolutions/min, size and milling ball number) have been optimized. This new, efficient, facile and eco-friendly procedure has been tested on a number of different substrates and in all cases afforded the corresponding 1,4-disubstituted 1,2,3-triazole derivatives in high yields and purities. The final compounds were isolated in almost quantitative overall yields after simple filtration, making this procedure facile and rapid. The optimized CuAAC protocol was efficiently applied even with bulky functionalized β-cyclodextrins (β-CD) and scaled-up to 10 g of isolated product.

  13. Solvent-Free Copper-Catalyzed Azide-Alkyne Cycloaddition under Mechanochemical Activation

    Directory of Open Access Journals (Sweden)

    Laura Rinaldi

    2015-02-01

    Full Text Available The ball-mill-based mechanochemical activation of metallic copper powder facilitates solvent-free alkyne-azide click reactions (CuAAC. All parameters that affect reaction rate (i.e., milling time, revolutions/min, size and milling ball number have been optimized. This new, efficient, facile and eco-friendly procedure has been tested on a number of different substrates and in all cases afforded the corresponding 1,4-disubstituted 1,2,3-triazole derivatives in high yields and purities. The final compounds were isolated in almost quantitative overall yields after simple filtration, making this procedure facile and rapid. The optimized CuAAC protocol was efficiently applied even with bulky functionalized β-cyclodextrins (β-CD and scaled-up to 10 g of isolated product.

  14. Palladium-Copper Catalyzed Alkyne Activation as an Entry to Multicomponent Syntheses of Heterocycles

    Science.gov (United States)

    Müller, Thomas J. J.

    Alkynones and chalcones are of paramount importance in heterocyclic chemistry as three-carbon building blocks. In a very efficient manner, they can be easily generated by palladium-copper catalyzed reactions: ynones are formed from acid chlorides and terminal alkynes, and chalcones are synthesized in the sense of a coupling-isomerization (CI) sequence from (hetero)aryl halides and propargyl alcohols. Mild reaction conditions now open entries to sequential and consecutive transformations to heterocycles, such as furans, 3-halo furans, pyrroles, pyrazoles, substituted and annelated pyridines, annelated thiopyranones, pyridimines, meridianins, benzoheteroazepines and tetrahydro-β-carbolines, by consecutive coupling-cyclocondensation or CI-cyclocondensation sequences, as new diversity oriented routes to heterocycles. Domino reactions based upon the coupling-isomerization reaction (CIR) have been probed in the synthesis of antiparasital 2-substituted quinoline derivatives and highly luminescent spiro-benzofuranones and spiro-indolones.

  15. Advancements in the mechanistic understanding of the copper-catalyzed azide–alkyne cycloaddition

    Directory of Open Access Journals (Sweden)

    Regina Berg

    2013-12-01

    Full Text Available The copper-catalyzed azide–alkyne cycloaddition (CuAAC is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC’s catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates.

  16. Environmental Friendly Azide-Alkyne Cycloaddition Reaction of Azides, Alkynes, and Organic Halides or Epoxides in Water: Efficient "Click" Synthesis of 1,2,3-Triazole Derivatives by Cu Catalyst

    Institute of Scientific and Technical Information of China (English)

    刘建明; 刘慕文; 岳园园; 姚美焕; 卓克垒

    2012-01-01

    An efficient click synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, epoxides, terminal alkynes, and sodium azides in the presence of copper salts and relative benzimidazole salts have been developed. This procedure eliminates the need to handle potentially organic azides, which are generated in situ. A broad spec- trum of substrates can participate in the process effectively to produce the desired products in good yields.

  17. Fluorocarbon compatibilized gold-silica nanocomposites for recyclable regioselective hydroamination of alkynes in a fluorous biphasic system

    Science.gov (United States)

    Merican, Zulkifli; Vu, Bao Khanh; Solovyeva, Vera A.; Rodionov, Valentin O.; Khe, Cheng Seong; Rajalingam, Sokkalingam; Vasant, Pandian

    2016-11-01

    The synthesis and characterization of the mesoporous silica-supported gold (Au@mSiO2) nanoparticles compatibilized with the outer shelled superhydrophobic fluorous (F) "tails" was described. The concept of fluorous biphasic separation was applied in the recycling of the synthesized fluorous material during hydroamination reactions of various alkynes. In the presence of perfluoromethylcyclohexane and heptane as a biphasic liquid system, the F-Au@mSiO2 was found to be a highly active catalyst for hydroamination of various alkynes with anilines, and a near quantitative yield for an imine product and produced a relatively minimal formation of a corresponding hydrolyzed ketone by-product. If perfluoromethylcyclohexane and heptane was used as a biphasic solvent, hydroamination at a lower reaction temperature can also be realized leading to an improved recyclability and conversion.

  18. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides.

    Science.gov (United States)

    Cromm, Philipp M; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N; Waldmann, Herbert

    2016-04-14

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets.

  19. Ribosome-Templated Azide-Alkyne Cycloadditions: Synthesis of Potent Macrolide Antibiotics by In Situ Click Chemistry.

    Science.gov (United States)

    Glassford, Ian; Teijaro, Christiana N; Daher, Samer S; Weil, Amy; Small, Meagan C; Redhu, Shiv K; Colussi, Dennis J; Jacobson, Marlene A; Childers, Wayne E; Buttaro, Bettina; Nicholson, Allen W; MacKerell, Alexander D; Cooperman, Barry S; Andrade, Rodrigo B

    2016-03-09

    Over half of all antibiotics target the bacterial ribosome-nature's complex, 2.5 MDa nanomachine responsible for decoding mRNA and synthesizing proteins. Macrolide antibiotics, exemplified by erythromycin, bind the 50S subunit with nM affinity and inhibit protein synthesis by blocking the passage of nascent oligopeptides. Solithromycin (1), a third-generation semisynthetic macrolide discovered by combinatorial copper-catalyzed click chemistry, was synthesized in situ by incubating either E. coli 70S ribosomes or 50S subunits with macrolide-functionalized azide 2 and 3-ethynylaniline (3) precursors. The ribosome-templated in situ click method was expanded from a binary reaction (i.e., one azide and one alkyne) to a six-component reaction (i.e., azide 2 and five alkynes) and ultimately to a 16-component reaction (i.e., azide 2 and 15 alkynes). The extent of triazole formation correlated with ribosome affinity for the anti (1,4)-regioisomers as revealed by measured Kd values. Computational analysis using the site-identification by ligand competitive saturation (SILCS) approach indicated that the relative affinity of the ligands was associated with the alteration of macrolactone+desosamine-ribosome interactions caused by the different alkynes. Protein synthesis inhibition experiments confirmed the mechanism of action. Evaluation of the minimal inhibitory concentrations (MIC) quantified the potency of the in situ click products and demonstrated the efficacy of this method in the triaging and prioritization of potent antibiotics that target the bacterial ribosome. Cell viability assays in human fibroblasts confirmed 2 and four analogues with therapeutic indices for bactericidal activity over in vitro mammalian cytotoxicity as essentially identical to solithromycin (1).

  20. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC

    Directory of Open Access Journals (Sweden)

    Alessandro Mandoli

    2016-09-01

    Full Text Available The explosively-growing applications of the Cu-catalyzed Huisgen 1,3-dipolar cycloaddition reaction between organic azides and alkynes (CuAAC have stimulated an impressive number of reports, in the last years, focusing on recoverable variants of the homogeneous or quasi-homogeneous catalysts. Recent advances in the field are reviewed, with particular emphasis on systems immobilized onto polymeric organic or inorganic supports.

  1. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and “Abnormal” Silver N-Heterocyclic Carbene Complex

    Directory of Open Access Journals (Sweden)

    Aldo I. Ortega-Arizmendi

    2013-01-01

    Full Text Available A library of 1,2,3-triazoles was synthesized from diverse alkynes and azides using catalytic amounts of silver chloride instead of copper compounds. In addition, a novel “abnormal” silver N-heterocyclic carbene complex was tested as catalyst in this process. The results suggest that the reaction requires only 0.5% of silver complex, affording 1,2,3-triazoles in good yields.

  2. In situ crystallization of the linear alkynes CnH2n–2 (n = 7, 8, 9, 10)

    DEFF Research Database (Denmark)

    Bond, Andrew; Davies, John E

    2014-01-01

    A manual in situ crystallization technique is described, for application on a κ-geometry area-detector instrument. The technique has been applied to grow crystals of some linear alkynes: 1-heptyne, 1-octyne, 1-nonyne and 1-decyne, Cn H2n–2 (n=7, 8, 9, 10). The structures with odd n (1-heptyne and...... alternation in crystal density is correlated with an alternation in melting points....

  3. Fluorescent labelling of in situ hybridisation probes through the copper-catalysed azide-alkyne cycloaddition reaction.

    Science.gov (United States)

    Hesse, Susann; Manetto, Antonio; Cassinelli, Valentina; Fuchs, Jörg; Ma, Lu; Raddaoui, Nada; Houben, Andreas

    2016-09-01

    In situ hybridisation is a powerful tool to investigate the genome and chromosome architecture. Nick translation (NT) is widely used to label DNA probes for fluorescence in situ hybridisation (FISH). However, NT is limited to the use of long double-stranded DNA and does not allow the labelling of single-stranded and short DNA, e.g. oligonucleotides. An alternative technique is the copper(I)-catalysed azide-alkyne cycloaddition (CuAAC), at which azide and alkyne functional groups react in a multistep process catalysed by copper(I) ions to give 1,4-distributed 1,2,3-triazoles at a high yield (also called 'click reaction'). We successfully applied this technique to label short single-stranded DNA probes as well as long PCR-derived double-stranded probes and tested them by FISH on plant chromosomes and nuclei. The hybridisation efficiency of differently labelled probes was compared to those obtained by conventional labelling techniques. We show that copper(I)-catalysed azide-alkyne cycloaddition-labelled probes are reliable tools to detect different types of repetitive sequences on chromosomes opening new promising routes for the detection of single copy gene. Moreover, a combination of FISH using such probes with other techniques, e.g. immunohistochemistry (IHC) and cell proliferation assays using 5-ethynyl-deoxyuridine, is herein shown to be easily feasible.

  4. Sweet graphene I: toward hydrophilic graphene nanosheets via click grafting alkyne-saccharides onto azide-functionalized graphene oxide.

    Science.gov (United States)

    Namvari, Mina; Namazi, Hassan

    2014-09-19

    Water-soluble graphene nanosheets (GNS) were fabricated via functionalization of graphene oxide (GO) with mono and disaccharides on the basal plane and edges using Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes (Click chemistry). To graft saccharides onto the plane of GO, it was reacted with sodium azide to introduce azide groups on the plane. Then, it was treated with alkyne-modified glucose, mannose, galactose, and maltose. In the next approach, we attached 1,3-diazideoprop-2-ol onto the edges of GO and it was subsequently clicked with alkyne-glucose. The products were analyzed by Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy, thermogravimetric analysis (TGA), and X-ray diffraction spectrometry. FTIR and TGA results showed both sugar-grafted GO sheets were reduced by sodium ascorbate during click-coupling reaction which is an advantage for this reaction. Besides, glycoside-grafted GNS were easily dispersed in water and stable for two weeks.

  5. Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane.

    Science.gov (United States)

    Itami, Kenichiro; Mitsudo, Koichi; Nishino, Akira; Yoshida, Jun-ichi

    2002-04-19

    Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane is described. The hydrosilylation of alkenes using dimethyl(2-pyridyl)silane (2-PyMe(2)SiH) proceeded well in the presence of a catalytic amount of RhCl(PPh(3))(3) with virtually complete regioselectivity. By taking advantage of the phase tag property of the 2-PyMe(2)Si group, hydrosilylation products were isolated in greater than 95% purity by simple acid-base extraction. Strategic catalyst recovery was also demonstrated. The hydrosilylation of alkynes using 2-PyMe(2)SiH proceeded with a Pt(CH(2)=CHSiMe(2))(2)O/P(t-Bu)(3) catalyst to give alkenyldimethyl(2-pyridyl)silanes in good yield with high regioselectivity. A reactivity comparison of 2-PyMe(2)SiH with other related hydrosilanes (3-PyMe(2)SiH, 4-PyMe(2)SiH, and PhMe(2)SiH) was also performed. In the rhodium-catalyzed reaction, the reactivity order of hydrosilane was 2-PyMe(2)SiH > 3-PyMe(2)SiH, 4-PyMe(2)SiH, PhMe(2)SiH, indicating a huge rate acceleration with 2-PyMe(2)SiH. In the platinum-catalyzed reaction, the reactivity order of hydrosilane was PhMe(2)SiH, 3-PyMe(2)SiH > 4-PyMe(2)SiH > 2-PyMe(2)SiH, indicating a rate deceleration with 2-PyMe(2)SiH and 4-PyMe(2)SiH. It seems that these reactivity differences stem primarily from the governance of two different mechanisms (Chalk-Harrod and modified Chalk-Harrod mechanisms). From the observed reactivity order, coordination and electronic effects of dimethyl(pyridyl)silanes have been implicated.

  6. Uncatalyzed hydroamination of electrophilic organometallic alkynes: fundamental, theoretical, and applied aspects.

    Science.gov (United States)

    Wang, Yanlan; Latouche, Camille; Rapakousiou, Amalia; Lopez, Colin; Ledoux-Rak, Isabelle; Ruiz, Jaime; Saillard, Jean-Yves; Astruc, Didier

    2014-06-23

    Simple reactions of the most used functional groups allowing two molecular fragments to link under mild, sustainable conditions are among the crucial tools of molecular chemistry with multiple applications in materials science, nanomedicine, and organic synthesis as already exemplified by peptide synthesis and "click" chemistry. We are concerned with redox organometallic compounds that can potentially be used as biosensors and redox catalysts and report an uncatalyzed reaction between primary and secondary amines with organometallic electrophilic alkynes that is free of side products and fully "green". A strategy is first proposed to synthesize alkynyl organometallic precursors upon addition of electrophilic aromatic ligands of cationic complexes followed by endo hydride abstraction. Electrophilic alkynylated cyclopentadienyl or arene ligands of Fe, Ru, and Co complexes subsequently react with amines to yield trans-enamines that are conjugated with the organometallic group. The difference in reactivities of the various complexes is rationalized from the two-step reaction mechanism that was elucidated through DFT calculations. Applications are illustrated by the facile reaction of ethynylcobalticenium hexafluorophosphate with aminated silica nanoparticles. Spectroscopic, nonlinear-optical and electrochemical data, as well as DFT and TDDFT calculations, indicate a strong push-pull conjugation in these cobalticenium- and Fe- and Ru-arene-enamine complexes due to planarity or near-planarity between the organometallic and trans-enamine groups involving fulvalene iminium and cyclohexadienylidene iminium mesomeric forms.

  7. The cobalt-mediated [2+2+2]cycloaddition of thiophenes and benzofurans to alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Malaska, M.J.

    1991-01-01

    The cobalt-mediated [2+2+2]cycloaddition of thiophenes and benzofurans to alkynes was investigated. The cocyclization of 2-propynyloxymethylthiophenes provided two types of cyclohexadiene complexes. It was found that one of these complexes could be converted to the other by a thermal rearrangement. This novel transformation was investigated by deuterium-labelling and kinetic studies, and a mechanism was proposed. The complexes could be oxidatively demetallated to provide the liberated organic framework. Further reorganization of these dienes were observed during the decomplexation process and in the presence of CpCo(C[sub 2]H[sub 4])[sub 2]. In this manner several new heterocyclic ring systems could be constructed from 2-substituted thiophenes. Following the success of the thiophene cyclizations, the cocyclization of the benzofuran nucleus was examined. Reagents and conditions were developed that provide an efficient synthesis of alkynols from carboxylic acids; other functional group interconversions of the alkynols were briefly studied. The synthesis and cyclization of 1-[7-methoxy-4-benzofuranyl]-3-butyn-2-ol produced a cobalt complex containing the A,B,C, and D rings of the morphine skeleton. A synthetic advantage of this methodology would be the ease of substitution at pharmaco-logically relevant C-6 and C-7 positions of the morphine framework. Synthetic routes using a cobalt cyclization strategy were proposed.

  8. Electron and Positron Scattering with a Few Alkyne Molecules - Theoretical Cross sections

    Science.gov (United States)

    Patel, U. R.; Joshipura, K. N.; Kothari, H. N.

    2016-05-01

    Electron molecule scattering processes play an important role in the understanding of the electron driven physiochemical phenomena in diverse environments such as biological media, planetary atmospheres, interstellar clouds and plasmas. In modeling and simulating effects induced by electrons traversing through matter, the relevant cross section data are required as an input. An alternative probe, positron has also been used for the similar study of atoms, molecules and matter in bulk. Interaction of positrons with atoms and molecules differs from electron interactions due to opposite sign of charge and absence of exchange potential. In the present paper, our aim is to apply an identical theoretical method1,2 to electrons as well as positrons interacting with alkyne molecules like acetylene (HC ≡ CH), 1- Butyne (HC ≡ C- CH2 CH3) and Propyne (HC ≡ C- CH3) . We have carried out calculations of total scattering cross sections by starting with complex potential approach followed by the solution of the Schrodinger equation using numerical method. Ionization cross sections are deduced as in1,2. Comparisons have been made with available theoretical and experimental results for both electron (e-) and positron (e+) . The study will be extended to alkanes and alkenes.

  9. The use of azide-alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers

    Science.gov (United States)

    Shi, Yi; Cao, Xiaosong; Gao, Haifeng

    2016-02-01

    The rapid development of efficient organic click coupling reactions has significantly facilitated the construction of synthetic polymers with sophisticated branched nanostructures. This Feature Article summarizes the recent progress in the application of efficient copper-catalyzed and copper-free azide-alkyne cycloaddition (CuAAC and CuFAAC) reactions in the syntheses of dendrimers, hyperbranched polymers, star polymers, graft polymers, molecular brushes, and cyclic graft polymers. Literature reports on the interesting properties and functions of these polytriazole-based nanostructured polymers are also discussed to illustrate their potential applications as self-healing polymers, adhesives, polymer catalysts, opto-electronic polymer materials and polymer carriers for drug and imaging molecules.

  10. Crosslinking of Kapok Cellulose Fiber via Azide Alkyne Click Chemistry as a New Material for Filtering System: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Nur Syazwani Abd Rahman

    2016-01-01

    Full Text Available A new class of green material has been elaborated by grafting the modified kapok fiber, by the means of azidated kapok fiber followed by “click-chemistry” reaction with the terminal alkyne crosslinker. The modified and synthesized product was characterized using Fourier transform infrared spectroscopy (FT-IR, and Scanning electron microscopy (SEM. The study also was undertaken to investigate the effect on the absorption of methylene blue from aqueous solution onto the click fiber prepared. The findings showed that the click kapok absorbed more compared to the untreated kapok. Based on the result, the reaction of click chemistry influenced the properties of the filter made from kapok fiber.

  11. End-labeled amino terminated monotelechelic glycopolymers generated by ROMP and Cu(I-catalyzed azide–alkyne cycloaddition

    Directory of Open Access Journals (Sweden)

    Ronald Okoth

    2013-03-01

    Full Text Available Functionalizable monotelechelic polymers are useful materials for chemical biology and materials science. We report here the synthesis of a capping agent that can be used to terminate polymers prepared by ring-opening metathesis polymerization of norbornenes bearing an activated ester. The terminating agent is a cis-butene derivative bearing a Teoc (2-trimethylsilylethyl carbamate protected primary amine. Post-polymerization modification of the polymer was accomplished by amidation with an azido-amine linker followed by Cu(I-catalyzed azide–alkyne cycloaddition with propargyl sugars. Subsequent Teoc deprotection and conjugation with pyrenyl isothiocyanates afforded well-defined end-labeled glycopolymers.

  12. Electrochemical functionalization of carbon surfaces by aromatic azide or alkyne molecules: a versatile platform for click chemistry.

    Science.gov (United States)

    Evrard, David; Lambert, François; Policar, Clotilde; Balland, Véronique; Limoges, Benoît

    2008-01-01

    The electrochemical reduction of phenylazide or phenylacetylene diazonium salts leads to the grafting of azido or ethynyl groups onto the surface of carbon electrodes. In the presence of copper(I) catalyst, these azide- or alkyne-modified surfaces react efficiently and rapidly with compounds bearing an acetylene or azide function, thus forming a covalent 1,2,3-triazole linkage by means of click chemistry. This was illustrated with the surface coupling of ferrocenes functionalized with an ethynyl or azido group and the biomolecule biotin terminated by an acetylene group.

  13. Computational Mechanistic Study of Redox-Neutral Rh(III)-Catalyzed C-H Activation Reactions of Arylnitrones with Alkynes: Role of Noncovalent Interactions in Controlling Selectivity.

    Science.gov (United States)

    Xing, Yang-Yang; Liu, Jian-Biao; Tian, Ying-Ying; Sun, Chuan-Zhi; Huang, Fang; Chen, De-Zhan

    2016-11-23

    The mechanism of redox-neutral Rh(III)-catalyzed coupling reactions of arylnitrones with alkynes was investigated by density functional theory (DFT) calculations. The free energy profiles associated with the catalytic cycle, involving C(sp(2))-H activation, insertion of alkyne, transfer of O atom, cyclization and protodemetalation, are presented and analyzed. An overwhelming preference for alkyne insertion into Rh-C over Rh-O is observed among all pathways, and the most favorable route is determined. The pivalate-assisted C-H activation step is turnover-limiting, and the cyclization step determines the diastereoselectivity of the reaction, with the stereoselectivity arising mainly from the difference of noncovalent interactions in key transition states. The detailed mechanism of O atom transfer, Rh(III)-Rh(I)-Rh(III) versus Rh(III)-Rh(V)-Rh(III) cycle, is discussed.

  14. Iron-Carbonyl-Catalyzed Redox-Neutral [4+2] Annulation of N-H Imines and Internal Alkynes by C-H Bond Activation.

    Science.gov (United States)

    Jia, Teng; Zhao, Chongyang; He, Ruoyu; Chen, Hui; Wang, Congyang

    2016-04-18

    Stoichiometric C-H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C-H transformations have not been developed. Herein, an iron-catalyzed annulation of N-H imines and internal alkynes to furnish cis-3,4-dihydroisoquinolines is described, and represents the first iron-carbonyl-catalyzed C-H activation reaction of arenes. Remarkablely, this is also the first redox-neutral [4+2] annulation of imines and alkynes proceeding by C-H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C-H bond activation to afford a dinuclear ferracycle and a synergetic diiron-promoted H-transfer to the alkyne as the turnover-determining step.

  15. Moderating strain without sacrificing reactivity: design of fast and tunable noncatalyzed alkyne-azide cycloadditions via stereoelectronically controlled transition state stabilization.

    Science.gov (United States)

    Gold, Brian; Dudley, Gregory B; Alabugin, Igor V

    2013-01-30

    Recently, we have identified two strategies for selective transition state (TS) stabilization in catalyst-free azide/alkyne cycloadditions. In particular, the transition states for the formation of both 1,4- and 1,5-isomers can be stabilized via hyperconjugative assistance for the C···N bond formation, whereas the 1,5-TS can be stabilized via C-H···X H-bonding interactions. When the hyperconjugative assistance is maximized by the antiperiplanar arrangement of propargylic σ-acceptors relative to the forming bonds, the combination of these TS-stabilizing effects was predicted to lead to ~1 million fold acceleration of the cycloaddition with methyl azide. The present work investigated whether hyperconjugative assistance and H-bonding can be combined with strain activation for the design of even more reactive alkynes and whether reactivity can be turned "on demand." When stereoelectronic amplification is achieved by optimal positioning of σ-acceptors at the endocyclic bonds antiperiplanar to the breaking alkyne π-bonds, the stabilization of the bent alkyne geometry leads to a significant decrease in strain in cyclic alkynes without compromising their reactivity in alkyne-azide cycloadditions. The approach can be used in a modular fashion where the TS stabilizing effects are introduced sequentially until the desired level of reactivity is achieved. A significant increase in reactivity upon the protonation of an endocyclic NH-group suggests a new strategy for the design of click reactions triggered by a pH-change or introduction of an external Lewis acid.

  16. Facile synthesis of linear-dendritic cholesteryl-poly(epsilon-caprolactone)-b-(L-lysine)(G2) by thiol-ene and azide-alkyne "click" reactions

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Binder, W.H.; Tanner, S.;

    2010-01-01

    The construction of a linear-dendritic block copolymer consisting of terminal cholesteryl moiety, poly(epsilon-caprolactone), and a second generation L-lysine dendron has been accomplished by the combination of copper(I) catalyzed azide-alkyne and UV-triggered thiol-ene "click" reactions. Ring......-opening polymerization of E-caprolactone initiated by 5-hexyn-1-ol and Mitsunobu coupling with 4-pentenoic acid provide hetero-telechelic poly(epsilon-caprolactone) bearing terminal alkyne and alkene groups. It is then employed in the sequential "click" reactions with the azide-functionalized dendritic wedge...

  17. Conventional and microwave-assisted multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as heterogeneous base and catalyst in water

    Directory of Open Access Journals (Sweden)

    Sandip Kale

    2012-04-01

    Full Text Available The conventional and microwave assisted multicomponent synthesis of disubstituted 1,2,3-triazoles from terminal alkynes and in situ generated organic azide using copper apatite catalyst in water is reported. The catalytic activity is intimately connected to the basicity of the catalyst. The best activities were observed with the copper hydroxyapatite. The catalyst could be used ten times without further treatment and activation under controlled microwave heating. The protocol was also applicable for various alkynes and halides which affords desired product in good to excellent yield.

  18. Application of Cu(I)-catalyzed azide–alkyne cycloaddition for the design and synthesis of sequence specific probes targeting double-stranded DNA

    Science.gov (United States)

    Filichev, Vyacheslav V; Boutorine, Alexandre S

    2016-01-01

    Summary Efficient protocols based on Cu(I)-catalyzed azide–alkyne cycloaddition were developed for the synthesis of conjugates of pyrrole–imidazole polyamide minor groove binders (MGB) with fluorophores and with triplex-forming oligonucleotides (TFOs). Diverse bifunctional linkers were synthesized and used for the insertion of terminal azides or alkynes into TFOs and MGBs. The formation of stable triple helices by TFO-MGB conjugates was evaluated by gel-shift experiments. The presence of MGB in these conjugates did not affect the binding parameters (affinity and triplex stability) of the parent TFOs. PMID:27559384

  19. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.

    Science.gov (United States)

    Wu, Xiao-Feng; Fang, Xianjie; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2014-04-15

    Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal

  20. Predicting hydrophobic solvation by molecular simulation: 2. New united-atom model for alkanes, alkenes, and alkynes.

    Science.gov (United States)

    Jorge, Miguel

    2017-03-05

    Existing united-atom models for non-polar hydrocarbons lead to systematic deviations in predicted solvation free energies in hydrophobic solvents. In this article, an improved set of parameters is proposed for alkane molecules that corrects this systematic deviation and accurately predicts solvation free energies in hydrophobic media, while simultaneously providing a very good description of pure liquid densities. The model is then extended to alkenes and alkynes, again yielding very accurate predictions of solvation free energies and densities for these classes of compounds. For alkynes in particular, this work represents the first attempt at a systematic parameterization using the united-atom approach. Averaging over all 95 solute/solvent pairs tested, the mean signed deviation from experimental data is very close to zero, indicating no systematic error in the predictions. The fact that predictions are robust even for relatively large molecules suggests that the new model may be applicable to solvation of non-polar macromolecules without accumulation of errors. The root mean squared deviation of the simulations is only 0.6 kJ/mol, which is lower than the estimated uncertainty in the experimental measurements. This excellent performance constitutes a solid basis on which a more general model can be parameterized to describe solvation in both polar and non-polar environments. © 2016 Wiley Periodicals, Inc.

  1. Boron-mediated sequential alkyne insertion and C–C coupling reactions affording extended π-conjugated molecules

    Science.gov (United States)

    Shoji, Yoshiaki; Tanaka, Naoki; Muranaka, Sho; Shigeno, Naoki; Sugiyama, Haruka; Takenouchi, Kumiko; Hajjaj, Fatin; Fukushima, Takanori

    2016-01-01

    C–C bond coupling reactions illustrate the wealth of organic transformations, which are usually mediated by organotransition metal complexes. Here, we show that a borafluorene with a B–Cl moiety can mediate sequential alkyne insertion (1,2-carboboration) and deborylation/Csp2–Csp2 coupling reactions, leading to aromatic molecules. The first step, which affords a borepin derivative, proceeds very efficiently between the borafluorene and various alkynes by simply mixing these two components. The second step is triggered by a one-electron oxidation of the borepin derivative, which results in the formation of a phenanthrene framework. When an excess amount of oxidant is used in the second step, the phenanthrene derivatives can be further transformed in situ to afford dibenzo[g,p]chrysene derivatives. The results presented herein will substantially expand the understanding of main group chemistry and provide a powerful synthetic tool for the construction of a wide variety of extended π-conjugated systems. PMID:27581519

  2. Properties of Poly(ethylene glycol) Hydrogels Cross-Linked via Strain-Promoted Alkyne-Azide Cycloaddition (SPAAC).

    Science.gov (United States)

    Hodgson, Sabrina M; Bakaic, Emilia; Stewart, S Alison; Hoare, Todd; Adronov, Alex

    2016-03-14

    A series of poly(ethylene glycol) (PEG) hydrogels was synthesized using strain-promoted alkyne-azide cycloaddition (SPAAC) between PEG chains terminated with either aza-dibenzocyclooctynes or azide functionalities. The gelation process was found to occur rapidly upon mixing the two components in aqueous solution without the need for external stimuli or catalysts, making the system a candidate for use as an injectable hydrogel. The mechanical and rheological properties of these hydrogels were found to be tunable by varying the polymer molecular weight and the number of cross-linking groups per chain. The gelation times of these hydrogels ranged from 10 to 60 s at room temperature. The mass-based swelling ratios varied from 45 to 76 at maximum swelling (relative to the dry state), while the weight percent of polymer in these hydrogels ranged from 1.31 to 2.05%, demonstrating the variations in amount of polymer required to maintain the structural integrity of the gel. Each hydrogel degraded at a different rate in PBS at pH = 7.4, with degradation times ranging from 1 to 35 days. By changing the composition of the two starting components, it was found that the Young's modulus of each hydrogel could be varied from 1 to 18 kPa. Hydrogel incubation with bovine serum albumin showed minimal protein adsorption. Finally, a cell cytotoxicity study of the precursor polymers with 3T3 fibroblasts demonstrated that the azide- and strained alkyne-functionalized PEGs are noncytotoxic.

  3. Rh/Cu-Catalyzed Cascade [4+2] Vinylic C-H O-Annulation and Ring Contraction of α-Aryl Enones with Alkynes in Air.

    Science.gov (United States)

    Zhao, Yinsong; Li, Shiqing; Zheng, Xuesong; Tang, Junbin; She, Zhijie; Gao, Ge; You, Jingsong

    2017-03-09

    An unprecedented Rh-catalyzed ketone-directed vinylic C-H activation/[4+2] O-annulation of α-aryl enones with internal alkynes followed by a Cu-catalyzed ring contraction in air to provide multiaryl-substituted furan derivatives has been developed. The preliminary mechanism study identifies the active pyrylium salt as the key intermediate.

  4. Using Pd-salen complex as an efficient catalyst for the copper- and solvent-free coupling of acyl chlorides with terminal alkynes under aerobic conditions

    Institute of Scientific and Technical Information of China (English)

    Mohammad

    2010-01-01

    The palladium-salen complex palladium(Ⅱ) N,N'-bis{[5-(triphenylphosphonium)-methyl]salicylidene}-l,2-ethanediamine chloride was found to be a highly active catalyst for the copper- and solvent-free coupling reaction of terminal alkynes with different acyl chlorides in the presence of triethylamine as base, giving excellent ynones under aerobic conditions.

  5. Synthesis of isocoumarins through three-component couplings of arynes, terminal alkynes, and carbon dioxide catalyzed by an NHC-copper complex.

    Science.gov (United States)

    Yoo, Woo-Jin; Nguyen, Thanh V Q; Kobayashi, Shū

    2014-09-15

    A copper-catalyzed multicomponent coupling reaction between in situ generated ortho-arynes, terminal alkynes, and carbon dioxide was developed to access isocoumarins in moderate to good yields. The key to this CO2-incorporating reaction was the use of a versatile N-heterocyclic carbene/copper complex that was able to catalyze multiple transformations within the three-component reaction.

  6. A highly active and reusable copper(I)-tren catalyst for the "click" 1,3-dipolar cycloaddition of azides and alkynes.

    Science.gov (United States)

    Candelon, Nicolas; Lastécouères, Dominique; Diallo, Abdou Khadri; Aranzaes, Jaime Ruiz; Astruc, Didier; Vincent, Jean-Marc

    2008-02-14

    The copper(I) complex [Cu(C18(6)tren)]Br 1 (C18(6)tren = tris(2-dioctadecylaminoethyl)amine) which exhibits a good stability towards aerobic conditions is a versatile, highly reactive and recyclable catalyst for the Huisgen cycloaddition of azides with terminal or internal alkynes and is a useful catalyst for the preparation of "click" dendrimers.

  7. Ultralow adhesion and friction of fluoro-hydro alkyne-derived self-assembled monolayers on H-terminated Si(111)

    NARCIS (Netherlands)

    Pujari, S.P.; Spruijt, E.; Cohen Stuart, M.A.; Rijn, van C.J.M.; Paulusse, J.M.J.; Zuilhof, H.

    2012-01-01

    New fluorine-containing terminal alkynes were synthesized and self-assembled onto Si(111) substrates to obtain fluorine-containing organic monolayers. The monolayers were analyzed in detail by ellipsometry, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared reflection absorption spec

  8. Mono-Fluorinated Alkyne-Derived SAMs on Oxide-Free Si(III) Surfaces: Preparation, Characterization and Tuning of the Si Workfunction

    NARCIS (Netherlands)

    Pujari, S.P.; Andel, van E.; Yaffe, O.; Cahen, D.; Weidner, T.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    Organic monolayers derived from ¿-fluoro-1-alkynes of varying carbon chain lengths (C(10)-C(18)) were prepared on Si(111) surfaces, resulting in changes of the physical and electronic properties of the surface. Analysis of the monolayers using XPS, Infrared Reflection Absorption Spectroscopy, ellips

  9. Gold coordination during homogeneous alkyne and allene cyclisation catalysis: Coordination to substrates, to ancillary ligands and in intermediates

    Directory of Open Access Journals (Sweden)

    Hubert Schmidbaur

    2011-03-01

    Full Text Available The ever-increasing role of homogeneous gold catalysis in organic synthesis and the consequent need to be able to rationally control the rate and outcome of such reactions has emphasised the importance of each successive metal–carbon coordination step. Concentrating on alkyne and allene cyclisation and upon reaction mechanisms postulated on the basis of empirical and theoretical results, we have examined the coordination of gold fragments to triple bonds, the modification of gold(I precatalysts to effect specific reaction pathways or enantioselectivity and the isolation of coordinated intermediates or model compounds thereof. Some of the recent advances that have been made in various laboratories are described in this compact review.

  10. Oxidative homocoupling of alkynes using supported ionic liquid phase (SILP) catalysts--systematic investigation of the support influence.

    Science.gov (United States)

    Szesni, Normen; Kaiser, Melanie; Putzien, Sophie; Fischer, Richard W

    2012-02-01

    Supported Ionic Liquid Phase (SILP) catalysts have been prepared by effective immobilization of [Cu(TMEDA)(OH)]Cl in a nano-metric film of an ionic liquid on various oxidic support materials. The catalysts were tested for the oxidative homocoupling of 1-alkynes to the corresponding diynes in in a combined high throughput and conventional batch reaction approach. Among the screened support materials silica based materials performed best. The results indicate that for the specific reaction the thickness of the ionic liquids layer and therefore the mobility of the homogeneous copper complex within the ionic liquid layer as deduced from solid state nmr measurements have major impact on the catalytic performance. The optimized catalysts could be recycled up to four times without any loss of activity.

  11. At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles.

    Science.gov (United States)

    Rangheard, Claudine; de Julián Fernández, César; Phua, Pim-Huat; Hoorn, Johan; Lefort, Laurent; de Vries, Johannes G

    2010-09-28

    The use of non-supported Fe nanoparticles in the hydrogenation of unsaturated C-C bonds is a green catalytic concept at the frontier between homogeneous and heterogeneous catalysis. Iron nanoparticles can be obtained by reducing Fe salts with strong reductants in various solvents. FeCl(3) reduced by 3 equivalents of EtMgCl forms an active catalyst for the hydrogenation of a range of olefins and alkynes. Olefin hydrogenation is relatively fast at 5 bar using 5 mol% of catalyst. The catalyst is also active for terminal olefins and 1,1' and 1,2-cis disubstituted olefins while trans-olefins react much slower. 1-Octyne is hydrogenated to mixtures of 1-octene and octane. Kinetic studies led us to propose a mechanism for this latter transformation where octane is obtained by two different pathways. Characterization of the nanoparticles via TEM, magnetic measurements and poisoning experiments were undertaken to understand the true nature of our catalyst.

  12. Silver-catalysed azide-alkyne cycloaddition (AgAAC): assessing the mechanism by density functional theory calculations

    Science.gov (United States)

    Banerji, Biswadip; Chandrasekhar, K.; Killi, Sunil Kumar; Pramanik, Sumit Kumar; Uttam, Pal; Sen, Sudeshna; Maiti, Nakul Chandra

    2016-09-01

    `Click reactions' are the copper catalysed dipolar cycloaddition reaction of azides and alkynes to incorporate nitrogens into a cyclic hydrocarbon scaffold forming a triazole ring. Owing to its efficiency and versatility, this reaction and the products, triazole-containing heterocycles, have immense importance in medicinal chemistry. Copper is the only known catalyst to carry out this reaction, the mechanism of which remains unclear. We report here that the `click reactions' can also be catalysed by silver halides in non-aqueous medium. It constitutes an alternative to the well-known CuAAC click reaction. The yield of the reaction varies on the type of counter ion present in the silver salt. This reaction exhibits significant features, such as high regioselectivity, mild reaction conditions, easy availability of substrates and reasonably good yields. In this communication, the findings of a new catalyst along with the effect of solvent and counter ions will help to decipher the still obscure mechanism of this important reaction.

  13. Regioselective Synthesis of C-3-Functionalized Quinolines via Hetero-Diels-Alder Cycloaddition of Azadienes with Terminal Alkynes.

    Science.gov (United States)

    Saunthwal, Rakesh K; Patel, Monika; Verma, Akhilesh K

    2016-08-05

    A highly efficient metal and protection-free approach for the regioselective synthesis of C-3-functionalized quinolines from azadienes (in situ generated from 2-aminobenzyl alcohol) and terminal alkynes through [4 + 2] cycloaddition has been developed. An unprecedented reaction of 2-aminobenzyl alcohol with 1,3- and 1,4-diethynylbenzene provided the C-3 tolylquinolines via [4 + 2] HDA and oxidative decarboxylation. The -NH2 group directed mechanistic approach was well supported by the control experiments and deuterium-labeling studies and by isolating the azadiene intermediate. The reactivity and selectivity of unprotected azadiene in metal-free base-assisted hetero-Diels-Alder reaction is exploited to quickly assemble an important class of C-3-functionalized quinolines, which are difficult to access.

  14. Carboxymethyl glycoside lactone(CMGL) synthons:Scope of the method and preliminary results on step growth polymerization of α-azide-ω-alkyne glycomonomers

    Institute of Scientific and Technical Information of China (English)

    CHAMBERT; Stéphane; BERNARD; Julien; FLEURY; Etienne; QUENEAU; Yves

    2010-01-01

    Carboxymethyl glycoside lactones(CMGLs) are bicyclic synthons which open readily for accessing new types of pseudo-glycoconjugates,such as sugar-amino acid hybrids,neoglycolipids,pseudodisaccharides,and membrane imaging systems.After lactone opening,free OH-2 is available for further functionalization,leading to 1,2-bisfunctionalized derivatives.This strategy is illustrated herein with new polymerizable systems of the AB type bearing both azide and alkyne functions prepared from α or β gluco-CMGL synthons.After the reaction of lactones with propargylamine,an azido group was introduced by two different sequences leading to either the 2-manno-azido or the 6-gluco-azido products.The capability of these AB monomers to undergo step growth polymerization through copper(I) catalyzed alkyne-azide cycloaddition(CuAAC) and generate glycopolytriazoles was evidenced.

  15. An Efficient and Practical Process for Pd/Cu Cocatalyzed Homocoupling Reaction of Terminal Alkynes Using Sodium Percarbonate as a Dual Reagent in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    ZHOU, Lei; ZHAN, Hai-Ying; LIU, Hai-Ling; JIANG, Huan-Feng

    2007-01-01

    A new process for the Pd/Cu co-catalyzed homocoupling reaction of terminal alkynes was developed. The reaction was carried out in aqueous media with sodium percarbonate as both a clean oxidant and a base. Meanwhile, a palladium complex immobilized on a synthetic PS-PEG400-PPh2 resin was used as the catalyst, which may be recovered by simple filtration and reused for several times with high activity.

  16. A click chemistry approach to 5,5'-disubstituted-3,3'-bisisoxazoles from dichloroglyoxime and alkynes: luminescent organometallic iridium and rhenium bisisoxazole complexes.

    Science.gov (United States)

    van der Peet, Phillip L; Connell, Timothy U; Gunawan, Christian; White, Jonathan M; Donnelly, Paul S; Williams, Spencer J

    2013-07-19

    5,5'-Disubstituted-3,3'-bisisoxazoles are prepared in one step by the dropwise addition of aqueous potassium hydrogen carbonate to a mixture of dichloroglyoxime and terminal alkynes. The reaction exhibits a striking preference for the 5,5'-disubstituted 3,3'-bisisoxazole over the 4,5'-regioisomer. Organometallic iridium and rhenium bisisoxazole complexes are luminescent with emission wavelengths varying depending upon the identity of the 5,5'-substituent (phenyl, butyl).

  17. 1,3-Dipolar Cycloaddition Reactions of 1-(4-Phenylphenacyl-1,10-phenanthrolinium N-Ylide with Activated Alkynes and Alkenes

    Directory of Open Access Journals (Sweden)

    A. Badoiu

    2005-02-01

    Full Text Available The 3 2 cycloaddition reaction of 1-(4-phenylphenacyl-1,10-phenanthrolinium ylide with activated alkynes gave pyrrolo[1,2- 4a][1,10]phenanthrolines 6a-d. The "one pot" synthesis of 6a,b,d from 4, activatedalkenes, Et3N and tetrakis-pyridine cobalt (II dichromate (TPCD is described. Thehelical chirality of pyrrolophenanthrolines 6b-d was put in evidence by NMRspectroscopy.

  18. A facile stereospecific synthesis of (Z)-2-sulfonyl-substituted 1,3-enynes via Sonogashira coupling of (E)-α-iodovinyl sulfones with 1-alkynes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    (E)-α-Iodovinyl sulfones 1 underwent the Sonogashira coupling reactions with terminal alkynes 2 in piperidine at room temperature in the presence of 5 mol% of Pd(PPh3)4 and 10 mol% of CuI to stereospecifically afford the corresponding (Z)-2-sulfonyl-substituted 1,3-enynes 3 in high yields.(C) 2007 Ming Zhong Cai. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  19. Synthesis and post-synthetic modification of amine-, alkyne-, azide- and nitro-functionalized metal-organic frameworks based on DUT-5.

    Science.gov (United States)

    Gotthardt, Meike A; Grosjean, Sylvain; Brunner, Tobias S; Kotzel, Johannes; Gänzler, Andreas M; Wolf, Silke; Bräse, Stefan; Kleist, Wolfgang

    2015-10-14

    Functionalized 4,4'-biphenyldicarboxylic acid molecules with additional amine, alkyne, azide or nitro groups were prepared and applied in the synthesis of novel metal-organic frameworks and mixed-linker metal-organic frameworks isoreticular to DUT-5. The properties of the frameworks could be tuned by varying the number of functional groups in the materials and the amine groups were employed in post-synthetic modification reactions without changing the framework structure or significantly decreasing the porosity of the materials.

  20. Well-defined polyethylene-based graft terpolymers by combining nitroxide-mediated radical polymerization, polyhomologation and azide/alkyne “click” chemistry†

    KAUST Repository

    Alkayal, Nazeeha

    2016-03-30

    Novel well–defined polyethylene–based graft terpolymers were synthesized via the “grafting onto” strategy by combining nitroxide-mediated radical polymerization (NMP), polyhomologation and copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry. Three steps were involved in this approach: (i) synthesis of alkyne-terminated polyethylene-b-poly(ε-caprolactone) (PE-b-PCL-alkyne) block copolymers (branches) by esterification of PE-b-PCL-OH with 4-pentynoic acid; the PE-b-PCL-OH was obtained by polyhomologation of dimethylsulfoxonium methylide to afford PE-OH, followed by ring opening polymerization of ε-caprolactone using the PE-OH as macroinitiator, (ii) synthesis of random copolymers of styrene (St) and 4-chloromethylstyrene (4-CMS) with various CMS contents, by nitroxide-mediated radical copolymerization (NMP), and conversion of chloride to azide groups by reaction with sodium azide (NaN3) (backbone) and (iii) “click” linking reaction to afford the PE-based graft terpolymers. All intermediates and final products were characterized by high-temperature size exclusion chromatography (HT-SEC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC).

  1. Tribology and stability of organic monolayers on CrN: a comparison among silane, phosphonate, alkene, and alkyne chemistries.

    Science.gov (United States)

    Pujari, Sidharam P; Li, Yan; Regeling, Remco; Zuilhof, Han

    2013-08-20

    The fabrication of chemically and mechanically stable monolayers on the surfaces of various inorganic hard materials is crucial to the development of biomedical/electronic devices. In this Article, monolayers based on the reactivity of silane, phosphonate, 1-alkene, and 1-alkyne moieties were obtained on the hydroxyl-terminated chromium nitride surface. Their chemical stability and tribology were systematically investigated. The chemical stability of the modified CrN surfaces was tested in aqueous media at 60 °C at pH 3, 7, and 11 and monitored by static water contact angle measurements, X-ray photoelectron spectroscopy (XPS), ellipsometry, and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). The tribological properties of the resulting organic monolayers with different end groups (fluorinated or nonfluorinated) were studied using atomic force microscopy (AFM). It was found that the fluorinated monolayers exhibit a dramatic reduction of adhesion and friction force as well as excellent wear resistance compared to those of nonfluorinated coatings and bare CrN substrates. The combination of remarkable chemical stability and superior tribological properties makes these fluorinated monolayers promising candidates for the development of robust high-performance devices.

  2. Silver-catalysed azide–alkyne cycloaddition (AgAAC): assessing the mechanism by density functional theory calculations

    Science.gov (United States)

    Chandrasekhar, K.; Killi, Sunil Kumar; Pramanik, Sumit Kumar; Uttam, Pal; Sen, Sudeshna; Maiti, Nakul Chandra

    2016-01-01

    ‘Click reactions’ are the copper catalysed dipolar cycloaddition reaction of azides and alkynes to incorporate nitrogens into a cyclic hydrocarbon scaffold forming a triazole ring. Owing to its efficiency and versatility, this reaction and the products, triazole-containing heterocycles, have immense importance in medicinal chemistry. Copper is the only known catalyst to carry out this reaction, the mechanism of which remains unclear. We report here that the ‘click reactions’ can also be catalysed by silver halides in non-aqueous medium. It constitutes an alternative to the well-known CuAAC click reaction. The yield of the reaction varies on the type of counter ion present in the silver salt. This reaction exhibits significant features, such as high regioselectivity, mild reaction conditions, easy availability of substrates and reasonably good yields. In this communication, the findings of a new catalyst along with the effect of solvent and counter ions will help to decipher the still obscure mechanism of this important reaction. PMID:27703683

  3. Chemically directed assembly of photoactive metal oxide nanoparticle heterojunctions via the copper-catalyzed azide-alkyne cycloaddition "click" reaction.

    Science.gov (United States)

    Cardiel, Allison C; Benson, Michelle C; Bishop, Lee M; Louis, Kacie M; Yeager, Joseph C; Tan, Yizheng; Hamers, Robert J

    2012-01-24

    Metal oxides play a key role in many emerging applications in renewable energy, such as dye-sensitized solar cells and photocatalysts. Because the separation of charge can often be facilitated at junctions between different materials, there is great interest in the formation of heterojunctions between metal oxides. Here, we demonstrate use of the copper-catalyzed azide-alkyne cycloaddition reaction, widely referred to as "click" chemistry, to chemically assemble photoactive heterojunctions between metal oxide nanoparticles, using WO(3) and TiO(2) as a model system. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy verify the nature and selectivity of the chemical linkages, while scanning electron microscopy reveals that the TiO(2) nanoparticles form a high-density, conformal coating on the larger WO(3) nanoparticles. Time-resolved surface photoresponse measurements show that the resulting dyadic structures support photoactivated charge transfer, while measurements of the photocatalytic degradation of methylene blue show that chemical grafting of TiO(2) nanoparticles to WO(3) increases the photocatalytic activity compared with the bare WO(3) film.

  4. Novel carbamoyl type quinine and quinidine based chiral anion exchangers implementing alkyne-azide cycloaddition immobilization chemistry.

    Science.gov (United States)

    Hettegger, Hubert; Kohout, Michal; Mimini, Vebi; Lindner, Wolfgang

    2014-04-11

    The synthesis and chromatographic evaluation of a series of new Cinchona derived chiral weak anion exchangers is presented. Huisgen Cu(I) mediated alkyne-azide cycloaddition, so-called click chemistry, was used as an immobilization strategy. In this way it was possible to immobilize about 90% of offered selector via 1,2,3-triazole linker, which displays a more efficient way of binding the selector to modified silica compared to common radical mediated thiol-ene addition. Problems associated with potential radical scavenging properties of chiral selectors thereby could be circumvented. The evaluation of the synthesized chiral stationary phases regarding chromatographic behavior was carried out using polar organic mode mobile phase composition and a set of representative chiral organic acids. Different loading densities revealed an optimum selector density of about 310μmol/g chiral stationary phase with respect to resolution and selectivity. A decrease of performance was observed for higher loading, indicating mutual spatial influence of selector units leading to sterical hindrance. In addition, we observed that the effect of free azide groups on retention is negligible and the overall chromatographic behavior is comparable to other Cinchona derived chiral stationary phases.

  5. Alkynes as a versatile platform for construction of chemical molecular complexity and realization of molecular 3D printing

    Science.gov (United States)

    Galkin, K. I.; Ananikov, V. P.

    2016-03-01

    The current level of scientific and technological development requires the formation of general tools and techniques. One of the most versatile technologies is 3D printing, which allows fast and efficient creation of materials and biological objects of desired shape and composition. Today, methods have been developed for 3D printing of macro- and nano-sized objects and for production of films and deposited materials with molecular precision but the most promising technology is printing at the molecular level (molecular 3D printing) for the purpose of direct construction of molecular complexity. This process is currently at the initial stage concerning selection of simple molecules to be used as building blocks possessing flexibility, availability and ease of modification. In this review, we examine the possible versatile synthons suitable for preparation of the main types of organic compounds using molecular 3D printing. The surveyed data strongly indicate that alkyne molecules may be used as a building material in a molecular 3D printer working on hydrocarbons. The bibliography includes 428 references.

  6. Bone marrow cells stained by azide-conjugated Alexa fluors in the absence of an alkyne label.

    Science.gov (United States)

    Lin, Guiting; Ning, Hongxiu; Banie, Lia; Qiu, Xuefeng; Zhang, Haiyang; Lue, Tom F; Lin, Ching-Shwun

    2012-09-01

    Thymidine analog 5-ethynyl-2'-deoxyuridine (EdU) has recently been introduced as an alternative to 5-bromo-2-deoxyuridine (BrdU) for cell labeling and tracking. Incorporation of EdU into replicating DNA can be detected by azide-conjugated fluors (eg, Alexa-azide) through a Cu(i)-catalyzed click reaction between EdU's alkyne moiety and azide. While this cell labeling method has proven to be valuable for tracking transplanted stem cells in various tissues, we have found that some bone marrow cells could be stained by Alexa-azide in the absence of EdU label. In intact rat femoral bone marrow, ~3% of nucleated cells were false-positively stained, and in isolated bone marrow cells, ~13%. In contrast to true-positive stains, which localize in the nucleus, the false-positive stains were cytoplasmic. Furthermore, while true-positive staining requires Cu(i), false-positive staining does not. Reducing the click reaction time or reducing the Alexa-azide concentration failed to improve the distinction between true- and false-positive staining. Hematopoietic and mesenchymal stem cell markers CD34 and Stro-1 did not co-localize with the false-positively stained cells, and these cells' identity remains unknown.

  7. Copper-free azide-alkyne cycloaddition of targeting peptides to porous silicon nanoparticles for intracellular drug uptake.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Liu, Dongfei; Sarparanta, Mirkka P; Airaksinen, Anu J; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-01-01

    Porous silicon (PSi) has been demonstrated as a promising drug delivery vector for poorly water-soluble drugs. Here, a simple and efficient method based on copper-free click chemistry was used to introduce targeting moieties to PSi nanoparticles in order to enhance the intracellular uptake and tumor specific targeting hydrophobic drug delivery. Two RGD derivatives (RGDS and iRGD) with azide-terminated groups were conjugated to bicyclononyne-functionalized PSi nanoparticles via copper-free azide-alkyne cycloaddition. The surface functionalization was performed in aqueous solution at 37 °C for 30 min resulting in conjugation efficiencies of 15.2 and 3.4% (molar ratios) and the nanoparticle size increased from 165.6 nm to 179.6 and 188.8 nm for RGDS and iRGD, respectively. The peptides modification enhanced the cell uptake efficiency of PSi nanoparticles in EA.hy926 cells. PSi-RGDS and PSi-iRGD nanoparticles loaded with sorafenib showed a similar trend for the in vitro antiproliferation activity compared to sorafenib dissolved in dimethyl sulfoxide. Furthermore, sorafenib-loaded PSi-RGDS deliver the drug intracellulary efficiently due to the higher surface conjugation ratio, resulting in enhanced in vitro antiproliferation effect. Our results highlight the surface functionalization methodology for PSi nanoparticles applied here as a universal method to introduce functional moieties onto the surface of PSi nanoparticles and demonstrate their potential active targeting properties for anticancer drug delivery.

  8. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D.; Krische, Michael J.

    2015-01-01

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo- and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k and 6m, respectively. Primary alcohols 2a, 2l and 2p were converted to the siloxy-crotylation products 3a, 3l and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes. PMID:26418572

  9. N-Doped Cationic PAHs by Rh(III)-Catalyzed Double C-H Activation and Annulation of 2-Arylbenzimidazoles with Alkynes.

    Science.gov (United States)

    Villar, José M; Suárez, Jaime; Varela, Jesús A; Saá, Carlos

    2017-03-16

    A novel class of N-doped cationic PAHs (polycyclic aromatic hydrocarbons) bearing the benzo[c,d]fluoranthene scaffold has been synthesized by the Rh(III)-catalyzed double-oxidative annulation of 2-arylbenzimidazoles with alkynes. The overall process involves a double C-N bond formation through a double C-H/N-H functionalization.The solid-state structures and electronic properties of the new N-doped PAHs were analyzed. These cationic azapolycycles were readily reduced in the presence of LiAlH4 or by the addition of PhLi to give interesting phenyl and diphenylmethanediamine derivatives.

  10. Novel Synthesis of 1,2,3-Triazoles via 1,3-Dipolar Cycloadditions of Alkynes to Azides in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    ZHONG,Ping(钟平); GUO,Sheng-Rong(郭圣荣)

    2004-01-01

    2-Azido-3,5-dichloropyridine and 2-azido-5-chloro-3-fluoropyridine were given by reaction of sodium azide with 2,3,5-trichloropyridine, 3,5-dichloro-2-fluoropyridine or 5-chloro-2,3-difiuoropyridine in ionic liquids.1,3-Dipolar cycloaddition of 2-azido-3,5-dichloropyridine or 2-azido-5-chloro-3-fluoropyridine to alkynes in ionic liquids afforded the corresponding 1,4,5-trisubstituted [1,2,3]-triazoles in good yields and regioselectivities.

  11. Efficient microwave assisted synthesis of novel 1,2,3-triazole-sucrose derivatives by cycloaddition reaction of sucrose azides and terminal alkynes.

    Science.gov (United States)

    Potewar, Taterao M; Petrova, Krasimira T; Barros, M Teresa

    2013-09-20

    Novel 1-(1',2,3,3',4,4',6-hepta-O-acetyl-6'-deoxy-sucros-6'-yl)-4-substituted-1,2,3-triazoles were synthesized by microwave assisted copper catalyzed 1,3-dipolar cycloaddition of sucrose derived azides with terminal alkynes in excellent yields and in short reaction times. The compound 1',2,3,3',4,4',6-hepta-O-acetyl-6'-azido-6'-deoxy-sucrose was regioselectively synthesized from sucrose by improved procedure and used for the cycloadditions. By combining carbohydrate and 1,2,3-triazole structural motifs, a library of 1,2,3-triazole-sucrose conjugates have been obtained.

  12. Enantioselective Alkyne Addition to Aliphatic, Aromatic, and Vinyl Aldehydes Using Zn, (i)PrI, H8BINOL, and Ti(O(i)Pr)4.

    Science.gov (United States)

    Huang, Wen-Cai; Liu, Winnie; Wu, Xue-Dan; Ying, Jun; Pu, Lin

    2015-11-20

    A new catalytic system based on the readily available Zn, (i)PrI, H8BINOL, and Ti(O(i)Pr)4 has been developed which avoids the use of pyrophoric ZnEt2. It can effectively catalyze the reaction of various terminal alkynes with aromatic, aliphatic, and vinyl aldehydes to generate chiral propargylic alcohols at room temperature with up to 98% yield and 98% enantiomeric excess. This new system signifciantly expands the substrate scope of the previously reported system using Zn, EtI, BINOL, and Ti(O(i)Pr)4.

  13. Three-component synthesis of C2F5-substituted pyrazoles from C2F5CH2NH2·HCl, NaNO2 and electron-deficient alkynes

    Directory of Open Access Journals (Sweden)

    Pavel K. Mykhailiuk

    2015-01-01

    Full Text Available A one-pot reaction between C2F5CH2NH2·HCl, NaNO2 and electron-deficient alkynes gives C2F5-substituted pyrazoles in excellent yields. The transformation smoothly proceeds in dichloromethane/water, tolerates the presence of air, and requires no purification of products by column chromatography. Mechanistically, C2F5CH2NH2·HCl and NaNO2 react first in water to generate C2F5CHN2, that participates in a [3 + 2] cycloaddition with electron-deficient alkynes in dichloromethane.

  14. A Theoretical Study of the Relationship between the Electrophilicity ω Index and Hammett Constant σp in [3+2] Cycloaddition Reactions of Aryl Azide/Alkyne Derivatives

    Directory of Open Access Journals (Sweden)

    Hicham Ben El Ayouchia

    2016-10-01

    Full Text Available The relationship between the electrophilicity ω index and the Hammett constant σp has been studied for the [2+3] cycloaddition reactions of a series of para-substituted phenyl azides towards para-substituted phenyl alkynes. The electrophilicity ω index—a reactivity density functional theory (DFT descriptor evaluated at the ground state of the molecules—shows a good linear relationship with the Hammett substituent constants σp. The theoretical scale of reactivity correctly explains the electrophilic activation/deactivation effects promoted by electron-withdrawing and electron-releasing substituents in both azide and alkyne components.

  15. Isomerization of Internal Alkynes to Iridium(III Allene Complexes via C–H Bond Activation: Expanded Substrate Scope, and Progress towards a Catalytic Methodology

    Directory of Open Access Journals (Sweden)

    Neha Phadke

    2015-11-01

    Full Text Available The synthesis of a series of allene complexes (POCOPIr(η2-RC=.=CR’ 1b–4b (POCOP = 2,6-bis(di-tert-butylphosphonitobenzene via isomerization of internal alkynes is reported. We have demonstrated that the application of this methodology is viable for the isomerization of a wide variety of alkyne substrates. Deuterium labeling experiments support our proposed mechanism. The structures of the allene complexes 1b–4b were determined using spectroscopic data analysis. Additionally, the solid-state molecular structure of complex 2b was determined using single crystal X-ray diffraction studies and it confirmed the assignment of an iridium-bound allene isomerization product. The rates of isomerization were measured using NMR techniques over a range of temperatures to allow determination of thermodynamic parameters. Finally, we report a preliminary step towards developing a catalytic methodology; the allene may be liberated from the metal center by exposure of the complex to an atmosphere of carbon monoxide.

  16. Preparation of 18F-labeled peptides using the copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition.

    Science.gov (United States)

    Gill, Herman S; Marik, Jan

    2011-10-13

    An optimized procedure for preparing fluorine-18 ((18)F)-labeled peptides by the copper-catalyzed azide-alkyne 1,3-dipolar cyloaddition (CuAAC) is presented here. The two-step radiosynthesis begins with the microwave-assisted nucleophilic (18)F-fluorination of a precursor containing a terminal p-toluenesulfonyl, terminal azide and polyethylene glycol backbone. The resulting (18)F-fluorinated azide-containing building block is coupled to an alkyne-decorated peptide by the CuAAC. The reaction is accelerated by the copper(I)-stabilizing ligand bathophenanthroline disulfonate and can be performed in either reducing or nonreducing conditions (e.g., to preserve disulfide bonds). After an HPLC purification, (18)F-labeled peptide can be obtained with a 31 ± 6% radiochemical yield (n = 4, decay-corrected from (18)F-fluoride elution) and a specific activity of 39.0 ± 12.4 Ci μmol(-1) within 77 ± 4 min.

  17. Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Bonduelle, Colin; Rytkönen, Jussi; Raula, Janne; Almeida, Sérgio; Närvänen, Ale; Salonen, Jarno J; Lecommandoux, Sebastien; Hirvonen, Jouni T; Santos, Hélder A

    2015-01-28

    Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.

  18. Alkyne Hydroamination and Trimerization with Titanium Bis(phenolate)pyridine Complexes: Evidence for Low-Valent Titanium Intermediates and Synthesis of an Ethylene Adduct of Titanium(II)

    KAUST Repository

    Tonks, Ian A.

    2013-06-24

    A class of titanium precatalysts of the type (ONO)TiX2 (ONO = pyridine-2,6-bis(4,6-di-tert-butylphenolate); X = Bn, NMe2) has been synthesized and crystallographically characterized. The (ONO)TiX2 (X = Bn, NMe2, X2 = NPh) complexes are highly active precatalysts for the hydroamination of internal alkynes with primary arylamines and some alkylamines. A class of titanium imido/ligand adducts, (ONO)Ti(L)(NR) (L = HNMe2, py; R = Ph, tBu), have also been synthesized and characterized and provide structural analogues to intermediates on the purported catalytic cycle. Furthermore, these complexes exhibit unusual redox behavior. (ONO)TiBn2 (1) promotes the cyclotrimerization of electron-rich alkynes, likely via a catalytically active TiII species that is generated in situ from 1. Depending on reaction conditions, these TiII species are proposed to be generated through Ti benzylidene or imido intermediates. A formally TiII complex, (ONO)Ti II(η2-C2H4)(HNMe2) (7), has been prepared and structurally characterized. © 2013 American Chemical Society.

  19. Electrostatic immobilisation of copper(I) and copper(II) bis(oxazolinyl)pyridine catalysts on silica: application to the synthesis of propargylamines via direct addition of terminal alkynes to imines

    NARCIS (Netherlands)

    McDonagh, C.; O'Conghaile, P.; Klein Gebbink, R.J.M.; O'Leary, P.F.

    2007-01-01

    Copper(I) and copper(II) complexes of two bis(oxazolinyl)pyridines were immobilized on silica via electrostatic interactions. The catalytic activity of the immobilized catalysts in the direct addition of terminal alkynes to imines leading to propargylamines was investigated under a variety of reacti

  20. On the Critical Effect of the Metal (Mo vs. W) on the [3+2] Cycloaddition Reaction of M3 S4 Clusters with Alkynes: Insights from Experiment and Theory.

    Science.gov (United States)

    Bustelo, Emilio; Gushchin, Artem L; Fernández-Trujillo, M Jesús; Basallote, Manuel G; Algarra, Andrés G

    2015-10-12

    Whereas the cluster [Mo3 S4 (acac)3 (py)3 ](+) ([1](+) , acac=acetylacetonate, py=pyridine) reacts with a variety of alkynes, the cluster [W3 S4 (acac)3 (py)3 ](+) ([2](+) ) remains unaffected under the same conditions. The reactions of cluster [1](+) show polyphasic kinetics, and in all cases clusters bearing a bridging dithiolene moiety are formed in the first step through the concerted [3+2] cycloaddition between the C≡C atoms of the alkyne and a Mo(μ-S)2 moiety of the cluster. A computational study has been conducted to analyze the effect of the metal on these concerted [3+2] cycloaddition reactions. The calculations suggest that the reactions of cluster [2](+) with alkynes feature ΔG(≠) values only slightly larger than its molybdenum analogue, however, the differences in the reaction free energies between both metal clusters and the same alkyne reach up to approximately 10 kcal mol(-1) , therefore indicating that the differences in the reactivity are essentially thermodynamic. The activation strain model (ASM) has been used to get more insights into the critical effect of the metal center in these cycloadditions, and the results reveal that the change in reactivity is entirely explained on the basis of the differences in the interaction energies Eint between the cluster and the alkyne. Further decomposition of the Eint values through the localized molecular orbital-energy decomposition analysis (LMO-EDA) indicates that substitution of the Mo atoms in cluster [1](+) by W induces changes in the electronic structure of the cluster that result in weaker intra- and inter-fragment orbital interactions.

  1. (Biphenyl-2-alkyne) derivatives as common precursors for the synthesis of 9-iodo-10-organochalcogen-phenanthrenes and 9-organochalcogen-phenanthrenes.

    Science.gov (United States)

    Grimaldi, Tamiris B; Lutz, Guilherme; Back, Davi F; Zeni, Gilson

    2016-11-08

    In this paper, we report our results on the cyclization of (biphenyl-2-alkyne) derivatives to give two different types of phenanthrene derivatives, 9-iodo-10-organochalcogen-phenanthrenes and 9-organochalcogen-phenanthrenes. The strategy for the synthesis was based on the use of electrophilic cyclization for the preparation of 9-iodo-10-organochalcogen-phenanthrenes and iron(iii) chloride/diorganyl diselenide-mediated intramolecular cyclization to prepare 9-organochalcogen-phenanthrenes. The effects of solvent, temperature, reaction time and stoichiometry on the efficiency of cyclization reactions were investigated. The standard reaction conditions were compatible with many functional groups in the substrates, such as methyl, chlorine, fluorine and methoxyl. This protocol was efficient for diorganyl diselenides and disulfides but ineffective for diorganyl ditellurides. The resulting phenanthrenes were further functionalized through Sonogashira reactions followed by the electrophilic cyclization reaction to give the selenophene-fused aromatic compounds.

  2. Site-specific bioconjugation of a murine dihydrofolate reductase enzyme by copper(I-catalyzed azide-alkyne cycloaddition with retained activity.

    Directory of Open Access Journals (Sweden)

    Sung In Lim

    Full Text Available Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC is an efficient reaction linking an azido and an alkynyl group in the presence of copper catalyst. Incorporation of a non-natural amino acid (NAA containing either an azido or an alkynyl group into a protein allows site-specific bioconjugation in mild conditions via CuAAC. Despite its great potential, bioconjugation of an enzyme has been hampered by several issues including low yield, poor solubility of a ligand, and protein structural/functional perturbation by CuAAC components. In the present study, we incorporated an alkyne-bearing NAA into an enzyme, murine dihydrofolate reductase (mDHFR, in high cell density cultivation of Escherichia coli, and performed CuAAC conjugation with fluorescent azide dyes to evaluate enzyme compatibility of various CuAAC conditions comprising combination of commercially available Cu(I-chelating ligands and reductants. The condensed culture improves the protein yield 19-fold based on the same amount of non-natural amino acid, and the enzyme incubation under the optimized reaction condition did not lead to any activity loss but allowed a fast and high-yield bioconjugation. Using the established conditions, a biotin-azide spacer was efficiently conjugated to mDHFR with retained activity leading to the site-specific immobilization of the biotin-conjugated mDHFR on a streptavidin-coated plate. These results demonstrate that the combination of reactive non-natural amino acid incorporation and the optimized CuAAC can be used to bioconjugate enzymes with retained enzymatic activity.

  3. General and efficient one-pot synthesis of novel sugar/heterocyclic(aryl) 1,2-diketones from sugar terminal alkynes by Sonogashira/tetra-n- butylammonium permanganate oxidation.

    Science.gov (United States)

    Zhang, Fuyi; Wu, Xiaopei; Wang, Liming; Liu, Hong; Zhao, Yufen

    2015-11-19

    A new approach for one-pot synthesis of novel sugar/heterocyclic(aryl) 1,2-diketones has been achieved by the reaction of various sugar terminal alkynes with heterocyclic(aryl) iodides at room temperature. This one-pot protocol includes Sonogashira coupling and mild n-Bu4NMnO4 oxidation reaction. This method is mild, general and efficient. Fifty-six examples have been given and the sugar/heterocyclic(aryl) 1,2-diketones were obtained in 71-94% yields. The sugar terminal alkynes include 9 structurally different sugars in pyranose, furanose, and acyclic form which have various protecting groups, sensitive groups, and sterically bulky substituents. The heterocyclic(aryl) iodides include sterically bulky heterocyclic compounds and iodobenzenes with electron-donating, electron-neutral, and electron-withdrawing substituents.

  4. Computational Exploration of Rh(III)/Rh(V) and Rh(III)/Rh(I) Catalysis in Rhodium(III)-Catalyzed C-H Activation Reactions of N-Phenoxyacetamides with Alkynes.

    Science.gov (United States)

    Yang, Yun-Fang; Houk, K N; Wu, Yun-Dong

    2016-06-01

    The selective rhodium-catalyzed functionalization of arenes is greatly facilitated by oxidizing directing groups that act both as directing groups and internal oxidants. We report density functional theory (B3LYP and M06) investigations on the mechanism of rhodium(III)-catalyzed redox coupling reaction of N-phenoxyacetamides with alkynes. The results elucidated the role of the internal oxidizing directing group, and the role of Rh(III)/Rh(I) and Rh(III)/Rh(V) catalysis of C-H functionalizations. A novel Rh(III)-Rh(V)-Rh(III) cycle successfully rationalizes recent experimental observations by Liu and Lu et al. ( Liu , G. Angew. Chem. Int. Ed. 2013 , 52 , 6033 ) on the reactions of N-phenoxyacetamides with alkynes in different solvents. Natural Bond Orbital (NBO) analysis confirms the identity of Rh(V) intermediate in the catalytic cycle.

  5. DFT Mechanistic Study of Rh(III)-Catalyzed [3 + 2]/[5 + 2] Annulation of 4-Aryl-1,2,3-triazoles and Alkynes Unveils the Dual C-H Activation Strategy.

    Science.gov (United States)

    Zhang, Zhongchao; Yang, Shengwen; Li, Juan; Liao, Xiaojian

    2016-10-21

    Li and co-workers recently developed a dual C-H bond activation strategy, using a Rh(III) catalyst, for [3 + 2]/[5 + 2] annulation of primary 4-aryl-1,2,3-triazoles and alkynes. The Rh(III)-catalyzed dual annulation of 4-aryl-1,2,3-triazoles and alkynes is challenging because only single annulation is achieved using Rh(II) and Ni(0) catalysts. Intrigued by the novel strategy, we performed a density functional theory study to unravel this challenging dual C-H bond activation. A Friedel-Crafts type mechanism proved be more favorable than a concerted metalation-deprotonation (CMD) mechanism for the first C-H bond activation. The second C-H bond activation proceeded via a CMD mechanism. More importantly, the calculation explained why only AgSbF6, among several candidates, performed perfectly, whereas others failed, and why the dual annulation of 4-aryl-1,2,3-triazoles with alkynes was achieved with a Rh(III) catalyst but not with Rh(II) and Ni(0) catalysts. Due to the active catalyst being [Cp*Rh(OAc)](+), AgSbF6, in which SbF6(-) is a stable anion, among several candidates performed perfectly. The success of the Rh(III)-catalyzed dual C-H bond activation has two origins: (i) the active catalyst [Cp*Rh(OAc)](+) is more stable than Cp*Rh(OAc)2 when the Ag salt is AgSbF6, and this facilitates the first alkyne insertion; and (ii) a rhodium-carbene is easily formed.

  6. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles.

    Science.gov (United States)

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  7. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Atif Sarwar

    Full Text Available Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68 demonstrated the safety; suggesting that these derivatives could be

  8. Controlled Encapsulation of Flower-like Rh-Ni Alloys with MOFs via Tunable Template Dealloying for Enhanced Selective Hydrogenation of Alkyne.

    Science.gov (United States)

    Chen, Luning; Li, Huiqi; Zhan, Wenwen; Cao, Zhenming; Chen, Jiayu; Jiang, Qiaorong; Jiang, Yaqi; Xie, Zhaoxiong; Kuang, Qin; Zheng, Lansun

    2016-11-16

    For new composite materials with functional nanoparticles (NPs) embedded in metal organic frameworks (MOFs), rational design and precise control over their architectures are imperative for achieving enhanced performance and novel functions. Especially in catalysis, the activity and selectivity of such composite materials are strongly determined by the encapsulation state and thickness of the MOF shell, which greatly influences the diffusion and adsorption of substance molecules onto the NP surface. In this study, MOF-74(Ni)-encapsulated Rh-Ni hierarchical heterostructures (Rh-Ni@MOF-74(Ni)) were successfully constructed using magnetic Rh-Ni-alloyed nanoflowers (NFs) as a self-sacrificial template. Strikingly, the encapsulation state and thickness of the formed MOF shell were well-tuned via template dealloying by changing the Ni content in the Rh-Ni NFs template. More interestingly, such unique Rh-Ni composites encapsulated with MOFs as catalysts could be magnetically recyclable and exhibited enhanced catalytic performance for the selective hydrogenation of alkynes to cis products, owing to the confinement effect of the MOF shell, as compared to their pristine counterparts.

  9. Hydrogen Bonds between Acidic Protons from Alkynes (C–H···O and Amides (N–H···O and Carbonyl Oxygen Atoms as Acceptor Partners

    Directory of Open Access Journals (Sweden)

    Pierre Baillargeon

    2014-01-01

    Full Text Available Crystals of tert-butyl (2S-2-(prop-2-yn-1-ylcarbamoylpyrrolidine-1-carboxylate (Boc-L-Pro-NHCH2CCH have been obtained. The title compound crystallizes easily as sharp needles in orthorhombic system, space group P 21 21 21 with a = 9.2890(2, b = 9.7292(2, c = 15.7918(4 Å, V = 1427.18(6 Å3, and Z = 4. The main feature of the structure is the orientation of the carbamate and amide. Their dipoles add up and the molecule displays an electric dipole moment of 5.61 D from B3LYP/6-31G(d calculations. The antiparallel H bonding of amides and the alignment of dipoles induce columnar stacking (the dipole moment along the columnar a axis is 4.46 D for each molecule. The other components across the other axes are, therefore weaker, (3.17 D and 1.23 D along the b and c axes, resp.. The resulting anisotropic columns pack side by side, in an antiparallel fashion mostly by (alkyne CH···O=C (carbamate interactions.

  10. Characterization of non-specific protein adsorption induced by triazole groups on the chromatography media using Cu (I)-catalyzed alkyne-azide cycloaddition reaction for ligand immobilization.

    Science.gov (United States)

    Gao, Ming; Ren, Jun; Tian, Kaikai; Jia, Lingyun

    2016-12-09

    As an efficient and facile reaction, click chemistry has been growingly used in the preparation of chromatography media for immobilizing varying types of ligands. For the widely used Cu (I)-catalyzed alkyne-azide click reaction, a 1, 2, 3-triazole group will be inevitably introduced in the molecular linkage, which could give rise to unexpected non-specific adsorption especially for the media employing small compound ligands or high ligand density. Triazole-induced non-specific protein adsorption on sepharose resins was evaluated systematically in this work, by considering the effects of triazole content, length of spacer arm, and solution conditions. We found that triazole content of a resin played the key role. Protein adsorption became significant when the media was coupled with triazole at a medium density (about 60μmol/mL gel), and the binding amount further increased with triazole density. The resin with triazole content of about 100μmol/mL gel could adsorb human IgG, bovine serum albumin and lysozyme at the amount of 13.6, 30.0, and 5.1mg/mL respectively. Proteins tended to be adsorbed at higher amount as the pH of solution approached their isoelectric points, and increasing salt concentration could reduce triazole-induced adsorption but only within limited extent. This study can facilitate reasonable application of click chemistry in the synthesis of chromatography media, by providing some basic principles for optimizing structural properties of separation media and choosing suitable solution conditions.

  11. Synthesis and characterization of cyclic polystyrene using copper-catalyzed alkyne-azide cycloaddition coupling - evaluation of physical properties and optimization of cyclization conditions

    Science.gov (United States)

    Elupula, Ravinder

    Polymers with a cyclic topology exhibit a range of unique and potentially useful physical properties, including reduced rates of degradation and increased rates of diffusion in bulk relative to linear analogs. However the synthesis of high purity cyclic polymers, and verification of their structural purity remains challenging. The copper-catalyzed azide-alkyne "click" cyclization route toward cyclic polymers has been used widely, due to its synthetic ease and its compatibility with diverse polymer backbones. Yet unoptimized click cyclization conditions have been observed to generate oligomeric byproducts. In order to optimize these cyclization conditions, and to better understand the structure of the higher molecular weight oligomers, these impurities have been isolated by size exclusion chromatography (SEC) and characterized by mass spectrometry (MS). Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF) MS is a particularly valuable characterization tool and was used to determine that the high molecular weight impurities are predominantly cyclic oligomers. It should also be noted that the rapid analysis and small analyte requirements of this MS technique make it particularly attractive as a general tool for elucidating polymer architecture. Ability to tailor the physical properties of polymers by changing the architecture alone has garnered a lot of attention over the past few decades. Compared to their linear analogues, these novel polymer architectures behave completely different in nanoscale regime. Cyclic polymers are especially intriguing since we can compare the differences in the physical properties with that of the linear chains. One of the major physical property changes are T g-confinement effect. Using ATRP and "click chemistry" we have produced highly pure cyclic PS (c-PS) with number-average molecular weight (MW) of 3.4 kg/mol and 9.1 kg/mol. Bulk glass transition temperatures for c-PS were weakly depended on MWs

  12. Synthesis of 1,3-diaryl-3-trifluoromethylcyclopropenes by transition-metal-free reaction of 2,2,2-trifluoroacetophenone tosylhydrazones with alkynes: the effect of the trifluoromethyl group.

    Science.gov (United States)

    Barroso, Raquel; Jiménez, Azucena; Pérez-Aguilar, M Carmen; Cabal, María-Paz; Valdés, Carlos

    2016-03-04

    1,3-Diaryl-3-trifluoromethylcyclopropenes and 2-aryl- or 2-alkyl-1,3-diaryl-3-trifluoromethylcyclopropenes are prepared in a very simple way by reaction between 1,1,1-trifluoroacetophenone tosylhydrazones and terminal or internal alkynes, respectively, in a base promoted process that does not require the presence of any metal catalyst. The essential role of the trifluoromethyl group, which enables the formation of the cyclopropenes instead of the expected pyrazoles, has been computationally investigated, suggesting the participation of a free carbene.

  13. Control of higher alkynes in purification process of acetylene in natural gas to acetylene plant%浅谈天然气制乙炔净化装置中高级炔含量的控制

    Institute of Scientific and Technical Information of China (English)

    姚文涛

    2014-01-01

    介绍了乙炔净化工艺和乙炔中甲基乙炔、1,3-丁二烯、丙二烯等高级炔脱除原理,分析了影响它们脱除的因素,在此基础上提出了控制乙炔中高级炔含量的方法并实施,实现了乙炔净化装置高负荷、长周期、稳定运行。%The purification process of acetylene and the principle of removing methyl acetylene, 1,3-butadiene, allene and other higher alkynes from acetylene were introduced, and the factors influencing the purification process were analyzed. Based on the analysis, the measures for controlling the level of higher alkynes in acetylene were proposed and implemented, which ensured that the acetylene purification unit could run in high load, long period and stable operation.

  14. Layer-by-Layer Fabrication of Porphyrin Multilayer Films via Copper(I)-Catalyzed Azide-Alkyne Cycloaddition: Film Properties and Applications in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Palomaki, Peter Karl Bunk

    Solar energy may be the only renewable source of energy available to the human race that could provide the energy we require while at the same time minimizing negative impacts on the planet and population. These characteristics may be instrumental in diminishing the potential for societal conflict. In order for photovoltaic devices to succeed on a global scale, research and development must lead to reduced costs and/or increased efficiency. Dye-Sensitized Solar Cells (DSSCs) are one class of nextgeneration photovoltaic technologies with the potential to realize these goals. Herein, I describe efforts towards developing a new light harvesting array of chromophores assembled on oxide substrates using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC or ‘click’ chemistry) that could prove useful in improving DSCC performance while maintaining low cost and simple fabrication. Specifically, molecular multilayers of porphyrin-based chromophores have been fabricated via sequential selflimiting CuAAC reactions to generate multilayered light harvesting films. Films of synthetic porphyrins, perylenes, and mixtures of the two are constructed in order to highlight the versatility of this molecular layer-by-layer (LbL) technique. Characterization in the form of electrochemical techniques, UV-Visible spectroscopy, infrared spectroscopy (IR), and water contact angle all indicate that the films are reacting as expected. Film thickness and morphology are investigated using X-ray reflectivity showing that film growth displays a high degree of linearity, while the roughness increases with thickness. Growth angles based on the porphyrin plane are estimated via a comparison of molecular models and experimentally determined thickness measurements. A more finite measurement of growth angle (and as a result the primary bonding mode) is determined by grazing angle IR spectroscopy. Blocking layer studies suggest that the films could be useful as a self-passivating layer in DSSCs to

  15. Rh(III)-catalyzed coupling of nitrones with alkynes for the synthesis of indolines%三价铑催化硝酮与炔的碳氢活化偶联合成二氢吲哚

    Institute of Scientific and Technical Information of China (English)

    孔令恒; 谢芳; 于松杰; 戚自松; 李兴伟

    2015-01-01

    Rh-catalyzed redox-neutral coupling betweenN-aryl nitrones and alkynes has been achieved under relatively mild conditions. The reaction proceeded via C–H activation at theN-aryl ring with subse-quent O-atom transfer, affording trisubstituted indolines in good chemoselectivity and moderate to good diasteroselectivity.%三价铑在氧化还原中性条件下催化硝酮与炔发生偶联,经过氮芳环的碳氢键活化和氧转移可以高化学选择性、中等到良好非对映选择性的得到三取代二氢吲哚。

  16. Cooperative catalysis of metal and O-H···O/sp3-C-H···O two-point hydrogen bonds in alcoholic solvents: Cu-catalyzed enantioselective direct alkynylation of aldehydes with terminal alkynes.

    Science.gov (United States)

    Ishii, Takaoki; Watanabe, Ryo; Moriya, Toshimitsu; Ohmiya, Hirohisa; Mori, Seiji; Sawamura, Masaya

    2013-09-27

    Catalyst-substrate hydrogen bonds in artificial catalysts usually occur in aprotic solvents, but not in protic solvents, in contrast to enzymatic catalysis. We report a case in which ligand-substrate hydrogen-bonding interactions cooperate with a transition-metal center in alcoholic solvents for enantioselective catalysis. Copper(I) complexes with prolinol-based hydroxy amino phosphane chiral ligands catalytically promoted the direct alkynylation of aldehydes with terminal alkynes in alcoholic solvents to afford nonracemic secondary propargylic alcohols with high enantioselectivities. Quantum-mechanical calculations of enantiodiscriminating transition states show the occurrence of a nonclassical sp(3)-C-H···O hydrogen bond as a secondary interaction between the ligand and substrate, which results in highly directional catalyst-substrate two-point hydrogen bonding.

  17. A STUDY OF FUNDAMENTAL REACTION PATHWAYS FOR TRANSITION METAL ALKYL COMPLEXES. I. THE REACTION OF A NICKEL METHYL COMPLEX WITH ALKYNES. II. THE MECHANISM OF ALDEHYDE FORMATION IN THE REACTION OF A MOLYBDENUM HYDRIDE WITH MOLYBDENUM ALKYLS

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, John Mitchell

    1980-06-01

    I. This study reports the rapid reaction under mild conditions of internal or terminal alkynes with methyl (acetyl~ acetonato) (triphenylphosphine) nickel (1) in either aromatic or ether solvents. In all cases vinylnickel products 2 are formed by insertion of the alkyne into the nickel=methyl bond. These complexes may be converted into a variety of organic products (e.g. alkenes, esters, vinyl halides) by treatment with appropriate reagents. Unsymmetrical alkynes give selectively the one regioisomer with the sterically largest substituent next to the nickel atom. In order to investigate the stereochemistry of the initial insertion, a x-ray diffraction study of the reaction of 1 with diphenylacetylene was carried out. This showed that the vinylnickel complex formed by overall trans insertion was the product of the reaction. Furthermore, subsequent slow isomerization of this complex, to a mixture of it and the corresponding cis isomer, demonstrated that this trans addition product is the kinetic product of the reaction. In studies with other alkynes, the product of trans addition was not always exclusively (or even predominantly) formed, but the ratio of the stereoisomers formed kinetically was substantially different from the thermodynamic ratio. Isotope labeling, added phosphine, and other experiments have allowed us to conclude that the mechanism of this reaction does involve initial cis addition. However, a coordinatively unsaturated vinylnickel complex is initially formed which can undergo rapid, phosphine-catalyzed cis-trans isomerization in competition with its conversion to the isolable phosphine-substituted kinetic reaction products. II. The reaction of CpMo(CO){sub 3}H (1a) with CpMo(CO){sub 3}R (2, R= CH{sub 3}, C{sub 2}H{sub 5}) at 50{degrees} C in THF gives the aldehyde RCHO and the dimers [CpMo(CO){sub 3}]{sub 2} (3a) and [CpMo(CO){sub 2}]{sub 2} (4a). Labeling one of the reactants with a methylcyclopentadienyl ligand it was possible to show that the

  18. Utilizing copper(I) catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition for the surface modification of colloidal particles with electroactive and emissive moieties

    Science.gov (United States)

    Rungta, Parul

    " chemistry; Aqueous-phase 83 nm poly(propargyl acrylate) (PA) nanoparticles were surface-functionalized with sparingly water soluble fluorescent moieties through a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) (i.e., "click" transformation) to produce fluoroprobes with a large Stokes shift. For moieties which could not achieve extensive surface coverage on the particles utilizing a standard click transformation procedure, the presence of beta-cyclodextrin (beta-CD) during the transformation enhanced the grafting density onto the particles. For an oxadiazole containing molecule (AO), an azide-modified coumarin 6 (AD1) and a polyethylene glycol modified naphthalimide-based emitter (AD2), respectively, an 84%, 17% and 5% increase in the grafting densities were observed, when the transformation was performed in the presence of beta-CD. In contrast, a carbazolyl-containing moiety (AC) exhibited a slight retardation in the final grafting density when beta-CD was employed. Photoluminescence studies indicated that AC & AO when attached to the particles form an exciplex. An efficient energy transfer from the exciplex to the surface attached AD2 resulted in a total Stokes shift of 180 nm for the modified particles. (3) The synthesis and characterization of near-infrared (NIR) emitting particles for potential applications in cancer therapy. PA particles were surface modified through the "click" transformation of an azide-terminated indocyanine green (azICG), an NIR emitter, and poly(ethylene glycol) (azPEG) chains of various molecular weights. The placement of azICG onto the surface of the particles allowed for the chromophores to complex with bovine serum albumin (BSA) when dispersed in PBS that resulted in an enhancement of the dye emission. In addition, the inclusion of azPEG with the chromophores onto the particle surface resulted in a synergistic nine-fold enhancement of the fluorescence intensity, with azPEGs of increasing molecular weight amplifying the response

  19. Quantification of the push-pull effect in substituted alkynes. Evaluation of +/-I/+/-M substituent effects in terms of C[triple bond]C bond length variation.

    Science.gov (United States)

    Kleinpeter, Erich; Frank, Andrea

    2009-06-18

    (13)C chemical shifts of alkynes, published to date, were computed at the DFT (B3LYP/6-311G*) level of theory and compared with the experimental delta values, and the agreement was employed as a measure of quality for the underlying structures. For the corresponding global minima structures, thus obtained, the occupation quotients of antibonding pi* and bonding pi orbitals (pi*(C[triple bond]C)/pi(C[triple bond]C)) and the bond lengths (d(C[triple bond]C)) of the central C[triple bond]C triple bond were computed and correlated to each other. The linear dependence obtained for the two push-pull parameters d(C[triple bond]C) and pi*(C[triple bond]C)/pi(C[triple bond]C) quantifies changes in the push-pull effect of substituents while deviations from the best line of fit indicate and ascertain quantitatively to what extend the inductive (+/-I) substituent effect changes with respect to the bond length of the C[triple bond]C triple bond.

  20. A signal-on electrochemical DNA biosensor based on potential-assisted Cu(I)-catalyzed azide-alkyne cycloaddition mediated labeling of hairpin-like oligonucleotide with electroactive probe.

    Science.gov (United States)

    Hu, Qiong; Kong, Jinming; Li, Yajie; Zhang, Xueji

    2016-01-15

    A novel electrochemical biosensor was developed for the signal-on detection of sequence-specific DNA by exploiting potential-assisted Cu(I)-catalyzed azide-alkyne cycloaddition (φCuAAC) as an efficient approach for the labeling of hairpin-like oligonucleotide (hairpin) with electroactive probe. The hairpins, dually labeled with thiol and azide at either terminal, were firstly self-assembled on gold electrode and served as the capture probes for the specific recognition of target DNA. Upon hybridization with target DNA, the surface-confined hairpins were unfolded, liberating the azide-containing terminals away from electrode surface. Subsequently, the unfolded hairpins were conveniently and efficiently labeled with ethynylferrocene (EFC) via the φCuAAC. The quantitatively labeled EFC was finally measured via differential pulse voltammetry (DPV) for the signal-on electrochemical detection of sequence-specific DNA. The biosensor presented a good linear response over the range from 1pM to 1nM with a detection limit of 0.62pM. Results also revealed that it was highly specific and held a good detection capability in serum samples. Furthermore, the ability to chemoselectively label hairpin-like oligonucleotide with signal reporter by electrical addressing, together with the simplicity and efficiency of the φCuAAC, makes it compatible with microfluidic devices and microelectrode arrays to achieve the miniaturized and multiplexed detections.

  1. Cocrystals of 1,4-diethynylbenzene with 1,3-diacetylbenzene and benzene-1,4-dicarbaldehyde exhibiting strong nonconventional alkyne-carbonyl C-H...O hydrogen bonds between the components.

    Science.gov (United States)

    Bosch, Eric

    2016-10-01

    Weak interactions between organic molecules are important in solid-state structures where the sum of the weaker interactions support the overall three-dimensional crystal structure. The sp-C-H...N hydrogen-bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen-bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4-diethynylbenzene with 1,3-diacetylbenzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4-diethynylbenzene with benzene-1,4-dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl-carbonyl sp-C-H...O hydrogen bond is observed between the components. In cocrystal (1), the C-H...O hydrogen-bond angle is 171.8 (16)° and the H...O and C...O hydrogen-bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C-H...O hydrogen-bond angle is 172.5 (16)° and the H...O and C...O hydrogen-bond distances are 2.25 (2) and 3.203 (2) Å, respectively.

  2. Ligand Synthesis Catalyst and Complex Metal Ion: Multicomponent Synthesis of 1,3-Bis(4-phenyl-[1,2,3]triazol-1-yl-propan-2-ol Copper(I Complex and Application in Copper-Catalyzed Alkyne-Azide Cycloaddition

    Directory of Open Access Journals (Sweden)

    María Teresa Ramírez-Palma

    2016-01-01

    Full Text Available A new bistriazole copper complex was synthesized by direct treatment of an alkyne, an azide, and CuI as copper salt through in situ ligand formation under a multicomponent reaction process. This complex was analyzed by XPS, TGA, DSC, and SEM techniques and revealed a triangular-shaped morphology, high thermal stability, and catalytic power in CuAAC reactions, requiring only 2.5% mol catalyst to afford 1,2,3-triazoles in good yields which can be reused at least for 4 cycles.

  3. Ligand Synthesis Catalyst and Complex Metal Ion: Multicomponent Synthesis of 1,3-Bis(4-phenyl-[1,2,3]triazol-1-yl)-propan-2-ol Copper(I) Complex and Application in Copper-Catalyzed Alkyne-Azide Cycloaddition

    OpenAIRE

    María Teresa Ramírez-Palma; Jesús Segura-Arzate; Gustavo López-Téllez; Erick Cuevas-Yañez

    2016-01-01

    A new bistriazole copper complex was synthesized by direct treatment of an alkyne, an azide, and CuI as copper salt through in situ ligand formation under a multicomponent reaction process. This complex was analyzed by XPS, TGA, DSC, and SEM techniques and revealed a triangular-shaped morphology, high thermal stability, and catalytic power in CuAAC reactions, requiring only 2.5% mol catalyst to afford 1,2,3-triazoles in good yields which can be reused at least for 4 cycles.

  4. Synthesis and thermal oxidation stability of boron modified silicon-alkyne heterochain polymer%硼改性硅炔杂链聚合物的合成及其耐热氧化稳定性

    Institute of Scientific and Technical Information of China (English)

    周华; 陈麒; 周权; 倪礼忠

    2016-01-01

    先以乙炔基溴化镁、甲基氢二氯硅烷通过格式试剂法合成有机硅结构,再以三氯化硼为硼源,制备出一种硼改性的硅炔杂链树脂基体( HPBS)。通过GPC、FT-IR和NMR表征了其结构,利用DSC、FT-IR和流变研究了其固化行为,采用TGA、XRD研究了其固化物的耐热性和氧化稳定性。结果表明,HPBS聚合物热固化后,在氮气和空气中失重5%的温度(Td5)分别为621、556℃,1000℃的质量保留率分别为85.9%和72.6%,结构中的硅硼无机元素在高温下可转化为B2O3、SiO2、B4 C、SiC等耐热抗氧化物质。 HBPS树脂表现出优异的耐热性和氧化稳定性。%A kind of boron-modified silicone alkyne hybrid polymer ( HPBS) was prepared. The polymer was synthesized with ethynylmagnesium bromide, methyldichlorosilane and boron chloride by using Grignard reagent method. The structure of HPBS was characterized by GPC, FT-IR, 1 H-NMR and 13 C-NMR. Differential scanning calorimetry ( DSC) and FT-IR were used to study the curing behaviors. The thermal and oxidation stability of the cured polymer was investigated by thermal gravimetry analysis ( TGA) and XRD. The results show that HPBS can be thermally crosslinked. The temperature of 5% weight loss ( Td5 ) of HPBS were 621℃and 556 ℃ in nitrogen and air, respectively;and the residues at 1 000℃ were 85.9% and 72.6%, respectively. The inorganic ele-ments of silicon and boron can be converted into oxidation resistant materials such as B2 O3 , SiO2 , B4 C and SiC at high tempera-tures. The HPBS resin shows excellent heat resistance and oxidation stability.

  5. Catalytic Hydration of Alkenes and Alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Jim, D.

    2003-03-18

    The fifteen years of DOE support have encompassed two different projects, electron-transfer reactions of metal carbonyl anions and water-soluble organometallic complexes. Each of these is related to homogeneous catalysis and will be described in separate sections. Electron Transfer--Twenty-one manuscripts resulted from our studies of electron-transfer reactions of metal carbonyl anions and acknowledge DOE support. Construction of an infrared stopped-flow system allowed us to measure rates of reactions for the extremely air-sensitive metal carbonyl anions. As for carbanions, both one-electron and two-electron processes occur for metal carbonyl anions. The most unexpected feature was examples of a very rapid two-electron process, followed by a much slower one-electron back transfer. The two-electron processes were accompanied by transfer of a ligand between two metals, M-X + M{prime}{sup -} {yields} M{sup -} + M{prime}-X with X groups of CO{sup 2}, H{sup +}, CH{sub 3}{sup +} and Br{sup +}. These transfers, which can be considered nucleophilic displacements, occurred when M{prime}{sup -} was more nucleophilic than M{sup -}. The 21 published manuscripts explore one- and two-electron processes for many such organometallic complexes. Water-Soluble Organometallic Complexes--The potential of water-soluble organometallic complexes in ''green chemistry'' intrigued us. Sixteen manuscripts acknowledging DOE support have appeared thus far in this field. Our research centered on sulfonated phosphine ligands, PPh{sub 2}(m-C{sub 6}H{sub 4}SO{sub 3}Na) and P(m-C{sub 6}H{sub 4}SO{sub 3}Na){sub 3}, to solubilize organometallic complexes in water. These analogues of PPH{sub 3} allowed us to synthesize complexes of Ir, Rh, Ru, Ni, Pd, Pt and Ag that are water-soluble and contain such common organometallic ligands as CO, H and CH{sub 3} in addition to halides and the phosphine ligands. These metal complexes show the ability to activate H{sub 2}, CO, C{sub 2}H{sub 4}, H{sub 2}O, SO{sub 2} etc. in aqueous solution. The primary conclusion is that water-soluble organometallic complexes can be prepared and show very similar reactivity in water to analogous compounds in organic solvents. Thus, organometallic complexes in aqueous solution do provide a ''green'' route to products currently prepared in organic solvents.

  6. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides

    OpenAIRE

    Nahra, Fady; Patrick, Scott R.; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B.; Slawin, Alexandra M. Z.; O'Hagan, David; Steven P. Nolan

    2014-01-01

    We report the synthesis of nine new N-heterocyclic carbene gold bifluoride complexes starting from the corresponding N-heterocyclic carbene gold hydroxides. A new methodology to access N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical an...

  7. C-C bond formation and related reactions at the CNC backbone in (smif)FeX (smif = 1,3-di-(2-pyridyl)-2-azaallyl): dimerizations, 3 + 2 cyclization, and nucleophilic attack; transfer hydrogenations and alkyne trimerization (X = N(TMS)2, dpma = (di-(2-pyridyl-methyl)-amide)).

    Science.gov (United States)

    Frazier, Brenda A; Williams, Valerie A; Wolczanski, Peter T; Bart, Suzanne C; Meyer, Karsten; Cundari, Thomas R; Lobkovsky, Emil B

    2013-03-18

    Molecular orbital analysis depicts the CNC(nb) backbone of the smif (1,3-di-(2-pyridyl)-2-azaallyl) ligand as having singlet diradical and/or ionic character where electrophilic or nucleophilic attack is plausible. Reversible dimerization of (smif)Fe{N(SiMe3)2} (1) to [{(Me3Si)2N}Fe]2(μ-κ(3),κ(3)-N,py2-smif,smif) (2) may be construed as diradical coupling. A proton transfer within the backbone-methylated, and o-pyridine-methylated smif of putative ((b)Me2(o)Me2smif)FeN(SiMe3)2 (8) provides a route to [{(Me3Si)2N}Fe]2(μ-κ(4),κ(4)-N,py2,C-((b)Me,(b)CH2,(o)Me2(smif)H))2 (9). A 3 + 2 cyclization of ditolyl-acetylene occurs with 1, leading to the dimer [{2,5-di(pyridin-2-yl)-3,4-di-(p-tolyl-2,5-dihydropyrrol-1-ide)}FeN(SiMe3)2]2 (11), and the collateral discovery of alkyne cyclotrimerization led to a brief study that identified Fe(N(SiMe3)2(THF) as an effective catalyst. Nucleophilic attack by (smif)2Fe (13) on (t)BuNCO and (2,6-(i)Pr2C6H3)NCO afforded (RNHCO-smif)2Fe (14a, R = (t)Bu; 14b, 2,6-(i)PrC6H3). Calculations suggested that (dpma)2Fe (15) would favorably lose dihydrogen to afford (smif)2Fe (13). H2-transfer to alkynes, olefins, imines, PhN═NPh, and ketones was explored, but only stoichiometric reactions were affected. Some physical properties of the compounds were examined, and X-ray structural studies on several dinuclear species were conducted.

  8. 介孔 TiO2担载 Cu(OH)2及其催化炔烃氧化偶联反应%Mesoporous Titania Supported Copper Hydroxide as an Efficient Heterogeneous Catalyst in Oxidative Homocoupling of Alkynes

    Institute of Scientific and Technical Information of China (English)

    张海鹏; 潘庆芝; 邹永存

    2014-01-01

    Ordered mesoporous titania supported copper hydroxide was used as catalysts in heterogeneous oxi-dative homocoupling of alkynes(Glaser reaction). The results showed high catalytic performance. Highly dis-persed copper hydroxide was regarded as the active site and mesoporous structure of TiO2 benefit the high dis-persion of active sites as well as the diffusion of the reactants and products in the reactions. 1,3-Dyne deriva-tive, the products of Glaser reaction, is an important class of compounds in chemistry and materials science. Thus, Cu(OH) 2 / TiO2 is of great importance in the industrial application.%在有序介孔 TiO2中原位担载了高分散的 Cu(OH)2,并将其应用于炔烃的氧化偶联(Glaser)多相催化反应,该催化剂表现出很高的催化活性。 Cu(OH)2为催化剂的主要活性组分, TiO2的有序介孔和较大的比表面积有利于 Cu(OH)2的分散以及反应物和产物的扩散,具有重要的应用前景。

  9. Site-directed spin-labeling of DNA by the azide-alkyne 'click' reaction: nanometer distance measurements on 7-deaza-2'-deoxyadenosine and 2'-deoxyuridine nitroxide conjugates spatially separated or linked to a 'dA-dT' base pair.

    Science.gov (United States)

    Ding, Ping; Wunnicke, Dorith; Steinhoff, Heinz-Jürgen; Seela, Frank

    2010-12-27

    Nucleobase-directed spin-labeling by the azide-alkyne 'click' (CuAAC) reaction has been performed for the first time with oligonucleotides. 7-Deaza-7-ethynyl-2'-deoxyadenosine (1) and 5-ethynyl-2'-deoxyuridine (2) were chosen to incorporate terminal triple bonds into DNA. Oligonucleotides containing 1 or 2 were synthesized on a solid phase and spin labeling with 4-azido-2,2,6,6-tetramethylpiperidine 1-oxyl (4-azido-TEMPO, 3) was performed by post-modification in solution. Two spin labels (3) were incorporated with high efficiency into the DNA duplex at spatially separated positions or into a 'dA-dT' base pair. Modification at the 5-position of the pyrimidine base or at the 7-position of the 7-deazapurine residue gave steric freedom to the spin label in the major groove of duplex DNA. By applying cw and pulse EPR spectroscopy, very accurate distances between spin labels, within the range of 1-2 nm, were measured. The spin-spin distance was 1.8±0.2 nm for DNA duplex 17(dA*(7,10))⋅11 containing two spin labels that are separated by two nucleotides within one individual strand. A distance of 1.4±0.2 nm was found for the spin-labeled 'dA-dT' base pair 15(dA*(7))⋅16(dT*(6)). The 'click' approach has the potential to be applied to all four constituents of DNA, which indicates the universal applicability of the method. New insights into the structural changes of canonical or modified DNA are expected to provide additional information on novel DNA structures, protein interaction, DNA architecture, and synthetic biology.

  10. Antifungal properties of 2-n-alkyn-1-ols.

    Science.gov (United States)

    Gershon, H; Rowe, G E; Santore, R C; Gilbertson, J R; Langkamp, H

    1984-12-01

    Fourteen 2-n-alkynols (C3-C14, C16, and C18) were tested against Aspergillus oryzae, Aspergillus niger, Trichoderma viride, and Myrothecium verrucaria in Sabouraud dextrose agar at pH 5.6 and 7.0. Toxicity to Candida albicans, Candida tropicalis, Trichophyton mentagrophytes, and Mucor mucedo was determined in the same medium at pH 5.6 and 7.0 in the absence and presence of 10% beef serum. Fungitoxicity was strongly influenced by chain length, slightly by the pH of the medium, and significantly by the presence of beef serum. 2-n-Undecyn-1-ol was the most active member of the series, and there was marked synergism between it and ketoconazole.

  11. Modification of inorganic surface with 1-alkenes and 1-alkynes

    NARCIS (Netherlands)

    Maat, ter J.

    2012-01-01

    Surface modification is important because it allows the tuning of surface properties, thereby enabling new applications of a material. It can change physical properties such as wettability and friction, but can also introduce chemical functionalities and binding specificity. Several techniques are a

  12. A general A{sup 3}: coupling reaction based on functionalized alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, Edison P.; Santos, Alcindo A. dos, E-mail: alcindo@iq.usp.br [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica

    2013-10-01

    A range of hydroxypropargylpiperidones were efficiently obtained by a one-pot three-component coupling reaction of aldehydes, alkynols, and a primary amine equivalent (4-piperidone hydrochloride hydrate) in ethyl acetate using copper(I) chloride as a catalyst. The developed protocol proved to be equally efficient using a range of aliphatic aldehydes, including paraformaldehyde, and using protected and unprotected alkynols. (author)

  13. Rhodium-catalyzed intramolecular hydroarylation of 1-halo-1-alkynes: regioselective synthesis of semihydrogenated aromatic heterocycles.

    Science.gov (United States)

    Murase, Hirohiko; Senda, Kousuke; Senoo, Masato; Hata, Takeshi; Urabe, Hirokazu

    2014-01-03

    The regioselective intramolecular hydroarylation of (3-halo-2-propynyl)anilines, (3-halo-2-propynyl) aryl ethers, or (4-halo-3-butynyl) aryl ethers was efficiently catalyzed by Rh2(OCOCF3)4 to give semihydrogenated aromatic heterocycles, such as 4-halo-1,2-dihydroquinolines, 4-halo-3-chromenes, or 4-(halomethylene)chromans, in good to excellent yields. Some synthetic applications taking advantage of the halo-substituents of the products are also illustrated.

  14. Acid-base jointly promoted copper(I)-catalyzed azide-alkyne cycloaddition.

    Science.gov (United States)

    Shao, Changwei; Wang, Xinyan; Zhang, Qun; Luo, Sheng; Zhao, Jichen; Hu, Yuefei

    2011-08-19

    In this novel acid-base jointly promoted CuAAC, the combination of CuI/DIPEA/HOAc was developed as a highly efficient catalytic system. The functions of DIPEA and HOAc have been assigned, and HOAc was recognized to accelerate the conversions of the C-Cu bond-containing intermediates and buffer the basicity of DIPEA. As a result, all drawbacks occurring in the popular catalytic system CuI/NR(3) were overcome easily.

  15. Sulfoxide-directed intramolecular [4 + 2] cycloadditions between 2-sulfinyl butadienes and unactivated alkynes.

    Science.gov (United States)

    Fernández de la Pradilla, Roberto; Tortosa, Mariola; Castellanos, Esther; Viso, Alma; Baile, Raquel

    2010-03-05

    Sulfinyl dienynes undergo thermal and catalyzed IMDA cycloadditions, often at room temperature, to produce cyclohexa-1,4-dienes with good yields and high selectivities. Additionally, the products preserve a synthetically useful vinyl sulfoxide functionality. The selective manipulation of the double bonds in the cycloadducts has also been examined in this work.

  16. Advances in nucleophilic phosphine catalysis of alkenes, allenes, alkynes, and MBHADs.

    Science.gov (United States)

    Fan, Yi Chiao; Kwon, Ohyun

    2013-12-25

    In nucleophilic phosphine catalysis, tertiary phosphines undergo conjugate additions to activated carbon-carbon multiple bonds to form β-phosphonium enolates, β-phosphonium dienolates, β-phosphonium enoates, and vinyl phosphonium ylides as intermediates. When these reactive zwitterionic species react with nucleophiles and electrophiles, they may generate carbo- and heterocycles with multifarious molecular architectures. This article describes the reactivities of these phosphonium zwitterions, the applications of phosphine catalysis in the syntheses of biologically active compounds and natural products, and recent developments in the enantioselective phosphine catalysis.

  17. Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation

    Science.gov (United States)

    Nguyen Minh, Quyen; Pujari, Sidharam P.; Wang, Bin; Wang, Zhanhua; Haick, Hossam; Zuilhof, Han; van Rijn, Cees J. M.

    2016-11-01

    Passivation of oxide-free silicon nanowires (Si NWs) by the formation of high-quality fluorinated 1-hexadecyne-derived monolayers with varying fluorine content has been investigated. Alkyl chain monolayers (C16H30-xFx) with a varying number of fluorine substituents (x = 0, 1, 3, 9, 17) were attached onto hydrogen-terminated silicon (Sisbnd H) surfaces with an effective one-step hydrosilylation. This surface chemistry gives well-defined monolayers on nanowires that have a cylindrical core-shell structure, as characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and static contact angle (SCA) analysis. The monolayers were stable under acidic and basic conditions, as well as under extreme conditions (such as UV exposure), and provide excellent surface passivation, which opens up applications in the fields of field effect transistors, optoelectronics and especially for disease diagnosis.

  18. Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation

    NARCIS (Netherlands)

    Nguyen, Quyen; Pujari, Sidharam P.; Wang, Bin; Wang, Zhanhua; Haick, Hossam; Zuilhof, Han; Rijn, van Cees J.M.

    2016-01-01

    Passivation of oxide-free silicon nanowires (Si NWs) by the formation of high-quality fluorinated 1-hexadecyne-derived monolayers with varying fluorine content has been investigated. Alkyl chain monolayers (C16H30−xFx) with a varying number of fluorine substituents (x = 0, 1, 3, 9, 17) were attached

  19. Azide- and Alkyne-Functionalised α- and β3-Amino Acids

    DEFF Research Database (Denmark)

    Sminia, T.J.; Pedersen, Daniel Sejer

    2012-01-01

    be functionalised further, for example, through copper-catalysed Huisgen cycloaddition. Moreover, the corresponding α-amino acids 1 and 3 have been synthesised and characterised. All amino acid building blocks were of high optical purity as demonstrated by derivatisation and subsequent NMR analysis. © Georg Thieme...

  20. Organic Monolayers from 1-Alkynes Covalently Attached to Chromium Nitride: Alkyl and Fluoroalkyl Termination

    NARCIS (Netherlands)

    Pujari, S.P.; Scheres, L.M.W.; Lagen, van B.; Zuilhof, H.

    2013-01-01

    Strategies to modify chromium nitride (CrN) surfaces are important because of the increasing applications of these materials in various areas such as hybrid electronics, medical implants, diffusion barrier layers, corrosion inhibition, and wettability control. The present work presents the first sur

  1. Controlling both ground- and excited-state thermal barriers to Bergman cyclization with alkyne termini substitution.

    Science.gov (United States)

    Nath, Mahendra; Pink, Maren; Zaleski, Jeffrey M

    2005-01-19

    The cross-coupling reaction of 2,3-dibromo-5,10,15,20-tetraphenylporphyrin with corresponding organostannanes in the presence of a Pd0 catalyst in THF at reflux temperature yields free base 2,3-dialkynylporphyrins 1a,c-e. The subsequent deprotection of trimethylsilyl group of 1a with TBAF in THF under aqueous conditions produces the 2,3-diethynyl-5,10,15,20-tetraphenylporphyrins 1b in 87% yield. Compounds 1a-d undergo zinc insertion upon treatment with Zn(OAc)2.2H2O in CHCl3/MeOH to give zinc(II) 2,3-dialkynyl-5,10,15,20-tetraphenylporphyrins (2a-d) in 70-92% yields. Thermal Bergman cyclization of 1a-e and 2a-d was studied in chlorobenzene and approximately 35-fold 1,4-cyclohexadiene at 120-210 degrees C. Compounds 1b and 2b with R = H react at lower temperature (120 degrees C) and produce cyclized products 3b and 4b in higher yields (65-70%) than their propyl, isopropyl, and phenyl analogues, with R = Ph being the most stable. Continuing in this trend, the -TMS derivatives 1a and 2a exhibit no reactivity even after heating at 190 degrees C in chlorobenzene/CHD for 24 h. Photolysis (at lambda >/= 395 nm) of 1b and 2b at 10 degrees C leads the formation of isolable picenoporphyrin products in 15 and 35% yields, respectively, in 72 h, whereas these compounds are stable in solution under same reaction conditions at 25 degrees C in the dark. Unlike thermolysis at 125 degrees C, which did not yield Bergman cyclized product for R = Ph, photolysis generated very small amounts of picenoporphyrin products (3c: 5%; 4c: 8% based on 1H NMR) as well as a mixture of reduced porphyrin products that were not separable. Thus, trends in the barrier to Bergman cyclization in the excited state exhibit the same trend as those observed in the ground state as a function of R-group. Finally, photolysis of 2b at 10 degrees C with lambda >/= 515 or 590 nm in benzene/iPrOH (4:1, 72 h) produces 4b in 15 and 6% isolated yields, indicating that conjugation of the enediyne unit into the porphyrin electronic transitions leads to sufficient distortion to generate photoproduct even with long wavelength excitation.

  2. Synthesis and characterization of alkene-extended tetrathiafulvalenes with lateral alkyne appendages

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brønsted; Gisselbrecht, Jean-Paul; Thorup, Niels;

    2003-01-01

    Tetrathiafulvalene (TTF) derivatives containing a diethynyl-substituted alkene spacer were synthesized and investigated for their electronic and structural properties. Co-planarity of the central diethynylethene unit and the two dithiole rings were confirmed by X-ray crystallographic analysis....

  3. Computational study of alkynes insertion into metal-hydride bonds catalyzed by bimetallic complexes.

    Science.gov (United States)

    Di Tommaso, Stefania; Tognetti, Vincent; Sicilia, Emilia; Adamo, Carlo; Russo, Nino

    2010-11-01

    Density Functional Theory investigations on the insertion mechanism of phenylacetylene into metal-hydride bonds in bimetallic (Pt,Os) catalysts have been carried out. The results obtained have been also compared with the non-reactive monometallic (Os-based) system, to elucidate the cooperative effects and to explain the observed absence of reactivity. The identified reaction path involves phenylacetylene coordination followed by the insertion into the metal-hydride bond, leading to the formation of the experimentally observed products. Both steps do not require large energies compatible with the experimental conditions. The comparison with the reaction path for the monometallic species gives some hints on the cooperative effects due to the presence of the second metal which is related to its role in the CO release for creating a coordination site for phenylacetylene and not in the insertion energetics. The calculations provide a detailed analysis of the reaction complexity and provide a rationale for the efficiency of the process.

  4. oVOC production from tropospheric alkyne oxidation and contribution to aerosol formation and growth

    Science.gov (United States)

    Goodall, Iain

    2013-04-01

    Ethyne (C2H2) is one of the simplest volatile organic compounds (VOC) and is predominantly emitted via anthropogenic processes and reacts with nitrogen oxides (NOx) in the presence of sunlight to form tropospheric ozone (O3). The dominant oxidation product of ethyne is the dicarbonyl species glyoxal (CHOCHO), which is thought to be a significant contributor to secondary organic aerosol (SOA) formation via irreversible oligomerisation reactions upon the surface of hydrated aerosol particulates and within cloud droplets. A series of chamber experiments were performed at the EUPHORE facility (Valencia, Spain) to study the atmospheric oxidation of ethyne, to determine oxidation product yields and to monitor SOA formation and growth by dicarbonyl oligomerisation. A Proton Transfer Reaction-Time of Flight- Mass Spectrometer (PTR-ToF-MS) was deployed by the University of Leicester to monitor precursor decay and the subsequent evolution of any gas-phase oxidised volatile organic compounds (oVOC). This was further complemented by a Broadband Cavity Enhanced Absorption Spectrometer (BBCEAS) for specific dicarbonyl and NO2 measurements. Aqueous extracts of chamber SOA were taken from filters collected during the experiments and subsequently analysed offline. The work explores the yields of low molecular weight products of ethyne oxidation for light and dark reactions, with varying levels of NOx and OH. Novel experiments were performed under atmospherically relevant conditions utilising natural lighting rather than artificial lighting. Reaction yields have been assessed with the aim of contributing to the ethyne and glyoxal mechanisms in the Master Chemical Mechanism (MCM; http://mcm.leeds.ac.uk/MCM), and have been compared with previously reported values determined from experiments performed under artificial lighting conditions.

  5. Versatile convergent synthesis of a three peptide loop containing protein mimic of whooping cough pertactin by successive Cu(I)-catalyzed azide alkyne cycloaddition on an orthogonal alkyne functionalized TAC-scaffold

    NARCIS (Netherlands)

    Werkhoven, Paul R; van de Langemheen, Helmus; van der Wal, Steffen; Kruijtzer, John A W; Liskamp, Rob M J

    2014-01-01

    Synthetic mimics of discontinuous epitopes may have a wide range of potential applications, including synthetic vaccines and inhibition of protein-protein interactions. However, synthetic access to these relatively complex peptide molecular constructs is limited. This paper describes a versatile con

  6. A Procedure Identifying a Polyacetylene Initiator of Olefin Metathesis. The Reactivities of Metal-Carbenes Toward Alkenes and Alkynes.

    Science.gov (United States)

    2014-09-26

    Reproduction in whole or in part is permitted for any purpose of the United States Government This document has been approved for public release and...979, 17, 421. (c) Percec, V.; Rinaldi, P. L. Polym. Bull . (Berlin) 1983, 9, 548; (d) Percec, V. ibid. 1983, 10, 1. (24) Masuda, T.; Takahashi, T...Yamamoto, K.; Higashimura, T. J. Polym. Sci.. Polym. Chem. Ed. 1982, 20, 2603. (25) Percec, V.; Rinaldi, P. L., Polym. Bull . (Berlin) 1983, 9, 582. (26

  7. Citrus Peel Additives for One-Pot Triazole Formation by Decarboxylation, Nucleophilic Substitution, and Azide-Alkyne Cycloaddition Reactions

    Science.gov (United States)

    Mendes, Desiree E.; Schoffstall, Allen M.

    2011-01-01

    This undergraduate organic laboratory experiment consists of three different reactions occurring in the same flask: a cycloaddition reaction, preceded by decarboxylation and nucleophilic substitution reactions. The decarboxylation and cycloaddition reactions occur using identical Cu(I) catalyst and conditions. Orange, lemon, and other citrus fruit…

  8. Sequential decarboxylative azide–alkyne cycloaddition and dehydrogenative coupling reactions: one-pot synthesis of polycyclic fused triazoles

    Directory of Open Access Journals (Sweden)

    Kuppusamy Bharathimohan

    2014-12-01

    Full Text Available Herein, we describe a one-pot protocol for the synthesis of a novel series of polycyclic triazole derivatives. Transition metal-catalyzed decarboxylative CuAAC and dehydrogenative cross coupling reactions are combined in a single flask and achieved good yields of the respective triazoles (up to 97% yield. This methodology is more convenient to produce the complex polycyclic molecules in a simple way.

  9. Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media

    Science.gov (United States)

    Hu, Peiguang; Song, Yang; Chen, Limei; Chen, Shaowei

    2015-05-01

    1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold concentrations. The self-assembly of 1-dodecyne ligands on the nanoparticle surface was manifested in infrared spectroscopic measurements. Importantly, the resulting nanoparticles exhibited apparent electrocatalytic activity for oxygen reduction in alkaline media, and the performance was found to show a volcano variation in the Au content in the alloy nanoparticles, with the best performance observed for the samples with ca. 35.5 at% Au. The enhanced catalytic activity, as compared to pure Ag nanoparticles or even commercial Pt/C catalysts, was accounted for by the unique metal-ligand interfacial bonding interactions as well as alloying effects that increased metal-oxygen affinity.1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold concentrations. The self-assembly of 1-dodecyne ligands on the nanoparticle surface was manifested in infrared spectroscopic measurements. Importantly, the resulting nanoparticles exhibited apparent electrocatalytic activity for oxygen reduction in alkaline media, and the performance was found to show a volcano variation in the Au content in the alloy nanoparticles, with the best performance observed for the samples with ca. 35.5 at% Au. The enhanced catalytic activity, as compared to pure Ag nanoparticles or even commercial Pt/C catalysts, was accounted for by the unique metal-ligand interfacial bonding interactions as well as alloying effects that increased metal-oxygen affinity. Electronic supplementary information (ESI) available: Effective electrochemical surface areas by oxygen adsorption and Koutecky-Levich plots. See DOI: 10.1039/c5nr01376c

  10. A Versatile Strategy to Synthesize Perfluoropolyether-Based Thermoplastic Fluoropolymers by Alkyne-Azide Step-Growth Polymerization.

    Science.gov (United States)

    Lopez, Gérald; Ameduri, Bruno; Habas, Jean-Pierre

    2016-04-01

    Perfluoropolyether (PFPE)-based thermoplastic fluoropolymers are synthesized by A2 + B2 step-growth polymerization between PFPE-diyne and fluorinated diazides. This versatile method allows synthesizing PFPE-based materials with tunable physicochemical properties depending on the exact nature of the fluorinated segment of the diazide precursor. Semicrystalline or amorphous materials endowed with high thermostability (≈300 °C under air) and low glass transition temperature (≈-100 °C) are obtained, as confirmed by differential scanning calorimetry, thermogravimetry, and rheometry. Step-growth polymerizations can be copper-catalyzed but also thermally activated in some cases, thus avoiding the presence of copper residues in the final materials. This strategy opens up new opportunities to easily access PFPE-based materials on an industrial scale. Furthermore, a plethora of developments can be envisioned (e.g., by adding a third trifunctional component to the formulations for the synthesis of PFPE-based elastomers).

  11. Highly E-Selective and Enantioselective Michael Addition to Electron-Deficient Internal Alkynes Under Chiral Iminophosphorane Catalysis.

    Science.gov (United States)

    Uraguchi, Daisuke; Yamada, Kohei; Ooi, Takashi

    2015-08-17

    A highly E-selective and enantioselective conjugate addition of 2-benzyloxythiazol-5(4H)-ones to β-substituted alkynyl N-acyl pyrazoles is achieved under the catalysis of a P-spiro chiral iminophosphorane. Simultaneous control of the newly generated central chirality and olefin geometry is possible with a wide array of the alkynyl Michael acceptors possessing different aromatic and aliphatic β-substituents, as well as the various α-amino acid-derived thiazolone nucleophiles. This protocol provides access to structurally diverse, optically active α-amino acids bearing a geometrically defined trisubstituted olefinic component at the α-position.

  12. Synthesis of alkynes and alkynyl iodides bearing a protected amino alcohol moiety as functionalized amino acids precursors

    Institute of Scientific and Technical Information of China (English)

    AYED; Charfedinne; PICARD; Julien; LUBIN-GERMAIN; Nadège; UZIEL; Jacques; AUGE; Jacques

    2010-01-01

    Amino acid precursors in protected amino alcohol form are important synthons that can be used as building-blocks for the hemisynthesis of non-natural amino acids.Serine can be used as a common starting material for the synthesis of such compounds differently protected.Particularly,protected amino alcohols bearing an ethynyl and/or an iodoethynyl group can be used in cross-couplings,in 1,3-dipolar cycloadditions and/or in Nozaki-Hiyama-Kishi type reactions.We thus demonstrated that the efficiently protected amino alcohols derived from serine can be coupled to a sugar derivative by an indium mediated alkynylation reaction.The conditions of this coupling are compatible with such functionalized derivatives and allow envisaging an access to C-glycosylated amino acids.

  13. Silyl-based alkyne-modifying linker for the preparation of C-terminal acetylene-derivatized protected peptides.

    Science.gov (United States)

    Strack, Martin; Langklotz, Sina; Bandow, Julia E; Metzler-Nolte, Nils; Albada, H Bauke

    2012-11-16

    A novel linker for the synthesis of C-terminal acetylene-functionalized protected peptides is described. This SAM1 linker is applied in the manual Fmoc-based solid-phase peptide synthesis of Leu-enkephalin and in microwave-assisted automated synthesis of Maculatin 2.1, an antibacterial peptide that contains 18 amino acid residues. For the cleavage, treatment with tetramethylammonium fluoride results in protected acetylene-derivatized peptides. Alternatively, a one-pot cleavage-click procedure affords the protected 1,2,3-triazole conjugate in high yields after purification.

  14. π-Extension of a 4-ethoxy-1,3-thiazole via aryl alkyne cross coupling: synthesis and exploration of the electronic structure.

    Science.gov (United States)

    Habenicht, Stefanie H; Schramm, Stefan; Zhu, Mingming; Freund, Robert R A; Langenstück, Teresa; Strathausen, Rainer; Weiss, Dieter; Biskup, Christoph; Beckert, Rainer

    2015-11-01

    A series of four donor aryl alkynyl substituted thiazole derivatives 3a-d and three similar aryl donor-acceptor systems 6a-c have been synthesized. All compounds bear different electron-donating groups in the 5-position of the thiazole core. The influence of both electron donor strength and the additional phenylethynyl unit on photophysical properties, i.e. UV/Vis absorption, fluorescence emission and fluorescence lifetime, has been evaluated. Additionally, theoretical calculations have been performed at the CAM-B3LYP/6-31+G(d,p) level and good agreement with the experimental data has been achieved. The new derivatives synthesized via palladium catalyzed cross coupling are characterised by moderately strong emission between 474 and 538 nm (ΦF = 0.35-0.39) and Stokes' shifts ranging from 0.54 to 0.79 eV (4392-6351 cm(-1)). The smaller chromophores of type 6 exhibit modest to high fluorescence emission (ΦF = 0.45-0.76) between 470 and 529 nm and their Stokes' shifts range from 0.59 to 0.65 eV (4765-5251 cm(-1)).

  15. The isolation of [Pd{OC(O)H}(H)(NHC)(PR3)] (NHC = N-heterocyclic carbene) and its role in alkene and alkyne reductions using formic acid

    KAUST Repository

    Broggi, Julie

    2013-03-27

    The [Pd(SIPr)(PCy3)] complex efficiently promotes a tandem process involving dehydrogenation of formic acid and hydrogenation of C-C multiple bonds using H2 formed in situ. The isolation of a key catalytic hydridoformatopalladium species, [Pd{OC(O)H}(H)(IPr)(PCy 3)], is reported. The complex plays a key role in the Pd(0)-mediated formation of hydrogen from formic acid. Mechanistic and computational studies delineate the operational role of the palladium complex in this efficient tandem sequence. © 2013 American Chemical Society.

  16. Synthesis, Crystal Structure of Ruthenium 1,2-Naphthoquinone-1-oxime Complex and Its Mediated C-C Coupling Reactions of Terminal Alkynes

    Institute of Scientific and Technical Information of China (English)

    SUN, Ke; WONG, Wing-Tak; LIU, Xiao-Xia; ZHANG, Bao-Yan

    2003-01-01

    Substituted decarbonylation reaction of ruthenium 1,2-naphthoquinone-1-oxime (1-nqo) complex, cis-, cis-[Ru{ η2-N(O)C10-H6O}2(CO)2] (1), with acetonitrile gave cis-, cis-[Ru { η2-N(O)C10H6O}2(CO)(NCMe)] (2). Complex 2 was fully characterized by 1H NMR, FAB MS, IR spectra and single crystal X-ray analysis. Complex 2 maintains the coordination structure of 1 with the two naphthoquinonic oxygen atoms, as well as the two oximato nitrogen atoms located cis to each other, showing that there is no ligand rearrangement of the 1-nqo ligands during the substitution reaction. The carbonyl group originally trans to the naphthoquinonic oxygen in one 1-nqo ligand is left in its original position [O(5)-Ru-C(1), 174.0(6)°], while the other one originally trans to the oximato group of the other 1-nqo llgand is substituted by NCMe [N(1)-Ru-N(3), 170.6(6)°].This shows that the carbonyl trans to oximato group is more labile than the one trans to naphthoquinonic O atom towards substitution. This is probably due to the comparatively stronger π back bonding from ruthenium metal to the carbonyl group trans to naphthoquinonic O atom, than the one trans to oximato group, resulting in the comparatively weaker Ru-CO bond for the latter and consequently easier replacement of this carbonyl. Selected coupling of phenylacetylene mediated by 2 gave a single trans-dimerization product 3, while 2 mediated coupling reaction of methyl propiolate produced three products:one trans-dimerization product 4 and two cyclotrimeric products 5 and 6.

  17. Role of ligands in controlling the regioselectivity in ruthenium-catalysed addition of carboxylic acids to terminal alkynes: A DFT study

    Indian Academy of Sciences (India)

    Bholanath Maity; Totan Mondal; Kaustav Dey; Sankarsan Biswas; Debasis Koley

    2015-02-01

    Density functional studies are performed to understand the role of chelating bi-phosphine ligands [(Ph2P(CH2)mPPh2); m=1–4] in modulating the regio-selectivity of benzoic acid addition to 1-hexyne, in presence of ruthenium(II) catalyst [(Ph2P(CH2)mPPh2)Ru(methallyl)2]. The Markovnikov addition to 1-hexyne is observed when catalyst 1a [(Ph2P(CH2)PPh2)Ru(methallyl)2] is employed, whereas a reverse regio-selectivity is witnessed in presence of 1d [(Ph2P(CH2)4PPh2)Ru(methallyl)2]. Anti-Markovnikov addition occurs via the neutral vinylidene intermediates (5a/d) formed after 1,2-hydrogen shift in hexyne coordinated ruthenium(II) complexes 3a/d. The energy profile shows clear preference for Markovnikov addition by 15.0 kcal/mol ($G^{S}_{L}$) in case of catalyst system 1a. In contrast, anti-Markovnikov pathway following neutral vinylidenes are more favourable by 9.1 kcal/mol ($G^{S}_{L}$) for catalyst system 1d. The Z-enol ester formation is more predominantin the anti-Markovnikov pathway since the activation barrier for this step requires less energy (5.9 kcal/mol, $G^{S}_{L}$) than the one furnishing the E-product. The calculated results are in good agreement with the reported experimental findings.

  18. Purification and identification of O-GlcNAc-modified peptides using phosphate-based alkyne CLICK chemistry in combination with titanium dioxide chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Parker, Benjamin L; Gupta, Pankaj; Cordwell, Stuart

    2011-01-01

    -containing peptides were enriched using titanium dioxide chromatography. Modified peptides were analyzed using a combination of higher energy collision dissociation for identification and electron transfer dissociation to localize the site of O-GlcNAc attachment. The enrichment method was developed...

  19. Attachment of antimicrobial peptides to reverse osmosis membranes by Cu(i)-catalyzed 1,3-dipolar alkyne-azide cycloaddition

    NARCIS (Netherlands)

    Bodner, Elias J.; Kandiyote, Nitzan Shtreimer; Lutskiy, Marina Yamit; Albada, Bauke; Metzler-Nolte, Nils; Uhl, Wolfgang; Kasher, Roni; Arnusch, Christopher J.

    2016-01-01

    Biofilms are detrimental to many industrial systems that include reverse osmosis (RO) membranes. Accordingly, the development of surfaces with inherently bactericidal properties has attracted much research attention. Antimicrobial peptides (AMPs) have been shown to be potent antimicrobial and ant

  20. Soft Sensor Modeling of Alkynes Removal Distillation Tower Based on Gas Chromatograph%基于工业色谱仪的精馏脱炔烃塔软测量建模

    Institute of Scientific and Technical Information of China (English)

    储琴; 程明霄

    2010-01-01

    提出一种基于工业色谱仪的软测量建模方法,并针对碳五馏分分离过程中的精馏脱炔烃塔塔底成分估计问题,建立了合适的工业软测量模型.介绍了工业色谱仪在线质量检测原理和LM-BP神经网络模型的建立,并利用工业色谱仪在线检测的质量数据进行系统的在线和周期性模型更新,提高了软测量模型的在线估计精度.研究结果表明,基于工业色谱仪的LM-BP神经网络模型是一种有效的软测量建模方法.

  1. Cu(OAc)2/Pyrimidines-Catalyzed Cross-coupling Reactions of Aryl Iodides and Activated Aryl Bromides with Alkynes under Aerobic, Solvent-free and Palladium-free Conditions

    Institute of Scientific and Technical Information of China (English)

    XIE Ye-Xiang; DENG Chen-Liang; PI Shao-Feng; LI Jin-Heng; YIN Du-Lin

    2006-01-01

    Excellent results have been achieved in the Cu(OAc)2-catalyzed Sonogashira cross-couplings of aryl iodides and activated aryl bromides utilizing TBAF (tetrabutylammonium fluoride) as the base and 4,6-dimethoxypyrimidin-2-amine as the ligand. It is noteworthy that the reaction is conducted under aerobic, solvent-free and palladium-free conditions.

  2. Pedagogical Comparison of Five Reactions Performed under Microwave Heating in Multi-Mode versus Mono-Mode Ovens: Diels-Alder Cycloaddition, Wittig Salt Formation, E2 Dehydrohalogenation to Form an Alkyne, Williamson Ether Synthesis, and Fischer Esterification

    Science.gov (United States)

    Baar, Marsha R.; Gammerdinger, William; Leap, Jennifer; Morales, Erin; Shikora, Jonathan; Weber, Michael H.

    2014-01-01

    Five reactions were rate-accelerated relative to the standard reflux workup in both multi-mode and mono-mode microwave ovens, and the results were compared to determine whether the sequential processing of a mono-mode unit could provide for better lab logistics and pedagogy. Conditions were optimized so that yields matched in both types of…

  3. A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n,pi)-1(pi,pi) inversion.

    Science.gov (United States)

    Zhou, Zhen; Fahrni, Christoph J

    2004-07-28

    Chemoselective ligation reactions represent a powerful approach for labeling of proteins or small molecules in a biological environment. We report here a fluorogenic probe that is activated by click chemistry, a highly versatile bio-orthogonal and chemoselective ligation reaction which is based on the azide moiety as the functional group. The electron-donating properties of the triazole ring that is formed in the course of the coupling reaction was effectively utilized to modulate the fluorescence output of an electronically coupled coumarin fluorophore. Under physiological conditions the probe is essentially nonfluorescent and undergoes a bright emission enhancement upon ligation with an azide. Time-resolved emission spectroscopy and semiempirical quantum-mechanical calculations suggest that the fluorescence switching is due to an inversion of the energy ordering of the emissive 1(pi,pi*) and nonemissive 3(n,pi*) excited states. The rapid kinetics of the ligation reaction render the probe attractive for a wide range of applications in biology, analytical chemistry, or material science.

  4. Tandem "click" reactions at acetylene-terminated Si(100) monolayers.

    Science.gov (United States)

    Ciampi, Simone; James, Michael; Michaels, Pauline; Gooding, J Justin

    2011-06-07

    We demonstrate a simple method for coupling alkynes to alkynes. The method involves tandem azide-alkyne cycloaddition reactions ("click" chemistry) for the immobilization of 1-alkyne species onto an alkyne modified surface in a one-pot procedure. In the case presented, these reactions take place on a nonoxidized Si(100) surface although the approach is general for linking alkynes to alkynes. The applicability of the method in the preparation of electrically well-behaved functionalized surfaces is demonstrated by coupling an alkyne-tagged ferrocene species onto alkyne-terminated Si(100) surfaces. The utility of the approach in biotechnology is shown by constructing a DNA sensing interface by derivatization of the acetylenyl surface with commercially available alkyne-tagged oligonucleotides. Cyclic voltametry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and X-ray reflectometry are used to characterize the coupling reactions and performance of the final modified surfaces. These data show that this synthetic protocol gives chemically well-defined, electronically well-behaved, and robust (bio)functionalized monolayers on silicon semiconducting surfaces.

  5. Deconstructing selectivity in the gold-promoted cyclization of alkynyl benzothioamides to six-membered mesoionic carbene or acyclic carbene complexes

    KAUST Repository

    Vummaleti, Sai V. C.

    2014-05-02

    We demonstrate that the experimentally observed switch in selectivity from 5-exo-dig to 6-endo-dig cyclization of an alkynyl substrate, promoted by Au I and AuIII complexes, is connected to a switch from thermodynamic to kinetic reaction control. The AuIII center pushes alkyne coordination toward a single Au-C(alkyne) σ-bond, conferring carbocationic character (and reactivity) to the distal alkyne C atom. © 2014 American Chemical Society.

  6. A photolabile linker for the solid-phase synthesis of 4-substituted NH-1,2,3-triazoles

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Nielsen, Thomas Eiland

    2011-01-01

    A novel photolabile linker for solid-phase synthesis is presented. The linker displays an azido handle for copper-catalyzed azide–alkyne cycloaddition reactions with a variety of alkynes, remains intact under typical solid-phase reaction conditions, and enables a mild photolytic release of 4-subs......-substituted NH-triazoles in high purity and yield....

  7. Adhesion of Photon-Driven Molecular Motors to Surfaces via 1,3-Dipolar Cycloadditions : Effect of Interfacial Interactions on Molecular Motion

    NARCIS (Netherlands)

    Carroll, Gregory T.; London, Gabor; Fernández Landaluce, Tatiana; Rudolf, Petra; Feringa, Ben L.

    2011-01-01

    We report the attachment of altitudinal light-driven molecular motors to surfaces using 1,3-dipolar cycloaddition reactions. Molecular motors were designed containing azide or alkyne groups for attachment to alkyne- or azide-modified surfaces. Surface attachment was characterized by UV-vis, IR, XPS,

  8. Enantioselective Nickel-Catalyzed anti-Carbometallative Cyclizations of Alkynyl Electrophiles Enabled by Reversible Alkenylnickel E/Z Isomerization

    Science.gov (United States)

    2016-01-01

    Nickel-catalyzed additions of arylboronic acids to alkynes, followed by enantioselective cyclizations of the alkenylnickel species onto tethered ketones or enones, are reported. These reactions are reliant upon the formal anti-carbonickelation of the alkyne, which is postulated to occur by the reversible E/Z isomerization of an alkenylnickel species. PMID:27333360

  9. Sonogashira Coupling Reaction with Palladium Powder and Potassium Fluoride in Methanol

    Institute of Scientific and Technical Information of China (English)

    王磊; 李品华

    2003-01-01

    A Sonogashira coupling reaction of aromatic halides with terminal alkynes in the presence of palladium powder,potassium fluoride,cuprous iodide and triphenylphosphine in methanol,giving the corresponding coupling products aryl alkynes in good to excellent yiekls,was investigated.

  10. Facile Rh(III)-Catalyzed Synthesis of Fluorinated Pyridines

    Science.gov (United States)

    Chen, Shuming; Bergman, Robert G.; Ellman, Jonathan A.

    2015-01-01

    A Rh(III)-catalyzed C–H functionalization approach was developed for the preparation of multi-substituted 3-fluoropyridines from α-fluoro-α,β-unsaturated oximes and alkynes. Oximes substituted with aryl, heteroaryl and alkyl β-substituents were effective coupling partners, as were symmetrical and unsymmetrical alkynes with aryl and alkyl substituents. The first examples of coupling α,β-unsaturated oximes with terminal alkynes was also demonstrated and proceeded with uniformly high regioselectivity to provide single 3-fluoropyridine regioisomers. Reactions were also conveniently set up in air on the bench top. PMID:25992591

  11. Clickable Polymeric Coating for Oriented Peptide Immobilization.

    Science.gov (United States)

    Sola, Laura; Gori, Alessandro; Cretich, Marina; Finetti, Chiara; Zilio, Caterina; Chiari, Marcella

    2016-01-01

    A new methodology for the fabrication of an high-performance peptide microarray is reported, combining the higher sensitivity of a layered Si-SiO2 substrate with the oriented immobilization of peptides using a N,N-dimethylacrylamide-based polymeric coating that contains alkyne monomers as functional groups. This clickable polymer allows the oriented attachment of azido-modified peptides via a copper-mediated azide/alkyne cycloaddition. A similar coating that does not contain the alkyne functionality has been used as comparison, to demonstrate the importance of a proper orientation for facilitating the probe recognition and interaction with the target antibody.

  12. Room-temperature decarboxylative alkynylation of carboxylic acids using photoredox catalysis and EBX reagents.

    Science.gov (United States)

    Le Vaillant, Franck; Courant, Thibaut; Waser, Jerome

    2015-09-14

    Alkynes are used as building blocks in synthetic and medicinal chemistry, chemical biology, and materials science. Therefore, efficient methods for their synthesis are the subject of intensive research. Herein, we report the direct synthesis of alkynes from readily available carboxylic acids at room temperature under visible-light irradiation. The combination of an iridium photocatalyst with ethynylbenziodoxolone (EBX) reagents allowed the decarboxylative alkynylation of carboxylic acids in good yields under mild conditions. The method could be applied to silyl-, aryl-, and alkyl- substituted alkynes. It was particularly successful in the case of α-amino and α-oxo acids derived from biomass.

  13. Metal-organic framework materials with ultrahigh surface areas

    Energy Technology Data Exchange (ETDEWEB)

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  14. Synthesis of aryl-1H-1,2,3-triazoles via 1,3-dipolar cycloaddition

    Directory of Open Access Journals (Sweden)

    Wagner O. Valença

    2012-06-01

    Full Text Available A series of Aryl-1H-1,2,3-triazoles were prepared from the reaction between aril-azide (1 with 1.5 equiv. of terminal alkynes (2a-o. The reactions carried out at room temperature and in the presence of CuI (10 mol% in acetonitrile. The compounds (3a-o were obtained in moderate-to-good yields (50-94%. In general, not was observed significant inductive effect on the reactivity of the alkynes (2a-f. The alcohol alkynes (2i-k showed moderate yields 50-72%. On the other hand, the reaction with alkyl alkynes (2m,n furnished the compounds (3m and (3n in excellent yields of 89% and 90%, respectively.

  15. Synthesis, Thermal Processing, and Thin Film Morphology of Poly(3-hexylthiophene)-Poly(styrenesulfonate) Block Copolymers

    NARCIS (Netherlands)

    Erothu, Harikrishna; Kolomanska, Joanna; Johnston, Priscilla; Schumann, Stefan; Deribew, Dargie; Toolan, Daniel T. W.; Gregori, Alberto; Dagron-Lartigau, Christine; Portale, Giuseppe; Bras, Wim; Arnold, Thomas; Distler, Andreas; Hiorns, Roger C.; Mokarian-Tabari, Parvaneh; Collins, Timothy W.; Howse, Jonathan R.; Topham, Paul D.

    2015-01-01

    A series of novel block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry. This

  16. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.;

    2011-01-01

    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwaveassisted metal cat...

  17. New conjunctive reagents as cross-coupling partners en route to retinoid-like polyenes.

    Science.gov (United States)

    Lipshutz, Bruce H; Clososki, Giuliano C; Chrisman, Will; Chung, David W; Ball, David B; Howell, Jennifer

    2005-10-13

    [structure: see text] New conjunctive reagents E-2 and Z-3 can be used, after transmetalation, in Negishi couplings with vinyl and aryl iodides. The subsequently unmasked terminal alkynes can be further manipulated to arrive at retinoid-like products.

  18. Luminescent Lariat Aza-Crown Ether

    Directory of Open Access Journals (Sweden)

    Burkhard König

    2010-03-01

    Full Text Available Lariat ethers are interesting recognition motifs in supramolecular chemistry. The synthesis of a luminescent lariat ether with triglycol chain by azide–alkyne (Huisgen cycloaddition is presented.

  19. A versatile method for the preparation of conjugates of peptides with DNA/PNA/analog by employing chemo-selective click reaction in water

    Science.gov (United States)

    Gogoi, Khirud; Mane, Meenakshi V.; Kunte, Sunita S.; Kumar, Vaijayanti A.

    2007-01-01

    The specific 1,3 dipolar Hüisgen cycloaddition reaction known as ‘click-reaction’ between azide and alkyne groups is employed for the synthesis of peptide–oligonucleotide conjugates. The peptide nucleic acids (PNA)/DNA and peptides may be appended either by azide or alkyne groups. The cycloaddition reaction between the azide and alkyne appended substrates allows the synthesis of the desired conjugates in high purity and yields irrespective of the sequence and functional groups on either of the two substrates. The versatile approach could also be employed to generate the conjugates of peptides with thioacetamido nucleic acid (TANA) analog. The click reaction is catalyzed by Cu (I) in either water or in organic medium. In water, ∼3-fold excess of the peptide-alkyne/azide drives the reaction to completion in 2 h with no side products. PMID:17981837

  20. Copper-mediated electrophilic imination of alkenylzirconocenes with O-benzoyl ketoximes and aldoximes.

    Science.gov (United States)

    Liu, Hailan; Yan, Xiaoyu; Chen, Chao; Liu, Qingbin; Xi, Chanjuan

    2013-06-18

    Copper-mediated electrophilic imination of alkenylzirconocenes generated in situ from alkynes and zirconocenes is accomplished under mild reaction conditions. The reaction can be used to prepare various 2-azadienes.

  1. Synthesis of α-methylene-δ-oxo-γ-amino esters via Rh(ii)-catalyzed coupling of 1-sulfonyl-1,2,3-triazoles with Morita-Baylis-Hillman adducts.

    Science.gov (United States)

    Jeon, Hyun Ji; Kwak, Mi Soo; Jung, Da Jung; Bouffard, Jean; Lee, Sang-Gi

    2016-11-29

    A rhodium(ii)-catalyzed coupling of 1-sulfonyl-1,2,3-triazoles, prepared from 1-alkynes and sulfonyl azides, with Morita-Baylis-Hillman (MBH) adducts afforded highly functionalized α-methylene-δ-oxo-γ-amino esters in excellent yields with broad functional group tolerance. This transformation can also be successfully accomplished as a multicomponent all-in-one-pot reaction of 1-alkynes, sulfonyl azides and MBH adducts in the presence of Cu(i) and Rh(ii) catalysts.

  2. "Clickable" LNA/DNA probes for fluorescence sensing of nucleic acids and autoimmune antibodies

    DEFF Research Database (Denmark)

    Jørgensen, Anna S; Gupta, Pankaj; Wengel, Jesper;

    2013-01-01

    Herein we describe fluorescent oligonucleotides prepared by click chemistry between novel alkyne-modified locked nucleic acid (LNA) strands and a series of fluorescent azides for homogeneous (all-in-solution) detection of nucleic acids and autoimmune antibodies.......Herein we describe fluorescent oligonucleotides prepared by click chemistry between novel alkyne-modified locked nucleic acid (LNA) strands and a series of fluorescent azides for homogeneous (all-in-solution) detection of nucleic acids and autoimmune antibodies....

  3. Exploring architectures displaying multimeric presentations of a trihydroxypiperidine iminosugar

    Directory of Open Access Journals (Sweden)

    Camilla Matassini

    2015-12-01

    Full Text Available The synthesis of new multivalent architectures based on a trihydroxypiperidine α-fucosidase inhibitor is reported herein. Tetravalent and nonavalent dendrimers were obtained by means of the click chemistry approach involving the copper azide-alkyne-catalyzed cycloaddition (CuAAC between suitable scaffolds bearing terminal alkyne moieties and an azido-functionalized piperidine as the bioactive moiety. A preliminary biological investigation is also reported towards commercially available and human glycosidases.

  4. Di(1-benzo[][1,2,3]triazol-1-yl)methane: An efficient ligand for copper and amine-free palladium-catalysed Sonogashira coupling reaction

    Indian Academy of Sciences (India)

    Jaspal Singh; Akhilesh Kumar Verma

    2011-11-01

    An efficient Pd-catalysed Sonogashira coupling reaction was achieved in the absence of copper and amine with inorganic base using phosphene-free, air stable di(1-benzo[][1,2,3]triazol-1-yl)methane as ligand. The cross coupling of electron-rich, electron-defficient and hindered aryl halides with terminal alkynes afforded the internal alkynes in good to excellent yields.

  5. La synthèse et l'évaluation cytotoxicité de dérivées triazolic contre des lignes de cellule de mélanome B16 et une méthodologie étudient sur la synthèse d'éthers propargyl de leur correspondance propargyl des esters sans catalyseur et sous des irradiations à micro-ondes

    OpenAIRE

    Kalhor Monfared, Shiva,

    2014-01-01

    Medicinal chemistry is the application of chemical research techniques to the synthesis of pharmaceuticals. During this PhD project, we tried to synthesize small molecules based on terminal alkyne and propargyl alcohols. These molecules were prepared by departing from a simple aldehyde and by doing reactions like Bestmann-Ohira in order to prepare terminal alkynes or reaction with ethynylmagnesium bromide to prepare propargyl alcoholsB. These prepared small molecules were then subjected into ...

  6. Phase-vanishing method with acetylene evolution and its utilization in several organic syntheses.

    Science.gov (United States)

    Matake, Ryosuke; Niwa, Yuki; Matsubara, Hiroshi

    2015-05-15

    A novel quadraphasic phase-vanishing system in which acetylene is evolved from calcium carbide and directly applied in situ to the Sonogashira coupling reaction was developed. This method, which provides a safe, convenient, and one-pot means to utilize gaseous reagents without special equipment, was also applied to a Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and a three-component aldehyde-alkyne-amine (A(3)) coupling reaction with excellent results.

  7. Adsorption of small hydrocarbons on rutile TiO2(110)

    Science.gov (United States)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnálek, Zdenek

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find that the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~ 1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  8. Effective click construction of bridged- and spiro-multicyclic polymer topologies with tailored cyclic prepolymers (kyklo-telechelics).

    Science.gov (United States)

    Sugai, Naoto; Heguri, Hiroyuki; Ohta, Kengo; Meng, Qingyuan; Yamamoto, Takuya; Tezuka, Yasuyuki

    2010-10-27

    An alkyne-azide addition, i.e., click, reaction in conjunction with an electrostatic self-assembly and covalent fixation (ESA-CF) process has been demonstrated to effectively construct a variety of unprecedented multicyclic polymer topologies. A series of single cyclic poly(tetrahydrofuran), poly(THF), precursors having an alkyne group (Ia), an azide group (Ib), two alkyne groups at the opposite positions (Ic), and an alkyne group and an azide group at the opposite positions (Id) have been prepared by the ESA-CF process. Moreover, a bicyclic 8-shaped precursor having two alkyne groups at the opposite positions (Ie) was synthesized. The subsequent click reaction of Ia with linear (IIa) and three-armed star (IIb) telechelic precursors having azide groups has been performed to construct bridged-type two-way (IIIa) and three-way (IIIb) paddle-shaped polymer topologies, respectively. Likewise, spiro-type tandem tricyclic (IVa) and tetracyclic (IVb) topologies resulted from Ib/Ic and Ib/Ie, respectively. Furthermore, three types of multicyclic topologies that are composed of repeating ring (Va), alternating ring/linear (Vb), and alternating ring/star (Vc) units have been synthesized from Id, Ic/IIa, and Ic/IIb, respectively.

  9. Adsorption of small hydrocarbons on rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnálek, Zdenek

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes with 1 - 4 carbon atoms of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of an additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  10. General method for labeling siRNA by click chemistry with fluorine-18 for the purpose of PET imaging.

    Science.gov (United States)

    Mercier, Frédéric; Paris, Jérôme; Kaisin, Geoffroy; Thonon, David; Flagothier, Jessica; Teller, Nathalie; Lemaire, Christian; Luxen, André

    2011-01-19

    The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click-type reaction, was used to label a double-stranded oligonucleotide (siRNA) with fluorine-18. An alkyne solid support CPG for the preparation of monostranded oligonucleotides functionalized with alkyne has been developed. Two complementary azide labeling agents (1-(azidomethyl)-4-[(18)F]fluorobenzene) and 1-azido-4-(3-[(18)F]fluoropropoxy)benzene have been produced with 41% and 35% radiochemical yields (decay-corrected), respectively. After annealing with the complementary strand, the siRNA was directly labeled by click chemistry with [(18)F]fluoroazide to produce the [(18)F]-radiolabeled siRNA with excellent radiochemical yield and purity.

  11. Conductive Polymer Functionalization by Click Chemistry

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hvilsted, Søren; Hansen, Thomas Steen;

    2008-01-01

    , with reaction times of '"'-'20 h. The applicability of the method is illustrated by coupling of two other alkynes: a short chain fluorocarbon and a MPEG 5000 to the conductive polymer; this alters the advancing water contact angle of the surface by +20° and -20°/-25°, respectively. The targeted chemical surface......Click chemistry is used to obtain new conductive polymer films based on poly(3,4-ethylenedioxythiophene) (PEDOT) from a new azide functional monomer. Postpolymerization, 1,3-dipolar cycloadditions in DMF, using a catalyst system of CUS04 and sodium ascorbate, and different alkynes are performed...... to functionalize films of PEDOT-N3 and copolymers prepared from EDOT-N3 and 3,4-ethylenedioxythiophene (EDOT). This approach enables new functionalities on PEDOT that could otherwise not withstand the polymerization conditions. Reactions on the thin polymer films have been optimized using an alkynated fluorophore...

  12. Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition.

    Science.gov (United States)

    Arrowsmith, Merle; Böhnke, Julian; Braunschweig, Holger; Celik, Mehmet Ali; Claes, Christina; Ewing, William C; Krummenacher, Ivo; Lubitz, Katharina; Schneider, Christoph

    2016-09-05

    Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaromatic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron-boron multiple bonds under ambient conditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6 π-aromatic diborabenzene compound, a 2 π-aromatic triplet biradical 1,3-diborete, and a phosphine-stabilized 2 π-homoaromatic 1,3-dihydro-1,3-diborete. DFT calculations suggest that all three compounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C6 H6 and C4 H4 (2+) , and homoaromatic C4 H5 (+) .

  13. Click Chemistry Immobilization of Antibodies on Polymer Coated Gold Nanoparticles.

    Science.gov (United States)

    Finetti, Chiara; Sola, Laura; Pezzullo, Margherita; Prosperi, Davide; Colombo, Miriam; Riva, Benedetta; Avvakumova, Svetlana; Morasso, Carlo; Picciolini, Silvia; Chiari, Marcella

    2016-07-26

    The goal of this work is to develop an innovative approach for the coating of gold nanoparticles (AuNPs) with a synthetic functional copolymer. This stable coating with a thickness of few nanometers provides, at the same time, stabilization and functionalization of the particles. The polymeric coating consists of a backbone of polydimethylacrylamide (DMA) functionalized with an alkyne monomer that allows the binding of azido modified molecules by Cu(I)-catalyzed azide/alkyne 1,3-dipolar cycloaddition (CuAAC, click chemistry). The thin polymer layer on the surface stabilizes the colloidal suspension whereas the alkyne functions pending from the backbone are available for the reaction with azido-modified proteins. The reactivity of the coating is demonstrated by immobilizing an azido modified anti-mouse IgG antibody on the particle surface. This approach for the covalent binding of antibody to a gold-NPs is applied to the development of gold labels in biosensing techniques.

  14. Porous polymers based on aryleneethynylene building blocks.

    Science.gov (United States)

    Bunz, Uwe H F; Seehafer, Kai; Geyer, Florian L; Bender, Markus; Braun, Ingo; Smarsly, Emanuel; Freudenberg, Jan

    2014-09-01

    Porous conjugated polymers are synthesized by metal-catalyzed coupling reactions. The progress for porous polymers when planar or tetrahedral building blocks are connected by alkyne units into novel materials is highlighted. The most prominent reaction for the buildup of the microporous alkyne-bridged polymers is the Sonogashira reaction, connecting alkynes to aromatic iodides or bromides. The availability of the building blocks and the potency of the Sonogashira reaction allow preparing a large variety of intrinsically porous polymeric materials, in which rigid struts connect multipronged centers. The microporous polymers are used as catalysts and as storage materials for gases and sensors. Postfunctionalization schemes, understanding of structure-property relationships, and the quest for high porosity are pertinent.

  15. σ- versus π-Activation of Alkynyl Benzoates Using B(C6F53

    Directory of Open Access Journals (Sweden)

    Alexander Bähr

    2015-03-01

    Full Text Available We have prepared a range of alkynyl benzoates in high yields and have investigated their reactivities with the strong Lewis acid B(C6F53. In such molecules both σ-activation of the carbonyl and π-activation of the alkyne are possible. In contrast to the reactivity of propargyl esters with B(C6F53 which proceed via 1,2-addition of the ester and B(C6F53 across the alkyne, the inclusion of an additional CH2 spacer switches off the intramolecular cyclization and selective σ-activation of the carbonyl group is observed through adduct formation. This change in reactivity appears due to the instability of the species which would be formed through B(C6F53 activation of the alkyne.

  16. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.

  17. 乙炔提浓装置高级炔管线堵塞原因浅析%Analysis on causes of higher acetylene pipe blocking of acetylene concentration system

    Institute of Scientific and Technical Information of China (English)

    谢全兵

    2011-01-01

    Causes of higher alkyne pipe blocking of acetylene concentration system in the natural gas-based acetylene production plant were found out by analyzing higher alkyne gas component concentration variation. Corresponding measures were proposed to prevent higher alkyne polymerization in the pipe and thus prolong the equipment operation cycle.%通过对高级炔气体组分含量变化进行分析,找出天然气制乙炔装置乙炔浓缩系统高级炔管线堵塞的原因,并提出了防止高级炔气体在管线内聚合、延长装置运行周期的措施.

  18. A clickable UTP analog for the posttranscriptional chemical labeling and imaging of RNA.

    Science.gov (United States)

    Sawant, Anupam A; Mukherjee, Progya P; Jangid, Rahul K; Galande, Sanjeev; Srivatsan, Seergazhi G

    2016-06-28

    The development of robust tools and practical RNA labeling strategies that would facilitate the biophysical analysis of RNA in both cell-free and cellular systems will have profound implications in the discovery of new RNA diagnostic tools and therapeutic strategies. In this context, we describe the development of a new alkyne-modified UTP analog, 5-(1,7-octadinyl)uridine triphosphate (ODUTP), which serves as an efficient substrate for the introduction of a clickable alkyne label into RNA transcripts by bacteriophage T7 RNA polymerase and mammalian cellular RNA polymerases. The ODU-labeled RNA is effectively used by reverse transcriptase to produce cDNA, a property which could be utilized in expanding the chemical space of a RNA library in the aptamer selection scheme. Further, the alkyne label on RNA provides a convenient tool for the posttranscriptional chemical functionalization with a variety of biophysical tags (fluorescent, affinity, amino acid and sugar) by using alkyne-azide cycloaddition reaction. Importantly, the ability of endogenous RNA polymerases to specifically incorporate ODUTP into cellular RNA transcripts enabled the visualization of newly transcribing RNA in cells by microscopy using click reactions. In addition to a clickable alkyne group, ODU contains a Raman scattering label (internal disubstituted alkyne), which exhibits characteristic Raman shifts that fall in the Raman-silent region of cells. Our results indicate that an ODU label could potentially facilitate two-channel visualization of RNA in cells by using click chemistry and Raman spectroscopy. Taken together, ODU represents a multipurpose ribonucleoside tool, which is expected to provide new avenues to study RNA in cell-free and cellular systems.

  19. A generic strategy for co-presentation of heparin-binding growth factors based on CVD polymerization.

    Science.gov (United States)

    Deng, Xiaopei; Lahann, Joerg

    2012-09-14

    A multifunctional copolymer with both aldehyde and alkyne groups is synthesized by chemical vapor deposition (CVD) for orthogonal co-immobilization of biomolecules. Surface analytical methods including FTIR and XPS are used to confirm the surface modification. Heparin-binding growth factors [basic fibroblast growth factor (bFGF) in this study] can be immobilized through interaction with heparin, which was covalently attached to the CVD surface through an aldehyde-hydrazide reaction. In parallel, an alkyne-azide reaction is used to orthogonally co-immobilize an adhesion peptide as the second biomolecule.

  20. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA-Protein Cross-Linking.

    Science.gov (United States)

    Dadová, Jitka; Vrábel, Milan; Adámik, Matej; Brázdová, Marie; Pohl, Radek; Fojta, Miroslav; Hocek, Michal

    2015-11-01

    N-(3-Azidopropyl)vinylsulfonamide was developed as a new bifunctional bioconjugation reagent suitable for the cross-linking of biomolecules through copper(I)-catalyzed azide-alkyne cycloaddition and thiol Michael addition reactions under biorthogonal conditions. The reagent is easily clicked to an acetylene-containing DNA or protein and then reacts with cysteine-containing peptides or proteins to form covalent cross-links. Several examples of bioconjugations of ethynyl- or octadiynyl-modified DNA with peptides, p53 protein, or alkyne-modified human carbonic anhydrase with peptides are given.

  1. Synthesis and Fluorescence Spectra of Triazolylcoumarin Fluorescent Dyes

    Institute of Scientific and Technical Information of China (English)

    PENG Xian-fu; LI Hong-qi

    2009-01-01

    Much attention is devoted to fluorescent dyes especially those with potential in versatile applications. Reactions under "click" conditions between nonfluorescent 3 - azidocoumarins and terminal alkynes produced 3 -(1, 2, 3- triazol- 1 - yl)cournarins, a novel type of fluorescent dyes with intense fluorescence. The structures of the new coumarins were characterized by 1H NMR, MS, and IR spectra. Fluorescence spectra measurement demonstrated excellent fluorescence performance of the triazolylcoumarins and this click reaction is a promising candidate for bioconjugation and bioimaging applications since both azide and alkynes are quite inert to biological systems.

  2. Direct Light-up of cAMP Derivatives in Living Cells by Click Reactions

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2013-10-01

    Full Text Available 8-Azidoadenosine 3′,5′-cyclic monophosphate (8-azido cAMP was directly detected in living cells, by applying Cu-free azide-alkyne cycloaddition to probe cAMP derivatives by fluorescence light-up. Fluorescence emission was generated by two non-fluorescent molecules, 8-azido cAMP as a model target and difluorinated cyclooctyne (DIFO reagent as a probe. The azide-alkyne cycloaddition reaction between 8-azido cAMP and DIFO induces fluorescence in 8-azido cAMP. The fluorescence emission serves as a way to probe 8-azido cAMP in cells.

  3. Orthogonally bifunctionalised polyacrylamide nanoparticles: a support for the assembly of multifunctional nanodevices

    Science.gov (United States)

    Giuntini, F.; Dumoulin, F.; Daly, R.; Ahsen, V.; Scanlan, E. M.; Lavado, A. S. P.; Aylott, J. W.; Rosser, G. A.; Beeby, A.; Boyle, R. W.

    2012-03-01

    Polyacrylamide nanoparticles bearing two orthogonal reactive functionalities were prepared by reverse microemulsion polymerisation. Water-soluble photosensitisers and peptide or carbohydrate moieties were sequentially attached to the new nanospecies by orthogonal conjugations based on copper-catalysed azide-alkyne cycloaddition and isothiocyanate chemistry.Polyacrylamide nanoparticles bearing two orthogonal reactive functionalities were prepared by reverse microemulsion polymerisation. Water-soluble photosensitisers and peptide or carbohydrate moieties were sequentially attached to the new nanospecies by orthogonal conjugations based on copper-catalysed azide-alkyne cycloaddition and isothiocyanate chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11947a

  4. Synthesis of Highly Stable 1,3-Diaryl-1H-1,2,3-triazol-5-ylidenes and their Applications in Ruthenium-Catalyzed Olefin Metathesis

    Science.gov (United States)

    Bouffard, Jean; Keitz, Benjamin K.; Tonner, Ralf; Lavallo, Vincent; Guisado-Barrios, Gregorio; Frenking, Gernot

    2011-01-01

    The formal cycloaddition between 1,3-diaza-2-azoniaallene salts and alkynes or alkyne equivalents provides an efficient synthesis of 1,3-diaryl-1H-1,2,3-triazolium salts, the direct precursors of 1,2,3-triazol-5-ylidenes. These N,N-diarylated mesoionic carbenes (MICs) exhibit enhanced stability in comparison to their alkylated counterparts. Experimental and computational results confirm that these MICs act as strongly electron-donating ligands. Their increased stability allows for the preparation of ruthenium olefin metathesis catalysts that are efficient in both ring-opening and ring-closing reactions. PMID:21572542

  5. Synthesis of alpha-tetrasubstituted triazoles by copper-catalyzed silyl deprotection/azide cycloaddition

    Directory of Open Access Journals (Sweden)

    Zachary L. Palchak

    2015-08-01

    Full Text Available Propargylamines are popular substrates for triazole formation, but tetrasubstituted variants have required multistep syntheses involving stoichiometric amounts of metal. A recent cyclohexanone–amine–silylacetylene coupling forms silyl-protected tetrasubstituted propargylamines in a single copper-catalyzed step. The development of the tandem silyl deprotection–triazole formation reported herein offers rapid access to alpha-tetrasubstituted triazoles. A streamlined two-step approach to this uncommon class of hindered triazoles will accelerate exploration of their therapeutic potential. The superior activity of copper(II triflate in the formation of triazoles from sensitive alkyne substrates extends to simple terminal alkynes.

  6. Synthesis of anionic phosphorus-containing heterocycles by intramolecular cyclizations involving N-functionalized phosphinecarboxamides.

    Science.gov (United States)

    Robinson, Thomas P; Goicoechea, Jose M

    2015-04-07

    We report that the 2-phosphaethynolate anion (PCO(-)) reacts with propargylamines in the presence of a proton source to afford novel N-derivatized phosphinecarboxamides bearing alkyne functionalities. Deprotonation of these species gives rise to novel five- and six-membered anionic heterocycles resulting from intramolecular nucleophilic attack of the resulting phosphide at the alkyne functionality (via 5-exo-dig or 6-endo-dig cyclizations, respectively). The nature of the substituents on the phosphinecarboxamide can be used to influence the outcome of these reactions. This strategy represents a unique approach to phosphorus-containing heterocylic systems that are closely related to known organic molecules with interesting bio-active properties.

  7. Copper-chelating azides for efficient click conjugation reactions in complex media.

    Science.gov (United States)

    Bevilacqua, Valentina; King, Mathias; Chaumontet, Manon; Nothisen, Marc; Gabillet, Sandra; Buisson, David; Puente, Céline; Wagner, Alain; Taran, Frédéric

    2014-06-02

    The concept of chelation-assisted copper catalysis was employed for the development of new azides that display unprecedented reactivity in the copper(I)-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) reaction. Azides that bear strong copper-chelating moieties were synthesized; these functional groups allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. Efficient ligation occurred at low concentration and in complex media with only one equivalent of copper, which improves the biocompatibility of the CuAAC reaction. Furthermore, such a click reaction allowed the localization of a bioactive compound inside living cells by fluorescence measurements.

  8. Synthesis of 3,4-dihydro-1,8-naphthyridin-2(1H-ones via microwave-activated inverse electron-demand Diels–Alder reactions

    Directory of Open Access Journals (Sweden)

    Salah Fadel

    2014-01-01

    Full Text Available Substituted 3,4-dihydro-1,8-naphthyridin-2(1H-ones have been synthesized with the inverse electron-demand Diels–Alder reaction from 1,2,4-triazines bearing an acylamino group with a terminal alkyne side chain. Alkynes were first subjected to the Sonogashira cross-coupling reaction with aryl halides, the product of which then underwent an intramolecular inverse electron-demand Diels–Alder reaction to yield 5-aryl-3,4-dihydro-1,8-naphthyridin-2(1H-ones by an efficient synthetic route.

  9. Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Step.

    Science.gov (United States)

    Jayakumar, Jayachandran; Cheng, Chien-Hong

    2016-01-26

    A one-pot reaction of substituted benzaldehydes with alkyne-amines by a Rh-catalyzed C-H activation and annulation to afford various natural and unnatural protoberberine alkaloids is reported. This reaction provides a convenient route for the generation of a compound library of protoberberine salts, which recently have attracted great attention because of their diverse biological activities. In addition, pyridinium salt derivatives can also be formed in good yields from α,β-unsaturated aldehydes and amino-alkynes. This reaction proceeds with excellent regioselectivity and good functional group compatibility under mild reaction conditions by using O2 as the oxidant.

  10. One-pot synthesis of Au@SiO2 catalysts: A click chemistry approach

    KAUST Repository

    Solovyeva, Vera A.

    2014-10-13

    Using the copper-catalyzed azide-alkyne cycloaddition "click" reaction, a library of triazole amphiphiles with a variety of functional polar "heads" and hydrophobic or superhydrophobic "tails" was synthesized. The amphiphiles were evaluated for their ability to stabilize small Au nanoparticles, and, at the same time, serve as templates for nanocasting porous SiO2. One of the Au@SiO2 materials thus prepared was found to be a highly active catalyst for the Au nanoparticle-catalyzed regioselective hydroamination of alkynes.

  11. Highly efficient and eco-friendly gold-catalyzed synthesis of homoallylic ketones

    KAUST Repository

    Gómez-Suárez, Adrián

    2014-08-01

    We report a new catalytic protocol for the synthesis of γ,δ-unsaturated carbonyl units from simple starting materials, allylic alcohols and alkynes, via a hydroxalkoxylation/Claisen rearrangement sequence. This new process is more efficient (higher TON and TOF) and more eco-friendly (increased mass efficiency) than the previous state-of-the-art technique. In addition, this method tolerates both terminal and internal alkynes. Moreover, computational studies have been carried out in order to shed light on how the Claisen rearrangement is initiated. © 2014 American Chemical Society.

  12. One-step ligand exchange reaction as an efficient way for functionalization of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mrowczynski, Radoslaw [Humboldt-University Berlin, Department of Chemistry (Germany); Rednic, Lidia; Turcu, Rodica [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania); Liebscher, Juergen, E-mail: liebscher@chemie.hu-berlin.de [Humboldt-University Berlin, Department of Chemistry (Germany)

    2012-07-15

    Novel magnetic Fe{sub 3}O{sub 4} nanoparticles (NPs) covered by one layer of functionalized fatty acids, bearing entities (Hayashi catalyst, biotin, quinine, proline, and galactose) of high interest for practical application in nanomedicine or organocatalysis, were synthesized. The functionalized fatty acids were obtained by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) of azido fatty acids with alkynes. All the magnetic NPs show superparamagnetic behavior with high values of magnetization and high colloidal stability in DCM solution.

  13. Synthesis of functional acetylene derivatives from calcium carbide.

    Science.gov (United States)

    Lin, Zhewang; Yu, Dingyi; Sum, Yin Ngai; Zhang, Yugen

    2012-04-01

    AHA Erlebnis: CaC(2), used to produce acetylene until several decades ago, is re-emerging as a cheap, sustainable resource synthesized from coal and lignocellulosic biomass. We report efficient catalytic protocols for the synthesis of functional acetylene derivatives from CaC(2) through aldehyde, alkyne, and amine (AAA) as well as alkyne, haloalkane, and amine (AHA) couplings, and in addition demonstrate its use in click and Sonogashira chemistry, showing that calcium carbide is a sustainable and cost-efficient carbon source.

  14. Pyridine N-Oxide vs Pyridine Substrates for Rh(III)-Catalyzed Oxidative C-H Bond Functionalization.

    Science.gov (United States)

    Neufeldt, Sharon R; Jiménez-Osés, Gonzalo; Huckins, John R; Thiel, Oliver R; Houk, K N

    2015-08-12

    The origin of the high reactivity and site selectivity of pyridine N-oxide substrates in O-pivaloyl hydroxamic acid-directed Rh(III)-catalyzed (4+2) annulation reactions with alkynes was investigated computationally. The reactions of the analogous pyridine derivatives were previously reported to be slower and to display poor site selectivity for functionalization of the C(2)-H vs the C(4)-H bonds of the pyridine ring. The N-oxide substrates are found to be more reactive overall because the directing group interacts more strongly with Rh. For N-oxide substrates, alkyne insertion is rate-limiting and selectivity-determining in the reaction with a dialkyl alkyne, but C-H activation can be selectivity-determining with other coupling partners such as terminal alkynes. The rates of reaction with a dialkyl alkyne at the two sites of a pyridine substrate are limited by two different steps: C-H activation is limiting for C(2)-functionalization, while alkyne insertion is limiting for C(4)-functionalization. Consistent with the observed poor site selectivity in the reaction of a pyridine substrate, the overall energy barriers for functionalization of the two positions are nearly identical. High C(2)-selectivity in the C-H activation step of the reaction of the N-oxide is due to a cooperative effect of the C-H Brønsted acidity, the strength of the forming C-Rh bond, and intramolecular electrostatic interactions between the [Rh]Cp* and the heteroaryl moieties. On the other hand, some of these forces are in opposition in the case of the pyridine substrate, and C(4)-H activation is moderately favored overall. The alkyne insertion step is favored at C(2) over C(4) for both substrates, and this preference is largely influenced by electrostatic interactions between the alkyne and the heteroarene. Experimental results that support these calculations, including kinetic isotope effect studies, H/D exchange studies, and results using a substituted pyridine, are also described.

  15. Pd-NHC-Catalyzed Alkynylation of General Aryl Sulfides with Alkynyl Grignard Reagents.

    Science.gov (United States)

    Baralle, Alexandre; Yorimitsu, Hideki; Osuka, Atsuhiro

    2016-07-25

    Cross-coupling reactions of unactivated aryl sulfides with alkynylmagnesium chloride have been invented to afford 1-aryl-1-alkynes with the aid of a palladium/N-heterocyclic carbene complex. This reaction has by far the widest scope of all transformations utilizing aryl sulfides and alkynes, while known cross-coupling alkynylations of aryl-sulfur electrophiles require activated azaaryl sulfides, thiolactams, or arenesulfonyl chlorides. The alkynylation of aryl sulfides is compatible with typical protecting functional groups. The alkynylation is applied to the synthesis of benzofuran-based fluorescent molecules by taking advantage of characteristic organosulfur chemistry.

  16. Using Molecular Modeling to Understand Some of the More Subtle Aspects of Aromaticity and Antiaromaticity

    Science.gov (United States)

    Box, Vernon G. S.

    2011-01-01

    pi-Electron delocalization exerts one of the most significant structure or energy influences in organic chemistry. Apart from determining the shapes of alkenes and alkynes, the planarity of aromatic molecules is a hallmark of pi-electron delocalization. Huckel's rules for aromaticity are easily applied in the teaching of undergraduates, but…

  17. Ruthenium(II)-catalyzed synthesis of pyrrole- and indole-fused isocoumarins by C-H bond activation in DMF and water

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Sawant, S.G.; Dixneuf, P

    -pot synthesis of pyrrole- and indole-fused isocoumarins from simple 1-methylpyrrole-2-carboxylic acid and 1-methylindole-3-carboxylic acid by annulation with alkynes in the presence of a ruthenium(II) catalyst based on [RuCl2(p-cymene)]2

  18. Direct Syn Addition of Two Silicon Atoms to a C≡C Triple Bond by Si-Si Bond Activation: Access to Reactive Disilylated Olefins.

    Science.gov (United States)

    Ahmad, Maha; Gaumont, Annie-Claude; Durandetti, Muriel; Maddaluno, Jacques

    2017-02-20

    A catalytic intramolecular silapalladation of alkynes affords, in good yields and stereoselectively, syn-disilylated heterocycles of different chemical structure and size. When applied to silylethers, this reaction leads to vinylic silanols that undergo a rhodium-catalyzed addition to activated olefins, providing the oxa-Heck or oxa-Michael products, depending on the reaction conditions.

  19. Molecular modeling of alkyl monolayers on the Si (100)-2 x 1 surface

    NARCIS (Netherlands)

    Lee, M.V.; Guo, D.; Linford, M.R.; Zuilhof, H.

    2004-01-01

    Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 × 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal du

  20. Reducible, dibromomaleimide-linked polymers for gene delivery.

    Science.gov (United States)

    Tan, James-Kevin Y; Choi, Jennifer L; Wei, Hua; Schellinger, Joan G; Pun, Suzie H

    2015-01-01

    Polycations have been successfully used as gene transfer vehicles both in vitro and in vivo; however, their cytotoxicity has been associated with increasing molecular weight. Polymers that can be rapidly degraded after internalization are typically better tolerated by mammalian cells compared to their non-degradable counterparts. Here, we report the use of a dibromomaleimide-alkyne (DBM-alkyne) linking agent to reversibly bridge cationic polymer segments for gene delivery and to provide site-specific functionalization by azide-alkyne cycloaddition chemistry. A panel of reducible and non-reducible, statistical copolymers of (2-dimethylamino)ethyl methacrylate (DMAEMA) and oligo(ethylene glycol)methyl ether methacrylate (OEGMA) were synthesized and evaluated. When complexed with plasmid DNA, the reducible and non-reducible polymers had comparable DNA condensation properties, sizes, and transfection efficiencies. When comparing cytotoxicity, the DBM-linked, reducible polymers were significantly less toxic than the non-reducible polymers. To demonstrate polymer functionalization by click chemistry, the DBM-linked polymers were tagged with an azide-fluorophore and were used to monitor cellular uptake. Overall, this polymer system introduces the use of a reversible linker, DBM-alkyne, to the area of gene delivery and allows for facile, orthogonal, and site-specific functionalization of gene delivery vehicles.

  1. Synthesis of a New Class of Triazole-Linked Benzoheterocycles via 1,3-Dipolar Cycloaddition

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Fernanda C.G.; Oliveira, Ronaldo N. de, E-mail: ronaldonoliveira@dq.ufrpe.b [Universidade Federal Rural de Pernambuco (LSCB/UFRPE), Recife, PE (Brazil). Dept. de Quimica. Lab. de Sintese de Compostos Bioativos

    2011-07-01

    A new series of 1,2,3-triazole derivatives have been synthesized from phthalimides and terminal alkynes in the presence of a catalytic amount of CuI. The present protocol affords 1,2,3-triazoles in moderate to good yields (44-89%). (author)

  2. Stereo- and regio-selective one-pot synthesis of triazole-based unnatural amino acids and β- amino triazoles

    Science.gov (United States)

    Synthesis of triazole based unnatural amino acids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW conditions. The developed method is applicable to a broad substrate scope a...

  3. Synthesis of unnatural amino acids via microwave-assisted regio-selective one-pot multi-component reactions of sulfamidates

    Science.gov (United States)

    Synthesis of triazole-based unnatural amino acids, triazole bisaminoacids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW irradiation conditions. The developed method is app...

  4. Expedient Synthesis of N1-Substituted Triazole Peptidomimetics.

    Science.gov (United States)

    Coffey, Steven B; Aspnes, Gary; Londregan, Allyn T

    2015-12-14

    A general procedure for the rapid diversification of peptide scaffolds is described. A one-pot click reaction between a peptide-alkyne and a series of in situ generated aryl/alkyl azides affords novel N1-substituted triazole peptidomimetics. This transformation is of broad scope, operates under mild conditions, and is parallel chemical synthesis compatible.

  5. Backbone amide linker strategy for the synthesis of 1,4-triazole-containing cyclic tetra- and pentapeptides

    NARCIS (Netherlands)

    Springer, J.; de Cuba, K.R.; Calvet-Vitale, S.; Geenevasen, J.A.J.; Hermkens, P.H.H.; Hiemstra, H.; van Maarseveen, J.H.

    2008-01-01

    A backbone amide linker strategy was chosen for the solid-phase synthesis of triazole-containing Cyclic tetra- and pentapeptides. An alkyne-substituted linker derived from 4-hydroxy-2-methoxybenzaldehyde was elongated by using standard "Fmoc-based" solid phase chemistry and terminated by coupling of

  6. Dipolar cross-linkers for PDMS networks with enhanced dielectric permittivity and low dielectric loss

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Hvilsted, Søren;

    2013-01-01

    Dipole grafted cross-linkers were utilized to prepare polydimethylsiloxane (PDMS) elastomers with various chain lengths and with various concentrations of functional cross-linker. The grafted cross-linkers were prepared by reaction of two alkyne-functional dipoles, 1-ethynyl-4-nitrobenzene and 3...

  7. “Electro-Click” on Conducting Polymer Films

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede

    for their own functionalization with high spatial resolution. Interdigitated microelectrodes prepared from the azide-containing conducting polymer were selectively functionalized in sequence by two alkyne-modified fluorophores by control of the applied potentials. “Electro-click” on conducting polymer films...

  8. Ambient gold-catalyzed O-vinylation of cyclic 1,3-diketone: A vinyl ether synthesis.

    Science.gov (United States)

    Xi, Yumeng; Dong, Boliang; Shi, Xiaodong

    2013-01-01

    Gold-catalyzed O-vinylation of cyclic 1,3-diketones has been achieved for the first time, which provides direct access to various vinyl ethers. A catalytic amount of copper triflate was identified as the significant additive in promoting this transformation. Both aromatic and aliphatic alkynes are suitable substrates with good to excellent yields.

  9. Ambient gold-catalyzed O-vinylation of cyclic 1,3-diketone: A vinyl ether synthesis

    Directory of Open Access Journals (Sweden)

    Yumeng Xi

    2013-11-01

    Full Text Available Gold-catalyzed O-vinylation of cyclic 1,3-diketones has been achieved for the first time, which provides direct access to various vinyl ethers. A catalytic amount of copper triflate was identified as the significant additive in promoting this transformation. Both aromatic and aliphatic alkynes are suitable substrates with good to excellent yields.

  10. Solid-Phase Synthesis of PEGylated Lipopeptides Using Click Chemistry

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Berg, Rolf Henrik; Andresen, Thomas Lars

    2010-01-01

    A versatile methodology for efficient synthesis of PEGylated lipopeptides via CuAAC “Click” conjugation between alkyne-bearing solid-supported lipopeptides and azido-functionalized PEGs is described. This new and very robust method offers a unique platform for synthesizing PEGylated lipopeptides ...

  11. Toward a Molecular Lego Approach for the Diversity-Oriented Synthesis of Cyclodextrin Analogues Designed as Scaffolds for Multivalent Systems.

    Science.gov (United States)

    Lepage, Mathieu L; Schneider, Jérémy P; Bodlenner, Anne; Compain, Philippe

    2015-11-06

    A modular strategy has been developed to access a diversity of cyclic and acyclic oligosaccharide analogues designed as prefunctionalized scaffolds for the synthesis of multivalent ligands. This convergent approach is based on bifunctional sugar building blocks with two temporarily masked functionalities that can be orthogonally activated to perform Cu(I)-catalyzed azide-alkyne cycloaddition reactions (CuAAC). The reducing end is activated as a glycosyl azide and masked as a 1,6-anhydro sugar, while the nonreducing end is activated as a free alkyne and masked as a triethylsilyl-alkyne. Following a cyclooligomerization approach, the first examples of close analogues of cyclodextrins composed of d-glucose residues and triazole units bound together through α-(1,4) linkages were obtained. The cycloglucopyranoside analogue containing four sugar units was used as a template to prepare multivalent systems displaying a protected d-mannose derivative or an iminosugar by way of CuAAC. On the other hand, the modular approach led to acyclic alkyne-functionalized scaffolds of a controlled size that were used to synthesize multivalent iminosugars.

  12. Highly Polymer-Repellent yet Atomically Flat Surfaces Based on Organic Monolayers with a Single Fluorine Atom

    NARCIS (Netherlands)

    Wang, Zhanhua; Pujari, S.P.; Lagen, van B.; Smulders, M.M.J.; Zuilhof, H.

    2016-01-01

    Organic monolayers or polymer brushes, often in combination with surface structuring, are widely used to prevent nonspecific adsorption of polymeric or biological material on sensor and microfluidic surfaces. Here it is demonstrated for the first time how robust, covalently attached alkyne-derived m

  13. Synthesis of some novel fluoro isoxazolidine and isoxazoline derivatives using -benzyl fluoro nitrone via cycloaddition reaction in ionic liquid

    Indian Academy of Sciences (India)

    Bhaskar Chakraborty; Govinda Prasad Luitel

    2013-09-01

    1-Butyl-3-methylimidazolium-based ionic liquids are found to accelerate significantly the intermolecular 1,3-dipolar cycloaddition of -benzyl-fluoro nitrone derived in situ from 2,6-difluoro benzaldehyde and -benzylhydroxylamine, with activated alkenes and electron deficient alkynes to afford enhanced rates and improved yields of novel isoxazolidines and isoxazolines.

  14. On-Surface Synthesis by Click Chemistry Investigated by STM and XPS

    DEFF Research Database (Denmark)

    Vadapoo, Sundar Raja

    2014-01-01

    such as molecular electronics and surface functionalization. In this thesis, a well-defined click chemistry approach is followed, with the study of azide-alkyne cycloaddition on Cu(111) surface in UHV environment. A successful achievement of the click reaction product via on-surface synthesis has been shown, which...

  15. A facile and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles using click chemistry

    Science.gov (United States)

    The reaction of α-tosyloxy ketones, sodium azide and terminal alkynes in presence of copper(I) in aqueous polyethylene glycol afforded regioselectively 1,4-disubstituted 1,2,3-triazoles in good yield at ambient temperature. The one-pot exclusive formation of 1,4-disubstituted 1,2...

  16. Self-Assembly of High-Quality Covalently Bound Organic Monolayers onto Silicon

    NARCIS (Netherlands)

    Scheres, L.M.W.; Arafat, A.; Zuilhof, H.

    2007-01-01

    A very mild method has been developed to obtain covalently attached alkyl monolayers from the attachment of 1-alkynes onto hydrogen-terminated silicon surfaces at room temperature in the dark. Apart from being the mildest method reported so far for the preparation of such monolayers, their quality,

  17. Synthesis of Soai aldehydes for asymmetric autocatalysis by desulfurative cross-coupling.

    Science.gov (United States)

    Maltsev, Oleg V; Pöthig, Alexander; Hintermann, Lukas

    2014-03-07

    Palladium-catalyzed dehydrosulfurative Liebeskind-Srogl coupling of terminal alkynes with 2-mercapto-1,3-pyrimidine-5-carbaldehyde under base-free conditions provides 2-(alkynyl)-1,3-pyrimidine-5-carbaldehydes, which are substrates for autocatalytic amplification of chirality according to Soai et al. The mercapto aldehyde acceptor is obtained by condensation of Arnold's vinamidinium salt with thiourea.

  18. Silver iodide nanoparticle as an efficient and reusable catalyst for the one-pot synthesis of benzofurans under aqueous conditions

    Indian Academy of Sciences (India)

    Javad Safaei-Ghomi; Mohammad Ali Ghasemzadeh

    2013-09-01

    Recyclable heterogeneous AgI nanoparticles were efficiently catalysed one-pot three-component reaction of aldehydes, secondary amines and alkyne in aqueous media. This method provides a novel and improved approach for the synthesis of 2,3-disubstituted benzo[b]furan derivatives to obtain excellent yields, short reaction times and low catalyst loading.

  19. RAFT copolymerization of itaconic anhydride and 2-methoxyethyl acrylate: a multifunctional scaffold for preparation of “clickable” gold nanoparticles

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Kasama, Takeshi; Jankova, Katja Atanasova

    2013-01-01

    RAFT copolymerization of 2-methoxyethyl acrylate and itaconic anhydride – a monomer derived from renewable resources – is carried out in a controlled fashion. The copolymer allows preparation of gold nanoparticles with abundant surficial carboxyl and alkyne functional groups that are dendronized ...

  20. Stereoselective synthesis of C1-C24 fragment of antanapeptin-A

    Directory of Open Access Journals (Sweden)

    Srinivas Avula

    2016-03-01

    Full Text Available The stereoselective synthesis of the (C1-C24 fragment of Antanapeptin–A is described. The required stereochemistry of b -hydroxy- a -methyl acid unit was accomplished through Aldol reaction using Evans’ chiral auxiliary followed by the installation of terminal alkyne with Ohira–Bestmann reagent.

  1. Solid-phase synthesis of NH-1,2,3-triazoles using 4,4′- bismethoxybenzhydryl azide

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil O'Hanlon; Le Quement, Sebastian Thordal; Nielsen, Thomas Eiland

    2014-01-01

    Readily available 4,4′-bismethoxybenzhydryl azide was found to be a useful building block for the synthesis of NH-1,2,3-triazoles through copper(I)-catalyzed cycloaddition reactions with solid-supported terminal alkynes, followed by acid-mediated deprotection. Peptide-containing NH-1,2,3-triazoles...

  2. Bottom-up Assembly of Engineered Protein Fibers

    Science.gov (United States)

    2015-02-15

    magnetite  templating   peptide ,   CMms6,  was   attached.   Alkyne-­‐functionalized   CMms6  was   attached   to   the   AHA...bearing   proteins   through   a   copper   catalyzed   click   chemistry   reaction   and   monitored  molecular  weight

  3. Gold Supported on Graphene Oxide: An Active and Selective Catalyst for Phenylacetylene Hydrogenations at Low Temperatures

    DEFF Research Database (Denmark)

    Shao, Lidong; Huang, Xing; Teschner, Detre

    2014-01-01

    A constraint to industrial implementation of gold-catalyzed alkyne hydrogenation is that the catalytic activity was always inferior to those of other noble metals. In this work, gold was supported on graphene oxide (Au/GO) and used in a hydrogenation application. A 99% selectivity toward styrene...

  4. Facile Synthesis of 3-Substituted Isoquinolines Derivatives via Microwave-assisted Tandem Three-component Coupling Cyclization

    Institute of Scientific and Technical Information of China (English)

    林龙; 吴琼友; 黄绍维; 杨光富

    2012-01-01

    A novel three-component reaction of o-bromobenzaldehyde, terminal alkynes and tert-butyl amine has been established, which proceeded smoothly to give 3-substituted isoquinolines in good yields in the presence of palladium/copper catalysts under microwave irradiation.

  5. Biomimetic Mussel Adhesive Inspired Clickable Anchors Applied to the Functionalization of Fe3O4 Nanoparticles

    NARCIS (Netherlands)

    Goldmann, Anja S.; Schoedel, Christine; Walther, Andreas; Yuan, Jiayin; Loos, Katja; Mueller, Axel H. E.; Müller, Axel H.E.

    2010-01-01

    The functionalization of magnetite (Fe3O4) nanoparticles with dopamine-derived clickable biomimetic anchors is reported. Herein, an alkyne-modified catechol-derivative is employed as the anchor, as i) the catechol-functional anchor groups possess irreversible covalent binding affinity to Fe3O4 nanop

  6. Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Dimitrov, Ivaylo; Daugaard, Anders Egede

    2013-01-01

    An azide-containing, trifunctional vinyl cross-linker for silicone networks has been synthesized. The cross-linker has through Cu(i) catalyzed 1,3-cycloaddition been reacted with six different alkyne-containing chemical groups which each possess a particular functionality. The functional cross-li...... The Royal Society of Chemistry....

  7. Self-assembled monolayers of terminal acetylenes as replacements for thiols in bottom-up tunneling junctions

    NARCIS (Netherlands)

    Fracasso, Davide; Kumar, Sumit; Rudolf, Petra; Chiechi, Ryan C.

    2014-01-01

    Why use thiols in Molecular Electronics? They stink, oxidize readily, poison catalysts, and often require nontrivial protection/deprotection chemistry. In this communication we demonstrate the fabrication of tunneling junctions formed by contact of self-assembled monolayers (SAMs) of terminal alkyne

  8. A Rapid and Efficient Sonogashira Protocol and Improved Synthesis of Free Fatty Acid 1 (FFA1) Receptor Agonists

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Due-Hansen, Maria E; Ulven, Trond

    2010-01-01

    A protocol for rapid and efficient Pd/Cu-catalyzed coupling of aryl bromides and iodides to terminal alkynes has been developed with use of 2-(di-tert-butylphosphino)-N-phenylindole (cataCXium PIntB) as ligand in TMEDA and water. The new protocol successfully couples substrates which failed with ...

  9. Conjugation of transferrin to azide-modified CdSe/ZnS core-shell quantum dots using cyclooctyne click chemistry.

    Science.gov (United States)

    Schieber, Christine; Bestetti, Alessandra; Lim, Jet Phey; Ryan, Anneke D; Nguyen, Tich-Lam; Eldridge, Robert; White, Anthony R; Gleeson, Paul A; Donnelly, Paul S; Williams, Spencer J; Mulvaney, Paul

    2012-10-15

    Twinkle twinkle quantum dot: Conjugation of biomolecules to azide-modified quantum dots (QDs) through a bifunctional linker, using strain-promoted azide-alkyne cycloaddition with the QD and a squaramide linkage to the biomolecule (see scheme). Transferrin-conjugated QDs were internalized by transferrin-receptor expressing HeLa cells.

  10. Gold(III)-catalyzed three-component coupling reaction (TCC) selective toward furans.

    Science.gov (United States)

    Li, Jian; Liu, Li; Ding, Dong; Sun, Jiangtao; Ji, Yangxuan; Dong, Jialing

    2013-06-01

    An efficient three-component coupling reaction toward a variety of furan derivatives has been developed. This cascade transformation proceeds via the gold-catalyzed coupling reaction of phenylglyoxal derivatives, secondary amines, and terminal alkynes, under the reaction conditions, that undergoes cyclization into the furan core.

  11. Diversity-Oriented Enantioselective Synthesis of Highly Functionalized Cyclic and Bicyclic Alcohols

    NARCIS (Netherlands)

    Mao, Bin; Fananas Mastral, Martin; Lutz, Martin; Feringa, Ben L.

    2013-01-01

    The copper-catalyzed hetero-allylic asymmetric alkylation (h-AAA) of functionalized Grignard reagents that contain alkene or alkyne moieties has been achieved with excellent regio-and enantioselectivity. The corresponding alkylation products were further transformed into a variety of highly function

  12. Synthesis of quinolones by nickel-catalyzed cycloaddition via elimination of nitrile.

    Science.gov (United States)

    Nakai, Kenichiro; Kurahashi, Takuya; Matsubara, Seijiro

    2013-02-15

    Substituted quinolones were efficiently synthesized via the nickel-catalyzed cycloaddition of o-cyanophenylbenzamide derivatives with alkynes. The reaction involves elimination of a nitrile group by cleavage of the two independent aryl-cyano and aryl-carbonyl C-C bonds of the amides.

  13. An Efficient (2-Aminoarenethiolato)copper(I) Complex for the Copper-Catalysed Huisgen Reaction (CuAAC)

    NARCIS (Netherlands)

    Fabbrizzi, Pierangelo; Cicchi, Stefano; Brandi, Alberto; Sperotto, E.; van Koten, G.

    2009-01-01

    A (2-aminoarenethiolato)copper(I) complex has been used as an efficient catalyst (1 mol-%) for the copper-catalysedHuisgen reaction (CuAAC) of azides and terminal alkynes in an organic solvent. The reaction was also extremely effective in CH2Cl2 allowing the complete decoration of dendrimeric scaffo

  14. Just Click It: Undergraduate Procedures for the Copper(I)-Catalyzed Formation of 1,2,3-Triazoles from Azides and Terminal Acetylenes

    Science.gov (United States)

    Sharpless, William D.; Peng Wu; Hansen, Trond Vidar; Lindberg, James G.

    2005-01-01

    The click chemistry uses only the most reliable reactions to build complex molecules from olefins, electrophiles and heteroatom linkers. A variation on Huisgen's azide-alkyne 1,2,3-triazole synthesis, the addition of the copper (I), the premium example of the click reaction, catalyst strongly activates terminal acetylenes towards the 1,3-dipole in…

  15. Modern Reduction Methods

    CERN Document Server

    Andersson, Pher G

    2008-01-01

    With its comprehensive overview of modern reduction methods, this book features high quality contributions allowing readers to find reliable solutions quickly and easily. The monograph treats the reduction of carbonyles, alkenes, imines and alkynes, as well as reductive aminations and cross and heck couplings, before finishing off with sections on kinetic resolutions and hydrogenolysis. An indispensable lab companion for every chemist.

  16. 4-Oxalocrotonate tautomerase, its homologue YwhB, and active vinylpyruvate hydratase : Synthesis and evaluation of 2-fluoro substrate analogues

    NARCIS (Netherlands)

    Johnson, William H; Wang, Susan C; Stanley, Thanuja M; Czerwinski, Robert M; Almrud, Jeffrey J; Poelarends, Gerrit J; Murzin, Alexey G; Whitman, Christian P

    2004-01-01

    A series of 2-fluoro-4-alkene and 2-fluoro-4-alkyne substrate analogues were synthesized and examined as potential inhibitors of three enzymes: 4-oxalocrotonate tautomerase (4-OT) and vinylpyruvate hydratase (VPH) from the catechol meta-fission pathway and a closely related 4-OT homologue found in B

  17. Synthesis and application of water-soluble, photoswitchable cyanine dyes for bioorthogonal labeling of cell-surface carbohydrates.

    Science.gov (United States)

    Mertsch, Alexander; Letschert, Sebastian; Memmel, Elisabeth; Sauer, Markus; Seibel, Jürgen

    2016-09-01

    The synthesis of cyanine dyes addressing absorption wavelengths at 550 and 648 nm is reported. Alkyne functionalized dyes were used for bioorthogonal click reactions by labeling of metabolically incorporated sugar-azides on the surface of living neuroblastoma cells, which were applied to direct stochastic optical reconstruction microscopy (dSTORM) for the visualization of cell-surface glycans in the nm-range.

  18. Alkynylation of aryl halides with perfluoro-tagged palladium nanoparticles immobilized on silica gel under aerobic, copper- and phosphine-free conditions in water.

    Science.gov (United States)

    Bernini, Roberta; Cacchi, Sandro; Fabrizi, Giancarlo; Forte, Giovanni; Petrucci, Francesco; Prastaro, Alessandro; Niembro, Sandra; Shafir, Alexandr; Vallribera, Adelina

    2009-06-07

    The utilization of perfluoro-tagged palladium nanoparticles immobilized on fluorous silica gel through fluorous-fluorous interactions (Pd(np)-/FSG) or linked to silica gel by covalent bonds (Pd(np)-) in the alkynylation of terminal alkynes with aryl halides under aerobic, copper- and phosphine-free conditions in water, and their recovery and re-utilization, is described.

  19. Hydrocarbons. Independent Learning Project for Advanced Chemistry (ILPAC). Unit O1.

    Science.gov (United States)

    Inner London Education Authority (England).

    This unit on hydrocarbons is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit is divided into sections dealing with alkanes, alkenes, alkynes, arenes, and several aspects of the petroleum industry. Two experiments, exercises (with answers), and pre- and post-tests are included.…

  20. New 1,2,3-Triazole Iminosugars Derivatives Using Click Chemistry

    Directory of Open Access Journals (Sweden)

    Chahrazed Benhaoua

    2012-01-01

    Full Text Available The click concept refers ease, efficient, and the selective chemicals transformations. In this study, a novel regiospecific copper (I-catalyzed 1, 3-dipolar of terminal alkynes to azide provided a practicable synthetic pathway of triazole iminosugars derivatives. A series of new triazole-pyrrolidinols are reported in good yield.

  1. Carbon-rich "Click" 1,2,3-triazoles: hexaphenylbenzene and hexa-peri-hexabenzocoronene-based ligands for Suzuki-Miyaura catalysts.

    Science.gov (United States)

    Wright, James R; Crowley, James D; Lucas, Nigel T

    2016-10-27

    Hexaphenylbenzene (HPB) and hexa-peri-hexabenzocoronene-(HBC) functionalised 1,2,3-triazoles have been synthesised using an optimised copper(i)-catalysed azide-alkyne cycloaddition (CuAAC) reaction. The coordination chemistry of these ligands was explored through the synthesis of the respective palladium(ii) complexes and their activity as catalysts in the Suzuki-Miyaura reaction assessed.

  2. Cu(OAc)2 catalyzed Sonogashira cross-coupling reaction in amines

    Institute of Scientific and Technical Information of China (English)

    Sheng Mei Guo; Chen Liang Deng; Jin Heng Li

    2007-01-01

    A simple Cu(OAc)2 catalyzed Sonogashira coupling protocol is presented. It was found that the couplings of a variety of aryl halides with terminal alkynes were conducted smoothly to afford the corresponding desired products in moderate to excellent yields, using Cu(OAc)2 as the catalyst and Et3N as the solvent.

  3. Efficient three-component coupling catalysed by mesoporous copper-aluminum based nanocomposites

    NARCIS (Netherlands)

    Dulle, J.; Thirunavukkarasu, K.; Mittelmeijer-Hazeleger, M.C.; Andreeva, D.V.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Traditional synthesis methods for propargylamines have several drawbacks. A recently developed alternative route is the so-called "A(3) coupling" in which an alkyne, an aldehyde, and an amine are coupled together. Typically, these reactions are catalysed by homogeneous gold salts, organogold complex

  4. Hexadecadienyl Monolayers on Hydrogen-Terminated Si(III): Faster Monolayer Formation and Improved Surface Coverage Using the Enyne Moiety

    NARCIS (Netherlands)

    Rijksen, B.M.G.; Pujari, S.P.; Scheres, L.M.W.; Rijn, van C.J.M.; Baio, J.E.; Weidner, T.; Zuilhof, H.

    2012-01-01

    To further improve the coverage of organic monolayers on hydrogen-terminated silicon (H–Si) surfaces with respect to the hitherto best agents (1-alkynes), it was hypothesized that enynes (H–C=C–HC-CH–R) would be even better reagents for dense monolayer formation. To investigate whether the increased

  5. Efficient Functionalization of Oxide-Free Silicon(111) Surfaces: Thiol–yne versus Thiol–ene Click Chemistry

    NARCIS (Netherlands)

    Bhairamadgi, N.S.; Gangarapu, S.; Caipa Campos, M.A.; Paulusse, J.M.J.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol–ene click (TEC) chemistry. A wide range of thiols such as 9-fluorenylmethoxy-carbon

  6. Chloride ion-catalyzed generation of difluorocarbene for efficient preparation of gem-difluorinated cyclopropenes and cyclopropanes

    KAUST Repository

    Wang, Fei

    2011-01-01

    A chloride ion-catalyzed generation of difluorocarbene from a relatively non-toxic and inexpensive precursor, Me3SiCF2Cl (1), under mild and neutral conditions leads to an efficient preparation of gem-difluorocyclopropenes and difluorocyclopropanes through [2 + 1] cycloaddition reactions with alkynes and alkenes, respectively. © 2011 The Royal Society of Chemistry.

  7. Efficient Functionalization of Oxide-Free Silicon(111) Surfaces: Thiol-yne versus Thiol-ene Click Chemistry

    NARCIS (Netherlands)

    Bhairamadgi, N.S.; Gangarapu, S.; Caipa Campos, M.A.; Paulusse, J.M.J.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol–ene click (TEC) chemistry. A wide range of thiols such as 9-fluorenylmethoxy-carbon

  8. Efficient functionalization of oxide-free silicon(111) surfaces: thiol-yne versus thiol-ene click chemistry.

    Science.gov (United States)

    Bhairamadgi, Nagendra S; Gangarapu, Satesh; Caipa Campos, Mabel A; Paulusse, Jos M J; van Rijn, Cees J M; Zuilhof, Han

    2013-04-09

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol-ene click (TEC) chemistry. A wide range of thiols such as 9-fluorenylmethoxy-carbonyl cysteine, thio-β-d-glucose tetraacetate, thioacetic acid, thioglycerol, thioglycolic acid, and 1H,1H,2H,2H-perfluorodecanethiol was immobilized using TYC under photochemical conditions, and all modified surfaces were characterized by static water contact angle measurements, X-ray photoelectron spectroscopy (including a simulation thereof by density functional calculations), and infrared absorption reflection spectroscopy. Surface-bound TYC proceeds with an efficiency of up to 1.5 thiols per alkyne group. This high surface coverage proceeds without oxidizing the Si surface. TYC yielded consistently higher surface coverages than TEC, due to double addition of thiols to alkyne-terminated monolayers. This also allows for the sequential and highly efficient attachment of two different thiols onto an alkyne-terminated monolayer.

  9. Sequential insertion of three different organometallics into a versatile building block containing a PNA backbone.

    Science.gov (United States)

    Patra, Malay; Gasser, Gilles; Bobukhov, Dmytro; Merz, Klaus; Shtemenko, Alexander V; Metzler-Nolte, Nils

    2010-06-28

    In the view of developing a synthetic route for the controlled insertion of distinct organometallic moieties into peptide nucleic acid (PNA) oligomers, a proof-of-principle study of the chemoselective insertion of three different organometallics into a building block containing both a PNA backbone and an alkyne side-chain is presented in this study.

  10. Synthesis of 2,3-disubstituted thiophens via metalated acetylenes and allenes

    NARCIS (Netherlands)

    Jong, R.L.P. de; Brandsma, L.

    1982-01-01

    2,3-Disubstituted thiophen derivatives have been obtained in reasonable yields by treating 2-alkyne- and allene derivatives with butyllithium and potassium t-butoxide in tetrahydrofuran, adding carbon disulfide to the organometallic intermediate and then successively adding t-butyl alcohol, hexameth

  11. Bioorthogonal probes for imaging sterols in cells.

    Science.gov (United States)

    Jao, Cindy Y; Nedelcu, Daniel; Lopez, Lyle V; Samarakoon, Thilani N; Welti, Ruth; Salic, Adrian

    2015-03-01

    Cholesterol is a fundamental lipid component of eukaryotic membranes and a precursor of potent signaling molecules, such as oxysterols and steroid hormones. Cholesterol and oxysterols are also essential for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Despite their importance, the use of imaging sterols in cells is currently very limited. We introduce a robust and versatile method for sterol microscopy based on C19 alkyne cholesterol and oxysterol analogues. These sterol analogues are fully functional; they rescue growth of cholesterol auxotrophic cells and faithfully recapitulate the multiple roles that sterols play in Hedgehog signal transduction. Alkyne sterol analogues incorporate efficiently into cellular membranes and can be imaged with high resolution after copper(I)-catalyzed azide-alkyne cycloaddition reaction with fluorescent azides. We demonstrate the use of alkyne sterol probes for visualizing the subcellular distribution of cholesterol and for two-color imaging of sterols and choline phospholipids. Our imaging strategy should be broadly applicable to studying the role of sterols in normal physiology and disease.

  12. Two consecutive click reactions as a general route to functional cyclic polyesters.

    Science.gov (United States)

    Yuan, You-Yong; Du, Jin-Zhi; Wang, Jun

    2012-01-14

    A simple and universal route to functional cyclic polyesters has been demonstrated, combining two consecutive click reactions of azide-alkyne cycloaddition of linear hetero-bifunctional precursors and thiol-ene coupling for post cyclization functionalizations. Functional cationic and thermo-responsive cyclic polyphosphoesters have been synthesized to demonstrate the efficiency of the procedures.

  13. Glucose selective bis-boronic acid click-fluor.

    Science.gov (United States)

    Zhai, Wenlei; Male, Louise; Fossey, John S

    2017-02-14

    Four novel bis-boronic acid compounds were synthesised via copper catalysed azide-alkyne cycloaddition (CuAAC) reactions. Glucose selectivity was observed for a particular structural motif. Moreover, a new glucose selective fluorescent sensor was designed and synthesised as a result.

  14. In situ generation of the Ohira-Bestmann Reagent from stable sulfonyl azide

    DEFF Research Database (Denmark)

    Jepsen, Tue Heesgaard; Kristensen, Jesper Langgaard

    2014-01-01

    We report an improved method for in situ generation of the Ohira-Bestmann reagent. Using the recently reported bench stable imidazole-1-sulfonyl azide as diazotransfer reagent, this new method represents a safe and scalable approach for the transformation of aldehydes into terminal alkynes. Furth...

  15. Sulfonamide bearing oligonucleotides: Simple synthesis and efficient RNA recognition

    DEFF Research Database (Denmark)

    Kumar, P.; Chandak, N.; Nielsen, P.;

    2012-01-01

    Four pyrimidine nucleosides wherein a benzensulfonamide group is linked to the C-5 position of the uracil nucleobase through a triazolyl or an alkynyl linker were prepared by Cu(I)-assisted azide-alkyne cycloadditions (CuAAC) or Sonogashira reactions, respectively, and incorporated into oligonucl...

  16. A Safe and Easy Classroom Demonstration of the Generation of Acetylene Gas.

    Science.gov (United States)

    Cox, Marilyn Blagg; Krause, Paul

    1994-01-01

    In this demonstration of the generation and combustion of acetylene, calcium carbide and water are allowed to react in a latex examination glove. Two student volunteers perform the demonstration with instructor guidance. This safe, popular demonstration, originally intended to illustrate the alkyne family of compounds, can be used with a variety…

  17. Hydration of Acetylene: A 125th Anniversary

    Science.gov (United States)

    Ponomarev, Dmitry A.; Shevchenko, Sergey M.

    2007-01-01

    The year 2006 is the 125th anniversary of a chemical reaction, the discovery of which by Mikhail Kucherov had a profound effect on the development of industrial chemistry in the 19-20th centuries. This was the hydration of alkynes catalyzed by mercury ions that made possible industrial production of acetaldehyde from acetylene. Historical…

  18. Synthesis of telechelic vinyl/allyl functional siloxane copolymers with structural control

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Javakhishvili, Irakli; Jensen, Rasmus Egekjær

    2014-01-01

    groups and high end- group fi delity are obtained in a facile and robust synthetic scheme involving polycondensation, end-group transformation and di ff erent functionalisation reactions such as Cu( I )-mediated azide – alkyne cycloaddition. Pendant alkyl chloride, alkyl azide, bromoisobutyryl, 4...

  19. Solid-Phase Synthesis of Smac Peptidomimetics Incorporating Triazoloprolines and Biarylalanines

    DEFF Research Database (Denmark)

    Le Quement, Sebastian T.; Ishoey, Mette; Petersen, Mette T.;

    2011-01-01

    -Me)AVPF sequence, peptides incorporating triazoloprolines and biarylalanines were synthesized by means of Cu(I)-catalyzed azide–alkyne cycloaddition and Pd-catalyzed Suzuki cross-coupling reactions. Solid-phase procedures were optimized to high efficiency, thus accessing all products in excellent crude purities...

  20. Nanomolar cholera toxin inhibitors based on symmetrical pentavalent ganglioside GM1os-sym-corannulenes

    NARCIS (Netherlands)

    Mattarella, M.; Garcia-Hartjes, J.; Wennekes, T.; Zuilhof, H.; Siegel, J.S.

    2013-01-01

    Eight symmetric and pentavalent corannulene derivatives were functionalized with galactose and the ganglioside GM1-oligosaccharide (GM1os) via copper-catalyzed alkyne-azide cycloaddition (CuAAC) reactions. The compounds were evaluated for their ability to inhibit the binding of the pentavalent chole

  1. An efficient synthesis of isocoumarins via a CuI catalyzed cascade reaction process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    3-Alkyl isocoumarins are provided by CuI/amino acid-catalyzed Sonogashira coupling reaction of o-bromo benzoic acids and terminal alkynes and the subsequent additive cyclization. This cascade process allows synthesis of diverse isocoumarins by varying both coupling partners bearing a wide range of functional groups.

  2. Towards copper-free nanocapsules obtained by orthogonal interfacial "click" polymerization in miniemulsion.

    Science.gov (United States)

    Siebert, Joerg Max; Baier, Grit; Musyanovych, Anna; Landfester, Katharina

    2012-06-01

    A facile method to produce nanocapsules by copper-free interfacial "click"-polymerization as orthogonal reaction for the encapsulation of functional molecules is successfully performed using stable miniemulsion droplets. Difunctional azides and alkynes have been used for polymerization around the miniemulsion droplets, leading to the formation of nanocapsules. The results were compared with copper-catalyzed systems.

  3. "Click-functional" block copolymers provide precise surface functionality via spin coating.

    Science.gov (United States)

    Rengifo, Hernán R; Chen, Lu; Grigoras, Cristian; Ju, Jingyue; Koberstein, Jeffrey T

    2008-07-15

    There are few existing methods for the quantitative functionalization of surfaces, especially for polymeric substrates. We demonstrate that alkyne end-functional diblock copolymers can be used to provide precise areal densities of reactive functionality on both hard (e.g., glass and silicon oxide) and soft (i.e., polymeric) substrates. Alkyne functionality is extremely versatile because the resultant functional surfaces are reactive toward azide functional molecules by Sharpless click chemistry. Spin-coated films of alpha-alkyne-omega-Br-poly( tert-butylacrylate- b-methylmethacrylate) (poly( tBA-MMA)) spontaneously self-assemble on the aforementioned substrates to present a surface monolayer of PtBA with a thickness in the range of 1 to 9 nm. The PMMA block physisorbs to provide multivalent anchoring onto hard substrates and is fixed onto polymer surfaces by interpenetration with the substrate polymer. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The reactivity of surface-bound alkynes, in 1,3-dipolar cycloaddition reactions or by so-called "click chemistry", is demonstrated by covalent surface immobilization of fluorescently labeled azides. The modificed surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. Microarrays of covalently bound fluorescent molecules are created to demonstrate the approach and their performance is evaluated by determining their fluorescence signal-to-noise ratios.

  4. Irradiation of atactic polystyrene: linear energy transfer effects.

    Science.gov (United States)

    Ferry, M; Ngono-Ravache, Y; Picq, V; Balanzat, E

    2008-09-01

    Atactic glassy polystyrene (PS) has been irradiated in anoxic conditions by electron and ion beams. The induced modifications were followed, in situ, by Fourier transform infrared spectroscopy (FTIR). In-film modifications and hydrocarbon gas release were followed. In-situ measurements allowed one to avoid any spurious oxidation of the films after irradiation and also permitted studying in detail the evolution with dose of the FTIR spectra. The data were quantitatively analyzed, and we present a complete analysis of the effects of the Linear Energy Transfer (LET) on the radiation chemical yields of several radiation-induced modifications (alkynes, allenes, alkenes, benzene, and disubstituted benzenes). For a better understanding of the LET effects, the in-film modifications are compared to H2 release data from the literature and to our measurements of hydrocarbon gaseous molecule yields obtained by us. The overall destruction yield becomes very significant at high LET, and the radiation sensitivity of this aromatic polymer merges with typical values of aliphatic polymers: the radiation resistance conferred at low LET to polystyrene by the phenyl side groups is lost at high LET. This loss of radiation resistance equally affects the aromatic and aliphatic moieties. Monosubstituted alkynes are created above a LET threshold, whereas the other radiation-induced modifications are observed in the whole LET range. Several observations indicate that the phenyl ring is broken at high LET. Comparison of the alkyne yield in PS, polyethylene, and polycarbonate as well as the formation of nitrile bonds in poly(vinylpyridine- co-styrene) are consistent with a cleavage of the phenyl ring as the prominent source of alkynes. As the competing damage mechanisms do not have the same LET evolution, the relative importance of a specific modification on the global damage depends on LET. Some (benzene and disubstituted benzenes) dominate at low LET, while others (in-film alkyne and

  5. Conjugating folate on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles using click chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiaofang, E-mail: xfshen@jiangnan.edu.cn; Ge, Zhaoqiang; Pang, Yuehong

    2015-02-15

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe{sub 3}O{sub 4}@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe{sub 3}O{sub 4}@Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe{sub 3}O{sub 4}@Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry.

  6. Functionalization of Mechanochemically Passivated Germanium Nanoparticles via "Click" Chemistry

    Science.gov (United States)

    Purkait, Tapas Kumar

    Germanium nanoparticles (Ge NPs) may be fascinating for their electronic and optoelectronic properties, as the band gap of Ge NPs can be tuned from the infrared into the visible range of solar spectru. Further functionalization of those nanoparticles may potentially lead to numerous applications ranging from surface attachment, bioimaging, drug delivery and nanoparticles based devices. Blue luminescent germanium nanoparticles were synthesized from a novel top-down mechanochemical process using high energy ball milling (HEBM) of bulk germanium. Various reactive organic molecules (such as, alkynes, nitriles, azides) were used in this process to react with fresh surface and passivate the surface through Ge-C or Ge-N bond. Various purification process, such as gel permeation chromatography (GPC), Soxhlet dailysis etc. were introduced to purify nanoparticles from molecular impurities. A size separation technique was developed using GPC. The size separated Ge NPs were characterize by TEM, small angle X-ray scattering (SAXS), UV-vis absorption and photoluminescence (PL) emission spectroscopy to investigate their size selective properties. Germanium nanoparticles with alkyne termini group were prepared by HEBM of germanium with a mixture of n-alkynes and alpha, o-diynes. Additional functionalization of those nanoparticles was achieved by copper(I) catalyzed azide-alkyne "click" reaction. A variety of organic and organometallic azides including biologically important glucals have been reacted in this manner resulting in nanopartilces adorned with ferrocenyl, trimethylsilyl, and glucal groups. Additional functionalization of those nanoparticles was achieved by reactions with various azides via a Cu(I) catalyzed azide-alkyne "click" reaction. Various azides, including PEG derivatives and cylcodextrin moiety, were grafted to the initially formed surface. Globular nanoparticle arrays were formed through interparticle linking via "click" chemistry or "host-guest" chemistry

  7. Functional Materials by Click Chemistry

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede

    denne teknik blandt andet anvendt til funktionalisering af polymerer efter polymerisation. Som udgangspunkt er den kommercielt tilgængelige poly(4-hydroxystyren) alkyn funktionaliseret via en ether syntese. Med basis i denne alkyn-funktionelle polymer er et udvalg af polymerer med carboxyl syrer i...... ledende polymer blevet syntetiseret til fremstilling af nye ledende materialer, hvor specielt anvendelse indenfor sensorer har været et fokusområde. Denne ledende polymer er blevet funktionaliseret med et udvalg af forskellige molekyler, hvorved der er opnået såvel hydrofobe som hydrofile egenskaber....... Gennem optimering af fremstillingsprocessen er muligt i en almindelig mikrobølgeovn at foretage funktionaliseringer indenfor ganske få minutter. I forsøg på fremstilling af nye sensormaterialer er såvel krone ethere som bioselektive receptorer blevet bundet til overfladen af den ledende polymer...

  8. Synthesis of Dendrimer Containing Dialkylated-fluorene Unit as a Core Chromophore via Click Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Choul; Lee, Jae Wook [Dong-A University, Busan (Korea, Republic of); Jin, Sung Ho [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The convergent synthetic strategy for the emissive dendrimers having the chromophore at core via the coppercatalyzed 1,3-dipolar cycloaddition reaction between alkyne and azide was described. 2,7-Diazido-9,9-dioctyl- 9H-fluorene, designed to serve as the core in dendrimer, was stitched with the alkyne-functionalized Frechettype and PAMAM dendrons by the click chemistry leading to the formation of the corresponding fluorescent dendrimers in high yields. The preliminary photoluminescence studies indicated that 2,7-diazido-9,9-dioctyl- 9H-fluorene showed no fluorescence due to the quenching effect from the electron-rich α-nitrogen of the azido group but the dendrimers fluoresced due to the elimination of the quenching through the formation of the triazole ring.

  9. Intramolecular Insertions into Unactivated C(sp³)-H Bonds by Oxidatively Generated β-Diketone-α-Gold Carbenes: Synthesis of Cyclopentanones.

    Science.gov (United States)

    Wang, Youliang; Zheng, Zhitong; Zhang, Liming

    2015-04-29

    Generation of reactive α-oxo gold carbene intermediates via gold-catalyzed oxidation of alkynes has become an increasing versatile strategy of replacing hazardous diazo carbonyl compounds with benign and readily available alkynes in the development of efficient synthetic methods. However, one of the hallmarks of metal carbene/carbenoid chemistry, i.e., insertion into an unactivated C(sp(3))-H bond, has not be realized. This study reveals for the first time that this highly valuable transformation can be readily realized intramolecularly by oxidatively generated β-diketone-α-gold carbenes using ynones as substrates. Substrate conformation control via the Thorpe-Ingold effect is the key design feature that enables generally good to excellent efficiencies, and synthetically versatile cyclopentanones including spiro-, bridged, and fused bicyclic ones can be readily accessed.

  10. Highly Efficient Cooperative Catalysis by Co III (Porphyrin) Pairs in Interpenetrating Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zekai; Zhang, Zhi-Ming; Chen, Yu-Sheng; Lin, Wenbin (UC); (Xiamen)

    2016-12-02

    A series of porous twofold interpenetrated In-CoIII(porphyrin) metal–organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent CoIII(porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In-CoIII(porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated CoIII(porphyrin) centers, thus highlighting the potential application of MOFs in cooperative catalysis.

  11. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    Science.gov (United States)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-02-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe3O4@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe3O4@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe3O4@Au-FA nanoparticles.

  12. Instantaneous Click Chemistry by a Copper-Containing Polymeric-Membrane-Installed Microflow Catalytic Reactor.

    Science.gov (United States)

    Yamada, Yoichi M A; Ohno, Aya; Sato, Takuma; Uozumi, Yasuhiro

    2015-11-23

    The copper(I)-catalyzed Huisgen cycloaddition (azide-alkyne cycloaddition) is an important reaction in click chemistry that ideally proceeds instantaneously. An instantaneous Huisgen cycloaddition has been developed that uses a novel catalytic dinuclear copper complex-containing polymeric membrane-installed microflow device. A polymeric membranous copper catalyst was prepared from poly(4-vinylpyridine), copper(II) sulfate, sodium chloride, and sodium ascorbate at the interface of two laminar flows inside microchannels. Elucidation of the structure by XANES, EXAFS, and elemental analysis, as well as second-order Møller-Plesset perturbation theory (MP2) calculations and density functional theory (DFT) calculations assigned the local structure near Cu as a μ-chloro dinuclear Cu(I) complex. The microflow device promotes the instantaneous click reaction of a variety of alkynes and organic azides to afford the corresponding triazoles in quantitative yield.

  13. The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals.

    Science.gov (United States)

    Zeng, Dexing; Zeglis, Brian M; Lewis, Jason S; Anderson, Carolyn J

    2013-06-01

    Click chemistry has become a ubiquitous chemical tool with applications in nearly all areas of modern chemistry, including drug discovery, bioconjugation, and nanoscience. Radiochemistry is no exception, as the canonical Cu(I)-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, inverse electron demand Diels-Alder reaction, and other types of bioorthogonal click ligations have had a significant impact on the synthesis and development of radiopharmaceuticals. This review will focus on recent applications of click chemistry ligations in the preparation of imaging agents for SPECT and PET, including small molecules, peptides, and proteins labeled with radionuclides such as (18)F, (64)Cu, (111)In, and (99m)Tc.

  14. Click-to-Chelate: Development of Technetium and Rhenium-Tricarbonyl Labeled Radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Thomas L. Mindt

    2013-03-01

    Full Text Available The Click-to-Chelate approach is a highly efficient strategy for the radiolabeling of molecules of medicinal interest with technetium and rhenium-tricarbonyl cores. Reaction of azide-functionalized molecules with alkyne prochelators by the Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC; click reaction enables the simultaneous synthesis and conjugation of tridentate chelating systems for the stable complexation of the radiometals. In many cases, the functionalization of (biomolecules with the ligand system and radiolabeling can be achieved by convenient one-pot procedures. Since its first report in 2006, Click-to-Chelate has been applied to the development of numerous novel radiotracers with promising potential for translation into the clinic. This review summarizes the use of the Click-to-Chelate approach in radiopharmaceutical sciences and provides a perspective for future applications.

  15. Chemical Architecture and Applications of Nucleic Acid Derivatives Containing 1,2,3-Triazole Functionalities Synthesized via Click Chemistry

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2012-10-01

    Full Text Available There is considerable attention directed at chemically modifying nucleic acids with robust functional groups in order to alter their properties. Since the breakthrough of copper-assisted azide-alkyne cycloadditions (CuAAC, there have been several reports describing the synthesis and properties of novel triazole-modified nucleic acid derivatives for potential downstream DNA- and RNA-based applications. This review will focus on highlighting representative novel nucleic acid molecular structures that have been synthesized via the “click” azide-alkyne cycloaddition. Many of these derivatives show compatibility for various applications that involve enzymatic transformation, nucleic acid hybridization, molecular tagging and purification, and gene silencing. The details of these applications are discussed. In conclusion, the future of nucleic acid analogues functionalized with triazoles is promising.

  16. Click chemistry for rapid labeling and ligation of RNA.

    Science.gov (United States)

    Paredes, Eduardo; Das, Subha R

    2011-01-03

    The copper(I)-promoted azide-alkyne cycloaddition reaction (click chemistry) is shown to be compatible with RNA (with free 2'-hydroxyl groups) in spite of the intrinsic lability of RNA. RNA degradation is minimized through stabilization of the Cu(I) in aqueous buffer with acetonitrile as cosolvent and no other ligand; this suggests the general possibility of "ligandless" click chemistry. With the viability of click chemistry validated on synthetic RNA bearing "click"-reactive alkynes, the scope of the reaction is extended to in-vitro-transcribed or, indeed, any RNA, as a click-reactive azide is incorporated enzymatically. Once clickable groups are installed on RNA, they can be rapidly click labeled or conjugated together in click ligations, which may be either templated or nontemplated. In click ligations the resultant unnatural triazole-linked RNA backbone is not detrimental to RNA function, thus suggesting a broad applicability of click chemistry in RNA biological studies.

  17. Monocatenary, branched, double-headed, and bolaform surface active carbohydrate esters via photochemical thiol-ene/-yne reactions.

    Science.gov (United States)

    Boyère, Cédric; Broze, Guy; Blecker, Christophe; Jérôme, Christine; Debuigne, Antoine

    2013-10-18

    An original and versatile method for the synthesis of a range of novel mannose-based surfactants was developed via metal-free photo-induced thiol-ene/-yne 'click' reactions. This light-mediated hydrothiolation reaction involving a thiolated mannose was successfully applied to terminal and internal alkenes, dienes, and alkynes, leading to monocatenary, branched, double-headed, and bolaform amphiphilic carbohydrate esters, respectively. A surface activity study showed that these new compounds possess valuable properties and display specific behavior at the air-water interface. It also demonstrated the greater flexibility of the thioether moiety in the spacer of the surfactants produced via a thiol-ene reaction in comparison with the triazole heterocyclic rings in similar glucose-based surfactants synthesized elsewhere by the alkyne-azide 1,3-dipolar addition.

  18. Phenylglyoxal-Based Visualization of Citrullinated Proteins on Western Blots

    Directory of Open Access Journals (Sweden)

    Sanne M. M. Hensen

    2015-04-01

    Full Text Available Citrullination is the conversion of peptidylarginine to peptidylcitrulline, which is catalyzed by peptidylarginine deiminases. This conversion is involved in different physiological processes and is associated with several diseases, including cancer and rheumatoid arthritis. A common method to detect citrullinated proteins relies on anti-modified citrulline antibodies directed to a specific chemical modification of the citrulline side chain. Here, we describe a versatile, antibody-independent method for the detection of citrullinated proteins on a membrane, based on the selective reaction of phenylglyoxal with the ureido group of citrulline under highly acidic conditions. The method makes use of 4-azidophenylglyoxal, which, after reaction with citrullinated proteins, can be visualized with alkyne-conjugated probes. The sensitivity of this procedure, using an alkyne-biotin probe, appeared to be comparable to the antibody-based detection method and independent of the sequence surrounding the citrulline.

  19. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly......, the disulfide bridge was replaced with amide bonds of various lengths. The novel peptides did not retain their inhibitory activity, but formed the basis for another strategy. Second, bicyclic peptides were obtained by creating head-to-tail cyclized peptides that were made bicyclic by the addition of a covalent...... increased. Finally, the effect of multivalent display of upain-2 was investigated. Several dimers of upain-2 were made and the attachment of upain-2 via the Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) onto an alkyne functionalized carbohydrate scaffold was investigated. Besides the synthesis...

  20. Diversity-Oriented Peptide Stapling

    DEFF Research Database (Denmark)

    Tran, Thu Phuong; Larsen, Christian Ørnbøl; Røndbjerg, Tobias

    2017-01-01

    The introduction of macrocyclic constraints in peptides (peptide stapling) is an important tool within peptide medicinal chemistry for stabilising and pre-organising peptides in a desired conformation. In recent years, the copper-catalysed azide-alkyne cycloaddition (CuAAC) has emerged...... as a powerful method for peptide stapling. However, to date CuAAC stapling has not provided a simple method for obtaining peptides that are easily diversified further. In the present study, we report a new diversity-oriented peptide stapling (DOPS) methodology based on CuAAC chemistry. Stapling of peptides...... incorporating two azide-modified amino acids with 1,3,5-triethynylbenzene efficiently provides (i, i+7)- and (i, i+9)-stapled peptides with a single free alkyne positioned on the staple, that can be further conjugated or dimerised. A unique feature of the present method is that it provides easy access...

  1. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  2. Synthesis of C-5, C-2' and C-4'-neomycin-conjugated triplex forming oligonucleotides and their affinity to DNA-duplexes.

    Science.gov (United States)

    Tähtinen, Ville; Granqvist, Lotta; Virta, Pasi

    2015-08-01

    Neomycin-conjugated homopyrimidine oligo 2'-deoxyribonucleotides have been synthesized on a solid phase and their potential as triplex forming oligonucleotides (TFOs) with DNA-duplexes has been studied. For the synthesis of the conjugates, C-5, C-2' and C-4'-tethered alkyne-modified nucleoside derivatives were used as an integral part of the standard automated oligonucleotide chain elongation. An azide-derived neomycin was then conjugated to the incorporated terminal alkynes by Cu(I)-catalyzed 1,3-dipolar cycloaddition (the click chemistry). Concentrated ammonia released the desired conjugates in acceptable purity and yields. The site of conjugation was expectedly important for the Hoogsteen-face recognition: C-5-conjugation showed a notable positive effect, whereas the influence of the C-2' and C-4'-modification remained marginal. In addition to conventional characterization methods (UV- and CD-spectroscopy), (19)F NMR spectroscopy was applied for the monitoring of triplex/duplex/single strand-conversions.

  3. Propargyl-functional aliphatic polycarbonate obtained from carbon dioxide and glycidyl propargyl ether.

    Science.gov (United States)

    Hilf, Jeannette; Frey, Holger

    2013-09-01

    The synthesis of propargyl-functional poly(carbonate)s with different content of glycidyl propargyl ether (GPE) units is achieved via the copolymerization of propargyl glycidyl ether and carbon dioxide. A new type of functional poly(carbonate) synthesized directly from CO(2) and the glycidyl ether is obtained. The resulting polymers show moderate polydispersities in the range of 1.6-2.5 and molecular weights in the range of 7000-10 500 g mol(-1). The synthesized copolymers with varying number of alkyne functionalities and benzyl azide are used for the copper-catalyzed Huisgen-1,3-dipolar addition. Moreover, the presence of vicinal alkyne groups opens a general pathway to produce functional aliphatic poly(carbonate)s from a single polymer scaffold.

  4. Asymmetric synthesis of chiral β-alkynyl carbonyl and sulfonyl derivatives via sequential palladium and copper catalysis† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01724j Click here for additional data file.

    Science.gov (United States)

    Masters, James T.; Taft, Benjamin R.; Lumb, Jean-Philip

    2016-01-01

    We present a full account detailing the development of a sequential catalysis strategy for the synthesis of chiral β-alkynyl carbonyl and sulfonyl derivatives. A palladium-catalyzed cross coupling of terminal alkyne donors with acetylenic ester, ketone, and sulfone acceptors generates stereodefined enynes in high yield. These compounds are engaged in an unprecedented, regio- and enantioselective copper-catalyzed conjugate reduction. The process exhibits a high functional group tolerance, and this enables the synthesis of a broad range of chiral products from simple, readily available alkyne precursors. The utility of the method is demonstrated through the elaboration of the chiral β-alkynyl products into a variety of different molecular scaffolds. Its value in complex molecule synthesis is further validated through a concise, enantioselective synthesis of AMG 837, a potent GPR40 receptor agonist. PMID:27746892

  5. Cascade Metathesis Reactions for the Synthesis of Taxane and Isotaxane Derivatives

    Science.gov (United States)

    Ma, Cong; Letort, Aurélien; Aouzal, Rémi; Wilkes, Antonia; Maiti, Gourhari; Farrugia, Louis J.; Ricard, Louis

    2016-01-01

    Abstract Tricyclic isotaxane and taxane derivatives have been synthesized by a very efficient cascade ring‐closing dienyne metathesis (RCDEYM) reaction, which formed the A and B rings in one operation. When the alkyne is present at C13 (with no neighboring gem‐dimethyl group), the RCEDYM reaction leads to 14,15‐isotaxanes 16 a,b and 18 b with the gem‐dimethyl group on the A ring. If the alkyne is at the C11 position (and thus flanked by a gem‐dimethyl group), RCEDYM reaction only proceeds in the presence of a trisubstituted olefin at C13, which disfavors the competing diene ring‐closing metathesis reaction, to give the tricyclic core of Taxol 44. PMID:27062670

  6. Cascade Metathesis Reactions for the Synthesis of Taxane and Isotaxane Derivatives.

    Science.gov (United States)

    Ma, Cong; Letort, Aurélien; Aouzal, Rémi; Wilkes, Antonia; Maiti, Gourhari; Farrugia, Louis J; Ricard, Louis; Prunet, Joëlle

    2016-05-10

    Tricyclic isotaxane and taxane derivatives have been synthesized by a very efficient cascade ring-closing dienyne metathesis (RCDEYM) reaction, which formed the A and B rings in one operation. When the alkyne is present at C13 (with no neighboring gem-dimethyl group), the RCEDYM reaction leads to 14,15-isotaxanes 16 a,b and 18 b with the gem-dimethyl group on the A ring. If the alkyne is at the C11 position (and thus flanked by a gem-dimethyl group), RCEDYM reaction only proceeds in the presence of a trisubstituted olefin at C13, which disfavors the competing diene ring-closing metathesis reaction, to give the tricyclic core of Taxol 44.

  7. Patterned porous silicon photonic crystals with modular surface chemistry for spatial control of neural stem cell differentiation

    Science.gov (United States)

    Huang, Tiffany H.; Pei, Yi; Zhang, Douglas; Li, Yanfen; Kilian, Kristopher A.

    2016-05-01

    We present a strategy to spatially define regions of gold and nanostructured silicon photonics, each with materials-specific surface chemistry, for azide-alkyne cycloaddition of different bioactive peptides. Neural stem cells are spatially directed to undergo neurogenesis and astrogenesis as a function of both surface properties and peptide identity.We present a strategy to spatially define regions of gold and nanostructured silicon photonics, each with materials-specific surface chemistry, for azide-alkyne cycloaddition of different bioactive peptides. Neural stem cells are spatially directed to undergo neurogenesis and astrogenesis as a function of both surface properties and peptide identity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08327c

  8. Modification of porous silicon rugate filters through thiol-yne photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Soeriyadi, Alexander H., E-mail: alexander.soeriyadi@unsw.edu.au; Zhu, Ying, E-mail: alexander.soeriyadi@unsw.edu.au; Gooding, J. Justin, E-mail: justin.gooding@unsw.edu.au [Australian Centre for Nanomedicine and School of Chemistry, University of New South Wales, Sydney 2052 (Australia); Reece, Peter [School of Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-02-24

    Porous silicon (PSi) has a considerable potential as biosensor platform. In particular, the ability to modify the surface chemistry of porous silicon is of interest. Here we present a generic method to modify the surface of porous silicon through thiol-yne photochemistry initiated by a radical initiator. Firstly, a freshly etched porous silicon substrate is modified through thermal hydrosilylation with 1,8-nonadiyne to passivate the surface and introduce alkyne functionalities. The alkyne functional surface could then be further reacted with thiol species in the presence of a radical initiator and UV light. Functionalization of the PSi rugate filter is followed with optical reflectivity measurements as well as high resolution X-ray photoelectron spectroscopy (XPS)

  9. Total synthesis of (-)-virginiamycin M2: application of crotylsilanes accessed by enantioselective Rh(II) or Cu(I) promoted carbenoid Si-H insertion.

    Science.gov (United States)

    Wu, Jie; Panek, James S

    2011-12-16

    A stereoselective synthesis of the antibiotic (-)-virginiamycin M(2) is detailed. A convergent strategy was utilized that proceeded in 10 steps (longest linear sequence) from enantioenriched silane (S)-15. This reagent, which was prepared via a Rh(II)- or Cu(I)-catalyzed carbenoid Si-H insertion, was used to introduce the desired olefin geometry and stereocenters of the C1-C5 propionate subunit. A modified Negishi cross-coupling or an efficient alkoxide-directed titanium-mediated alkyne-alkyne reductive coupling strategy was utilized to assemble the trisubstituted (E,E)-diene. An underutilized late-stage SmI(2)-mediated macrocyclization was employed to construct the 23-membered macrocycle scaffold of the natural product.

  10. Copper Catalysis for Synthesizing Main-Group Organometallics Containing B, Sn or Si.

    Science.gov (United States)

    Yoshida, Hiroto

    2016-02-01

    A copper complex has proven to be a potent catalyst for forming a C-B bond via diborylation of arynes and alkynes, affording vic-diborylarenes and vic-diborylalkenes with high efficiency. A boryl-substituted organocopper species, which is intermediately generated in the diborylation, has been found to be captured by a tin or a carbon electrophile, leading to three-component borylstannylation or carboboration, in which C-B and C-Sn (or C) bonds are constructed simultaneously. Furthermore, reducing the Lewis acidity of the boron center with 1,8-diaminonaphthalene decisively alters the regiochemical behavior of the borylcopper species, enabling the installation of a boryl moiety to occur at an internal carbon of terminal alkynes in borylstannylation and protoboration. Copper catalysis for C-Sn and C-Si bond-forming processes via distannylation, hydrostannylation and silylstannylation, as well as silver catalysis for a C-B bond-forming reaction, is also described.

  11. Reactivity mapping with electrochemical gradients for monitoring reactivity at surfaces in space and time.

    Science.gov (United States)

    Krabbenborg, Sven O; Nicosia, Carlo; Chen, Pengkun; Huskens, Jurriaan

    2013-01-01

    Studying and controlling reactions at surfaces is of great fundamental and applied interest in, among others, biology, electronics and catalysis. Because reaction kinetics is different at surfaces compared with solution, frequently, solution-characterization techniques cannot be used. Here we report solution gradients, prepared by electrochemical means, for controlling and monitoring reactivity at surfaces in space and time. As a proof of principle, electrochemically derived gradients of a reaction parameter (pH) and of a catalyst (Cu(I)) have been employed to make surface gradients on the micron scale and to study the kinetics of the (surface-confined) imine hydrolysis and the copper(I)-catalysed azide-alkyne 1,3-dipolar cycloaddition, respectively. For both systems, the kinetic data were spatially visualized in a two-dimensional reactivity map. In the case of the copper(I)-catalysed azide-alkyne 1,3-dipolar cycloaddition, the reaction order (2) was deduced from it.

  12. Light effect on Click reaction: Role of photonic quantum dot catalyst

    Science.gov (United States)

    Nandi, Debkumar; Taher, Abu; Islam, Rafique Ul; Choudhary, Meenakshi; Siwal, Samarjeet; Mallick, Kaushik

    2016-09-01

    Due to the light excitation, the valence band electron of the copper (I) sulfide quantum dot transfer to the conduction band and act as a scavenger of the terminal proton of the alkyne in the presence of organic azide with the formation of 1,4-disubstituted 1,2,3-triazoles, where the copper(I) species of Cu2S act as a catalyst for the reaction. The above cycloaddition reaction between alkyne and azide is commonly known as the Click reaction. In this study, experiments were carried out under the exposure of ultra-violate and daylight and also dark environment. According to the original recommendation for the Click reaction, the role of the base was also considered for this experiment. We found that the effect of conduction band electron is more efficient than the recommended conventional base mediated reaction procedure.

  13. The amide C-N bond of isatins as the directing group and the internal oxidant in Ru-catalyzed C-H activation and annulation reactions: access to 8-amido isocoumarins.

    Science.gov (United States)

    Kaishap, Partha Pratim; Sarma, Bipul; Gogoi, Sanjib

    2016-07-28

    The N-O, N-N and O-O bonds are the frequently used internally oxidative directing groups used in various redox-neutral coupling reactions. The sole use of the C-N bond as the oxidizing directing group was reported recently by Li X. and co-workers for the Rh(iii)-catalyzed C-H activation of phenacyl ammonium salts. Herein, we report the use of the amide C-N bond of isatins as the oxidizing directing group for the Ru(ii)-catalyzed redox-neutral C-H activation and annulation reactions with alkynes which afford 8-amido isocoumarins. The reaction also features excellent regioselectivity with alkyl aryl substituted alkynes.

  14. Construction of Biofunctional and Biomedical Polymers by Use of “Click" Chemistry

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    The lecture will address recent research activities aiming at developing novel biomacromolecular materials with unsurpassed properties by use of the proper synthetic tools where various “click” chemistry approaches play a key prominent role. Two entirely different themes will be elaborated...... with first application of orthogonal “clicking” employing both the copper catalyzed alkyne azide 1,3- cycloaddition (CuAAC) and thiol-ene “click” and lastly “electroclicking” onto a conducting polymer surface. In the first part the classical medical material workhorse, poly(-caprolactone) (PCL), has been...... that comprises rod-like, coil-like, and dendritic fragments. The facile route to linear-dendritic cholesteryl-b-PCL-b-(L-lysine)G2 by azide-alkyne and thiol-ene “click” reactions will be elucidated.2 Here the driving motivation was to contrive a robust, facile, and effective synthetic strategy. Thirdly...

  15. Process for compound transformation

    KAUST Repository

    Basset, Jean-Marie

    2016-12-29

    Embodiments of the present disclosure provide for methods of using a catalytic system to chemically transform a compound (e.g., a hydrocarbon). In an embodiment, the method does not employ grafting the catalyst prior to catalysis. In particular, embodiments of the present disclosure provide for a process of hydrocarbon (e.g., C1 to C20 hydrocarbon) metathesis (e.g., alkane, olefin, or alkyne metathesis) transformation, where the process can be conducted without employing grafting prior to catalysis.

  16. Synthesis of homochiral tris-indanyl molecular rods

    DEFF Research Database (Denmark)

    Kjeldsen, Niels Due; Funder, Erik Daa; Gothelf, Kurt Vesterager

    2014-01-01

    Homochiral tris-indanyl molecular rods designed for supramolecular surface self-assembly were synthesized. The chiral indanol moiety was constructed via a Ti-mediated alkyne trimerization. Further manipulations resulted in a homochiral indanol monomer. This was employed as the precursor...... for successive Sonogashira and Ohira-Bestman reactions towards the homochiral tris-indanyl molecular rods. The molecular rods will be applied for scanning tunnelling microscopy studies of their surface self-assembly and chirality....

  17. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  18. Concise Total Synthesis of Lundurines A-C Enabled by Gold Catalysis and a Homodienyl Retro-Ene/Ene Isomerization.

    Science.gov (United States)

    Kirillova, Mariia S; Muratore, Michael E; Dorel, Ruth; Echavarren, Antonio M

    2016-03-23

    The total synthesis of lundurines A-C has been accomplished in racemic and enantiopure forms in 11-13 and 12-14 steps, respectively, without protection/deprotection of functional groups, by a novel tandem double condensation/Claisen rearrangement, a gold(I)-catalyzed alkyne hydroarylation, a cyclopropanation via formal [3 + 2] cycloaddition/nitrogen extrusion, and a remarkable olefin migration through a vinylcyclopropane retro-ene/ene reaction that streamlines the endgame.

  19. Synthesis of 2,3-diyne-1,4-naphthoquinone derivatives and evaluation of cytotoxic activity against tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mauro G.; Camara, Celso A.; Silva, Tania M.S., E-mail: ccelso@dcm.ufrpe.br [Universidade Federal Rural de Pernambuco (LSCB/UFRPE), Recife, PE (Brazil). Dept. de Ciencias Moleculares. Lab. de Sintese de Compostos Bioativos; Feitosa, Anderson C.S.; Meira, Assuero S.; Pessoa, Claudia [Universidade Federal do Ceara (LOE/UFC), Fortaleza, CE (Brazil). Dept. de Fisiologia e Farmacologia. Lab. de Oncologia Experimental

    2013-09-15

    A series of 2,3-diyne-1,4-naphthoquinone derivatives was synthesized from 2,3-dibromo- 1,4-naphthoquinone and various functionalized terminal alkynes using palladium-catalyzed Sonogashira cross-coupling reaction. The diynes were evaluated as potential cytotoxic agents against three tumor cell lines: human ovarian adenocarcinoma (OVCAR-8), human metastatic prostate cancer (PC-3M) and human bronchoalveolar lung carcinoma (NCI-H358M), presenting, in general, satisfactory results for inhibition of cell growth. (author)

  20. Solid Phase Synthesis of Polymacromer and Copolymacromer Brushes

    Science.gov (United States)

    2012-04-25

    REPORT Solid Phase Synthesis of Polymacromer and Copolymacromer Brushes 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We report a novel solid phase...form poly-macromer brushes wherein macromonomers are linked via triazole groups. After each addition step, the terminal alkyne group can be deprotected...Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Solid Phase Synthesis , polymers and copolymers Hernán R. Rengifo, Cristian Grigoras, Benjamin I

  1. Observation of the controlled assembly of preclick components in the in situ click chemistry generation of a chitinase inhibitor

    OpenAIRE

    Hirose, T.; Maita, N; Gouda, H.; Koseki, J; Yamamoto, T; Sugawara, A; H. Nakano; Hirono, S; Shiomi, K.; Watanabe, T; Taniguchi, H; Sharpless, KB; Omura, S; Sunazuka, T

    2013-01-01

    Several in situ click chemistry studies have been reported. To date, there is evidence to indicate that proteins act as mold between azide and alkyne fragments by X-ray analysis of protein–ligand complexes. However, only “postclick” structural evidence has been available. We succeeded in obtaining crystal structures of a chitinase complexed with an azide inhibitor and an O-allyl oxime fragment as a mimic of a click partner, revealing a mechanism for accelerating triazole formation in chitinas...

  2. Thermally induced structural transformation of polytriazoleimide to polyindoleimide

    Institute of Scientific and Technical Information of China (English)

    Yan Peng E; Li Qiang Wan; Yu Jing Li; Fa Rong Huang; Lei Du

    2012-01-01

    A new kind of polytriazoleimide containing bisphenyl-1,2,3-triazole (BPT) was synthesized by copper-catalyzed 1,3-dipolar cycloaddition of azides and alkynes (CuAAC) and polycondensation.The thermal stability and degradation mechanism of the polytriazoleimide were investigated.The results show that the structure of BPT in polytriazoleimide transforms to phenylindole after thermal treatment,accompanying the release of N2.

  3. CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+.

    Science.gov (United States)

    Dördelmann, G; Meinhardt, Thomas; Sowik, Thomas; Krueger, Anke; Schatzschneider, Ulrich

    2012-12-01

    The copper-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) was used for the first time to attach a biologically active carbon monoxide delivery agent to modified nanodiamond (ND) as a highly biocompatible carrier. The [Mn(CO)(3)(tpm)](+) photoactivatable CO-releasing molecule (PhotoCORM) on the surface retained the carbon monoxide release properties of the parent compound as shown with the myoglobin assay.

  4. Convenient Approach to Access Octa-Glycosylated Porphyrins via “Click Chemistry”

    Directory of Open Access Journals (Sweden)

    Misako Okada

    2009-01-01

    Full Text Available Easy, quantitative, and one-pot introduction of eight β-lactoside-modules onto a porphyrin-core was achieved through Cu+-catalyzed chemoselective coupling (click chemistry between a porphyrin carrying eight alkyne-terminals and β-lactosyl azides. The obtained porphyrin-based glycocluster shows not only good water-solubility but also strong/specific lectin-affinity.

  5. Copper iodide nanoparticles on poly(4-vinyl pyridine) as new and green catalyst for multicomponent click synthesis of 1,4-disubstituted-1,2,3-triazoles in water

    Institute of Scientific and Technical Information of China (English)

    Jalal Albadi; Mosadegh Keshavarz; Masoumeh Abedini; Masoumeh Vafaie-nezhad

    2012-01-01

    Poly(4-vinyl pyridine) supported nanoparticle of copper(Ⅰ) iodide is reported as a green and recyclable catalyst for the regioselective synthesis of 1,4-disubstituted-1H-1,2,3-triazoles from benzyl halides,sodium azide and terminal alkynes in water.This catalyst can be recovered by simple filtration and recycled up to 8 consecutive runs without any loss of its efficiency.

  6. Unique tetrameric and hexameric mannoside clusters prepared by click chemistry.

    Science.gov (United States)

    Al-Mughaid, Hussein; Al-Zoubi, Raed M; Paul, Nawal K; Grindley, T Bruce

    2015-11-19

    The synthesis of novel tetrameric and hexameric mannoside clusters bearing 1,2,3-trizole linkages via Cu(I)-catalyzed azide-alkyne cycloaddition reaction ("click chemistry") is described. An attractive feature of these multiarmed mannoside clusters as potential inhibitors of uropathogenic Escherichia coli is the use of an aglycone whose length is designed to fit in the tyrosine gate. The acetylated mannosides were deprotected and the corresponding de-O-acetylated mannosides were found to exhibit good water solubility.

  7. Copper Supported on the SiO2 Nanoparticle in Click Chemistry: An Alternative Catalytic System for Regioselective and One-Pot Synthesis of 1,2,3-Triazoles and β-Hydroxytriazoles%Copper Supported on the SiO2 Nanoparticle in Click Chemistry: An Alternative Catalytic System for Regioselective and One-Pot Synthesis of 1,2,3-Triazoles and β-Hydroxytriazoles

    Institute of Scientific and Technical Information of China (English)

    Ciyabi Hashjin, Maryam; Ciyabi, Roghayeh; Baharloui, Maryam; Hosseini, Ghaffar; Tavakoli, Hamed

    2012-01-01

    In this work, readily prepared copper supported on the SiO2 nanoparticles has been found to effectively catalyze the 1,3-dipolar cycloaddition of a variety of azides, alkynes, epoxides and sodium azide, furnishing the correspond- ing 1,2,3-triazoles and β-hydroxytriazoles. Click reaction proceeds in short reaction times and under mild reaction conditions, and the resulting products are obtained in good yields at ambient temperature.

  8. SYNTHESIS AND CHARACTERIZATION OF TRIAZOLE CONTAINING LIQUID CRYSTALLINE POLYMERS THROUGH 1,3-DIPOLAR CYCLOADDITION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Devamani; Srividhya; Sundaram; Manjunathan; Sivashankaran; Nithyanandan; Subramanan; Balamurugan; Sengodan; Senthil

    2009-01-01

    Liquid crystalline polymers containing 1,2,3-triazole units as linking groups have been synthesized from the monomers containing triad ester diazide and flexible dialkyne ester by 1,3-cycloaddition reaction and were characterized. Click reaction of azide and alkyne functionals catalyzed by Cu(I) yielded target polyesters with 1,2,3-triazole groups.The structure of the polymer was confirmed by spectral techniques.GPC analysis reveals that the polymers have moderate molecular weight with narrow distributio...

  9. Tulane/Xavier Vaccine Peptide Program

    Science.gov (United States)

    2014-09-01

    resin bound peptide -PEG conjugate to remove copper and uncoupled PEG. After removal from the resin, MALDI-TOF MS analysis of the product...synthesized) was used to further modify the peptide with a singly modified PEG chain bearing a terminal alkyne functionality through a copper -catalyzed azide...COVERED (From - To) 1 July 2010 – 30 June 201 4. TITLE AND SUBTITLE Tulane/Xavier Vaccine Peptide Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  10. Cryptophane-Folate Biosensor for 129Xe NMR

    Science.gov (United States)

    2014-12-01

    2005) Head- to-tail peptide cyclodimerization by copper -catalyzed azide-alkyne cycloaddition. Angew. Chem., Int. Ed. Engl. 44, 2215−2220. (55...cryptophane biosensor was synthesized in 20 nonlinear steps, which included functionalization with folate recognition moiety, solubilizing peptide , and...carbonic anhydrases I or II.36 Another example included a peptide - labeled 129Xe biosensor by Schlundt et al. that produced a 1 ppm downfield shift upon

  11. Optimization of Solid-Supported Glaser-Hay Reactions in the Microwave

    Directory of Open Access Journals (Sweden)

    Jessica S. Lampkowski

    2015-03-01

    Full Text Available The translation of organometallic reactions into a microwave reactor has numerous advantages. Herein, we describe the application of a previously developed solid-supported Glaser-Hay reaction to microwave conditions. Overall, an array of diynes has been prepared demonstrating the ability to conduct chemoselective reactions in the microwave within 20 min compared to the 16 h thermal conditions. Moreover, non-microwave transparent alkynes have been found to react more quickly, preventing catalyst quenching, and resulting in higher yields.

  12. Synthesis of alkenyl boronates from allyl-substituted aromatics using an olefin cross-metathesis protocol.

    Science.gov (United States)

    Hemelaere, Rémy; Carreaux, François; Carboni, Bertrand

    2013-07-01

    An efficient synthesis of 3-aryl-1-propenyl boronates from pinacol vinyl boronic ester and allyl-substituted aromatics by cross metathesis is reported. Although the allylbenzene derivatives are prone to isomerization reaction under metathesis conditions, we found that some ruthenium catalysts are effective for this methodology. This strategy thus provides an interesting alternative approach to alkyne hydroboration, leading to the preparation of unknown compounds. Moreover, the boron substituent can be replaced by various functional groups in good yields.

  13. Analogs of Estrogen Metabolites as Probes of Estrogen-Induced Tumorigenesis

    Science.gov (United States)

    1999-07-01

    and unique biological actions in several extrahepatic tissues where they are produced. Access to selective inhibitors of the enzymes that are...as benzopyrones and quinolones was independently demonstrated by S. Torii and V. Kalinin. Kalinin reacted o-iodophenol 166, and terminal alkynes (2...synthetic studies aimed toward antitumor antibiotic 0 ,OTHP KF, 18-Crown-6 IOTHP & TBS anhydr.DMF - IY 255 254 0 KF, 18-Crown-6 . MeOH,.DMF 1I 0 OTHP

  14. Pd/C-mediated dual C-C bond forming reaction in water: synthesis of 2,4-dialkynylquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Ellanki A.; Islam, Aminul; Venu, Bolla K. [Dr. Reddy' s Laboratories Limited, Hyderabad, Andhra Pradesh (India); Mukkanti, K. [JNT University, Hyderabad, Andhra Pradesh (India). Inst. of Science and Technology. Chemistry Division; Pal, Manojit, E-mail: manojitpal@rediffmail.co [Matrix Laboratories Ltd., Medak District, Andra Pradesh (India). New Drug Discovery. R and D Center

    2010-07-01

    Pd/C facilitated dual C-C bond forming reaction between 2,4-diiodoquinoline and terminal alkynes in water providing a practical and one-step synthesis of 2,4-dialkynylquinolines. A number of related quinoline derivatives were prepared in good to excellent yields using this water-based methodology. The use of other palladium catalysts and solvents was examined and the mechanism of the reaction has been discussed. (author)

  15. Concise epoxide-based synthesis of the C14–C25 bafilomycin A1 polypropionate chain

    OpenAIRE

    Valentín, Elizabeth M; Mulero, Marlenne; Prieto, José A.

    2012-01-01

    An efficient non-aldol convergent synthesis of the C14–C25 polyketide fragment of bafilomycin A1 was completed in 16% overall yield and 8 steps in its longest linear sequence. This synthesis highlights the formation of the key fragments using a three-step sequence of epoxide cleavage, alkyne reduction, and epoxidation developed in our laboratory; starting from suitably protected enantiomeric epoxides of trans-2,3-epoxybutanol. This chemistry represents a quick asymmetric and diastereoselectiv...

  16. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds.

    Science.gov (United States)

    Guantai, Eric M; Ncokazi, Kanyile; Egan, Timothy J; Gut, Jiri; Rosenthal, Philip J; Smith, Peter J; Chibale, Kelly

    2010-12-01

    A targeted series of chalcone and dienone hybrid compounds containing aminoquinoline and nucleoside templates was synthesized and evaluated for in vitro antimalarial activity. The Cu(I)-catalyzed cycloaddition of azides and terminal alkynes was applied as the hybridization strategy. Several chalcone-chloroquinoline hybrid compounds were found to be notably active, with compound 8b the most active, exhibiting submicromolar IC(50) values against the D10, Dd2 and W2 strains of Plasmodium falciparum.

  17. Synthesis of N-substituted phthalimidoalkyl 1H-1,2,3-triazoles: a molecular diversity combining click chemistry and ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Moara T. da; Oliveira, Ronaldo N. de; Valenca, Wagner O.; Barbosa, Fernanda C.G.; Silva, Mauro G. da; Camara, Celso A., E-mail: ronaldonoliveira@dcm.ufrpe.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Ciencias Moleculares

    2012-10-15

    A series of 1,2,3-triazole derivatives was synthesized from N-phthalimidoalkyl-azides (A{sub 1}-A{sub 4}) and alkynes (a-e) under ultrasound irradiation in the presence of CuI, Et{sub 3}N and DMF as solvent. The present protocol afforded 18 new 1,2,3-triazoles (1-4) in good-to-excellent yields (67-98%). (author)

  18. Assessment of Nanobiotechnology-Targeted siRNA Designed to Inhibit NF-kappaB Classical And Alternative Signaling in Breast Tumor Macrophages

    Science.gov (United States)

    2012-07-01

    including mannose, fucose , and galactose via ‘click’ chemistry. In this work, we show that the incorporation of contrast agents into the...following blocks: (1) an azide-displaying block for the attachment of alkyne-functionalized mannose, fucose , or galactose via ‘click’ chemistry, (2) a...immunohistochemistry). Biodistribution studies involving the fucose - and galactose-targeted nanoparticles are ongoing. Conclusions: The materials developed

  19. Synthesis and Fluorescence Properties of Coumarin Glycosides and Triazoylglycosides

    Institute of Scientific and Technical Information of China (English)

    WU Zheng; FU Xin-ling; YANG Nan; WANG Qiu-an

    2013-01-01

    Four coumarin glycosides(1-4) and four coumarin triazoylglycosides(5-8) were synthesized by phase transfer catalytic glycosylation and copper-catalyzed azide-alkyne cycloaddition(CuAAC) respectively from 4-methyl-7-hydroxyl coumarin(4-methylumbelliferone).The structures were characterized by 1H NMR,MS or IR.The fluorescent properties of the coumarin glycosides and triazoylglycosides were studied in different solvents and compared to those of 4-methyl-7-hydroxyl coumarin.

  20. Photoredox-Catalyzed Ketyl–Olefin Coupling for the Synthesis of Substituted Chromanols

    KAUST Repository

    Fava, Eleonora

    2016-07-21

    A visible light photoredox-catalyzed aldehyde olefin cyclization is reported. The method represents a formal hydroacylation of alkenes and alkynes and provides chromanol derivatives in good yields. The protocol takes advantage of the double role played by trialkylamines (NR3) which act as (i) electron donors for reducing the catalyst and (ii) proton donors to activate the substrate via a proton-coupled electron transfer. © 2016 American Chemical Society.

  1. Sydnone C-4 heteroarylation with an indolizine ring via Chichibabin indolizine synthesis.

    Science.gov (United States)

    Albota, Florin; Caira, Mino R; Draghici, Constantin; Dumitrascu, Florea; Dumitrescu, Denisa E

    2016-01-01

    The synthesis of sydnones heteroarylated at C-4 with an indolizine was achieved by Chichibabin (Tschitschibabin) indolizine synthesis starting from the corresponding sydnone-N-pyridinium bromides. The latter compounds were also transformed to sydnone-indolizines connected through a keto group at the C-4 position by refluxing them in 1,2-epoxybutane with an activated alkyne. The structures of the new compounds were assigned by FTIR, NMR spectroscopy and X-ray analysis.

  2. Gold-catalyzed intermolecular coupling of sulfonylacetylene with allyl ethers: [3,3]- and [1,3]-rearrangements

    Directory of Open Access Journals (Sweden)

    Jungho Jun

    2013-08-01

    Full Text Available Gold-catalyzed intermolecular couplings of sulfonylacetylenes with allyl ethers are reported. A cooperative polarization of alkynes both by a gold catalyst and a sulfonyl substituent resulted in an efficient intermolecular tandem carboalkoxylation. Reactions of linear allyl ethers are consistent with the [3,3]-sigmatropic rearrangement mechanism, while those of branched allyl ethers provided [3,3]- and [1,3]-rearrangement products through the formation of a tight ion–dipole pair.

  3. Functional Organometallics

    Institute of Scientific and Technical Information of China (English)

    K.H.DTZ

    2007-01-01

    1 Results The lecture will address aspects of functional organometallics related to the development of novel organometallic materials.In chromium complexes of fused arenes-regio-and diastereoselectively accessible by chromium-templated benzannulation of arylcarbenes by alkynes[1]-a haptotropic migration of the chromium fragment along the π-face of fused arenes is controlled by both thermodynamics and the substitution pattern of the arene and the metal coligand sphere,and can be applied towards an organo...

  4. Haptotropic Migration of Metal Templates on Arene Surfaces

    Institute of Scientific and Technical Information of China (English)

    K.H.Dtz; H.C.Jahr; J.Bennewitz; J.Dubarle-offner

    2007-01-01

    1 Results The chromium-templated benzannulation of arylcarbenes by alkynes provides a direct regio- and diastereoselective access to densely functionalized chromium arenes[1]. The chromium fragment undergoes a haptotropic migration along the π-face of the fused arenes which can be controlled by thermodynamics,by the substitution pattern of the arene and by the metal coligand sphere(See Scheme 1).The controlled regioselective labeling of benzene rings can be exploited in diastereoselective C-C bond forma...

  5. Conformational stability of triazolyl functionalized collagen triple helices.

    Science.gov (United States)

    Erdmann, Roman S; Wennemers, Helma

    2013-06-15

    Functionalized collagen is attractive for the development of synthetic biomaterials. Herein we present the functionalization of azidoproline containing collagen model peptides with various alkynes using click chemistry. The influence on the stability of the collagen triple helix of the stereochemistry of the introduced triazolyl prolines (4R or 4S), the position of their incorporation (Xaa or Yaa) and the substituents attached to them are shown. The results provide a useful guide for the optimal functionalization of collagen using click chemistry.

  6. Calculating pKa values for substituted phenols and hydration energies for other compounds with the first-order Fuzzy-Border continuum solvation model

    OpenAIRE

    Sharma, Ity; Kaminski, George A.

    2012-01-01

    We have computed pKa values for eleven substituted phenol compounds using the continuum Fuzzy-Border (FB) solvation model. Hydration energies for 40 other compounds, including alkanes, alkenes, alkynes, ketones, amines, alcohols, ethers, aromatics, amides, heterocycles, thiols, sulfides and acids have been calculated. The overall average unsigned error in the calculated acidity constant values was equal to 0.41 pH units and the average error in the solvation energies was 0.076 kcal/mol. We ha...

  7. Application of the AM1 and MNDO Semiempirical Quantum Mechanical Molecular Models.

    Science.gov (United States)

    1986-12-01

    formation for protonated alkenes in Table 1 are for classical structures. AMI fails to predict a nonclassical structure as a true minimum for the ethyl...cation 5 . Protonation sites for asymmetric alkenes and alkynes are predicted correctly, as are the preferred para- and ortho-protonation of toluene...lost CO without activation in the absence of water, the 2 " hydrated " protonated malonate ester did not dissociate. When the 02C...CH2R bond length was

  8. An anomalous hydration/dehydration sequence for the mild generation of a nitrile oxide

    OpenAIRE

    NISHIWAKI, Nagatoshi; Kobiro, Kazuya; Kiyoto, Hideyuki; Hirao, Shotaro; Sawayama, Jun; Saigo, Kazuhiko; Okajima, Yoshikazu; Uehara, Toshiharu; Maki, Asaka; Ariga, Masahiro

    2011-01-01

    A nitrile oxide containing a carbamoyl group is readily generated upon the treatment of 2-methyl-4-nitro-3-isoxazolin-5(2H)-one with water under mild reaction conditions, even in the absence of special reagents. The obtained nitrile oxide undergoes cycloaddition with dipolarophiles, alkynes and alkenes, to afford the corresponding isoxazol(in)es, which are useful intermediates in the synthesis of polyfunctionalized compounds. A plausible mechanism underlying the formation of the nitrile oxide...

  9. Concise Total Synthesis of Lundurines A–C Enabled by Gold Catalysis and a Homodienyl Retro-Ene/Ene Isomerization

    Science.gov (United States)

    2016-01-01

    The total synthesis of lundurines A–C has been accomplished in racemic and enantiopure forms in 11–13 and 12–14 steps, respectively, without protection/deprotection of functional groups, by a novel tandem double condensation/Claisen rearrangement, a gold(I)-catalyzed alkyne hydroarylation, a cyclopropanation via formal [3 + 2] cycloaddition/nitrogen extrusion, and a remarkable olefin migration through a vinylcyclopropane retro-ene/ene reaction that streamlines the endgame. PMID:26963149

  10. Pd(OAc)2-Catalyzed Tandem Reactions for the Synthesis of Indol-3-yl Substituted 1H-Isochromenes and 1,2-Dihydroisoquinolines%Pd(OAc)2-Catalyzed Tandem Reactions for the Synthesis of Indol-3-yl Substituted 1H-Isochromenes and 1,2-Dihydroisoquinolines

    Institute of Scientific and Technical Information of China (English)

    王欢; 韩秀玲; 陆熙炎

    2011-01-01

    A Pd(II) catalyzed tandem reaction of o-alkynylbenzaldehydes or o-alkynylbenzaldimines with substituted indoles initiated by the intermolecular addition of indoles to the carbonyl or imine group followed by the nucleopalladation of an intramolecular alkyne and quenching the carbon-palladium bond by protonolysis to regenerate the Pd(II) species was developed. The reaction can be carried out under mild conditions without the necessity of a redox system.

  11. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    Science.gov (United States)

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation.

  12. Hydrometallation Group 4 (Si, Sn, Ge, and Pb)

    OpenAIRE

    Dobbs, A.P.; Chio, F.K.I.

    2014-01-01

    This chapter will discuss the addition reactions of the hydrides of the Group IV elements to carbon–carbon double and triple bonds, namely hydrosilylation, hydrostannylation, hydrogermylation, and hydroplumbylation reactions of alkynes and alkenes.\\ud Although there is no corresponding chapter in the first edition of Comprehensive Organic Synthesis, the material presented here will follow on from Chapters 3.9 and 3.12 and the reader is referred back to these.

  13. Infinite Coordination Polymer Nano- and Micro-Particles

    Science.gov (United States)

    2015-06-12

    potential applications is in part due to the fact that these structures , consisting of repeating ligands interconnected by metallic nodes, can be made...Figure 5: Representations of the crystal structure of NU-135. (a) Detail of pores, viewed along the ab plane. Lilac spheres indicate the...based linkers exhibit not only bending in the alkyne regions, but also twisting at the cobalt metal center. These structural considerations behave in

  14. A Novel Stereoselective Synthesis of (1Z,3E)-2-Phenyl(or p-Tolyl)sulfonyl-substituted 1,3-Dienes via Palladium Catalyzed Cross-coupling Reactions of (E)-α-lodovinyl Sulfones

    Institute of Scientific and Technical Information of China (English)

    HU Rong-Hu; CHEN Gui-Qin; CAI Ming-Zhong

    2007-01-01

    (E)-α-Stannylvinyl phenyl(or p-tolyl)sulfones underwent an iododestannylation reaction to afford (E)-α-iodovinyl phenyl(or p-tolyl)sulfones 1,which reacted with (E)-alkenylzirconium(Ⅳ) complexes 2 produced in situ by hydrozirconation of terminal alkynes in the presence of a Pd(PPh3)4 catalyst to afford stereoselectively (1Z,3E)-2phenyl(or p-tolyl)sulfonyl-substituted 1,3-dienes 3 in good yields.

  15. Enantioselective organocatalyzed Oxa-Michael-Aldol cascade reactions: Construction of chiral 4H-chromenes with a trifluoromethylated tetrasubstituted carbon stereocenter

    KAUST Repository

    Zhang, Jing

    2015-03-13

    The first organocatalytic asymmetric synthesis of 4H-chromenes bearing a trifluoromethylated tetrasubstituted carbon center is presented. Chiral secondary amines promote the oxa-Michael-aldol cascade reaction between alkynals and 2-trifluoroacetylphenols via iminium-allenamine activation to produce pharmaceutically important heterocycles with excellent enantioselectivities. The proposed reaction can be scaled-up easily with maintenance of the excellent enantioselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Photoredox-Catalyzed Ketyl–Olefin Coupling for the Synthesis of Substituted Chromanols

    Science.gov (United States)

    2016-01-01

    A visible light photoredox-catalyzed aldehyde olefin cyclization is reported. The method represents a formal hydroacylation of alkenes and alkynes and provides chromanol derivatives in good yields. The protocol takes advantage of the double role played by trialkylamines (NR3) which act as (i) electron donors for reducing the catalyst and (ii) proton donors to activate the substrate via a proton-coupled electron transfer. PMID:27442851

  17. Ultrasound-assisted synthesis of 1-N-{beta}-D-glucopyranosyl-1H-1,2,3-triazole benzoheterocycles and their anti-inflammatory activities

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gilson B. da; Guimaraes, Bruna M.; Oliveira, Ronaldo N. de, E-mail: ronaldonoliveira@dcm.ufrpe.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Ciencias Moleculares; Assis, Shalom P.O.; Lima, Vera L.M. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Bioquimica. Laboratorio de Quimica e Metabolismo de Lipideos e Lipoproteinas

    2013-06-15

    In this work, the preparation of various glucosyl triazoles from a reaction between 2,3,4,6-tetra-O-acetyl-{beta}-D-glucopyranosyl azide and terminal alkynes was developed in moderate to excellent yields (63-99%). Ultrasound energy was applied at each step of the reaction to increase chemical reactivity. In addition, the compounds conjugated with benzoheterocycles moieties revealed potent anti-inflammatory activity. (author)

  18. Design, synthesis and photochemical properties of the first examples of iminosugar clusters based on fluorescent cores

    Directory of Open Access Journals (Sweden)

    Mathieu L. Lepage

    2015-05-01

    Full Text Available The synthesis and photophysical properties of the first examples of iminosugar clusters based on a BODIPY or a pyrene core are reported. The tri- and tetravalent systems designed as molecular probes and synthesized by way of Cu(I-catalysed azide–alkyne cycloadditions are fluorescent analogues of potent pharmacological chaperones/correctors recently reported in the field of Gaucher disease and cystic fibrosis, two rare genetic diseases caused by protein misfolding.

  19. Fluoroalkyl-Substituted Diazomethanes and Their Application in a General Synthesis of Pyrazoles and Pyrazolines.

    Science.gov (United States)

    Mertens, Lucas; Hock, Katharina J; Koenigs, Rene M

    2016-07-01

    A novel continuous-flow approach for the synthesis of fluoroalkyl-substituted diazomethanes has been developed. Utilizing a cheap, self-made microreactor fluoroalkyl-substituted amines were transformed into the corresponding diazomethanes using tert-butyl nitrite and acetic acid as catalyst. These diazomethanes were employed in [2+3] cycloaddition reactions with olefins and alkynes, yielding valuable pyrazolines and pyrazoles in good to excellent yields.

  20. 5-Alkynyl-2'-deoxyuridines: Chromatography-free synthesis and cytotoxicity evaluation against human breast cancer cells

    OpenAIRE

    Meneni, Srinivasarao; Ott, Ingo; Sergeant, Craig D.; Sniady, Adam; Gust, Ronald; Dembinski, Roman

    2007-01-01

    Starting with 5-iodo-2'-deoxyuridine, a series of 5-alkynyl-2'-deoxyuridines (with n-propyl, cyclopropyl, 1-hydroxycyclohexyl, p-tolyl, p-tert-butylphenyl, p-pentylphenyl, and trimethylsilyl alkyne substituents) have been synthesized via the palladium-catalyzed (Sonogashira) coupling reaction followed by a simplified isolation protocol (76–94% yield). The cytotoxic activity of modified nucleosides against MCF-7 and MDA-MB-231 human breast cancer cells has been determined in vitro. 5-Ethynyl-2...

  1. Synthesis of 2a,8b-Dihydrocyclobuta[a]naphthalene-3,4-diones

    Directory of Open Access Journals (Sweden)

    Kerstin Schmidt

    2010-07-01

    Full Text Available On irradiation (λ = 350 nm in neat hex-1-yne, naphthalene-1,2-dione monoacetals 1 afford mixtures of pentacyclic photodimers and up to 25% (isolated yield of mixed photocycloadducts 2. Careful acidic hydrolysis of the acetal function of 2 gives the title compounds 3, the overall sequence representing a first approach to a (formal [2 + 2] photocycloadduct of a 1,2-naphthoquinone to an alkyne.

  2. Complex Surface Concentration Gradients by Stenciled "Electro Click Chemistry"

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede;

    2010-01-01

    Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click...... active ligands including cell binding peptides are patterned in gradients by this method without losing their biological function or the conductivity of the polymer....

  3. Synthesis of Gibbilimbols A ~ D and Their ( Z )-Isomers

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling; YANG Yong-Gang; CAO Xiao-Ping

    2003-01-01

    @@ Gibbilimbols (1) were isolated from the leaves of Piper gibbilimbum in Papua New Guinea, which showed cyto toxicity toward KB nasopharyngal cancer cells (EDs0 2~ 8 μg/mL) and antibacterial activity against Staphylococcus epidermidis and Bacillus cereus (MIC 2 ~4 μg/mL). [1] Only two methods were reported for the synthesis of them,one is a coupling of phenolic part with alkyne, followed by reduction of triple bond by Mori. [2

  4. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    WANG; JinXian

    2001-01-01

    Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.……

  5. Observation of the controlled assembly of preclick components in the in situ click chemistry generation of a chitinase inhibitor.

    Science.gov (United States)

    Hirose, Tomoyasu; Maita, Nobuo; Gouda, Hiroaki; Koseki, Jun; Yamamoto, Tsuyoshi; Sugawara, Akihiro; Nakano, Hirofumi; Hirono, Shuichi; Shiomi, Kazuro; Watanabe, Takeshi; Taniguchi, Hisaaki; Sharpless, K Barry; Omura, Satoshi; Sunazuka, Toshiaki

    2013-10-01

    The Huisgen cycloaddition of azides and alkynes, accelerated by target biomolecules, termed "in situ click chemistry," has been successfully exploited to discover highly potent enzyme inhibitors. We have previously reported a specific Serratia marcescens chitinase B (SmChiB)-templated syn-triazole inhibitor generated in situ from an azide-bearing inhibitor and an alkyne fragment. Several in situ click chemistry studies have been reported. Although some mechanistic evidence has been obtained, such as X-ray analysis of [protein]-["click ligand"] complexes, indicating that proteins act as both mold and template between unique pairs of azide and alkyne fragments, to date, observations have been based solely on "postclick" structural information. Here, we describe crystal structures of SmChiB complexed with an azide ligand and an O-allyl oxime fragment as a mimic of a click partner, revealing a mechanism for accelerating syn-triazole formation, which allows generation of its own distinct inhibitor. We have also performed density functional theory calculations based on the X-ray structure to explore the acceleration of the Huisgen cycloaddition by SmChiB. The density functional theory calculations reasonably support that SmChiB plays a role by the cage effect during the pretranslation and posttranslation states of selective syn-triazole click formation.

  6. Coupling of Ligands to the Liposome Surface by Click Chemistry.

    Science.gov (United States)

    Spanedda, Maria Vittoria; De Giorgi, Marcella; Hassane, Fatouma Saïd; Schuber, Francis; Bourel-Bonnet, Line; Frisch, Benoît

    2017-01-01

    Click chemistry represents a new bioconjugation strategy that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor. Excellent coupling yields have been obtained in the presence of bathophenanthroline disulfonate, a water soluble copper-ion chelator, acting as a catalyst. No vesicle leakage is triggered by this conjugation reaction and the coupled mannose ligands are exposed at the surface of the liposomes. The major limitation of Cu(I)-catalyzed click reactions is that this conjugation is restricted to liposomes made of saturated (phospho)lipids. To circumvent that constraint, an example of alternative copper-free azide-alkyne click reaction has been developed. Molecular tools and results are presented here.

  7. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds.

    Science.gov (United States)

    Vilé, Gianvito; Almora-Barrios, Neyvis; Mitchell, Sharon; López, Núria; Pérez-Ramírez, Javier

    2014-05-12

    Site modification and isolation through selective poisoning comprise an effective strategy to enhance the selectivity of palladium catalysts in the partial hydrogenation of triple bonds in acetylenic compounds. The recent emergence of supported hybrid materials matching the stereo- and chemoselectivity of the classical Lindlar catalyst holds promise to revolutionize palladium-catalyzed hydrogenations, and will benefit from an in-depth understanding of these new materials. In this work, we compare the performance of bare, lead-poisoned, and ligand-modified palladium catalysts in the hydrogenation of diverse alkynes. Catalytic tests, conducted in a continuous-flow three-phase reactor, coupled with theoretical calculations and characterization methods, enable elucidation of the structural origins of the observed selectivity patterns. Distinctions in the catalytic performance are correlated with the relative accessibility of the active site to the organic substrate, and with the adsorption configuration and strength, depending on the ensemble size and surface potentials. This explains the role of the ligand in the colloidally prepared catalysts in promoting superior performance in the hydrogenation of terminal and internal alkynes, and short-chain alkynols. In contrast, the greater accessibility of the active surface of the Pd-Pb alloy and the absence of polar groups are shown to be favorable in the conversion of alkynes containing long aliphatic chains and/or ketone groups. These findings provide detailed insights for the advanced design of supported nanostructured catalysts.

  8. Semi-synthesis of biologically active nisin hybrids composed of the native lanthionine ABC-fragment and a cross-stapled synthetic DE-fragment.

    Science.gov (United States)

    Slootweg, Jack C; Peters, Nienke; Quarles van Ufford, H Linda C; Breukink, Eefjan; Liskamp, Rob M J; Rijkers, Dirk T S

    2014-10-01

    The antimicrobial peptide nisin is a promising template for designing novel peptide-based antibiotics to improve its drug-like properties. First steps in that direction represent the synthesis of hybrid nisin derivatives that contain a native nisin ABC-part and synthesized cross-stapled DE-ring fragments and are described here. The biological activity of the newly synthesized nisin derivatives was evaluated in order to compare the bioactivity of the synthetic DE-ring containing mimic and native lanthionine-bridged DE-ring containing nisin. The native nisin ABC-ring system was obtained via chymotrypsin digestion of full-length nisin, and was subsequently functionalized at the C-terminal carboxylate with two different amino alkyne moieties. Next, nisin hybrids were successfully prepared using Cu(I)-catalyzed azide alkyne cycloaddition 'click' chemistry by chemo-selective ligation of the ABC-alkyne with the N-terminal azido functionalized dicarba-DE ring mimic. The newly synthesized compounds were active as potent lipid II binders and retained antimicrobial activity in a growth inhibition assay. However, pore formation was not observed, possibly either due to the different character of the 'staples' as compared to the parent sulfides, or due to the triazole moiety as a sub-optimal amide bond isostere.

  9. Tandem ring-opening/ring-closing metathesis polymerization: relationship between monomer structure and reactivity.

    Science.gov (United States)

    Park, Hyeon; Lee, Ho-Keun; Choi, Tae-Lim

    2013-07-24

    Monomers containing either cycloalkenes with low ring strain or 1-alkynes are poor monomers for olefin metathesis polymerization. Ironically, keeping two inactive functional groups in proximity within one molecule can make it an excellent monomer for metathesis polymerization. Recently, we demonstrated that monomer 1 having cyclohexene and propargyl moieties underwent rapid tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization via relay-type mechanism. Furthermore, living polymerization was achieved when a third-generation Grubbs catalyst was used. Here, we present a full account on this tandem polymerization by investigating how various structural modifications of the monomers affected the reactivity of the tandem polymerization. We observed that changing the ring size of the cycloalkene moieties, the length of the alkynes, and linker units influenced not only the polymerization rates but also the reactivities of Diels-Alder reaction, which is a post-modification reaction of the resulting polymers. Also, the mechanism of tandem polymerization was studied by conducting end-group analysis using (1)H NMR analysis, thereby concluding that the polymerization occurred by the alkyne-first pathway. With this mechanistic conclusion, factors responsible for the dramatic structure-reactivity relationship were proposed. Lastly, tandem RO/RCM polymerization of monomers containing sterically challenging trisubstituted cycloalkenes was successfully carried out to give polymer repeat units having tetrasubstituted cycloalkenes.

  10. Cyanine-like dyes with large bond-length alternation.

    Science.gov (United States)

    Thorley, Karl J; Hales, Joel M; Kim, Hyeongeu; Ohira, Shino; Brédas, Jean-Luc; Perry, Joseph W; Anderson, Harry L

    2013-07-29

    Herein, the synthesis and properties of alkyne-bridged carbocations, which are analogous in structure to cyanine dyes, are reported. An alkene-bridged dye, linked at the third position of the indole, was also synthesized as a reference compound. These new carbocations are stable under ambient conditions, allowing characterization by UV/Vis and NMR ((1)H and (13)C) spectroscopies. These techniques revealed a large degree of delocalization of the positive charge, similar to a previously reported porphyrin carbocation. The linear and nonlinear optical properties are compared with cyanine dyes and triarylmethyl cations, to investigate the effects of the bond-length alternation and the overall molecular geometry. The value of Re(γ), the real part of the third-order microscopic polarizability, of -1.3×10(-33)  esu for the alkyne-linked cation is comparable to that of a cyanine dye of similar length. Nondegenerate two-photon absorption spectra showed that the alkene-bridged dye exhibited characteristics of cyanines, whereas the alkyne-bridged dye is reminiscent of octupolar chromophores, such as the triarylmethyl carbocation brilliant green. Such attributes were confirmed and rationalized by quantum chemical calculations.

  11. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation)

    Science.gov (United States)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei

    2016-03-01

    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  12. 环戊二烯基钌配合物催化的高选择性苯乙炔二聚反应%HIGHLY SELECTIVE CATALYTIC DIMERIZATION OF PHENYLACETYLENE BY CYCLOPENTADIENYL RUTHENIUM COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    金军挺; 黄吉玲; 陶晓春; 钱延龙

    1999-01-01

    @@ Transition metal vinylidene complexes (M=C=CHR) have attracted a great deal of attention in recent years as a new type of organometallic intermediates that may have unusual reactivity[1]. Their reactivity has been explored and their application to organic synthesis is developed[2]. Recent reports on the ruthenium-vinylidene complexes[3]suggest that the reaction of ruthenium-vinylidene complexes with a base generates the coordinatively unsaturated ruthenium acetylide species, which are involved in a number of catalytic and stoichiometric reactions of alkynes. For example,the coordinatively unsaturated ruthenium acetylide species C5Me5Ru(PPh3)-C≡CPh,formed from the reaction of the vinylidene complex C5Me5Ru(PPh3) (Cl)=C=CHPh with a base was reactive toward a variety of small molecules and active in catalytic dimerization of terminal alkynes[4]. The dimerization of terminal alkyne is an effective method of forming enynes, but its synthetic application in organic synthesis has been limited dueto low selectivity for dimeric products[5]. In this communication, we report that three ruthenium complexes were used as catalysts for the highly selective dimerization of phenylacetylene.

  13. Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability.

    Science.gov (United States)

    Tu, Qin; Tian, Chang; Ma, Tongtong; Pang, Long; Wang, Jinyi

    2016-05-01

    A quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA) was successfully prepared in this study via click chemistry. Alkyne-functionalized graphene oxide (GO-alkyne) was first synthesized through a two-step amidation reaction of GO-COOH. Meanwhile, azide-terminated poly(dimethylaminoethyl methacrylate) (PDMAEMA-N3) was prepared via the atom-transfer radical-polymerization of dimethylaminoethyl methacrylate (DMAEMA). Subsequently, PDMAEMA-N3 was grafted onto the GO-alkyne through click chemistry to obtain PDMAEMA modified graphene oxide (GO-PDMAEMA). Finally, the tertiary amino groups of GO-PDMAEMA were quaternized by ethyl bromide to provide a quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA). Various characterization techniques, including Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis spectrometry, ζ potential, Raman, contact angle analyses and field emission scanning electron microscope were used to ascertain the successful preparation of the quaternized GO-QPDMAEMA. Furthermore, antibacterial and antifouling activities of GO-QPDMAEMA were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the GO-QPDMAEMA surface exhibited significant antibacterial and antifouling properties, compared with the GO-COOH and GO-PDMAEMA surfaces.

  14. Combining Zn Ion Catalysis with Homogeneous Gold Catalysis: An Efficient Annulation Approach to N-Protected Indoles.

    Science.gov (United States)

    Wang, Yanzhao; Liu, Lianzhu; Zhang, Liming

    2013-02-01

    The Fischer indole synthesis is perhaps the most powerful method for indole preparation, but it often suffers from low regioselectivities with unsymmetric aliphatic ketone substrates and strong acidic conditions and is not suitable for α,β-unsaturated ketones. In this article, we disclose an efficient synthesis of N-protected indoles from N-arylhydroxamic acids/N-aryl-N-hydroxycarbamates and a variety of alkynes via a cooperative gold and zinc catalysis. The zinc catalysis is similar to the related zinc ion catalysis in metalloenzymes such as human carbonic anhydrase II and substantially enhances the O-nucleophilicity of N-acylated hydroxamines by forming the corresponding Zn chelates. The Zn chelates can attack gold-activated alkynes to form O-alkenyl-N-arylhydroxamates, which can undergo facile 3,3-sigmatropic rearrangements and subsequent cyclodehydrations to yield N-protected indole products. This new chemistry offers several important improvements over the Fischer indole synthesis: a) the reaction conditions are mildly acidic and can tolerate sensitive groups such as Boc; b) broader substrate scopes including substrates with pendant carbonyl groups (reactive in the Fischer chemistry) and alkyl chlorides (e.g., 3f); c) better regioselectivities for the formation of 2-substituted indoles under much milder conditions; d) 2-alkenylindoles can be prepared readily in good to excellent yields, but the Fischer chemistry could not; e) with internal alkynes both steric and electronic controls are available for achieving good regioselectivities, while the Fischer chemistry is in general problematic.

  15. Modular and Stereodivergent Approach to Unbranched 1,5,9,n-Polyenes: Total Synthesis of Chatenaytrienin-4.

    Science.gov (United States)

    Adrian, Juliane; Stark, Christian B W

    2016-09-16

    An iterative strategy for the stereodivergent synthesis of unbranched 1,5,9,n-polyenes (and -polyynes) was investigated. Starting from a terminal alkyne the iteration cycle consists of a C3 extension (allylation), a chemoselective hydroboration, an alkyne reduction, and an oxidation of the associated alcohol with subsequent C1 homologation. Double bond geometry is controlled using stereoselective alkyne reductions, employing either the Lindlar hydrogenation protocol or an aluminum hydride reduction. In a model sequence it was demonstrated that the strategy is applicable to the synthesis of 1,5,9,n-polyenes with any possible double bond configuration accessible in equally high efficiency and selectivity. It is worth noting that our approach does not require any protecting group chemistry. Furthermore, using the same strategy, the first total synthesis of chatenaytrienin-4, the proposed unsaturated biosynthetic precursor of the bis-THF acetogenin membranacin, was examined. Thus, the all-cis 1,5,9-triene natural product was prepared in 15 steps from commercially available starting materials in 6% overall yield.

  16. Orthogonal spin labeling using click chemistry for in vitro and in vivo applications

    Science.gov (United States)

    Kucher, Svetlana; Korneev, Sergei; Tyagi, Swati; Apfelbaum, Ronja; Grohmann, Dina; Lemke, Edward A.; Klare, Johann P.; Steinhoff, Heinz-Jürgen; Klose, Daniel

    2017-02-01

    Site-directed spin labeling for EPR- and NMR spectroscopy has mainly been achieved exploiting the specific reactivity of cysteines. For proteins with native cysteines or for in vivo applications, an alternative coupling strategy is required. In these cases click chemistry offers major benefits by providing a fast and highly selective, biocompatible reaction between azide and alkyne groups. Here, we establish click chemistry as a tool to target unnatural amino acids in vitro and in vivo using azide- and alkyne-functionalized spin labels. The approach is compatible with a variety of labels including reduction-sensitive nitroxides. Comparing spin labeling efficiencies from the copper-free with the strongly reducing copper(I)-catalyzed azide-alkyne click reaction, we find that the faster kinetics for the catalyzed reaction outrun reduction of the labile nitroxide spin labels and allow quantitative labeling yields within short reaction times. Inter-spin distance measurements demonstrate that the novel side chain is suitable for paramagnetic NMR- or EPR-based conformational studies of macromolecular complexes.

  17. A Clickable Analogue of Ketamine Retains NMDA Receptor Activity, Psychoactivity, and Accumulates in Neurons

    Science.gov (United States)

    Emnett, Christine; Li, Hairong; Jiang, Xiaoping; Benz, Ann; Boggiano, Joseph; Conyers, Sara; Wozniak, David F.; Zorumski, Charles F.; Reichert, David E.; Mennerick, Steven

    2016-01-01

    Ketamine is a psychotomimetic and antidepressant drug. Although antagonism of cell-surface NMDA receptors (NMDARs) may trigger ketamine’s psychoactive effects, ketamine or its major metabolite norketamine could act intracellularly to produce some behavioral effects. To explore the viability of this latter hypothesis, we examined intracellular accumulation of novel visualizable analogues of ketamine/norketamine. We introduced an alkyne “click” handle into norketamine (alkyne-norketamine, A-NK) at the key nitrogen atom. Ketamine, norketamine, and A-NK, but not A-NK-amide, showed acute and persisting psychoactive effects in mice. This psychoactivity profile paralleled activity of the compounds as NMDAR channel blockers; A-NK-amide was inactive at NMDARs, and norketamine and A-NK were active but ~4-fold less potent than ketamine. We incubated rat hippocampal cells with 10 μM A-NK or A-NK-amide then performed Cu2+ catalyzed cycloaddition of azide-Alexa Fluor 488, which covalently attaches the fluorophore to the alkyne moiety in the compounds. Fluorescent imaging revealed intracellular localization of A-NK but weak A-NK-amide labeling. Accumulation was not dependent on membrane potential, NMDAR expression, or NMDAR activity. Overall, the approach revealed a correlation among NMDAR activity, intracellular accumulation/retention, and behavioral effects. Thus, we advance first generation chemical biology tools to aid in the identification of ketamine targets. PMID:27982047

  18. Using click chemistry to modify block copolymers and their morphologies

    Science.gov (United States)

    Wollbold, Johannes

    Microphase separated block copolymers (BCPs) are emerging as promising templates and scaffolds for the fabrication of nanostructured materials. To achieve the desired nanostructures, it is necessary to establish convenient approaches to control the morphology of BCPs. It remains challenging to induce morphological transitions of BCPs via external fields. Click chemistry, especially alkyne/azide click chemistry, has been widely used to synthesize novel functionalized materials. Here, we demonstrate that alkyne/azide click chemistry can be used as an efficient approach to chemically modify BCPs and therefore induce morphological transitions. Alkyne-functionalized diblock copolymers (di-BCPs) poly(ethylene oxide)- block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) have been successfully synthesized. When the di-BCP is blended with an azide additive Rhodamine B azide and annealed at elevated temperatures, click reaction occurs between the two components. With the Rhodamine B structure attached to the polymer backbone, the di-BCP shows dramatic change in the interactions between the two blocks and the volume fraction of each block. As a result, morphological transitions, such as disorder-to-order transitions (DOTs) and order-to-order transitions (OOTs), are observed. The reaction kinetics and morphology evolution during the click chemistry induced DOTs have been investigated by in-situ and ex-situ characterizations, and fast kinetics properties are observed. Microphase separated morphologies after the DOTs or OOTs are dictated by the composition of neat di-BCPs and the mole ratio between the alkyne and azide groups. The DOTs of PEO-b-P(nBMA-r-PgMA) di-BCPs induced by alkyne/azide click chemistry have also been achieved in thin film geometries, with comparable kinetics to bulk samples. The orientation of the microdomains is dependent on the grafting density of Rhodamine B structure as well as film thickness. At higher grafting densities

  19. ANIONIC SYNTHESIS OF A "CLICKABLE" MIDDLE-CHAIN AZIDEFUNCTIONALIZED POLYSTYRENE AND ITS APPLICATION IN SHAPE AMPHIPHILES

    Institute of Scientific and Technical Information of China (English)

    Kan Yue; Jinlin He; Chang Liu; Mingjun Huang; Xue-Hui Dong; Kai Guo; Peihong Ni

    2013-01-01

    "Click chemistry" is,by definition,a general functionalization methodology (GFM) and its marriage with living anionic polymerization is particularly powerful in precise macromolecular synthesis.This paper reports the synthesis of a "clickable" middle-chain azide-functionalized polystyrene (mPS-N3) by anionic polymerization and its application in the preparation of novel shape amphiphiles based on polyhedral oligomeric silsesquioxane (POSS).The mPS-N3 was synthesized by coupling living poly(styryl)lithium chains (PSLi) with 3-chloropropylmethyldichlorosilane and subsequent nucleophilic substitution of the chloro group in the presence of sodium azide.Excess PSLi was end-capped with ethylene oxide to facilitate its removal by flash chromatography.The mPS-N3 was then derived into a giant lipid-like shape amphiphile in two steps following a sequential "click" strategy.The copper(I)-catalyzed azide-alkyne cycloaddition between mPS-N3 and alkyne-functionalized vinyl-substituted POSS derivative (VPOSS-alkyne) ensured quantitative ligation to give polystyrene with VPOSS tethered at the middle of the chain (mPS-VPOSS).The thiol-ene reaction with 1-thioglycerol transforms the vinyl groups on the POSS periphery to hydroxyls,resulting in an amphiphilic shape amphiphile,mPS-DPOSS.This synthetic approach is highly efficient and modular.It demonstrates the "click" philosophy of facile complex molecule construction from a library of simple building blocks and also suggests that mPS-N3 can be used as a versatile "clickable" motif in polymer science for the precise synthesis of complex macromolecules.

  20. In situ assembly of porous Au-paper electrode and functionalization of magnetic silica nanoparticles with HRP via click chemistry for Microcystin-LR immunoassay.

    Science.gov (United States)

    Ge, Shenguang; Liu, Weiyan; Ge, Lei; Yan, Mei; Yan, Jixian; Huang, Jiadong; Yu, Jinghua

    2013-11-15

    A simple, low-cost and sensitive origami electrochemical immunoassay-device was developed based on a novel gold nanoparticle modified porous paper working electrode (Au-PWE) for point-of-care testing. Azide-functionalized Au-PWE was prepared by the functionalization of Au-PWE with 1-azidoundecan-11-thiol. Alkyne end-terminated antibody was prepared with 4-pentynoic acid and antibody by the 1-ethyl-3-(3-(dimethylamino) propyl) carbodiimide hydrochloride and N-hydroxysuccinimide activation reaction. Alkyne-antibody was coupled to azido-Au-PWE by click reaction as a recognition element. Nearly monodispersed sphere-like silica-coated ferroferric oxide (Fe3O4@SiO2) nanoparticles were prepared via the reverse microemulsion method. Azide-functionalized Fe3O4@SiO2 was prepared by the functionalization of silica shell with 3-bromopropyltrichlorosilane followed by substitution with sodium azide. Alkyne-functionalized antibody and horse radish peroxidase were coupled to azide-functionalized Fe3O4@SiO2 by click reaction as signal label. Horse radish peroxidase and ferroferric oxide could catalyze the oxidation of thionine in the presence of hydrogen peroxide. After the sandwich immunoreaction, the current was proportional to the logarithm of the Microcystin-LR. The linear regression equation was i(μA)=119.89+46.27 log cMC-LR (μg/mL) in the range from 0.01 to 200 μg/mL. The limit of detection was 0.004 μg/mL. This immunoassay would provide a universal immunoassay method in environmental monitoring and public health.

  1. "Click" Patterning of Self-Assembled Monolayers on Hydrogen-Terminated Silicon Surfaces and Their Characterization Using Light-Addressable Potentiometric Sensors.

    Science.gov (United States)

    Wang, Jian; Wu, Fan; Watkinson, Michael; Zhu, Jingyuan; Krause, Steffi

    2015-09-08

    Two potential strategies for chemically patterning alkyne-terminated self-assembled monolayers (SAMs) on oxide-free silicon or silicon-on-sapphire (SOS) substrates were investigated and compared. The patterned surfaces were validated using a light-addressable potentiometric sensor (LAPS) for the first time. The first strategy involved an integration of photolithography with "click" chemistry. Detailed surface characterization (i.e. water contact angle, ellipsometry, AFM, and XPS) and LAPS measurements showed that photoresist processing not only decreases the coverage of organic monolayers but also introduces chemically bonded contaminants on the surfaces, thus significantly reducing the quality of the SAMs and the utility of "click" surface modification. The formation of chemical contaminants in photolithography was also observed on carboxylic acid- and alkyl-terminated monolayers using LAPS. In contrast, a second approach combined microcontact printing (μCP) with "click" chemistry; that is azide (azido-oligo(ethylene glycol) (OEG)-NH2) inks were printed on alkyne-terminated SAMs on silicon or SOS through PDMS stamps. The surface characterization results for the sample printed with a flat featureless PDMS stamp demonstrated a nondestructive and efficient method of μCP to perform "click" reactions on alkyne-terminated, oxide-free silicon surfaces for the first time. For the sample printed with a featured PDMS stamp, LAPS imaging showed a good agreement with the pattern of the PDMS stamp, indicating the successful chemical patterning on non-oxidized silicon and SOS substrates and the capability of LAPS to image the molecular patterns with high sensitivity.

  2. Synthesis of hyperbranched polypeptide and PEO block copolymer by consecutive thiol-yne chemistry.

    Science.gov (United States)

    Chang, Xiao; Dong, Chang-Ming

    2013-09-09

    Hyperbranched poly(ε-benzyloxycarbonyl-L-lysine) (HPlys) with multiple alkyne peripheries was synthesized through the click polycondensation of an AB2 type Plys macromonomer with α-thiol and ω-alkyne terminal groups (thiol is the A unit, and each π bond in alkyne is the B unit), and the resulting HPlys was further conjugated with thiol-termined poly(ethylene oxide) (PEO) to generate HPlys-b-PEO block copolymer by consecutive thiol-yne chemistry. Their molecular structures and physical properties were characterized in detail by FT-IR, (1)H NMR, gel permeation chromatography, differential scanning calorimetry, wide-angle X-ray diffraction, and polarized optical microscopy. HPlys and HPlys-b-PEO mainly assumed an α-helix conformation similar to the linear precursors, while the liquid crystalline phase transition of Plys segment disappeared within HPlys and HPlys-b-PEO. HPlys-b-PEO self-assembled into nearly spherical micelles in aqueous solution, while it gave a 5-fold lower critical aggregation concentration (8.9 × 10(-3) mg/mL) than a linear counterpart (4.5 × 10(-2) mg/mL), demonstrating a dendritic topology effect. Compared with a linear counterpart, HPlys-b-PEO gave a higher drug-loading capacity and efficiency for the anticancer drug doxorubicin (DOX) and a slower drug-release rate with an improved burst-release profile, enabling them useful for drug delivery systems. Importantly, this work provides a versatile strategy for the synthesis of hyperbranched polypeptides and related block copolymers by utilizing thiol-yne chemistry.

  3. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    Science.gov (United States)

    Zhang, Jing; Li, Mengfei; Yuan, Zhefan; Wu, Dan; Chen, Jia-da; Feng, Jie

    2016-10-01

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K10), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K10, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.

  4. Inhibition and Promotion of Pyrolysis by Hydrogen Sulfide (H2S) and Sulfanyl Radical (SH).

    Science.gov (United States)

    Zeng, Zhe; Altarawneh, Mohammednoor; Oluwoye, Ibukun; Glarborg, Peter; Dlugogorski, Bogdan Z

    2016-11-17

    This study resolves the interaction of sulfanyl radical (SH) with aliphatic (C1-C4) hydrocarbons, using CBS-QB3 based calculations. We obtained the C-H dissociation enthalpies and located the weakest link in each hydrocarbon. Subsequent computations revealed that, H abstraction by SH from the weakest C-H sites in alkenes and alkynes, except for ethylene, appears noticeably exothermic. Furthermore, abstraction of H from propene, 1-butene, and iso-butene displays pronounced spontaneity (i.e., ΔrG° < -20 kJ mol(-1) between 300-1200 K) due to the relatively weak allylic hydrogen bond. However, an alkyl radical readily abstracts H atom from H2S, with H2S acting as a potent scavenger for alkyl radicals in combustion processes. That is, these reactions proceed in the opposite direction than those involving SH and alkene or alkyne species, exhibiting shallow barriers and strong spontaneity. Our findings demonstrate that the documented inhibition effect of hydrogen sulfide (H2S) on pyrolysis of alkanes does not apply to alkenes and alkynes. During interaction with hydrocarbons, the inhibitive effect of H2S and promoting interaction of SH radical depend on the reversibility of the H abstraction processes. For the three groups of hydrocarbon, Evans-Polanyi plots display linear correlations between the bond dissociation enthalpies of the abstracted hydrogens and the relevant activation energies. In the case of methane, we demonstrated that the reactivity of SH radicals toward abstracting H atoms exceeds that of HO2 but falls below those of OH and NH2 radicals.

  5. clickECM: Development of a cell-derived extracellular matrix with azide functionalities.

    Science.gov (United States)

    Ruff, S M; Keller, S; Wieland, D E; Wittmann, V; Tovar, G E M; Bach, M; Kluger, P J

    2016-12-10

    In vitro cultured cells produce a complex extracellular matrix (ECM) that remains intact after decellularization. The biological complexity derived from the variety of distinct ECM molecules makes these matrices ideal candidates for biomaterials. Biomaterials with the ability to guide cell function are a topic of high interest in biomaterial development. However, these matrices lack specific addressable functional groups, which are often required for their use as a biomaterial. Due to the biological complexity of the cell-derived ECM, it is a challenge to incorporate such functional groups without affecting the integrity of the biomolecules within the ECM. The azide-alkyne cycloaddition (click reaction, Huisgen-reaction) is an efficient and specific ligation reaction that is known to be biocompatible when strained alkynes are used to avoid the use of copper (I) as a catalyst. In our work, the ubiquitous modification of a fibroblast cell-derived ECM with azides was achieved through metabolic oligosaccharide engineering by adding the azide-modified monosaccharide Ac4GalNAz (1,3,4,6-tetra-O-acetyl-N-azidoacetylgalactosamine) to the cell culture medium. The resulting azide-modified network remained intact after removing the cells by lysis and the molecular structure of the ECM proteins was unimpaired after a gentle homogenization process. The biological composition was characterized in order to show that the functionalization does not impair the complexity and integrity of the ECM. The azides within this "clickECM" could be accessed by small molecules (such as an alkyne-modified fluorophore) or by surface-bound cyclooctynes to achieve a covalent coating with clickECM.

  6. Advanced hybrid fluoropolymers from the cycloaddition of aryl trifluorovinyl ethers

    Science.gov (United States)

    Ligon, S. Clark, Jr.

    This dissertation discusses the synthesis of aryl trifluorovinyl ethers and their cycloaddition polymerization to give perfluorocyclobutyl (PFCB) polymers. To explore the stereochemistry of these polymers, simple monomfunctional aryl trifluorovinyl ethers were dimerized and the resultant cis and trans isomers were separated. Differences in structure help to improve understanding of the amorphous nature of the bulk PFCB polymeric material. To apply this knowledge, crown ether containing perfluorocyclobutyl (PFCB) polymers were synthesized for use in lithium ion battery applications. While poor solubility has hindered further development of these materials, slight modifications to structure may provide a solution. Also described is a fluorinated aryl vinyl ether and its attempted copolymerization with chlorotrifluoroethylene. While this copolymerization did not yield the desired materials, novel semifluorinated phenol precursors have been utilized in reactions with carboxylic acids to give polyesters and most recently with phosgene like species to give polycarbonates. Next, PFCB polymers were post functionalized with fluoroalkyl tethers to improve oleophobicity and hydrophobicity without decreasing thermal stability or optical clarity. In addition, various silica nanostructures were functionalized with aryl trifluorovinyl ethers. This includes the reaction of aryl silanes to give trifluorovinyl ether functional POSS and their polymerization to provide PFCB hybrid materials. Silane coupling agents were also used to functionalize colloidal silica and fumed silica nanoparticles. These procedures allow excellent dispersion of the silica nanoparticles throughout the fluoropolymer matrix. Finally, the reaction of aryl trifluorovinyl ether with nonfluorinated alkenes and alkynes was explored. In these reactions, the fluorinated olefin adds with the hydrocarbon olefin to give semifluorinated cyclobutanes (SFCB) and with the alkyne to give semifluorinated cyclobutene. The

  7. Functionalization of PEDOT by Click Chemistry and ATRP

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Daugaard, Anders Egede

    Poly(3,4‐ethylenedioxythiophene) (PEDOT) is a conductive polymer which has received increasing attention and many developments have been investigated. PEDOT has been applied in many different areas such as biosensors or polymer solar cells. This work presents a modification of PEDOT films through...... Click Chemistry with alkynes followed by activator regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) to develop PEDOT films with anti‐fouling properties through application of a model system based on a crosslinked surface of polystyrene PS‐N3....

  8. Genetically encoded cleavable protein photo-cross-linker.

    Science.gov (United States)

    Lin, Shixian; He, Dan; Long, Teng; Zhang, Shuai; Meng, Rong; Chen, Peng R

    2014-08-27

    We have developed a genetically encoded, selenium-based cleavable photo-cross-linker that allows for the separation of bait and prey proteins after protein photo-cross-linking. We have further demonstrated the efficient capture of the in situ generated selenenic acid on the cleaved prey proteins. Our strategy involves tagging the selenenic acid with an alkyne-containing dimethoxyaniline molecule and subsequently labeling with an azide-bearing fluorophore or biotin probe. This cleavage-and-capture after protein photo-cross-linking strategy allows for the efficient capture of prey proteins that are readily accessible by two-dimensional gel-based proteomics and mass spectrometry analysis.

  9. Ultrasound-Assisted Synthesis of 1-N-glycosyl-1H-1,2,3-Triazole Derivatives and their Anti-inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Gilson Bezerra Silva

    2012-06-01

    Full Text Available We have been synthesized various glycosyl triazoles from the reaction between glycosyl azide (1 and terminal alkynes (2a-g. The glycopiranosyl 1,2,3-triazoles (3-9 have been obtained in moderate-to-excellent yields (63-99% through the copper (I-catalyst 1,3-dipolar cycloaddition reaction at room temperature using ultrasound irradiation. In addition, preliminary anti-inflammatory tests have been performed in the compounds conjugates with benzoheterocycles (3-7 moieties that shown moderate activity

  10. Synthesis of new 1,2,3-triazol-carbohydrates

    Directory of Open Access Journals (Sweden)

    Bruna M. Guimarães

    2012-06-01

    Full Text Available The reaction of a mixture of 1-azide-glycopyranoside (1 and appropriate alkynes (2a-e, in the presence of CuI/Et3N as catalyst system, and acetonitrile as solvent, provided the glycoside triazoles (3a-e in moderate-to-excellent yields (60-93%. We observed that the reactivity of the alcohols decreased due to steric hindrance (prim>sec>terc. Furthermore, the use of ultrasound irradiation was favorable to furnish the desired products with excellent yields and a shorter reaction time, except for the compound (3e.      

  11. Catechol versus bisphosphonate ligand exchange at the surface of iron oxide nanoparticles: towards multi-functionalization

    Science.gov (United States)

    Guénin, Erwann; Lalatonne, Yoann; Bolley, Julie; Milosevic, Irena; Platas-Iglesias, Carlos; Motte, Laurence

    2014-11-01

    We report an investigation of the ligand exchange at the surface of iron oxide nanoparticles in water. For this purpose we compared two strong chelating agents on the iron oxide surface containing catechol and bisphosphonate moieties. Interactions between the coating agents (catechol/bisphosphonate) and the nanoparticle's surface were studied by FTIR and DFT calculations. Ligand exchange experiments were performed using sonication and the exchange yield was characterized by FTIR and EDX. This methodology allowed introducing bisphosphonates with various functionalities (alkyne or biotin) permitting multi-functionalization.

  12. Dual Hypervalent Iodine(III) Reagents and Photoredox Catalysis Enable Decarboxylative Ynonylation under Mild Conditions.

    Science.gov (United States)

    Huang, Hanchu; Zhang, Guojin; Chen, Yiyun

    2015-06-26

    A combination of hypervalent iodine(III) reagents (HIR) and photoredox catalysis with visible light has enabled chemoselective decarboxylative ynonylation to construct ynones, ynamides, and ynoates. This ynonylation occurs effectively under mild reaction conditions at room temperature and on substrates with various sensitive and reactive functional groups. The reaction represents the first HIR/photoredox dual catalysis to form acyl radicals from α-ketoacids, followed by an unprecedented acyl radical addition to HIR-bound alkynes. Its efficient construction of an mGlu5 receptor inhibitor under neutral aqueous conditions suggests future visible-light-induced biological applications.

  13. Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and ``click'' chemistry

    Science.gov (United States)

    Dworak, Andrzej; Lipowska, Daria; Szweda, Dawid; Suwinski, Jerzy; Trzebicka, Barbara; Szweda, Roza

    2015-10-01

    This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a ``click'' reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species.This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent

  14. Click chemistry decoration of amino sterols as promising strategy to developed new leishmanicidal drugs.

    Science.gov (United States)

    Porta, Exequiel O J; Carvalho, Paulo B; Avery, Mitchell A; Tekwani, Babu L; Labadie, Guillermo R

    2014-01-01

    A series of 1,2,3-triazolylsterols was prepared from pregnenolone through reductive amination and copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The newly generated stereocenter of the key propargylamino intermediate provided a mixture of diastereomers which were separated chromatographically, and the configuration of the R isomer was determined by X-ray crystallography. Ten triazolyl sterols were prepared, and the products and intermediates were screened in vitro against different parasites, with some compounds presenting IC50 values in the low micromolar range against Leishmania donovani.

  15. Synthesis of disk-rod-disk liquid crystal trimers by using click chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of disk-rod-disk liquid crystal trimers were synthesized.CuI-NEt3 catalyzed alkyne azide cycloaddition in toluene at room temperature connected two triphenylene discogens to a biphenyl rod-shaped mesogen.The trimers were characterized by using 1H NMR,IR,and high resolution mass spectrometry.The mesomorphic properties were investigated using polarized optical microscopy(POM) ,differential scanning calorimetry(DSC) ,and wide-angle X-ray diffraction.The results showed that the trimers exhibited rectangular columnar mesophase(Colr) .The length of the flexible spacer connecting the three segments has prominent influence on the phase transition temperatures of the trimers.

  16. Development of surface immobilized 3-azidocoumarin-based fluorogenic probe via strain promoted click chemistry.

    Science.gov (United States)

    Bharathi, M Vijaya; Chhabra, Mohit; Paira, Priyankar

    2015-12-15

    A new class of imaging probe, a fluorogenic version of 1, 3-dipolar cycloaddition of azides and alkynes has been developed. 3-azidocoumarin scaffolds were selectively immobilized on the DBCO modified bead surface via SPAAC and provide direct and strong fluorescence in fluorescence microscopy. This developed click-on beads could be applied to label various biomolecules, such as nucleic acids, proteins and other molecules. To this end, 5'(7-hydroxy 3-azido coumarin) labelled DNA primer also displayed strong fluorescence upon successful immobilization on the bead surface.

  17. In Situ Click Chemistry for the Identification of a Potent D-Amino Acid Oxidase Inhibitor.

    Science.gov (United States)

    Toguchi, Shohei; Hirose, Tomoyasu; Yorita, Kazuko; Fukui, Kiyoshi; Sharpless, K Barry; Ōmura, Satoshi; Sunazuka, Toshiaki

    2016-07-01

    In situ click chemistry is a target-guided synthesis approach for discovering novel lead compounds by assembling organic azides and alkynes into triazoles inside the affinity site of target biogenic molecules such as proteins. We report in situ click chemistry screening with human D-amino acid oxidase (hDAO), which led to the identification of a more potent hDAO inhibitor. The hDAO inhibitors have chemotherapeutic potential as antipsychotic agents. The new inhibitor displayed competitive inhibition of hDAO and showed significantly increased inhibitory activity against hDAO compared with that of an anchor molecule of in situ click chemistry.

  18. Synthesis of click-reactive HPMA copolymers using RAFT polymerization for drug delivery applications

    DEFF Research Database (Denmark)

    Ebbesen, Morten F; Schaffert, D.H.; Crowley, Michael L;

    2013-01-01

    This study describes a versatile strategy combining reversible addition fragmentation transfer (RAFT) polymerization and click chemistry to synthesize well-defined, reactive copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) for drug delivery applications. A novel azide containing monomer N-(3......-alkyne cycloaddition (CuAAC) was demonstrated by efficient conjugation (up to 92%) of phosphocholine, a near infrared dye, and poly(ethylene glycol) (PEG) with different substitution degrees, either alone or in combination. This study introduces a novel and versatile method to synthesize well-defined click...

  19. Superstructures of fluorescent cyclodextrin via click-reaction

    Directory of Open Access Journals (Sweden)

    Arkadius Maciollek

    2013-04-01

    Full Text Available Mono-(6-azido-6-deoxy-β-cyclodextrin (CD was covalently attached to an alkyne-modified 5-methyl-2-(pyridin-2-ylthiazol-4-ol yielding a fluorophore containing CD in a click-type reaction. Intermolecular complexes were formed by poly(host–guest-interactions. The supramolecular structures were characterized by 1H NMR-ROESY spectroscopy, dynamic light scattering, UV–vis spectroscopy, fluorescence spectroscopy, and asymmetric flow field-flow fractionation. By adding potassium adamantane-1-carboxylate, the thiazol dye is displaced from the CD-cavity and the elongated noncovalent polymeric structures collapse.

  20. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase.

    Science.gov (United States)

    Castro, Vida; Rodríguez, Hortensia; Albericio, Fernando

    2016-01-11

    Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.

  1. Measurements of activity coefficients at infinite dilution of organic solutes and water on polar imidazolium-based ionic liquids

    OpenAIRE

    Martins, Mónia A. R.; Coutinho, João A. P.; Pinho, Simão; Domańska, Urszula

    2015-01-01

    The activity coefficients at infinite dilution, gamma(infinity)(13), of 55 organic solutes and water in three ionic liquids with the common cation 1-butyl-3-methylimidazolium and the polar anions Cl--,Cl- [CH3SO3](-) and [(CH3)(2)PO4](-), were determined by (gas + liquid) chromatography at four temperatures in the range (358.15 to 388.15) K for alcohols and water, and T = (398.15 to 428.15) K for the other organic solutes including alkanes, cycloalkanes, alkenes, cycloalkenes, alkynes, ketone...

  2. Cobalt catalysis involving π components in organic synthesis.

    Science.gov (United States)

    Gandeepan, Parthasarathy; Cheng, Chien-Hong

    2015-04-21

    Over the last three decades, transition-metal-catalyzed organic transformations have been shown to be extremely important in organic synthesis. However, most of the successful reactions are associated with noble metals, which are generally toxic, expensive, and less abundant. Therefore, we have focused on catalysis using the abundant first-row transition metals, specifically cobalt. In this Account, we demonstrate the potential of cobalt catalysis in organic synthesis as revealed by our research. We have developed many useful catalytic systems using cobalt complexes. Overall, they can be classified into several broad types of reactions, specifically [2 + 2 + 2] and [2 + 2] cycloadditions; enyne reductive coupling; reductive [3 + 2] cycloaddition of alkynes/allenes with enones; reductive coupling of alkyl iodides with alkenes; addition of organoboronic acids to alkynes, alkenes, or aldehydes; carbocyclization of o-iodoaryl ketones/aldehydes with alkynes/electron-deficient alkenes; coupling of thiols with aryl and alkyl halides; enyne coupling; and C-H bond activation. Reactions relying on π components, specifically cycloaddition, reductive coupling, and enyne coupling, mostly afford products with excellent stereo- and regioselectivity and superior atom economy. We believe that these cobalt-catalyzed π-component coupling reactions proceed through five-membered cobaltacyclic intermediates formed by the oxidative cyclometalation of two coordinated π bonds of the substrates to the low-valent cobalt species. The high regio- and stereoselectivity of these reactions are achieved as a result of the electronic and steric effects of the π components. Mostly, electron-withdrawing groups and bulkier groups attached to the π bonds prefer to be placed near the cobalt center of the cobaltacycle. Most of these transformations proceed through low-valent cobalt complexes, which are conveniently generated in situ from air-stable Co(II) salts by Zn- or Mn-mediated reduction

  3. Zeolite-Based Organic Synthesis (ZeoBOS) of Acortatarin A: First Total Synthesis Based on Native and Metal-Doped Zeolite-Catalyzed Steps.

    Science.gov (United States)

    Wimmer, Eric; Borghèse, Sophie; Blanc, Aurélien; Bénéteau, Valérie; Pale, Patrick

    2017-01-31

    Similarly to polymer-supported assisted synthesis (PSAS), organic synthesis could be envisaged being performed by using zeolites, native or metal-doped, as heterogeneous catalysts. To illustrate this unprecedented Zeolite-Based Organic Synthesis (ZeoBOS), the total synthesis of acortatarin A was achieved through a novel strategy and using five out of eleven synthetic steps catalyzed by H- or metal-doped zeolites as catalysts. Notably, the formation of an yne-pyrrole intermediate with a copper-doped zeolite and the spiroketalization of an alkyne diol with a silver-doped zeolite have been developed as key steps of the synthesis.

  4. Ni→B Interactions in Nickel Phosphino-Alkynyl-Borane Complexes

    NARCIS (Netherlands)

    Zhao, Xiaoxi; Otten, Edwin; Song, Datong; Stephan, Douglas W.

    2010-01-01

    The Ni complexes [{tBu2PC≡CB(C6F5)2}Ni(cod)] and [({tBu2PC≡CB(C6F5)2}Ni(NCMe))2] derived from the reaction between the phosphino-alkynyl-borane tBu2PC≡CB(C6F5)2 and [Ni(cod)2] exhibit an unprecedented metal–alkyne interaction in which the borane substituent bends towards the metal affording a Ni→B d

  5. Click on silica: systematic immobilization of Co(II) Schiff bases to the mesoporous silica via click reaction and their catalytic activity for aerobic oxidation of alcohols.

    Science.gov (United States)

    Rana, Bharat S; Jain, Suman L; Singh, Bhawan; Bhaumik, Asim; Sain, Bir; Sinha, Anil K

    2010-09-07

    The systematic immobilization of cobalt(II) Schiff base complexes on SBA-15 mesoporous silica via copper catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC) "click reaction" involving either step-wise synthesis of silica-bound Schiff base ligand followed by its subsequent complexation with cobalt ions, or by the direct immobilization of preformed Co(II) Schiff base complex to the silica support is described. The catalytic activity of the prepared complexes was studied for the oxidation of alcohols to carbonyl compounds using molecular oxygen as oxidant. The immobilized complexes were recycled for several runs without loss in catalytic activity and no leaching was observed during this course.

  6. Novel magnetic nanoparticles coated by benzene- and β-cyclodextrin-bearing dextran, and the sorption of polycyclic aromatic hydrocarbon

    DEFF Research Database (Denmark)

    Cho, Eunae; Tahir, Muhammad Nazir; Min Choi, Jae

    2015-01-01

    We present the synthesis of novel magnetic nanoparticles functionalized by benzene- and β-cyclodextrin-derivatized dextran. The grafting strategy was based on the [alkynyl-iron] cluster in the modified dextrans, which were prepared by click reaction from alkyne-modified dextran and benzyl azide...... or mono-6-O-deoxy-monoazido β-cyclodextrin. Characterization was then carried out by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. Using the developed magnetic nanoparticles...... to be significant. Furthermore, the polysaccharide derivative-coated magnetic adsorbents could be recovered by an external magnet for reuse....

  7. Neomycin-phenolic conjugates: polycationic amphiphiles with broad-spectrum antibacterial activity, low hemolytic activity and weak serum protein binding.

    Science.gov (United States)

    Findlay, Brandon; Zhanel, George G; Schweizer, Frank

    2012-02-15

    Here we present a proof-of-concept study, combining two known antimicrobial agents into a hybrid structure in order to develop an emergent cationic detergent-like interaction with the bacterial membrane. Six amphiphilic conjugates were prepared by copper (I)-catalyzed 1,3-dipolar cycloaddition between a neomycin B-derived azide and three alkyne-modified phenolic disinfectants. Three conjugates displayed good activity against a variety of clinically relevant Gram positive and Gram negative bacteria, including MRSA, without the high level of hemolysis or strong binding to serum proteins commonly observed with other cationic antimicrobial peptides and detergents.

  8. Ordered Porous Pd Octahedra Covered with Monolayer Ru Atoms.

    Science.gov (United States)

    Ge, Jingjie; He, Dongsheng; Bai, Lei; You, Rui; Lu, Haiyuan; Lin, Yue; Tan, Chaoliang; Kang, Yan-Biao; Xiao, Bin; Wu, Yuen; Deng, Zhaoxiang; Huang, Weixin; Zhang, Hua; Hong, Xun; Li, Yadong

    2015-11-25

    Monolayer Ru atoms covered highly ordered porous Pd octahedra have been synthesized via the underpotential deposition and thermodynamic control. Shape evolution from concave nanocube to octahedron with six hollow cavities was observed. Using aberration-corrected high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy, we provide quantitative evidence to prove that only a monolayer of Ru atoms was deposited on the surface of porous Pd octahedra. The as-prepared monolayer Ru atoms covered Pd nanostructures exhibited excellent catalytic property in terms of semihydrogenation of alkynes.

  9. Solvent Composition Directing Click-Functionalization at the Surface or in the Bulk of Azide-Modified PEDOT

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik; Hansen, Thomas Steen; Daugaard, Anders Egede

    2011-01-01

    Thin films of the conducting polymer poly(3,4-(1-azidomethylethylene)dioxythiophene) tosylate (PEDOT−N3) can be functionalized by reaction with alkynated reagents in aqueous solutions. Reaction in pure water resulted in surface specific modification of PEDOT−N3 films, whereas both surface and bulk...... studies showed increasing film thickness with increasing DMSO content, with the measured thickness in pure DMSO being >250% of the thickness in pure water. A similar, but less pronounced, behavior was observed for unmodified poly(3,4-ethylenedioxythiophene) tosylate (PEDOT). High-density grafting...

  10. (2,2-Dichlorovinylferrocene

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title compound, [Fe(C5H5(C7H5Cl2], represents a versatile building block for the preparation of π-conjugated redox-active compounds or polymetallic organometallic systems due to the presence of the electrochemically active ferrocenyl unit. It is therefore a potential starting material for the preperation of the corresponding alkyne. In the crystal, the alkenyl unit and the cyclopentadienide ring are almost parallel, with an angle between the best planes of only 10.6 (4°.

  11. Regio- and stereoselective carbometallation reactions of N-alkynylamides and sulfonamides

    Directory of Open Access Journals (Sweden)

    Yury Minko

    2013-03-01

    Full Text Available The carbocupration reactions of heterosubstituted alkynes allow the regio- and stereoselective formation of vinyl organometallic species. N-Alkynylamides (ynamides are particularly useful substrates for the highly regioselective carbocupration reaction, as they lead to the stereodefined formation of vinylcopper species geminated to the amide moiety. The latter species are involved in numerous synthetically useful transformations leading to valuable building blocks in organic synthesis. Here we describe in full the results of our studies related to the carbometallation reactions of N-alkynylamides.

  12. Flexible synthesis of isomeric pyranoindolones and evaluation of cytotoxicity towards HeLa cells

    Indian Academy of Sciences (India)

    J C JEYAVEERAN; CHANDRASEKAR PRAVEEN; Y ARUN; A A M PRINCE; P T PERUMAL

    2016-05-01

    A hybrid pharmacophore approach for the synthesis of isomeric pyranoindolones was achievedby employing gold(III) chloride-catalyzed cycloisomerization of alkyne-tethered indole carboxylic acids ingood to excellent yield. All the synthesized compounds were evaluated for their tumor cell growth inhibitoryactivity against human cervix adenocarcinoma (HeLa) which revealed that three compounds exhibited activitycomparable with the standard cis-platin $(IC_{50} = 0.μM)$. Molecular docking of all the compounds in Vaccinia H1-Related (VHR) Phosphatase receptor also supported that compound 7d as the most active with a free energyof binding as - 8.27 kcal/mol.

  13. Synthesis of Donor-Acceptor Conjugated Polymers by "CLICK" Polymerization for OPV applications

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbæk; Yu, Donghong

    an alternating electron donating (donor, D) and electron withdrawing (acceptor, A) co-polymer. The chosen monomers were well known units, and the novelty lies in using the monomer units with the click methodology. An insoluble alternating copolymer consisting of 2,7-diazido-9,9-dioctyl-9Hflourene and 1......The intent of this study was to utilize the Copper(I)-catalyzed Azide Alkyne Cycloaddition (CuAAC) as a polymerization technique (“Click” Polymerization) for synthesizing novel π-conjugated low band gap polymers for organic photovoltaic applications (OPV). The chosen approach was to synthesize...

  14. Differential scanning calorimetry (DSC) as a tool for probing the reactivity of polyynes relevant to hexadehydro-Diels-Alder (HDDA) cascades.

    Science.gov (United States)

    Woods, Brian P; Hoye, Thomas R

    2014-12-19

    The differential scanning calorimetry (DSC) behavior of a number of alkyne-rich compounds is described. The DSC trace for each compound exhibits an exothermic event at a characteristic onset temperature. For the tri- and tetraynes whose [4 + 2] HDDA reactivity in solution has been determined, these onset temperatures show a strong correlation with the cyclization activation energy. The studies reported here exemplify how the data available through this operationally simple analytical technique can give valuable insights into the thermal behavior of small molecules.

  15. Enatioselective[2+2+2] Cycloaddition as A Synthetic Tool

    Institute of Scientific and Technical Information of China (English)

    T.Shibata; S.Yoshida; M.Otsuka; Y.Arai; K.Endo

    2007-01-01

    1 Results Transition metal-catalyzed [2+2+2] cycloaddition is one of the most efficient protocols for the construction of six-membered ring system.Our group has comprehensively studied various types of highly enantioselective [2+2+2] cycloaddition for the synthesis of chiral cycloadducts; we already reported an iridium-catalyzed intermolecular [2+2+2] cycloaddition between α,ω-diynes,having various tethers and substituents on the alkyne termini,and monoalkynes,possessing oxygen or/and nitrogen functiona...

  16. Titanium Iodies Mediated Intriguing Transformation of Organic Molecules

    Institute of Scientific and Technical Information of China (English)

    Makoto; SHIMIZU

    2007-01-01

    1 Results Titanium iodides have been found to be good reagents for iodination,reductive formation of enolates,pinacol coupling,and so on.Following new reactions will be discussed:(1) Iodination: Titanium(Ⅳ) iodide is a good iodination reagent for olefins and acetylenes.Simple olefins are iodotitanated with titanium (Ⅳ) iodide to give,after quenching with water,iodoalkanes in moderate to good yields.Phenylacetylene gives α-iodostyrene,whereas 2,2-diiodoalkanes are major products from 1-alkynes when they...

  17. Highly wear-resistant ultra-thin per-fluorinated organic monolayers on silicon(1 1 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, Sidharam P. [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen (Netherlands); Zuilhof, Han, E-mail: Han.Zuilhof@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen (Netherlands); Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    2013-12-15

    This study reports on fluorine-containing alkyne-derived monolayers onto Si(1 1 1) substrates to obtain densely packed, highly wear-resistant surfaces. The nano-wear properties were measured using atomic force microscopy (AFM). The presence of the fluorinated monolayers was found to enhance the wear properties of the silicon surfaces, with a decrease of the depth of wear scratches of up to 120 times as compared to the unmodified surface. Ultimately, the scratch depth was only 6 nm for a heptadecafluoro-alkyl based monolayer for scratching normal forces as high as 38 μN.

  18. On the prospects of polynuclear complexes with acetylenedithiolate bridging units.

    Science.gov (United States)

    Seidel, Wolfram W; Meel, Matthias J; Radius, Udo; Schaffrath, Markus; Pape, Tania

    2007-11-12

    The generation of polynuclear complexes with one, two, or four acetylenedithiolate bridging units via the isolation of eta2-alkyne complexes of acetylenedithiolate K[Tp'M(CO)(L)(C2S2)] (Tp'=hydrotris(3,5-dimethylpyrazolyl)borate, M=W, L=CO (K-3a), M=Mo, L=CNC6H3Me2 (K-3b)) is reported. The strong electronic cooperation of Ru and W in the heterobimetallic complexes [(eta5-C5H5)(PPh3)Ru(3a)] (4a) and [(eta5-C5H5)(Me2C6H3NC)Ru(3a)] (4b) has been elucidated by correlation of the NMR, IR, UV-vis, and EPR-spectroscopic properties of the redox couples 4a/4a+ and 4b/4b+ with results from density functional calculations. Treatment of M(II) (M=Ni, Pd, Pt) with K-3a and K-3b afforded the homoleptic bis complexes [M(3a)2] (M=Ni (5a), Pd (5b), Pt (5c)), and [M(3b)2] (M=Pd (6a) and Pt (6b)), in which the metalla-acetylendithiolates exclusively serve as S,S'-chelate ligands. The vibrational and electronic spectra as well as the cyclic voltammetry behavior of all the complexes are compared. The structural analogy of 5a/5b/5c and 6a/6b with dithiolene complexes is only partly reflected in the electronic structures. The very intense visible absorptions involve essential d orbital contributions of the central metal, while the redox activity is primarily attributed to the alkyne complex moiety. Accordingly, stoichiometric reduction of 5a/5b/5c yields paramagnetic complex anions with electron-rich alkyne complex moieties being indistinguishable in the IR time scale. K-3a forms with Cu(I) the octanuclear cluster [Cu(3a)]4 (7) exhibiting a Cu4(S2C2)4W4 core. The nonchelating bridging mode of the metalla-acetylenedithiolate 3a- in 7 is recognized by a high-field shift of the alkyne carbon atoms in the 13C NMR spectrum. X-ray diffraction studies of K[Tp'(CO)(Me3CNC)Mo(eta2-C2S2)] (K-3c), 4b, 6a, 6b, and 7 are included. Comparison of the molecular structures of K-3c and 7 on the one hand with 4b and 6a/6b on the other reveals that the small bend-back angles in the latter are a direct

  19. Design, Synthesis and Anti-HIV Integrase Evaluation of 1,2,3-Triazol-4-yl-substituted 1,4-Dihydro-4-oxo-1,5-napthyridine-3-carboxylic Acids

    Institute of Scientific and Technical Information of China (English)

    ZENG,Jia; L(U),Xiuhua; ZENG,Chengchu; HU,Liming; ZHONG,Rugang

    2009-01-01

    Copper(I)-eatalyzed terminal alkyne-azide 1,3-cycloaddition reaction has emerged as one of the main strategies for the rapid creation and screening of a small molecular library. The present work describes the design and synthe-sis of a series of 1,2,3-triazol-4-yl-substituted 1,4-dihydro-4-oxo-1,5-napthyridine-3-carboxylic acids in which the hydrophobic and hydrophilic domains were efficiently incorporated by a click reaction. The structures of the desired products 8 and 12 were characterized by spectroscopic methods and their HIV integrase inhibitory activities were also screened.

  20. NMR at earth's magnetic field using para-hydrogen induced polarization.

    Science.gov (United States)

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding.

  1. Facile design of biomaterials by 'click' chemistry

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    The advent of the so‐called ‘click chemistry’ a decade ago has significantly improved the chemical toolbox for producing novel biomaterials. This review focuses primarily on the application of Cu(I)‐catalysed azide–alkyne 1,3‐cycloadditon in the preparation of numerous, diverse biomaterials...... chemistry is elaborated. The present state of creating functional and biologically active surfaces by click chemistry is presented. Finally, conducting surfaces based on an azide‐functionalized polymer with prospective biological sensor potential are introduced. Copyright © 2012 Society of Chemical Industry...

  2. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, Roman Vladimirovich [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a β-hydrogen in the vinylic halide results in β-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the α-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  3. [η5-(Phenylethynylcyclopentadienyl](η4-tetraphenylcyclobutadienecobalt(I

    Directory of Open Access Journals (Sweden)

    Donagh Courtney

    2011-06-01

    Full Text Available In the title compound, [Co(C13H9(C28H20], the Co atom is sandwiched between cyclopentadienyl and cyclobutadienyl rings that are inclined at a dihedral angle of 2.6 (3°. The four phenyl rings are tilted with respect to the cyclobutadienyl plane so that the C4Ph4 unit constitutes a four-bladed propeller. The phenyl ring of the phenyl-alkyne substituent is inclined to the cyclopentadienyl ring at an angle of 34.92 (18°. The crystal structure is stabilized solely by C—H...π interactions which generate a three-dimensional network.

  4. Synthesis, Characterisation and Reactions of Phosphine-Substituted Alkynylboronates and Alkynyltrifluoroborate Salts

    Directory of Open Access Journals (Sweden)

    Jérôme F. Vivat

    2014-12-01

    Full Text Available The synthesis and structural characterisation of phosphine-substituted alkynylboronates is reported. A P(III-centred alkynylboronate (2 was prepared that showed little evidence for the conjugation of the P-lone pair to the boron via the alkyne π-system, as judged by X-ray crystallography studies of 2 and a related P(V compound, 3. In addition, corresponding alkynyltrifluoroborate salts were prepared that showed improved stability by comparison to their boronic ester counterparts. These salts undergo Pd-catalysed cross-coupling reactions with aryl halides.

  5. Surface functionalized thiol-ene waveguides for fluorescence biosensing in microfluidic devices

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Lafleur, Josiane P.; Jensen, Thomas Glasdam;

    2013-01-01

    . The reactive functional groups present at the surface of the thiol-ene polymer are subsequently used for the rapid, one step, site-specific functionalization of the waveguide with biological recognition molecules. It was found that while the bulk properties and chemical surface properties of thiol......-ene waveguides were fabricated from 40% excess thiol thiol-ene to ensure the presence of thiol functional groups at the surface of the waveguide. Biotin alkyne was photografted at specific locations using a photomask, directly at the interface between the microfluidic channel and the thiol-ene waveguide prior...

  6. A modular approach for the construction and modification of glyco-SAMs utilizing 1,3-dipolar cycloaddition.

    Science.gov (United States)

    Kleinert, Mike; Winkler, Tobias; Terfort, Andreas; Lindhorst, Thisbe K

    2008-06-21

    We report the synthesis of a broad variety of functionalized molecules for assembly on gold, allowing the formation of biologically relevant SAMs by a modular approach: either utilizing 1,3-dipolar cycloaddition of alkynes and azides in solution or by 'click on SAM'. Extensive studies into the various parameters of SAM formation and stability have been carried out, leading us to deduce reliable conditions under which glyco-decorated self-assembled monolayers can be formed and studied such as in SPR-supported binding assays.

  7. Monitoring Wnt Protein Acylation Using an In Vitro Cyclo-Addition Reaction

    Science.gov (United States)

    Tuladhar, Rubina; Yarravarapu, Nageswari; Lum, Lawrence

    2016-01-01

    We describe here a technique for visualizing the lipidation status of Wnt proteins using azide-alkyne cycloaddition chemistry (click chemistry) and SDS-PAGE. This protocol incorporates in vivo labeling of a Wnt-IgG Fc fusion protein using an alkynylated palmitate probe but departs from a traditional approach by incorporating a secondary cycloaddition reaction performed on single-step purified Wnt protein immobilized on protein A resin. This approach mitigates experimental noise by decreasing the contribution of labeling from other palmitoylated proteins and by providing a robust method for normalizing labeling efficiency based on protein abundance. PMID:27590147

  8. Selective posttranslational modification of phage-displayed polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    2013-02-05

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2]cycloaddition reactions and Staudinger modifications.

  9. Selective posttranslational modification of phage-displayed polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    2013-11-19

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2] cycloaddition reactions and Staudinger modifications.

  10. Immobilized Palladium on Organic-inorganic Hybrid Materials: A Novel and Reusable Catalyst for the Copper-Free Sonogashira Coupling Reaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Yuan; WANG Lei

    2008-01-01

    The immobilized palladium on organic-inorganic hybrid materials catalyzing the copper-free Sonogashira cou pling reaction has been described.Terminal alkynes were reacted with aryl iodides and aryl bromides in the pres ence of 3-[N,N-bis(diphenylphosphino)amino]propyl functionalized silica gel immobilized palladium catalyst.The protocol involved the use of ethylene glycol as a solvent,and triethylamine as a base.The reactions generated the corresponding cross-coupling products in excellent yields.Furthermore,the silica-supported phosphine palladium complexes and ethylene glycol could be recovered and recycled for six consecutive trials without significant loss of their activity.

  11. A photoinduced, benzyne click reaction.

    Science.gov (United States)

    Gann, Adam W; Amoroso, Jon W; Einck, Vincent J; Rice, Walter P; Chambers, James J; Schnarr, Nathan A

    2014-04-04

    The [3 + 2] cycloaddition of azides and alkynes has proven invaluable across numerous scientific disciplines for imaging, cross-linking, and site-specific labeling among many other applications. We have developed a photoinitiated, benzyne-based [3 + 2] cycloaddition that is tolerant of a variety of functional groups as well as polar, protic solvents. The reaction is complete on the minute time scale using a single equivalent of partner azide, and the benzyne photoprecursor is stable for months under ambient light at room tempurature. Herein we report the optimization and scope of the photoinitiated reaction as well as characterization of the cycloaddition products.

  12. Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry

    Directory of Open Access Journals (Sweden)

    Zhan-Jiang Zheng

    2015-12-01

    Full Text Available The Cu(I-catalyzed azide-alkyne cycloaddition reaction, also known as click chemistry, has become a useful tool for the facile formation of 1,2,3-triazoles. Specifically, the utility of this reaction has been demonstrated by the synthesis of structurally diverse bi- and bis-1,2,3-triazoles. The present review focuses on the synthesis of such bi- and bistriazoles and the importance of using copper-promoted click chemistry (CuAAC for such transformations. In addition, the application of bitriazoles and the related CuAAAC reaction in different fields, including medicinal chemistry, coordination chemistry, biochemistry, and supramolecular chemistry, have been highlighted.

  13. Diversity-Oriented Approaches to Polycyclics and Bioinspired Molecules via the Diels-Alder Strategy: Green Chemistry, Synthetic Economy, and Beyond.

    Science.gov (United States)

    Kotha, Sambasivarao; Chavan, Arjun S; Goyal, Deepti

    2015-05-11

    We describe diverse approaches to various dienes and their utilization in the Diels-Alder reaction to produce a variety of polycycles. The dienes covered here are prepared by simple alkylation reaction or via the Claisen rearrangement or by enyne metathesis of alkyne or enyne building blocks. Here, we have also included the Diels-Alder chemistry of dendralenes, a higher analog of cross-conjugated dienes. The present article is inclusive of o-xylylene derivatives that are generated in situ starting with benzosultine or benzosulfone derivatives. The Diels-Alder reaction of these dienes with various dienophiles gave diverse polycyclic systems and biologically important targets.

  14. Crystal structure of 3-[2-(4-methylphenylethynyl]-2H-chromen-2-one

    Directory of Open Access Journals (Sweden)

    Ignez Caracelli

    2015-02-01

    Full Text Available The coumarin ring system in the title asymmetric alkyne, C18H12O2, is approximately planar (r.m.s. deviation of the 11 non-H atoms = 0.048 Å, and is inclined with respect to the methylbenzene ring, forming a dihedral angle of 33.68 (4°. In the crystal, supramolecular zigzag chains along the c-axis direction are formed via weak C—H...O hydrogen bonds, and these are connected into double layers via weak C—H...π interactions; these stack along the a axis.

  15. [2+2+2] Cycloaddition Reactions of Macrocyclic Systems Catalyzed by Transition Metals. A Review

    Directory of Open Access Journals (Sweden)

    Anna Roglans

    2010-12-01

    Full Text Available Polyalkyne and enediyne azamacrocycles are prepared from arenesulfonamides and various alkyne and alkene derivatives either under basic or neutral conditions. The new family of macrocyclic substrates is tested in the [2+2+2] cycloaddition reaction. Several catalysts are used for the cycloisomerization reaction, and their enantioinduction is evaluated as appropriate. The effect of the structural features of the macrocycles, namely the ring size, substituents in precise positions and the number and type of unsaturations, on the [2+2+2] cycloaddition reaction has also been studied.

  16. Self-assembly patterning of organic molecules on a surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  17. The Application of Diaryliodonium Salts in Organic Synthesis%有机合成中二芳基碘(Ⅲ)盐的应用

    Institute of Scientific and Technical Information of China (English)

    许素花; 孙海

    2013-01-01

    This paper summarizes the applications of diaryliodonium salts in the organic synthesis reactions,such as metal-catalyzed cross-coupling reactions,α-arylation of carbonyl compounds,arylation of alkynes and arylation of heteroatom nucleophiles.%综述了二芳基碘(Ⅲ)盐在金属催化的交叉偶联反应、羰基化合物的a-芳基化、炔烃的芳基化、杂原子亲核化合物的芳基化等反应中的应用.

  18. The use of click chemistry in the emerging field of catalomics.

    Science.gov (United States)

    Kalesh, Karunakaran A; Shi, Haibin; Ge, Jingyan; Yao, Shao Q

    2010-04-21

    Of the thousands of known chemical reactions, a handful of reactions, called "click" reactions, stand out with features such as good chemoselectivity, good solvent compatibilities, modularity, minimum synthetic demands, bioorthogonality and high yields. Among them, the Cu(i)-catalyzed 1,3-dipolar cycloaddition reaction between azides and terminal alkynes has emerged as a powerful tool in chemical biology and proteomics. This perspective surveys the significant contributions of click chemistry in catalomics (a sub-area in chemical proteomics), with special emphasis on activity-based protein profiling (ABPP), posttranslational modifications (PTMs) and enzyme inhibitor developments.

  19. NaBH{sub 4}/[bmim]BF{sub 4}: a new reducing system to access vinyl selenides and tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Lenardao, Eder J.; Goncalves, Loren C.C.; Mendes, Samuel R.; Saraiva, Maiara T.; Alves, Diego; Jacob, Raquel G.; Perin, Gelson, E-mail: lenardao@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Quimica e Geociencias. Lab. de Sintese Organica Limpa (LASOL)

    2010-07-01

    A general and simple method for the synthesis of vinyl selenides and tellurides starting from terminal alkynes and diorganyl chalcogenides using NaBH{sub 4} and [bmim]BF{sub 4} as a recyclable solvent was developed. This efficient and improved method furnishes the corresponding vinyl chalcogenides preferentially with Z configuration. We also observed that when the same protocol was applied to phenyl acetylene, (E)-bis-phenylchalcogeno styrenes were obtained in good yields and high selectivity. The ionic liquid was reused up three times without lost of efficiency. (author)

  20. An anomalous hydration/dehydration sequence for the mild generation of a nitrile oxide.

    Science.gov (United States)

    Nishiwaki, Nagatoshi; Kobiro, Kazuya; Kiyoto, Hideyuki; Hirao, Shotaro; Sawayama, Jun; Saigo, Kazuhiko; Okajima, Yoshikazu; Uehara, Toshiharu; Maki, Asaka; Ariga, Masahiro

    2011-04-21

    A nitrile oxide containing a carbamoyl group is readily generated upon the treatment of 2-methyl-4-nitro-3-isoxazolin-5(2H)-one with water under mild reaction conditions, even in the absence of special reagents. The obtained nitrile oxide undergoes cycloaddition with dipolarophiles, alkynes and alkenes, to afford the corresponding isoxazol(in)es, which are useful intermediates in the synthesis of polyfunctionalized compounds. A plausible mechanism underlying the formation of the nitrile oxide is proposed, which involves an anomalous hydration/dehydration sequence. DFT calculations were also performed to support this mechanism.