WorldWideScience

Sample records for alkylbenzene sulfonate las

  1. Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Ahring, Birgitte Kiær

    2002-01-01

    Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore it is impor......Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore...... it is important to investigate the effect of these xenobiotic compounds on an anaerobic environment. The inhibitory effect of Linear Alkylbenzene Sulfonates (LAS) on the acetogenic and methanogenic step of the anaerobic digestion process was studied. LAS inhibit both acetogenesis from propionate...

  2. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  3. Properties of polypyrrole doped with alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Bay, Lasse; Skaarup, Steen; West, Keld

    2001-01-01

    -standing 10 mu m thick film is prepared electrochemically at a constant current from an aqueous solution of pyrrole and sodium alkylbenzene sulfonate. The mechanical properties of the film (tensile strength and Young's modulus) and the reversible linear elongation between the oxidised and reduced states...... are measured. Alkylbenzene sulfonates with alkyl chain lengths between 1 and 22 carbon atoms are used as dopant anion. The films made with the different anions have highly different properties and are here compared to outline the influence of the size of the anion. A maximum in linear elongation is found for p......-(n-octyl)benzene sulfonate and in conductivity for p-(n-butyl)benzene sulfonate....

  4. Removal of linear alkylbenzene sulfonate (LAS) and its intermediate, sulfophenylalkanoates (spa) using a bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Ku [Seoul National Univ., Seoul (Korea, Republic of); Kim, Ji Hyeon; Yoo, Young Je [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Hwa Yong [Seoul National Univ., Seoul (Korea, Republic of)

    1995-12-01

    A fluidized-bed bioreactor was used to treat the industrial wastewater containing linear alkylbenzene sulfonate(LAS). Microorganism obtained by acclimation showed low growth rate and substrate inhibition at relatively high substrate concentration. It was found from the experiment using fluidized-bed bioreactor that 64 {mu}m-thick biofilm was made after 15 days. The 93.4% LAS removal efficiency in the reactor was obtained at 120 mg/L of initial LAS concentration, while the removal efficiency of sulfophenylalkannoates(SPA) which is a representative intermediate of biodegradation of LAS was 60-88% depending on the initial concentration of LAS. When sodium benzoate was added to the second reactor, the remaining SPA became lowered by 40% compared to the control experiment. And when activated carbon was added to the reactor, the removal efficiency of SPA was 96.2% and that of LAS was 100% when initial inflowing concentration of LAS was 350 mg/L. 13 refs., 4 tabs., 8 figs.

  5. Effect of Linear Alkylbenzene Sulfonate on Mortality, Hatching Rate of Eggs and Abnormality of Catfish (Pangasius hypophthalmus Sauvage Larvae

    Directory of Open Access Journals (Sweden)

    E. Supriyono

    2007-01-01

    Full Text Available Linear alkylbenzene sulfonate (LAS surfactant in the water can affecting fish in all developmental stages.  This study was aimed to observe the effect of LAS on mortality, hatching rate of eggs, and abnormality of patin catfish (Pangasius hypophthalmus Sauvage larvae.   Fertilized eggs were incubated in water containing LAS at the dosages of 0.0, 0.5, 1.5, 3.0, 9.0, and 18.0 mg/L.  Eggs mortality was observed every 6 hours until larvae hatched (24 hours.  The results of study showed that the exposure of 18.0 mg LAS per liter water could put to death all the fertilized eggs and larvae be abnormal.  The exposure of LAS at concentration of 9.0 mg/L could kill 98% of eggs and hatching rate was only 2%.  The abnormality in larvae was bending in the body and tails. Keywords: patin catfish, Pangasius, Linear Alkylbenzene Sulfonate, LAS, abnormality   ABSTRAK Surfaktan Linear Alkylbenzene Sulfonate (LAS yang masuk ke dalam perairan sangat berpengaruh terhadap ikan dari stadia awal hidup ikan sampai dewasa. Penelitian ini bertujuan untuk mengetahui pengaruh LAS terhadap mortalitas, daya tetas telur dan abnormalitas larva ikan patin (Pangasius hypophthalmus Sauvage.  Telur ikan patin yang telah dibuahi di rendam dalam air yang mengandung LAS dengan konsentrasi 0,0; 0,5; 1,5; 3,0; 9,0 dan 18,0 mg/L.  Mortalitas telur dicatat setiap 6 jam sampai menetas (24 jam.  Hasil penelitian menunjukkan bahwa konsentrasi LAS sebesar 18,0 mg/L dapat mengakibatkan mortalitas telur dan abnormalitas pada larva secara total.  Konsentrasi LAS sebesar 9,0 mg/L dapat mematikan telur hingga 98% dan hanya menghasilkan daya tetas sebanyak 2%. Abnormalitas pada larva berupa pembengkokan pada tubuh dan ekor. Kata kunci: ikan patin, Pangasius, Linear Alkylbenzene Sulfonate, LAS dan abnormalitas

  6. Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS)

    Energy Technology Data Exchange (ETDEWEB)

    Angelidaki, I.; Toraeng, L.; Waul, C.M.; Schmidt, J.E.

    2003-07-01

    Anaerobic degradation of sludge amended with linear alkylbenzene sulfonates (LAS) was tested in one stage continuous stirred tank reactor (CSTR) and a two stages reactor system consisting by a CSTR as first step and upflow anaerobic sludge bed (UASB) reactor in the second step. Anaerobic removal of LAS was only observed at the second step but not at the first step. Removal of LAS in the UASB reactors was approx. 80% where half was due to absorption and the other half was apparently due to biological removal as shown from the LAS mass balance. At the end of the experiment the reactors were spiked with {sup 14}C-LAS which resulted in 5.6% {sup 14}CO{sub 2} in the produced gas. Total mass balance of the radioactivity was however not achieved. In batch experiments it was found that LAS at concentrations higher than 50 mg/l is inhibitory for the most microbial groups of the anaerobic process. Therefore, low initial LAS concentration is a prerequisite for successful LAS degradation. The results from the present study suggest that anaerobic degradation of LAS is possible in UASB reactors when the concentration of LAS is low enough to avoid inhibition of microorganisms active in the anaerobic process. (author)

  7. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Brandt, K. K.; Sørensen, J.; Krogh, P. H.

    2003-01-01

    Recent research has documented soil microorganisms to be rather sensitive to linear alkylbenzene sulfonates (LAS), which may enter the soil environment in considerable quantities following sewage sludge disposal. We here report field effects of LAS on selected microbial populations present in a s...

  8. Formation of metabolites during biodegradation of linear alkylbenzene sulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2002-01-01

    Biodegradation of linear alkylbenzene sulfonate (LAS) was shown in an upflow anaerobic sludge blanket reactor under thermophilic conditions. The reactor was inoculated with granular biomass and fed with a synthetic medium and 3 mumol/L of a mixture of LAS with alkylchain length of 10 to 13 carbon...

  9. The Use of Multi-Reactor Cascade Plasma Electrolysis for Linear Alkylbenzene Sulfonate Degradation

    Science.gov (United States)

    Saksono, Nelson; Ibrahim; Zainah; Budikania, Trisutanti

    2018-03-01

    Plasma electrolysis is a method that can produce large amounts of hydroxyl radicals to degrade organic waste. The purpose of this study is to improve the effectiveness of Linear alkylbenzene sulfonate (LAS) degradation by using multi-reactor cascade plasma electrolysis. The reactor which operated in circulation system, using 3 reactors series flow and 6 L of LAS with initial concentration of 100 ppm. The results show that the LAS degradation can be improved multi-reactor cascade plasma electrolysis. The greatest LAS degradation is achieved up to 81.91% with energy consumption of 2227.34 kJ/mmol that is obtained during 120 minutes by using 600 Volt, 0.03 M of KOH, and 0.5 cm of the anode depth.

  10. Effects of linear alkylbenzene sulfonate (LAS) on the interspecific competition between Microcystis and Scenedesmus.

    Science.gov (United States)

    Zhu, Wei; Chen, Huaimin; Guo, Lili; Li, Ming

    2016-08-01

    The widespread use of detergents increases the concentration of surfactant in lakes and reservoirs. High surfactant loads produces toxicity to algae; however, the influence of the increasing surfactant on the competition between algae is not clear. In this paper, different amounts of linear alkylbenzene sulfonate (LAS) were added to test the effects of LAS on the competition between Microcystis aeruginosa and Scenedesmus obliquus under eutrophic condition. In single culture, the growth of S. obliquus was promoted under lower LAS concentrations (1 and 20 mg L(-1)), but cell density of S. obliquus reduced when treated with higher LAS concentration (100 mg L(-1)). The growth of M. aeruginosa was inhibited markedly with 20 and 100 mg L(-1) LAS. Compared with single culture, the result was opposite in co-cultures and the cell density of S. obliquus increased significantly when treated with LAS of 1, 20, and 100 mg L(-1). The specific growth rates of S. obliquus and M. aeruginosa in both cultures were 0.4-0.5 day(-1) and 0.6-0.7 day(-1), respectively, except that the specific growth rate of M. aeruginosa in both cultures treated with 100 mg L(-1) LAS was about 0.2 day(-1). M. aeruginosa dominated over S. obliquus in the co-culture without LAS, while the competition was completely opposite with the addition of 20 mg L(-1) LAS. The growth of S. obliquus treated with 20 mg L(-1) LAS was not affected significantly in single culture but was promoted by 75 % in co-culture. Moreover, the growth of S. obliquus in co-culture treated with 100 mg L(-1) LAS was promoted by more than 97 %. These results suggested that the increasing LAS would overturn the competition of algae in freshwater ecosystems.

  11. Mineralization of linear alkylbenzene sulfonate by a four-member aerobic bacterial consortium

    International Nuclear Information System (INIS)

    Jimenez, L.; Breen, A.; Thomas, N.; Sayler, G.S.; Federle, T.W.

    1991-01-01

    A bacterial consortium capable of linear alkylbenzene sulfonate (LAS) mineralization under aerobic conditions was isolated from a chemostat inoculated with activated sludge. The consortium, designated KJB, consisted of four members, all of which were gram-negative, rod-shaped bacteria that grew in pairs and short chains. Three isolates had biochemical properties characteristic of Pseudomonas spp.; the fourth showed characteristics of the Aeromonas spp. Cell suspensions were grown together in minimal medium with [ 14 C]LAS as the only carbon source. After 13 days of incubation, more than 25% of the [ 14 C]LAS was mineralized to 14 CO 2 by the consortium. Pure bacterial cultures and combinations lacking any one member of the KJB bacterial consortium did not mineralize LAS. Three isolates carried out primary biodegradation of the surfactant, and one did not. This study shows that the four bacteria complemented each other and synergistically mineralized LAS, indicating catabolic cooperation among the four consortium members

  12. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants

    NARCIS (Netherlands)

    Temmink, B.G.; Klapwijk, A.

    2004-01-01

    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg/l and at sludge retention times of 10 and 27

  13. Freely dissolved concentrations of anionic surfactants in seawater solutions: optimization of the non-depletive solid-phase microextraction method and application to linear alkylbenzene sulfonates.

    NARCIS (Netherlands)

    Rico Rico, A.; Droge, S.T.J.; Widmer, D.; Hermens, J.L.M.

    2009-01-01

    A solid-phase microextraction method (SPME) has been optimized for the analysis of freely dissolved anionic surfactants, namely linear alkylbenzene sulfonates (LAS), in seawater. An effect of the thermal conditioning treatment on the polyacrylate fiber coating was demonstrated for both uptake

  14. Microbial characterization and degradation of linear alkylbenzene sulfonate in an anaerobic reactor treating wastewater containing soap powder.

    Science.gov (United States)

    Carosia, Mariana Fronja; Okada, Dagoberto Yukio; Sakamoto, Isabel Kimiko; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio

    2014-09-01

    The aim of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) in an anaerobic fluidized bed reactor (AFBR) treating wastewater containing soap powder as LAS source. At Stage I, the AFBR was fed with a synthetic substrate containing yeast extract and ethanol as carbon sources, and without LAS; at Stage II, soap powder was added to this synthetic substrate obtaining an LAS concentration of 14 ± 3 mg L(-1). The compounds of soap powder probably inhibited some groups of microorganisms, increasing the concentration of volatile fatty acids (VFA) from 91 to 143 mg HAc L(-1). Consequently, the LAS removal rate was 48 ± 10% after the 156 days of operation. By sequencing, 16S rRNA clones belonging to the phyla Proteobacteria and Synergistetes were identified in the samples taken at the end of the experiment, with a remarkable presence of Dechloromonas sp. and Geobacter sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Liquid Phase Micro-Extraction of Linear Alkylbenzene Sulfonate Anionic Surfactants in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson

    2011-10-01

    Full Text Available Hollow fiber liquid phase micro-extraction (LPME of linear alkylbenzene sulfonates (LAS from aqueous samples was studied. Ion pair extraction of C10, C11, C12 and C13 homologues was facilitated with trihexylamine as ion-pairing agent, using di-n-hexylether as solvent for the supported liquid membrane (SLM. Effects of extraction time, acceptor buffer concentration, stirring speed, sample volume, NaCl and humic acids were studied. At 10–50 µg L−1 linear R2-coefficients were 0.99 for C10 and C11 and 0.96 for C12. RSD was typically ~15%. Three observations were especially made. Firstly, LPME for these analytes was unusually slow with maximum enrichment observed after 15–24 h (depending on sample volume. Secondly, the enrichment depended on LAS sample concentration with 35–150 times enrichment below ~150 µg L−1 and 1850–4400 times enrichment at 1 mg L−1. Thirdly, lower homologues were enriched more than higher homologues at low sample concentrations, with reversed conditions at higher concentrations. These observations may be due to the fact that LAS and the amine counter ion themselves influence the mass transfer at the water-SLM interface. The observations on LPME of LAS may aid in LPME application to other compounds with surfactant properties or in surfactant enhanced membrane extraction of other compounds.

  16. Environmental monitoring study of linear alkylbenzene sulfonates and insoluble soap in Spanish sewage sludge samples.

    Science.gov (United States)

    Cantarero, Samuel; Zafra-Gómez, Alberto; Ballesteros, Oscar; Navalón, Alberto; Reis, Marco S; Saraiva, Pedro M; Vílchez, José L

    2011-01-01

    In this work we present a monitoring study of linear alkylbenzene sulfonates (LAS) and insoluble soap performed on Spanish sewage sludge samples. This work focuses on finding statistical relations between LAS concentrations and insoluble soap in sewage sludge samples and variables related to wastewater treatment plants such as water hardness, population and treatment type. It is worth to mention that 38 samples, collected from different Spanish regions, were studied. The statistical tool we used was Principal Component Analysis (PC), in order to reduce the number of response variables. The analysis of variance (ANOVA) test and a non-parametric test such as the Kruskal-Wallis test were also studied through the estimation of the p-value (probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true) in order to study possible relations between the concentration of both analytes and the rest of variables. We also compared LAS and insoluble soap behaviors. In addition, the results obtained for LAS (mean value) were compared with the limit value proposed by the future Directive entitled "Working Document on Sludge". According to the results, the mean obtained for soap and LAS was 26.49 g kg(-1) and 6.15 g kg(-1) respectively. It is worth noting that LAS mean was significantly higher than the limit value (2.6 g kg(-1)). In addition, LAS and soap concentrations depend largely on water hardness. However, only LAS concentration depends on treatment type.

  17. Matrix effect study in the determination of linear alkylbenzene sulfonates in sewage sludge samples.

    Science.gov (United States)

    Cantarero, Samuel; Zafra-Gómez, Alberto; Ballesteros, Oscar; Navalón, Alberto; Vílchez, José L; Verge, Coral; De Ferrer, Juan A

    2011-04-01

    We propose a study of the matrix effect in the determination of linear alkylbenzene sulfonates (LAS) in sewage sludge samples. First, a rapid, selective and sensitive method is proposed. The method involves two stages: the extraction of the compound from the samples and analysis by liquid chromatography with fluorescence detection (LC-FLD). Three different techniques of extraction (microwave-assisted extraction, Soxhlet, and ultrasounds) were compared, and microwave-assisted extraction was selected as the best suited for our purpose. Microwave-assisted extraction allows reducing the extraction time (25 min compared with 12 h for conventional Soxhlet extraction) and solvent waste (25 ml of methanol compared with 200 ml for Soxhlet or more than 50 ml for the ultrasonic procedure). Absence of matrix effect was evaluated with two standards (2ØC(8:0) and 2ØC(16:0) ) that are not commercial; therefore, neither of them was detected in sewage sludge samples and they showed similar environmental behavior (adsorption and precipitation) to LAS (C(11:0) -C(13.0) ), which allow us to evaluate the matrix effect. Validation was carried out by a recovery assay, and the method was applied to samples from different sources; therefore, they had different compositions. Copyright © 2011 SETAC.

  18. Cardiac biomarkers as sensitive tools to evaluate the impact of xenobiotics on amphibians: the effects of anionic surfactant linear alkylbenzene sulfonate (LAS).

    Science.gov (United States)

    Jones-Costa, Monica; Franco-Belussi, Lilian; Vidal, Felipe Augusto Pinto; Gongora, Nathália Penteado; Castanho, Luciano Mendes; Dos Santos Carvalho, Cleoni; Silva-Zacarin, Elaine Cristina Mathias; Abdalla, Fabio Camargo; Duarte, Iolanda Cristina Silveira; Oliveira, Classius De; de Oliveira, Cristiane Ronchi; Salla, Raquel Fernanda

    2018-04-30

    Amphibian populations have been experiencing a drastic decline worldwide. Aquatic contaminants are among the main factors responsible for this decline, especially in the aquatic environment. The linear alkylbenzene sulfonate (LAS) is of particular concern, since it represents 84% of the anionic surfactants' trade. In Brazil, the maximal LAS concentration allowed in fresh waters is 0.5mgL -1 , but its potential harmful effects in amphibians remain unknown. Therefore, this study aimed to analyze the effects of a sublethal concentration of LAS (0.5mgL -1 ) for 96h on sensitive cardiac biomarkers of bullfrog tadpoles, Lithobates catesbeianus (Shaw, 1802). For this, we measured the activity level (AL - % of animals), in situ heart rate (f H - bpm), relative ventricular mass (RVM - % of body mass), in vitro myocardial contractility and cardiac histology of the ventricles. Tadpoles' AL and f H decreased in LAS group. In contrast, the RVM increased, as a result of a hypertrophy of the myocardium, which was corroborated by the enlargement of the nuclear measures and the increase of myocytes' diameters. These cellular effects resulted in an elevation of the in vitro contractile force of ventricle strips. Acceleration in the contraction (TPT - ms) also occurred, although no alterations in the time to relaxation (THR -ms) were observed. Therefore, it can be concluded that even when exposed to an environmentally safe concentration, this surfactant promotes several alterations in the cardiac function of bullfrog tadpoles that can impair their development, making them more susceptible to predators and less competitive in terms of reproduction success. Thus, LAS concentrations that are considered safe by Brazilian by regulatory agencies must be revised in order to minimize a drastic impact over amphibian populations. This study demonstrates the relevance of employing cardiac biomarkers at different levels (e.g., morphological, physiological and cellular) to evaluate effects of

  19. Spatial distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface.

    Science.gov (United States)

    Federle, T W; Ventullo, R M; White, D C

    1990-12-01

    The vertical distribution of microbial biomass, activity, community structure and the mineralization of xenobiotic chemicals was examined in two soil profiles in northern Wisconsin. One profile was impacted by infiltrating wastewater from a laundromat, while the other served as a control. An unconfined aquifer was present 14 meters below the surface at both sites. Biomass and community structure were determined by acridine orange direct counts and measuring concentrations of phospholipid-derived fatty acids (PLFA). Microbial activity was estimated by measuring fluorescein diacetate (FDA) hydrolysis, thymidine incorporation into DNA, and mixed amino acid (MAA) mineralization. Mineralization kinetics of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) were determined at each depth. Except for MAA mineralization rates, measures of microbial biomass and activity exhibited similar patterns with depth. PLFA concentration and rates of FDA hydrolysis and thymidine incorporation decreased 10-100 fold below 3 m and then exhibited little variation with depth. Fungal fatty acid markers were found at all depths and represented from 1 to 15% of the total PLFAs. The relative proportion of tuberculostearic acid (TBS), an actinomycete marker, declined with depth and was not detected in the saturated zone. The profile impacted by wastewater exhibited higher levels of PLFA but a lower proportion of TBS than the control profile. This profile also exhibited faster rates of FDA hydrolysis and amino acid mineralization at most depths. LAS was mineralized in the upper 2 m of the vadose zone and in the saturated zone of both profiles. Little or no LAS biodegradation occurred at depths between 2 and 14 m. LAE was mineralized at all depths in both profiles, and the mineralization rate exhibited a similar pattern with depth as biomass and activity measurements. In general, biomass and biodegradative activities were much lower in groundwater than in soil samples obtained

  20. Degradation of linear alkylabenzene sulfonate (LAS) and its compounds in Donghu Lake (Hubei, P.R.C.) determined by high performance liquid chromatography (HPLC)

    Science.gov (United States)

    Ayfer, Yediler; Xu, Ying; Zhang, Yongyuan; Chen, Junjian

    1990-06-01

    Commercial linear alkylbenzene sulfonate (LAS), mixture of alkylchain lengths and phenyl position isomers (C10-C13), is widely used as a major constituent of household and industrial detergents in the People's Republic of China. Degradation process and behaviour of LAS compounds during an 82-hour lake water die-away study, with an added LAS concentration of 1.5mg·L-1, was quantified and accomplished by HPLO-UV after extractionon the SepPek C18 reversed-phase cartridges. The degradation rate became progressively faster with increasing chain length. The technique described in this study is fast, sensitive and specific, and can be used to determine low levels of LAS and for establishing water quality criteria and standards relating to LAS and its compounds.

  1. Anaerobic treatment of sludge: focusing on reduction of LAS concentration in sludge

    DEFF Research Database (Denmark)

    Haagensen, Frank; Mogensen, Anders Skibsted; Angelidaki, Irini

    2002-01-01

    Anaerobic degradation of linear alkylbenzene sulfonates (LAS) was tested in continuous stirred tank reactors (CSTR). LAS12 was used as a model compound and was spiked on sewage sludge. The experiments clearly showed that transformation of LAS12 occurred under anaerobic conditions. The degree...

  2. Investigating the potential of using sonochemical reactors for decomposition of LAS from wastewater

    International Nuclear Information System (INIS)

    Dehghani, M. H.; Jahed, G. R.; Changani, F.; Azam, K.; Najafpoor, A. A.

    2009-01-01

    The effectiveness of using sonochemical reactor for degradation of linear alkylbenzen sulfonates (LAS) from aqueous solution has been investigated. LAS are anionic surfactants, which found in relatively high amounts in domestic and industrial wastewaters. In this study, experiments of LAS solution were performed using methylene blue active substances (MBAS) method. (Author)

  3. Influence of linear alkylbenzene sulfonate (LAS) on the structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities in a soil microcosm.

    Science.gov (United States)

    Sánchez-Peinado, M del Mar; González-López, Jesús; Martínez-Toledo, M Victoria; Pozo, Clementina; Rodelas, Belén

    2010-03-01

    Linear alkylbenzene sulfonate (LAS) is the most used anionic surfactant in a worldwide scale and is considered a high-priority pollutant. LAS is regarded as a readily biodegradable product under aerobic conditions in aqueous media and is mostly removed in wastewater treatment plants, but an important fraction (20-25%) is immobilized in sewage sludge and persists under anoxic conditions. Due to the application of the sludge as a fertilizer, LAS reaches agricultural soil, and therefore, microbial toxicity tests have been widely used to evaluate the influence of LAS on soil microbial ecology. However, molecular-based community-level analyses have been seldom applied in studies regarding the effects of LAS on natural or engineered systems, and, to our knowledge, there are no reports of their use for such appraisals in agricultural soil. In this study, a microcosm system is used to evaluate the effects of a commercial mixture of LAS on the community structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria in an agricultural soil. The microcosms consisted of agricultural soil columns (800 g) fed with sterile water (8 ml h(-1)) added of different concentration of LAS (10 or 50 mg l(-1)) for periods of time up to 21 days. Sterile water was added to control columns for comparison. The structures of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities were analyzed by a cultivation independent method (temperature gradient gel electrophoresis (TGGE) separation of polymerase chain reaction (PCR)-amplified partial 16S rRNA genes). Relevant populations were identified by subsequent reamplification, DNA sequencing, and database comparisons. Cluster analysis of the TGGE fingerprints taking into consideration both the number of bands and their relative intensities revealed that the structure of the Alphaproteobacteria community was significantly changed in the presence of LAS, at both concentrations tested. The average number of bands was significantly

  4. Effect of sediment properties on the sorption of C12-2-LAS in marine and estuarine sediments

    NARCIS (Netherlands)

    Rico Rico, A.; Temara, A.; Behrends, T.; Hermens, J.L.M.

    2009-01-01

    Linear alkylbenzene sulfonates (LAS) are anionic high production volume surfactants used in the manufacture of cleaning products. Here, we have studied the effect of the characteristics of marine and estuarine sediments on the sorption of LAS. Sorption experiments were performed with single sediment

  5. Chronic toxicity of sediment-associated linear alkylbenzene sulphonates (LAS) to freshwater benthic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Comber, S.D.W. [WRc-NSF, Henley Road, Medmenham, Marlow, Buckinghamshire, SL7 2HD (United Kingdom)]. E-mail: sean.comber@atkinsglobal.com; Conrad, A.U. [Weinberg Group, Blue Tower, Box 16, B-1050 Brussels (Belgium); Hoess, S. [ECOSSA, Thierschstrasser 43, 80538, Muenchen (Germany); Webb, S. [CEFIC, Ave E. Van Nieuwenhuyse 4, B-1160 Brussels (Belgium); Marshall, S. [Unilever Research, Environment Centre, Bebington, Wirral, Merseyside, L63 3JW (United Kingdom)

    2006-11-15

    The toxicity of linear alkylbenzene sulphonates (LAS), to freshwater benthic organisms was assessed during exposure to spiked sediment. Lethal and sub-lethal end-points were monitored for two organisms (oligochaete Lumbriculus variegatus and nematode Caenorhabditis elegans). Results demonstrated relatively low toxicity (LOECs >100 mg/kg dry weight). No observed effect concentrations (NOECs) of 81 mg/kg dw (Lumbriculus) and 100 mg/kg dw (Caenorhabditis) were determined. For the oligochaete, no specific endpoint was particularly sensitive to LAS. For the nematode, egg production was the most sensitive endpoint. Significant degradation was measured over the 28-day duration of the Lumbriculus study, equating to a half-life of 20 days in sediment. - This paper provides sediment toxicity data for LAS, essential for a detailed and accurate environment risk assessment.

  6. Chronic toxicity of sediment-associated linear alkylbenzene sulphonates (LAS) to freshwater benthic organisms

    International Nuclear Information System (INIS)

    Comber, S.D.W.; Conrad, A.U.; Hoess, S.; Webb, S.; Marshall, S.

    2006-01-01

    The toxicity of linear alkylbenzene sulphonates (LAS), to freshwater benthic organisms was assessed during exposure to spiked sediment. Lethal and sub-lethal end-points were monitored for two organisms (oligochaete Lumbriculus variegatus and nematode Caenorhabditis elegans). Results demonstrated relatively low toxicity (LOECs >100 mg/kg dry weight). No observed effect concentrations (NOECs) of 81 mg/kg dw (Lumbriculus) and 100 mg/kg dw (Caenorhabditis) were determined. For the oligochaete, no specific endpoint was particularly sensitive to LAS. For the nematode, egg production was the most sensitive endpoint. Significant degradation was measured over the 28-day duration of the Lumbriculus study, equating to a half-life of 20 days in sediment. - This paper provides sediment toxicity data for LAS, essential for a detailed and accurate environment risk assessment

  7. Linear Alkylbenzene Sulfonate tolerance in bacteria isolated from sediment of tropical water bodies polluted with detergents

    Directory of Open Access Journals (Sweden)

    I.T Kehinde

    2008-12-01

    Full Text Available The discharge of untreated detergent-bearing waste introduces linear alkylbenzene sulfonates (LAS to the aquatic environment. The surfactant persists in some streams and rivers in Nigeria, some is adsorbed to suspended materials and end in the sediment of the receiving water bodies. In this study, bacteria isolated from sediments of some tropical detergent-effluent-polluted streams were tested for tolerance to LAS using the media dilution technique. LAS-tolerance was indicated by growth of the bacteria in the presence of the surfactant. The pH, concentrations of surfactant, population of heterotrophic bacteria and population of LAS-tolerant bacteria in the sediments were determined. A direct relationship (r= 0.9124 was found between the alkaline conditions (pH= 8.2-12.0 and high surfactant concentrations (45-132 mg/g in the sediment. The sediments harboured a high population and a wide variety of bacteria; the populations of viable heterotrophic bacteria (vHB: 2.9×10(5 to 1.2×10(7 cfu/g and LAS tolerant bacteria (LTB: 1.5×10(4 to 1.2×10(6 cfu/g had a direct relationship (r= 0.9500. An inverse relationship resulted between each of them and the concentration of surfactant in the sediment, r vHB/ LAS = -0.9303 and rLTB/ LAS = -0.9143, respectively. Twelve bacteria species were isolated from the sediment: Alcaligenes odorans, Bacillus subtilis, Burkholderia cepacia, Citrobacter freundii, Citrobacter diversus, Escherichia coli, Micrococcus luteus, Micrococcus albus, Pseudomonas putida, Pseudomonas stutzeri, Staphylococcus aureus and Streptococcus faecalis. Most of them were adapted to the surfactant with their maximum acceptable concentrations ranging between 0.03 and >1.0% (w/v. The sediments could serve as source of adapted organisms which can be used in bio-treatment of LAS-bearing waste. Rev. Biol. Trop. 56 (4:7-15. Epub 2008 December 12.La descarga de desechos que contienen detergentes liberan sulfonatos de alquibenceno lineal (LAS al

  8. Applying moving bed biofilm reactor for removing linear alkylbenzene sulfonate using synthetic media

    Directory of Open Access Journals (Sweden)

    Jalaleddin Mollaei

    2015-01-01

    Full Text Available Detergents and problems of their attendance into water and wastewater cause varied difficulties such as producing foam, abnormality in the growth of algae, accumulation and dispersion in aqueous environments. One of the reactors was designated with 30% of the media with the similar conditions exactly same as the other which had filling rate about 10 %, in order to compare both of them together. A standard method methylene blue active substance was used to measure anionic surfactant. The concentrations of linear alkylbenzene sulfonate which examined were 50, 100, 200, 300 and 400 mg/l in HRT 72, 24 and 8 hrs. The removal percentage for both of reactors at the beginning of operating at50 mg/l concentration of pollutant had a bit difference and with gradually increasing the pollutant concentration and decreasing Hydraulic retention time, the variation between the removal percentage of both reactors became significant as the reactor that had the filling rate about 30 %, showed better condition than the other reactor with 10 % filling rate. Ideal condition in this experiment was caught at hydraulic retention time about 72 hrs and 200 mg/l pollutants concentration with 99.2% removal by the reactor with 30% filling rate. While the ideal condition for the reactor with 10% filling rate with the same hydraulic retention time and 100 mg/l pollutants concentrations was obtained about 99.4% removal. Regarding anionic surfactant standard in Iran which is 1.5 mg/l for surface water discharge, using this process is suitable for treating municipal wastewater and industrial wastewater which has a range of the pollutant between 100-200 mg/l. but for the industries that produce detergents products which make wastewater containing more than 200 mg/l surfactants, using secondary treatment process for achieving discharge standard is required.

  9. Elimination of Linear Alkylbenzene Sulfonate (LAS) and soap during composting of anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Prats, D.; Rodriguez, M.; Muela, M.A.; Llamas, J.M.; Moreno, A.; Ferrer, J. De; Berna, J.L.

    2003-07-01

    The composting plant uses a variety of agricultural residue and sludge from nearby wastewater treatment plants. The results obtained indicate a very high removal of LAS (>97%) in a very short period of time while the removal of soap was substantially lower (32%) as well as the elimination of TOC (total organic matter). The average half life of LAS in the process was between 6 and 9 days which is very short compared to the average residence time of the feed in the composting process (40 days). (author)

  10. Alquilbenzeno sulfonato linear: uma abordagem ambiental e analítica

    Directory of Open Access Journals (Sweden)

    José Carlos P. Penteado

    2006-10-01

    Full Text Available The environmental impact of detergents and other consumer products is behind the continued interest in the chemistry of the surfactants used. Of these, linear alkylbenzene sulfonates (LASs are most widely employed in detergent formulations. The precursors to LASs are linear alkylbenzenes (LABs. There is also interest in the chemistry of these hydrocarbons, because they are usually present in commercial LASs (due to incomplete sulfonation, or form as one of their degradation products. Additionally, they may be employed as molecular tracers of domestic waste in the aquatic environment. The following aspects are covered in the present review: The chemistry of surfactants, in particular LAS; environmental impact of the production of LAS; environmental and toxicological effects of LAS; mechanisms of removal of LAS in the environment, and methods for monitoring LAS and LAB, the latter in domestic wastes. Classical and novel analytical methods employed for the determination of LAS and LAB are discussed in detail, and a brief comment on detergents in Brazil is given.

  11. Alquilbenzeno sulfonato linear: uma abordagem ambiental e analítica

    Directory of Open Access Journals (Sweden)

    Penteado José Carlos P.

    2006-01-01

    Full Text Available The environmental impact of detergents and other consumer products is behind the continued interest in the chemistry of the surfactants used. Of these, linear alkylbenzene sulfonates (LASs are most widely employed in detergent formulations. The precursors to LASs are linear alkylbenzenes (LABs. There is also interest in the chemistry of these hydrocarbons, because they are usually present in commercial LASs (due to incomplete sulfonation, or form as one of their degradation products. Additionally, they may be employed as molecular tracers of domestic waste in the aquatic environment. The following aspects are covered in the present review: The chemistry of surfactants, in particular LAS; environmental impact of the production of LAS; environmental and toxicological effects of LAS; mechanisms of removal of LAS in the environment, and methods for monitoring LAS and LAB, the latter in domestic wastes. Classical and novel analytical methods employed for the determination of LAS and LAB are discussed in detail, and a brief comment on detergents in Brazil is given.

  12. Las degradation in a fluidized bed reactor and phylogenetic characterization of the biofilm

    Directory of Open Access Journals (Sweden)

    L. L. Oliveira

    2013-09-01

    Full Text Available A fluidized bed reactor was used to study the degradation of the surfactant linear alkylbenzene sulfonate (LAS. The reactor was inoculated with anaerobic sludge and was fed with a synthetic substrate supplemented with LAS in increasing concentrations (8.2 to 45.8 mg l-1. The removal efficiency of 93% was obtained after 270 days of operation. Subsequently, 16S rRNA gene sequencing and phylogenetic analysis of the sample at the last stage of the reactor operation recovered 105 clones belonging to the domain Bacteria. These clones represented a variety of phyla with significant homology to Bacteroidetes (40%, Proteobacteria (42%, Verrucomicrobia (4%, Acidobacteria (3%, Firmicutes (2%, and Gemmatimonadetes (1%. A small fraction of the clones (8% was not related to any phylum. Such phyla variety indicated the role of microbial consortia in degrading the surfactant LAS.

  13. Lauryl alkylbenzene sulfonates in the urban water cycle (Toulouse, France)

    OpenAIRE

    Breton, Audrey; Vignoles, Christian; Montréjaud-Vignoles, Mireille

    2010-01-01

    Application of the European Water Framework Directive requires Member States to have better understanding of the quality of surface waters in order to improve knowledge of priority pollutants. Xenobiotics in urban receiving waters are an emerging concern. This study proposes a screening campaign of laurylalkylbenzene sulfonates in a separated sewer system. An analytical method by solid-phase extraction and liquid chromatography coupled with mass spectrometry detection was developed providing ...

  14. Response of weeping willows to linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Yu, X.; Trapp, Stefan; Zhou, P.

    2006-01-01

    in hydroponic solution spiked with LAS at 24.0 +/- 1 degrees C for 192 h. The normalized relative transpiration of plants was used to determine toxicity. Severe reduction of the transpiration was only found for high doses of LAS (>= 240 mg 1(-1)). Chlorophyll contents in leaves of treated plants varied...

  15. Response of resident bacteria in a tropical detergent effluent ...

    African Journals Online (AJOL)

    Bacteria were isolated from a tropical detergent-polluted stream, and their responses to linear alkylbenzene sulfonate (LAS) were investigated. The responses of the resident bacteria were assessed in terms of their ability or failure to grow in the presence of LAS and of their potential to degrade the surfactant. Eighteen ...

  16. Comparing sensitivity of ecotoxicological effect endpoints between laboratory and field

    DEFF Research Database (Denmark)

    Selck, H.; Riemann, B.; Christoffersen, K.

    2002-01-01

    multispecies field tests using tributyltin (TBT) and linear alkylbenzene sulfonates (LAS) were compared with published laboratory single-species test results and measured in situ concentrations. Extrapolation methods were evaluated by comparing predicted no-effect concentrations (PNECs), calculated by AF...

  17. Photosynthesis tests as an alternative to growth tests for hazard assessment of toxicant

    DEFF Research Database (Denmark)

    Petersen, S.; Kusk, Kresten Ole

    2000-01-01

    Acute (3- and 6-h) toxic responses toward Cu, linear alkylbenzene sulfonate (LAS), and tributyltin (TBT) of lightsaturated and unsaturated photosynthesis were investigated for Rhodomonas salina and Skeletonema costatum obtained from exponentially growing batch cultures and from chemostat cultures...

  18. Research results from inquiries into the carcinogenic effects of surface active agents. On the non-hazardous nature of ABS

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Shinichi

    1963-03-15

    Although the trial-production alkylbenzene used behaved atypically and so is presumed to contain complex carcinogenic hydrocarbon-like impurity by-products, commercially available alkylbenzenes generally did not possess carcinogenic properties. These substances used in alkylbenzene sulfonate production have very small promotive characteristics comparable to croton oil. However, alkylbenzene sulfonate demonstrated no cancer producing properties. (DT)

  19. Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenggang; Wu, Le; Sun, Mingming; Jiang, Jian-zhong; Wang, Feng [Jiangnan Univ., Wuxi (China). School of Chemical and Material Engineering

    2011-09-15

    A new hydrophobic surfactant, dodecyl lauroyl benzene sulfonate (DLBS), was synthesized and its application in enhanced oil recovery by alkali-surfactant-polymer (ASP) flooding was studied. The results show that DLBS can be synthesized by reaction of industrial dodecyl benzene with lauroyl chloride in the presence of AlCl{sub 3}, followed by sulfonation with ClSO{sub 3}H and neutralization with NaOH. The lauroyl-group is confirmed to be connected to the para-position of the alkylbenzene by1HNMR spectrum. The synthesized DLBS is well soluble in pure water and reservoir (connate) water at 45 C. It is highly surface active which is indicated by its low CMC of 1.1 . 10{sup -5} mol/L, and its low surface tension, {gamma}{sub cmc} of 28.6 mN m{sup -1}. By mixing with heavy alkylbenzene sulfonates of relatively low average molar mass (387g mol{sup -1}) at a total surfactant concentration of 5 mM, DLBS can reduce the interfacial tension of Daqing crude oil/connate water to an order of 10{sup -3} mN/m at 45 C in the presence of 0.5-1.0 wt.% NaOH and 1000 mg L{sup -1} of polymer. If the NaOH was replaced by a gentle alkaline salt, Na{sub 2}CO{sub 3}, certain amounts of dodecyl dimethyl carboxy betaine were added and the concentration of Na{sub 2}CO{sub 3} was increased to 1.2-2.0 wt.%, the interfacial tension of Daqing crude oil/connate water can also be reduced to an ultralow value. Therefore DLBS is a good hydrophobic surfactant applicable in ASP flooding with either NaOH or Na{sub 2}CO{sub 3} as alkaline agents. (orig.)

  20. Killing of preimplantation mouse embryos by main ingredients of cleansers AS and LAS

    International Nuclear Information System (INIS)

    Nomura, T.; Hata, S.; Shibata, K.; Kusafuka, T.

    1987-01-01

    When main ingredients of cleansers, alcohol sulfate (AS) and linear alkylbenzene sulfonate (LAS), were applied to the dorsal skin of pregnant JCL:ICR mice during preimplantation period, significant numbers of embryos collected from the oviducts and uteri on day 3 showed severe deformity or remained at the morula stage. Most of abnormal embryos were fragmented or remained at the 1-8 cell stages, and they were either dead or dying. Similar results were observed with commercially obtained kitchen detergent and hair shampoo. Fertilized eggs may be specifically sensitive to synthetic detergents. Very low doses of X-rays also induced significant yields of abnormal embryos. Major difference between X-rays and detergents was that X-ray-induced abnormality appeared at the morula or blastocyst stage, while detergent-induced one did at the earlier stages. (Auth.)

  1. New biodegradable air-entraining admixture based on LAS for cement-based composites

    International Nuclear Information System (INIS)

    Mendes, J.C.; Moro, T.K.; Dias, L.S.; Campos, P.A.M.; Silva, G.J.B.; Peixoto, R.A.F.; Cury, A.A.

    2016-01-01

    The active principle of Air Entraining Admixtures (AEA) are surfactants, analogously to washing up liquids. Washing up (or dishwashing) liquids are widely available products, relatively inexpensive, non-toxic and biodegradable, thus presenting smaller environmental impact. Therefore, the present work proposes the use of a biodegradable surfactant comprised in washing up liquids, Linear Alkylbenzene Sulfonate (LAS), as sustainable air entraining agent for cement-based composites. In this sense, a performance evaluation of the proposed AEA is carried out, by comparing the properties of mortars with proposed AEA, commercial AEA and ones without any admixture. Through the physical, mechanical and microstructural analysis, it was possible to determine the efficiency of the proposed AEA, as well as its optimum range of dosage. As a result, we seek to contribute to the technical development of cement-based composites in Brazil and in the world. (author)

  2. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    Science.gov (United States)

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Characteristics of Combined Submerged Membrane Bioreactor with Granular Activated Carbon (GAC) in Treating Lineal Alkylbenzene Sulphonates (LAS) Wastewater

    Science.gov (United States)

    Guo, Jifeng; Xia, Siqing; Lu, Yanjun

    2010-11-01

    A combined MBR (cMBR) with granular activated carbon (GAC) was used as a backbone system to treat the synthetic lineal alkylbenzene sulphonates (LAS) wastewater. The GAC was added in the MBR to improve the resistance of membrane fouling. A parallel conventional MBR (pMBR) without the GAC was run to give a contrast. The results of the process demonstrate that the cMBR process was more efficient than pMBR. It was found that the TMP changes of the cMBR were slower than the pMBR. The results demonstrated that the cMBRs membrane was better than the pMBR's after a clean period run. It was the GAC scrubbing to the membrane that delayed the membrane fouling of the cMBR. Variable critical flux was found in MBR, which showed that the cMBR could make the critical flux better than pMBR in the run time, but GAC could not improve the critical flux at the end of the period for the severe membrane fouling. Based on this theory, a variable critical flux (J) of MBR was put forward, and the relationship of J with time (t) was: J = 16.081e-0.0177t.

  4. Study of adjuvant effect of model surfactants from the groups of alkyl sulfates, alkylbenzene sulfonates, alcohol ethoxylates and soaps

    DEFF Research Database (Denmark)

    Clausen, S K; Sobhani, S; Poulsen, O M

    2000-01-01

    The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice. The surfact......The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice...

  5. Mineralization of Surfactants by Microbiota of Aquatic Plants

    OpenAIRE

    Federle, Thomas W.; Schwab, Burney S.

    1989-01-01

    The biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) by the microbiota associated with duckweed (Lemna minor) and the roots of cattail (Typha latifolia) was investigated. Plants were obtained from a pristine pond and a pond receiving wastewater from a rural laundromat. Cattail roots and duckweed plants were incubated in vessels containing sterile water amended with [14C]LAS, [14C]LAE, or 14C-labeled mixed amino acids (MAA). Evolution of 14CO2 was deter...

  6. Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene

    International Nuclear Information System (INIS)

    Zhou, X; Zhang, Z Y; Zhang, Q M; Liu, Q; Ding, Y Y; Zhou, L; Cao, J

    2015-01-01

    We report the measurements of the densities of linear alkylbenzene at three temperatures over 4 to 23 °C with pressures up to 10 MPa. The measurements have been analysed to yield the isobaric thermal expansion coefficients and, so far for the first time, isothermal compressibilities of linear alkylbenzene. Relevance of results for current generation (i.e., Daya Bay) and next generation (i.e. JUNO) large liquid scintillator neutrino detectors are discussed. (paper)

  7. Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.

    Science.gov (United States)

    Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok

    2014-10-01

    Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.

  8. Removal Efficiency of Linear Alkyl Benzene Sulfonate (LAS in Yazd Stabilization Pond

    Directory of Open Access Journals (Sweden)

    Asghar Ebrahimi

    2011-01-01

    Full Text Available Surfactants are organic chemicals with wide applications as detergents. Linear alkyl benzene sulfonate (LAS is an anionic surfactant most commonly used. Discharge of raw or treated wastewater containing this chemical into the environment causes major public health problems. In this study, 64 samples were taken from the effluent of Yazd Wastewater  Treatment Plant over a period of one year. The samples were analyzed according to standard methods. The results obtained from the samples taken in different seasons showed that the highest efficiency of anionic surfactant removal was achieved in the summer in the secondary facultative stabilization pond. The least efficiency was observed in the autumn in samples from the anaerobic stabilization pond. It was also found that treated wastewater discharged into surface waters, reused for agricultural irrigation, or discharged into absorbent wells had significant differences with Pvalue

  9. Preparation and characterization of sulfonated amine-poly(ether sulfone)s for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan; Lim, Young-Don; Lee, Soon-Ho; Jeong, Young-Gi; Kim, Whan-Gi [Department of Applied Chemistry/RIC-ReSEM, Konkuk University, Chungju-si, Chungbuk 380-701 (Korea, Republic of); Hong, Tae-Whan [Department of Materials Sci and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk (Korea, Republic of)

    2010-12-15

    Sulfonated amine-poly(ether sulfone)s (S-APES)s were prepared by nitration, reduction and sulfonation of poly(ether sulfone) (ultrason {sup registered} -S6010). Poly(ether sulfone) was reacted with ammonium nitrate and trifluoroacetic anhydride to produce the nitrated poly(ether sulfone), and was followed by reduction using tin(II)chloride and sodium iodide as reducing agents to give the amino-poly(ether sulfone). The S-APES was obtained by reaction of 1,3-propanesultone and the amino-poly(ether sulfone) (NH{sub 2}-PES) with sodium methoxide. The different degrees of nitration and reduction of poly(ether sulfone) were successfully synthesized by an optimized process. The reduction of nitro group to amino was done quantitatively, and this controlled the contents of the sulfonic acid group. The films were converted from salt to acid forms with dilute hydrochloric acid. Different contents of sulfonated unit of the S-APES were studied by FT-IR, {sup 1}H NMR spectroscopy, differential scanning calorimetry (DSC), and thermo gravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion exchange capacity (IEC), a measure of proton conductivity, was evaluated. The S-APES membranes exhibit conductivities (25 C) from 1.05 x 10{sup -3} to 4.83 x 10{sup -3} S/cm, water swell from 30.25 to 66.50%, IEC from 0.38 to 0.82 meq/g, and methanol diffusion coefficients from 3.10 x 10{sup -7} to 4.82 x 10{sup -7} cm{sup 2}/S at 25 C. (author)

  10. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang; Zhang, Zhenyu [Wuhan University, Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan (China); Liu, Qian; Zheng, Yangheng [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Han, Junbo [Huazhong University of Science and Technology, Wuhan National High Magnetic Field Center, Wuhan (China); Zhang, Xuan; Ding, Yayun; Zhou, Li; Cao, Jun; Wang, Yifang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2015-11-15

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments. (orig.)

  11. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Liu, Qian, E-mail: liuqian@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Han, Junbo [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan (China); Zhang, Zhenyu [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Zhang, Xuan; Ding, Yayun [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China); Zheng, Yangheng [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Zhou, Li; Cao, Jun; Wang, Yifang [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China)

    2015-11-21

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments.

  12. Side-chain sulfonated poly(ether sulfone)s for PEM applications

    Energy Technology Data Exchange (ETDEWEB)

    Meier-Haack, J.; Butwilowski, W.; Quetschke, A.; Vogel, C. [Leibniz Institute of Polymer Research Dresden, Dresden (Germany)

    2010-07-01

    Copoly(arylene ether sulfone)s from bis-(4-fluoro phenyl)sulfone (DFDPhS), bis(4-trimethylsiloxy phenyl)sulfone (DHDPhS), and 2,5-diphenylhydroquinone trimethylsilylether (Bis-TMS-DPhHQ) were obtained by nucleophilic displacement polycondensation with high molecular weights (M{sub n} up to 70,000 g/mol; {eta}{sub inh} up to 0.93 dl/g) and narrow molecular weight distributions (2.1 - 2.9). All copolymers showed a single glass-transition temperature (T{sub g}) around 230 C. Upon sulfonation with concentrated sulfuric acid, the T{sub g}s (from samples in the protonated form) were shifted to higher temperatures (+ 35 {+-} 5 C). NMR spectra and the determined ion-exchange capacities (IEC; 1.46 - 2.05 mmol/g), which were close to the theoretical values, indicating that only the pendant phenyl rings of the 2,5- diphenylhydroquinone moieties in the polymer backbone were sulfonated. Membranes prepared from N-methyl- 2-pyrrolidone (NMP) solutions were transparent and soft. The water-uptake at room temperature increased from 30% to 80% with increasing IEC. Samples from random copolymers with an IEC {>=} 1.8 mmol/g were soluble in water at 90 C. While the proton conductivity of the low IEC samples (random copolymer) (1.46 mmol/g) was lower than that of Nafion {sup registered}, the conductivities of the high IEC samples were superior to Nafion {sup registered}. In general membranes from blockcopolymers showed lower water-uptake, higher dimensional stability and higher proton conductivities as compared to samples from random copolymers with similar monomer composition and ion-exchange capacities. (orig.)

  13. Preparation and characterization of proton exchange poly (ether sulfone)s membranes grafted propane sulfonic acid on pendant phenyl groups

    International Nuclear Information System (INIS)

    Lim, Youngdon; Seo, Dongwan; Hossain, Md. Awlad; Lee, Soonho; Lim, Jinseong; Jang, Hohyoun; Hong, Taehoon; Kim,; Kim, Whangi

    2014-01-01

    Poly(ether sulfone)s containing hexaphenyl (PHP) was prepared by 1,2-bis(4-hydroxyphenyl)-3,4,5,6-tetraphenylbenzene, 4,4-hydroxyphenylsulfone, and 4,4-fluorophenylsulfone, followed bromination on phenyl groups to produce brominated PHP (Br-PHP). Grafted sulfonated poly(ether sulfone)s containing hexaphenyl (GSPHP) were prepared from Br-PHP and 3-bromopropane sulfonic acid with potassium salt and copper powder. The salt form was converted to free acid using 1 M sulfuric acid solution. All these membranes were cast from dimethylacetamide (DMAc). The structural properties of the synthesized polymers were investigated by 1 H-NMR spectroscopy. The membranes were studied with regard to ion exchange capacity (IEC), water uptake, Fenton test, and proton conductivity. These grafted polymer membranes were compared with normal sulfonated poly(ether sulfone)s and Nafion

  14. Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Jang, H.H.; Lim, Y.D.; Seo, D.W.; Kim, W.G. [Department of Applied Chemistry, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, T.H.; Hong, Y.T. [Energy Material Research Center, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, D.M. [Material Engineering and Science, Hongik Univ, Jochiwon-eup, Yeongi-gun, Chungnam (Korea, Republic of)

    2012-12-15

    Sulfonated cardo poly(arylene ether sulfone)s (SPPA-PES) with various degrees of sulfonation (DS) were prepared by post-sulfonation of synthesized phenolphthalein anilide (PPA; N-phenyl-3,3'-bis(4-hydroxyphenyl)-1-isobenzopyrolidone) poly(arylene ether sulfone)s (PPA-PES) by using concentrated sulfuric acid. PPA-PES copolymers were synthesized by direct polycondensation of PPA with bis-(4-fluorophenyl)-sulfone and 4,4'-sulfonyldiphenol. The DS was varied with different mole ratios of PPA (24, 30, 40, 50 mol.%) in the polymer. The structure of the resulting SPPA-PES copolymers and the different contents of the sulfonated unit were studied by Fourier transform infrared (FT-IR) spectroscopy, {sup 1}H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity of SPPA-PES were evaluated according to the increase of DS. The water uptake (WU) of the resulting SPPA-PES membranes was in the range of 20-72%, compared with 28% for Nafion 211 registered. The SPPA-PES membranes showed proton conductivities of 23-82 mS cm{sup -1}, compared with 194 mS cm{sup -1} for Nafion 211 registered, under 100% relative humidity (RH) at 80 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. New rapid methods for determination of total LAS in sewage sludge by high performance liquid chromatography (HPLC) and capillary electrophoresis (CE)

    International Nuclear Information System (INIS)

    Villar, M.; Callejon, M.; Jimenez, J.C.; Alonso, E.; Guiraum, A.

    2009-01-01

    Linear alkylbenzene sulfonates (LAS) are the most common synthetic anionic surfactant used in domestic and industrial detergents, with a global production of 2.4 x 10 6 t year -1 . After use and disposal, LAS may enter the environment by one of the several routes, including by direct discharge to surface water or discharge to water from sewage treatment plants. Sewage treatment plants break down LAS only partly: some of them remain in effluent and other fraction is adsorbed in sewage solid. New and rapid methods for determination of total LAS from sewage sludge based on microwave assisted extraction and HPLC-FL and CE-DAD determination are proposed. The extraction of total LAS is carried out by using microwaves energy, an extraction time of 10 min and 5 mL of methanol. For HPLC-FL determination, mobile phase acetonitrile-water was used, comprising 60% (v/v) from 0 to 1 min and a flow rate of 1 mL min -1 programmed to 100% acetonitrile between 1 and 2 min and a flow rate of 2 mL min -1 . The final composition was maintained for a further 5 min. The determination of total LAS by CE-DAD was performed in a phosphate buffer (10 mM, pH 9). The separation voltage was 25 kV and the temperature of the capillary was 30 deg. C. Injections were performed in the pressure mode and the injection time was set at 12 s. The determination of total LAS is carried out in less than 5 min. The methods did not require clean-up or preconcentration steps. Detection limit for total LAS in the sludge was 3.03 mg kg -1 using HPLC-FL and 21.0 mg kg -1 using CE-DAD, and recoveries were >85% using both determination methods. Concentrations of total LAS obtained using both methods were compared with the sum of concentrations of homologues LAS C-10, LAS C-11, LAS C-12 and LAS C-13 obtained using microwaves assisted extraction and HPLC-FL and CE-DAD determination

  16. New rapid methods for determination of total LAS in sewage sludge by high performance liquid chromatography (HPLC) and capillary electrophoresis (CE).

    Science.gov (United States)

    Villar, M; Callejón, M; Jiménez, J C; Alonso, E; Guiraúm, A

    2009-02-23

    Linear alkylbenzene sulfonates (LAS) are the most common synthetic anionic surfactant used in domestic and industrial detergents, with a global production of 2.4x10(6) t year(-1). After use and disposal, LAS may enter the environment by one of the several routes, including by direct discharge to surface water or discharge to water from sewage treatment plants. Sewage treatment plants break down LAS only partly: some of them remain in effluent and other fraction is adsorbed in sewage solid. New and rapid methods for determination of total LAS from sewage sludge based on microwave assisted extraction and HPLC-FL and CE-DAD determination are proposed. The extraction of total LAS is carried out by using microwaves energy, an extraction time of 10 min and 5 mL of methanol. For HPLC-FL determination, mobile phase acetonitrile-water was used, comprising 60% (v/v) from 0 to 1 min and a flow rate of 1 mL min(-1) programmed to 100% acetonitrile between 1 and 2 min and a flow rate of 2 mL min(-1). The final composition was maintained for a further 5 min. The determination of total LAS by CE-DAD was performed in a phosphate buffer (10 mM, pH 9). The separation voltage was 25 kV and the temperature of the capillary was 30 degrees C. Injections were performed in the pressure mode and the injection time was set at 12 s. The determination of total LAS is carried out in less than 5 min. The methods did not require clean-up or preconcentration steps. Detection limit for total LAS in the sludge was 3.03 mg kg(-1) using HPLC-FL and 21.0 mg kg(-1) using CE-DAD, and recoveries were >85% using both determination methods. Concentrations of total LAS obtained using both methods were compared with the sum of concentrations of homologues LAS C-10, LAS C-11, LAS C-12 and LAS C-13 obtained using microwaves assisted extraction and HPLC-FL and CE-DAD determination.

  17. Adsorption of hydrophobic organic compounds onto a hydrophobic carbonaceous geosorbent in the presence of surfactants.

    Science.gov (United States)

    Wang, Peng; Keller, Arturo A

    2008-06-01

    The adsorption of hydrophobic organic compounds (HOCs; atrazine and diuron) onto lampblack was studied in the presence of nonionic, cationic, and anionic surfactants (Triton(R) X-100), benzalkonium chloride [BC], and linear alkylbenzene sulfonate [LAS]) to determine the effect of the surfactant on HOC adsorption onto a hydrophobic carbonaceous geosorbent. Linear alkylbenzene sulfonate showed an adsorption capacity higher than that of BC but similar to that of Triton X-100, implying the charge property of a surfactant is not a useful indicator for predicting the surfactant's adsorption onto a hydrophobic medium. The results also indicated that the octanol-water partition coefficient (K(OW)) of a surfactant is not a good predictor of that surfactant's sorption onto a hydrophobic medium. Under subsaturation adsorption conditions (i.e., before sorption saturation is reached), surfactant adsorption reduced HOC adsorption to a significant extent, with the reduction in HOC adsorption increasing monotonically with the amount of surfactant adsorbed. Among the three surfactants, Triton X-100 was the most effective in reducing HOC adsorption, whereas BC and LAS showed similar effectiveness in this regard. Under the same amount of the surfactant sorbed, the reduction in atrazine adsorption was consistently greater than that for diuron because of atrazine's lower hydrophobicity. No significant difference was observed in the amount of the HOC adsorbed under different adsorption sequences. Our results showed that the presence of surfactant can significantly decrease HOC adsorption onto hydrophobic environmental media and, thus, is important in predicting HOC fate and transport in the environment.

  18. Synthesis and properties of sulfonated poly(phenylene sulfone)s without ether linkage by Diels–Alder reaction for PEMFC application

    International Nuclear Information System (INIS)

    Lim, Youngdon; Lee, Hyunchul; Lee, Soonho; Jang, Hohyoun; Hossain, Md. Awlad; Cho, Younggil; Kim, Taeho; Hong, Youngtaik; Kim, Whangi

    2014-01-01

    A new sulfonated poly(phenylene sulfone) polymer (SPPS) was synthesized by Diels-Alder polymerization from 1,4-bis(2,4,5-triphenylcyclopentadienone)benzene (BTPCPB) and 4,4′-diethynylphenylsulfone, and followed by sulfonation reaction with chlorosulfuric acid. A series of sulfonated poly(phenylene sulfone)s (SPPS) with different degrees of sulfonation was prepared in a controllable manner with chlorosulfuric acid. These polymers showed good solubility in aprotic polar solvents, dimethyl acetamide (DMAC) and dimethyl sulfoxide (DMSO). Three different polymer membranes were studied by 1 H NMR spectroscopy, and thermogravimetric analysis (TGA). The ion exchange capacity (IEC) and proton conductivity of SPPS were evaluated according to the degrees of sulfonation. The water uptake (WU) of the synthesized SPPS membranes ranged from 38%∼75%, compared with 32% for Nafion 211 ® at 80 °C. The SPPS membranes exhibited proton conductivities (at 80 °C under 90% RH) of 110.2 mS/cm compared with 102.7 mS/cm for Nafion 211 ® . Power density was performed by single cell and showed similar to Nafion value

  19. Enantioselective degradation and unidirectional chiral inversion of 2-phenylbutyric acid, an intermediate from linear alkylbenzene, by Xanthobacter flavus PA1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yishan; Han, Ping [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Li, Xiao-yan; Shih, Kaimin [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Gu, Ji-Dong, E-mail: jdgu@hkucc.hku.hk [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); The Swire Institute of Marine Science, The University of Hong Kong, Shek O, Cape d' Aguilar, Hong Kong (China)

    2011-09-15

    Highlights: {yields} We isolated a Xanthobacter flavus strain PA1 utilizing the racemic 2-PBA and the single enantiomers as the sole source of carbon and energy. {yields} Both (R) and (S) forms of enantiomers can be degraded in a sequential manner in which the (S) disappeared before the (R) form. {yields} The biochemical degradation pathway involves an initial oxidation of the alkyl side chain before aromatic ring cleavage. - Abstract: Microbial degradation of the chiral 2-phenylbutyric acid (2-PBA), a metabolite of surfactant linear alkylbenzene sulfonates (LAS), was investigated using both racemic and enantiomer-pure compounds together with quantitative stereoselective analyses. A pure culture of bacteria, identified as Xanthobacter flavus strain PA1 isolated from the mangrove sediment of Hong Kong Mai Po Nature Reserve, was able to utilize the racemic 2-PBA as well as the single enantiomers as the sole source of carbon and energy. In the presence of the racemic compounds, X. flavus PA1 degraded both (R) and (S) forms of enantiomers to completion in a sequential manner in which the (S) enantiomer disappeared much faster than the (R) enantiomer. When the single pure enantiomer was supplied as the sole substrate, a unidirectional chiral inversion involving (S) enantiomer to (R) enantiomer was evident. No major difference was observed in the degradation intermediates with either of the individual enantiomers when used as the growth substrate. Two major degradation intermediates were detected and identified as 3-hydroxy-2-phenylbutanoic acid and 4-methyl-3-phenyloxetan-2-one, using a combination of liquid chromatography-mass spectrometry (LC-MS), and {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) spectroscopy. The biochemical degradation pathway follows an initial oxidation of the alkyl side chain before aromatic ring cleavage. This study reveals new evidence for enantiomeric inversion catalyzed by pure culture of environmental bacteria and emphasizes the

  20. Influence of co-substrates in the anaerobic degradation of an anionic surfactant

    Directory of Open Access Journals (Sweden)

    D. Y. Okada

    2013-09-01

    Full Text Available The removal of linear alkylbenzene sulfonate (LAS was evaluated in a UASB reactor using short-chain alcohols (ethanol and methanol and complex co-substrate (yeast extract. Using only methanol and ethanol as co-substrates resulted in removal of LAS between 30 and 41%. At the end, addition of a complex substrate (yeast extract increased the removal of LAS to 50%. During the assay, water supply aeration increased the volatile fatty acid of the effluent (70 mg HAc.L-1 and decreased the removal of LAS (from 40 to 30%. According to the fluorescence in situ hybridization (FISH results, the amount of Archaea decreased due to water supply aeration (from 64 to 48%. Furthermore, addition of complex co-substrate increased the total anaerobic bacteria and methanogenic archaea content (three and four log units, respectively, which were estimated using the most probable number technique.

  1. Mineralization of Surfactants by Microbiota of Aquatic Plants.

    Science.gov (United States)

    Federle, Thomas W; Schwab, Burney S

    1989-08-01

    The biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) by the microbiota associated with duckweed (Lemna minor) and the roots of cattail (Typha latifolia) was investigated. Plants were obtained from a pristine pond and a pond receiving wastewater from a rural laundromat. Cattail roots and duckweed plants were incubated in vessels containing sterile water amended with [C]LAS, [C]LAE, or C-labeled mixed amino acids (MAA). Evolution of CO(2) was determined over time. The microbiota of cattail roots from both ponds mineralized LAS, LAE, and MAA without lag periods, and the rates and extents of mineralization were not significantly affected by the source of the plants. Mineralization of LAS and LAE was more rapid in the rhizosphere than in nearby root-free sediments, which exhibited differences as a function of pond. The microbiota of duckweed readily mineralized LAE and MAA but not LAS. The rate and extent of mineralization were not affected by the source of the duckweed.

  2. Mineralization of surfactants by microbiota of aquatic plants

    International Nuclear Information System (INIS)

    Federle, T.W.; Schwab, B.S.

    1989-01-01

    The biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) by the microbiota associated with duckweed (Lemna minor) and the roots of cattail (Typha latifolia) was investigated. Plants were obtained from a pristine pond and a pond receiving wastewater from a rural laundromat. Cattail roots and duckweed plants were incubated in vessels containing sterile water amended with [ 14 C]LAS, [ 14 C]LAE, or 14 C-labeled mixed amino acids (MAA). Evolution of 14 CO 2 was determined over time. The microbiota of cattail roots from both ponds mineralized LAS, LAE, and MAA without lag periods, and the rates and extents of mineralization were not significantly affected by the source of the plants. Mineralization of LAS and LAE was more rapid in the rhizosphere than in nearby root-free sediments, which exhibited differences as a function of pond. The microbiota of duckweed readily mineralized LAE and MAA but not LAS. The rate and extent of mineralization were not affected by the source of the duckweed

  3. Investigation of polar and stereoelectronic effects on pure excited-state hydrogen atom abstractions from phenols and alkylbenzenes.

    Science.gov (United States)

    Pischel, Uwe; Patra, Digambara; Koner, Apurba L; Nau, Werner M

    2006-01-01

    The fluorescence quenching of singlet-excited 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by 22 phenols and 12 alkylbenzenes has been investigated. Quenching rate constants in acetonitrile are in the range of 10(8)-10(9) M(-1)s(-1) for phenols and 10(5)-10(6) M(-1)s(-1) for alkylbenzenes. In contrast to the quenching of triplet-excited benzophenone, no exciplexes are involved, so that a pure hydrogen atom transfer is proposed as quenching mechanism. This is supported by (1) pronounced deuterium isotope effects (kH/kD ca 4-6), which were observed for phenols and alkylbenzenes, and (2) a strongly endergonic thermodynamics for charge transfer processes (electron transfer, exciplex formation). In the case of phenols, linear free energy relationships applied, which led to a reaction constant of rho = -0.40, suggesting a lower electrophilicity of singlet-excited DBO than that of triplet-excited ketones and alkoxyl radicals. The reactivity of singlet-excited DBO exposes statistical, steric, polar and stereoelectronic effects on the hydrogen atom abstraction process in the absence of complications because of competitive exciplex formation.

  4. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Rayleigh scattering and depolarization ratio in linear alkylbenzene

    International Nuclear Information System (INIS)

    Liu, Qian; Zhou, Xiang; Huang, Wenqian; Zhang, Yuning; Wu, Wenjie; Luo, Wentai; Yu, Miao; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-01-01

    It is planned to use linear alkylbenzene (LAB) as the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors, due to its ultra-transparency. However, the current Rayleigh scattering length calculation for LAB disagrees with the experimental measurement. This paper reports for the first time that the Rayleigh scattering of LAB is anisotropic, with a depolarization ratio of 0.31±0.01(stat.)±0.01(sys.). We use an indirect method for Rayleigh scattering measurement with the Einstein–Smoluchowski–Cabannes formula, and the Rayleigh scattering length of LAB is determined to be 28.2±1.0 m at 430 nm

  6. in Artificially Polluted Soil—Carrots System

    Directory of Open Access Journals (Sweden)

    Caroline Sablayrolles

    2009-01-01

    Full Text Available Surfactants are widely used in household and industrial products. The risk of incorporation of linear alkylbenzene sulfonates (LAS from biosolids, wastewater, and fertilizers land application to the food chain is being assessed at present by the European Union. In the present work, a complete analytical method for LAS trace determination has been developed and successfully applied to LAS (C10–C13 uptake in carrot plants used as model. These carrots were grown in soil with the trace organics compounds added directly into the plant containers in pure substances form. LAS trace determination (μg kg-1 dry matter in carrots samples was achieved by Soxtec apparatus and high-performance liquid chromatography-fluorescence detection. The methodology developed provides LAS determination at low detection limits (5 μg kg-1 dry matter for carrot sample (2 g dry matter with good recoveries rate (>90%. Transfer of LAS has been followed into the various parts of the carrot plant. LAS are generally found in the carrot leaves and percentage transfer remains very low (0.02%.

  7. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongyang; Wang, Shuanjin; Xiao, Min; Meng, Yuezhong [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed. (author)

  8. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongyang [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Wang Shuanjin, E-mail: wangshj@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Xiao Min [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Meng Yuezhong, E-mail: mengyzh@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed.

  9. Extreme ultraviolet (EUV) degradation of poly(olefin sulfone)s: Towards applications as EUV photoresists

    International Nuclear Information System (INIS)

    Lawrie, Kirsten; Blakey, Idriss; Blinco, James; Gronheid, Roel; Jack, Kevin; Pollentier, Ivan; Leeson, Michael J.; Younkin, Todd R.; Whittaker, Andrew K.

    2011-01-01

    Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO 2 ) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO 2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO 2 moieties to a sulfide phase was observed using XPS.

  10. Improved detergent-based recovery of polyhydroxyalkanoates (PHAs).

    Science.gov (United States)

    Yang, Yung-Hun; Brigham, Christopher; Willis, Laura; Rha, ChoKyun; Sinskey, Anthony

    2011-05-01

    Extracting polyhydroxyalkanoate (PHA) polymer from bacterial cells often involves harsh conditions, including use of environmentally harmful solvents. We evaluated different detergents under various conditions to extract PHA from Ralstonia eutropha and Escherichia coli cells. Most detergents tested recovered highly pure PHA polymer from cells in amounts that depended on the percentage of polymer present in the cell. Detergents such as linear alkylbenzene sulfonic acid (LAS-99) produced a high yield of high purity polymer, and less detergent was needed compared to the amount of SDS to produce comparable yields. LAS-99 also has the advantage of being biodegradable and environmentally safe. Chemical extraction of PHA with detergents could potentially minimize or eliminate the need to use harsh organic solvents, thus making industrial PHA production a cleaner technology process. © Springer Science+Business Media B.V. 2011

  11. Sulfonation of PEEK-WC polymer via chloro-sulfonic acid for potential PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Iulianelli, A.; Clarizia, G.; Gugliuzza, A.; Ebrasu, D.; Basile, A. [Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Via P. Bucci, Cubo 17/C, 87030 Rende (CS) (Italy); Bevilacqua, A. [Research Centre Italsistemi S.r.l., Via Avogadro, 88900 Crotone (KR) (Italy); Trotta, F. [Department of Organic Chemistry, University of Torino, C.So M. D' Azeglio 48, 10125 Torino (TO) (Italy)

    2010-11-15

    The preparation and characterization of thin dense sulfonated poly-ether-ether-ketone with cardo group (PEEK-WC) membranes for proton exchange membrane fuel cell (PEMFC) applications are described. The sulfonation of PEEK-WC polymer was realized via chloro-sulfonic acid and different kinds of membrane samples were prepared with a sulfonation degree ranging from 67 to 99%. The degree of sulfonation, homogeneity and thickness significantly affect both the membrane transport properties and the electrochemical performances. The dense character of the membranes was confirmed by SEM analysis. Proton conductivity measurements were carried out in a temperature range from 30 to 80 C and at 100% of relative humidity, reaching 5.40 x 10{sup -3} S/cm{sup -1} as best value at 80 C and with a sulfonation degree (DS) of 99%. At the same conditions, a water uptake of 17% was achieved. DSC and TGA characterizations were used in order to determine the thermal stability of the membranes, confirming a T{sub g} ranging between 206 and 216 C depending on the DS, whereas FT-IR yielded indication about intermolecular interactions and water uptake at various sulfonation degrees. (author)

  12. Propagation/depropagation equilibrium and structural factors in the radiation degradation of poly(olefin sulfone)s

    International Nuclear Information System (INIS)

    Bowmer, T.N.; O'Donnell, J.H.

    1981-01-01

    The principal volatile products observed after γ irradiation of nine different poly(olefin sulfone)s in the solid state were the two comonomers, i.e., the respective olefin and sulfur dioxide. An exponential increase in yield, G (volatile products), with increasing irradiation temperature, T/sub irr/, was observed for each copolymer through the ceiling temperature, T/sub c/, for the corresponding propagation/depropagation equilibrium. Thus the G value increased by ca. 3 orders of magnitude from T/sub irr/ = 0.7 T/sub c/ to T/sub irr/ = 1.3 T/sub c/ for all of the poly(olefin sulfone)s. Depropagation sensitivity was considered to be best measured by G(SO 2 ) since radiation induced, cationic homopolymerization of the product olefin occurred to a variable extent. Five of the poly(olefin sulfone)s had similar rates of depropagation at their respective T/sub c's/ but the polysulfones of 1-hexene, cyclohexene and 2-butene showed anomalously high depropagation rates. This may be related to greater steric hinderance to segmental chain mobility in the polysulfones of the 1,2 disubstituted olefins. Poly(1-hexene sulfone) appears to be anomalous, as in other respects

  13. Analytical methodology for sulfonated lignins

    NARCIS (Netherlands)

    Brudin, S.; Schoenmakers, P.

    2010-01-01

    There is a significant need to characterize and classify lignins and sulfonated lignins. Lignins have so far received a good deal of attention, whereas this is not true for sulfonated lignins. There is a clear demand for a better understanding of sulfonated lignins on a chemical as well as physical

  14. Influence of LAS on marine calanoid copepod population dynamics and potential reproduction

    DEFF Research Database (Denmark)

    Christoffersen, Kirsten; Hansen, Benni Winding; Johansson, Liselotte Sander

    2003-01-01

    The toxicity of linear alkyl benzene sulfonate (LAS) to marine invertebrates is well documented under laboratory conditions using single-species tests. It is less known how LAS affects natural populations of aquatic organisms. We hypothesised that LAS was more toxic to the calanoid copepod Acartia...

  15. Experience with chemicals regulation - Lessons from the Danish LAS case

    DEFF Research Database (Denmark)

    Lauridsen, Pia Vestergaard; Røpke, Inge

    2006-01-01

    the understanding of how chemicals regulation is being shaped through social and political processes, and which lessons can be drawn regarding the effectiveness of different regulatory measures. We outline briefly the history of the chemicals regulation as a background for the detailed discussion of the case study......Chemicals regulation is under pressure for change, and lessons from former experience are important to inform the process. This paper is based on a case study of the Danish measures towards regulating a specific substance, Linear Alkylbenzene Sulphonate (LAS), and the case is used to deepen...

  16. Toxicity of xenobiotics during sulfate, iron, and nitrate reduction in primary sewage sludge suspensions

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2010-01-01

    The effect and persistence of six organic xenobiotics was tested under sulfate-, iron-, and nitrate-reducing conditions in primary sewage sludge suspensions. The xenobiotics tested were acenaphthene, phenanthrene, di(2-ethylhexyl)phthalate (DEHP), 4-nonylphenol (4-NP), linear alkylbenzene sulfonate...

  17. Ellipsometric measurements of the refractive indices of linear alkylbenzene and EJ-301 scintillators from 210 to 1000 nm

    International Nuclear Information System (INIS)

    Wan Chan Tseung, H; Tolich, N

    2011-01-01

    We report on ellipsometric measurements of the refractive indices of linear alkylbenzene-2,5-diphenyloxazole (LAB-PPO), Nd-doped LAB-PPO and EJ-301 scintillators to the nearest ± 0.005, in the wavelength range 210-1000 nm.

  18. Sulfonation of vulcanized ethylene-propylene-diene terpolymer membranes

    International Nuclear Information System (INIS)

    Barroso-Bujans, F.; Verdejo, R.; Lozano, A.; Fierro, J.L.G.; Lopez-Manchado, M.A.

    2008-01-01

    In the present work, sulfonation of previously vulcanized ethylene propylene diene terpolymer (EPDM) membranes was developed in a swelling solvent with acetyl sulfate. This procedure avoids the need to pre-dissolve the raw polymer. The reaction conditions were optimized in terms of solvent type, reaction time, acetyl sulfate concentration and film thickness to obtain the maximum degree of sulfonation of the polymer. The sulfonation procedure presented in this study yields a degree of sulfonation comparable to the chlorosulfonic acid procedure. Sulfonic acid groups were detected by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, and quantified by titrations. Proton conductivity and water uptake were measured by means of impedance spectroscopy and swelling measurements, respectively, and were correlated with the degree of sulfonation. Tensile strength and Young's modulus of sulfonated EPDM increased with the degree of sulfonation, while elongation at break remained constant. Thermal stability of the sulfonated EPDM was studied by simultaneous thermogravimetry-mass spectroscopy

  19. Asymmetric energy flow in liquid alkylbenzenes: A computational study

    International Nuclear Information System (INIS)

    Leitner, David M.; Pandey, Hari Datt

    2015-01-01

    Ultrafast IR-Raman experiments on substituted benzenes [B. C. Pein et al., J. Phys. Chem. B 117, 10898–10904 (2013)] reveal that energy can flow more efficiently in one direction along a molecule than in others. We carry out a computational study of energy flow in the three alkyl benzenes, toluene, isopropylbenzene, and t-butylbenzene, studied in these experiments, and find an asymmetry in the flow of vibrational energy between the two chemical groups of the molecule due to quantum mechanical vibrational relaxation bottlenecks, which give rise to a preferred direction of energy flow. We compare energy flow computed for all modes of the three alkylbenzenes over the relaxation time into the liquid with energy flow through the subset of modes monitored in the time-resolved Raman experiments and find qualitatively similar results when using the subset compared to all the modes

  20. Synthesis and Properties of Poly(ether sulfone)s with Clustered Sulfonic Groups for PEMFC Applications under Various Relative Humidity.

    Science.gov (United States)

    Lee, Shih-Wei; Chen, Jyh-Chien; Wu, Jin-An; Chen, Kuei-Hsien

    2017-03-22

    Novel sulfonated poly(ether sulfone) copolymers (S4PH-x-PSs) based on a new aromatic diol containing four phenyl substituents at the 2, 2', 6, and 6' positions of 4,4'-diphenyl ether were synthesized. Sulfonation was found to occur exclusively on the 4 position of phenyl substituents by NMR spectroscopy. The ion exchange capacity (IEC) values can be controlled by adjusting the mole percent (x in S4PH-x-PS) of the new diol. The fully hydrated sulfonated poly(ether sulfone) copolymers had good proton conductivity in the range 0.004-0.110 S/cm at room temperature. The surface morphology of S4PH-x-PSs and Nafion 212 was investigated by atomic force microscopy (tapping-mode) and related to the percolation limit and proton conductivity. Single H 2 /O 2 fuel cell based on S4PH-40-PS loaded with 0.25 mg/cm 2 catalyst (Pt/C) exhibited a peak power density of 462.6 mW/cm 2 , which was close to that of Nafion 212 (533.5 mW/cm 2 ) at 80 °C with 80% RH. Furthermore, fuel cell performance of S4PH-35-PS with various relative humidity was investigated. It was confirmed from polarization curves that the fuel cell performance of S4PH-35-PS was not as high as that of Nafion 212 under fully hydrated state due to higher interfacial resistance between S4PH-35-PS and electrodes. While under low relative humidity (53% RH) at 80 °C, fuel cells based on S4PH-35-PS showed higher peak power density (234.9 mW/cm 2 ) than that (214.0 mW/cm 2 ) of Nafion 212.

  1. Evaluation of two pilot scale membrane bioreactors for the elimination of selected surfactants from municipal wastewaters

    Science.gov (United States)

    González, Susana; Petrovic, Mira; Barceló, Damiá

    2008-07-01

    SummaryThe removal of selected surfactants, linear alkylbenzene sulfonates (LAS), coconut diethanol amides (CDEA) and alkylphenol ethoxylates and their degradation products were investigated using a two membrane bioreactor (MBR) with hollow fiber and plate and frame membranes. The two pilot plants MBR run in parallel to a full-scale conventional activated sludge (CAS) treatment. A total of eight influent samples with the corresponding effluent samples were analysed by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS-MS). The results indicate that both MBR have a better effluent quality in terms of chemical and biological oxygen demand (COD and BOD), NH4+ , concentration and total suspended solids (TSS). MBR showed a better similar performance in the overall elimination of the total nonylphenolic compounds, achieving a 75% of elimination or a 65% (the same elimination reached by CAS). LAS and CDEA showed similar elimination in the three systems investigated and no significant differences were observed.

  2. Role of post-sulfonation of poly(ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Unveren, Elif Erdal; Erdogan, Tuba; Inan, Tulay Y. [Chemistry Institute, TUBITAK Marmara Research Center, 41470, Gebze, Kocaeli (Turkey); Celebi, Serdar S. [Professor Emeritus, Chemical Engineering Department, Hacettepe University, 06800, Beytepe, Ankara (Turkey)

    2010-04-15

    Commercially available poly(ether ether sulfone), PEES, was directly sulfonated using concentrated sulfuric acid at low temperatures by minimizing degradation during sulfonation. The sulfonation reaction was performed in the temperature range of 5-25 C. Sulfonated polymers were characterized by FTIR, {sup 1}H NMR spectroscopy and ion exchange capacity (IEC) measurements. Degradation during sulfonation was investigated by measuring intrinsic viscosity, glass transition temperature and thermal decomposition temperature of sulfonated polymers. Sulfonated PEES, SPEES, membranes were prepared by solvent casting method and characterized in terms of IEC, proton conductivity and water uptake. The effect of sulfonation conditions on chemical stability of membranes was also investigated via Fenton test. Optimum sulfonation condition was determined to be 10 C with conc. H{sub 2}SO{sub 4} based on the characteristics of sulfonated polymers and also the chemical stability of their membranes. SPEES membranes exhibited proton conductivity up to 185.8 mS cm{sup -1} which is higher than that of Nafion 117 (133.3 mS cm{sup -1}) measured at 80 C and relative humidity 100%. (author)

  3. The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly(ether ketone)s and poly(ether sulfone)s for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Nikouei, Mohammad Ali; Oroujzadeh, Maryam; Mehdipour-Ataei, Shahram

    2017-01-01

    Proton exchange membrane as the heart of fuel cell has been the topic of many research activities in recent years. Finding a suitable alternative for Nafion membranes is one of the most important issues of interest. This study is dedicated to sulfonated poly(ether ketone) and poly(ether sulfone) membranes. For synthesis of these two groups of polymers, two different isomeric biphenols (meta- and para-) were used and each group of membranes with three different degree of sulfonation (25, 35, and 45%) was synthesized. In this way, twelve different membrane samples were obtained and their properties were evaluated. Since each membrane had some strong and some weak points of properties in comparison to the other ones, using a rational analysis for choosing the best membrane between prepared samples was inevitable. For this purpose a PROMETHEE based multiple criteria decision making approach was applied and for evaluation of the weight of each criterion, Shannon entropy method was used. Final results showed that poly(ether ketone) membranes in selected criteria were better than poly(ether sulfone) membranes and as expected, membranes with the highest degree of sulfonation (45%) were placed at the top ranking levels. - Highlights: • Sulfonated poly(ether ketone)s and Poly(ether sulfone)s were synthesized. • Related membranes for PEMFC were prepared. • The properties of membranes were measured. • Multiple criteria decision making approach was used to ranking the membranes. • PROMETHEE based approach selected poly(ether ketone)s as better choices.

  4. Sulfonated 1,3-bis(4-pyridylpropane

    Directory of Open Access Journals (Sweden)

    Ore Kuyinu

    2011-06-01

    Full Text Available In the title compound, 4-[3-(3-sulfonatopyridin-1-ium-4-ylpropyl]pyridin-1-ium-3-sulfonate, C13H14N2O6S2, the molecule is zwitterionic, with the sulfonic acid proton transfered to the basic pyridine N atom. Also, the structure adopts a butterfly-like conformation with the sulfonate groups on opposite sides of the `wings'. The dihedral angle between the two pyridinium rings is 83.56 (7°, and this results in the molecule having a chiral conformation and packing. There is strong intermolecular hydrogen bonding between the pyridinium H and sulfonate O atoms of adjoining molecules. In addition, there are weaker intermolecular C—H...O interactions.

  5. Effects of gamma radiation from 60Co on dilute aqueous solutions of Linear Alkyl Sulfonate Surfactants and other organic pollutants

    International Nuclear Information System (INIS)

    Rohrer, D.M.

    1975-01-01

    This study is the result of research findings and operational experiences gained by the author in over four years of work associated with the use of 60 Co for the treatment of waste-water. The effects of 60 Co are discussed with regard to radiochemical destruction of specific organic pollutant species. The study deals specifically with the effects of gamma radiation from a 30,000 Ci 60 Co source upon aqueous solutions of Linear Alkyl Sulfonate Surfactants. The new Linear Alkyl Sulfonate (LAS) Surfactants, the major surfactant produced in the United States of America since June 1965, was developed to replace the old Alkyl Benzene Sulfonate (ABS) Surfactants. The reason for the removal of Alkyl Benzene Sulfonate Surfactants was their extreme environmental stability and the associated appearance of foam in waste-water treatment plants and receiving streams. Although the Linear Alkyl Sulfonate Surfactants are considered 'bio-degradable', the time required for 'bio-degradation' is impractical within the present environmental guidelines. This led to research into alternate techniques of treatment for the destruction of Linear Alkyl Sulfonate Surfactants. Consideration is also given to similar effects of gamma radiation upon pesticides and to the practical aspects of the use of gamma radiation for the treatment of waste-water. Included are discussions of the general experimental procedures used, the sources and their calibration, and sampling techniques to ensure the accuracy of the data. (author)

  6. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  7. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads

    Directory of Open Access Journals (Sweden)

    Igor Rocha

    2018-03-01

    Full Text Available Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels, coagulation activation (thrombin-antithrombin (TAT levels and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  8. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.

    Science.gov (United States)

    Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia

    2018-03-07

    Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  9. A study of the effect of polystyrene sulfonation on the performance of terephthaloyl chloride-dihydroxydiphenyl sulfone copolymer/polystyrene system

    Science.gov (United States)

    Kahraman, R.; Kahn, K. A.; Ali, S. A.; Hamid, S. H.; Sahin, A. Z.

    1998-12-01

    Thermal, morphological, and mechanical properties of composites of a liquid crystalline copolymer (LCP) poly(terephthaloyl chloride)-co-(p,p’-dihydroxydiphenyl sulfone) with polystyrene (PS) and sulfonated polystyrene (SPS) are presented and discussed. Sulfonation of polystyrene was expected to improve the interfacial adhesion by introducing hydrogen bonding in the LCP/PS system. The degree of sulfonation was 11 %. The incompatibility (lack of proper interfacial adhesion) of the LCP/PS system resulted in sharp decrease in the composite tensile strength with LCP addition. The performance of the system did not change when processed at a higher temperature (270 °C instead of 225 °C). While a composite plate of 25% LCP/PS could not be fabricated, it was possible for LCP/SPS (processed at 215 °C), indicating some improvement in interfacial bonding by sulfonation. Sulfonation of PS resulted in fracture with some degree of plastic deformation for pure SPS matrix and also the LCP/SPS system with the lowest LCP content (1 wt%), whereas plastic deformation was not observed for PS used as received. The strength of the LCP/SPS system also decreased with increase in LCP content, indicating that 11% sulfonation is not sufficient to introduce significant compatibility, but it was not as dramatic as that for LCP/PS. The performance of the LCP/SPS system was not affected significantly by heat treatment at the process temperature.

  10. Sulfonated polyphenyl ether by electropolymerization

    International Nuclear Information System (INIS)

    Hou Hongying; Vacandio, Florence; Di Vona, Maria Luisa; Knauth, Philippe

    2012-01-01

    Highlights: ► Sulfonated polyphenyl ether was for the first time electropolymerized. ► This technique allows the economical preparation of ionomeric membranes for electrochemical energy technologies. ► The mechanism of electropolymerization was discussed in detail. - Abstract: Electropolymerization of sulfonated phenol was for the first time achieved and studied by cyclic voltammetry (CV) and chronoamperometry on stainless steel substrates. The obtained sulfonated polyphenyl ether was characterized in terms of impedance spectroscopy, nuclear magnetic resonance (NMR), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and Fourier-Transform Infrared (FTIR) spectroscopy. Dense films of micrometer thickness can be obtained; the proton conductivity is about 3 mS/cm at room temperature.

  11. Alkyl Substitution Effect on Oxidation Stability of Sulfone-Based Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chi-Cheung [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; He, Meinan [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Redfern, Paul [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Curtiss, Larry A. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Liao, Chen [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Lu [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Burrell, Anthony K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Zhengcheng [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA

    2016-02-16

    Organic sulfone compounds have been widely used as high-voltage electrolytes for lithium-ion batteries for decades. However, owing to the complexity of the synthesis of new sulfones, only a few commercially available sulfones have been studied. In this paper, we report the synthesis of new sulfone compounds with various substituent groups and the impact of the substituent group on the oxidation stability of sulfones. Electrochemical floating tests using a 5 V LiNi0.5Mn1.5O4 spinel cathode and density functional theory calculations showed that the cyclopentyl-substituted sulfone McPS suffered from oxidation instability, starting from 4.9 V versus Li+/Li, as observed by the large leakage currents. On the other hand, the isopropyl-substituted sulfone MiPS and tetramethylene substituted sulfone TMS showed much improved oxidation stability under identical testing conditions. The substitution structure of the sulfone plays a significant role in the determination of its oxidative stability and should first be considered for the development of new sulfone-based electrolytes for high-voltage, high-energy lithium-ion batteries.

  12. Controlled sulfonation of poly(ether sulfone using phthalic anhydride as catalyst and its membrane performance for fuel cell application

    Directory of Open Access Journals (Sweden)

    Seikh Jiyaur Rahaman

    2016-09-01

    Full Text Available Proton exchange membrane (PEM fuel cells are one of the most emerging alternative energy technologies under development. A novel proton exchange membrane sulfonated polyethersulfone (SPES was developed by homogeneous method using phthalic anhydride as catalyst and chlorosulfonic acid as sulfonating agent to control the sulfonation reaction. The method of sulfonation was optimized by varying the reaction time and concentration of the catalyst. The structure of the SPES was studied by 1H-Nuclear Magnetic Resonance, Fourier Transform Infra Red Spectroscopy and X-ray diffraction. The extent of sulfonation was determined by ion exchange capacity studies. The thermal and mechanical stabilities were studied using thermogravimetric analysis (TGA and Dynamic Mechanical Analysis (DMA respectively. DMA results show that the storage modulus increased with increase in degree of sulfonation (DS and water uptake of SPES increased with DS. The proton conductivity of SPES (34% DS measured by impedance spectroscopy was found to be 0.03S/cm at 80%RH and 100°C. Also, current-voltage polarization characteristics of SPES membranes offer a favourable alternative PEM due to the thermal stability and cost effective than perfluorinated ionomers.

  13. Treating shale oil to obtain sulfonates

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, H

    1921-01-21

    The process shows as its principal characteristics: (1) treating the oil with chlorsulfonic acid at a temperature of about 100/sup 0/C; (2) the transformation of the sulfonic acid obtained into salts; (3) as new industrial products, the sulfonates obtained and their industrial application as disinfectants for hides and wood.

  14. Capillary gas chromatography of alkylbenzenes II. Correlations between the structures and methylene group increments and differences in retention indices of isomers

    NARCIS (Netherlands)

    Sojak, L.; Janak, J.; Rijks, J.A.

    1977-01-01

    The contribution to gas chromatographic retention behaviour of methylene group increments and differences in the retention indices (dI) of isomers of alkylbenzenes up to C16 on squalane and acetyltri-n-butyl citrate was studied. The methylene group increments appear to vary over a wide range (60–100

  15. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  16. Bisphenol A sulfonation is impaired in metabolic and liver disease

    International Nuclear Information System (INIS)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L.; King, Roberta

    2016-01-01

    Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results: In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.

  17. Bisphenol A sulfonation is impaired in metabolic and liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L., E-mail: angela_slitt@uri.edu; King, Roberta, E-mail: rking@uri.edu

    2016-02-01

    Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results: In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.

  18. Synthesis in pilot plant scale and physical properties of sulfonated polystyrene

    Directory of Open Access Journals (Sweden)

    Martins Cristiane R.

    2003-01-01

    Full Text Available The homogenous sulfonation of polystyrene was developed in a pilot plant scale producing polymers with different sulfonation degrees (18 to 22 mole % of sulfonated styrene units. The reaction yield depends chiefly on the concentration ratio of acetyl sulfate and polystyrene. The morphological and thermal properties of the sulfonated polystyrene obtained by homogeneous sulfonation were studied by means of scanning electron microscopy, differential scanning calorimetry and thermogravimetry. The glass transition temperature of sulfonated polystyrene increases in relation to pure polystyrene and DCp was evaluated in order to confirm the strong interactions among the ~SO3H groups.

  19. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Science.gov (United States)

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.395 Trifluoromethane sulfonic acid. Trifluoromethane sulfonic acid... acid) may safely be used in the production of cocoa butter substitute from palm oil (1-palmitoyl-2...

  20. Thermal and Dielectric Behavior Studies of Poly(Arylene Ether Sulfones with Sulfonated and Phosphonated Pendants

    Directory of Open Access Journals (Sweden)

    Shimoga D. Ganesh

    2016-01-01

    Full Text Available The present paper discusses the aspects of the synthesizing valeric acid based poly(ether sulfones with active carboxylic acid pendants (VALPSU from solution polymerization technique via nucleophilic displacement polycondensation reaction among 4,4′-dichlorodiphenyl sulfone (DCDPS and 4,4′-bis(4-hydroxyphenyl valeric acid (BHPA. The conditions necessary to synthesize and purify the polymer were investigated in some detail. The synthesized poly(ether sulfones comprise sulfone and ether linkages in addition to reactive carboxylic acid functionality; these active carboxylic acid functional groups were exploited to hold the phenyl sulphonic acid and phenyl phosphonic acid pendants. The phenyl sulphonic acid pendants in VALPSU were easily constructed by altering active carboxylic acid moieties by sulfanilic acid using N,N′-dicyclohexylcarbodiimide (DCC mediated mild synthetic route, whereas the latter one was built in two steps. Initially, polyphosphoric acid condensation with VALPSU by 4-bromoaniline and next straightforward palladium catalyzed synthetic route, in both of which acidic pendants are clenched by polymer backbone via amide linkage. Without impairing the primary polymeric backbone modified polymers were prepared by varying the stoichiometric ratios of respective combinations. All the polymers were physicochemically characterized and pressed into tablets; electrical contacts were established to study the dielectric properties. Finally, the influence of the acidic pendants on the dielectric properties was examined.

  1. Multiblock copolymers with highly sulfonated blocks containing di- and tetrasulfonated arylene sulfone segments for proton exchange membrane fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Takamuku, Shogo; Jannasch, Patric [Polymer and Materials Chemistry, Department of Chemistry, Lund University (Sweden)

    2012-01-15

    Multiblock copoly(arylene ether sulfone)s with different block lengths and ionic contents are tailored for durable and proton-conducting electrolyte membranes. Two series of fully aromatic copolymers are prepared by coupling reactions between non-sulfonated hydrophobic precursor blocks and highly sulfonated hydrophilic precursor blocks containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The sulfonic acid groups are exclusively introduced in ortho positions to the sulfone bridges to impede desulfonation reactions and give the blocks ion exchange capacities (IECs) of 4.1 and 4.6 meq. g{sup -1}, respectively. Solvent cast block copolymer membranes show well-connected hydrophilic nanophase domains for proton transport and high decomposition temperatures above 310 C under air. Despite higher IEC values, membranes containing tetrasulfonated tetraaryldisulfone segments display a markedly lower water uptake than the corresponding ones with disulfonated diarylsulfone segments when immersed in water at 100 C, presumably because of the much higher chain stiffness and glass transition temperature of the former segments. The former membranes have proton conductivities in level of a perfluorosulfonic acid membrane (NRE212) under fully humidified conditions. A membrane with an IEC of 1.83 meq. g{sup -1} reaches above 6 mS cm{sup -1} under 30% relative humidity at 80 C, to be compared with 10 mS cm{sup -1} for NRE212 under the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    Energy Technology Data Exchange (ETDEWEB)

    Montero, Juan F.D. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C. [Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900 (Brazil); Benfatti, Cesar A.M.; Magini, Ricardo S. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Pimenta, Andréa L. [Integrated Laboratories Technologies (InteLAB), Dept. Chemical Engineering (EQA), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-970 (Brazil); Department of Biologie, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin, 95302 Cergy Pontoise (France); Souza, Júlio C.M., E-mail: julio.c.m.souza@ufsc.br [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Center for Microelectromechanical Systems (CMEMS), Dept. Mechanical Engineering (DEM), Campus Azurém, 4800-058 Guimarães (Portugal)

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL{sup −1}) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL{sup −1} was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  3. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    International Nuclear Information System (INIS)

    Montero, Juan F.D.; Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C.; Benfatti, Cesar A.M.; Magini, Ricardo S.; Pimenta, Andréa L.; Souza, Júlio C.M.

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL −1 ) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL −1 was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  4. Fully Aromatic Block Copolymers for Fuel Cell Membranes with Densely Sulfonated Nanophase Domains

    DEFF Research Database (Denmark)

    Takamuku, Shogo; Jannasch, Patrick; Lund, Peter Brilner

    Two multiblock copoly(arylene ether sulfone)s with similar block lengths and ion exchange capacities (IECs) were prepared by a coupling reaction between a non-sulfonated precursor block and a highly sulfonated precursor block containing either fully disulfonated diarylsulfone or fully...... tetrasulfonated tetraaryldisulfone segments. The latter two precursor blocks were sulfonated via lithiation-sulfination reactions whereby the sulfonic acid groups were exclu- sively placed in ortho positions to the many sulfone bridges, giving these locks IECs of 4.1 and 4.6 meqg1, respectively. Copolymer...

  5. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    Science.gov (United States)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  6. Enhanced antifouling and antibacterial properties of poly (ether sulfone) membrane modified through blending with sulfonated poly (aryl ether sulfone) and copper nanoparticles

    Science.gov (United States)

    Zhang, Jingjing; Xu, Ya'nan; Chen, Shouwen; Li, Jiansheng; Han, Weiqing; Sun, Xiuyun; Wu, Dihua; Hu, Zhaoxia; Wang, Lianjun

    2018-03-01

    A series of novel blend ultrafiltration (UF) membranes have been successfully prepared from commercial poly (ether sulfone), lab-synthesized sulfonated poly (aryl ether sulfone) (SPAES, 1 wt%) and copper nanoparticles (0 ∼ 0.4 wt%) via immersion precipitation phase conversion. The micro-structure and separation performance of the membranes were characterized by field emission scanning electron microscopy (SEM) and cross-flow filtration experiments, respectively. Sodium alginate, bovine serum albumin and humic acid were chosen as model organic foulants to investigate the antifouling properties, while E. coil was used to evaluate the antibacterial property of the fabricated membranes. By the incorporation with SPAES and copper nanoparticles, the hydrophilicity, antifouling and antibacterial properties of the modified UF membranes have been profoundly improved. At a copper nanoparticles content of 0.4 wt%, the PES/SPAES/nCu(0.4) membrane exhibited a high pure water flux of 193.0 kg/m2 h, reaching the smallest contact angle of 52°, highest flux recovery ratio of 79% and largest antibacterial rate of 78.9%. Furthermore, the stability of copper nanoparticles inside the membrane matrix was also considerably enhanced, the copper nanoparticles were less than 0.08 mg/L in the effluent during the whole operation.

  7. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  8. Radiation-chemical synthesis of polypropylene fabrics with sulfonic acid functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Kug; Park, Jung Soo; Han, Do Hung, E-mail: dhhan@yumail.ac.kr; Bondar, Iuliia, E-mail: juliavad@yahoo.co

    2011-04-01

    A sorption-active material carrying sulfonic acid groups was synthesized by the radiation-induced graft polymerization of styrene monomer onto the surface of non-woven polypropylene fabric, followed by sulfonation of the grafted polystyrene chains. The effect of the main experimental parameters (absorbed dose, monomer concentration, reaction time) on the styrene degree of grafting was investigated. The sulfonation process with 5% chlorosulfonic acid at room temperature was investigated in detail and the optimal sulfonation conditions for the samples with a medium degree of grafting (70-140%) were determined. Densities of 3.5-5 meq/g were obtained by applying those sorption-active PP fabrics with a sulfonic acid group.

  9. Toltrazuril sulfone sodium salt: synthesis, analytical detection, and pharmacokinetics in the horse.

    Science.gov (United States)

    Dirikolu, L; Karpiesiuk, W; Lehner, A F; Tobin, T

    2012-06-01

    Toltrazuril sulfone (ponazuril) is a triazine-based antiprotozoal agent with clinical application in the treatment of equine protozoal myeloencephalomyelitis (EPM). In this study, we synthesized and determined the bioavailability of a sodium salt formulation of toltrazuril sulfone that can be used for the treatment and prophylaxis of EPM in horses. Toltrazuril sulfone sodium salt was rapidly absorbed, with a mean peak plasma concentration of 2400 ± 169 (SEM) ng/mL occurring at 8 h after oral-mucosal dosing and was about 56% bioavailable compared with the i.v. administration of toltrazuril sulfone in dimethylsulfoxide (DMSO). The relative bioavailability of toltrazuril sulfone suspended in water compared with toltrazuril sulfone sodium salt was 46%, indicating approximately 54% less oral bioavailability of this compound suspended in water. In this study, we also investigated whether this salt formulation of toltrazuril sulfone can be used as a feed additive formulation without significant reduction in oral bioavailability. Our results indicated that toltrazuril sulfone sodium salt is relatively well absorbed when administered with feed with a mean oral bioavailability of 52%. Based on these data, repeated oral administration of toltrazuril sulfone sodium salt with or without feed will yield effective plasma and cerebrospinal fluid (CSF) concentrations of toltrazuril sulfone for the treatment and prophylaxis of EPM and other protozoal diseases of horses and other species. As such, toltrazuril sulfone sodium salt has the potential to be used as feed additive formulations for both the treatment and prophylaxis of EPM and various other apicomplexan diseases. © 2011 Blackwell Publishing Ltd.

  10. Preparation and study of novel poly(sulfone-ester-amide)s

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, M. [Institute of Macromolecular Chemistry, Isai (Romania)], Mercer, F. [Raychem Corporation, Menlo Park, CA (United States); Gronewald, S. [Southwest Texas State Univ., San Marcos, TX (United States)] [and others

    1995-12-31

    A series of novel poly(ester-amide)s containing sulfone groups in the main chain have been prepared and compared with related polymers which do not have sulfone bridges. Incorporation of sulfone moieties into the polymer backbone improved the solubility of these polymers without significant loss of their high thermal stability, and provided a large {open_quotes}window{close_quotes} between T{sub g} and decomposition temperature. Solutions of poly(sulfone-ester-amide)s in NMP have been cast into flexible films, having low dielectric constant. The synthesis and characterization of these new polymers will be presented.

  11. Fate of linear alkylbenzenes and benzothiazoles of anthropogenic origin and their potential as environmental molecular markers in the Pearl River Delta, South China

    International Nuclear Information System (INIS)

    Ni Honggang; Shen Rulang; Zeng Hui; Zeng, Eddy Y.

    2009-01-01

    The mass emissions of linear alkylbenzenes (LABs), benzothiazole (BT), and 2-[4-morpholinyl]benzothiazole (24MoBT) from anthropogenic activities within one year were estimated according to the population and the number of automobiles in the Pearl River Delta (PRD), South China. Based on the estimation, the distribution of these compounds among various environmental media was simulated with a mass balance box model established in the present study. The results showed that 79% of LABs generated in the PRD was stored in sediment while only 1.3% of LABs was presumably transported to the adjacent South China Sea (SCS). On the contrary, 47% of BT and 77% of 24MoBT generated in the region were carried with riverine runoff to the coastal ocean. The results from the present study suggest that hydrophobic compounds tend to stay in the watershed of the PRD, whereas hydrophilic ones mainly outflow to the coastal ocean. - A simple mass balance box model examines the fate of linear alkylbenzenes and benzothiazoles in the Pearl River Delta, South China.

  12. Proton exchange membranes from sulfonated polyetheretherketone and sulfonated polyethersulfone-cardo blends: Conductivity, water sorption and permeation properties

    International Nuclear Information System (INIS)

    Li, Yongli; Nguyen, Quang Trong; Schaetzel, Pierre; Lixon-Buquet, Camille; Colasse, Laurent; Ratieuville, Vincent

    2013-01-01

    Five blend membranes were prepared by solvent evaporation from solutions of the synthesized sulfonated polyetheretherketone (SPEEK) and sulfonated polyethersulfone-cardo (SPESc). Their ion exchange capacity and degree of sulfonation determined by acid–base titration and by thermogravimetric analysis were consistent. The blends glass transition behavior obtained by differential scanning calorimetry suggests that the two sulfonated polymers are compatible in the whole composition range. The values of the activation energy for proton transport determined by conductivity measurements on the SPEEK-based blend membranes were in the range of 13–34 kJ mol −1 , which suggest a mixed transport mechanism that involves both proton jumps on ionic sites and water of hydration and diffusion of proton–water complex in hydrophilic domains. The water vapor sorption in the membranes exhibits sigmoid-shape isotherms which were well fitted by the “new dual mode sorption” model, and the fitted parameters values were successfully used to model the change in the water permeation flux with the upstream water activity using the first Fick's diffusion equation. The fast increase in the permeation flux beyond a critical value of activity (0.5) was owing to the exponential concentration-dependent diffusion coefficient. These modelings allowed us to show a strong increase in the limit diffusion coefficient of water and a decrease in the water-diffusion plasticization coefficient with the SPEEK content in the polymer blends

  13. Toward High-Performance Lithium-Sulfur Batteries: Upcycling of LDPE Plastic into Sulfonated Carbon Scaffold via Microwave-Promoted Sulfonation.

    Science.gov (United States)

    Kim, Patrick J; Fontecha, Harif D; Kim, Kyungho; Pol, Vilas G

    2018-05-02

    Lithium-sulfur batteries were intensively explored during the last few decades as next-generation batteries owing to their high energy density (2600 Wh kg -1 ) and effective cost benefit. However, systemic challenges, mainly associated with polysulfide shuttling effect and low Coulombic efficiency, plague the practical utilization of sulfur cathode electrodes in the battery market. To address the aforementioned issues, many approaches have been investigated by tailoring the surface characteristics and porosities of carbon scaffold. In this study, we first present an effective strategy of preparing porous sulfonated carbon (PSC) from low-density polyethylene (LDPE) plastic via microwave-promoted sulfonation. Microwave process not only boosts the sulfonation reaction of LDPE but also induces huge amounts of pores within the sulfonated LDPE plastic. When a PSC layer was utilized as an interlayer in lithium-sulfur batteries, the sulfur cathode delivered an improved capacity of 776 mAh g -1 at 0.5C and an excellent cycle retention of 79% over 200 cycles. These are mainly attributed to two materialistic benefits of PSC: (a) porous structure with high surface area and (b) negatively charged conductive scaffold. These two characteristics not only facilitate the improved electrochemical kinetics but also effectively block the diffusion of polysulfides via Coulomb interaction.

  14. Direct catalytic olefination of alcohols with sulfones.

    Science.gov (United States)

    Srimani, Dipankar; Leitus, Gregory; Ben-David, Yehoshoa; Milstein, David

    2014-10-06

    The synthesis of terminal, as well as internal, olefins was achieved by the one-step olefination of alcohols with sulfones catalyzed by a ruthenium pincer complex. Furthermore, performing the reaction with dimethyl sulfone under mild hydrogen pressure provides a direct route for the replacement of alcohol hydroxy groups by methyl groups in one step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated. Ethylene polymer, chlorosulfonated as identified in this section may be safely used as an article or...

  16. Polyether sulfone membrane modeling and construction for the ...

    African Journals Online (AJOL)

    Polyether sulfone membrane modeling and construction for the removal of nitrate from water using ion interference sulfate and iron nano-particle. ... The aim of this study was constructed the polyether sulfone membrane and modelling it, and for checking impact pressure, the amount of iron nanoparticles and sulfate iron ...

  17. Preparation of new proton exchange membranes using sulfonated poly(ether sulfone) modified by octylamine (SPESOS)

    International Nuclear Information System (INIS)

    Mabrouk, W.; Ogier, L.; Matoussi, F.; Sollogoub, C.; Vidal, S.; Dachraoui, M.; Fauvarque, J.F.

    2011-01-01

    Highlights: → New, simple and cheap way to synthesize a membrane. → The membranes combine good proton conductivities with good mechanical properties. → The membrane performances in a fuel cell are similar to the Nafion 117. - Abstract: Sulfonated poly(arylene ether sulfone) (SPES) has received considerable attention in membrane preparation for proton exchange membrane fuel cell (PEMFC). But such membranes are brittle and difficult to handle in operation. We investigated new membranes using SPES grafted with various degrees of octylamine. Five new materials made from sulfonated polyethersulfone sulfonamide (SPESOS) were synthetized with different grades of grafting. They were made from SPES, with initially an ionic exchange capacity (IEC) of 2.4 meq g -1 (1.3 H + per monomer unit). Pristine SPES with that IEC is water swelling and becomes soluble at 80 deg. C, its proton conductivity is in the range of 0.1 S cm -1 at room temperature in aqueous H 2 SO 4 1 M, similar to that of Nafion. After grafting with various amounts of octylamine, the material is water insoluble; membranes are less brittle and show sufficient ionic conductivity. Proton transport numbers were measured close to 1.

  18. Surfactant-Enhanced Size-Excluded Transport of Bacteria Through Unsaturated Porous Media.

    Science.gov (United States)

    Zhu, J.

    2017-12-01

    US domestic waste water is rich in surfactants because of the intensive usage of surfactants-containing household product. It results in a surfactants presence environment when this untreated waste water released into subsurface. It was reported that surfactants enhance the colloidal transport in porous media, which have significant effect on issues such as subsurface pathogens contamination and biodegradation. In this study, soil column experiments were conducted. The soil column was remained unsaturated and with a steady flow passing through it. Escherichia coli K-12 transported in the soil column and its breakthrough data was collected in presence of surfactant anionic surfactant linear alkylbenzene sulfonate (LAS) concentration range over 0, 0.25, 0.5, 0.75, 1, and 2 times Critical Micelle Concentration (CMC). It was found that the increase in LAS concentration greatly increases breakthrough concentration C/C0 and decreases breakthrough time tb until LAS concentration reaches 1 xCMC. Numerical models were built simulating and investigating this phenomenon. The goodness of model fitting was greatly improved by adding exclusion factor into the model, which indicated that the presence of surfactant might enhance the exclusion effect. The relationships between LAS concentration and the two coefficients, deposition rate coefficient k and exclusion effect coefficient θim, were found can be fitted by a quasi-Langmuir equation. And the model validation with observed data showed that the model has an acceptable reliability.

  19. A cut-off in ocular chemesthesis from vapors of homologous alkylbenzenes and 2-ketones as revealed by concentration-detection functions

    International Nuclear Information System (INIS)

    Cometto-Muniz, J. Enrique; Abraham, Michael H.

    2008-01-01

    Studies of homologous series of environmental vapors have shown that their chemesthetic (i.e., sensory irritation) potency increases with carbon chain length (that is, their detection thresholds decrease) until they reach a homolog that fails to be detected, even at vapor saturation. All ensuing homologs cannot be detected either. In this investigation, we measured concentration-detection (i.e., psychometric) functions for ocular chemesthesis from homologous alkylbenzenes (pentyl, hexyl, and heptyl benzene) and 2-ketones (undecanone, dodecanone, and tridecanone). Using a three-alternative forced-choice procedure against air blanks, we tested a total of 18 to 24 subjects, about half of them females, average age 31 years, ranging from 18 to 56 years. Stimuli were generated and presented by a computer-controlled, vapor delivery device whose output was quantified by gas chromatography. Exposure time was 6 s and delivery flow 2.5 L/min. Within the context of present and previous findings, the outcome indicated that the functions for heptylbenzene and 2-tridecanone reached a plateau where further increases in concentration did not enhance detection. We conclude that: a) a cut-off point in ocular chemesthetic detection is reached along homologous alkylbenzenes and 2-ketones at the level of heptylbenzene and 2-tridecanone, respectively, and b) the observed effect rests on the homologs exceeding a critical molecular size (or dimension) rather than on them failing to achieve a high enough vapor concentration

  20. Thermochemical stability of Soviet macroporous sulfonated cation-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rukhlyada, N.N.; Plotnikova, V.P.; Roginskaya, B.S.; Znamenskii, Yu.P.; Zavodovskaya, A.S.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the influence of macroporosity on the thermochemical stability of sulfonated cation-exchangers. The investigations were carried out on commercial macroporous sulfonated cation-exchangers based on styrene-divinylbenzene copolymers. Study of the thermochemical stability of macroporous sulfonated cation-exchangers in dilute hydrogen peroxide solutions showed that the type of macroporosity has virtually no influence on their stability. The determining factor in thermal stability of macroporous cation-exchangers, as of the gel type, is the degree of cross-linking of the polymer matrix. The capacity loss of macroporous cation-exchangers during oxidative thermolysis is caused by destruction of the macromolecular skeleton and elution of fragments of polar chains containing sulfo groups into the solution.

  1. Sulfonated carbon black-based composite membranes for fuel cell

    Indian Academy of Sciences (India)

    Composite membranes were then prepared using S–C as fillers and sulfonated poly(ether ether ketone) (SPEEK) as polymer matrix with three different sulfonation degrees (DS = 60, 70 and 82%). Structure and properties of the composite membranes were characterized by FTIR, TGA, scanning electron microscopy, proton ...

  2. Radiation-induced crosslinking of poly(styrene–butadiene–styrene) block copolymers and their sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Young [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Song, Ju-Myung; Sohn, Joon-Yong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shul, Yong-Gun [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2013-12-01

    Highlights: • The c-SBS films were prepared using a gamma ray or electron beam. • The crosslinking degree of the c-SBS films were increased with the irradiation dose. • The prepared c-SBS films were sulfonated with various concentration of CSA. • The sulfonation of the c-SBS film is largely dependent on the concentration of CSA. • The sulfonation process is progressed from the surface to the inner part of c-SBS film. -- Abstract: Several crosslinked poly(styrene–butadiene–styrene) (c-SBS) block copolymer films were prepared using a gamma ray or electron beam with various irradiation doses and the prepared c-SBS film was then subjected to sulfonation using a chlorosulfonic acid (CSA) solution to introduce a sulfonic acid group. To estimate the degree of crosslinking, the gel fractions and FT-IR spectra of the c-SBS films were used and the results indicate that the degree of crosslinking is increased with an increase in the radiation dose. The surface morphology and mechanical property of the c-SBS films were observed using SEM and UTM instruments, respectively. The sulfonated c-SBS films were investigated by measuring the ion exchange capacity (IEC) and by observing the cross-sectional distribution patterns of sulfonic acid group using an SEM-EDX instrument. The IEC and SEM-EDX studies indicate that the sulfonated c-SBS membranes can be successfully prepared through the radiation crosslinking of the SBS film and the subsequent sulfonation with a diluted CSA solution.

  3. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  4. Electrochemical detection of dopamine using water-soluble sulfonated graphene

    International Nuclear Information System (INIS)

    Li, Su-Juan; He, Jun-Zhi; Zhang, Meng-Jie; Zhang, Rong-Xia; Lv, Xia-Lei; Li, Shao-Hua; Pang, Huan

    2013-01-01

    Graphical abstract: DPV responses of dopamine (DA) at sulfonated graphene based glassy carbon electrode in the presence of ascorbic acid (AA) and uric acid (UA). The separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. -- Abstract: In the present study, a biosensor was prepared using the water-soluble sulfonated graphene with the aim of achieving the selective and sensitive determination of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA). The aromatic π–π stacking and electrostatic attraction between positively charged DA and negatively charged sulfonated graphene can accelerate the electron transfer whereas weakening AA and UA oxidation on the sulfonated graphene-modified electrode. Fourier transform infrared spectra (FTIR), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize the successful synthesis of sulfonated graphene sheets. Differential pulse voltammetry was used for electrochemical detection, the separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. A broad linear range, low detection limit, along with good ability to suppress the background current from large excess ascorbic acid (AA) and uric acid (UA) were obtained. The as-prepared sulfonated graphene sheets exhibited superior performance over conventional negatively charged Nafion films, such as flexible film thickness, unique nanostructure, excellent anti-interference ability, high sensitivity and selectivity. The proposed method was used to detect DA in real hydrochloride injection sample, human urine and serum samples with satisfactory recovery results

  5. Hexaaquamagnesium(II bis(d-camphor-10-sulfonate

    Directory of Open Access Journals (Sweden)

    Dejan Jeremić

    2008-07-01

    Full Text Available The structure of the title complex, [Mg(H2O6](C10H15O4S2, consists of regular octahedral [Mg(H2O6]2+ cations and d-camphor-10-sulfonate anions. A three-dimensional supramolecular architecture is formed via hydrogen-bond interactions [O—H...O = 2.723 (2–2.833 (2 Å] to give alternating layers of [Mg(H2O6]2+ cations and d-camphor-10-sulfonate anions. The title compound is isomorphous with the zinc, copper, cadmium and nickel analogues.

  6. Blending of styrene-block-butadiene-block-styrene copolymer with sulfonated vinyl aromatic polymers

    NARCIS (Netherlands)

    Ruggeri, Giacomo; Passaglia, Elisa; Giorgi, Ivan; Picchioni, Francesco; Aglietto, Mauro

    2001-01-01

    Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene-block-(ethylene-co-1-butene)-block-styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing

  7. Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts.

    Science.gov (United States)

    Siddiki, S M A Hakim; Touchy, Abeda Sultana; Kon, Kenichi; Shimizu, Ken-Ichi

    2016-04-18

    Carbon-supported Pt nanoparticles (Pt/C) were found to be effective heterogeneous catalysts for the direct Julia olefination of alcohols in the presence of sulfones and KOtBu under oxidant-free conditions. Primary alcohols, including aryl, aliphatic, allyl, and heterocyclic alcohols, underwent olefination with dimethyl sulfone and aryl alkyl sulfones to give terminal and internal olefins, respectively. Secondary alcohols underwent methylenation with dimethyl sulfone. Under 2.5 bar H2, the same reaction system was effective for the transformation of alcohol OH groups to alkyl groups. Structural and mechanistic studies of the terminal olefination system suggested that Pt(0) sites on the Pt metal particles are responsible for the rate-limiting dehydrogenation of alcohols and that KOtBu may deprotonate the sulfone reagent. The Pt/C catalyst was reusable after the olefination, and this method showed a higher turnover number (TON) and a wider substrate scope than previously reported methods, which demonstrates the high catalytic efficiency of the present method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Physical ageing and molecular mobilities of sulfonated polysulfone for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lixon Buquet, C. [LECAP EA 4528, Institute for Materials Research FED 4114, Universite de Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); PBS Department, UMR 6270 CNRS, MPBM, FR 3038, Universite de Rouen, Boulevard Maurice de Broglie, 76821 Mont Saint Aignan Cedex (France); Hamonic, F.; Saiter, A. [LECAP EA 4528, Institute for Materials Research FED 4114, Universite de Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Dargent, E., E-mail: eric.dargent@univ-rouen.fr [LECAP EA 4528, Institute for Materials Research FED 4114, Universite de Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Langevin, D.; Nguyen, Q.T. [PBS Department, UMR 6270 CNRS, MPBM, FR 3038, Universite de Rouen, Boulevard Maurice de Broglie, 76821 Mont Saint Aignan Cedex (France)

    2010-09-20

    The thermal behaviour, the physical ageing and the amorphous phase dynamics of polysulfone (PSU) and sulfonated polysulfone (SPSU) are characterized by thermogravimetric analysis and temperature modulated differential scanning calorimetry. The sulfonic group introduction (the sulfonation degree is 70%) in the polymer implies a drastic decrease of the thermal decomposition temperature (220 and 517 {sup o}C for SPSU and PSU respectively) and a modification of calorimetric parameters (for SPSU, the heat capacity in the glassy state is lower and the glass transition temperature T{sub g} is higher than for PSU). In terms of molecular dynamics, the amorphous phase heterogeneities are greater and the cooperative rearranging region size at the glass transition temperature is smaller for SPSU than for PSU. Moreover, after a physical ageing process, the enthalpy recovery kinetic has slowed down by sulfonation. These results can be explained from the existence of sulfonic domains confining the amorphous phase domains.

  9. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  10. Triclosan affects the microbial community in simulated sewage-drain-field soil and slows down xenobiotic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Svenningsen, Hanne [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Department of Biology, University of Copenhagen, Solvgade 83H, DK-1307 Copenhagen K (Denmark); Henriksen, Trine [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Prieme, Anders [Department of Biology, University of Copenhagen, Solvgade 83H, DK-1307 Copenhagen K (Denmark); Johnsen, Anders R., E-mail: arj@geus.dk [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2011-06-15

    Effects of the common antibacterial agent triclosan on microbial communities and degradation of domestic xenobiotics were studied in simulated sewage-drain-field soil. Cultivable microbial populations decreased 22-fold in the presence of 4 mg kg{sup -1} of triclosan, and triclosan-resistant Pseudomonas strains were strongly enriched. Exposure to triclosan also changed the general metabolic profile (Ecoplate substrate profiling) and the general profile (T-RFLP) of the microbial community. Triclosan degradation was slow at all concentrations tested (0.33-81 mg kg{sup -1}) during 50-days of incubation. Mineralization experiments ({sup 14}C-tracers) and chemical analyses (LC-MS/MS) showed that the persistence of a linear alkylbenzene sulfonate (LAS) and a common analgesic (ibuprofen) increased with increasing triclosan concentrations (0.16-100 mg kg{sup -1}). The largest effect was seen for LAS mineralization which was severely reduced by 0.16 mg kg{sup -1} of triclosan. Our findings indicate that environmentally realistic concentrations of triclosan may affect the efficiency of biodegradation in percolation systems. - Highlights: > Triclosan may enter the soil environment through sewage. > Triclosan impacts the microbial community in sewage-drain-field soil. > Triclosan-resistant pseudomonads are strongly enriched. > Degradation of co-occurring LAS and ibuprofen is reduced. - Environmentally realistic triclosan concentrations in percolation systems may reduce the biodegradation of other xenobiotics and select for triclosan-resistant bacteria.

  11. Triclosan affects the microbial community in simulated sewage-drain-field soil and slows down xenobiotic degradation

    International Nuclear Information System (INIS)

    Svenningsen, Hanne; Henriksen, Trine; Prieme, Anders; Johnsen, Anders R.

    2011-01-01

    Effects of the common antibacterial agent triclosan on microbial communities and degradation of domestic xenobiotics were studied in simulated sewage-drain-field soil. Cultivable microbial populations decreased 22-fold in the presence of 4 mg kg -1 of triclosan, and triclosan-resistant Pseudomonas strains were strongly enriched. Exposure to triclosan also changed the general metabolic profile (Ecoplate substrate profiling) and the general profile (T-RFLP) of the microbial community. Triclosan degradation was slow at all concentrations tested (0.33-81 mg kg -1 ) during 50-days of incubation. Mineralization experiments ( 14 C-tracers) and chemical analyses (LC-MS/MS) showed that the persistence of a linear alkylbenzene sulfonate (LAS) and a common analgesic (ibuprofen) increased with increasing triclosan concentrations (0.16-100 mg kg -1 ). The largest effect was seen for LAS mineralization which was severely reduced by 0.16 mg kg -1 of triclosan. Our findings indicate that environmentally realistic concentrations of triclosan may affect the efficiency of biodegradation in percolation systems. - Highlights: → Triclosan may enter the soil environment through sewage. → Triclosan impacts the microbial community in sewage-drain-field soil. → Triclosan-resistant pseudomonads are strongly enriched. → Degradation of co-occurring LAS and ibuprofen is reduced. - Environmentally realistic triclosan concentrations in percolation systems may reduce the biodegradation of other xenobiotics and select for triclosan-resistant bacteria.

  12. Graft-crosslinked copolymers based on poly(arylene ether ketone)-gc-sulfonated poly(arylene ether sulfone) for PEMFC applications.

    Science.gov (United States)

    Zhang, Xuan; Hu, Zhaoxia; Luo, Linqiang; Chen, Shanshan; Liu, Jianmei; Chen, Shouwen; Wang, Lianjun

    2011-07-15

    Novel poly(arylene ether ketone) polymers with fluorophenyl pendants and phenoxide-terminated wholly sulfonated poly(arylene ether sulfone) oligomers are prepared via Ni(0)-catalyzed and nucleophilic polymerization, respectively, and subsequently used as starting materials to obtain graft-crosslinked membranes as polymer electrolyte membranes. The phenoxide-terminated sulfonated moieties are introduced as hydrophilic parts as well as crosslinking units. The chemical structure and morphology of the obtained membranes are confirmed by (1) H NMR and tapping-mode AFM. The properties required for fuel cell applications, including water uptake and dimensional change, as well as proton conductivity, are investigated. AFM results show a clear nanoscale phase-separation microstructure of the obtained membranes. The membranes show good dimensional stability and reasonably high proton conductivities under 30-90% relative humidity. The anisotropic proton conductivity ratios (σ(formula see text) ) of the membranes in water are in the range 0.65-0.92, and increase with an increase in hydrophilic block length. The results indicate that the graft-crosslinked membranes are promising candidates for applications as polymer electrolyte membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    Science.gov (United States)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  14. Mineralization of surfactants by the microbiota of submerged plant detritus.

    Science.gov (United States)

    Federle, T W; Ventullo, R M

    1990-02-01

    In wetlands and canopied bodies of water, plant detritus is an important source of carbon and energy. Detrital materials possess a large surface area for sorption of dissolved organics and are colonized by a large and diverse microbiota. To examine the biodegradation of surfactants by these microorganisms, submerged oak leaves were obtained from a laundromat wastewater pond, its overflow, and a pristine control pond. Leaves were cut into disks and incubated in sterile water amended with 50 mug of C-labeled linear alkylbenzene sulfonate (LAS), linear alcohol ethoxylate, stearyltrimethyl ammonium chloride, distearyldimethyl ammonium chloride, benzoic acid, or mixed amino acids per liter. Sorption of the test compounds to the detritus and evolution of CO(2) were followed with time. All of the compounds sorbed to the detritus to various degrees, with LAS and stearyltrimethyl ammonium chloride the most sorptive and benzoic acid the least. All compounds were mineralized without a lag. With leaves from the laundromat wastewater pond, half-lives were 12.6 days for LAS, 8.4 days for linear alcohol ethoxylate, 14.2 days for stearyltrimethyl ammonium chloride, 1.0 days for benzoic acid, and 2.7 days for mixed amino acids. Mineralization of LAS and linear alcohol ethoxylate by control pond leaves was slower and exhibited an S-shaped rather than a typical first-order pattern. This study shows that detritus represents a significant site of surfactant removal in detritus-rich systems.

  15. Mineralization of surfactants by the microbiota of submerged plant detritus

    International Nuclear Information System (INIS)

    Federle, T.W.; Ventullo, R.M.

    1990-01-01

    In wetlands and canopied bodies of water, plant detritus is an important source of carbon and energy. Detrital materials possess a large surface area for sorption of dissolved organics and are colonized by a large and diverse microbiota. To examine the biodegradation of surfactants by these microorganisms, submerged oak leaves were obtained from a laundromat wastewater pond, its overflow, and a pristine control pond. Leaves were cut into disks and incubated in sterile water amended with 50 μg of 14 C-labeled linear alkylbenzene sulfonate (LAS), linear alcohol ethoxylate, stearyltrimethyl ammonium chloride, distearyldimethyl ammonium chloride, benzoic acid, or mixed amino acids per liter. Sorption of the test compounds to the detritus and evolution of 14 CO 2 were followed with time. All of the compounds sorbed to the detritus to various degrees, with LAS and stearyltrimethyl ammonium chloride the most sorptive and benzoic acid the least. All compounds were mineralized without a lag. With leaves from the laundromat wastewater pond, half-lives were 12.6 days for LAS, 8.4 days for linear alcohol ethoxylate, 14.2 days for stearyltrimethyl ammonium chloride, 1.0 days for benzoic acid, and 2.7 days for mixed amino acids. Mineralization of LAS and linear alcohol ethoxylate by control pond leaves was slower and exhibited an S-shaped rather than a typical first-order pattern. This study shows that detritus represents a significant site of surfactant removal in detritus-rich systems

  16. Poly (ether ether ketone) derivatives: Synthetic route and characterization of nitrated and sulfonated polymers

    International Nuclear Information System (INIS)

    Conceicao, T.F.; Bertolino, J.R.; Barra, G.M.O.; Pires, A.T.N.

    2009-01-01

    Nitrated and sulfonated poly (ether ether ketone) [SNPEEK] samples were prepared through sulfonation of nitrated PEEK (NPEEK) at different temperatures resulting in polymers with distinct sulfonation degrees (SD). The sulfonation occurred preferentially in the hydroquinone segment even after 81% of this moiety had been nitrated. Sulfonation in the benzophenone moiety was achieved only in 16% of this segment at the reaction temperature of 80 deg. C. The substitution degree was obtained through the TG curves, and values were in agreement with 1 H NMR data when SD is much higher as ND (nitration degree). The highest SD obtained was 72%. Membranes of the sulfonated and nitrated PEEK (SNPEEK) were prepared by casting and showed good ductility depending on the substitution degree, with proton conductivity in the order of 10 -2 S cm -1 , an important characteristic in some applications, such as in fuel cells

  17. Polymer sulfonation- a versatile route to prepare proton-conducting membrane material for advanced technologies

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    2003-01-01

    Sulfonation of polymers is a viable method for making proton exchange membranes used in electrochemical devices. Polyether-ether ketone was modified by using concentrated sulfuric acid (97.4%) to produce ion-containing polymers bearing HSO3 groups. The sulfonated polymer was characterized for IEC, HNMR, DSC and water uptake etc. The degree of sulfonation of sulfonated PEEK was found to vary from 40 to 80 mol%. The PEEK became amorphous after sufonation (as evidenced from DSC and WXRD), which enhanced its solubility in organic solvents such as DMF. The glass transition temperature, Tg increased from 151C for pure PEEK to 217C upon sulfonation. The water uptake was also increased with sulfonation level, which provides formation of water-mediated pathways for protons involving SO3H groups. The membranes from these polymers have a high potential for use in electrochemical devices such as polymer fuel cell and electrodialysis. (author)

  18. Poly (ether ether ketone) derivatives: Synthetic route and characterization of nitrated and sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, T.F.; Bertolino, J.R. [Grupo de Estudo em Materiais Polimericos-Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Barra, G.M.O. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Pires, A.T.N. [Grupo de Estudo em Materiais Polimericos-Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)], E-mail: alfredotiburcio@pq.cnpq.br

    2009-03-01

    Nitrated and sulfonated poly (ether ether ketone) [SNPEEK] samples were prepared through sulfonation of nitrated PEEK (NPEEK) at different temperatures resulting in polymers with distinct sulfonation degrees (SD). The sulfonation occurred preferentially in the hydroquinone segment even after 81% of this moiety had been nitrated. Sulfonation in the benzophenone moiety was achieved only in 16% of this segment at the reaction temperature of 80 deg. C. The substitution degree was obtained through the TG curves, and values were in agreement with {sup 1}H NMR data when SD is much higher as ND (nitration degree). The highest SD obtained was 72%. Membranes of the sulfonated and nitrated PEEK (SNPEEK) were prepared by casting and showed good ductility depending on the substitution degree, with proton conductivity in the order of 10{sup -2} S cm{sup -1}, an important characteristic in some applications, such as in fuel cells.

  19. Uptake and utilization of sulfonic acids in the cyanobacterial strains Anabaena variabilis and Plectonema 73110

    International Nuclear Information System (INIS)

    Biedlingmaier, S.; Schmidt, A.

    1987-01-01

    Growth of several cyanobacteria was examined on ethane sulfonate and taurine as only sulfur source. Comparing two strains with differential utilization of sulfonic acids (Anabaena variabilis and Synechococcus 6301) demonstrated that actual growth was coupled to the presence of an active sulfonate transport system due to species specific properties and nutritional conditions. Sulfonate uptake in Anabaena variabilis was characterized by a pH optimum of 6.5, a structural specificity for sulfonates, missing Na + dependence, and phosphate stimulation. Radiolabeled ethane sulfonate and taurine was metabolized to products of normal sulfur metabolism. Also considerable amounts of 35 S-labeled volatiles (mercaptanes and sulfide) could be detected, suggesting a degradation mechanism via reduction to mercaptanes and cleavage of the C-S bond. (orig.)

  20. Andrographolide sulfonate ameliorates experimental colitis in mice by inhibiting Th1/Th17 response.

    Science.gov (United States)

    Liu, Wen; Guo, Wenjie; Guo, Lele; Gu, Yanhong; Cai, Peifen; Xie, Ning; Yang, Xiaoling; Shu, Yongqian; Wu, Xuefeng; Sun, Yang; Xu, Qiang

    2014-06-01

    Inflammatory bowel disease (IBD) is a chronic, relapsing and remitting condition of inflammation involves overproduction of pro-inflammatory cytokines and excessive functions of inflammatory cells. However, current treatments for IBD may have potential adverse effects including steroid dependence, infections and lymphoma. Therefore new therapies for the treatment of IBD are desperately needed. In the present study, we aimed to examine the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on murine experimental colitis induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Andrographolide sulfonate was administrated through intraperitoneal injection to mice with TNBS-induced colitis. TNBS-induced body weight loss, myeloperoxidase activity, shortening of the colon and colonic inflammation were significantly ameliorated by andrographolide sulfonate. Both the mRNA and protein levels of pro-inflammatory cytokines were reduced by andrographolide sulfonate administration. Moreover, andrographolide sulfonate markedly suppressed the activation of p38 mitogen-activated protein kinase as well as p65 subunit of nuclear factor-κB (NF-κB). Furthermore, CD4(+) T cell infiltration as well as the differentiation of Th1 (CD4(+)IFN-γ(+)) and Th17 (CD4(+)IL17A(+)) subset were inhibited by andrographolide sulfonate. In summary, these results suggest that andrographolide sulfonate ameliorated TNBS-induced colitis in mice through inhibiting Th1/Th17 response. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood.

    Science.gov (United States)

    Campelo, Clayton S; Chevallier, Pascale; Vaz, Juliana M; Vieira, Rodrigo S; Mantovani, Diego

    2017-03-01

    Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process. Sulfonated chitosan, if compared to native chitosan, shows the unique ability to reduce proteins adsorption, decrease thrombogenic properties and limit calcification. In this work, stainless steel surfaces, commonly used for cardiovascular applications, were coated with sulfonated chitosan, by using dopamine and PEG as anchors, and the effect of these grafted surfaces on platelet adhesion, clot formation as well as on calcification were investigated. Surface characterization techniques evidenced that the coating formation was successful, and the sulfonated chitosan grafted sample exhibited a higher roughness and hydrophilicity, if compared to native chitosan one. Moreover, sulfonated surface limited platelet activation and the process of clot formation, thus confirming its high biological performances in blood. Calcium deposits were also lower on the sulfonated chitosan sample compared to the chitosan one, thus showing that calcification was minimal in presence of sulfonate groups. In conclusion, this sulfonated-modified surface has potential to be as blood-interacting material. Copyright © 2016. Published by Elsevier B.V.

  2. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  3. Occurrence of anionic surfactants in treated sewage: Risk assessment to aquatic environment

    International Nuclear Information System (INIS)

    Mungray, Arvind Kumar; Kumar, Pradeep

    2008-01-01

    A comparative evaluation of occurrence of and risk to aquatic environment due to anionic surfactants (AS) in treated effluents from three main treatment processes, i.e. activated sludge process (ASP), oxidation pond (OP), and upflow anaerobic sludge blanket reactor (UASBR) is presented. UASBR effluents contained substantial concentrations of AS (4.25-5.91 mg/L as average AS removal was not found to exceed 18%). Post-treatment of UASBR effluent using 1-1.6 days detention, anaerobic polishing ponds (PP) was also found quite ineffective. In UASBR-PP combine, AS reduced only up to 30%. Effluents from OP based sewage treatment plants (STPs) also contained significant concentrations of AS. On the contrary, effluent AS or linear alkylbenzene sulfonate (LAS) concentrations recorded in ASP effluents were quite low (less than 0.2 mg/L). Unlike UASBR, LAS or AS removals greater than 99% are achieved in ASP. Treated effluents from UASBR and OP based STPs when discharged to aquatic ecosystems are likely to cause substantial risk to aquatic environment due to the presence of AS while effluents from ASP are not supposed to pose risk. Need to find an effective aerobic post-treatment unit to UASBR for desired removal of AS is emphasized

  4. Anaerobic degradation of anionic surfactants by indigenous microorganisms from sediments of a tropical polluted river in Brazil

    Directory of Open Access Journals (Sweden)

    Iolanda Cristina Silveira Duarte

    2015-03-01

    Full Text Available Linear alkylbenzene sulfonate (LAS is widely used in the formulation of domestic and industrial cleaning products, the most synthetic surfactants used worldwide. These products can reach water bodies through the discharge of untreated sewage or non-effective treatments. This study evaluates the ability of the microorganisms found in the Tietê river sediment to degrade this synthetic surfactant. The experiment was conducted in a bioreactor, operated in batch sequences under denitrifying conditions, with cycles of 24 hours and stirring at 150rpm, using 430mL of sediments and 1 070mL of a synthetic substrate consisting of yeast extract, soluble starch, sodium bicarbonate and sucrose. LAS was added at different concentrations of 15mg/L and 30mg/L. The reactor operation was divided into the biomass adaptation to the synthetic substrate without LAS and three experimental conditions: a addition of 15mg/L of LAS; b 50% reduction the co-substrate concentration and 15mg/L of LAS, and c addition of 30mg/L of LAS and 100% co-substrate concentration. The results showed that the degradation efficiency of LAS was directly related to the addition of co-substrates and the population of denitrifying bacteria. The removal of LAS and nitrate can be achieved simultaneously in wastewater with low organic loads. The reduction in the co-substrates concentration was directly influenced by the number of denitrifying bacteria (2.2x10(13 to 1.0x10(8MPN/gTVS, and consequently, LAS degradation (60.1 to 55.4%. The sediment microorganisms in the Tietê river can be used as an alternative inoculum in the treatment of wastewater with nitrate and LAS contamination.

  5. On the Importance of Purification of Sodium Polystyrene Sulfonate

    OpenAIRE

    Sen, Akhil K.; Roy, Sandip; Juvekar, Vinay A.

    2012-01-01

    Ion exchange is commonly employed for purification of sodium polystyrene sulfonate (NaPSS), a molecule widely used as a model polyelectrolyte. However, the present work demonstrates that the ion exchange process itself may introduce some extraneous species into NaPSS samples by two possible mechanisms: (i) chemical transformation of polystyrene sulfonic acid (HPSS), a relatively unstable intermediate formed during ion exchange and (ii) release of small amount of “condensed” acid from cationic...

  6. Synthesis and properties of a novel sulfonated poly(arylene ether ketone sulfone) membrane with a high β-value for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    Xu, Jingmei; Ma, Li; Han, Hailan; Ni, Hongzhe; Wang, Zhe; Zhang, Huixuan

    2014-01-01

    Highlights: • Introduction of carboxyl groups into copolymers resulted in extensive hydrogen bond. • The C-SPAEKS membranes had obviously hydrophilic/hydrophobic phase separation. • The membranes showed low methanol permeability and high β values. • The membranes exhibited good thermal property and desirable mechanical performance. - Abstract: Sulfonated poly(arylene ether ketone sulfone) membranes containing carboxylic acid groups (C-SPAEKS) with different degrees of sulfonation were synthesized by the nucleophilic aromatic substitution reactions of 4-carboxylphenyl hydroquinone (4C-PH), bisphenol A, 3,3′-disulfonated 4,4′-dichlorodiphenyl sulfone, and 4,4′-difluorobenzophenone. The Fourier transform infrared and 1 H NMR analyses of C-SPAEKS revealed the presence of carboxylic acid groups in the C-SPAEKS membranes. The membranes exhibited a low swelling degree and methanol crossover level. The effects of different degrees of sulfonation on the water uptake, proton conductivity, and methanol permeability coefficient of the membranes were studied. The maximum proton conductivity of C-SPAEKS-80 membrane at room temperature was 0.069 S cm −1 , which was higher than that of Nafion ® 117 membrane. The methanol permeability coefficient of C-SPAEKS-80 membrane was 9.15 × 10 −7 cm 2 s −1 at 20 °C, much lower than that of Nafion 117 membrane (22.9 × 10 −7 cm 2 s −1 ). Furthermore, the carboxyl group-containing membranes exhibited a high β-value, further confirming that this series of membranes possess excellent comprehensive performance and can be applied in direct methanol fuel cells

  7. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Directory of Open Access Journals (Sweden)

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  8. Structural characterization of alkyl-benzene fractions by carbon-13, hydrogen-1, NMR; Caracterizacao estrutural de fracoes de alquilbenzenos por RMN de {sup 13} C e de {sup 1} H

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Jorge F. de; San Gil, Rosane A.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Marques, Rosana G.G. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1994-12-31

    This work presents studies concerning the utilization of carbon-13, hydrogen-1, NMR as chemical analytical technique to evaluate molecular characteristics of alkyl-benzene fractions. The methodology is described, including standards solutions and their preparations, as well as the experimental techniques used. The results are presented and discussed 2 refs., 4 tabs.

  9. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W [Knoxville, TN; Gido, Samuel P [Hadley, MA; Huang, Tianzi [Knoxville, TN; Hong, Kunlun [Knoxville, TN

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  10. Qualification of spontaneous undirected locomotor behavior of fish for sublethal toxicity testing. Part 2. Variability of measurement parameters under toxicant-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Grillitsch, B.; Vogl, C.; Wytek, R.

    1999-12-01

    Spontaneous locomotor behavior of semiadult zebra fish (Brachydanio rerio) was recorded under sublethal short-term exposure to the anionic technical surfactant, linear alkylbenzene sulfonate (C{sub 10-13}-LAS) and cadmium in single compound tests using an automated video-monitoring and object-tracing system. Vertical position and swimming velocity in the horizontal and vertical directions were used as behavioral measurement parameters. Data were analyzed by different statistical methods. In pairwise comparisons, consistent, statistically significant, and toxicant-induced alterations of locomotor behavior were observed only for test concentrations, which also caused aspectoric symptoms of intoxication. This comparatively low sensitivity of the behavioral indication criteria was related to high variation in the measurement parameters and corresponding high, minimum detectable, statistically significant, and toxicant-induced deviations. In contrast, results obtained by regression analysis showed significant trends in locomotor activity over the range of toxicant concentrations tested. Thus, the findings support the inappropriateness of no observed effect concentrations and the lowest observed effect concentrations as summary measures of toxicity and indicate that the regression analysis approach is superior to the analysis of variance approach.

  11. 40 CFR 417.110 - Applicability; description of the SO3 solvent and vacuum sulfonation subcategory.

    Science.gov (United States)

    2010-07-01

    ... solvent and vacuum sulfonation subcategory. 417.110 Section 417.110 Protection of Environment... POINT SOURCE CATEGORY SO3 Solvent and Vacuum Sulfonation Subcategory § 417.110 Applicability; description of the SO3 solvent and vacuum sulfonation subcategory. The provisions of this subpart are...

  12. Sulfonated poly(ether ether ketone) membranes for electric double layer capacitors

    International Nuclear Information System (INIS)

    Kim, Wan Ju; Kim, Dong-Won

    2008-01-01

    Sulfonated poly(ether ether ketone) (S-PEEK) with different degree of sulfonation (DS) has been prepared and evaluated as a proton conducting membrane for electric double layer capacitor (EDLC). The polymer electrolytes prepared with S-PEEK membrane exhibited ionic conductivities about 1.2 x 10 -3 -4.5 x 10 -3 S cm -1 at room temperature, which depended on both soaking solvent and degree of sulfonation. The quasi-solid-state EDLCs consisted of activated carbon electrodes and S-PEEK membrane were assembled, and their electrochemical characteristics were studied by cyclic voltammetry and charge-discharge cycle tests. The effect of DS on the electrochemical performances of EDLCs has been investigated

  13. Design, synthesis, and characterization of lightly sulfonated multigraft acrylate-based copolymer superelastomers

    Energy Technology Data Exchange (ETDEWEB)

    Misichronis, Konstantinos [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Wang, Weiyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Cheng, Shiwang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Wang, Yangyang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Shrestha, Umesh [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Dadmun, Mark D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Mays, Jimmy W. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Saito, Tomonori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division

    2018-01-29

    Multigraft copolymer superelastomers consisting of a poly(n-butyl acrylate) backbone and polystyrene side chains were synthesized and the viscoelastic properties of the non-sulfonated and sulfonated final materials were investigated using extensional rheology (SER3). The non-linear viscoelastic experiments revealed significantly increased true stresses (up to 10 times higher) after sulfonating only 2–3% of the copolymer while the materials maintained high elongation (<700%). The linear viscoelastic experiments showed that the storage and loss modulus are increased by sulfonation and that the copolymers can be readily tuned and further improved by increasing the number of branching points and the molecular weight of the backbone. Here, in this way, we show that by tuning not only the molecular characteristics of the multigraft copolymers but also their architecture and chemical interaction, we can acquire thermoplastic superelastomer materials with desired viscoelastic properties.

  14. Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Arun Kumar; Bera, Debaditya; Banerjee, Susanta, E-mail: susanta@matsc.iitkgp.ernet.in

    2016-09-15

    A series of sulfonated co-polyimides (co-SPI) were prepared by one pot polycondensation reaction of a combination of diamines namely; 4,4′-diaminostilbene-2,2′-disulfonic acid (DSDSA) and prepared non-sulfonated diamine (DATPPO) containing triphenylphosphine oxide with 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA). All these soluble co-SPI gave flexible membranes with high thermal stability and showed good mechanical property. Transmission electron microscopy (TEM) analysis revealed the microphase separated morphology with well-dispersed hydrophilic (cluster size in the range of 5–55 nm) domains. The co-SPI membranes showed high oxidative and hydrolytic stability with higher proton conductivity. All these co-SPI membranes exhibited low water uptake and swelling ratio. The co-SPI membrane TPPO-60 (60% degree of sulfonation) with IEC{sub W} = 1.84 mequiv g{sup −1} showed high proton conductivity (99 mS cm{sup −1} at 80 °C and 107 mS cm{sup −1} at 90 °C) in water with high oxidative (20 h) and hydrolytic stability (only 5% degradation in 24 h). - Highlights: • Triphenylphosphine oxide containing sulfonated polyimides (SPIs) was synthesized. • The SPIs showed good oxidative and hydrolytic stability and high proton conductivity. • TEM analysis revealed well separated morphology of the SPIs.

  15. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. 1. Preliminary experiments in controlled shaken flasks

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    Changes of pH and sulfate concentration in high-sulfur coal refuse slurries are used as measurements of microbial pyrite oxidation in the laboratory. Sodium lauryl sulfate (SLS), alkylbenzene sulfonate (ABS), benzoic acid (BZ) and combinations of SLS plus BZ and ABS plus BZ effectively inhibited formation of sulfate and acid when added in concentrations greater than 50 mg/l to inoculated 20 or 30% coal refuse slurries. Here 25 mg/l concentrations of SLS, ABS and ABS plus BZ stimulated acid production. Formic, hexanoic, oxalic, propionic, and pyruvic acids at 0.1% concentrations were also effective inhibitors. Four different lignin sulfonates were only slightly effective inhibitors at 0.1% concentrations. It was concluded that acid formation resulting from microbial oxidation in high-sulfur coal refuse can be inhibited. 22 references.

  16. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle

    2013-03-12

    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  17. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil.

    Science.gov (United States)

    Guan, Zhuo; Tang, Xiang-Yu; Nishimura, Taku; Katou, Hidetaka; Liu, Hui-Yun; Qing, Jing

    2018-02-01

    Soil contamination by diesel has been often reported as a result of accidental spillage, leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydrophobic organic chemicals. In this study, soil flushing with linear alkylbenzene sulfonates (LAS, an anionic surfactant) was conducted for intact columns (15cm in diameter and 12cm in length) of diesel-contaminated farmland purple soil aged for one year in the field. Dynamics of colloid concentration in column outflow during flushing, diesel removal rate and resulting soil macroporosity change by flushing were analyzed. Removal rate of n-alkanes (representing the diesel) varied with the depth of the topsoil in the range of 14%-96% while the n-alkanes present at low concentrations in the subsoil were completely removed by LAS-enhanced flushing. Much higher colloid concentrations and larger colloid sizes were observed during LAS flushing in column outflow compared to water flushing. The X-ray micro-computed tomography analysis of flushed and unflushed soil cores showed that the proportion of fine macropores (30-250μm in diameter) was reduced significantly by LAS flushing treatment. This phenomenon can be attributed to enhanced clogging of fine macropores by colloids which exhibited higher concentration due to better dispersion by LAS. It can be inferred from this study that the application of LAS-enhanced flushing technique in the purple soil region should be cautious regarding the possibility of rapid colloid-associated contaminant transport via preferential pathways in the subsurface and the clogging of water-conducting soil pores. Copyright © 2017. Published by Elsevier B.V.

  18. Two-step sulfonation process for the conversion of polymer fibers to carbon fibers

    Science.gov (United States)

    Barton, Bryan E.; Patton, Jasson T.; Hukkanen, Eric J.; Bernius, Mark T.

    2017-11-14

    Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 501-3000.degree. C. Carbon fibers prepared according to these methods are also disclosed herein.

  19. Potential contact and intraocular lenses based on hydrophilic/hydrophobic sulfonated syndiotactic polystyrene membranes

    Directory of Open Access Journals (Sweden)

    Simona Zuppolini

    2017-10-01

    Full Text Available Crystalline films of syndiotactic polystyrene (s-PS, a commercially available thermoplastic polymer, having a highly hydrophilic amorphous phase, were achieved by using a mild solid-state sulfonation procedure. Despite the used mild process conditions, an easy and uniform sulfonation of the phenyl rings of the amorphous phase is obtained. The crystallinity of the polymer was not affect by the sulfonation degree (S, at least at S less than 20%, and the obtained polymer films show the nanoporous crystalline form of s-PS. As widely reported in literature, the nanoporous nature of the polymer crystalline phase gives to these materials the ability to absorb and release organic molecules of appropriate size and polarity. This property, coupled to transparency, makes these materials potentially useful intraocular lens (IOLs and contact lens applications. Sulfonation procedure and sulfonated film samples characterization by using wide-angle X-ray diffraction (WAXD, Fourier-transform infrared (FTIR and ultraviolet-visible (UV-vis spectroscopy techniques and water sorption tests were reported. Furthermore, the biocompatibility study demonstrated no cytotoxicity and appropriate cell interaction properties for the specific applications.

  20. Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)

    Energy Technology Data Exchange (ETDEWEB)

    Hasani-Sadrabadi, Mohammad Mahdi [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Dashtimoghadam, Erfan; Ghaffarian, Seyed Reza [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Hasani Sadrabadi, Mohammad Hossein [Faculty of Social and Economics Science, Alzahra University, Tehran (Iran); Heidari, Mahdi [Graduate School of Management and Economics, Sharif University of Technology, Tehran (Iran); Moaddel, Homayoun [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States)

    2010-01-15

    In the present research, proton exchange membranes based on partially sulfonated poly (ether sulfone) (S-PES) with various degrees of sulfonation were synthesized. It was found that the increasing of sulfonation degree up to 40% results in the enhancement of water uptake, ion exchange capacity and proton conductivity properties of the prepared membranes to 28.1%, 1.59 meq g{sup -1}, and 0.145 S cm{sup -1}, respectively. Afterwards, nanocomposite membranes based on S-PES (at the predetermined optimum sulfonation degree) containing various loading weights of organically treated montmorillonite (OMMT) were prepared via the solution intercalation technique. X-ray diffraction patterns revealed the exfoliated structure of OMMT in the macromolecular matrices. The S-PES nanocomposite membrane with 3.0 wt% of OMMT content showed the maximum selectivity parameter of about 520,000 S s cm{sup -3} which is related to the high conductivity of 0.051 S cm{sup -1} and low methanol permeability of 9.8 x 10{sup -8} cm{sup 2} s{sup -1}. Furthermore, single cell DMFC fuel cell performance test with 4 molar methanol concentration showed a high power density (131 mW cm{sup -2}) of the nanocomposite membrane at the optimum composition (40% of sulfonation and 3.0 wt% of OMMT loading) compared to the Nafion {sup registered} 117 membrane (114 mW cm{sup -2}). Manufactured nanocomposite membranes thanks to their high selectivity, ease of preparation and low cost could be suggested as the ideal candidate for the direct methanol fuel cell applications. (author)

  1. Particle size effects of sulfonated graphene supported Pt nanoparticles on ethanol electrooxidation

    International Nuclear Information System (INIS)

    Sun, Chia-Liang; Tang, Jui-Shiang; Brazeau, Nicolas; Wu, Jhing-Jhou; Ntais, Spyridon; Yin, Chung-Wei; Chou, Hung-Lung; Baranova, Elena A.

    2015-01-01

    Highlights: • Pt colloidal nanoparticles with five mean diameters are synthesized. • Size-selected Pt nanoparticles are loaded on sulfonated graphene (sG). • Sulfonic acid functional groups atop graphene donate charge to Pt. • Pt-sG catalysts are used for ethanol oxidation reaction (EOR). • Pt-sG(2.5 nm) has the highest peak current density in EOR. - Abstract: Fuel cells are promising alternative in automobile and stationary power generation. Direct ethanol fuel cells (DEFCs) offer significant advantages due to the non-toxicity and renewability of ethanol as well as its high power density. Development of the efficient catalysts for ethanol oxidation reaction (EOR) has attracted great attention and represents one of the major challenges in electrocatalysis. Graphene, one-atom thick nanocarbon materials, has attracted much attention recently in a variety of applications. The sulfonation of graphene is able to make it hydrophilic, which enhances its dispersibility in aqueous solvents. Furthermore, sulfonation increases the adsorption and uniform distribution of the Pt nanoparticles, which increases both the electrocatalytic activity and the durability. In this study, theoretical calculations demonstrated that the sulfonate functional group can donate charge to Pt, enhanced the adsorption energy of Pt, and then reduce the adsorption energy of CO on Pt. Then experimentally five kinds of Pt/sulfonated-graphene (Pt/sG) catalysts were synthesized via the control of pH values during the preparation of five-selected colloidal nanoparticles. Among all catalysts, Pt-sG(2.5 nm) has the highest peak current density in EOR

  2. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Science.gov (United States)

    2010-07-01

    ..., alkali and amine salts. 721.2565 Section 721.2565 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  3. Derivatives of phenyl tribromomethyl sulfone as novel compounds with potential pesticidal activity

    Directory of Open Access Journals (Sweden)

    Krzysztof M. Borys

    2012-02-01

    Full Text Available A halogenmethylsulfonyl moiety is incorporated in numerous active herbicides and fungicides. The synthesis of tribromomethyl phenyl sulfone derivatives as novel potential pesticides is reported. The title sulfone was obtained by following three different synthetic routes, starting from 4-chlorothiophenol or 4-halogenphenyl methyl sulfone. Products of its subsequent nitration were subjected to the SNAr reactions with ammonia, amines, hydrazines and phenolates to give 2-nitroaniline, 2-nitrophenylhydrazine and diphenyl ether derivatives. Reduction of the nitro group of 4-tribromomethylsulfonyl-2-nitroaniline yielded the corresponding o-phenylenediamine substrate for preparation of structurally varied benzimidazoles.

  4. Derivatization of enolic OH of piroxicam: a comparative study on esters and sulfonates

    Energy Technology Data Exchange (ETDEWEB)

    Jayaselli, J.; Cheemala, J. Manila Sagar; Geetha Rani, D.P.; Pal, Sarbani [MNR Post Graduate College, Kukatpally, Hyderabad (India). Dept. of Chemistry]. E-mail: sarbani277@yahoo.com

    2008-07-01

    A number of ester and sulfonate derivatives of piroxicam were prepared via acylation/sulfonation of the enolic OH of piroxicam. All the compounds were evaluated for their chemical stability and cyclooxygenase inhibiting properties. Data suggested that esters could be useful for the development of potential prodrugs. The sulfonate derivatives prepared for the first time were found to be stable. One of them showed a moderately selective COX-2 inhibition over COX-1 and would have lower gastrointestinal side effects than piroxicam due to the masked enolic OH group. A plausible mechanism for the acylation/sulfonation process has been proposed that involves participation of the pyridine moiety of piroxicam. Molecular structure of one of the ester was established for the first time by the crystal structure analysis from X-ray powder data. (author)

  5. Derivatization of enolic OH of piroxicam: a comparative study on esters and sulfonates

    International Nuclear Information System (INIS)

    Jayaselli, J.; Cheemala, J. Manila Sagar; Geetha Rani, D.P.; Pal, Sarbani

    2008-01-01

    A number of ester and sulfonate derivatives of piroxicam were prepared via acylation/sulfonation of the enolic OH of piroxicam. All the compounds were evaluated for their chemical stability and cyclooxygenase inhibiting properties. Data suggested that esters could be useful for the development of potential prodrugs. The sulfonate derivatives prepared for the first time were found to be stable. One of them showed a moderately selective COX-2 inhibition over COX-1 and would have lower gastrointestinal side effects than piroxicam due to the masked enolic OH group. A plausible mechanism for the acylation/sulfonation process has been proposed that involves participation of the pyridine moiety of piroxicam. Molecular structure of one of the ester was established for the first time by the crystal structure analysis from X-ray powder data. (author)

  6. Enchansing the Ionic Purity of Hydrophilic Channels by Blending Fully Sulfonated Graft Copolymers with PVDF Homopolymer

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Ching-Ching Yang, Ami; Jankova Atanasova, Katja

    2013-01-01

    The influence of tuning the ionic content of membranes by blending, as opposed to varying the degree of sulfonation, is evaluated. Membranes of fully sulfonated poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(styrene sulfonic acid) blended with PVDF were prepared and investigated...

  7. Sulfonation degree effect on ion-conducting SPEEK-titanium oxide membranes properties

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline Costa; Gomes, Ailton de Souza; Dutra Filho, José Carlos, E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoléculas Professora Eloisa Mano; Hui, Wang Shu [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Metalúrgica e de Materiais; Oliveira, Vivianna Silva de [Escola Técnica Rezende Rammel (ETRR), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Polymeric membranes were developed using a SPEEK (sulfonated poly(ether ether ketone)) polymer matrix, containing titanium oxide (TiO{sub 2}) (incorporated by sol-gel method). SPEEK with different sulfonation degrees (SD): 63% and 50% were used. The influence of sulfonation degree on membrane properties was investigated. The thermal analysis (TGA and DTGA) and X-ray diffraction (XRD) were carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluate the proton conductivity of the membranes. The proton conductivities in water were of 3.25 to 37.08 mS.cm{sup -1}. Experimental data of impedance spectroscopy were analyzed with equivalent circuits using the Zview software, and the results showed that, the best fitted was at 80 °C. (author)

  8. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  9. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    Formation of sulfonic anhydride S-O-S (from the condensation of sulfonic acids) was known one of the important degradation mechanisms [i] for Nafion membrane under hydrothermal aging condition, which is especially critical for hydrogen fuel cells. Similar mechanism would also have be desirable...... to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...

  10. Andrographolide sulfonate improves Alzheimer-associated phenotypes and mitochondrial dysfunction in APP/PS1 transgenic mice.

    Science.gov (United States)

    Geng, Ji; Liu, Wen; Xiong, Yuyun; Ding, Hongqun; Jiang, Chunhong; Yang, Xiaoling; Li, Xiang; Elgehama, Ahmed; Sun, Yang; Xu, Qiang; Guo, Wenjie; Gao, Jing

    2018-01-01

    Alzheimer's disease is a neurodegenerative disorder with Amyloid-β plaques onset, synaptic damage, and cognitive decline. Aβ deposits cause pathological events including oxidative stress, mitochondrial dysfunction, and neuron death. In this study, APPswe/PSENΔ9 double transgenic mice model was used to imitate Alzheimer's disease and the effect and possible mechanism of Andrographolide sulfonate were examined. Andrographolide sulfonate was given to the mice for 7 months before the onset of Aβ plaque. Spatial memory test showed that Andrographolide sulfonate treatment prevented cognitive decline. Aβ deposits were not affected while hippocampus and synapse damage was significantly alleviated. Mechanism studies showed that oxidative stress and mitochondrial swelling was reduced after Andrographolide sulfonate administration. These findings suggest that Andrographolide sulfonate, which has been applied in clinical medicine, might be a promising therapeutic agent for AD therapy via mitochondria protection. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    Science.gov (United States)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  12. Formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles using sulfonated polystyrene as template.

    Science.gov (United States)

    Hazarika, Mousumi; Arunbabu, Dhamodaran; Jana, Tushar

    2010-11-15

    We report formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles from a new blend system consisting of an amorphous polymer polybenzimidazole (PBI) and an ionomer sodium salt of sulfonated polystyrene (SPS-Na). The ionomer used for the blending is spherical in shape with sulfonate groups on the surface of the particles. An in depth investigation of the blends at various sulfonation degrees and compositions using Fourier transform infrared (FT-IR) spectroscopy provides direct evidence of specific hydrogen bonding interactions between the N-H groups of PBI and the sulfonate groups of SPS-Na. The disruption of PBI chains self association owing to the interaction between the functional groups of these polymer pairs is the driving force for the blending. Thermodynamical studies carried out by using differential scanning calorimeter (DSC) establish partially miscible phase separated blending of these polymers in a wider composition range. The two distinguishable glass transition temperatures (T(g)) which are different from the neat components and unaltered with the blends composition attribute that the domain size of heterogeneity (d(d)) of the blends is >20 nm since one of the blend component (SPS-Na particle) diameter is ∼70 nm. The diminish of PBI chains self association upon blending with SPS-Na particles and the presence of invariant T(g)'s of the blends suggest the wrapping of PBI chains over the SPS-Na spherical particle surface and hence resulting a core-shell morphology. Transmission electron microscopy (TEM) study provides direct evidence of core-shell nanoparticle formation; where core is the polystyrene and shell is the PBI. The sulfonation degree affects the blends phase separations. The higher degree of sulfonation favors the disruption of PBI self association and thus forms partially miscible two phases blends with core-shell morphology. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Colonic necrosis due to calcium polystyrene sulfonate (Kalimate not suspended in sorbitol

    Directory of Open Access Journals (Sweden)

    María Dolores Castillo-Cejas

    2013-04-01

    Full Text Available Cation-exchange resins are used in the management of hyperkalemia, particularly in patients with end-stage renal disease. These resins were associated with gastrointestinal tract lesions, especially sodium polystyrene sulfonate (Kayexalate mixed with sorbitol. We present a case of colonic necrosis after the administration of calcium polystyrene sulfonate (Kalimate not suspended in sorbitol.

  14. Sulfonation of cPTFE Film grafted Styrene for Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-10-01

    Full Text Available Sulfonation of γ-ray iradiated and styrene-grafted crosslinked polytetrafluoroethylene film (cPTFE-g-S film have been done. The aim of the research is to make hydropyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared with chlorosulfonic acid in chloroethane under various conditions. The impact of the percent of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film is examinated. The results show that sulfonation of surface-grafted films is incomplete at room  temperature. The increasing of concentration of chlorosulfonic acid and reaction temperature accelerates the reaction but they also add favor side reactions. These will lead to decreasing of the ion-exchange capacity, water uptake, and proton conductivity but increasing the resistance to oxidation in a perhidrol solution. The cPTFE-g-SS membrane which is resulted has stability in a H2O2 30% solution for 20 hours.

  15. Data requirements of GREAT-ER: Modelling and validation using LAS in four UK catchments

    International Nuclear Information System (INIS)

    Price, Oliver R.; Munday, Dawn K.; Whelan, Mick J.; Holt, Martin S.; Fox, Katharine K.; Morris, Gerard; Young, Andrew R.

    2009-01-01

    Higher-tier environmental risk assessments on 'down-the-drain' chemicals in river networks can be conducted using models such as GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers). It is important these models are evaluated and their sensitivities to input variables understood. This study had two primary objectives: evaluate GREAT-ER model performance, comparing simulated modelled predictions for LAS (linear alkylbenzene sulphonate) with measured concentrations, for four rivers in the UK, and investigate model sensitivity to input variables. We demonstrate that the GREAT-ER model is very sensitive to variability in river discharges. However it is insensitive to the form of distributions used to describe chemical usage and removal rate in sewage treatment plants (STPs). It is concluded that more effort should be directed towards improving empirical estimates of effluent load and reducing uncertainty associated with usage and removal rates in STPs. Simulations could be improved by incorporating the effect of river depth on dissipation rates. - Validation of GREAT-ER.

  16. Data requirements of GREAT-ER: Modelling and validation using LAS in four UK catchments

    Energy Technology Data Exchange (ETDEWEB)

    Price, Oliver R., E-mail: oliver.price@unilever.co [Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Munday, Dawn K. [Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Whelan, Mick J. [Department of Natural Resources, School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Holt, Martin S. [ECETOC, Ave van Nieuwenhuyse 4, Box 6, B-1160 Brussels (Belgium); Fox, Katharine K. [85 Park Road West, Birkenhead, Merseyside CH43 8SQ (United Kingdom); Morris, Gerard [Environment Agency, Phoenix House, Global Avenue, Leeds LS11 8PG (United Kingdom); Young, Andrew R. [Wallingford HydroSolutions Ltd, Maclean building, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB (United Kingdom)

    2009-10-15

    Higher-tier environmental risk assessments on 'down-the-drain' chemicals in river networks can be conducted using models such as GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers). It is important these models are evaluated and their sensitivities to input variables understood. This study had two primary objectives: evaluate GREAT-ER model performance, comparing simulated modelled predictions for LAS (linear alkylbenzene sulphonate) with measured concentrations, for four rivers in the UK, and investigate model sensitivity to input variables. We demonstrate that the GREAT-ER model is very sensitive to variability in river discharges. However it is insensitive to the form of distributions used to describe chemical usage and removal rate in sewage treatment plants (STPs). It is concluded that more effort should be directed towards improving empirical estimates of effluent load and reducing uncertainty associated with usage and removal rates in STPs. Simulations could be improved by incorporating the effect of river depth on dissipation rates. - Validation of GREAT-ER.

  17. Ionomers based on multisulfonated perylene dianhydride: Synthesis and properties of water resistant sulfonated polyimides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Li, Nanwen [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Suobo; Li, Shenghai [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China)

    2010-04-15

    A novel locally and densely sulfonated dianhydride with four sulfonic acid groups, 1,6,7,12-tetra[4-(sulfonic acid)phenoxy]perylene-3,4,9,10-tetracarboxylic dianhydride (SPTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 1,6,7,12-tetraphenoxyperylene-3,4,9,10-tetracarboxylic dianhydride (PTDA). Sulfonated copolyimides were prepared from SPTDA, nonsulfonated dianhydride 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianydride, 4,4'-diaminodiphenyl ether (a) or dodecane-1,12-diamine (b). The synthesized copolymers, with the -SO{sub 3}H group on the polymer side chain, possess high molecular weights and high viscosities, and they form tough, flexible membranes. The copolymer membrane with an ion exchange capacity of 2.69 mequiv. g{sup -1} had a proton conductivity of 0.126 S cm{sup -1} at 20 C and 0.292 S cm{sup -1} at 100 C; the latter is much higher than that of Nafion {sup registered} 117 under the same conditions. The mechanical properties of the copolymer membranes were almost unchanged after accelerated water stability testing at 140 C for 100 h; this indicates excellent hydrolytic stability of the synthesized copolyimides. (author)

  18. Aryl sulfonate based anticancer alkylating agents.

    Science.gov (United States)

    Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala

    2018-05-01

    This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.

  19. Evaluation of sulfonated carbon as catalyst in reactive distillation

    International Nuclear Information System (INIS)

    Orjuela, Alvaro; Civetta, Nicolas; Rivera, Jairo; Boyaca, Alejandro; Diaz, Jesus

    2004-01-01

    A packed bed using sulfonated coal catalytic pellets was prepared using a Colombian anthracitic coal. Such pellets were introduced in a semi batch distillation column to which acetic acid and ethanol were fed in order to determine experimentally the feasibility of obtaining ethyl acetate by reactive distillation operation. The carbonaceous catalytic packing was characterized by total exchange capacity, potentiometric titration and BET area. Experimental tests were carried out using three acid/alcohol ratios. Results of such process are shown by reaction conversion and concentration in distillate and bottom products. The sulfonated coal showed catalytic activity in this esterification reaction, with conversions between 29-45%

  20. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  1. Physico-chemistry characterization of sulfonated polyacrylamide polymers for use in polymer flooding

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, Masoud

    2010-07-01

    Hydrolyzed polyacrylamide polymer (HPAM) as a feasible and effective viscosifier has been fully studied and used for polymer flooding processes in several oil field, e.g. Daqing oil field. It has been shown that Hydrolyzed polyacrylamide polymers (HPAM) may be a good choice for high temperature condition with no oxygen and no divalent ions presence. At high temperature and high salinity conditions, polymer may precipitates and loss their viscosyfing properties. Also adsorption and retention of polymer in porous medium may change rheological properties of polymers. Thus, the viscosyfing property of polymers is influenced by several important parameters, e.g. salinity, hardness, temperature, adsorption, retention, polymer structure, and etc. By replacing some of carboxylate group of HPAM with another monomer, e.g. sodium salt of acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), effect of high salinity/hardness and temperature seems to be reduced specially for the samples with higher percentage of AMPS co-monomer. The ultimate aim of this work is to develop an understanding of the sulfonated polyacrylamide copolymers with a range of different sulfonation and molecular weight at high salinity and high temperature conditions. Most of the work in this thesis deals with viscosity and adsorption/retention measurements of the sulfonated copolymers and HPAM. The factors which may affect the viscosity of the polymers and have been identified in this work as most likely influencing also adsorption and retention of the polymers are shear rate, polymer concentration, sulfonation degree, molecular weight, NaCl concentration, divalent ion concentration, and temperature. (Author)

  2. Preparation and Characterization of Sulfonated Poly (ether ether ...

    African Journals Online (AJOL)

    NJD

    2007-08-10

    Aug 10, 2007 ... Preparation and Characterization of Sulfonated Poly (ether ... Currently perfluori- ... with phosphoric acid solution according to the method described earlier.11,12 ... where A is the membrane area available for diffusion; CA is.

  3. Perfluorooctane sulfonate (PFOS) depletion in beef cattle

    Science.gov (United States)

    Perfluorooctane sulfonate (PFOS) is an industrial chemical that is used as a surfactant in several manufactured consumer products but is also a breakdown product from other chemical surfactants. As a result of its extensive use, PFOS is ubiquitous in the environment and is often detected in biosoli...

  4. Room temperature synthesis of biodiesel using sulfonated ...

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  5. Ionomeric membranes based on partially sulfonated poly(styrene) : synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Picchioni, F.; Tricoli, V.; Carretta, N.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  6. Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Carretta, N.; Tricoli, V.; Picchioni, F.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  7. Adsorption of sophorolipid biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate, at the air/water interface.

    Science.gov (United States)

    Chen, Minglei; Dong, Chuchuan; Penfold, Jeff; Thomas, Robert K; Smyth, Thomas J P; Perfumo, Amedea; Marchant, Roger; Banat, Ibrahim M; Stevenson, Paul; Parry, Alyn; Tucker, Ian; Campbell, Richard A

    2011-07-19

    The adsorption of the lactonic (LS) and acidic (AS) forms of sophorolipid and their mixtures with the anionic surfactant sodium dodecyl benzene sulfonate (LAS) has been measured at the air/water interface by neutron reflectivity, NR. The AS and LS sophorolipids adsorb with Langmuir-like adsorption isotherms. The more hydrophobic LS is more surface active than the AS, with a lower critical micellar concentration, CMC, and stronger surface adsorption, with an area/molecule ∼70 Å(2) compared with 85 Å(2) for the AS. The acidic sophorolipid shows a maximum in its adsorption at the CMC which appears to be associated with a mixture of different isomeric forms. The binary LS/AS and LS/LAS mixtures show a strong surface partitioning in favor of the more surface active and hydrophobic LS component but are nevertheless consistent with ideal mixing at the interface. In contrast, the surface composition of the AS/LAS mixture is much closer to the solution composition, but the surface mixing is nonideal and can be accounted for by regular solution theory, RST. In the AS/LS/LAS ternary mixtures, the surface adsorption is dominated by the sophorolipid, and especially the LS component, in a way that is not consistent with the observations for the binary mixtures. The extreme partitioning in favor of the sophorolipid for the LAS/LS/AS (1:2) mixtures is attributed to a reduction in the packing constraints at the surface due to the AS component. Measurements of the surface structure reveal a compact monolayer for LS and a narrow solvent region for LS, LS/AS, and LS/LAS mixtures, consistent with the more hydrophobic nature of the LS component. The results highlight the importance of the relative packing constraints on the adsorption of multicomponent mixtures, and the impact of the lactonic form of the sophorolipid on the adsorption of the sophorolipid/LAS mixtures.

  8. Perfluoroalkyl sulfonates cause alkyl chain length-dependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production in APOE*3-leiden CETP mice

    NARCIS (Netherlands)

    Bijland, S.; Rensen, P.C.N.; Pieterman, E.J.; Maas, A.C.E.; Hoorn, J.W. van der; Erk, M.J. van; Havekes, L.M.; Dijk, K.W. van; Chang, S.C.; Ehresman, D.J.; Butenhoff, J.L.; Princen, H.M.G.

    2011-01-01

    Perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) are stable perfluoroalkyl sulfonate (PFAS) surfactants, and PFHxS and PFOS are frequently detected in human biomonitoring studies. Some epidemiological studies have shown modest positive

  9. Destruction of gel sulfonated cation-exchangers of the KU-2 type under the influence of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Roginskaya, B.S.; Zavadovskaya, A.S.; Znamenskii, Yu.P.; Paskhina, N.A.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the mechanism of interaction of Soviet sulfonated cation-exchangers of the KU-2 type with hydrogen peroxide. It is shown that under the influence of hydrogen peroxide sulfonated cation-exchangers begin, after a certain induction period, to lose capacity and to release destruction products into water; the length of the induction period increases with the degree of cross-linking. In a given time of contact between the resin and the solution the degree of destruction falls with increase of cross-linking. The principal product of destruction of sulfonated cation-exchangers is an aromatic sulfonic acid containing oxidized groups in the side chains.

  10. Risk assessment of linear alkylbenzene sulphonates, LAS, in agricultural soil revisited: Robust chronic toxicity tests for Folsomia candida (Collembola), Aporrectodea caliginosa (Oligochaeta) and Enchytraeus crypticus (Enchytraeidae)

    DEFF Research Database (Denmark)

    Krogh, P. H.; Lopez, C. V.; Cassani, G.

    2007-01-01

    To obtain robust data on the toxicity of LAS, tests with the collembolan Folsomia candida L., the oligochaetes Aporrectodea caliginosa Savigny (earthworm) and Enchytraeus crypticus Westheide and Graefe (enchytraeid) were performed in a sandy loam soil. Additionally limited tests with LAS spiked...... to sewage sludge, and subsequently mixed into soil, were performed. For the endpoint of interest, reproduction in soil, we found an EC10 of 205 mg LAS kg-1 soil [8.6-401] [95% confidence limits] for F. candida and an EC10 of 46 mg LAS kg-1 soil [13-80] for A. caliginosa after 28 days. E. crypticus...... was not affected by concentrations up to 120 mg LAS kg-1 soil. When adding (low contaminated) non-spiked sludge to soil, high stimulation of reproduction was ob-served for E. crypticus and A. caliginosa but not for F. candida. We argue that this difference in stimulative response between the tested species...

  11. The role of lignin sulfonate in flotation of bastnasite from barite

    International Nuclear Information System (INIS)

    Gerdel, M.A.; Smith, R.W.

    1988-01-01

    In carboxylate collector flotation of bastnasite from other semisoluble salt type minerals such as barite various modifiers must be added in order to achieve selective flotation. One such modifier is a lignin sulfonate. It may function in part by acting as a sequestrant for metal ions present, preventing autoactivation in the system by metal ions derived from the minerals themselves. It also functions as a depressant for barite than for bastnasite. The authors suggest that the strong depressing action on barite is related to a good fit of the sulfonate into the barite structure

  12. Detergents

    Directory of Open Access Journals (Sweden)

    Ho Tan Tai Louis

    2001-03-01

    Full Text Available Surfactants are amphiphile molecules. They can be anionic, cationic, nonionic or amphoteric. They are among the main ingredients encountered in detergents and personal care products. They have to meet increasingly more stringent requirements of biodegradability and come from renewable raw materials. Anionic surfactants, particularly alkylbenzene sulfonates, are, at the present time, the most widely used surfactants in detergents and personal care products. Among the nonionics, those with ethyle oxide groups are the most common and those coming from entirely renewable raw materials, such as alkyl polyglucosides (APG, are expected to play an important role in the future

  13. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  14. THE USE OF CHLOROSULFONIC ACID ON SULFONATION OF cPTFE FILM GRAFTED STYRENE FOR PROTON EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-06-01

    Full Text Available Sulfonation of g-ray iradiated and styrene-grafted crosslinked polytetrafluoro ethylene film (cPTFE-g-S film have been done. The aim of the research was to make hydrophyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared by using chlorosulfonic acid in chloroethane under various conditions. The impact of the percentage of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film were examined. The results show that sulfonation of surface-grafted films was incomplete at room temperature. Increasing concentration of chlorosulfonic acid and reaction temperature accelerate the reaction but they also favor side reactions. These lead to the decrease of the ion-exchange capacity, water uptake, and proton conductivity but the increase of the resistance to oxidation in a perhydrol solution. The resulted cPTFE-g-SS membraneis stabile in a H2O2 30% solution for 20 h.   Keywords: Chorosulfonic acid, sulfonation, PTFE film, proton excange membrane.

  15. Distribution of Linear Alkylbenzenes (LABs in Sediments of Sarawak and Sembulan Rivers, Malaysia

    Directory of Open Access Journals (Sweden)

    Sami Muhsen Magam

    2012-01-01

    Full Text Available The current study is one of the first studies evaluating the levels of linear alkylbenzenes (LABs in surface sediments of Sarawak and Sembulan rivers which are located in the east coast of Malaysia. The LABs, which are molecular tracers of sewage contamination, were measured in 15 surface sediment samples collected from these rivers. The samples were extracted, fractioned and analyzed by gas chromatography mass spectrometry (GC-MS. The findings revealed that the concentrations of ∑LABs ranged from 156.47 to 7386.19 ng/g dry weight (dw in the sediments of Sarawak River and from 643.18 to 5567.12 ng/g dw in the sediments of Sembulan River. The highest LABs levels were detected in the sediments collected from the sampling location SS9 in Sembulan River whereas the lowest levels were observed in the SS1 sampling location in Sarawak River. The I/E ratios (ratio of internal to external isomers of LABs for Sarawak River sediments ranged from 0.52 to 0.98 while for Sembulan River they fell within the range 0.87-1.79. The I/E ratio at the sampling station SS4 was much lower than the I/E ratios at the other stations, thus indicating that the wastewater discharged into Sarawak River from the areas surrounding station SS4 was poorly treated.

  16. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...

  17. Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Carlo Boaretti

    2015-07-01

    Full Text Available In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate and material (sulfonation degree variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.

  18. Undoped poly (phenyl sulfone) for radiation detection

    International Nuclear Information System (INIS)

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Sato, Nobuhiro; Kitamura, Hisashi; Takahashi, Sentaro

    2015-01-01

    Undoped aromatic ring polymers are potential scintillation materials. Here, we characterise poly (phenyl sulfone) (PPSU) for radiation detection. The amber-coloured transparent resin emits bluish-white fluorescence with 390-nm maximum. It has an excitation maximum of 340 nm, and has a density of 1.29 g/cm 3 . The effective refractive index based on its emission spectrum is 1.75. The light yield is almost equal to that of poly (ethylene terephthalate), which is a transparent resin. These results demonstrate that PPSU can be used as a component substrate in polymer blends for altering optical characteristics. - Highlights: • Poly (phenyl sulfone) (PPSU) has suitable characteristics as a scintillation material. • PPSU is an amber-coloured transparent resin that emits bluish white fluorescence with 390-nm maximum. • The 1.75 effective refractive index over the emission spectrum is relatively high. • The light yield is 0.95 times that of poly (ethylene terephthalate), which is a transparent resin. • PPSU can potentially alter optical characteristics in polymer blends

  19. Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell

    International Nuclear Information System (INIS)

    Das, Suparna; Kumar, Piyush; Dutta, Kingshuk; Kundu, Patit Paban

    2014-01-01

    Highlights: • Synthesis of sulfonated PVdF-co-HFP by reacting with chlorosulfonic acid. • Maximum degree of sulfonation and best properties were obtained for 7 h reaction. • A maximum water uptake value of 20% was obtained. • A maximum IEC value of 0.42 meq g −1 was obtained. • A methanol permeability of 2.44 × 10 −7 cm 2 s −1 was obtained. - Abstract: Sulfonation of PVdF-co-HFP was conducted by treating the copolymer with chlorosulfonic acid. The efficiency of this sulfonated copolymer towards application as a polymer electrolyte membrane in direct methanol fuel cell (DMFC) was evaluated. For this purpose, we determined the thermal stability, water uptake, ion exchange capacity (IEC), methanol crossover, and proton conductivity of the prepared membranes as functions of duration and degree of sulfonation. The characteristic aromatic peaks obtained in the FT-IR spectra confirmed the successful sulfonation of PVdF-co-HFP. The effect of sulfonation on the semi-crystalline nature of pure PVdF-co-HFP was determined from XRD analysis. Water uptake results indicated that a sulfonation time of 7 h produced maximum water uptake value of about 20%, with a corresponding IEC and proton conductivity values of about 0.42 meq g −1 and 0.00375 S cm −1 respectively. The maximum current density was recorded to be 30 mA cm −2 at 0.2 V potential

  20. IR Laser Ablative Degradation of Poly(phenylene ether sulfone): Deposition of Films Containing Sulfone, Sulfoxide and Sulfide Groups

    Czech Academy of Sciences Publication Activity Database

    Blazevska-Gilev, J.; Bastl, Zdeněk; Šubrt, Jan; Stopka, Pavel; Pola, Josef

    2009-01-01

    Roč. 94, č. 2 (2009), s. 196-200 ISSN 0141-3910 R&D Projects: GA AV ČR IAA400720619 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : laser ablation * laser-induced degradation * poly(1,4-phenylene ether-sulfone) Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.154, year: 2009

  1. Toxicity of pyrolysis gases from polyether sulfone

    Science.gov (United States)

    Hilado, C. J.; Olcomendy, E. M.

    1979-01-01

    A sample of polyether sulfone was evaluated for toxicity of pyrolysis gases, using the toxicity screening test method developed at the University of San Francisco. Animal response times were relatively short at pyrolysis temperatures of 600 to 800 C, with death occurring within 6 min. The principal toxicant appeared to be a compound other than carbon monoxide.

  2. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways.

    Science.gov (United States)

    Peng, Shuang; Hang, Nan; Liu, Wen; Guo, Wenjie; Jiang, Chunhong; Yang, Xiaoling; Xu, Qiang; Sun, Yang

    2016-05-01

    Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on lipopolysaccharide (LPS)-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK) as well as p65 subunit of nuclear factor-κB (NF-κB). In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  3. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways

    Directory of Open Access Journals (Sweden)

    Shuang Peng

    2016-05-01

    Full Text Available Acute lung injury (ALI or acute respiratory distress syndrome (ARDS is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection, on lipopolysaccharide (LPS-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK as well as p65 subunit of nuclear factor-κB (NF-κB. In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  4. Treatment of two different water resources in desalination and microbial fuel cell processes by poly sulfone/Sulfonated poly ether ether ketone hybrid membrane

    International Nuclear Information System (INIS)

    Ghasemi, Mostafa; Wan Daud, Wan Ramli; Alam, Javed; Ilbeygi, Hamid; Sedighi, Mehdi; Ismail, Ahmad Fauzi; Yazdi, Mohammad H.; Aljlil, Saad A.

    2016-01-01

    The PS (Polysulfone)/SPEEK (sulfonated poly ether ether ketone) hybrid membranes were fabricated and modified with low and high DS (degrees of sulfonation) for the desalination of brackish water and proton exchange membrane in microbial fuel cell. The results illustrated that SPEEK has changed the morphology of membranes and increase their hydrophilicity. PS/SPEEK with lower DS (29%) had the rejection percentage of 62% for NaCl and 68% for MgSO_4; while it was 67% and 81% for PS/SPEEK (76%) at 4 bars. Furthermore, the water flux for PS at 10 bar was 12.41 L m"−"2 h"−"1. It was four times higher for PS/SPEEK (29%) which means 49.5 L m"−"2 h"−"1 and 13 times higher for PS/SPEEK (76%) with means 157.76 L m"−"2 h"−"1. However, in MFC (microbial fuel cell), the highest power production was 97.47 mW/m"2 by PS/SPEEK (29%) followed by 41.42 mW/m"2 for PS/SPEEK (76%), and 9.4 mW/m"2 for PS. This revealed that the sulfonation of PEEK (poly ether ether ketone) made it a better additive for PS for desalination, because it created a membrane with higher hydrophilicity, better pore size and better for salt rejection. Although for the separator, the degree of sulfonation was limited; otherwise it made a membrane to transfer some of the unwanted ions. - Highlights: • Fabrication of a composite membrane for desalination and MFC. • PS/SPEEK (76%) had the lowest contact angle (48.8) and highest hydrophilicity than PS and PS/SPEEK (29%). • PS/SPEEK (29%) was the best separator for use in MFC. • PS/SPEEK (76%) had the highest flux (61.3 L m"−"2 h"−"1) for desalination.

  5. An investigation of proton conductivity of binary matrices sulfonated ...

    Indian Academy of Sciences (India)

    to their potential applications in proton exchange membrane fuel cells (PEMFCs) ... is highly sulfonated and has high water uptake property.11,12 The proton conductivity ... SPSU membranes have lower gas permeability and liquid. (water and ...

  6. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2014-10-01

    Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.

  7. Effect of sodium aromatic sulfonate group in anionic polymer dispersant on the viscosity of coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Toshio Kakui; Hidehiro Kamiya [Lion Corporation, Tokyo (Japan). Chemicals Research Laboratories, Chemicals Division

    2004-06-01

    This paper focused on the effect of sodium aromatic sulfonate in anionic polymer dispersants on the viscosity of coal-water mixtures (CWMs) with a Tatung coal powder. To determine the optimum molecular structure of a polymer dispersant for the minimum viscosity of a CWM, various anionic co-polymers with different hydrophilic and hydrophobic groups or different molecular weights were prepared, using various types of monomers. Anionic co-polymers with sodium aromatic sulfonate, such as sodium styrene-sulfonate and sodium naphthalene-sulfonate, reduced the viscosity of dense CWMs. In particular, a co-polymer of sodium styrene-sulfonate and sodium acrylate with a molar ratio of 70:30 and a molecular weight of {approximately} 10 000 gave the minimum viscosity of a 70 wt % CWM. To obtain a low viscosity for a CWM, a large electrostatic repulsive force with an absolute value of the zeta potential of the coal particles of {gt} 70 mV and {gt} 6.5 mg/g of adsorbed polymer on the coal surface were needed. The mixture of sodium polystyrene-sulfonate and sodium polyacrylate with a weight ratio of 50:50 also gave a low viscosity of 70 wt % CWM. On the basis of the results, the adsorption behavior of polymer dispersants on the coal surface is examined by measuring the wettability of coal powder pellets. 27 refs., 8 figs., 3 tabs.

  8. Effect of Anionic Surfactant Linear Alkylbenzene Sulfonate(LAS) on Physiological and Biochemical Characteristics of Aquatic Plants%阴离子型表面活性剂(LAS)对水生植物生理生化特性的影响

    Institute of Scientific and Technical Information of China (English)

    刘红玉; 周朴华; 杨仁斌; 廖柏寒; 鲁双庆; 余苹中

    2001-01-01

    采用室内培养实验方法, 以植物的生长量、过氧化氢酶(CAT)和过氧化物酶(POD)活性变化作为观测指标,研究了直链烷基苯磺酸钠(LAS)对稀脉浮萍(Lemna paucicostata L.)、满江红(Azolla imbricata(Roxb.) Nakai)、水网藻(Hydrodictyon sp.)生理生化特性的影响. 结果表明,当 LAS浓度超过 1 mg@ L-1时,稀脉浮萍的生长受到严重抑制,在 10、100 mg@ L-1下,出现负增长. CAT、POD活性变化与细胞受伤程度直接相关,可作为植物分子生态毒理学指标. LAS浓度在 0-10 mg@ L-1范围内,随着浓度升高,酶活性增加,清除细胞中由于 LAS产生的过氧化物伤害; 当浓度超过 10 mg@ L-1时,植物受到明显损伤,甚至死亡. 同时发现, CAT、POD活性水平与植物的类群直接相关, 被子植物稀脉浮萍的酶活性比蕨类植物满江红的高,藻类植物水网藻酶活性最低.

  9. Synthesis and characterization of sulfonated polyesters derived from glycerol; Sintese e caracterizacao de poliesteres sulfonados obtidos a partir do glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Fiuza, R.P. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Curso de Mestrado em Engenharia Quimica

    2010-07-01

    In this work were synthesized polyesters from glycerol and acid sulfonated phthalic previously. The materials were characterized by DSC, TGA, FTIR, SEM, XRD and XRF. The results showed effective sulfonation of phthalic acid. The presence of sulfonic groups promoted strong changes in the crystallinity of the new material makes the lens. The polyesters made from phthalic acid sulfonated combine characteristics such as heat resistance and groups that drivers potentiate the electrolyte for application in fuel cells proton exchange membrane and also for gas separation. (author)

  10. Sulfonic-based precursors (SAPs for silica mesostructures: Advances in synthesis and applications

    Directory of Open Access Journals (Sweden)

    Sadegh Rostamnia*

    2016-01-01

    Full Text Available Sulfonic acid-based precursors (SAP play an important role in tailoring mesoporous silica’s and convert them to a solid acid catalyst with a Bronsted-type nature. These kinds of solid acids contribute to sustainable and green chemistry by their heterogeneous, recyclable, and high efficiency features. Therefore, knowing the properties and reactivity of SAPs can guide us to manufacture a sulfonated mesostructures compatible with reaction type and conditions. In the present review, some of the important SAPs, their reactivity and mechanism of functionalization are discussed.

  11. Synthesis and ATRP of novel fluorinated aromatic monomer with pendant sulfonate group

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    Novel, fluorinated monomer with pendant sulfonate group was synthesized utilizing a two-step derivatization of 2,3,4,5,6-pentafluorostyrene (FS). The first step was a nucleophilic substitution of the fluorine atom in para position by hydroxyl group followed by sulfopropylation. The monomer...... was polymerized under aqueous ATRP conditions to yield phenyl-fluorinated aromatic homopolymer bearing pendant sulfonates on each repeating unit. Furthermore, this polymer was used as macroinitiator for the ATRP of poly(ethylene glycol) methacrylate. The polymers were characterized by 1H NMR, SEC and FTIR...

  12. The host cell sulfonation pathway contributes to retroviral infection at a step coincident with provirus establishment.

    Directory of Open Access Journals (Sweden)

    James W Bruce

    2008-11-01

    Full Text Available The early steps of retrovirus replication leading up to provirus establishment are highly dependent on cellular processes and represent a time when the virus is particularly vulnerable to antivirals and host defense mechanisms. However, the roles played by cellular factors are only partially understood. To identify cellular processes that participate in these critical steps, we employed a high volume screening of insertionally mutagenized somatic cells using a murine leukemia virus (MLV vector. This approach identified a role for 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1, one of two enzymes that synthesize PAPS, the high energy sulfate donor used in all sulfonation reactions catalyzed by cellular sulfotransferases. The role of the cellular sulfonation pathway was confirmed using chemical inhibitors of PAPS synthases and cellular sulfotransferases. The requirement for sulfonation was mapped to a stage during or shortly after MLV provirus establishment and influenced subsequent gene expression from the viral long terminal repeat (LTR promoter. Infection of cells by an HIV vector was also shown to be highly dependent on the cellular sulfonation pathway. These studies have uncovered a heretofore unknown regulatory step of retroviral replication, have defined a new biological function for sulfonation in nuclear gene expression, and provide a potentially valuable new target for HIV/AIDS therapy.

  13. Bis-sulfonic Acid Ionic Liquids for the Conversion of Fructose to 5-Hydroxymethyl-2-furfural

    Directory of Open Access Journals (Sweden)

    Sangho Koo

    2012-10-01

    Full Text Available Homogenous bis-sulfonic acid ionic liquids (1 mol equiv. in DMSO (10 mol equiv. at 100 °C efficiently mediated the conversion of D-fructose into 5-hydroxymethyl-2-furfural in 75% isolated yield, which was roughly a 10% increment compared to the case of the mono-sulfonic acid ionic liquids.

  14. Synthesis and properties of sulfonated copoly(phthalazinone ether imides) as electrolyte membranes in fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Pan Haiyan [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116012 (China); Institute of Functional Polymers, School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Zhu Xiuling, E-mail: zhuxl@dlut.edu.c [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116012 (China); Jian Xigao [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116012 (China)

    2010-01-01

    A new series of six-member sulfonated copolyimides (SPIs) were prepared by one-step solution copolycondensation from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 1,2-dihydro-2-(4-amino-2-sulfophenyl)-4- [4-(4-amino-2-sulfonphenoxy)-phenyl] (2H)phthalazin-1-one (S-DHPZDA), 4,4'-bis(4-aminophenoxy) biphenyl (BAPB) and 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-(aminophenoxyl)phenyl)] (2H)phthalazin-1-one (DHPZDA). The sulfonation degree (DS) of the SPIs was controlled by the mol ratio of the sulfonated diamine and non-sulfonated diamine. The obtained SPI membranes had excellent thermal stability, high mechanical property and proton conductivity as well as low methanol permeability. The tensile strength of the SPI membranes was ranging from 54.7 to 98.1 MPa, which was much higher than that of Nafion. The SPI membranes exhibited high proton conductivity (sigma) and low methanol permeability ranged from 10{sup -3} to 10{sup -2} S/cm and 10{sup -8} to 10{sup -7} cm{sup 2}/s depending on the DS of the polymers, respectively.

  15. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery

    Science.gov (United States)

    Xi, Jingyu; Li, Zhaohua; Yu, Lihong; Yin, Bibo; Wang, Lei; Liu, Le; Qiu, Xinping; Chen, Liquan

    2015-07-01

    The properties of sulfonated poly(ether ether ketone) (SPEEK) membranes with various degree of sulfonation (DS) and casting solvent are investigated for vanadium redox flow battery (VRFB). The optimum DS of SPEEK membrane is firstly confirmed by various characterizations such as physicochemical properties, ion selectivity, and VRFB single-cell performance. Subsequently the optimum casting solvent is selected for the optimum DS SPEEK membrane within N,N‧-dimethylformamide (DMF), N,N‧-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The different performance of SPEEK membranes prepared with various casting solvents can be attributed to the different interaction between solvent and -SO3H group of SPEEK. In the VRFB single-cell test, the optimum SPEEK membrane with DS of 67% and casting solvent of DMF (S67-DMF membrane) exhibits higher VRFB efficiencies and better cycle-life performance at 80 mA cm-2. The investigation of various DS and casting solvent will be effective guidance on the selection and modification of SPEEK membrane towards VRFB application.

  16. Toxicokinetics of perfluorooctane sulfonate in rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Rainbow trout (Oncorhynchus mykiss) confined to respirometer-metabolism chambers were dosed with perfluorooctane sulfonate (PFOS) by intra-arterial injection and sampled to obtain concentration time-course data for plasma, and either urine or expired water. The data were then an...

  17. The radiation chemistry of aqueous solutions of sodium 9,10-anthraquinone-2-sulfonate

    International Nuclear Information System (INIS)

    Burchill, C.E.; Smith, D.M.; Charlton, J.L.

    1976-01-01

    The 60 Co γ-radiolysis of aqueous solutions of sodium 9,10-anthraquinone-2-sulfonate has been studied in acidic, unbuffered, and alkaline conditions and with addition of N 2 O and 2-propanol. Mechanisms are proposed to account for the yields of H 2 O 2 and hydroxylated anthraquinone sulfonates. In neutral solution, in the absence of O 2 , the OH and e - adducts undergo preferential cross termination. Reduction of the OH adduct leads to dehydration and regeneration of the quinone. (author)

  18. Depositional history of sedimentary linear alkylbenzenes (LABs) in a large South American industrial coastal area (Santos Estuary, Southeastern Brazil)

    International Nuclear Information System (INIS)

    Martins, Cesar C.; Bicego, Marcia C.; Mahiques, Michel M.; Figueira, Rubens C.L.; Tessler, Moyses G.; Montone, Rosalinda C.

    2010-01-01

    This paper reports the reconstruction of the contamination history of a large South American industrial coastal area (Santos Estuary, Brazil) using linear alkylbenzenes (LABs). Three sediment cores were dated by 137 Cs. Concentrations in surficial layers were comparable to the midrange concentrations reported for coastal sediments worldwide. LAB concentrations increased towards the surface, indicating increased waste discharges into the estuary in recent decades. The highest concentration values occurred in the early 1970s, a time of intense industrial activity and marked population growth. The decreased LAB concentration, in the late 1970s was assumed to be the result of the world oil crisis. Treatment of industrial effluents, which began in 1984, was represented by decreased LAB levels. Microbial degradation of LABs may be more intense in the industrial area sediments. The results show that industrial and domestic waste discharges are a historical problem in the area. - The contamination history of a large South American industrial coastal area indicated by molecular indicator of sewage input.

  19. A Cell-Based Screen Reveals that the Albendazole Metabolite, Albendazole Sulfone, Targets Wolbachia

    Science.gov (United States)

    Bray, Walter M.; White, Pamela M.; Ruybal, Jordan; Lokey, R. Scott; Debec, Alain; Sullivan, William

    2012-01-01

    Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts. PMID:23028321

  20. Sulfonated copolyimide membranes derived from a novel diamine monomer with pendant benzimidazole groups for fuel cells

    DEFF Research Database (Denmark)

    Li, Wei; Guo, Xiaoxia; Aili, David

    2015-01-01

    . A series of sulfonated copolyimides (SPI) are prepared via random copolymerizatio of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) with a new diamine monomer with pendant benzimidazole groups, 2,2'-bis(4-(1H-benzo[d]imidazol-2-yl)phenoxy)benzidine (BIPOB), and a sulfonated diamine monomer 4,4'-bis...

  1. Study of radiation grafted and sulfonated poly(tetrafluoroethylene-co-hexafluoropropylene), FEP, membranes

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi; Hussin Mohd Nor

    1999-01-01

    Radiation grafted and sulfonated FEP membranes were prepared by radiation-induced grafting of styrene onto poly(tetrafluoroethylene-co-hexafluoropropylene) films at room temperature and subsequently sulfonated. The membrane composition was controlled via variation of the grafting conditions such as type of diluent, irradiation dose, dose rate and monomer concentration. The membrane properties such as water uptake, ion exchange capacity and ionic conductivity were found to be strongly dependent upon the degree of grafting. The membranes were shown to have a good combination of physico-chemical properties, which made them promising for development of low cost proton exchange membranes

  2. Semi-fluorinated sulfonated polyimide membranes with enhanced proton selectivity and stability for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Li, Jinchao; Liu, Suqin; He, Zhen; Zhou, Zhi

    2016-01-01

    A series of semi-fluorinated sulfonated polyimides (6F-SPIs) are designed and synthesized via a one-step high-temperature polycondensation reaction. The sulfonation degrees of 6F-SPIs are controlled through changing the ratio of sulfonated diamine to non-sulfonated diamine in the casting solution. The physico-chemical properties and single cell performance of 6F-SPI membranes are thoroughly evaluated and compared to a non-fluorinated SPI membrane (6H-SPI-50) and a Nafion 115 membrane. The results show that the designed 6F-SPI membrane with a 50% sulfonation degree (6F-SPI-50) possesses the highest proton selectivity (1.613 × 10 5 S min cm −3 ) among all tested membranes. Besides, the 6F-SPI-50 membrane exhibits a promising performance for vanadium redox flow batteries (VRFBs), showing higher coulombic efficiencies (96.90–99.20%) and energy efficiencies (88.25–64.80%) than the Nafion 115 membrane (with coulombic efficiencies of 90.60–96.70% and energy efficiencies of 81.04–60.10%) at the current densities ranging from 20 to 100 mA cm −2 . Moreover, the 6F-SPI-50 membrane shows excellent chemical stability in the VRFB system. This work paves the way for the development of a new class of 6F-SPI membranes for the VRFB application.

  3. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Christensen, Thomas Højlund; Guildal, T.

    2015-01-01

    The fate of total organic carbon, 32 elements (Al, Ag, As, Ba, Be, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Sb, Se, Sn, Sr, Ti, V, and Zn) and 4 groups of organic pollutants (linear alkylbenzene sulfonates, bis(2-ethylhexyl)phthalate, polychlorinated biphenyl...... on the assessment, it is evident that both inorganic and organic elements accumulated in the sewage sludge, with the exception of elements that are highly soluble or degradable by wastewater and sludge treatment processes. The majority of metals and metalloids were further accumulated in the incineration ash, while...

  4. Stabilized Sulfonated Aromatic Polymers by in situ Solvothermal Cross-Linking

    Energy Technology Data Exchange (ETDEWEB)

    Di Vona, Maria Luisa, E-mail: divona@uniroma2.it; Sgreccia, Emanuela [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome (Italy); Narducci, Riccardo; Pasquini, Luca [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome (Italy); MAtériaux Divisés, Interfaces, Réactivité, ELectrochimie (MADIREL – UMR 7246), Aix Marseille Université, Marseille (France); Hou, Hongying [Faculty of Material and Engineering, Kunming University of Science and Technology, Kunming (China); Knauth, Philippe [MAtériaux Divisés, Interfaces, Réactivité, ELectrochimie (MADIREL – UMR 7246), Aix Marseille Université, Marseille (France)

    2014-10-10

    The cross-link reaction via sulfone bridges of sulfonated polyether ether ketone (SPEEK) by thermal treatment at 180°C in presence of dimethylsulfoxide is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking, and hydration number. The memory effect, which is the membrane ability to “remember” the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110°C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number (λ) of 73.

  5. Investigation of sulfonated polysulfone membranes as electrolyte in a passive-mode direct methanol fuel cell mini-stack

    Energy Technology Data Exchange (ETDEWEB)

    Lufrano, F.; Baglio, V.; Staiti, P.; Stassi, A.; Arico, A.S.; Antonucci, V. [CNR - ITAE, Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' , Via Salita S. Lucia sopra Contesse n. 5 - 98126 S. Lucia - Messina (Italy)

    2010-12-01

    This paper reports on the development of polymer electrolyte membranes (PEMs) based on sulfonated polysulfone for application in a DMFC mini-stack operating at room temperature in passive mode. The sulfonated polysulfone (SPSf) with two degrees of sulfonation (57 and 66%) was synthesized by a well-known sulfonation process. SPSf membranes with different thicknesses were prepared and investigated. These membranes were characterized in terms of methanol/water uptake, proton conductivity, and fuel cell performance in a DMFC single cell and mini-stack operating at room temperature. The study addressed (a) control of the synthesis of sulfonated polysulfone, (b) optimization of the assembling procedure, (c) a short lifetime investigation and (d) a comparison of DMFC performance in active-mode operation vs. passive-mode operation. The best passive DMFC performance was 220 mW (average cell power density of about 19 mW cm{sup -2}), obtained with a thin SPSf membrane (70 {mu}m) at room temperature, whereas the performance of the same membrane-based DMFC in active mode was 38 mW cm{sup -2}. The conductivity of this membrane, SPSf (IEC = 1.34 mequiv. g{sup -1}) was 2.8 x 10{sup -2} S cm{sup -1}. A preliminary short-term test (200 min) showed good stability during chrono-amperometry measurements. (author)

  6. Sulfonated Holey Graphene Oxide (SHGO) Filled Sulfonated Poly(ether ether ketone) Membrane: The Role of Holes in the SHGO in Improving Its Performance as Proton Exchange Membrane for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Jiang, Zhong-Jie; Jiang, Zhongqing; Tian, Xiaoning; Luo, Lijuan; Liu, Meilin

    2017-06-14

    Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO 3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO 3 H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.

  7. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    International Nuclear Information System (INIS)

    Silva, V.S.; Ruffmann, B.; Vetter, S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M.; Nunes, S.P.

    2006-01-01

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion[reg] 112 was used as reference material. DMFC tests were also performed at 50 deg. C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion[reg] 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion[reg] 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%

  8. An electrochemical study in aqueous solutions on the binding of dopamine to a sulfonated cyclodextrin host

    International Nuclear Information System (INIS)

    Hendy, Gillian M.; Breslin, Carmel B.

    2012-01-01

    Highlights: ► DA and Sβ-CD form an Inclusion complex. ► Electrochemical techniques demonstrated this inclusion complex. ► The association constant, K, was computed as 331.3. ► 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. ► NMR studies confirmed the structural information on the inclusion complex. - Abstract: Clear evidence for the formation of a weak inclusion complex between dopamine (DA) and a sulfonated β-CD host in aqueous solution was obtained using a combination of electrochemical approaches. Using cyclic voltammetry, a distinct increase in the oxidation potential of DA and a reduction in the peak oxidation current were observed on adding an excess concentration of the sulfonated β-CD to the electrolyte solution. Equally, a clear increase in the half-wave oxidation potential of DA was observed in the presence of the sulfonated β-CD using rotating disc voltammetry. The association constant, K, was computed as 331.3 ± 5.8, indicating the formation of a weak inclusion complex, while a 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. The rate constant for the oxidation of DA was found to decrease on formation of the inclusion complex. This was attributed to higher reorganization energy for the oxidation of the included DA. These changes in the electrochemistry of DA were not observed when an excess of the smaller sulfonated α-CD was added to the electrolyte, indicating that these variations are not connected with simple electrostatic interactions between the protonated DA and the anionic sulfonated groups. It is proposed that the aromatic ring of the DA molecule includes within the cyclodextrin cavity, while the protonated amine group remains outside the cavity, bound electrostatically with the anionic sulfonated groups.

  9. Sulfonated phenolic material and its use in post primary oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pardue, J. E.; Stapp, P. R.

    1984-09-04

    Sulfonated phenolic compounds as well as sulfomethylated phenolic compounds, surfactant systems containing such compound and the use of such surfactant systems in post primary oil recovery are disclosed.

  10. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  11. Poly (ether imide sulfone) membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli; Nunes, Suzana Pereira

    2017-01-01

    A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl

  12. A facile and mild synthesis of trisubstituted allylic sulfones from Morita-Baylis-Hillman carbonates.

    Science.gov (United States)

    Jiang, Lin; Li, Yong-Gen; Zhou, Jiang-Feng; Chuan, Yong-Ming; Li, Hong-Li; Yuan, Ming-Long

    2015-05-07

    An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH) carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%-99%) with good to high selectivity (Z/E from 79:21 to >99:1). Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.

  13. Synthesis and properties of hexafluoroisopropylidene-containing sulfonated poly(arylene thioether phosphine oxide)s for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Longyong; Zhang, Chunjie; Kang, Sen; Tan, Ning; Xiao, Guyu; Yan, Deyue [College of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2010-03-15

    A series of novel sulfonated poly(arylene thioether phosphine oxide)s with hexafluoroisopropylidene moieties (sPTPOF) were prepared by polycondensation of sulfonated bis(4-fluorophenyl)phenyl phosphine oxide and bis(4-fluorophenyl)phenyl phosphine oxide with 4,4'-(hexafluoroisopropylidene) diphenthiol. The incorporation of hexafluoroisopropylidene moieties to the resulting polymers is effective to increase the hydrophobicity of non-sulfonated segments and to decrease the swelling while maintaining high proton conductivity. For instance, sPTPOF-100 showed a proton conductivity of 0.090 S/cm as well as a swelling of 5.3% at 80 C. In addition, the sPTPOF polymers exhibited excellent thermal properties and oxidative stability. AFM phase images illustrated that the sPTPOF membranes show a special nanophase-separated morphology, namely, the connectivity of ionic channels increased obviously but their width only slightly increased with increasing sulfonation degree. This special microstructure is favorable for promoting proton transport and restraining the swelling. The sPTPOF polymers are a promising material for proton exchange membranes. (author)

  14. Colorful Polyelectrolytes: An Atom Transfer Radical Polymerization Route to Fluorescent Polystyrene Sulfonate.

    Science.gov (United States)

    Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui

    2016-03-01

    A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.

  15. Stabilized sulfonated aromatic polymers by in situ solvothermal cross-linking

    Directory of Open Access Journals (Sweden)

    Maria Luisa eDi Vona

    2014-10-01

    Full Text Available The cross-link reaction via sulfone bridges of sulfonated polyetheretherketone (SPEEK by thermal treatment at 180 °C in presence of dimethylsulfoxide (DMSO is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. The memory effect, which is the membrane ability to remember the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110 °C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number ( of 73.

  16. Radiation graft post-polymerization of sodium styrene sulfonate onto polyethylene

    International Nuclear Information System (INIS)

    Kitaeva, N.K.; Duflot, V.R.; Ilicheva, N.S.

    2013-01-01

    Post-irradiation grafting of sodium styrene sulfonate (SSS) in the presence of acrylic acid (AA) has been investigated on polyethylene (PE) pre-exposed to gamma radiation at room temperature in the air. Special attention was paid to the effect of low molecular weight salt additives on the kinetics of graft copolymerization of SSS and AA. The presence of SSS links in the grafted PE copolymers was detected by the methods of UV and FTIR spectroscopy. Based on the FTIR spectroscopy and element analysis data, a mechanism was proposed for graft copolymerization of SSS and AA onto PE. The mechanical properties of the graft copolymers were studied. It was established that PE copolymers grafted with sulfonic acid and carboxyl groups have higher strength characteristics (16.3 MPa) compared to the samples containing only carboxyl groups (11 MPa). (author)

  17. Quinolinium 8-hydroxy-7-iodoquinoline-5-sulfonate 0.8-hydrate

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2012-12-01

    Full Text Available In the crystal structure of the title hydrated quinolinium salt of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid, C9H7N+·C9H5INO4S−·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37 lying essentially within a common plane and with the ferron anions forming π–π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6 Å]. The cations and anions are linked into chains extending along c through hydroxy O—H...O and quinolinium N—H...O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O—H...O hydrogen-bonding interactions along b, giving a two-dimensional network.

  18. Cell Adhesion and Proliferation on Sulfonated and Non-Modified Chitosan Films.

    Science.gov (United States)

    Martínez-Campos, Enrique; Civantos, Ana; Redondo, Juan Alfonso; Guzmán, Rodrigo; Pérez-Perrino, Mónica; Gallardo, Alberto; Ramos, Viviana; Aranaz, Inmaculada

    2017-05-01

    Three types of chitosan-based films have been prepared and evaluated: a non-modified chitosan film bearing cationizable aliphatic amines and two films made of N-sulfopropyl chitosan derivatives bearing both aliphatic amines and negative sulfonate groups at different ratios. Cell adhesion and proliferation on chitosan films of C2C12 pre-myoblastic cells and B16 cells as tumoral model have been tested. A differential cell behavior has been observed on chitosan films due to their different surface modification. B16 cells have shown lower vinculin expression when cultured on sulfonated chitosan films. This study shows how the interaction among cells and material surface can be modulated by physicochemical characteristics of the biomaterial surface, altering tumoral cell adhesion and proliferation processes.

  19. Nucleophilic tetrafluoroethylation of carbonyl compounds with fluorinated sulfones

    Czech Academy of Sciences Publication Activity Database

    Václavík, Jiří; Chernykh, Yana; Jurásek, Bronislav; Beier, Petr

    2015-01-01

    Roč. 169, Jan (2015), s. 24-31 ISSN 0022-1139 R&D Projects: GA ČR GAP207/11/0421 Grant - others:GA MŠk(CZ) ED3.2.00/08.0144; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : fluorine * tetrafluoroethylation * sulfones * nucleophilic addition * carbonyl compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.213, year: 2015

  20. A Facile and Mild Synthesis of Trisubstituted Allylic Sulfones from Morita-Baylis-Hillman Carbonates

    Directory of Open Access Journals (Sweden)

    Lin Jiang

    2015-05-01

    Full Text Available An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%–99% with good to high selectivity (Z/E from 79:21 to >99:1. Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.

  1. Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar.

    Science.gov (United States)

    Cao, Leichang; Yu, Iris K M; Chen, Season S; Tsang, Daniel C W; Wang, Lei; Xiong, Xinni; Zhang, Shicheng; Ok, Yong Sik; Kwon, Eilhann E; Song, Hocheol; Poon, Chi Sun

    2018-03-01

    Sulfonated biochar derived from forestry wood waste was employed for the catalytic conversion of starch-rich food waste (e.g., bread) into 5-hydroxymethylfurfural (HMF). Chemical and physical properties of catalyst were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, and elemental analysis. The conversion of HMF was investigated via controlling the reaction parameters such as catalyst loading, temperature, and reaction time. Under the optimum reaction conditions the HMF yield of 30.4 Cmol% (i.e., 22 wt% of bread waste) was achieved in the mixture of dimethylsulfoxide (DMSO)/deionized-water (DIW) at 180 °C in 20 min. The effectiveness of sulfonated biochar catalyst was positively correlated to the density of strong/weak Brønsted acidity (SO 3 H, COOH, and OH groups) and inversely correlated to humins content on the surface. With regeneration process, sulfonated biochar catalyst displayed excellent recyclability for comparable HMF yield from bread waste over five cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. THE SULFONATION STUDY OF REACTION MECHANISM ON PAPAVERINE ALKALOID BY GC-MS AND FT-IR

    Directory of Open Access Journals (Sweden)

    I Made Sudarma

    2010-06-01

    Full Text Available The aim of this research was to prove theoretical mechanism reaction on the sulfonation of papaverine alkaloid and the result could be used as a reference on the transformation of these alkaloid to the other derivatives. Theoriticaly sulfonation of papaverine (1 by HO-SO2Cl could produced papaverine sulfonyl chloride (1a. The formation of this product was analyzed by analytical thin layer chromatography GC-MS, and FT-IR. These analysis showed the formation of product (1a more favorable than the other. Tlc showed product (1a less polar than papaverine, and supported by GC-MS and infrared which showed molecular ion at m/z 412 due to the presence of -SO2Cl and vibration at 1153,4 dan 1265,2 Cm-1 due to absorption of sulfonyl group.   Keywords: reaction mechanism, sulfonation, papaverine alkaloid.

  3. Evaluation of Sulfonate-Based Collectors with Different Hydrophobic Tails for Flotation of Fluorite

    Directory of Open Access Journals (Sweden)

    Renji Zheng

    2018-02-01

    Full Text Available This investigation aims to demonstrate the effects of hydrophobic tails on the affinity and relevant flotation response of sulfonate-based collectors for fluorite. For this purpose, a series of alkyl sulfonates with different hydrophobic tails, namely sodium decanesulfonate (C10, sodium dodecylsulfate (C12, sodium hexadecanesulfonate (C16, and sodium dodecylbenzenesulfonate (C12B were applied. The flotation tests showed that C12 and C12B had a better collecting performance than C10 and C16 at pH < 10, and the flotation recovery of fluorite was higher when adopting C12B as a collector compared with C12 with a strong base. The adsorption behaviors of collectors on the fluorite surface were studied through zeta potential, Fourier transform infrared (FTIR, and X-ray photoelectron spectroscopy (XPS analyses. It was found that the affinity of alkyl sulfonates for fluorite was enhanced with the increase of the alkyl chain length from C10 to C16. The existence of phenyl in the hydrophobic tail of sulfonates could improve its activity for fluorite by reducing its surface tension. The abnormal phenomenon C16 with a high affinity for fluorite had a low collecting performance for fluorite mainly due to its overlong alkyl chain, resulting in low solubility in pulp, which restrained its interaction with fluorite. We concluded that C12B was the most applicable collector for fluorite among these reagents due to its high activity, high solubility, and low cost, which was further substantiated by calculating their molecular frontier orbital energy.

  4. Spectroscopic investigation of sulfonate phthalocyanine to probe enzyme reactions for heavy metals detection

    Energy Technology Data Exchange (ETDEWEB)

    Chaure, Shweta; Paul, Deepen; Vadagma, Pankaj [School of Engineering and Material Science, Queen Mary, University of London, London E1 4NS (United Kingdom); Ray, Asim K., E-mail: a.k.ray@qmul.ac.uk [School of Engineering and Material Science, Queen Mary, University of London, London E1 4NS (United Kingdom)

    2010-01-15

    Optical absorption and Raman spectra of the sulfonated copper phthalocyanine (CuTsPc) layer were exploited for detection of cadmium (Cd) contaminants in water. Acetylcholine esterase was immobilized by freely suspending them in calcium alginate microbeads and this gel was then spincoated on the drop cast sulfonated copper phthalocyanine film on a glass substrate to form a bilayer. The inhibition of catalytic reaction between acetylcholine chloride and enzyme due to Cd contaminants was monitored by recording changes in spectra of drop cast CuTsPc as an indicator. The detection limit of cadmium content in water was found to be 1 ppm.

  5. Spectroscopic investigation of sulfonate phthalocyanine to probe enzyme reactions for heavy metals detection

    International Nuclear Information System (INIS)

    Chaure, Shweta; Paul, Deepen; Vadagma, Pankaj; Ray, Asim K.

    2010-01-01

    Optical absorption and Raman spectra of the sulfonated copper phthalocyanine (CuTsPc) layer were exploited for detection of cadmium (Cd) contaminants in water. Acetylcholine esterase was immobilized by freely suspending them in calcium alginate microbeads and this gel was then spincoated on the drop cast sulfonated copper phthalocyanine film on a glass substrate to form a bilayer. The inhibition of catalytic reaction between acetylcholine chloride and enzyme due to Cd contaminants was monitored by recording changes in spectra of drop cast CuTsPc as an indicator. The detection limit of cadmium content in water was found to be 1 ppm.

  6. ANALYSIS OF SULFONATES IN AQUEOUS SAMPLES BY ION-PAIR LC/ESI-MS/MS WITH IN-SOURCE CID FOR ADDUCT PEAK ELIMINATION

    Energy Technology Data Exchange (ETDEWEB)

    OUYANG,S.; VAIRAVAMURTHY,M.A.

    1999-06-13

    Determination of low-molecular-weight organic sulfonates (e.g. taurine and cysteic acid) in aqueous solutions is important in many applications of biological, environmental and pharmaceutical sciences. These compounds are difficult to be determined by commonly used reversed-phase liquid chromatographic separation combined with UV-Visible detection because of their high solubility and the lack chromophoric moieties. Here the authors report a method combining ion-pair liquid chromatography and electrospray ionization tandem mass spectrometry (IPLC/ESI-MS/MS)for determining sulfonates. The ability of low-molecular-weight sulfonates to form ion-pairs with quaternary ammonium cations in aqueous solutions allowed LC separation with a C{sub 18} column. Detection of the sulfonates was accomplished with ESI-MS that lends a universal mode of mass detection for polar, water soluble compounds. An in-source collision induced dissociation (CID) was applied to eliminate the adduct peaks in mass spectra. Characteristic marker ions showed in the second stage mass spectra lent a method for identifying sulfonates.

  7. Thermal Stability of Sulfonated Poly(Ether Ether Ketone) Films: on the Role of Protodesulfonation

    OpenAIRE

    Koziara, Beata; Kappert, Emiel; Ogieglo, Wojciech; Nijmeijer, Dorothea C.; Hempenius, Mark A.; Benes, Nieck Edwin

    2016-01-01

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material, most likely via a slight cross-linking by H-substitution. It is well-known that the sulfonate proton plays a major role in the desulfonation reactions, and exchanging the protons with other cations ...

  8. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  9. Copper(I)-catalyzed olefination of N-sulfonylhydrazones with sulfones.

    Science.gov (United States)

    Xu, Shuai; Gao, Yunpeng; Chen, Ri; Wang, Kang; Zhang, Yan; Wang, Jianbo

    2016-03-25

    The Cu(I)-catalyzed olefination of N-sulfonylhydrazones with sulfones via metal carbene intermediates is reported. This reaction uses readily available starting materials and is operationally simple, thus representing a practical method for the construction of carbon-carbon double bonds. Mechanistically, Cu(I) carbene formation and subsequent carbene migratory insertion are proposed as the key steps.

  10. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  11. Colitis induced by sodium polystyrene sulfonate in sorbitol: A report of six cases.

    Science.gov (United States)

    Jacob, Sheba S K; Parameswaran, Ashok; Parameswaran, Sarojini Ashok; Dhus, Ubal

    2016-03-01

    Drug-related injury has been noted in virtually all organ systems, and recognition of the patterns of injury associated with medication enables modification of treatment and reduces the morbidity associated with the side effects of drugs. With the large number of new drugs being developed, documentation of the morphology of the changes seen as an adverse effect becomes important to characterize the pattern of injury. The pathologist is often the first to identify these abnormalities and correlate them with a particular drug. Kayexalate or sodium polystyrene sulfonate (SPS), a linear polymer derived from polystyrene containing sulfonic acid and sulfonate functional groups is used to treat hyperkalemia. It is usually administered with an osmotic laxative sorbitol orally or as retention enema. This combination has been implicated in causing damage to different parts of the gastrointestinal (GI) tract especially the colon and causes an established pattern of injury, recognizable by the presence of characteristic crystals, is presented to create a greater awareness of the Kayexalate colitis. This entity should be included in the differential diagnosis of lower GI mucosal injury in a setting of uremia and hyperkalemia.

  12. Structure and properties of compositions based on petroleum sulfonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Tutorskii, I.A.; Sultanova, A.S.; Belkina, E.V.; Fomin, A.G. [Lomonosov Academy of Fine Chemical Technology, Moscow (Russian Federation)

    1995-03-01

    Colloidal characteristics of compositions based on petroleum sulfonic acids were studied. Neutralized heavy oil residue exhibits surface-active properties and contains an ultradisperse filler. Analysis of the compositions by size-exclusion-chromatography shows deep structural changes in the heavy acid residue upon neutralization with calcium carbonate.

  13. Study on properties of cation-exchange membranes containing sulfonate groups

    International Nuclear Information System (INIS)

    Zu Jianhua; Wu Minghong; Qiu Shilong; Yao Side; Ye Yin

    2004-01-01

    Strong acid cation-exchange membranes were obtained by irradiation grafting of acrylic acid (AA) and sodium styrene sulfonate (SSS) onto high-density polyethylene (HDPE). Thermal and chemical stability of the cation-exchange membranes was investigated. The effectiveness of sulfonate-containing films was conformed in inducing high resistance to oxidative degradation. Thermal stability of the grafted HDPE was weaker than HDPE as detected by TGA analyzing technique. Char residue by TGA of the grafted HDPE is greater than that of HDPE. It shows that the branch chains including -SO 3 Na and -COOH was grafted onto the backbone of HDPE, and thus give a catalytic impetus to the charing. Crystallinity of the grafted membranes decreased with increasing grafting yield of the membrane samples. It is supposed that the decreased crystallinity is due to collective effects of the inherent crystallinity dilution by the amorphous grafted chains and disruption of spherulitic crystallites of the HDPE component

  14. Mortar modified with sulfonated polystyrene produced from waste plastic cups

    Directory of Open Access Journals (Sweden)

    L. A. C. MOTTA

    Full Text Available Abstract In this work, we studied the addition of sulfonated polystyrene produced from waste plastic cups as an admixture for mortars. Mortars were analyzed with polystyrene content of 0.0; 0.2; 0.6; 1.0 and 1.4% in relation to the cement mass. The influence of polystyrene on the mortars' properties was evaluated by the consistency index, water retention, water absorption, porosity, elasticity modulus, compressive strength, flexural strength, bond tensile strength and microscopy. The increase in the sulfonated polystyrene content decreased the elasticity modulus of the mortar and, despite higher porosity, there was a reduction of water absorption by capillarity. In relation to mortar without admixture, the modified mortar showed an increase in water retention and consistency index, and a large increase in flexural strength and bond tensile strength. The significant increase of bond tensile strength (214% with admixture 1% highlights the potential of the produced material as an adhesive mortar.

  15. In vitro hemocompatibility of sulfonated polypropylene non-woven fabric prepared via a facile γ-ray pre-irradiation grafting method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Wu, Guozhong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031 (China); Ye, Yin, E-mail: yeyin@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-11-30

    Graphical abstract: - Highlights: • Sulfonated PP{sub NWF} was successfully fabricated via γ-ray pre-irradiation-induced graft polymerization of SSS method with the aid of AAm. • Compared with the pristine PP{sub NWF}, the sulfonated PP{sub NWF} material presented outstanding hydrophilicity. • The sulfonated PP{sub NWF} exhibited good hemocompatibility. - Abstract: Sulfonated polypropylene non-woven fabric (PP{sub NWF}) was successfully prepared via γ-ray pre-irradiation-induced graft polymerization of sodium styrenesulfonate (SSS) and acrylamide (AAm). The effect of pre-irradiation dose, reaction temperature, reaction time and concentration of binary monomer on the degree of grafting (DG) was studied. The chemical structure of the original and modified PP{sub NWF} materials were investigated by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the successful introduction of sulfonated (−SO{sub 3}{sup −}) group. The wettability was examined via measurement of de-ionized water adsorption percentage, which demonstrated that the hydrophilicity of PP{sub NWF} was greatly enhanced after graft modification. A little amount of bovine serum albumin (BSA) adsorption and nearly no platelet adhesion on the surface of modified PP{sub NWF} and low hemolytic ratio of the modified PP{sub NWF} revealed that the sulfonated PP{sub NWF} exhibited good hemocompatibility. Besides, blood clotting time measurement indicated that the anticoagulant property of PP{sub NWF} was effectively enhanced via SSS modification. Consequently, the hydrophilicity, in vitro hemocompatibility and anticoagulant effect of PP{sub NWF} were significantly improved by γ-ray pre-irradiation-induced graft polymerization of SSS.

  16. An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment.

    Science.gov (United States)

    Johnson, Andrew C; Donnachie, Rachel L; Sumpter, John P; Jürgens, Monika D; Moeckel, Claudia; Pereira, M Gloria

    2017-12-01

    This work presents a new and unbiased method of risk ranking chemicals based on the threat they pose to the aquatic environment. The study ranked 12 metals, 23 pesticides, 11 other persistent organic pollutants (POPs), 13 pharmaceuticals, 10 surfactants and similar compounds and 2 nanoparticles (total of 71) of concern against one another by comparing their median UK river water and median ecotoxicity effect concentrations. To complement this, by giving an assessment on potential wildlife impacts, risk ranking was also carried out by comparing the lowest 10th percentile of the effects data with the highest 90th percentile of the exposure data. In other words, risk was pared down to just toxicity versus exposure. Further modifications included incorporating bioconcentration factors, using only recent water measurements and excluding either lethal or sub-lethal effects. The top ten chemicals, based on the medians, which emerged as having the highest risk to organisms in UK surface waters using all the ecotoxicity data were copper, aluminium, zinc, ethinylestradiol (EE2), linear alkylbenzene sulfonate (LAS), triclosan, manganese, iron, methomyl and chlorpyrifos. By way of contrast, using current UK environmental quality standards as the comparator to median UK river water concentrations would have selected 6 different chemicals in the top ten. This approach revealed big differences in relative risk; for example, zinc presented a million times greater risk then metoprolol and LAS 550 times greater risk than nanosilver. With the exception of EE2, most pharmaceuticals were ranked as having a relatively low risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Estimated pKa values for the environmentally relevant C1 through C8 perfluorinated sulfonic acid isomers.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2016-10-14

    In order to estimate isomer-specific acidity constants (pKa) for the perfluorinated sulfonic acid (PFSA) environmental contaminants, the parameterization method 6 (PM6) pKa prediction method was extensively validated against a wide range of carbon oxyacids and related sulfonic/sulfinic acids. Excellent pKa prediction performance was observed for the carbon oxyacids using the PM6 method, but this approach was found to have a severe positive bias for sulfonic/sulfinic acids. To overcome this obstacle, a correlation was developed between non-adjusted PM6 pKa values and the corresponding experimentally obtained/estimated acidity constants for a range of representative alkyl, aryl and halogen-substituted sulfonic acids. Application of this correction to the PM6 values allows for extension of this computational method to a new acid functional group. When used to estimate isomer-specific pKa values for the C1 through C8 PFSAs, the modified PM6 approach suggests an adjusted pKa range from -5.3 to -9.0, indicating that all members of this class of well-known environmental contaminants will be effectively completely dissociated in aquatic systems.

  18. The influence of chain rigidity and the degree of sulfonation on the morphology of block copolymers as nano reactor

    Science.gov (United States)

    Hong, K.; Zhang, X.

    2005-03-01

    Polyelectrolyte block copolymer was used to form an ordered domain of ionic block as a ``nanoreactor'' due to its ability to bind oppositely charged metal ion, Zn^2+, Fe^2+ etc. The purpose of our research is to investigate the controllability of the size and morphology of domains (inorganic nano particles) by changing backbone stiffness, the charge density and the volume fraction of ionic block. Poly(styrene sulfonate) (PSS), which backbone is flexible, and poly(cyclohexadiene sulfonate) (PCHDS), which backbone is ``semiflexible'', were used as ionic blocks. We synthesized PtBS-PSS and PS-PCHDS with various degree of sulfonation and the volume fraction. Zinc oxide (ZnO) nano particles successfully formed in the ionic domain of microphase separated block copolymers. We used SANS to characterize the morphology of block copolymers and TEM for block copolymer containing ZnO nano particles. Our experimental results show that the chemistry of ``sulfonation'' of block copolymers can be successfully used to synthesize nano composite materials.

  19. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  20. Major sulfonate transporter Soa1 in Saccharomyces cerevisiae and considerable substrate diversity in its fungal family

    DEFF Research Database (Denmark)

    Holt, Sylvester; Kankipati, Harish; De Graeve, Stijn

    2017-01-01

    Sulfate is a well-established sulfur source for fungi; however, in soils sulfonates and sulfate esters, especially choline sulfate, are often much more prominent. Here we show that Saccharomyces cerevisiae YIL166C(SOA1) encodes an inorganic sulfur (sulfate, sulfite and thiosulfate) transporter...... that also catalyses sulfonate and choline sulfate uptake. Phylogenetic analysis of fungal SOA1 orthologues and expression of 20 members in the sul1 Delta sul2 Delta soa1 Delta strain, which is deficient in inorganic and organic sulfur compound uptake, reveals that these transporters have diverse substrate...... preferences for sulfur compounds. We further show that SOA2, a S. cerevisiae SOA1 paralogue found in S. uvarum, S. eubayanus and S. arboricola is likely to be an evolutionary remnant of the uncharacterized open reading frames YOL163W and YOL162W. Our work highlights the importance of sulfonates and choline...

  1. Synthesis of fully and partially sulfonated polyanilines derived from ortanilic acid: An electrochemical and electromicrogravimetric study

    International Nuclear Information System (INIS)

    Cano Marquez, Abraham Guadalupe; Torres Rodriguez, Luz Maria; Montes Rojas, Antonio

    2007-01-01

    The electrochemical polymerization of 2-aminobenzene sulfonic acid, also called ortanilic acid (o-ASA), on a gold electrode precoated with polyaniline (PANI), has been carried out. We proved that the electropolymerization of o-ASA is enhanced on PANI electrodes, resulting in thicker films obtained in aqueous media at room temperature. The electrosynthesized film (P(o-ASA)) was characterized by cyclic voltammetry, FTIR and nuclear magnetic resonance. The compensation of P(o-ASA) charge was evaluated using electrochemical quartz crystal microbalance combined with cyclic voltammetry, which showed that the electroneutralization process mainly involves cations. Additionally, copolymers of aniline and o-ASA were electrosynthesized, using a metallic electrode modified with PANI also as a working electrode. The degree of sulfanation of copolymers has been modulated with the proportions of monomers in the electrosynthesis solution. The studies reveal a more important participation of cations in fully sulfonated polyaniline than in partially sulfonated polyaniline

  2. Extended x-ray absorption fine structure: Studies of zinc-neutralized sulfonated polystyrene ionomers

    International Nuclear Information System (INIS)

    Ding, Y.S.; Yarusso, D.J.; Pan, H.K.D.; Cooper, S.L.

    1984-01-01

    Extended x-ray absorption fine structure (EXAFS) measurements were performed on a series of zinc-neutralized sulfonated polystyrene ionomers and the local structure around the zinc atom was determined. An interference effect in the EXAFS signal between sulfur and oxygen atoms was found to be significant in these materials. A model for the local structure in the zinc-neutralized sulfonated polystyrene ionomers is proposed which suggests a highly ordered tetrahedral coordination of oxygen around the zinc atoms at a distance of 1.97 +- 0.02 A. In addition there are four sulfur atoms and four oxygen atoms at a distance of 3.15 +- 0.05 A. No zinc-zinc coordination within 5 A was detected in this study

  3. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Pivovar, Bryan [NREL

    2009-01-01

    Proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics in order to elucidate trends. Mass based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and conduction happens over length scales more appropriately represented by volume measurements rather than mass. Herein, we establish and review volume related parameters that can be used to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.

  4. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    International Nuclear Information System (INIS)

    Zhang Zhiming; Wei Zhixiang; Zhang Lijuan; Wan Meixiang

    2005-01-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with α-naphthalene sulfonic acid (α-NSA), β-naphthalene sulfonic acid (β-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO 3 H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act in a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including π-π interactions, hydrogen and ionic bonds

  5. Dismantlable Thermosetting Adhesives Composed of a Cross-Linkable Poly(olefin sulfone) with a Photobase Generator.

    Science.gov (United States)

    Sasaki, Takeo; Hashimoto, Shouta; Nogami, Nana; Sugiyama, Yuichi; Mori, Madoka; Naka, Yumiko; Le, Khoa V

    2016-03-02

    A novel photodetachable adhesive was prepared using a photodepolymerizable cross-linked poly(olefin sulfone). A mixture of a cross-linkable poly(olefin sulfone), a cross-linking reagent, and a photobase generator functioned as a thermosetting adhesive and exhibited high adhesive strength on quartz plates comparable to that obtained for commercially available epoxy adhesives. The cured resin was stable in the absence of UV light irradiation but completely lost its adhesive strength upon exposure of glued quartz plates to UV light in conjunction with heating to 100 °C.

  6. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Hasiotis, C.; Li, Qingfeng; Deimede, V.

    2001-01-01

    Polymeric membranes from blends of sulfonated polysulfones (SPSF) and polybenzimidazole (PBI) doped with phosphoric acid were developed as potential high-temperature polymer electrolytes for fuel cells and other electrochemical applications. The water uptake and acid doping of these polymeric...... membranes were investigated. Ionic conductivity of the membranes was measured in relation to temperature, acid doping level, sulfonation degree of SPSF, relative humidity, and blend composition. The conductivity of SPSF was of the order of 10/sup -3/ S cm/sup -1/. In the case of blends of PBI and SPSF...

  7. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Science.gov (United States)

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  8. Chondrogenesis on sulfonate-coated hydrogels is regulated by their mechanical properties.

    Science.gov (United States)

    Kwon, Hyuck Joon; Yasuda, Kazunori

    2013-01-01

    Many studies have demonstrated that sulfur-containing acidic groups induce chondrogenesis in vitro and in vivo. Recently, it is increasingly clear that mechanical properties of cell substrates largely influence cell differentiation. Thus, the present study investigated how mechanical properties of sulfonate-coated hydrogels influences chondrogenesis of mesenchymal stem cells (MSCs). Sulfonate-coated polyacrylamide gels (S-PAAm gels) which have the elastic modulus, E, of about 1, 15 and 150 kPa, were used in this study. MSCs cultured on the high stiffness S-PAAm gels (E=∼150 kPa) spread out with strong expression of stress fibers, while MSCs cultured on the low stiffness S-PAAm gels (E=∼1 kPa) had round shapes with less stress fibers but more cortical actins. Importantly, even in the absence of differentiation supplements, the lower stiffness S-PAAm gels led to the higher mRNA levels of chondrogenic markers such as Col2a1, Agc and Sox9 and the lower mRNA levels of an undifferentiation marker Sca1, indicating that the mechanical properties of S-PAAm gels strongly influence chondrogenesis. Blebbistatin which blocks myosin II-mediated mechanical sensing suppressed chondrogenesis induced by the low stiffness S-PAAm gels. The present study demonstrates that the soft S-PAAm gels effectively drive MSC chondrogenesis even in the absence of soluble differentiation factors and thus suggests that sulfonate-containing hydrogels with low stiffness could be a powerful tool for cartilage regeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Partially Fluorinated Sulfonated Poly(ether amide Fuel Cell Membranes: Influence of Chemical Structure on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Chulsung Bae

    2011-01-01

    Full Text Available A series of fluorinated sulfonated poly (ether amides (SPAs were synthesized for proton exchange membrane fuel cell applications. A polycondensation reaction of 4,4’-oxydianiline, 2-sulfoterephthalic acid monosodium salt, and tetrafluorophenylene dicarboxylic acids (terephthalic and isophthalic or fluoroaliphatic dicarboxylic acids produced SPAs with sulfonation degrees of 80–90%. Controlling the feed ratio of the sulfonated and unsulfonated dicarboxylic acid monomers afforded random SPAs with ion exchange capacities between 1.7 and 2.2 meq/g and good solubility in polar aprotic solvents. Their structures were characterized using NMR and FT IR spectroscopies. Tough, flexible, and transparent films were obtained with dimethylsulfoxide using a solution casting method. Most SPA membranes with 90% sulfonation degree showed high proton conductivity (>100 mS/cm at 80 °C and 100% relative humidity. Among them, two outstanding ionomers (ODA-STA-TPA-90 and ODA-STA-IPA-90 showed proton conductivity comparable to that of Nafion 117 between 40 and 80 °C. The influence of chemical structure on the membrane properties was systematically investigated by comparing the fluorinated polymers to their hydrogenated counterparts. The results suggest that the incorporation of fluorinated moieties in the polymer backbone of the membrane reduces water absorption. High molecular weight and the resulting physical entanglement of the polymers chains played a more important role in improving stability in water, however.

  10. Proton-transfer compounds of 8-hydroxy-7-iodoquinoline-5-sulfonic acid (ferron) with 4-chloroaniline and 4-bromoaniline.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D; Healy, Peter C

    2007-07-01

    The crystal structures of the proton-transfer compounds of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid) with 4-chloroaniline and 4-bromoaniline, namely 4-chloroanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate, C(6)H(7)ClN(+) x C(9)H(5)INO(4)S(-) x H(2)O, and 4-bromoanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate, C(6)H(7)BrN(+) x C(9)H(5)INO(4)S(-) x H(2)O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen-bonded cations, anions and water molecules which are extended into a three-dimensional framework structure through centrosymmetric R(2)(2)(10) O-H...N hydrogen-bonded ferron dimer interactions.

  11. Improving the Efficacy of Conventional Therapy by Adding Andrographolide Sulfonate in the Treatment of Severe Hand, Foot, and Mouth Disease: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Xiuhui Li

    2013-01-01

    Full Text Available Background. Herb-derived compound andrographolide sulfonate (called Xiyanping injection recommended control measure for severe hand, foot, and mouth disease (HFMD by the Ministry of Health (China during the 2010 epidemic. However, there is a lack of good quality evidence directly comparing the efficacy of Andrographolide Sulfonate combination therapy with conventional therapy. Methods. 230 patients were randomly assigned to 7–10 days of Andrographolide Sulfonate 5–10 mg/Kg/day and conventional therapy, or conventional therapy alone. Results. The major complications occurred less often after Andrographolide Sulfonate (2.6% versus 12.1%; risk difference [RD], 0.94; 95% CI, 0.28–1.61; P=0.006. Median fever clearance times were 96 hours (CI, 80 to 126 for conventional therapy recipients and 48 hours (CI, 36 to 54 for Andrographolide Sulfonate combination-treated patients (χ2=16.57, P<0.001. The two groups did not differ in terms of HFMD-cause mortality (P=1.00 and duration of hospitalization (P=0.70. There was one death in conventional therapy group. No important adverse event was found in Andrographolide Sulfonate combination therapy group. Conclusions. The addition of Andrographolide Sulfonate to conventional therapy reduced the occurrence of major complications, fever clearance time, and the healing time of typical skin or oral mucosa lesions in children with severe HFMD.

  12. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    Science.gov (United States)

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  13. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash; Schieda, Mauricio; Shahi, Vinod Kumar; Nunes, Suzana Pereira

    2011-01-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  14. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash

    2011-02-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  15. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    Science.gov (United States)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  16. Design and synthesis of polycyclic sulfones via Diels-Alder reaction and ring-rearrangement metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Gunta, Rama

    2015-01-01

    Here, we describe a new and simple synthetic strategy to various polycyclic sulfones via Diels-Alder reaction and ring-rearrangement metathesis (RRM) as the key steps. This approach delivers tri- and tetracyclic sulfones with six (n = 1), seven (n = 2) or eight-membered (n = 3) fused-ring systems containing trans-ring junctions unlike the conventional all cis-ring junctions generally obtained during the RRM sequence. Interestingly the starting materials used are simple and commercially available.

  17. Patterning of electrically conductive poly(aniline-co-aniline sulfonic acid) and its application in the immobilization of cytochrome c

    International Nuclear Information System (INIS)

    Oh, Se Young; Oh, Il Soo; Choi, Jeong-Woo

    2004-01-01

    We have synthesized poly(aniline-co-aniline sulfonic acid) and then investigated the feasibility of application as a specific and electrically conductive binding template for biomolecules. Poly(aniline-co-aniline sulfonic acid)s were prepared by oxidation polymerization of aniline and aniline sulfonic acid under various ratios. A fine pattern of the conducting copolyaniline was obtained by using a deep UV lithographic technique. Cytochrome c was immobilized onto the photochemically patterned conducting copolyaniline with a self-assembly method. Physical and electrochemical properties of the self-assembled cytochrome c monolayer were studied from atomic force microscopy and cyclic voltammetry. The self-assembled cytochrome c monolayer immobilized onto the copolyaniline with a high electrical conductivity showed a high electrochemical activity

  18. Membranes of polyindene sulfonated and PVA for use as polymer electrolyte; Membranas mistas de poli(indeno) sulfonado e PVA para uso como eletrolito polimerico

    Energy Technology Data Exchange (ETDEWEB)

    Loser, N.; Silva, B.B.R. da; Brum, F.J.B.; Forte, M.M.C. [Universidade Federal do Rio Grande do Sul - Escola de Engenharia, Porto Alegre, RS (Brazil)

    2010-07-01

    This study is focused on developing polymer poly electrolytes for fuel cell PEM and aims to evaluate the efficiency of sulfonated polyindene as A polymer electrolyte in blends with poly (vinyl alcohol) (PVA). For this, polyindene synthesized in the lab was functionalized with sulfonic groups (-SO{sub 3}H), using as sulfonation agent acetyl sulfate in 1,2-dichloroethane. The membranes of sulfonated polyindene (SPInd) and PVA were prepared in aqueous medium, using glutaraldehyde as a PVA cross linker. The membranes SPInd/PVA were evaluated on the content of sulfonic groups, ion exchange capacity (IEC), degree of swelling in water and thermal stability (TGA). Electrochemical impedance analysis was used for ionic conductivity evaluation and DMA for the mechanical strength of the membranes. Preliminary results show that the membranes showed ion exchange capacity about 3.2 m equiv/g and degree of swelling in water of 550%. (author)

  19. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Zhensheng; Bi, Cheng; Dai, Hua [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Huamin; Li, Xianfeng [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China)

    2011-01-01

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test. (author)

  20. Animated sulfonated or sulformethylated lignins as cement fluid loss control additives

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, P.

    1991-05-07

    This patent describes a method of cementing a zone in a well penetrating a subterranean formation comprising injecting down the well and positioning in the zone to be cemented a hydraulic aqueous cement slurry composition. It comprises: a hydraulic cement, and the following expressed as parts by weight per 100 parts of the hydraulic cement, water from about 25 to 105 parts, and a fluid loss control additive comprising from about 0.5 to 2.5 parts of a compound selected from the group consisting of a sulfonated lignin and a sulfomethylated lignin, wherein the lignin has been aminated by reacting it with between about 2-5 moles of a polyamine and 2-5 moles of an aldehyde per 1,000g of the lignin, and 0.1 to 1.5 parts of a compound selected from the group consisting of sodium carbonate, sodium metasilicate, sodium phosphate, sodium sulfite and sodium naphthalene sulfonate and a combination thereof.

  1. Quantitative structure–reactivity study on sulfonation of amines, alcohols and phenols

    Directory of Open Access Journals (Sweden)

    Abolghasem Beheshti

    2017-05-01

    Full Text Available Quantitative structure–reactivity relationship (QSRR can be considered as a variant of quantitative structure property relationship (QSPR studies, where the chemical reactivity of reactants in a specified chemical reaction is related to chemical structure. As follows, the sulfonation reaction yield of 24 amines, alcohols and phenols with sulfonyl chloride was studied by QSRR. Quantum chemical calculations (b3lyp/6-31+g (d were carried out to obtain the optimized geometry. The suitable set of molecular descriptors was calculated to represent the molecular structures of compounds, such as constitutional, topological, geometrical, electrostatic and quantum-chemical descriptors. The genetic algorithm (GA was applied to select the variables that resulted in the best-fitted models. After the variable selection, multiple linear regression (MLR was utilized to construct linear QSRR models. The maximum relative error in prediction (5.26 showed that the predictive ability of the model was satisfactory and it can be used for designing similar reactants with efficient sulfonation reaction.

  2. Deciphering the Role of Sulfonated Unit in Heparin-Mimicking Polymer to Promote Neural Differentiation of Embryonic Stem Cells.

    Science.gov (United States)

    Lei, Jiehua; Yuan, Yuqi; Lyu, Zhonglin; Wang, Mengmeng; Liu, Qi; Wang, Hongwei; Yuan, Lin; Chen, Hong

    2017-08-30

    Glycosaminoglycans (GAGs), especially heparin and heparan sulfate (HS), hold great potential for inducing the neural differentiation of embryonic stem cells (ESCs) and have brought new hope for the treatment of neurological diseases. However, the disadvantages of natural heparin/HS, such as difficulty in isolating them with a sufficient amount, highly heterogeneous structure, and the risk of immune responses, have limited their further therapeutic applications. Thus, there is a great demand for stable, controllable, and well-defined synthetic alternatives of heparin/HS with more effective biological functions. In this study, based upon a previously proposed unit-recombination strategy, several heparin-mimicking polymers were synthesized by integrating glucosamine-like 2-methacrylamido glucopyranose monomers (MAG) with three sulfonated units in different structural forms, and their effects on cell proliferation, the pluripotency, and the differentiation of ESCs were carefully studied. The results showed that all the copolymers had good cytocompatibility and displayed much better bioactivity in promoting the neural differentiation of ESCs as compared to natural heparin; copolymers with different sulfonated units exhibited different levels of promoting ability; among them, copolymer with 3-sulfopropyl acrylate (SPA) as a sulfonated unit was the most potent in promoting the neural differentiation of ESCs; the promoting effect is dependent on the molecular weight and concentration of P(MAG-co-SPA), with the highest levels occurring at the intermediate molecular weight and concentration. These results clearly demonstrated that the sulfonated unit in the copolymers played an important role in determining the promoting effect on ESCs' neural differentiation; SPA was identified as the most potent sulfonated unit for copolymer with the strongest promoting ability. The possible reason for sulfonated unit structure as a vital factor influencing the ability of the copolymers

  3. Quinolinium 8-hy-droxy-7-iodo-quinoline-5-sulfonate 0.8-hydrate.

    Science.gov (United States)

    Smith, Graham

    2012-12-01

    In the crystal structure of the title hydrated quinolinium salt of ferron (8-hy-droxy-7-iodo-quinoline-5-sulfonic acid), C9H7N(+)·C9H5INO4S(-)·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37) lying essentially within a common plane and with the ferron anions forming π-π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6) Å]. The cations and anions are linked into chains extending along c through hy-droxy O-H⋯O and quinolinium N-H⋯O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O-H⋯O hydrogen-bonding inter-actions along b, giving a two-dimensional network.

  4. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...... to various degrees. Series of grafting densities and graft lengths are prepared, and membranes are solvent cast from DMSO. The membrane properties in aqueous environments are evaluated from their water swelling behavior, and their thermal properties and stability are investigated by thermogravimetric...

  5. Poly(oxyethylene) electrolytes based on lithium pentafluorobenzene sulfonate

    International Nuclear Information System (INIS)

    Paillard, E.; Iojoiu, C.; Alloin, F.; Guindet, J.; Sanchez, J.-Y.

    2007-01-01

    Lithium pentafluorobenzene sulfonate was synthesized by a protocol whereby pollution by aromatic nucleophilic substitutions on the perfluorinated ring was avoided. Its poly(oxyethylene) complexes, although less conductive than lithium imide complexes, provided cationic transference numbers higher than 0.5. Surprisingly, even at fairly low concentrations, this salt markedly increased the mechanical properties of the polymer electrolyte. This effect was attributed to telechelic interactions of the ion pairs with distinct polyether chains and is in agreement with the high cationic transference numbers

  6. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-10-30

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  7. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-01-01

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES

  8. DETERMINATION OF ALKYLATED & SULFONATED DIPHENYL OXIDE SULFACTANT BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    Science.gov (United States)

    Methods for the determination of the anionic surfactant Dowfax 8390 are described. Dowfax is a complex mixture of various alkylated and sulfonated diphenyl oxides. The primary component of Dowfax is monoalkylated disulfonated diphenyl oxide (MADS). This work uses ion pairing chro...

  9. Pharmacokinetic profiles of perfluorobutane sulfonate and activation of hepatic genes in mice

    Science.gov (United States)

    Polyfluoroalkyl substances (PFAS) are organic chemicals with wide industrial and consumer uses. They are found ubiquitously at low levels in the environment and detectable in humans and wildlife. Perfluorobutane Sulfonate (PFBS) is a short-chained PFAS used to replace perfluorooc...

  10. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    A systematic adsorption study of perfluorinated sulfonic acid Nafion® ionomer on ribbon type highly graphitized carbon nanofibers (CNFs) was carried out using 19 fluorine nuclear magnetic resonance spectroscopy. Based on the values obtained for the equilibrium constant (Keq., derived from Langmuir....... The ionomer is probably adsorbed via the polar sulfonic group on hydrophilic Vulcan, whereas, it is adsorbed primarily via hydrophobic -CF2- backbone on the highly hydrophobic pristine CNFs. Ionomer adsorption behavior is gradually altered from apolar to polar group adsorption for the acid modified CNFs...

  11. Clinical Efficacy of Andrographolide Sulfonate in the Treatment of Severe Hand, Foot, and Mouth Disease (HFMD) is Dependent upon Inhibition of Neutrophil Activation.

    Science.gov (United States)

    Wen, Tao; Xu, Wenjun; Liang, Lianchun; Li, Junhong; Ding, Xiaorong; Chen, Xiao; Hu, Jianhua; Lv, Aiping; Li, Xiuhui

    2015-08-01

    Andrographolide sulfonate treatment has been shown to improve clinical severe hand, foot, and mouth disease (HFMD) efficacies when combined with conventional therapy. However, the mechanisms for its therapeutic effects remain elusive. In this study, we aimed to investigate whether andrographolide sulfonate exerts its efficacy by acting on neutrophil activation. We obtained serial plasma samples at two time points (before and after 5 days of therapy) from 28 HFMD patients who received conventional therapy and 18 patients who received combination therapy (andrographolide sulfonate plus conventional therapy). Then, we measured plasma myeloperoxidase (MPO), S100A8/A9, histone, and inflammatory cytokine levels. Furthermore, we examined if andrographolide sulfonate had direct effects on neutrophil activation in vitro. We observed that MPO and S100A8/A9 levels were markedly elevated in the HFMD patients before clinical treatment. At 5 days post-medication, the MPO, S100A8/A9, histone, and interleukin-6 levels were markedly lower in the combination therapy group compared with the conventional therapy group. In vitro studies showed that andrographolide sulfonate inhibited lipopolysaccharide-stimulated neutrophil activation, demonstrated by the decreased production of reactive oxygen species and cytokines. These data indicate that neutrophil activation modulation by andrographolide sulfonate may be a critical determinant for its clinical HFMD treatment efficacy. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Bioaccumulation of sodium alkyl sulfate zinc chloride and their mixture in young goby proterorhinus marmoratus pall

    Energy Technology Data Exchange (ETDEWEB)

    Topcuoglu, S.; Birol, E. (Cekmece Nuclear Research and Training Center, Istanbul (Turkey))

    1982-12-01

    The bioaccumulation of labelled surfactant, 35S-labelled sodium lauryl sulfate and 65Zn-labelled zinc chloride, was investigated both as a mixture and alone by themselves in young goby. The concentration factor of 7.15 was calculated for the surfactant in the whole-body fish and there was no effect of zinc chloride on this bioaccumulation process. Biological half-life of the surfactant was around 35 hours. The effects of surfactants on the zinc accumulation were also followed under the same conditions. The results indicated that the sodium lauryl sulfate had no effect on the accumulation of zinc, however, the other surfactant, linear alkylbenzene sulfonate, caused a significant increase in the zinc accumulation in comparison with the control group, during the uptake period.

  13. Bioaccumulation of sodium alkyl sulfate zinc chloride and their mixture in young goby proterorhinus marmoratus pall

    International Nuclear Information System (INIS)

    Topcuoglu, S.; Birol, E.

    1982-01-01

    The bioaccumulation of labelled surfactant, 35S-labelled sodium lauryl sulfate and 65Zn-labelled zinc chloride, was investigated both as a mixture and alone by themselves in young goby. The concentration factor of 7.15 was calculated for the surfactant in the whole-body fish and there was no effect of zinc chloride on this bioaccumulation process. Biological half-life of the surfactant was around 35 hours. The effects of surfactants on the zinc accumulation were also followed under the same conditions. The results indicated that the sodium lauryl sulfate had no effect on the accumulation of zinc, however, the other surfactant, linear alkylbenzene sulfonate, caused a significant increase in the zinc accumulation in comparison with the control group, during the uptake period. (author)

  14. Foam supported sulfonated polystyrene as a new acidic material for catalytic reactions

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    Polystyrene was grafted on carbon foam with a melted polypropylene film predeposited on the surface. Polystyrene was subsequently sulfonated by chlorosulfonic acid. The effect of the temperature, time of grafting and concentration of radical initiator was studied. The materials were characterized by

  15. Solvent and irradiation doses effects on the ion exchange capacity of sulfonated styrene grafted PVDF

    International Nuclear Information System (INIS)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.

    2011-01-01

    Polymers exhibiting ion exchange capacity are studied for many years due to their application in several fields, such as membranes for proton exchange fuel cells, filtration membranes, heavy ions recovery and artificial muscles and sensors. Radiation induced grafting followed by sulfonation is a well-known way to obtain ion exchange polymers. Fluorinated polymers are frequently used as polymeric matrix for grafting due to their excellent physicochemical properties. Radiation induced grafting of styrene into poly (vinylidene fluoride) (PVDF) by simultaneous method in 1:1 styrene/toluene or styrene/N,N-dimethylformamide solutions was studied. Irradiations were performed under nitrogen atmosphere, room temperature and at doses of 5, 10 and 20 kGy with dose rate of 5 kGy.h -1 from a 60 Co gamma source. After washing, grafted materials were sulfonated in 10% chlorosulfonic acid/1,2-dichloroethane solutions for 4 h at room temperature. Characterization shows that increasing irradiation dose corresponds to increases in the grafting yield (GY %) gravimetrically calculated and these different solvents shows different grafting behaviors. Toluene allows no more than 3 % of grafting while DMF allows up to 55 % of grafting in the same condition. Grafting in toluene solution occurs on the surface and in DMF solution it occurs in the bulk, as confirmed by SEM. Both irradiation doses and solvent used have direct effects in the ion exchange capacities (calculated after titrations). FT-IR spectra exhibit new peaks after grafting and after sulfonation, attributed to grafted monomer and sulfonic groups attached to the styrene. DSC shows differences in thermal behavior of the polymer before and after each step. (author)

  16. Solvent and irradiation doses effects on the ion exchange capacity of sulfonated styrene grafted PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Polymers exhibiting ion exchange capacity are studied for many years due to their application in several fields, such as membranes for proton exchange fuel cells, filtration membranes, heavy ions recovery and artificial muscles and sensors. Radiation induced grafting followed by sulfonation is a well-known way to obtain ion exchange polymers. Fluorinated polymers are frequently used as polymeric matrix for grafting due to their excellent physicochemical properties. Radiation induced grafting of styrene into poly (vinylidene fluoride) (PVDF) by simultaneous method in 1:1 styrene/toluene or styrene/N,N-dimethylformamide solutions was studied. Irradiations were performed under nitrogen atmosphere, room temperature and at doses of 5, 10 and 20 kGy with dose rate of 5 kGy.h{sup -1} from a {sup 60}Co gamma source. After washing, grafted materials were sulfonated in 10% chlorosulfonic acid/1,2-dichloroethane solutions for 4 h at room temperature. Characterization shows that increasing irradiation dose corresponds to increases in the grafting yield (GY %) gravimetrically calculated and these different solvents shows different grafting behaviors. Toluene allows no more than 3 % of grafting while DMF allows up to 55 % of grafting in the same condition. Grafting in toluene solution occurs on the surface and in DMF solution it occurs in the bulk, as confirmed by SEM. Both irradiation doses and solvent used have direct effects in the ion exchange capacities (calculated after titrations). FT-IR spectra exhibit new peaks after grafting and after sulfonation, attributed to grafted monomer and sulfonic groups attached to the styrene. DSC shows differences in thermal behavior of the polymer before and after each step. (author)

  17. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  18. Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates

    Science.gov (United States)

    Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit

    2014-06-01

    In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.

  19. Closed substance cycle and substance cycling management: Compilation and evaluation of data for the assessment of priority organic contaminants in secondary raw-material fertilisers (slightly polluted sewage sludge from rural areas and compost) and organic farm fertilisers (liquid manure and slurry) for a risk assessment; Kreislaufwirtschaft - Stoffstrommanagement: Ermittlung und Auswertung von Daten zur Beurteilung prioritaerer organischer Schadstoffe in Abfallduengern (niedrig belastete Klaerschlaemme aus laendlichen Regionen und Kompost) sowie in organischen Wirtschaftsduengern (Guelle und Jauche) fuer eine Risikobewertung

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, A.; Klein, M.

    2003-07-31

    In the scope of the presently discussed closed substance cycle management and the resulting substance cycling management the agricultural use of animal wastes, sewage sludges and composts as fertilisers and soil improvers, respectively, plays an important role. The aim of the present project was the scientific preparation of deliberations aiming to find out which concentrations of selected contaminants occurring in secondary raw-material fertilisers (sewage sludge and compost) and farm fertilisers can still be tolerated, which do not have harmful effects on the environment. Information on the occurrence in sewage sludges and soils and their effects on soil organisms were compiled and evaluated for the following substances: linear alkylbenzene sulfonates (LAS), nonylphenol (NP), tributyltin (TBT), benzo(a)pyrene (BaP), diethylhexyl phthalate (DEPH) and dibutyl phthalate (DBP). In addition, respective data were searched for polyacrylamide (PAM), polybrominated diphenyl ethers (PBDE) and polycyclic musk compounds. The impact of composts by organic contaminants was described giving examples for diethylhexyl phthalate and dibutyl phthalate, benzo(a)pyrene and polychlorinated biphenyls. Concerning the farm fertiliser slurry, information about organic pollutants stemming from cleaning agents or disinfectants, NP, LAS and quartenary ammonium compounds were collected. LAS, NP, TBT and DEHP were detected in most of the sewage sludge samples. DBP occurred less frequently and in lower concentrations than DEHP. Single exceedings of the respective limit-values of the 3{sup rd} Draft of the EU-Sewage Sludge Directive (LAS, NP, DEHP) or other expert groups (BaP) were observed. In compliance with the respective regulations, there seems to be no risk potential for terrestrial organisms. To derive reliable environmental standards for TBT, there is a need for more data. In compost, content of organic contaminants is generally dependent on impurities. Compost made of &apos

  20. Fe–Co/sulfonated polystyrene as an efficient and selective catalyst in heterogeneous Baeyer–Villiger oxidation reaction of cyclic ketones

    Directory of Open Access Journals (Sweden)

    Yingting Wang

    2018-02-01

    Full Text Available A highly efficient catalyst Fe–Co/sulfonated polystyrene (Fe–Co/SPS was introduced and synthesized, which catalyzed BV oxidation of ketones with aqueous hydrogen peroxide to give the corresponding lactones in high yield and selectivity. Solid acid catalyst of Fe–Co/SPS has been prepared by using the 98-wt% sulfuric acid as the sulfonating agent and CoCl2 combined FeCl3 as sources of metal ions. Various physical–chemical characterizations including FT-IR, XRD, SEM and TGA, revealed that bimetallic ions Fe3+–Co2+ species in the sulfonated polystyrene framework were responsible for the catalytic activities. The BV reaction catalyzed by Fe–Co/SPS highlighted the special effects between metal ions and protonic acids as well as solvent-free heterogeneous catalytic oxidation with excellent conversion.

  1. Synthesis and characterization of sulfonated polymers for ionomeric membranes based on styrene copolymers; Sintese e caracterizacao de precursores sulfonados para membranas polimericas a base de copolimeros estirenicos

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.M.; Forte, M.M.C.; Amico, S.C. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Lab. de Materiais Polimericos (LAPOL)], e-mail: crismbecker@yahoo.com.br, e-mail: mmcforte@ufrgs.br, e-mail: amico@ufrgs.br; Vargas, J.V.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica], e-mail: jvargas@demec.ufpr.br

    2006-07-01

    Polymer electrolyte membrane fuel cell (PEMFC) have emerged strongly as a viable alternative for power source owing to their high energy efficiency and environmental friendliness. Currently, Nafion is the most frequently used membrane even though it has a high cost. The objective of this work is to synthesize sulfonated polymers, based on styrene copolymers, with different sulfonation degrees as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the resulting polymers were characterized by Fourier Transform Infra-red (FTIR), thermogravimetric analysis (TGA) and degree of substitution or sulfonation (DS). The polyelectrolytes were evaluated regarding their ion exchange capacity (IEC) and conductivity. The results demonstrated that increasing the sulfonic acid content of the polymer results in higher IEC, conductivity and water uptake. (author)

  2. Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors

    Science.gov (United States)

    Ma, Biao; Zhou, Xiao; Bao, Hua; Li, Xingwei; Wang, Gengchao

    2012-10-01

    Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods (sGNS/PANI) are successfully synthesized via interfacial polymerization of aniline monomers in the presence of sulfonated graphene nanosheets (sGNS). The FE-SEM images indicate that the morphologies of sGNS/PANI composites can be controlled by adjusting the concentration of aniline monomers. FTIR and Raman spectra reveal that aligned PANI nanorod arrays for sGNS/PANI exhibit higher degree of conjugation compared with pristine PANI nanorods. The hierarchical composite based on the two-electrode cell possesses higher specific capacitance (497 F g-1 at 0.2 A g-1), better rate capability and cycling stability (5.7% capacitance loss after 2000 cycles) than those of pristine PANI nanorods.

  3. The prevalent synthesis of one-dimensional noble metal nanostructures based on sulfonated polyaniline at room temperature

    International Nuclear Information System (INIS)

    Xia Youyi

    2011-01-01

    We describe a prevalent method of synthesizing one-dimensional (1D) noble metal nanostructures (silver nanobelts and palladium nanowires) by treatment of corresponding noble metal ions only in the presence of the conductive sulfonated polyaniline without using any other reducing agents or energies. The results show that the sulfonated polyaniline provides the dual reductant and “soft template” roles to promoting noble metal ions to form shape-controlled 1D noble metal nanostructures in high yield. The employed approach may also shed some light on the preparation of other noble metal nanostructure by using conductive polymer.

  4. Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids

    Directory of Open Access Journals (Sweden)

    F. Alrouh

    2017-02-01

    Full Text Available Mesoporous silica MCM-41 and SBA-15 containing propyl sulfonic acid groups were synthesized according to the literature and were characterized by X-ray diffraction, N2 adsorption and the H+ exchange capacities of the sulfonic acid groups were titrated. The esterification reaction of glycerol with olive-pomace oil has been carried out by using prepared functionalized mesoporous silica (MCM-41 and SBA-15 as catalysts. It has been monitored by GC two fatty acids (palmitic and oleic acids as reactants in olive-pomace oil and their related monoacylglycerols (Glycerol monopalmitate GMP and monooleate GMO as reaction product. The catalytic activities of the functionalized mesoporous silica were compared with commercial catalysts, these included homogeneous catalysts (p-toluenesulfonic acid and heterogeneous catalysts (Amberlyst-15. The total yield of monoacylglycerols (GMO + GMP was nearly 40%. Remarkably, we found that MCM-41-SO3H was recycled at least 3 times without any loss of activity.

  5. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  7. Brain region distribution and patterns of bioaccumulative perfluoroalkyl carboxylates and sulfonates in east greenland polar bears (Ursus maritimus).

    Science.gov (United States)

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune

    2013-03-01

    The present study investigated the comparative accumulation of perfluoroalkyl acids (PFAAs) in eight brain regions of polar bears (Ursus maritimus, n = 19) collected in 2006 from Scoresby Sound, East Greenland. The PFAAs studied were perfluoroalkyl carboxylates (PFCAs, C(6) -C(15) chain lengths) and sulfonates (C(4) , C(6) , C(8) , and C(10) chain lengths) as well as selected precursors including perfluorooctane sulfonamide. On a wet-weight basis, blood-brain barrier transport of PFAAs occurred for all brain regions, although inner regions of the brain closer to incoming blood flow (pons/medulla, thalamus, and hypothalamus) contained consistently higher PFAA concentrations compared to outer brain regions (cerebellum, striatum, and frontal, occipital, and temporal cortices). For pons/medulla, thalamus, and hypothalamus, the most concentrated PFAAs were perfluorooctane sulfonate (PFOS), ranging from 47 to 58 ng/g wet weight, and perfluorotridecanoic acid, ranging from 43 to 49 ng/g wet weight. However, PFOS and the longer-chain PFCAs (C(10) -C(15) ) were significantly (p  0.05) different among brain regions. The burden of the sum of PFCAs, perfluoroalkyl sulfonates, and perfluorooctane sulfonamide in the brain (average mass, 392 g) was estimated to be 46 µg. The present study demonstrates that both PFCAs and perfluoroalkyl sulfonates cross the blood-brain barrier in polar bears and that wet-weight concentrations are brain region-specific. Copyright © 2012 SETAC.

  8. Water contentwater of determination of cationic polystyrene sulfonate resins by infrared spectrophotometry

    International Nuclear Information System (INIS)

    Noki, V.

    1987-01-01

    A method of the determination of water content in polystyrene sulfonate ion-exchange resins in the presence of alkaline earth counter-ions by I.R. spectrophotometry is proposed. This method does not hold in the case of transition metal due to the formation of coordinated complexes with water molecules.

  9. Liquid-liquid phase separation in dilute solutions of poly(styrene sulfonate) with multivalent cations: Phase diagrams, chain morphology, and impact of temperature

    Science.gov (United States)

    Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus

    2018-01-01

    The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.

  10. Synthesis and Characterization of Sulfonated Poly(Phenylene Containing a Non-Planar Structure and Dibenzoyl Groups

    Directory of Open Access Journals (Sweden)

    Hohyoun Jang

    2016-02-01

    Full Text Available Polymers for application as sulfonated polyphenylene membranes were prepared by nickel-catalyzed carbon-carbon coupling reaction of bis(4-chlorophenyl-1,2-diphenylethylene (BCD and 1,4-dichloro-2,5-dibenzoylbenzene (DCBP. Conjugated cis/trans isomer (BCD had a non-planar conformation containing four peripheral aromatic rings that facilitate the formation of π–π interactions. 1,4-Dichloro-2,5-dibenzoylbenzene was synthesized from the oxidation reaction of 2,5-dichloro-p-xylene, followed by Friedel-Crafts reaction with benzene. DCBP monomer had good reactivity in polymerization affecting the activity of benzophenone as an electron-withdrawing group. The polyphenylene was sulfonated using concentrated sulfuric acid. These polymers without any ether linkages on the polymer backbone were protected from nucleophilic attack by hydrogen peroxide, hydroxide anion, and radicals generated by polymer electrolyte membrane fuel cell (PEMFC operation systems. The mole fraction of the sulfonic acid groups was controlled by varying the mole ratio of bis(4-chlorophenyl-1,2-diphenylethylene in the copolymer. In comparison with Nafion 211® membrane, these SBCDCBP membranes showed ion exchange capacity (IEC ranging from 1.04 to 2.07 meq./g, water uptake from 36.5% to 69.4%, proton conductivity from 58.7 to 101.9 mS/cm, and high thermal stability.

  11. Synthesis, structural, solubility and anticancer activity studies of salts using nucleobases and sulfonic acids coformer

    Science.gov (United States)

    Singh, Neetu; Singh, Udai P.; Nikhil, Kumar; Roy, Partha; Singh, Hariji

    2017-10-01

    The reactions of natural and unnatural nucleobases (cytosine (Cyt), adenine (Ade), 5-aminouracil (AU) and caffeine (Caff)) with sulfonic acids coformer (1,5-naphthalenedisulfonic acid, NDSA; 5-sulfosalicylic acid, SSA) resulted in the formation of salts viz. [NDSA.Cyt] (1), [NDSA.Ade] (2), [NDSA.AU] (3), [NDSA.Caff] (4), [SSA.Cyt] (5), [SSA.Ade] (6), [SSA.AU] (7), and [SSA.Caff] (8). The structural analysis revealed that salts 1, 4, 6 and 7 have intermolecular interactions between adjacent nucleobases which form two different homodimer shown in R22 (8) motif and assembled via complementary Nsbnd H⋯O and Nsbnd H⋯N interactions. However, in all other salts an intermediate supramolecular synthon pattern was observed between nucleobases and sulfonic acids. The lattice energy was also calculated by DFT to investigate whether salts were thermodynamically more stable than its coformer. The same was further confirmed by differential scanning calorimetry-thermogravimetric (DSC-TG) analysis. The anticancer activity study of individual nucleobases and their NDSA salts were also performed on human breast (MCF-7) and lung (A 549) cancer cell. The salts formation of nucleobases with sulfonic acids improved their solubility, thereby demonstrating up to 8-fold increase in solubility of nucleobases.

  12. Polystyrene Sulfonate Threaded through a Metal-Organic Framework Membrane for Fast and Selective Lithium-Ion Separation.

    Science.gov (United States)

    Guo, Yi; Ying, Yulong; Mao, Yiyin; Peng, Xinsheng; Chen, Banglin

    2016-11-21

    Extraction of lithium ions from salt-lake brines is very important to produce lithium compounds. Herein, we report a new approach to construct polystyrene sulfonate (PSS) threaded HKUST-1 metal-organic framework (MOF) membranes through an in situ confinement conversion process. The resulting membrane PSS@HKUST-1-6.7, with unique anchored three-dimensional sulfonate networks, shows a very high Li + conductivity of 5.53×10 -4  S cm -1 at 25 °C, 1.89×10 -3  S cm -1 at 70 °C, and Li + flux of 6.75 mol m -2  h -1 , which are five orders higher than that of the pristine HKUST-1 membrane. Attributed to the different size sieving effects and the affinity differences of the Li + , Na + , K + , and Mg 2+ ions to the sulfonate groups, the PSS@HKUST-1-6.7 membrane exhibits ideal selectivities of 78, 99, and 10296 for Li + /Na + , Li + /K + , Li + /Mg 2+ and real binary ion selectivities of 35, 67, and 1815, respectively, the highest ever reported among ionic conductors and Li + extraction membranes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Kinetic investigations of graft copolymerization of sodium styrene sulfonate onto electron beam irradiated poly(vinylidene fluoride) films

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud Nasef, Mohamed, E-mail: mahmoudeithar@fkkksa.utm.m [Institute of Hydrogen Economy, International City Campus, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Chemical Engineering Department, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Saidi, Hamdani [Institute of Hydrogen Economy, International City Campus, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Chemical Engineering Department, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Mohd Dahlan, Khairul Zaman [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2011-01-15

    Graft copolymerization of sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoride) (PVDF) films was investigated to find out a simple preparation process for sulfonic acid proton exchange membranes with respect to monomer concentration, absorbed dose, temperature, film thickness and storage time. The reaction order of the monomer concentration and absorbed dose of grafting was found to be 2.84 and 1.20, respectively. The overall activation energy for graft copolymerization reaction was calculated to be 11.36 kJ/mol. The initial rate of grafting was found to decrease with an increase in the film thickness. The trapped radicals in the irradiated PVDF films remained effective in initiating the reaction without considerable loss in grafting level up to 180 days, when stored under -60 {sup o}C. The presence and distribution of polystyrene sulfonate grafts in the obtained membranes were observed by Fourier transform infrared (FTIR) spectroscopic analysis, scanning optical microscope and scanning transmission electron microscopy (STEM) coupled with X-ray energy dispersive (EDX), respectively.

  14. Heterogeneous ion-exchange membranes based on sulfonated poly(1,4-phenylene sulfide)

    Czech Academy of Sciences Publication Activity Database

    Schauer, Jan; Kůdela, Vlastimil; Richau, K.; Mohr, R.

    2006-01-01

    Roč. 198, 1-3 (2006), s. 256-264 ISSN 0011-9164 R&D Projects: GA ČR GA203/05/0080 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(1,4-phenylene sulfide) sulfonated * ion-exchange membrane Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.917, year: 2006

  15. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    Science.gov (United States)

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.

  16. Demarcation of mutant-carrying regions in barley plants after ethylmethane-sulfonate seed treatment

    DEFF Research Database (Denmark)

    Jacobsen, P.

    1966-01-01

    The branching pattern of the barley plant is analyzed and the anatomical structure of the resting barley embryo studied in longitudinal and cross-sections as well as by dissection techniques. The frequency and distribution of ethylmethane-sulfonate induced chloroplast and morphological seedling...

  17. Chemical mechanical polishing of hard disk substrate with {alpha}-alumina-g-polystyrene sulfonic acid composite abrasive

    Energy Technology Data Exchange (ETDEWEB)

    Lei Hong, E-mail: hong_lei2005@yahoo.com.c [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Bu Naijing; Chen Ruling; Hao Ping [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Neng Sima; Tu Xifu; Yuen Kwok [Shenzhen Kaifa Magnetic Recording Co., LTD, Shenzhen, 518035 (China)

    2010-05-03

    {alpha}-Alumina-g-polystyrene sulfonic acid ({alpha}-Al{sub 2}O{sub 3}-g-PSS) composite abrasive was prepared by surface activation, graft polymerization and sulfonation, successively. The composition, dispersibility and morphology of the product were characterized by Fourier transformed infrared spectroscopy, laser particle size analysis and scanning electron microscopy, respectively. The chemical mechanical polishing (CMP) performances of the composite abrasive on hard disk substrate with nickel-phosphorous plating were investigated. The microscopy images of the polished surfaces show that {alpha}-Al{sub 2}O{sub 3}-g-PSS composite abrasive results in improved CMP and post-CMP cleaning performances than pure {alpha}-alumina abrasive under the same testing conditions.

  18. Controlled disulfonated poly(arylene ether sulfone) multiblock copolymers for direct methanol fuel cells.

    Science.gov (United States)

    Li, Qing; Chen, Yu; Rowlett, Jarrett R; McGrath, James E; Mack, Nathan H; Kim, Yu Seung

    2014-04-23

    Structure-property-performance relationships of disulfonated poly(arylene ether sulfone) multiblock copolymer membranes were investigated for their use in direct methanol fuel cell (DMFC) applications. Multiple series of reactive polysulfone, polyketone, and polynitrile hydrophobic block segments having different block lengths and molecular composition were synthesized and reacted with a disulfonated poly(arylene ether sulfone) hydrophilic block segment by a coupling reaction. Large-scale morphological order of the multiblock copolymers evolved with the increase of block size that gave notable influence on mechanical toughness, water uptake, and proton/methanol transport. Chemical structural changes of the hydrophobic blocks through polar group, fluorination, and bisphenol type allowed further control of the specific properties. DMFC performance was analyzed to elicit the impact of structural variations of the multiblock copolymers. Finally, DMFC performances of selected multiblock copolymers were compared against that of the industrial standard Nafion in the DMFC system.

  19. The Initial Comparison Study of Sodium Lignosulfonate, Sodium Dodecyl Benzene Sulfonate, and Sodium p-Toluene Sulfonate Surfactant for Enhanced Oil Recovery

    Science.gov (United States)

    Khoirul Anas, Argo; Iman Prakoso, Nurcahyo; Sasvita, Dilla

    2018-04-01

    Surfactant (surface active agent) exhibit numerous interesting properties that enable their use as additional component in mobilising of residual oil from capillary pore after secondary recovery process using gas injection and water flooding. In this study, Sodium Lignosulfonate (SLS) surfactant was successfully synthesized by applying batch method using lignin from oil palm empty fruit bunches as precursor. Furthermore, its performance in reducing interfacial tension of crude oil and formation water colloidal system was compared with commercial available surfactant including Sodium Dodecyl Benzene Sulfonate (SDBS) and Sodium p-Toluene Sulfonate (SpTS). The synthesized SLS surfactant was characterized by using Fourier Transform Infrared (FTIR) spectroscopy. Meanwhile, its performance in reducing interfacial tension of crude oil and formation water colloidal system was analyzed by using compatibility test, phase behaviour analysis, and interfacial tension (IFT) measurement. The compatibility test shows that SLS, SDBS, and SpTS surfactants were compatible with formation water. In addition, the phase behaviour analysis shows that SLS surfactant was better than SpTS surfactant, while SDBS surfactant generates the highest performance proved by the best microemulsion formation resulted by SDBS. Furthermore, the optimum concentration of SLS, SDBS, and SpTS surfactants in reducing the interfacial tension of crude oil and formation water was 1.0%. The IFT measurement indicates that the performance of SLS with the value of 1.67 mN/m was also better than SpTS surfactant with the value of 3.59 mN/m. Meanwhile, SDBS surfactant shows the best performance with the IFT value of 0.47 mN/m.

  20. EFFECTIVENESS OF WASTE STABILIZATION PONDS IN REMOVAL OF LINEAR ALKYL BENZENE SALFONATE (LAS

    Directory of Open Access Journals (Sweden)

    Ahmed. M. Abdel-Rahman

    2013-06-01

    Full Text Available Detergents contain synthetic or organic surface active agents called surfactants, which are derived from petroleum product precursors. They have the common property of lowering the surface tensions of water thus allowing dirt or grease adhered to various articles to be washed off. Linear alkyl benzene sulfonate (LAS is a most commonly used anionic surfactant. Discharge of raw or treated wastewater containing this chemical substance into the environment causes major public health and enviromental problems. In this study, samples were taken from raw wastewater and effluents of treatment ponds of Elzaraby waste stabilization ponds over a period of one year. The treated effluent is either discharged into surface waters or re-used in agricultural irrigation. The samples were analyzed according to the standard methods. The results obtained from the samples taken in different seasons showed that the highest overall removal efficiency of LAS was achieved in summer season (77%, and the least efficiency was observed in Winter season (55%, while the maximum overall efficiency of BOD5 was in summer (88% and minimum efficiency was (73% in winter season. The Dissolved oxygen concentrations along the pond series (DO ranged from 0.18 to 4.8 mg/l.

  1. EFFECTIVENESS OF WASTE STABILIZATION PONDS IN REMOVAL OF LINEAR ALKYL BENZENE SALFONATE (LAS

    Directory of Open Access Journals (Sweden)

    Ahmed. M. Abdel-Rahman

    2013-01-01

    Full Text Available Detergents contain synthetic or organic surface active agents called surfactants, which are derived from petroleum product precursors. They have the common property of lowering the surface tensions of water thus allowing dirt or grease adhered to various articles to be washed off. Linear alkyl benzene sulfonate (LAS is a most commonly used anionic surfactant. Discharge of raw or treated wastewater containing this chemical substance into the environment causes major public health and enviromental problems. In this study, samples were taken from raw wastewater and effluents of treatment ponds of Elzaraby waste stabilization ponds over a period of one year. The treated effluent is either discharged into surface waters or re-used in agricultural irrigation. The samples were analyzed according to the standard methods. The results obtained from the samples taken in different seasons showed that the highest overall removal efficiency of LAS was achieved in summer season (77%, and the least efficiency was observed in Winter season (55%, while the maximum overall efficiency of BOD5 was in summer (88% and minimum efficiency was (73% in winter season. The Dissolved oxygen concentrations along the pond series (DO ranged from 0.18 to 4.8 mg/l.

  2. [Effect of sulfonation of polyethersulfone sheets on the adsorption of beta2-microglobulin].

    Science.gov (United States)

    Cheng, Liping; Sun, Shudong; Yue, Yilun; Huang, Jia; Mao, Huayi; Liang, Bo

    2005-06-01

    This study was performed to evaluate the adsorption of beta2-microglobulin(beta2 M) by blood dialysis membrane materials which are polyethersulfone (PES), sulfonated polyethersulfones, (PES-SO3Na-I and PES-SO3Na-I ) in vitro incubated in human serum and radiolabeled beta2M (125I-beta2 M) solution respectively. In these experiments, the materials were incubated in 125I-beta2 M solution and human serum at the appointed time ranging from 15 minutes to four hours at 37 degrees C, and then the amounts of 125I-beta2M and serum beta2M adsorbed by materials were measured by radioimmunoassay (RIA). In the 125I-beta2 M system, amounts of 125I-beta2M adsorbed by the materials decreased in sequence of PES-SO3 Na-II > PES-SO3Na-I > PES. In the serum system, amounts of beta2M adsorbed reached maximums at 30 minutes and the final adsorptions decreased in sequence of PES-SO3Na-II > PES-SO3Na-I > PES. Sulfonated PES removes beta2M more than PES does and the adsorption of beta2M increases with the increase in the degree of sulfonation. Its ability to remove significant amount of beta2M may result in less beta2M available for incorporation into amyloid. The use of PES-SO3Na membranes lessens the likelihood of dialysis-related amyloidosis (DRA) development, which remains a major source of morbidity for patients treated with long-term hemodialysis.

  3. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction

    Science.gov (United States)

    Hu, Yu-Peng; Lin, Shu-Yi; Huang, Cheng-Yen; Zulueta, Medel Manuel L.; Liu, Jing-Yuan; Chang, Wen; Hung, Shang-Cheng

    2011-07-01

    Cell surface carbohydrates play significant roles in a number of biologically important processes. Heparan sulfate, for instance, is a ubiquitously distributed polysulfated polysaccharide that is involved, among other things, in the initial step of herpes simplex virus type 1 (HSV-1) infection. The virus interacts with cell-surface heparan sulfate to facilitate host-cell attachment and entry. 3-O-Sulfonated heparan sulfate has been found to function as an HSV-1 entry receptor. Achieving a complete understanding of these interactions requires the chemical synthesis of such oligosaccharides, but this remains challenging. Here, we present a convenient approach for the synthesis of two irregular 3-O-sulfonated heparan sulfate octasaccharides, making use of a key disaccharide intermediate to acquire different building blocks for the oligosaccharide chain assembly. Despite substantial structural differences, the prepared 3-O-sulfonated sugars blocked viral infection in a dosage-dependent manner with remarkable similarity to one another.

  4. Effect of mixed-sulfonated aluminium phthalocyanine on human skin fibroblasts for photodynamic therapy

    CSIR Research Space (South Africa)

    Ndhundhuma, IM

    2008-08-01

    Full Text Available of the study was to evaluate the effect of mixed-sulfonated aluminium phthalocyanine (AlPcSmix) used as photosensitizers for PDT, determined by changes in cell morphology and cell viability of human skin fibroblasts (WS1). Methods. Cells incubated with 5, 10...

  5. Electrolytic membrane formation of fluoroalkyl polymer using a UV-radiation-based grafting technique and sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Shironita, Sayoko; Mizoguchi, Satoko; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan)

    2011-03-15

    A sulfonated fluoroalkyl graft polymer (FGP) membrane was prepared as a polymer electrolyte. First, the FGP membrane was grafted with styrene under UV irradiation. The grafted FGP was then sulfonated to functionalize it for proton conductivity. The grafting degree of the membrane increased with increasing grafting time during UV irradiation. The proton conductivity of the membrane increased with increasing grafting degree. The swelling ratio was independent of the grafting time, however, the water uptake increased with increasing grafting degree. Based on these results, it was found that the UV-initiated styrene grafting occurred along the membrane thickness direction. Moreover, the membrane was embedded within the glass fibers of the composite. This composite electrolytic membrane had 1.15 times the proton conductivity of a Nafion 117 membrane.

  6. Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties

    Directory of Open Access Journals (Sweden)

    Maoguo Tong

    2011-11-01

    Full Text Available A series of new sulfone compounds containing 1,3,4-oxadiazole moieties were synthesized. The structures of these compounds were confirmed by spectroscopic data (IR, 1H- and 13C-NMR and elemental analyses. Antifungal tests indicated that all the title compounds exhibited good antifungal activities against eight kinds of plant pathogenic fungi, and some showed superiority over the commercial fungicide hymexazol. Among them, compounds 5d, 5e, 5f, and 5i showed prominent activity against B. cinerea, with determined EC50 values of 5.21 μg/mL, 8.25 µg/mL, 8.03 µg/mL, and 21.00 µg/mL, respectively. The present work demonstrates that sulfone derivatives such as 5d containing a 1,3,4-oxadiazole moiety can be used as possible lead compounds for the development of potential agrochemicals.

  7. 78 FR 62443 - Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl Carboxylate Chemical Substances; Final...

    Science.gov (United States)

    2013-10-22

    ...) for perfluoroalkyl sulfonate (PFAS) chemical substances to add PFAS chemical substances that have... designating (for all listed PFAS chemical substances) processing as a significant new use. EPA is also... 40 CFR 721.9582 for PFAS chemical substances to add PFAS chemical substances that have completed the...

  8. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    International Nuclear Information System (INIS)

    Kordoghli, Bessem; Khiari, Ramzi; Mhenni, Mohamed Farouk; Sakli, Faouzi; Belgacem, Mohamed Naceur

    2012-01-01

    Highlights: ► In this paper, an original technique was present to improve the hydrophilic properties of polyester fibres. ► The modification of PET fabric was carried out using gaseous sulfur trioxide activated by UV irradiations. ► We fully characterized the modified and untreated fabrics. - Abstract: This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of -SO 3 H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  9. Well-Shaped Sulfonic Organosilica Nanotubes with High Activity for Hydrolysis of Cellobiose

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2017-04-01

    Full Text Available Sulfonic organosilica nanotubes with different acidity densities could be synthesized through the co-condensation of ethenyl- or phenylene-bridged organosilane and 3-mercaptopropyltrimethoxysilane followed by sulfhydryl (–SH oxidation. Transmission electron microscopy (TEM analysis and nitrogen adsorption-desorption experiment clearly exhibit the hollow nanotube structures with the diameters of about 5 nm. The compositions of the nanotube frameworks are confirmed by solid state 13C nuclear magnetic resonance (NMR while X-ray photoelectron spectroscopy (XPS shows that about 60–80% of SH groups were oxidized to sulfonic acid (SO3H. The acid contents were measured by both elemental analysis (CHNS mode and acid-base titration experiment, which revealed that the acid density was in the range of 0.74 to 4.37 μmol·m−2 on the solid. These nanotube-based acid catalysts exhibited excellent performances in the hydrolysis of cellobiose with the highest conversion of 92% and glucose selectivity of 96%. In addition, the catalysts could maintain high activity (65% conversion with 92% selectivity even after six recycles.

  10. Properties of sulfonated cation-exchangers made from petroleum asphaltites

    International Nuclear Information System (INIS)

    Pokonova, Yu.V.; Pol'kin, G.B.; Proskuryakov, V.A.

    1982-01-01

    The use of ion-exchangers in radiochemical technology is accompanied by changes of their properties under the influence of ionizing radiation. The rate of development of these processes depends on the nature and structure of the matrix and on the nature and amount of ionic groups. We have proposed a method of synthesis of ion-exchangers resistant to γ radiation from petroleum asphaltites. Continuing these investigations, we prepared cation-exchangers by sulfonation of a mixture of petroleum asphaltites and acid asphalt. An investigation of their radiation resistance is described in this paper

  11. Mortar modified with sulfonated polystyrene produced from waste plastic cups

    OpenAIRE

    MOTTA,L. A. C.; VIEIRA,J. G.; OMENA,T. H.; FARIA,F. A. C.; RODRIGUES FILHO,G.; ASSUNÇÃO,R. M. N.

    2016-01-01

    Abstract In this work, we studied the addition of sulfonated polystyrene produced from waste plastic cups as an admixture for mortars. Mortars were analyzed with polystyrene content of 0.0; 0.2; 0.6; 1.0 and 1.4% in relation to the cement mass. The influence of polystyrene on the mortars' properties was evaluated by the consistency index, water retention, water absorption, porosity, elasticity modulus, compressive strength, flexural strength, bond tensile strength and microscopy. The increase...

  12. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...

  13. An Extraordinary Sulfonated-Graphenal-Polymer-Based Electrolyte Separator for All-Solid-State Supercapacitors.

    Science.gov (United States)

    Liu, Xubo; Men, Chuanling; Zhang, Xiaohua; Li, Qingwen

    2016-09-01

    Sulfonated graphenal polymers can be assembled up by poly(vinyl alcohol) adhesion. The porous assembly structure results in a remarkably improved ionic conductivity and thus enhances electrochemical performances such as specific capacitance, capacitance retention, and cycling stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasani-Sadrabadi, Mohammad Mahdi [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Dashtimoghadam, Erfan; Sarikhani, Kaveh [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Majedi, Fatemeh S. [Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Khanbabaei, Ghader [Polymer Science and Technology Division, Research Institute of Petroleum Industry, Tehran (Iran)

    2010-05-01

    In the present study, polyelectrolyte membranes based on partially sulfonated poly(ether ether ketone) (sPEEK) with various degrees of sulfonation are prepared. The optimum degree of sulfonation is determined according to the transport properties and hydrolytic stability of the membranes. Subsequently, various amounts of the organically modified montmorillonite (MMT) are introduced into the sPEEK matrices via the solution intercalation technique. The proton conductivity and methanol permeability measurements of the fabricated composite membranes reveal a high proton to methanol selectivity, even at elevated temperatures. Membrane based on sPEEK and 1 wt% of MMT, as the optimum nanoclay composition, exhibits a high selectivity and power density at the concentrated methanol feed. Moreover, it is found that the optimum nanocomposite membrane not only provides higher performance compared to the neat sPEEK and Nafion {sup registered} 117 membranes, but also exhibits a high open circuit voltage (OCV) at the elevated methanol concentration. Owing to the high proton conductivity, reduced methanol permeability, high power density, convenient processability and low cost, sPEEK/MMT nanocomposite membranes could be considered as the alternative membranes for moderate temperature direct methanol fuel cell applications. (author)

  15. Physico-chemical evaluation and toxicity risk assessment of the urban rivers of Metro Cebu, Philippines

    International Nuclear Information System (INIS)

    Ramal, Allan; Santos, Alfredo; Florentino, Nathaniel; Castanares, Josephine; Suico, Ma. Ligaya; Koyama, Jiro

    2013-01-01

    Three prominent urban rivers in Metro Cebu were samples and analysed for their physico-chemical properties and their toxicity as to surfactant levels was evaluated using tilapia (Oreochromis niloticus L.). Surfactants in rivers, particularly the linear alkylbenzene sulfonates (LAS), ammonia (NH 3 ), nitrate, nitrite and phosphate were determined colorimetrically using UV-Vis spectrophotometer. Physical parameters such as conductivity, salinity, temperature, pH and Dissolved Oxygen (DO) were determined in situ using a Multi-probe digital meter. Winkler Method was carried out to confirm the levels of DO in water samples. Results revealed that Guadalupe, Mahiga and Butuanon Downstream contain DO levels lower than 5 ppm, which is level needed to support aquatic life. This result further correlates the levels of NH 3 in the samples with Guadalupe containing the highest NH 3 level of 13.09 ppm, followed by, Butuanon Dowstream (8.20 ppm), Mahiga (5.95ppm) and Butuanon Upstream (1.22 ppm) which are all beyond the DENR standard limit of 0.5 ppm. The LAS levels were found high in Butuanon Downstream (3.35 ppm), Guadalupe River (1.51 ppm), followed by Mahiga (1.02 ppm), and Butuanon Upstream (0.42 ppm). All of the river water samples except for Butuanon Upstream were beyond the tolerable limit for surfactants as prescribed by the DENR for surface water which is 0.5 ppm. Nitrate and nitrite levels for all river samples were below the DEBR standard limit of 10.0 ppm. Only Guadalupe (0.91 ppm) and Mahiga (0.52 ppm) failed to meet the DENR standard of 0.4 ppm for phosphate. Definitive Test for toxicity of LAS to Tilapia juveniles after 96 h showed an LC 5 0 of 7.6 ppm. This result was used for risk assessment of the three river systems for LAS. Toxicity Test of river samples showed 100% mortality for Guadalupe, Mahiga and Butuanon Downstream. Predicted Environment Concentrations (PEC) to Predicted No Effect Concentration (PNEC) ratio revealed that all river systems were at

  16. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    Directory of Open Access Journals (Sweden)

    Raimondo Maggi

    2016-10-01

    Full Text Available Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  17. Effect of linear alkylbenzene mixtures and sanitary sewage in biochemical and molecular responses in pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Flores-Nunes, Fabrício; Mattos, Jacó J; Zacchi, Flávia L; Serrano, Miguel A S; Piazza, Clei E; Sasaki, Silvio T; Taniguchi, Satie; Bicego, Márcia C; Melo, Cláudio M R; Bainy, Afonso C D

    2015-11-01

    Urban effluents are rich in nutrients, organic matter, pharmaceuticals and personal care products (PPCPs), pesticides, hydrocarbons, surfactants, and others. Previous studies have shown that oysters Crassostrea gigas accumulate significant levels of linear alkylbenzenes (LABs) in sanitary sewage contaminated sites, but there is little information about its toxicological effects in marine bivalves. The aim of this study was to analyze the transcription of genes in two tissues of C. gigas exposed for 12, 24, and 36 h to LABs or sanitary sewage. Likewise, the activity of antioxidant and biotransformation enzymes was measured in oysters exposed for 36 h in all groups. Oysters exposed to LABs and oysters exposed to sanitary sewage showed different patterns of transcriptional responses. LAB-exposed oysters showed lower level of biological responses than the oysters exposed to sanitary sewage. Despite the ability of the oyster C. gigas to accumulate LABs (28-fold), the data indicate that these contaminants are not the cause for the transcriptional responses observed in oysters exposed to sanitary sewage. Possibly, the biological changes observed in the sanitary sewage-exposed oysters are associated with the presence of other contaminants, which might have caused synergistic, additive, or antagonistic effects. The results show that FABP-like and GST-ω-like messenger RNAs (mRNAs) have a rapid response in tissues of oyster C. gigas exposed to sanitary sewage, suggesting a possible protective response and a role in maintaining homeostasis of these organisms.

  18. 77 FR 48924 - Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl Carboxylate Chemical Substances; Proposed...

    Science.gov (United States)

    2012-08-15

    ... perfluoroalkyl sulfonate (PFAS) chemical substances to add PFAS chemical substances that have completed the TSCA... listed PFAS chemical substances) processing as a significant new use. EPA is also proposing a SNUR for... is proposing to amend a SNUR at Sec. 721.9582 for PFAS chemical substances to add PFAS chemical...

  19. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s

    Science.gov (United States)

    Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun

    2018-01-01

    Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.

  20. The Influence of Operation Temperature of the Characteristic of Sulfonated Polyether-Ether Ketone Electrolyte Membrane

    International Nuclear Information System (INIS)

    Sri Handayani; Eniya Listiani Dewi

    2008-01-01

    Recently, high temperature Direct Methanol Fuel Cell (DMFC) has been receiving great attention, because provide faster reaction kinetic, the enhance electrode kinetics, reduced size and reduce Pt-based catalyst poisoning by CO. But at high temperature, it will decrease the membrane performance i.e. low proton conductivity affected by humidification and high methanol crossover as happening to Nafion-117 membrane (commercial membrane). To solve this problems, sulfonated polyether-ether ketone and composite (silica additive) as electrolyte membrane at high temperature DMFC was tried to use. In this research, sPEEK with sulfonation degree (SD) 47 % and 68 % and addition silica 3 wt % were used as electrolyte membranes. Proton conductivity and methanol permeability of these membranes were measured at various temperatures (25, 50, 90 and 140 C ). Proton conductivity of membranes were measured by standard bridge impedance spectroscopy (LCR-meter, HIOKI 3522-50) and it was found about 0.01-0.04 S/cm. Methanol permeability of membranes were investigated by diffusion cell and gave the result about 10 - 6 - 10 - 7cm 2 /s. The best sPEEK membrane was sPEEK membrane with SD 68 % and the addition of silica 3 wt%, signed by highest selectivity value (ratio proton conductivity to methanol permeability). Therefore, electrolyte membrane based sulfonated polyether-ether ketone (SD 68 %) with silica could be used at high temperature which give promising as solid electrolyte membrane in application high temperature DMFC. (author)

  1. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kordoghli, Bessem [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Khiari, Ramzi, E-mail: khiari_ramzi2000@yahoo.fr [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France); Mhenni, Mohamed Farouk [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Sakli, Faouzi [Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Belgacem, Mohamed Naceur [LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer In this paper, an original technique was present to improve the hydrophilic properties of polyester fibres. Black-Right-Pointing-Pointer The modification of PET fabric was carried out using gaseous sulfur trioxide activated by UV irradiations. Black-Right-Pointing-Pointer We fully characterized the modified and untreated fabrics. - Abstract: This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of -SO{sub 3}H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  2. Radiation grafting of styrene and maleic anhydride onto PTFE membranes and sequent sulfonation for applications of vanadium redox battery

    International Nuclear Information System (INIS)

    Qiu Jingyi; Ni Jiangfeng; Zhai Maolin; Peng Jing; Zhou Henghui; Li Jiuqiang; Wei Genshuan

    2007-01-01

    Using γ-radiation technique, poly(tetrafluoroethylene) (PTFE) membrane was grafted with styrene (St) (PTFE-graft-PS) or binary monomers of St and maleic anhydride (MAn) (PTFE-graft-PS-co-PMAn), respectively. Then grafted membranes were further sulfonated with chlorosulfonic acid into ion-exchange membranes (denoted as PTFE-graft-PSSA and PTFE-graft-PSSA-co-PMAc, respectively) for application of vanadium redox battery (VRB). Micro-FTIR analysis indicated that PTFE was successfully grafted and sulfonated at the above two different conditions. However, a higher degree of grafting (DOG) was obtained in St/MAn binary system at the same dose due to a synergistic effect. Comparing with PTFE-graft-PSSA, PTFE-graft-PSSA-co-PMAc membrane showed higher water uptake and ion-exchange capacity (IEC) and lower area resistance (AR) at the same DOG. In addition, PTFE-graft-PSSA-co-PMAc with 6% DOG also showed a higher IEC and higher conductivity compared to Nafion membrane. Radiation grafting of PTFE in St/MAn binary system and sequent sulfonation is an appropriate method for preparing ion-exchange membrane of VRB

  3. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    International Nuclear Information System (INIS)

    Sun Xiaoguang; Hou Jun; Kerr, John B.

    2005-01-01

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li + salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE 8 -co-E 3 SO 3 Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE 8 -g-E n SO 3 Li, n = 2, 3). The highest conductivity at 25 deg. C of 2.0 x 10 -7 S cm -1 was obtained for the PAE 8 -co-E 3 SO 3 Li with a salt concentration of EO/Li = 40. The conductivity of PAE 8 -g-E 3 SO 3 Li is lower than that of PAE 8 -co-E 3 SO 3 Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li + . The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE 8 -g-E 2 SO 3 Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 μA cm -2 at 85 deg. C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer

  4. Environmental Safety of the Use of Major Surfactant Classes in North America

    Science.gov (United States)

    Cowan-Ellsberry, Christina; Belanger, Scott; Dorn, Philip; Dyer, Scott; McAvoy, Drew; Sanderson, Hans; Versteeg, Donald; Ferrer, Darci

    2014-01-01

    This paper brings together over 250 published and unpublished studies on the environmental properties, fate, and toxicity of the four major, high-volume surfactant classes and relevant feedstocks. The surfactants and feedstocks covered include alcohol sulfate or alcohol sulfate (AS), alcohol ethoxysulfate (AES), linear alkylbenzene sulfonate (LAS), alcohol ethoxylate (AE), and long-chain alcohol (LCOH). These chemicals are used in a wide range of personal care and cleaning products. To date, this is the most comprehensive report on these substance's chemical structures, use, and volume information, physical/chemical properties, environmental fate properties such as biodegradation and sorption, monitoring studies through sewers, wastewater treatment plants and eventual release to the environment, aquatic and sediment toxicity, and bioaccumulation information. These data are used to illustrate the process for conducting both prospective and retrospective risk assessments for large-volume chemicals and categories of chemicals with wide dispersive use. Prospective risk assessments of AS, AES, AE, LAS, and LCOH demonstrate that these substances, although used in very high volume and widely released to the aquatic environment, have no adverse impact on the aquatic or sediment environments at current levels of use. The retrospective risk assessments of these same substances have clearly demonstrated that the conclusions of the prospective risk assessments are valid and confirm that these substances do not pose a risk to the aquatic or sediment environments. This paper also highlights the many years of research that the surfactant and cleaning products industry has supported, as part of their environmental sustainability commitment, to improve environmental tools, approaches, and develop innovative methods appropriate to address environmental properties of personal care and cleaning product chemicals, many of which have become approved international standard methods. PMID

  5. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid.

    Science.gov (United States)

    Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi

    2014-03-01

    Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone

    International Nuclear Information System (INIS)

    Sivaraman, P.; Kushwaha, R.K.; Shashidhara, K.; Hande, V.R.; Thakur, A.P.; Samui, A.B.; Khandpekar, M.M.

    2010-01-01

    All solid supercapacitor based on polyaniline (PANI) and crosslinked sulfonated poly[ether ether ketone] (XSPEEK,) is reported in this paper. The crosslinker used for sulfonated poly[ether ether ketone] (SPEEK) is 1,4-bis(hydroxymethyl) benzene. The XSPEEK is used as both solid electrolyte and separator membrane. Supercapacitors are fabricated using various PANI/XSPEEK weight ratios. These are characterized by cyclic voltammetry and galvanostatic charge-discharge studies. The supercapacitor with PANI/XSPEEK weight ratio 1:0.5, exhibit a specific capacitance of 480 F g -1 of PANI. To the best of authors' knowledge, the value reported here is the highest for a supercapacitor based on a proton conducting solid polymer electrolyte and PANI. Detailed electrochemical impedance spectroscopy analysis is carried out. The analysis shows that the complex capacitance of the supercapacitor depends on the XSPEEK content. The time constant (t 0 ), derived from the imaginary part of complex capacitance decreases with increase in the XSPEEK content in the supercapacitor. Cycle life characteristics of the supercapacitor show a decrease in specific capacitance during initial cycles and get stabilized during later cycles.

  7. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    Science.gov (United States)

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  8. Radiolytical Preparation of a Poly(Vinylbenzyl Sulfonic Acid)-Grafted FEP Membrane and Characterization as Polymer Electrolytes for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Y -C; Shin, J; Sohn, J -Y; Fei, G [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-09-15

    In this study, a novel polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP-g-PVBSA), has been successfully prepared by simultaneous irradiation grafting of vinylbenzyl chloride(VBC) monomer onto a FEP film and taking subsequent chemical modification steps to modify the benzyl chloride moiety to the benzyl sulfonic acid moiety. The chemical reactions for the sulfonation were carried out via the formation of thiouronium salt with thiourea, base-catalyzed hydrolysis for the formation of thiol, and oxidation with hydrogen peroxide. Each chemical conversion process was confirmed by FTIR, elemental analysis, and SEM-EDX. A chemical stability study performed with Fenton's reagent (3% H{sub 2}O{sub 2} solution containing 4 ppm of Fe{sup 2+}) at 70 deg. C revealed that FEP-g-PVBSA has a higher chemical stability than the poly(styrene sulfonic acid)-grafted membranes (FEP-g-PSSA). An EDX analysis was also used to observe the cross-sectional distribution behaviors of the hydrophilic sulfonic acid groups and hydrophobic fluorine groups. The characteristics of an ion-exchange capacity (IEC), water and methanol uptake, methanol permeability, and proton conductivity as a function of the degree of grafting were also studied. The IECs and water uptakes of membranes with different degrees of grafting (36-102%) were measured to be in the range of 0.8-1.62 meq/g, and 10-30%, respectively. When the degree of grafting reached 60% the proton conductivity was higher than that of a Nafion (registered) 212 membrane (6.1E-02 S/cm). The methanol permeability and uptake of the FEP-g-PVBSA membrane was significantly lower than that of the Nafion (registered) 212 membrane, and even the degree of grafting reached 102%. (author)

  9. Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Borghei, Maryam

    2014-01-01

    The interaction between high surface area nano-carbon catalyst supports for proton exchange membrane fuel cells (PEMFCs) and perfluorinated sulfonic acid (Nafion®) ionomer was studied 19 fluorine nuclear magnetic resonance spectroscopy (19F-NMR). The method was developed and improved for more...

  10. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    Science.gov (United States)

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  11. Alkali/Surfactant/Polymer Flooding in the Daqing Oilfield Class II Reservoirs Using Associating Polymer

    Directory of Open Access Journals (Sweden)

    Ru-Sen Feng

    2013-01-01

    Full Text Available Hydrophobically modified associating polyacrylamide (HAPAM has good compatibility with the Daqing heavy alkylbenzene sulfonate surfactant. The HAPAM alkali/surfactant/polymer (ASP system can generate ultralow interfacial tension in a wide range of alkali/surfactant concentrations and maintain stable viscosity and interfacial tension for 120 days. The HAPAM ASP system has good injectivity for the Daqing class II reservoirs (100–300 × 10−3 μm2 and can improve oil recovery by more than 25% on top of water flooding. In the presence of both the alkali and the surfactant, the surfactant interacts with the associating groups of the polymer to form more micelles, which can significantly enhance the viscosity of the ASP system. Compared with using HPAM (Mw = 2.5 MDa, using HAPAM can reduce the polymer use by more than 40%.

  12. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junfen, E-mail: junfensun@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, North People Road 2999, Shanghai 201620 (China); Wu, Lishun [Department of Chemistry and Chemical Engineering, Heze University, Daxue Road 2269, Heze, Shandong Province 274015 (China)

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  13. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations

    Science.gov (United States)

    Abstract: The maternal and developmental toxicities of perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. PFOS is an environmentally persistent compound used as a surfactant and occurs as a degradation product of both perfluorooctane sulfonyl fluorid...

  14. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, B.T.; Nijmeijer, K.; Benes, N.E.

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (≤5 wt%) and not too low spin speeds

  15. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, Beata; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds

  16. Sulfonate-grafted porous polymer networks for preferential CO(2) adsorption at low pressure

    NARCIS (Netherlands)

    Lu, W.; Yuan, D.; Sculley, J.; Zhao, D.; Krishna, R.; Zhou, H.-C.

    2011-01-01

    A porous polymer network (PPN) grafted with sulfonic acid (PPN-6-SO3H) and its lithium salt (PPN-6-SO3Li) exhibit significant increases in isosteric heats of CO2 adsorption and CO2-uptake capacities. IAST calculations using single-component-isotherm data and a 15/85 CO2/N2 ratio at 295 K and 1 bar

  17. Distribution of perfluorooctane sulfonate and other perfluorochemicals in the ambient environment around a manufacturing facility in China.

    Science.gov (United States)

    Wang, Yawei; Fu, Jianjie; Wang, Thanh; Liang, Yong; Pan, Yuanyuan; Cai, Yaqi; Jiang, Guibin

    2010-11-01

    Perfluorinated compounds (PFCs) can be released to the surrounding environment during manufacturing and usage of PFC containing products, which are considered as main direct sources of PFCs in the environment. This study evaluates the release of perfluorooctane sulfonate (PFOS) and other PFCs to the ambient environment around a manufacturing plant. Among the nine PFCs analyzed, only PFOS, perfluorooctanoic acid (PFOA), and perfluorohexane sulfonate (PFHxS) were found in dust, water, soil, and chicken eggs. Very high concentrations of PFOS and PFOA were found in dust from the production storage, raw material stock room, and sulfonation workshop in the manufacturing facility, with the highest value at 4962 μg/g (dry weight) for PFOS and 160 μg/g for PFOA. A decreasing trend of the three PFCs concentrations in soils, water, and chicken eggs with increasing distance from the plant was found, indicating the production site to be the primary source of PFCs in this region. Risk quotients (RQs) assessment for surface water >500 m away from the plant were less than unity. Risk assessment of PFOS using predicted no-effect concentration (PNEC, 3.23 ng/g on a logarithmic scale) indicated no immediate ecological risk of a reduction in offspring survival. PFOS concentrations in most egg samples did not exceed the benchmark concentration derived in setting a reference dose for noncancer health effects (0.025 μg/(kgxd)).

  18. Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Cleemann, Lars Nilausen

    2012-01-01

    Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para-phenylene and ......Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para...

  19. Evaluation of sulfonated polysulfone/zirconium hydrogen phosphate composite membranes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Ozden, Adnan; Ercelik, Mustafa; Devrim, Yilser; Colpan, C. Ozgur; Hamdullahpur, Feridun

    2017-01-01

    Highlights: •Very thin SPSf/ZrP composite membranes were prepared by solution casting method. •The viability of SPSf/ZrP membranes for DMFCs was investigated for the first time. •Superior proton conductivity over Nafion ® 115 was achieved between 45–80 °C. •Desired membrane characteristics, along with low manufacturing cost were achieved. •Single cell DMFC performance was improved up to 13%. -- Abstract: Direct methanol fuel cell (DMFC) technology has advanced perceivably, but technical challenges remain that must be overcome for further performance improvements. Thus, in this study, sulfonated polysulfone/zirconium hydrogen phosphate (SPSf/ZrP) composite membranes with various sulfonation degrees (20%, 35%, and 42%) and a constant concentration of ZrP (2.5%) were prepared to mitigate the technical challenges associated with the use of conventional Nafion ® membranes in DMFCs. The composite membranes were investigated through Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), Thermogravimetric Analysis (TGA), oxidative stability and water uptake measurements, and single cell testing. Comparison was also made with Nafion ® 115. Single cell tests were performed under various methanol concentrations and cell temperatures. Stability characteristics of the DMFCs under charging and discharging conditions were investigated via 1200 min short-term stability tests. The response characteristics of the DMFCs under dynamic conditions were determined at the start-up and shut-down stages. Composite membranes with sulfonation degrees of 35% and 42% were found to be highly promising due to their advanced characteristics with respect to proton conductivity, water uptake, thermal resistance, oxidative stability, and methanol suppression. For the whole range of parameters studied, the maximum power density obtained for SPSf/ZrP-42 (119 mW cm −2 ) was found to be 13% higher than that obtained for Nafion ® 115 (105 mW cm −2 ).

  20. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    Science.gov (United States)

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The corrosion inhibition of aluminum and its copper alloys in 1.0 M H2SO4 solution using linear-sodium dodecyl benzene sulfonate as inhibitor

    International Nuclear Information System (INIS)

    Abd El Rehim, Sayed S.; Amin, Mohammed A.; Moussa, S.O.; Ellithy, Abdallah S.

    2008-01-01

    The corrosion inhibition of Al and its two copper alloys are the subject of tremendous technological importance due to the increased industrial applications of these materials. This paper reports the results of potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) measurements on the corrosion inhibition of Al (Al-2.5% Cu and Al-7.0% Cu) alloys in 1.0 M H 2 SO 4 solution carried out in different concentrations of linear-sodium dodecyl benzene sulfonate as an anionic surfactant (LAS) and temperature range from 10 to 60 deg. C. The data revealed that the inhibition efficiency increases with increasing surfactant concentration and time of immersion, and decreases with solution temperature. Energy dispersion X-ray (EDX) observations of the electrode surface confirmed the existence of LAS adsorbed film on the electrode surface. The surfactant acted mainly as cathodic inhibitor. Maximum inhibition efficiency of the surfactant is observed at concentration around its critical micelle concentration (CMC). The inhibition occurs through adsorption of the surfactant on the metal surface without modifying the mechanism of the corrosion process, which tested by UV-spectroscopy. The potential of zero charge (PZC) of aluminum and Al-7.0% Cu was studied by ac-impedance, and the mechanism of adsorption is discussed. The adsorption isotherm is described by Temkin adsorption isotherm. Thermodynamic functions for activation and adsorption process were determined

  2. Demographic, reproductive, and dietary determinants of perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations in human colostrum

    NARCIS (Netherlands)

    Jusko, T.A.; Oktapodas, M.; Palkovičová Murinová, L.; Babjaková, J.; Verner, M.A.; DeWitt, J.C.; Babinská, K.; Thevenet-Morrison, K.; Čonka, K.; Drobná, B.; Thurston, S.W.; Lawrence, B.P.; Dozier, A.M.; Jarvinen-Seppo, K.M.; Patayová, H.; Trnovec, T.; Legler, J.; Hertz-Picciotto, I.; Lamoree, M.H.

    2016-01-01

    To determine demographic, reproductive, and maternal dietary factors that predict perfluoroalkyl substance (PFAS) concentrations in breast milk, we measured perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations, using liquid chromatography-mass spectrometry, in 184

  3. Perfluorooctane Sulfonate Concentrations in Amniotic Fluid, Biomarkers of Fetal Leydig Cell Function, and Cryptorchidism and Hypospadias in Danish Boys (1980-1996)

    DEFF Research Database (Denmark)

    Toft, Gunnar; Jönsson, Bo A; Bonde, Jens P

    2016-01-01

    BACKGROUND: Exposure to perfluorooctane sulfonate (PFOS) may potentially disturb fetal Leydig cell hormone production and male genital development. OBJECTIVES: We aimed to study the associations between levels of amniotic fluid PFOS, fetal steroid hormone, and insulin-like factor 3 (INSL3...... associations with fetal hormone levels may have long-term implications for reproductive health. CITATION: Toft G, Jönsson BA, Bonde JP, Nørgaard-Pedersen B, Hougaard DM, Cohen A, Lindh CH, Ivell R, Anand-Ivell R, Lindhard MS. 2016. Perfluorooctane sulfonate concentrations in amniotic fluid, biomarkers of fetal...

  4. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, Jilin (China)

    2010-10-01

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and {sup 1}H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 x 10{sup 4} S s cm{sup -3}, which indicates that it is a suitable candidate for applications in direct methanol fuel cells. (author)

  5. Fate of emerging and priority micropollutants during the sewage sludge treatment: Case study of Paris conurbation. Part 1: Contamination of the different types of sewage sludge.

    Science.gov (United States)

    Mailler, R; Gasperi, J; Patureau, D; Vulliet, E; Delgenes, N; Danel, A; Deshayes, S; Eudes, V; Guerin, S; Moilleron, R; Chebbo, G; Rocher, V

    2017-01-01

    This article provides data on the contamination of different kinds of sludge (raw, centrifuged, digested, thermally dried sludge and sludge cake) from Paris conurbation by 71 various pollutants including pharmaceutical products (PHPs), hormones, perfluorinated acids (PFAs), linear alkylbenzene sulfonate (LAS), alkylphenols (APs), phthalates (PAEs), polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs). Very high contents of LAS (0.1-10g/kg dry matter - DM) compared to other compounds were found in all types of sludge followed by DEHP (10-100mg/kg DM) and fluoroquinolones (1-100mg/kg DM). APs were measured at intermediary contents in Parisian sludge, lying in the 2-20mg/kg DM range. Finally, hormones, PAHs, PCBs, PAEs, PFAs and the remaining PHPs were all found at contents lower than 1mg/kg DM. For most compounds (PHPs, PFOS, DEHP, PAHs), no significant differences in the micropollutant contents were found for similar types of sludge from different WWTP in Paris, highlighting the homogeneity of sludge contamination in downstream Paris catchment. The variability of concentration is rather high (coefficient of variation >100%) for several PHPs, PFAs or PCBs while it is moderate (PFAs, APs and PCBs. During sludge treatment (centrifugation, digestion, thermal drying, sludge conditioning+press filtration), the hormones, LAS, APs, PAHs, DEHP and PCBs concentrations increased, while those of PHPs and PFAs decreased. In the case of digestion, the increase of content can be explained by no pollutant removal or a lower removal than DM removal (concentration phenomenon) whereas the decrease underlines that the compound is more removed than the DM. In any case, these concentration variations presuppose the mechanisms of dissipation that could be attributed to volatilization, biotic or abiotic transformation (complete or with metabolites production), bound residues formation. In addition, data on sludge liquors - centrifuged (CW) and condensed (TDW) waters

  6. Beta,beta-Disilylated Sulfones as Versatile Building Blocks in Organic Chemistry – A New Sulfonyl Carbanion Transmetalation

    Czech Academy of Sciences Publication Activity Database

    Puget, Bertrand; Jahn, Ullrich

    -, č. 17 (2010), s. 2579-2582 ISSN 0936-5214 Institutional research plan: CEZ:AV0Z40550506 Keywords : carbanions * transmetalation * silanes * sulfones * Julia olefination Subject RIV: CC - Organic Chemistry Impact factor: 2.447, year: 2010

  7. HYDRATION AND MICROSTRUCTURE OF BLENDED CEMENT WITH SODIUM POLYSTYRENE SULFONATE

    Directory of Open Access Journals (Sweden)

    Weifeng Li

    2017-03-01

    Full Text Available Polystyrene foamed plastic wastes are a kind of environmental pollutant. It could be recycled in cement industry as a chemical agent. In this paper, the effects of sodium polystyrene sulfonate (SPS on the hydration and microstructure of blended cement were investigated by calorimetry, X-ray diffraction (XRD, scanning electron microscopy (SEM and mercury intrusion porosimetry (MIP. SPS slightly delayed the hydration of alite and decreased its hydration degree. SPS did not change the phase compositions during hydration. SPS changed the morphology of ettringite (AFt and decreased the pore volumes and the sizes of pores.

  8. Las ondas en las universidades o las universidades en las ondas

    Directory of Open Access Journals (Sweden)

    Verónica Marín Díaz

    2014-01-01

    Full Text Available En las aulas y pasillos de las universidades vuelven a sonar las ondas hercianas que raen una variedad de programas a la anodina vida de la comunidad universitaria, inmersa en la implantación de títulos de Grado, nuevos programas de doctorado, legislación universitaria variable y un largo etcétera que afecta al devenir de la vida en el ámbito de la educación superior.

  9. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  10. Electrooxidative Tandem Cyclization of Activated Alkynes with Sulfinic Acids To Access Sulfonated Indenones

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jiangwei [The; Center; Shi, Wenyan [The; Zhang, Fan [The; Liu, Dong [The; Tang, Shan [The; Wang, Huamin [The; Lin, Xiao-Min [Center; Lei, Aiwen [The

    2017-05-25

    An,electrooxidative direct arylsulfonlylation of yones sulfintc acids via a radical tandem cyclization strategy has been developed for the construction of sulfonated ilicIenones:under oxidant, free conditions. This method provides a simple and efficient approach to prepare various sulfonylindenones in good to,excellent:Tyidds,, demonstrating the tremendous prospect of utilizing electrocatalysis in oxidative coupling, Notably, this reaction could Be easily scaled up with good, efficiency.

  11. Thermal stability of sulfonated Poly(Ether Ether Ketone) films : on the role of Protodesulfonation

    NARCIS (Netherlands)

    Koziara, B.T.; Kappert, E.J.; Ogieglo, W.; Nijmeijer, Kitty; Hempenius, M.A.; Benes, N.E.

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material,

  12. The Role of Moderate Static Magnetic Fields on Biomineralization of Osteoblasts on Sulfonated Polystryene Films

    Energy Technology Data Exchange (ETDEWEB)

    X Ba; M Hadjiargyrou; E DiMasi; Y Meng; M Simon; Z Tan; M Rafailovich

    2011-12-31

    We have investigated the effects of moderate static magnetic fields (SMFs) on murine MC3T3-E1 osteoblasts, and found that they enhance proliferations and promote differentiation. The increase in proliferation rates in response to SMFs was greater in cultures grown on partially sulfonated polytstyrene (SPS, degree of sulfonation: 33%) than in cultures grown on tissue culture plastic. We have previously shown that when the degree of sulfonation exceeded a critical value (12%) [1], spontaneous fibrillogenesis occured which allowed for direct observation of the ECM fibrillar organization under the influence of external fields. We found that the ECM produced in cultures grown on the SPS in the presence of the SMFs assembled into a lattice with larger dimensions than the ECM of the cultures grown in the absence of SMFs. During the early stages of the biomineralization process (day 7), the SMF exposed cultures also templated mineral deposition more rapidly than the control cultures. The rapid response is attributed to orientation of diamagnetic ECM proteins already present in the serum, which could then initiate further cellular signaling. SMFs also influenced late stage osteoblast differentiation as measured by the increased rate of osteocalcin secretion and gene expression beginning 15 days after SFM exposure. This correlated with a large increase in mineral deposition, and in cell modulus. GIXD and EDXS analysis confirmed early deposition of crystalline hydroxyapatite. Previous studies on the effects of moderate SMF had focused on cellular gene and protein expression, but did not consider the organization of the ECM fibers. Our ability to form these fibers has allowed us explore this additional effect and highlight its significance in the initiation of the biomineralization process.

  13. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Wu, Jing; Zhao, Chengji; Zhang, Gang; Zhang, Yang; Shao, Ke; Xu, Dan; Lin, Haidan; Han, Miaomiao; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-10-15

    A series of sulfonated poly(ether ether ketone) containing pendant carboxyl (C-SPEEKs) have been synthesized using a nucleophilic polycondesation reaction. A condensation reaction between 1,2-diaminobenzene and carboxyl resulted in a new series of copolymers containing benzimidazole groups (SPEEK-BIms). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The dependence of ion exchange capacity, water uptake, proton conductivity and methanol diffusion coefficient of SPEEK-BIm membranes has been studied and compared with their carboxyl acid form. The results suggest that the introduction of benzimidazole groups may be responsible for many excellent properties of the membranes for fuel cell. It is noticeable that the markedly improved oxidative stability is benefit for the application of membrane. (author)

  14. Effects of Concentration of Organically Modified Nanoclay on Properties of Sulfonated Poly(vinyl alcohol Nanocomposite Membranes

    Directory of Open Access Journals (Sweden)

    Apiradee Sanglimsuwan

    2011-01-01

    Full Text Available Electrolyte nanocomposite membranes for proton exchange membrane fuel cells and direct methanol fuel cells were prepared by carrying out a sulfonation of poly(vinyl alcohol with sulfosuccinic acid and adding a type of organically modified montmorillonite (layered silicate nanoclay commercially known as Cloisite 93A. The effects of the different concentrations (0, 2, 4, 6, 8 wt. % of the organoclay in the membranes on water uptake, ion exchange capacity (IEC, proton conductivity, and methanol permeability were measured, respectively, via gravimetry, titration, impedance analysis, and gas chromatography techniques. The IEC values remained constant for all concentrations. Water uptakes and proton conductivities of the nanocomposite membranes changed with the clay content in a nonlinear fashion. While all the nanocomposite membranes had lower methanol permeability than Nafion115, the 6% concentration of Cloisite 93A in sulfonated poly(vinyl alcohol membrane displayed the greatest proton conductivity to methanol permeability ratio.

  15. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    Science.gov (United States)

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  16. Development of proton exchange membranes fuel cells with sulfonated HTPB-phenol; Desenvolvimento de membranas polimericas trocadoras de protons utilizando PBLH-fenol

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos], e-mail: ferraz@quimica.ufpr.br; Cantao, Mauricio P. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil). Centro Politecnico

    2007-07-01

    Proton exchange membrane fuel cells (PEMFC) have been paid attention as promising candidates for vehicle and portable applications. PEMFC employ proton exchange polymer membrane which serves as an electrolyte between anode and cathode. Nafion{sup R} (DuPont), perfluorosulfonic acid/PTFE copolymer membranes are typically used as the polymer electrolyte in PEMFC due to their good chemical and mechanical properties as well as high proton conductivity. However, high cost of these materials is one of main obstacles for commercialization of PEMFC. Extensive efforts have been devoted to develop alternative polymer electrolyte membranes. Our group have investigated the development of proton exchange membranes fuel cells using sulfonated HTPB-Phenyl ether (HTPB-Phenol), making possible the formation of membranes with sulfonated groups amount of 2,4, 2,5 and 2,8 mmol/g of dry polymer from HTPB-Phenol 80, 98 and 117 respectively. These results mean a bigger values than those of the Nafion{sup R} membranes, that possess an ion exchange capacity of 0,67 up to 1,25 mmol/g of sulfonated groups. (author)

  17. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    International Nuclear Information System (INIS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln 2 (phen) 2 (SO 4 ) 3 (H 2 O) 2 ] n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)] n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO 4 2− anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of 5 D 0 → 7 F J (J=0–4) of the Eu(III)

  18. Solvation molar enthalpies and heat capacities of n-alkanes and n-alkylbenzenes on stationary phases of wide-ranging polarity.

    Science.gov (United States)

    Lebrón-Aguilar, Rosa; Quintanilla-López, Jesús Eduardo; Santiuste, José María

    2010-12-03

    A comparison of the most usual gas chromatographic methods for the calculation of partial molar enthalpies of solvation (Δ(sol)H(o)) has been carried out. Those methods based on the fitting of lnV(g) or ln(k/T) vs. 1/T and ln(k/T) vs. (1/T and the temperature arrangement, T(a)) are the most adequate ones for obtaining Δ(sol)H(o) values. However, the latter is the only reliable option for Δ(sol)H(o) estimation when commercial WCOT capillary columns are used, since in this case the estimation of some variables involved in the V(g) determination is less accurate or even impossible. Consequently, in this paper, Δ(sol)H(o) obtained from ln(k/T) vs. (1/T+T(a)) fitting at 373.15 and 298.15K for n-alkanes and n-alkylbenzenes on 12 commercial capillary columns coated with stationary phases covering the 203-3608 McReynolds polarity range are reported. Moreover, molar heat capacities of solvation at constant pressure (Δ(sol)C(p)(o)) have also been calculated using this method. A clear influence on Δ(sol)H(o) of the type and content of the substitution group in the stationary phase was observed. In addition, a linear relationship of Δ(sol)C(p)(o) with the van der Waals volume of the n-alkanes and the temperature gradient of density of the stationary phase was found. The effect of the size of the hydrocarbon on both thermodynamic variables was also investigated. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Gene expression profiling identifies mechanisms of protection to recurrent trinitrobenzene sulfonic acid colitis mediated by probiotics

    NARCIS (Netherlands)

    Mariman, R.; Kremer, S.H.A.; Erk, M. van; Lagerweij, T.; Koning, F.; Nagelkerken, L.

    2012-01-01

    Background: Host-microbiota interactions in the intestinal mucosa play a major role in intestinal immune homeostasis and control the threshold of local inflammation. The aim of this study was to evaluate the efficacy of probiotics in the recurrent trinitrobenzene sulfonic acid (TNBS)-induced colitis

  20. Characterisation of perfluorooctane sulfonate (PFOS) in a terrestrial ecosystem near a fluorochemical plant in Flanders, Belgium

    NARCIS (Netherlands)

    D'Hollander, W.; De Bruyn, L.; Hagenaars, A; de Voogt, P.; Bervoets, L.

    2014-01-01

    Bioaccumulation of perfluorooctane sulfonate (PFOS) in a restricted terrestrial food chain was investigated with the omnivorous wood mouse (Apodemus sylvaticus) on top of the studied food chain. The levels detected are very high compared with literature as a result of the presence of fluorochemical

  1. The design and synthesis of novel spirocyclic heterocyclic sulfone ROMK inhibitors as diuretics.

    Science.gov (United States)

    Chobanian, Harry R; Guo, Yan; Pio, Barbara; Tang, Haifeng; Teumelsan, Nardos; Clements, Matthew; Frie, Jessica; Ferguson, Ronald; Guo, Zach; Thomas-Fowlkes, Brande S; Felix, John P; Liu, Jessica; Kohler, Martin; Priest, Birgit; Hampton, Caryn; Pai, Lee-Yuh; Corona, Aaron; Metzger, Joseph; Tong, Vincent; Joshi, Elizabeth M; Xu, Ling; Owens, Karen; Maloney, Kevin; Sullivan, Kathleen; Pasternak, Alexander

    2017-02-15

    A spirocyclic class of ROMK inhibitors was developed containing a structurally diverse heterocyclic sulfone moiety and spirocyclic core starting from lead 1. These compounds not only displayed exquisite ROMK potency but significantly improved selectivity over hERG. The lead compounds were found to have favorable pharmacokinetic properties and displayed robust diuretic, natriuretic and blood pressure lowering effects in spontaneously hypertensive rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A STUDY ON THE DEGRADATION MECHANISM OF PHOTOCROSSLINKING PRODUCTS FORMED BY CYCLIZED POLYISOPRENE-DIAZIDE SYSTEM UNDER THE INFLUENCE OF ALKYL BENZENE SULFONIC ACIDS

    Institute of Scientific and Technical Information of China (English)

    HUANG Junlian; SUN Meng

    1989-01-01

    The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects ofalkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.

  3. Improvement in silicon-containing sulfonated polystyrene/acrylate membranes by blending and crosslinking

    International Nuclear Information System (INIS)

    Zhong Shuangling; Cui Xuejun; Dou Sen; Liu Wencong; Gao Yan; Hong Bo

    2010-01-01

    Silicon-containing sulfonated polystyrene/acrylate-poly(vinyl alcohol) (Si-sPS/A-PVA) and Si-sPS/A-PVA-phosphotungstic acid (Si-sPS/A-PVA-PWA) composite membranes were fabricated by solution blending and physical and chemical crosslinking methods to improve the properties of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) membranes. FTIR spectra clearly show the existence of various interactions and a crosslinked silica network in composite membranes. The potential of the composites to act as proton exchange membranes in direct methanol fuel cells (DMFCs) was assessed by studying their thermal and hydrolytic stability, swelling, methanol diffusion coefficient, proton conductivity and selectivity. TGA measurements show that the composite membranes possess good thermal stability up to 190 o C, satisfying the requirement for fuel cell operation. Compared to the unmodified membrane, the composites exhibit less swelling and a superior methanol barrier. Most importantly, all of the composite membranes have significantly lower methanol diffusion coefficients and significantly higher selectivity than those of Nafion 117. The Si-sPS/A-20PVA-20PWA membrane is the best applicant for use in DMFCs because it exhibits an optimized selectivity value (5.93 x 10 5 Ss cm -3 ) that is approximately 7.8 times of that of the unmodified membrane and is 27.8 times higher than that of Nafion 117.

  4. Simple method for Shiga toxin 2e purification by affinity chromatography via binding to the divinyl sulfone group.

    Directory of Open Access Journals (Sweden)

    Hideyuki Arimitsu

    Full Text Available Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e, a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease.

  5. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  6. Composite proton exchange membrane based on sulfonated organic nanoparticles

    Science.gov (United States)

    Pitia, Emmanuel Sokiri

    As the world sets its sight into the future, energy remains a great challenge. Proton exchange membrane (PEM) fuel cell is part of the solution to the energy challenge because of its high efficiency and diverse application. The purpose of the PEM is to provide a path for proton transport and to prevent direct mixing of hydrogen and oxygen at the anode and the cathode, respectively. Hence, PEMs must have good proton conductivity, excellent chemical stability, and mechanical durability. The current state-of-the-art PEM is a perfluorosulfonate ionomer, Nafion®. Although Nafion® has many desirable properties, it has high methanol crossover and it is expensive. The objective of this research was to develop a cost effective two-phase, composite PEM wherein a dispersed conductive organic phase preferentially aligned in the transport direction controls proton transport, and a continuous hydrophobic phase provides mechanical durability to the PEM. The hypothesis that was driving this research was that one might expect better dispersion, higher surface to volume ratio and improved proton conductivity of a composite membrane if the dispersed particles were nanometer in size and had high ion exchange capacity (IEC, = [mmol sulfonic acid]/gram of polymer). In view of this, considerable efforts were employed in the synthesis of high IEC organic nanoparticles and fabrication of a composite membrane with controlled microstructure. High IEC, ~ 4.5 meq/g (in acid form, theoretical limit is 5.4 meq/g) nanoparticles were achieved by emulsion copolymerization of a quaternary alkyl ammonium (QAA) neutralized-sulfonated styrene (QAA-SS), styrene, and divinylbenzene (DVB). The effects of varying the counterion of the sulfonated styrene (SS) monomer (alkali metal and QAA cations), SS concentration, and the addition of a crosslinking agent (DVB) on the ability to stabilize the nanoparticles to higher IECs were assessed. The nanoparticles were ion exchanged to acid form. The extent of ion

  7. Effect of carbon derivatives in sulfonated poly(etherimide)-liquid crystal polymer composite for methanol vapor sensing

    Science.gov (United States)

    Bag, Souvik; Rathi, Keerti; Pal, Kaushik

    2017-05-01

    A class of highly sensitive chemiresistive sensors is developed for methanol (MeOH) vapor detection in ambient atmosphere by introducing conductive nanofillers like carbon black, multi-wall carbon nanotubes, and reduced graphene oxide into sulfonated poly(etherimide) (PEI)/liquid crystal polymer (LCP) composite (sPEI-LCP). Polar composites are prepared by a sulfonation process for instantaneous enhancement in adsorption capability of the sensing films to the target analyte (MeOH). Sensing properties exhibit that polymer composite-based fabricated sensors are efficient for the detection of different concentration of methanol vapor from 300-1200 parts-per-million (ppm) at room temperature. The incorporation of nanofiller induces the dramatic change in sensing behavior of base composite film (sPEI-LCP). Thus, less mass fraction of nanofillers (i.e. 2 wt%) influences the nonlinear sensing behavior for the entire range of methanol vapor. The simple method and low fabrication cost of the prepared sensor are compelling reasons that methanol vapor sensor is suitable for environmental monitoring.

  8. Meaning of leprosy for people who have experienced treatment during the sulfonic and multidrug therapy periods

    Directory of Open Access Journals (Sweden)

    Karen da Silva Santos

    2015-08-01

    Full Text Available AbstractObjective: to analyze the meanings of leprosy for people treated during the sulfonic and multidrug therapy periods.Method: qualitative nature study based on the Vigotski's historical-cultural approach, which guided the production and analysis of data. It included eight respondents who have had leprosy and were submitted to sulfonic and multidrug therapy treatments. The participants are also members of the Movement for Reintegration of People Affected by Leprosy.Results: the meanings were organized into three meaning cores: spots on the body: something is out of order; leprosy or hanseniasis? and leprosy from the inclusion in the Movement for Reintegration of People Affected by Leprosy.Conclusion: the meanings of leprosy for people submitted to both regimens point to a complex construction thereof, indicating differences and similarities in both treatments. Health professionals may contribute to the change of the meanings, since these are socially constructed and the changes are continuous.

  9. Surfactant modified clays’ consistency limits and contact angles

    Directory of Open Access Journals (Sweden)

    S Akbulut

    2012-07-01

    Full Text Available This study was aimed at preparing a surfactant modified clay (SMC and researching the effect of surfactants on clays' contact angles and consistency limits; clay was thus modified by surfactants formodifying their engineering properties. Seven surfactants (trimethylglycine, hydroxyethylcellulose  octyl phenol ethoxylate, linear alkylbenzene sulfonic acid, sodium lauryl ether sulfate, cetyl trimethylammonium chloride and quaternised ethoxylated fatty amine were used as surfactants in this study. The experimental results indicated that SMC consistency limits (liquid and plastic limits changedsignificantly compared to those of natural clay. Plasticity index and liquid limit (PI-LL values representing soil class approached the A-line when zwitterion, nonionic, and anionic surfactant percentageincreased. However, cationic SMC became transformed from CH (high plasticity clay to MH (high plasticity silt class soils, according to the unified soil classification system (USCS. Clay modifiedwith cationic and anionic surfactants gave higher and lower contact angles than natural clay, respectively.

  10. Synthesis of Poly(3,4-Ethylenedioxy thiophene)-Poly(Styrene-4-Sulfonate) Composites for Support Fuel Cell Catalyst Layer

    International Nuclear Information System (INIS)

    Eko Sulistiyono; Murni Handayani

    2009-01-01

    Synthesis of poly(3,4-ethylenedioxy thiophene)-poly(styrene-4-sulfonate) composites for support fuel cell catalyst layer are synthesis composites which become fuel cell catalyst support so that catalyst has optimal performance. Main function of composites is support platinum particle for application in fuel cell. This article explains the result of composites production process from ( 3,4 Ethylenedioxy thiophene) and Sodium poly( styrene - 4-sulfonate) using two methods Jingning Shan method (method 1) and Zhigang Qi and Peter G.Pickup method (method 2). Analysis of the synthesis results used Scanning Electron Microscopic –Electron Dispersive X – Ray Spectrophotometer (SEM-EDS ). The analysis result show that both methods produce polymer agglomerate into a sponge-like morphology. Composite from method 1 has morphology, pores and proton transport better than composite produced by method 2. (author)

  11. IN SITU PREPARED TiO2 NANOPARTICLES CROSS-LINKED SULFONATED PVA MEMBRANES WITH HIGH PROTON CONDUCTIVITY FOR DMFC

    Directory of Open Access Journals (Sweden)

    Jignasa N. Solanki

    2016-07-01

    Full Text Available Organic/inorganic membranes based on sulfonated poly(vinyl alcohol (SPVA and in situ prepared TiO2 nanoparticles nanocomposite membranes with various compositions were prepared to use as proton exchange membranes in direct membrane fuel cells. Poly(vinyl alcohol (PVA was sulfonated and cross-linked separately by 4-formylbenzene-1,3-disulfonic acid disodium salt hydrate and glutaraldehyde. The ion exchange capacity and proton conductivity of the membranes increased with increasing amount of TiO2 nanoparticles. The composite membranes with 15 wt% TiO2 exhibited excellent proton conductivity of 0.0822 S cm-1, as well as remarkably low methanol permeability of 1.11×10-9 cm2 s-1. The thermal stability and durability were also superior and performance in methanol fuel cell was also reasonably good

  12. Fluorinated poly(ether sulfone) ionomers with disulfonated naphthyl pendants for proton exchange membrane applications

    Science.gov (United States)

    Hu, Zhaoxia; Lu, Yao; Zhang, Xulve; Yan, Xiaobo; Li, Na; Chen, Shouwen

    2018-06-01

    Proton exchange membranes based on fluorinated poly(ether sulfone)s with disulfonated naphthyl pendants (sSPFES) have been successfully prepared by post functionalization through polymeric SNAr reaction. Copolymer structure was confirmed by H-nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy, the physico-chemical properties of the sSPFES membranes were evaluated by thermogravimetric analysis, gel permeation chromatography, electro-chemical impedance spectroscopy, atomic force microscopy, Fenton, water-swelling and fuel cell test. The pendant grafting degree was controlled by varying the feeding amount of the disulfonaphthols, resulting in the ion exchange capacity about 1.28-1.73 mmol/g. The obtained sSPFES membranes were thermal stable, mechanical ductile, and exhibited dimensional change less than 17%, water uptake below 70%, and proton conductivity as high as 0.17-0.28 S/cm at 90°C in water. In a single H2/O2 fuel cell test at 80°C, the sSPFES-B-3.2 membrane (1.61 mmol/g) showed the maximum power output of 593-658 mW/cm2 at 60%-80% relative humidity, indicating their rather promising potential for fuel cell applications.

  13. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    International Nuclear Information System (INIS)

    Li, Hairong; Jiang, Ming; Li, Qi; Li, Denian; Chen, Zongyi; Hu, Waping; Huang, Jing; Xu, Xizhe; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2013-01-01

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  14. The Contribution of the Type of Detergent to Domestic Laundry Graywater Composition and Its Effect on Treatment Performance

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López Zavala

    2016-05-01

    Full Text Available In this study, the contribution of liquid and powder detergents to the composition of domestic laundry graywater was evaluated. Dosages recommended by the manufacturers were used to prepare detergent solutions and generate laundry graywater. Solutions and graywater were characterized in terms of total solids (TS, total suspended solids (TSS, total dissolved solids (TDS, chemical oxygen demand (COD, total organic carbon (TOC, and concentration of Linear Alkylbenzene Sulfonates (LAS’s. Additionally, the effect of the type of detergent on the treatment performance was also assessed. The coagulation–flocculation process was selected as a potential alternative for treating domestic laundry graywater. Treatment performance was assessed based on the removals of TS, TSS, TDS, turbidity, COD, and electrical conductivity (EC. Optimum coagulant dosages and mixing conditions for flocculation were determined. The results indicate a differential contribution of the type of detergent to the domestic laundry graywater composition. Liquid detergents contributed with more COD and TOC and fewer solids and LAS’s, in comparison with powder detergents. Soiled clothes increased the solids and organic loads of laundry graywater; furthermore, the laundry process reduced the LAS concentration of graywater by 77% for the liquid detergent and 47% for the powder detergent. On the other hand, the coagulation–flocculation process was more effective in treating powder detergent graywater even though the liquid detergent graywater was less polluted. Removal efficiencies on the order of 95% for turbidity and 75% for TSS were achieved for powder detergent graywater; meanwhile, for liquid detergent graywater, the removals were 73% for turbidity and 51% for TSS.

  15. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    Science.gov (United States)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  16. Transport Properties of Sulfonated Poly (Styrene-b-isobutylene-b-styrene) Triblock Copolymers at High Ion-Exchange Capacities

    National Research Council Canada - National Science Library

    Winey, Karen I; Elabd, Yossef A; Napadensky, Eugene; Walker, Charles W

    2005-01-01

    ... (IEC), specifically at high IECs (up to -2 mequiv/g). The proton conductivity of S-SIBS was -1 order of magnitude higher than sulfonated polystyrene at similar IECs and 3-fold higher than Nafion 117 at an IEC of 2 mequiv/g...

  17. High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane

    International Nuclear Information System (INIS)

    Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Rahimi, Z.

    2017-01-01

    In this paper, firstly sulfonated polyethersulfone (SPES) was synthesized from polyethersulfone (PES) with sulfonation by chlorosulfonic acid as a sulfonating agent dissolved in concentrated sulfuric acid. PES/SPES blend proton exchange membranes (PEMs) were prepared at four different compositions with the non-solvent induced phase separation technique as alternative materials to Nafion membrane for application in a microbial fuel cell (MFC). The prepared PEMs were characterized by FTIR spectroscopy, AFM, SEM, contact angle, water uptake and oxygen permeability. Performances of the fabricated PEMs and commercial Nafion 117 were evaluated in a dual chamber MFC for treating of wastewater and electricity generation. Maximum generated power and current of the fabricated membranes were 58.726 mWm −2  at current density of 317.111 mAm −2 , while it was 45.512 mWm −2  at 228.673 mAm −2 for Nafion 117 at the similar experimental condition. The observed properties of low biofouling, low oxygen permeability, high power generation, high COD removal and coulombic efficiency (CE) indicated that the SPES membrane has potential to improve significantly the productivity of MFCs. - Highlights: • Sulfonated PES (SPES) was synthesized by chlorosulfonic acid in concentrated H 2 SO 4 . • PES/SPES blend proton exchange membranes (PEMs) were prepared for use in MFC. • Performance of PEMs and commercial Nafion 117 were tested to treat of wastewater. • Maximum generated power and current of SPES membrane was higher than Nafion 117.

  18. Grey water treatment by the slanted soil system with unsorted soil media.

    Science.gov (United States)

    Ushijima, Ken; Tanaka, Erina; Suzuki, Laís Yuko; Hijikata, Nowaki; Funamizu, Naoyuki; Ito, Ryusei

    2015-01-01

    This study evaluated the performance of unsorted soil media in the slanted soil treatment system, in terms of removal efficiency in suspended solids (SS), chemical oxygen demand (COD), linear alkylbenzene sulphonate (LAS) and Escherichia coli, and lifetime until clogging occurs. Unsorted soil performed longer lifetime until clogging than sorted fine soil. Removal of SS, COD, and LAS also performed same or better level in unsorted soil than fine soil. As reaction coefficients of COD and LAS were described as a function of the hydraulic loading rate, we can design a slanted soil system according to the expected hydraulic loading rate and the targeted level of COD or LAS in effluent. Regarding bacteria removal, unsorted soil performed sufficient reduction of E. coli for 5 weeks; however, the removal process occurred throughout all four chambers, while that of fine soil occurred in one to two chambers.

  19. Perfluorooctanoic acid and perfluorooctane sulfonate in Michigan and New York waters

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, E.; Kannan, K. [Wadsworth Center, Albany, NY (United States); Taniyasu, Sachi; Yamashita, Nobuyoshi [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2004-09-15

    Perfluorooctane sulfonate (PFOS), a perfluorinated organic contaminant, has become the subject of many recent investigations. PFOS and its precursor compounds have been used in a wide variety of consumer and industrial products. Other related perfluorinated compounds have also been reported to occur in the environment. For example, perfluorohexane sulfonate (PFHxS) is an impurity associated with PFOS. Perfluorooctanoic acid (PFOA) has found widespread use as an emulsifier for polymerization of fluoropolymers. These perfluorinated alkylated substances (PASs) are known to be resistant to degradation. Water analysis of PFOS and PFOA has been carried out with several methods. The most commonly used methods involve solid phase extraction (SPE) followed by HPLC-MS-MS. Method detection limits for PFOS and PFOA varied between 5 and 17 ng/L and 9 and 25 ng/L respectively. Generally PFOS and PFOA concentrations in ambient waters, with no point source of pollution, are less than 5 ng/L. We have developed a method using the Oasis HLB solid phase cartridge to achieve the required method detection limits. We have measured PFOS and PFOA concentration in surface waters collected from Michigan and New York. PFOS and PFOA have been detected in the blood and liver of fish at {mu}g/L concentrations both in Japan and the USA. The current ion-pairing, liquid/liquid extraction method is suitable for these concentrations and we have measured PFOS and PFOA in the livers of fish from Michigan and New York waters. We have compared the data for fish and water concentrations and calculated bioaccumulation factors.

  20. Improved oral absorption of cilostazol via sulfonate salt formation with mesylate and besylate

    Directory of Open Access Journals (Sweden)

    Seo JH

    2015-07-01

    Full Text Available Jae Hong Seo, Jung Bae Park, Woong-Kee Choi, Sunhwa Park, Yun Jin Sung, Euichaul Oh, Soo Kyung Bae College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea Objective: Cilostazol is a Biopharmaceutical Classification System class II drug with low solubility and high permeability, so its oral absorption is variable and incomplete. The aim of this study was to prepare two sulfonate salts of cilostazol to increase the dissolution and hence the oral bioavailability of cilostazol.Methods: Cilostazol mesylate and cilostazol besylate were synthesized from cilostazol by acid addition reaction with methane sulfonic acid and benzene sulfonic acid, respectively. The salt preparations were characterized by nuclear magnetic resonance spectroscopy. The water contents, hygroscopicity, stress stability, and photostability of the two cilostazol salts were also determined. The dissolution profiles in various pH conditions and pharmacokinetic studies in rats were compared with those of cilostazol-free base.Results: The two cilostazol salts exhibited good physicochemical properties, such as nonhygroscopicity, stress stability, and photostability, which make it suitable for the preparation of pharmaceutical formulations. Both cilostazol mesylate and cilostazol besylate showed significantly improved dissolution rate and extent of drug release in the pH range 1.2–6.8 compared to the cilostazol-free base. In addition, after oral administration to rats, cilostazol mesylate and cilostazol besylate showed increases in Cmax and AUCt of approximately 3.65- and 2.87-fold and 3.88- and 2.94-fold, respectively, compared to cilostazol-free base.Conclusion: This study showed that two novel salts of cilostazol, such as cilostazol mesylate and cilostazol besylate, could be used to enhance its oral absorption. The findings warrant further preclinical and clinical studies on cilostazol mesylate and

  1. High performance anode based on a partially fluorinated sulfonated polyether for direct methanol fuel cells operating at 130 °C

    Science.gov (United States)

    Mack, Florian; Gogel, Viktor; Jörissen, Ludwig; Kerres, Jochen

    2014-06-01

    Due to the disadvantages of the Nafion polymer for the application in the direct methanol fuel cell (DMFC) especial at temperatures above 100 °C several polymers of the hydrocarbon type have already been investigated as membranes and ionomers in the DMFC. Among them were nonfluorinated and partially fluorinated arylene main-chain hydrocarbon polymers. In previous work, sulfonated polysulfone (sPSU) has been applied as the proton-conductive binder in the anode of a DMFC, ending up in good and stable performance. In continuation of this work, in the study presented here a polymer was prepared by polycondensation of decafluorobiphenyl and bisphenol AF. The formed polymer was sulfonated after polycondensation by oleum and the obtained partially fluorinated sulfonated polyether (SFS) was used as the binder and proton conductor in a DMFC anode operating at a temperature of 130 °C. The SFS based anode with 5% as ionomer showed comparable performance for the methanol oxidation to Nafion based anodes and significant reduced performance degradation versus Nafion and sPSU based anodes on the Nafion 115 membrane. Membrane electrode assemblies (MEAs) with the SFS based anode showed drastically improved performance compared to MEAs with Nafion based anodes during operation with lower air pressure at the cathode.

  2. Ultrasonic irradiation to modify the functionalized bionanocomposite in sulfonated polybenzimidazole membrane for fuel cells applications and antibacterial activity.

    Science.gov (United States)

    Esmaeilzade, Banafshe; Esmaielzadeh, Sheida; Ahmadizadegan, Hashem

    2018-04-01

    In this article the new proton exchange membranes were prepared from sulfonated polybenzimidazole (s-PBI) and various amounts of sulfonated titania/cellulose nanohybrids (titania/cellulose-SO 3 H) via ultrasonic waves. The ultrasonic irradiation effectively changes the rheology and the glass transition temperature and the crystallinity of the composite polymer. Ultrasonic irradiation has a very strong mixing and dispersion effect, much stronger than conventional stirring, which can improve the dispersion of titania/cellulose-SO 3 H nanoparticles in the polymer matrix. The strong -SO 3 H/-SO 3 H interaction between s-PBI chains and titania/cellulose-SO 3 H hybrids leads to ionic cross-linking in the membrane structure, which increases both the thermal stability and methanol resistance of the membranes. After acid doping with phosphoric acid, s-PBI/titania/cellulose-SO 3 H nanocomposite membranes exhibit depressions on methanol permeability and enhancements on proton conductivity comparing to the pristine s-PBI membrane. The chemical structure of the functionlized titania was characterized with FTIR, and energy-dispersive X-ray. Imidazole and sulfonated groups on the surface of modified nanoparticles forming linkages with s-PBI chains, improved the compatibility between s-PBI and nanoparticles, and enhanced the mechanical strength of the prepared nanocomposite membranes. From SEM and TEM analysis could explain the homogeneous dispersion of titania/cellulose-SO 3 H in nanocomposite membranes. Moreover, the membranes exhibited excellent antibacterial activities against S. aureus and E. coli. A. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Long-term effects of a binary mixture of perfluorooctane sulfonate (PFOS) and bisphenol A (BPA) in zebrafish

    DEFF Research Database (Denmark)

    Keiter, Susanne; Holbech, Henrik; Skutlarek, D

    2011-01-01

    The frequent use of perfluorinated chemicals (PFCs) in industrial applications and domestic products has led on a global basis to a continuous detection of PFCs in a wide range of environmental matrices including aquatic systems. Perfluorooctane sulfonate (PFOS) is the most commonly detected PFC...

  4. Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC-MS/MS

    NARCIS (Netherlands)

    Esperza, X.; Moyano, E.; de Boer, J.; Galceran, M.T.; van Leeuwen, S.P.J.

    2011-01-01

    Residues of perfluorinated phosphonic acids (PFPAs) and perfluorooctane sulfonic acid (PFOS) were investigated in various Dutch surface waters, sludge and sediments. For this purpose, a liquid chromatographic (LC) method was optimized by testing several columns with different mobile phases.

  5. Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta

    OpenAIRE

    James, Margaret O.; Li, Wenjun; Summerlot, David P.; Rowland-Faux, Laura; Wood, Charles E.

    2009-01-01

    The personal care product Triclosan, 5-chloro-2(2,4-dichlorophenoxy)-phenol, is widely used in consumer products as an antibacterial agent and is increasingly found in the environment as a contaminant of sewage sludge and wastewater. This compound has been identified in plasma and urine of people in the United States, Sweden and Australia. Triclosan is known to inhibit sulfonation of phenolic xenobiotics and is structurally related to inhibitors of estrogen sulfotransferase, such as polychlor...

  6. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic Acid post-translational modifications

    DEFF Research Database (Denmark)

    Paulech, Jana; Liddy, Kiersten A; Engholm-Keller, Kasper

    2015-01-01

    ) and others (Cys sulfinic [Cys-SO2H] and sulfonic [Cys-SO3H] acids) that are considered "irreversible." We developed an enrichment method to isolate Cys-SO2H/SO3H-containing peptides from complex tissue lysates that is compatible with tandem mass spectrometry (MS/MS). The acidity of these post...

  7. An experimental and theoretical method for determination of standard electrode potential for the redox couple diphenyl sulfone/diphenyl sulfide

    Science.gov (United States)

    Song, Y. Z.; Wei, K. X.; Lv, J. S.

    2013-12-01

    DFT calculations were performed for diphenyl sulfide and diphenyl sulfone. The electrochemistry of diphenyl sulfide on the gold electrode was investigated by cyclic voltammety and the results show that standard electrode potential for redox couple diphenyl sulfone/diphenyl sulfide is 1.058 V, which is consistent with that of 1.057 calculated at B3LYP/6-31++G( d, p)-IEFPCM level. The front orbit theory and Mulliken charges of molecular explain well on the oxidation of diphenyl sulfide in oxidative desulfurization. According to equilibrium theory the experimental equilibrium constant in the oxidative desulfurization of H2O2, is 1.17 × 1048, which is consistent with the theoretical equilibrium constant is 2.18 × 1048 at B3LYP/6-31++G( d, p)-IEFPCM level.

  8. Ion-Selective Ionic Polymer Metal Composite (IPMC) actuator based on crown ether containing sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, S.; Zoetebier, B.; Sukas, O.S.; Bayraktar, M.; Hempenius, M.; Vancso, G.J.; Nijmeijer, K.

    2017-01-01

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  9. Synthesis, Antibacterial and Antitubercular Activities of Some 5H-Thiazolo[3,2-a]pyrimidin-5-ones and Sulfonic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Dong Cai

    2015-09-01

    Full Text Available A series of 5H-thiazolo[3,2-a]pyrimidin-5-ones were synthesized by the cyclization reactions of S-alkylated derivatives in concentrated H2SO4. Upon treatment of S-alkylated derivatives at different temperatures, intramolecular cyclization to 7-(substituted phenylamino-5H-thiazolo[3,2-a]pyrimidin-5-ones or sulfonation of cyclized products to sulfonic acid derivatives occurred. The structures of the target compounds were confirmed by IR, 1H-NMR, 13C-NMR and HRMS studies. The compounds were evaluated for their preliminary in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria and screened for antitubercular activity against Mycobacterium tuberculosis by the broth dilution assay method. Some compounds showed good antibacterial and antitubercular activities.

  10. Sulfonated amphiphilic block copolymers : synthesis, self-assembly in water, and application as stabilizer in emulsion polymerization

    Science.gov (United States)

    Jiguang Zhang; Matthew R. Dubay; Carl J. Houtman; Steven J. Severtson

    2009-01-01

    Described is the synthesis of diblock copolymers generated via sequential atom transfer radical polymerization (ATRP) of poly(n-butyl acrylate) (PnBA) followed by chain augmentation with either sulfonated poly(2-hydroxyethyl methacrylate) (PHEMA) or poly(2-hydroxyethyl acrylate) (PHEA) blocks. ATRP of PHEMA or PHEA from PnBA macroinitiator was conducted in acetone/...

  11. Molecular dynamics simulations of structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces.

    Science.gov (United States)

    He, Guangzhi; Zhang, Meiyi; Zhou, Qin; Pan, Gang

    2015-09-01

    Concentration and salinity conditions are the dominant environmental factors affecting the behavior of perfluorinated compounds (PFCs) on the surfaces of a variety of solid matrices (suspended particles, sediments, and natural minerals). However, the mechanism has not yet been examined at molecular scales. Here, the structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces induced by changes of the concentration level of PFOS and salt condition was investigated using molecular dynamics (MD) simulations. At low and intermediate concentrations all PFOS molecules directly interacted with the rutile (110) surface mainly by the sulfonate headgroups through electrostatic attraction, yielding a typical monolayer structure. As the concentration of PFOS increased, the molecules aggregated in a complex multi-layered structure, where an irregular assembling configuration was adsorbed on the monolayer structure by the van der Waals interactions between the perfluoroalkyl chains. When adding CaCl2 to the system, the multi-layered structure changed to a monolayer again, indicating that the addition of CaCl2 enhanced the critical concentration value to yield PFOS multilayer assemblies. The divalent Ca(2+) substituted for monovalent K(+) as the bridging counterion in PFOS adsorption. MD simulation may trigger wide applications in study of perfluorinated compounds (PFCs) from atomic/molecular scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sulfonate-terminated carbosilane dendron-coated nanotubes: a greener point of view in protein sample preparation.

    Science.gov (United States)

    González-García, Estefanía; Gutiérrez Ulloa, Carlos E; de la Mata, Francisco Javier; Marina, María Luisa; García, María Concepción

    2017-09-01

    Reduction or removal of solvents and reagents in protein sample preparation is a requirement. Dendrimers can strongly interact with proteins and have great potential as a greener alternative to conventional methods used in protein sample preparation. This work proposes the use of single-walled carbon nanotubes (SWCNTs) functionalized with carbosilane dendrons with sulfonate groups for protein sample preparation and shows the successful application of the proposed methodology to extract proteins from a complex matrix. SEM images of nanotubes and mixtures of nanotubes and proteins were taken. Moreover, intrinsic fluorescence intensity of proteins was monitored to observe the most significant interactions at increasing dendron generations under neutral and basic pHs. Different conditions for the disruption of interactions between proteins and nanotubes after protein extraction and different concentrations of the disrupting reagent and the nanotube were also tried. Compatibility of extraction and disrupting conditions with the enzymatic digestion of proteins for obtaining bioactive peptides was also studied. Finally, sulfonate-terminated carbosilane dendron-coated SWCNTs enabled the extraction of proteins from a complex sample without using non-environmentally friendly solvents that were required so far. Graphical Abstract Green protein extraction from a complex sample employing carbosilane dendron coated nanotubes.

  13. Effect of time and temperature exposition in the crystallinity degree of sulfonated poly-(styrene acrylic acid) (PSAA-S)

    International Nuclear Information System (INIS)

    Duarte, G.W.; Becker, E.B.; Silva, L.; Naspolini, A.M.; Consenso, E.C.; Paula, M.M.S.; Fiori, M.A.; Silveira, F.Z.

    2010-01-01

    Polymers with special properties have been increasingly applied in the development of technological devices. For example, polymeric materials with special electric properties, such as sulfonated poly-(styrene-acrylic acid) - PSAA-S, are of great interest for showing different conductivities depending on the environment where they are applied. The special properties of PSAA are obtained only after sulfonation step in acidic media. The present work aimed to evaluate the effect of time and temperature exposition in the crystallinity degree of PSAA-S, through a statistical experimental factorial planning. The samples of PSAA-S were submitted to FT-IR and DRX tests. The results showed that the temperature and the time of exposition are significant factors in the crystallinity degree of PSAA-S, considering that the crystal lattices created during the polymerization are damaged by the action of time and temperature at which the polymer is exposed. (author)

  14. Effect of time and temperature exposition in the crystallinity degree of sulfonated poly-(styrene acrylic acid) (PSAA-S)

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, G.W.; Becker, E.B.; Silva, L.; Naspolini, A.M.; Consenso, E.C.; Paula, M.M.S.; Fiori, M.A., E-mail: glau_bn@hotmail.co [University of Extreme South of Santa Catarina Criciuma, SC (Brazil). Dept. of Materials Engineering; Silveira, F.Z. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Chemical Engineering

    2010-07-01

    Polymers with special properties have been increasingly applied in the development of technological devices. For example, polymeric materials with special electric properties, such as sulfonated poly-(styrene-acrylic acid) - PSAA-S, are of great interest for showing different conductivities depending on the environment where they are applied. The special properties of PSAA are obtained only after sulfonation step in acidic media. The present work aimed to evaluate the effect of time and temperature exposition in the crystallinity degree of PSAA-S, through a statistical experimental factorial planning. The samples of PSAA-S were submitted to FT-IR and DRX tests. The results showed that the temperature and the time of exposition are significant factors in the crystallinity degree of PSAA-S, considering that the crystal lattices created during the polymerization are damaged by the action of time and temperature at which the polymer is exposed. (author)

  15. Toxicology and carcinogenesis studies of p,p'-dichlorophenyl sulfone (CAS No. 80-07-9) in F344/N rats and B6C3F1 mice (feed studies).

    Science.gov (United States)

    2001-09-01

    p,pN-Dichlorodiphenyl sulfone is used as a starting material in the production of polysulfones and polyethersulfones and as a component in reactive dyes in the textile industry; it is also a by-product of pesticide production. p,pN-Dichlorodiphenyl sulfone was nominated for study by the National Cancer Institute because of its history of high production and use, the prospect of increased production and use, and the absence of adequate toxicity testing. Male and female F344/N rats and B6C3F1 mice were exposed top,pN-dichlorodiphenyl sulfone (greater than 99% pure)in feed for 14 weeks or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium,cultured Chinese hamster ovary cells, and mouse bone marrow. 14-WEEK STUDY IN RATS: Groups of 10 male and 10 female F344/N rats were fed diets containing 0, 30, 100, 300, 1,000, or 3,000 ppm p,pN-dichlorodiphenyl sulfone (equivalent to average daily doses of approximately 2, 6, 19, 65, or 200 mgp,pN-dichlorodiphenyl sulfone/kg body weight) for 14 weeks. All rats survived until the end of the study. Mean body weights of groups exposed to 300 ppm or greater were significantly less than those of the controls. Liver weights of groups exposed to 100 ppm or greater and kidney weights of 1,000 and 3,000 ppm male rats were significantly greater than those of the controls. Centrilobular hepatocyte hypertrophy of the liver was observed in most male rats exposed to 100 ppm or greater and in all female rats exposed to 300 ppm or greater, and the severities were increased in 300 ppm males and 1,000 and 3,000 ppm males and females. The incidences of nephropathy in 1,000 and 3,000 ppm female rats were significantly increased. Dose-related increases in severity of nephropathy were observed in male rats. 14-WEEK STUDY IN MICE: Groups of 10 male and 10 female B6C3F1 mice were fed diets containing 0, 30, 100, 300, 1,000, or 3,000 ppm p,pN-dichlorodiphenyl sulfone (equivalent to average daily doses of approximately 3.5, 15, 50

  16. State of the water in crosslinked sulfonated poly(ether ether ketone). Two-dimensional differential scanning calorimetry correlation mapping

    Energy Technology Data Exchange (ETDEWEB)

    Al Lafi, Abdul G. [Department of Chemistry, Atomic Energy Commission, Damascus, P.O. Box 6091 (Syrian Arab Republic); Hay, James N., E-mail: cscientific9@aec.org.sy [The School of Metallurgy and Materials, College of Physical Sciences and Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-07-20

    Highlights: • 2D-DSC mapping was applied to analyze the heat flow responses of hydrated crosslinked sPEEK. • Two types of loosely bond water were observed. • The first was bond to the sulfonic acid groups and increased with ion exchange capacity. • The second was attributed to the polar groups introduced by ions irradiation and increased with crosslinking degree. • DSC combined with 2D mapping provides a powerful tool for polymer structural determination. - Abstract: This paper reports the first application of two-dimensional differential scanning calorimetry correlation mapping, 2D-DSC-CM to analyze the heat flow responses of sulphonated poly(ether ether ketone), sPEEK, films having different ion exchange capacity and degrees of crosslinks. With the help of high resolution and high sensitivity of 2D-DSC-CM, it was possible to locate two types of loosely bound water within the structure of crosslinked sPEEK. The first was bound to the sulfonic acid groups and dependent on the ion exchange capacity of the sPEEK. The second was bound to other polar groups, either introduced by irradiation with ions and dependent on the crosslinking degree or present in the polymer such as the carbonyl groups or terminal units. The results suggest that the ability of the sulfonic acid groups in the crosslinked sPEEK membranes to adsorb water molecules is increased by crosslinking, probably due to the better close packing efficiency of the crosslinked samples. DSC combined with 2D correlation mapping provides a fast and powerful tool for polymer structural determination.

  17. Tissue Distribution Of Chloroaluminium Sulfonated Phthalocyanine In Dogs

    Science.gov (United States)

    M. M.; H. C.; Newman

    1989-06-01

    Chloroaluminum sulfonated phthalocyanine (A1PCS) was administered intravenously to clinically normal dogs, and A1PCS levels were determined in tissues using a sensitive assay. A1PCS accumulated to high levels in liver, spleen, bone marrow, kidney, and lung. These tissue levels confirm previous determinations in mice and rats. Only a small amount of dye was retained in skin and very small amounts in muscle and brain. A1PCS was cleared from the blood within 24 h, and excreted primarily by urine. Serum clearance was faster in males than in females. There were also significant tissue distribution differences between the genders, particularly during the first 12 h. The low levels of A1PCS in skin suggest that cutaneous photosensitivity and toxic skin reactions using this photosensitizer in photodynamic therapy of cancer may be eliminated. The difference in tissue distribution between genders is not only intriguing, but indicates that the optimal time window for treatment of various tissue sites may vary by gender.

  18. 3-[(3-(Trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid: An efficient recyclable heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Jetti

    2017-05-01

    Full Text Available An efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H-ones and thiones through one-pot three-component reaction of ethyl acetoacetate, aryl aldehyde and urea or thiourea in ethanol using 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as catalyst is described. The use of 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as a catalyst offers several advantages such as high yields, short reaction times, mild reaction condition and a recyclable catalyst with a very easy work up.

  19. An integrated evaluation of molecular marker indices and linear alkylbenzenes (LABs) to measure sewage input in a subtropical estuary (Babitonga Bay, Brazil)

    International Nuclear Information System (INIS)

    Martins, César C.; Cabral, Ana Caroline; Barbosa-Cintra, Scheyla C.T.; Dauner, Ana Lúcia L.; Souza, Fernanda M.

    2014-01-01

    Babitonga Bay is a South Atlantic estuary with significant ecological function; it is part of the last remaining areas of mangrove communities in the Southern Hemisphere. The aim of this study was to determine the spatial distribution of the faecal sterols and linear alkylbenzenes (LABs) in surface sediments and to perform an integrated evaluation of several molecular marker indices to assess the sewage contamination status in the study area. The highest observed concentrations of faecal sterols (coprostanol + epicoprostanol) and LABs were 6.65 μg g −1 and 413.3 ng g −1 , respectively. Several faecal sterol indices were calculated and correlated with coprostanol levels; these analyses showed that the index limits presented in the current literature could underestimate the sewage contamination in this study area. For the overall estuarine system, a low sewage impact may be assumed based on the low total mass inventories calculated for coprostanol (between 1.4% and 4.8%). - Highlights: • Sewage contamination in a South Atlantic estuary was confirmed by molecular markers. • Faecal sterol indices were established as indicators of sewage contamination. • Estimates of the total mass inventory of coprostanol and LABs are presented. • Faecal sterols are preferable to LABs for the evaluation of sewage inputs in this study area. - Faecal sterols index limits has been established to a subtropical environment as way to ensure reliability for a more precise assessment of sewage contamination

  20. Las creencias y las concepciones. Perspectivas complementarias

    Directory of Open Access Journals (Sweden)

    Fuensanta HERNÁNDEZ PINA

    2011-01-01

    Full Text Available Las creencias y las concepciones sobre la enseñanza y el aprendizaje que los profesores sostienen como docentes es una línea de investigación que está suponiendo un avance en el conocimiento sobre factores relevantes para la mejor de la educación. Desde hace más de dos décadas han sido numerosos los investigadores que han venido proporcionando resultados de investigación en torno a las creencias y las concepciones de la enseñanza y el aprendizaje lo que ha supuesto establecer nuevas e interesantes interpretaciones en dicha relación. En el trabajo que presentamos se abordan algunas de las aportaciones sobre dichas creencias y sobre las concepciones de la enseñanza y el aprendizaje.

  1. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Science.gov (United States)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-10-01

    Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  2. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).

    Science.gov (United States)

    Parsons, Zachary D; Ruddraraju, Kasi Viswanatharaju; Santo, Nicholas; Gates, Kent S

    2016-06-15

    Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Occurrence of multi-class surfactants in urban wastewater: contribution of a healthcare facility to the pollution transported into the sewerage system.

    Science.gov (United States)

    Bergé, Alexandre; Wiest, Laure; Baudot, Robert; Giroud, Barbara; Vulliet, Emmanuelle

    2018-04-01

    Healthcare facility discharges, by their nature, are often considered as non-domestic effluent, which can provide significant pollution comparatively to other domestic sources. In this context, a total of 12 monthly sampling campaigns were collected from a healthcare facility as well as the output of a sewerage system of Site Pilote de Bellecombe (SIPIBEL) observatory. This study focuses more specifically on 12 surfactants and biocides: four anionics, four cationic, two non-ionic, one zwitterionic, and one dispersive agent, among the most commonly used commercial surfactants. Particular attention was also provided to routine wastewater quality parameters. Both effluents were heavily contaminated by most anionic surfactants; they displayed median concentrations up to 1 to 2 mg/L for linear alkylbenzene sulfonates and between 10 and 100 μg/L for other sodium sulfate congeners (lauryl and laureth). Overall, for the majority of surfactants, the healthcare facility contribution to the total flux reaching the wastewater treatment plant ranges between 5 and 9%.

  4. ¿Quién habla de las mujeres en las noticias donde ellas son las protagonistas?

    Directory of Open Access Journals (Sweden)

    Ana Tamarit

    2011-01-01

    Full Text Available Este artículo presenta un análisis de las fuentes que los periodistas utilizan en las informaciones donde las mujeres son protagonistas de las noticias. La investigación -cuantitativa y cualitativa- se ha realizado en los periódicos de ámbito nacional y local de Castilla y León. Con los resultados obtenidos observamos cómo en los periódicos las noticias que hablan de las mujeres en la mayoría de las ocasiones no se firman. Comprobamos cuáles son las fuentes más utilizadas para la elaboración de esas noticias y las diferentes formas de citar a la fuente cuando se trata de un hombre o de una mujer.

  5. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    Science.gov (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Sulfonic acid-functionalized golf nanoparticles: A colloid-bound catalyst for soft lithographic application on self-assembled monolayers

    NARCIS (Netherlands)

    Li, X.; Paraschiv, V.; Huskens, Jurriaan; Reinhoudt, David

    2003-01-01

    In this report, we present a new lithographic approach to prepare patterned surfaces. Self-assembled monolayers (SAMs) of the acid-labile trimethylsilyl ether (TMS-OC11H22S)2 (TMS adsorbate) was formed on gold. 5-Mercapto-2-benzimidazole sulfonic acid sodium salt (MBS-Na+) was used as a ligand for

  7. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Nordiana; Ali, Ab Malik Marwan [Ionic Material and Devices Research Laboratory, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Lepit, Ajis; Rasmidi, Rosfayanti [Faculty of Applied Sciences, Universiti Teknologi MARA Sabah, Beg Berkunci 71, 88997 Kota Kinabalu (Malaysia); Subban, Ri Hanum Yahaya [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Science & Technology, Universiti Pertahanan Nasional Malaysia, 57000 Kuala Lumpur (Malaysia)

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  8. Las telenovelas juveniles mexicanas y las adolescentas obesas

    Directory of Open Access Journals (Sweden)

    Tania Meza

    2006-01-01

    Full Text Available Esta investigación analiza la opresión por cuerpo (obesidad a la que las mujeres son sometidas dentro del sistema patriarcal durante la adolescencia, específicamente a través de la representación televisiva que de las jóvenes gordas se hace en la telenovela juvenil mexicana. Los enormes niveles de audiencia que poseen las telenovelas en nuestro país hace indispensable, para los estudios de género desde las ciencias dela comunicación, estudiar el papel de las mujeres en dichas teleseries. En este análisis se pretende mostrar la triple marginación a la que son sometidas las adolescentes obesas en las telenovelas juveniles mexicanas: por ser mujeres, por ser jóvenes y por ser gordas.

  9. Las redes sociales presentes en las bibliotecas

    Directory of Open Access Journals (Sweden)

    Magda Cecilia Sandí S.

    2012-01-01

    Full Text Available El presente artículo pretende evidenciar la importancia del uso de las redes sociales en las bibliotecas como una herramienta y un canal de comunicación entre el bibliotecólogo y la comunidad de usuarios. Las redes sociales son una nueva forma de comunicarnos entre las y los usuarios del Internet, su uso es irrestricto y cada vez aumenta la comunidad de usuarios de estas herramientas en la red.

  10. Las redes sociales presentes en las bibliotecas

    Directory of Open Access Journals (Sweden)

    Magda Cecilia Sandí Sandí

    2012-07-01

    Full Text Available El presente artículo pretende evidenciar la importancia del uso de las redes sociales en las bibliotecas como una herramienta y un canal de comunicación entre el bibliotecólogo y la comunidad de usuarios. Las redes sociales son una nueva forma de comunicarnos entre las y los usuarios del Internet, su uso es irrestricto y cada vez aumenta la comunidad de usuarios de estas herramientas en la red.

  11. Las redes sociales presentes en las bibliotecas

    OpenAIRE

    Magda Cecilia Sandí S.

    2012-01-01

    El presente artículo pretende evidenciar la importancia del uso de las redes sociales en las bibliotecas como una herramienta y un canal de comunicación entre el bibliotecólogo y la comunidad de usuarios. Las redes sociales son una nueva forma de comunicarnos entre las y los usuarios del Internet, su uso es irrestricto y cada vez aumenta la comunidad de usuarios de estas herramientas en la red.

  12. Analysis of metolachlor ethane sulfonic acid chirality in groundwater: A tool for dating groundwater movement in agricultural settings

    Science.gov (United States)

    Chemical chirality of pesticides can be a useful tool for studying environmental processes. The chiral forms of metolachlor ethane sulfonic acid (MESA), an abundant metabolite of metolachlor, and metolachlor were examined over a 6 year period in groundwater and a groundwater-fed stream in a riparia...

  13. Effect of perfluorooctane sulfonate on the conformation of wheat germ acid phosphatase.

    Science.gov (United States)

    Xu, Dongmei; Jin, Jianchang; Shen, Tong; Wang, Yanhua

    2013-11-01

    Fluorescence spectroscopy was used to study the quenching mechanism, the type of force and the binding sites of perfluorooctane sulfonate (PFOS) on wheat germ acid phosphatase (ACPase). The results showed that the quenching effect of PFOS on ACPase was mainly due to a static quenching mechanism that occurred via the formation of hydrogen bonds and van der Waals forces. The results from synchronous fluorescence spectroscopy demonstrated that PFOS interacts with ACPase close to the tryptophan residues. In addition, synchronous fluorescence spectroscopy also showed that PFOS increases the hydrophobicity of the microenvironment of the tyrosine residues, hence decreasing the local polarity.

  14. Syntheses, structures, thermal stabilities and luminescence of two new lead sulfonates with phosphonate, carboxylate and pyridine

    International Nuclear Information System (INIS)

    Fu, Ruibiao; Hu, Shengmin; Wu, Xintao

    2014-01-01

    Hydrothermal reactions of Pb 2+ ion with disodium 4,4'-bis(2-sulfonatostyryl)biphenyl (Na 2 L1), 4-pyridyl-CH 2 N(CH 2 COOH)(CH 2 PO 3 H 2 ) (H 3 L2) and 4,4'-bipyridine (4,4'-bipy) afforded two new lead sulfonates, namely, [Pb 4 (L1) 2 (HL2) 2 (H 2 O)

  15. H+ and Na+ Ion Transport Properties of Sulfonated Poly(2,6-dimethyl-1,4-phenyleneoxide)Membranes

    Czech Academy of Sciences Publication Activity Database

    Bouzek, K.; Moravcová, S.; Samec, Zdeněk; Schauer, Jan

    2003-01-01

    Roč. 150, č. 6 (2003), s. E329-E336 ISSN 0013-4651 R&D Projects: GA ČR GA203/99/0575; GA ČR GA104/02/0664 Institutional research plan: CEZ:AV0Z4050913; CEZ:AV0Z4040901 Keywords : H+ and Na+ ion * sulfonated * membranes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.361, year: 2003

  16. Enhanced Capacity of Polypyrrole/Anthraquinone Sulfonate/Graphene Composite as Cathode in Lithium Batteries

    International Nuclear Information System (INIS)

    Yang, Yang; He, Kuangchi; Yan, Peng; Wang, Dan; Wu, Xiaoyan; Zhao, Xin; Huang, Zilong; Zhang, Chunming; He, Dannong

    2014-01-01

    Highlights: • A polypyrrole (PPy)/anthraquinone sulfonate (AQS)/reduced graphene oxide (r-GO) composite was obtained via a facile electrochemical route. • A great enhancement in electrochemical performance was obtained for PPy/AQS/r-GO due to a remarkable combination of the redox property of AQS and the conductivity of r-GO. • The composite electrode delivered a specific discharge capacity of 127.2 mAh g −1 with a ca. 100% coulombic efficiency at 0.1 A g −1 . - Abstract: A facile electrochemical route was applied to prepare polypyrrole (PPy)/anthraquinone sulfonate (AQS)/reduced graphene oxide (r-GO) composite. The as-synthesized composite showed an interconnected porous structure, which is related to the competitive relationship between two dopants. The cyclic voltammograms and electrochemical impedance spectra confirmed that the presence of highly conductive r-GO in PPy matrix ensured an efficient redox reaction obtained for redox-active AQS. As a result, the PPy/AQS/r-GO composite exhibited an enhanced specific capacity of 127.2 mAh g −1 with ca. 100% coulombic efficiency at 0.1 A g −1 . Furthermore, the superior rate capability and cycling stability were also observed for PPy/AQS/r-GO, compared to AQS doped PPy. It is possible to adopt this co-dopants system for creating electro-active polymer materials with high capacities that are comparable to that of conventional inorganic intercalation electrode materials

  17. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland)

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8 kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8 kJ/mol). - Graphical abstract: Modeling of boldine adsorption onto unmodified and propyl-sulfonic acid-modified mesoporous adsorbents. - Highlights: • The process of boldine adsorption onto SBA-15, SBA-16 and MCF silicas was examined. • Siliceous adsorbents were functionalized with propyl-sulfonic acid groups. • The equilibrium adsorption data were analyzed using several isotherm models. • Both linear regression and nonlinear fitting analysis were carried out.

  18. Experimental determination and prediction of phase behavior for 1-butyl-3-methylimidazolium nonafluorobutyl sulfonate and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Kang; Park, YoonKook [Hongik University, Sejong (Korea, Republic of); Pore, Dattaprasad Marutrao [Shivaji University, Kolhapur (India)

    2014-09-15

    The vapor-liquid equilibrium of the binary system CO{sub 2}+1-butyl-3-methylimidazolium nonafluorobutyl sulfonate ([BMIM][NfO]) was measured over a temperature range of 298.2-323.2 K at intervals of 5.0 K for CO{sub 2} mole fraction ranging from 0.137 to 0.900 using a high-pressure variable-volume view cell. The Peng-Robinson equation of state was then applied with two-parameter mixing rules over the same range and the results compared with the experimentally obtained data. Increasing the alkyl chain length in perfluorinated sulfonate from methyl to butyl markedly increased the CO{sub 2} solubility. To investigate the effect of the number of fluorine atoms in the anion on the phase behavior of imidazolium based ionic liquid, these experimental results were then compared with those reported in previous experimental studies of 1-alkyl-3-methylimidazolium cations and with modeling data. It looks likely that both the number of fluorine atoms in the anion and the presence of S=O groups play an important role in designing CO{sub 2}-philic molecules.

  19. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions.

    Science.gov (United States)

    Liu, Ying-Ling; Hsu, Chih-Yuan; Su, Yu-Huei; Lai, Juin-Yih

    2005-01-01

    Nanosized silica particles with sulfonic acid groups (ST-GPE-S) were utilized as a cross-linker for chitosan to form a chitosan-silica complex membranes, which were applied to pervaporation dehydration of ethanol-water solutions. ST-GPE-S was obtained from reacting nanoscale silica particles with glycidyl phenyl ether, and subsequent sulfonation onto the attached phenyl groups. The chemical structure of the functionalized silica was characterized with FTIR, (1)H NMR, and energy-dispersive X-ray. Homogeneous dispersion of the silica particles in chitosan was observed with electronic microscopies, and the membranes obtained were considered as nanocomposites. The silica nanoparticles in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. With addition of 5 parts per hundred of functionalized silica into chitosan, the resulting membrane exhibited a separation factor of 919 and permeation flux of 410 g/(m(2) h) in pervaporation dehydration of 90 wt % ethanol aqueous solution at 70 degrees C.

  20. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  1. Occurrence of high-tonnage anionic surfactants into Spanish sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero, S.; Prieto, C. A.; Lopez, I.; Berna, J. L.

    2009-07-01

    The sewage Sludge directive 86/278/EEc seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. currently, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals (including linear alkylbenzene sulphonates. LAS, the main synthetic anionic surfactant) is to be implemented. This legal limit is based on monitoring studies carried out in Scandinavian countries, being strongly rejected by most EU countries since the Nordic situations was regarded as not representative. (Author)

  2. Occurrence of high-tonnage anionic surfactants into Spanish sewage sludge

    International Nuclear Information System (INIS)

    Cantarero, S.; Prieto, C. A.; Lopez, I.; Berna, J. L.

    2009-01-01

    The sewage Sludge directive 86/278/EEc seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. currently, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals (including linear alkylbenzene sulphonates. LAS, the main synthetic anionic surfactant) is to be implemented. This legal limit is based on monitoring studies carried out in Scandinavian countries, being strongly rejected by most EU countries since the Nordic situations was regarded as not representative. (Author)

  3. Ileocolic perforation secondary to sodium polystyrene sulfonate in sorbitol use: A case report

    Science.gov (United States)

    Trottier, Vincent; Drolet, Sébastien; Morcos, Mohib W

    2009-01-01

    Hyperkalemia is a common condition encountered in medical and surgical patients. It can lead to various complications including cardiac arrhythmias. Sodium polystyrene sulfonate (SPS) in sorbitol is an ion-exchange resin that can be used to treat hyperkalemia. It can be used in enema or in oral form. The present article describes the case of an intensive care unit patient who experienced severe, diffuse, intestinal perforation induced by the use of SPS-sorbitol, requiring multiple laparotomies, followed by a brief review of the relevant literature and recommendations regarding the use of SPS-sorbitol. PMID:19826644

  4. Thermoanalytical Investigation of Some Sulfone-Containing Drugs

    Directory of Open Access Journals (Sweden)

    Nahla N. Salama

    2012-01-01

    Full Text Available The thermal behavior of some sulfone-containing drugs, namely, dapsone (DDS, dimethylsulfone (MSM, and topiramate (TOP in drug substances, and products were investigated using different thermal techniques. These include thermogravimetry (TGA, derivative thermogravimetry (DTG, differential thermal analysis (DTA, and differential scanning calorimetry (DSC. The thermogravimetric data allowed the determination of the kinetic parameters: activation energy (Ea, frequency factor (A, and reaction order (n. The thermal degradation of dapsone and topiramate was followed a first-order kinetic behavior. The calculated data evidenced a zero-order kinetic for dimethylsulfone. The relative thermal stabilities of the studied drugs have been evaluated and follow the order DDS > TOP > MSM. The purity was determined using DSC for the studied compounds, in drug substances and products. The results were in agreement with the recommended pharmacopoeia and manufacturer methods. DSC curves obtained from the tablets suggest compatibility between the drugs, excipients and/or coformulated drugs. The fragmentation pathway of dapsone with mass spectrometry was taken as example, to correlate the thermal decomposition with the resulted MS-EI. The decomposition modes were investigated, and the possible fragmentation pathways were suggested by mass spectrometry.

  5. Chemical indicators of anthropogenic impacts in sediments of the pristine karst lakes.

    Science.gov (United States)

    Mikac, I; Fiket, Z; Terzić, S; Barešić, J; Mikac, N; Ahel, M

    2011-08-01

    The anthropogenic impact on the pristine karst lakes was investigated using combination of specific parameters, including multielemental analysis of major inorganic constituents (Al, K, Fe) and trace metals (Li, Ag, Cd, Sn, Pb, Bi, Cr, Co, Ni, Cu, Zn and Sb), polycyclic aromatic hydrocarbons (PAHs) and anionic surfactants of linear alkylbenzene sulfonate (LAS) type. The study was performed in the Plitvice Lakes National Park, situated in a sparsely populated area of the northwestern Dinarides, central Croatia. Dated cores of recent sediments from the two biggest lakes, Lake Prosce and Lake Kozjak, were analysed for the selected contaminants using highly specific methods, involving inductively coupled plasma mass spectrometry (ICP/MS), gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). The concentration of inorganic constituents reflected primarily the geological background of the area as well as geomorphological and geochemical characteristics of the Plitvice Lakes. Due to the higher terrigenous input, the concentration of all elements was significantly higher in the Lake Prosce. The concentration of toxic metals was relatively low in both lakes, except for Cd (>1 mg kg(-1)) and Pb (up to 40 mg kg(-1)). The vertical profiles of these metals suggested that elevated concentrations of Cd were of natural origin, derived from the erosion of the Jurassic dolomite bedrock, while Pb was predominately of recent anthropogenic origin. A similar distribution pattern, suggesting the same prevailing mechanism of input, was observed for pyrolytic PAHs. The characteristic diagnostic PAH ratios revealed that higher PAHs prevailingly originated from the combustion of biomass and fossil fuels. LAS, which represent highly specific indicators of untreated wastewaters, were found in rather high concentrations in the recent sediment layers (up to 4.7 mg kg(-1)), suggesting that contaminated household and hotel wastewaters reach the

  6. Synthesis and characterization of sulfonic acid membranes based on interpenetrating polymer networks for application in fuel cells; Sintese e caracterizacao de membranas sulfonadas baseadas em redes polimericas interpenetrantes para aplicacao em celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Lyzed Toloza; Loureiro, Felipe A.M.; Rocco, Ana Maria [Grupo de Materiais Condutores e Energia, Escola de Quimica, Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)], e-mail: amrocco@eq.ufrj.br; Pereira, Robson Pacheco [Instituto de Ciencias Exatas, Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil)

    2011-07-01

    In the present work, the synthesis and characterization of sulfonic membranes based on interpenetrating polymer networks (IPN). In order to obtain such systems, the diglycidyl ether of bisphenol A (DGEBA) was polymerized in presence of polyethyleneimine (PEI). These membranes were submitted to sulfonation reactions, originating IPN-SO{sub 3}H membranes. The characterization by FTIR evidenced the formation of a Semi-IPN structure, while sulfonation reactions resulted in systems containing -SO{sub 3}H groups covalently bonded to the chains. The membranes exhibited water retention up to 200 degree C, in a temperature range sufficient for application in PEMFC under hydration. (author)

  7. Nanocomposite Based on Functionalized Gold Nanoparticles and Sulfonated Poly(ether ether ketone Membranes: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-03-01

    Full Text Available Gold nanoparticles, capped by 3-mercapto propane sulfonate (Au-3MPS, were synthesized inside a swollen sulfonated poly(ether ether ketone membrane (sPEEK. The formation of the Au-3MPS nanoparticles in the swollen sPEEK membrane was observed by spectroscopic and microscopic techniques. The nanocomposite containing the gold nanoparticles grown in the sPEEK membrane, showed the plasmon resonance λmax at about 520 nm, which remained stable over a testing period of three months. The size distribution of the nanoparticles was assessed, and the sPEEK membrane roughness, both before and after the synthesis of nanoparticles, was studied by AFM. The XPS measurements confirm Au-3MPS formation in the sPEEK membrane. Moreover, AFM experiments recorded in fluid allowed the production of images of the Au-3MPS@sPEEK composite in water at different pH levels, achieving a better understanding of the membrane behavior in a water environment; the dynamic hydration process of the Au-3MPS@sPEEK membrane was investigated. These preliminary results suggest that the newly developed nanocomposite membranes could be promising materials for fuel cell applications.

  8. Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: A tool for dating groundwater movement in agricultural settings.

    Science.gov (United States)

    Rice, Clifford P; McCarty, Gregory W; Bialek-Kalinski, Krystyna; Zabetakis, Kara; Torrents, Alba; Hapeman, Cathleen J

    2016-08-01

    To better address how much groundwater contributes to the loadings of pollutants from agriculture we developed a specific dating tool for groundwater residence times. This tool is based on metolachlor ethane sulfonic acid, which is a major soil metabolite of metolachlor. The chiral forms of metolachlor ethane sulfonic acid (MESA) and the chiral forms of metolachlor were examined over a 6-year period in samples of groundwater and water from a groundwater-fed stream in a riparian buffer zone. This buffer zone bordered cropland receiving annual treatments with metolachlor. Racemic (rac) metolachlor was applied for two years in the neighboring field, and subsequently S-metolachlor was used which is enriched by 88% with the S-enantiomer. Chiral analyses of the samples showed an exponential increase in abundance of the S-enantiomeric forms for MESA as a function of time for both the first order riparian buffer stream (R(2)=0.80) and for groundwater within the riparian buffer (R(2)=0.96). However, the S-enrichment values for metolachlor were consistently high indicating different delivery mechanisms for MESA and metolachlor. A mean residence time of 3.8years was determined for depletion of the initially-applied rac-metolachlor. This approach could be useful in dating groundwater and determining the effectiveness of conservation measures. A mean residence time of 3.8years was calculated for groundwater feeding a first-order stream by plotting the timed-decay for the R-enantiomer of metolachlor ethane sulfonic acid. Published by Elsevier B.V.

  9. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    Science.gov (United States)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  10. Effects of water soaking and/or sodium polystyrene sulfonate addition on potassium content of foods

    OpenAIRE

    Picq, Christian; Asplanato, M.; Bernillon, N.; Fabre, C.; Roubeix, M.; Ricort, J. M.

    2014-01-01

    In this study, we determined, by atomic absorption spectrophotometry, the potassium amount leached by soaking or boiling foods identified by children suffering from chronic renal failure as "pleasure food'' and that they cannot eat because of their low-potassium diet, and evaluated whether addition of sodium polystyrene sulfonate resin (i.e. Kayexalate (R)) during soaking or boiling modulated potassium loss. A significant amount of potassium content was removed by soaking (16% for chocolate a...

  11. Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Hacer; Inan, Tuelay Y.; Unveren, Elif [The Scientific and Technological Research Council of Turkey (TUeBiTAK), Marmara Research Center, Chemistry Institute, P.K. 21, 41470 Gebze-Kocaeli (Turkey); Kaya, Metin [DEMIRDOeKUeM A.S. 4 Eyluel Mah, ismet inoenue Cad. No:245 Bozueyuek/Bilecik (Turkey)

    2010-08-15

    We have prepared composite membranes for fuel cell applications. Cesium salt of tungstophosphoric acid (Cs-TPA) particles was synthesized by aqueous solutions of tungstophosphoric acid and cesium hydroxide and, Cs-TPA particles and sulfonated (polyether ether ketone) (SPEEK) with two sulfonation degrees (DS), 60 and 70%have been used. We examined both the effects of Cs-TPA in SPEEK membranes as functions of sulfonation degrees of SPEEK and the content of Cs-TPA. The performance of the composite membranes was evaluated in terms of water uptake, ion exchange capacity, proton conductivity, chemical stability, hydrolytic stability, thermal stability and methanol permeability. The morphology of the membranes was investigated with SEM micrographs. Increasing sulfonation degree of SPEEK from 60 to 70 caused agglomeration of the Cs-TPA particles. The methanol permeability was reduced to 4.7 x 10{sup -7} cm{sup 2}/s for SPEEK (DS: 60%)/Cs-TPA membrane with 10 wt.% Cs-TPA concentration, and acceptable proton conductivity of 1.3 x 10{sup -1} S/cm was achieved at 80 C under 100% RH. The weight loss at 900 C increased with the addition of inorganic particles, as expected. The hydrolytic stability of the SPEEK/Cs-TPA based composite membranes was improved with the incorporation of the Cs-TPA particles into the matrix. We also noted that SPEEK60/Cs-TPA composite membranes were hydrolytically more stable than SPEEK70/Cs-TPA composite membranes. On the other hand, Methanol, water vapor, and hydrogen permeability values of SPEEK60 composite membranes were found to be lower than that of Nafion {sup registered}. (author)

  12. Phytoremediation potential of Portulaca grandiflora Hook. (Moss-Rose) in degrading a sulfonated diazo reactive dye Navy Blue HE2R (Reactive Blue 172).

    Science.gov (United States)

    Khandare, Rahul V; Kabra, Akhil N; Kurade, Mayur B; Govindwar, Sanjay P

    2011-06-01

    Wild and tissue cultured plants of Portulaca grandiflora Hook. have shown to be able to decolorize a sulfonated diazo dye Navy Blue HE2R (NBHE2R) up to 98% in 40 h. A significant induction in the activities of lignin peroxidase, tyrosinase and DCIP reductase was observed in the roots during dye decolorization. The wild plants and tissue cultures could independently decolorize and degrade NBHE2R into metabolites viz. N-benzylacetamide and 6-diazenyl-4-hydroxynaphthalene-2-sulfonic acid. A dye mixture and a textile effluent were also decolorized efficiently by P. grandiflora. The phytotoxicity study revealed reduction in the toxicity due to metabolites formed after dye degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Selected anionic and cationic surface active agents: case study on the Kłodnica sediments

    Directory of Open Access Journals (Sweden)

    Olkowska Ewa

    2017-03-01

    Full Text Available Surface active agents (surfactants are a group of chemical compounds, which are used as ingredients of detergents, cleaning products, cosmetics and functional products. After use, wastes containing surfactants or their degradation products are discharged to wastewater treatment plants or directly into surface waters. Due to their specific properties of SAAs, compounds are able to migrate between different environmental compartments such as soil, sediment, water or even living organisms and accumulate there. Surfactants can have a harmful effect on living organisms. They can connect with bioactive molecules and modify their function. Additionally, they have the ability to migrate into cells and cause their damage or death. For these reasons investigation of individual surfactants should be conducted. The presented research has been undertaken to obtain information about SAA contamination of sediment from the River Kłodnica catchment caused by selected anionic (linear alkylbenzene sulfonates (LAS C10-C13 and cationic (alkylbenzyldimethylammonium (BDMA-C12-16, alkyl trimethyl ammonium (DTMA, hexadecyl piridinium chloride (HP chlorides surfactants. This river flows through an area of the Upper Silesia Industrial Region where various companies and other institutions (e.g. coal mining, power plants, metallurgy, hospitals are located. To determine their concentration the following analytical tools have been applied: accelerated solvent extraction– solid phase extraction – high performance liquid chromatography – UV-Vis (anionic SAAs and conductivity (cationic SAAs detectors. In all sediments anionic SAAs have been detected. The concentrations of HTMA and BDMA-C16 in tested samples were higher than other cationic analytes. Generally, levels of surfactants with longer alkyl chains were higher and this observation can confirm their higher susceptibility to sorption on solid surfaces.

  14. Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalized multi-walled carbon nanotubes nano-composite

    International Nuclear Information System (INIS)

    Xu Jun; Yao Pei; Li Xuan; He Fei

    2008-01-01

    Water-soluble and conducting sulfonated polyaniline (SPAN)/phenylamine groups contained MWNTs (p-MWNTs) nano-composite were synthesized by in situ oxidation polymerization followed by sulfonation and hydrolysis. TEM, Raman spectroscopy, FTIR, XPS, TGA and standard four-probe methods were employed to characterize morphology, chemical structure and performance of the nano-composite. The results show that phenylamine groups are grafted on the surface of p-MWNTs via amide bond and oxidized phenylamine groups initiate polyaniline polymerized on the surface of p-MWNTs. SPAN chains covalently attached to p-MWNTs render p-MWNTs compatibility with SPAN matrix and lead to SPAN/p-MWNTs nano-composite highly soluble and stable in water. Improved thermal stability illuminate existence of a new phase in the nano-composite where there is chemical interaction between p-MWNTs and SPAN coatings. Owing to incorporation of p-MWNTs conductivity of the nano-composite at room temperature is increased by about two orders of magnitude over neat SPAN

  15. Comparative study of the addition compounds between lanthanides methane sulfonates (III) and aromatic amino-oxides as ligands

    International Nuclear Information System (INIS)

    Rosario Matos, J. do.

    1989-01-01

    The main goal of this thesis is to further develop the studies on the preparation and characterization of addition compounds obtained from the reaction of lanthanide methane sulfonates and aromatic amino oxides as ligands, pyridine-N-oxides as the picoline-N-oxides (2-pic NO, 3-pic NO and 4-picNO) in order to make a comparative study. (author)

  16. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Choe, H.S.; Giaccai, J.; Alamgir, M.; Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-10-01

    A novel group of polymer electrolytes based on poly(vinyl sulfone) (PVS) and poly(vinylidene fluoride) (PVdF) polymers, plasticized with highly conductive solutions of LiClO{sub 4}, LiN(CF{sub 3}SO{sub 2}){sub 2} or LiAsF{sub 6} dissolved in ethylene carbonate, propylene carbonate, sulfolane, or mixtures thereof, was prepared via in situ photopolymerization and solution casting, respectively. The polymer electrolytes were characterized from conductivity and cyclic voltammetry data. It was found that solutions of Li salts in the vinyl sulfone monomer were highly conductive at room temperature with conductivities of 0.6 to 1.3 x 10{sup -3} {Omega}{sup -1}cm{sup -1} at 30{sup o}C, but the conductivities decreased by about 10{sup 3} times on polymerizing. Conversely, the conductivities increased by about 10{sup 2} to 10{sup 4} times on incorporating plasticizing solvents into the solid polymer electrolytes, suggesting that ionic mobility is the primary factor affecting the conductivities of solid polymer electrolytes. The highest conductivity exhibited by PVS-based electrolyte was 3.74 x 10{sup -4} {Omega}{sup -1}cm{sup -1} and that by PVdF-based electrolyte was 1.74 x 10{sup -3} {Omega}{sup -1}cm{sup -1}, at 30{sup o}C. The PVS-based electrolytes were found to be stable to oxidation up to potentials ranging between 4.5 and 4.8 V, while the stable potential limits for PVdF-based electrolytes were between 3.9 and 4.3 V vs. Li{sup +}/Li. (author)

  17. Perfluorohexane Sulfonate (PFHxS) and a Mixture of Endocrine Disrupters Reduce Thyroxine Levels and Cause Anti-Androgenic Effects in Rats

    DEFF Research Database (Denmark)

    Ramhøj, Louise; Hass, Ulla; Boberg, Julie

    2018-01-01

    The developmental toxicity of perfluorohexane sulfonate (PFHxS) is largely unknown despite widespread environmental contamination and presence in human serum, tissues and milk.To thoroughly investigate PFHxS toxicity in developing rats and to mimic a realistic human exposure situation, we examined...

  18. Las multitudes y las revoluciones de nuestro tiempo

    Directory of Open Access Journals (Sweden)

    John Harold Biervliet

    2015-08-01

    Full Text Available Este artículo examina el motivo de las multitudes y las revoluciones de nuestro tiempo. Primeramente, se discuten las diferencias entre los conceptos de multitud y masa. Así, podemos considerar las revoluciones como acontecimientos de cambios sociales, económicos y políticos, provenientes de las clases baja y media de la sociedad. El meollo de este artículo refiere a la dignidad humana articulada a la contracción de los Estados de bienestar. Los ciudadanos están reflejando un desencanto hacia la clase política y una frustración con respecto al empeoramiento de las condiciones económicas y sociales. Podemos observar los casos de indignados en Grecia, España y Portugal pero también en los países árabes. De esta misma manera, las revoluciones de las multitudes siguen avanzando por medio de las demostraciones públicas y protestas sobre los espacios geográficos. Finalmente, las dinámicas de cambio a través de las revoluciones árabes son una cuestión compleja debido al círculo vicioso entre la tendencia autoritaria y la islámica. This article examines the reason of multitudes and revolutions in our time. First of all, it discusses the difference between the concept of multitude and mass. Consequently, revolutions can be considered as social, economic, and political events of changes, which come from the low and middle classes of the society. This article refers to the human dignity articulated with the contraction of Welfare states. Citizens are reflecting disenchantment towards the political class and frustration regarding the deterioration of social and economic conditions. We can observe angry people in Greece, Spain, and Portugal but also in Arabian countries. In this same way, revolutions of multitudes continue by means of public demonstrations and protests on geographical spaces. Finally, the dynamics of change through Arabian Revolutions are a complex matter due to the vicious circle between the authoritarian or Islamic

  19. Ileocolic Perforation Secondary to Sodium Polystyrene Sulfonate in Sorbitol Use: A Case Report

    Directory of Open Access Journals (Sweden)

    Vincent Trottier

    2009-01-01

    Full Text Available Hyperkalemia is a common condition encountered in medical and surgical patients. It can lead to various complications including cardiac arrhythmias. Sodium polystyrene sulfonate (SPS in sorbitol is an ion-exchange resin that can be used to treat hyperkalemia. It can be used in enema or in oral form. The present article describes the case of an intensive care unit patient who experienced severe, diffuse, intestinal perforation induced by the use of SPS-sorbitol, requiring multiple laparotomies, followed by a brief review of the relevant literature and recommendations regarding the use of SPS-sorbitol.

  20. Sulfonated poly(styrene-divinylbenzene) modified with amines and the application for pipette-tip solid-phase extraction of carbendazim in apples.

    Science.gov (United States)

    Ma, Yuxin; Liu, Lingling; Tang, Weiyang; Zhu, Tao

    2017-10-01

    Sulfonated poly(styrene-divinylbenzene) modified with five kinds of amine functional groups was applied to the determination of carbendazim in apple samples with a pipette-tip solid-phase extraction method. The structures of the polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Five different modifications of the solid-phase extraction sorbent based on sulfonated poly(styrene-divinylbenzene) were tested under static and pipette-tip solid-phase extraction conditions. The polymer modified with p-methoxyaniline showed the best recognition capacity and adsorption amount for carbendazim. Under the optimum conditions, 3.00 mg of the adsorbent, 1.00 mL of ethyl acetate as washing solvent, and 1.00 mL of ammonia/acetonitrile (5:95, v/v) as elution solvent were used in the pretreatment procedure of apple samples. The calibration graphs of carbendazim in methanol were linear over 5.00-200.00 μg/mL, and the limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of carbendazim were in the range of 91.31-98.13% with associated intraday relative standard deviations of 0.76-2.13% and interday relative standard deviations of 1.10-1.85%. Sulfonated poly(styrene-divinylbenzene) modified with p-methoxyaniline showed satisfactory results (recovery: 97.96%) and potential for the rapid purification of carbendazim in apple samples combined with the pipette-tip solid-phase extraction. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Las versiones homericas Las versiones homericas

    Directory of Open Access Journals (Sweden)

    Jorge Luis Borges

    2008-04-01

    Full Text Available Ningún problema tan consustancial con las letras con su modesto misterio como el que propone una traducción. Un olvido animal por la vanidad, el tenor de confesar procesos mentales que adivinamos peligrosamente comunes, el conato de mantener intacta y central una reserve incalculable de sombre, velan las tales escrituras directas. La traducciOn, en cambio, parece destinada a ilustrar la discusión estitica. El modelo propuesto a su imitaciOn es un texto visible, no un labirint° inestimable de proyectos preteritos o la acatada tentaciOn momentanea de una facilidad. Bertrand Russell define un objeto extern( como un sistema circular, irradiante, de impresiones posibles; lo mismo puede aseverarse de un texto, dadas las repercusiones incalculables de lo verbal. Un parcial y precioso documento de las vicisitudes que sufre queda en sus traducciones.

  2. Synthetic approach of norbadione A: new preparation of alcohols from sulfones and boron compounds

    International Nuclear Information System (INIS)

    Billaud, C.

    2005-12-01

    The synthetic approach of norbadione A, a pigment from mushrooms related to pulvinic acids, was studied. This compound has the property to complex caesium and has shown an antioxidant activity. The first strategy, based on a double Suzuki-Miyaura coupling between a naphtho-lactone with two boron functions and two pulvinic moieties with a triflate was unsuccessful and has shown a deactivating effect of the lactone. Modifications aimed to inhibit the electro-attracting character of the lactone permitted to obtain a bis(coupled) product with a poor yield. A second approach based on a the cyclization of enol aryl-acetates was studied in order to build the pulvinic moiety in several steps. The important reaction of introduction of an alkyl-acetate from a triflate was realised by a palladium-mediated coupling. The cyclization attempts carried out using a naphthalenic compound allowed us to isolate a monocyclised product. A parallel study was to first build a tetronic moiety and then to construct the exocyclic double bond by a method developed in the laboratory for the preparation of an iodated pulvinic compound. Finally, a new preparation of alcohols from sulfones and boron compounds was developed. Two known reactions in the chemistry of boron were combined. The first one is the reaction between anions of sulfones and tri-alkyl-boranes, the second one is a thermal isomerization which places the boron atom in a terminal position. A new preparation of primary alcohols was thus carried out. (author)

  3. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK Membranes for a Vanadium/Air Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Géraldine Merle

    2013-12-01

    Full Text Available Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone (cSPEEK membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a crosslinking on the sulfonic acid groups; and (b crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  4. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  5. Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears.

    Science.gov (United States)

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Born, Erik W

    2012-11-06

    Several perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) of varying chain length are bioaccumulative in biota. However, wildlife reports have focused on liver and with very little examination of other tissues, and thus there is a limited understanding of their distribution and potential effects in the mammalian body. In the present study, the comparative accumulation of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, and select precursors were examined in the liver, blood, muscle, adipose, and brain of 20 polar bears (Ursus maritimus) from Scoresby Sound, Central East Greenland. Overall, PFSA and PFCA concentrations were highest in liver followed by blood > brain > muscle ≈ adipose. Liver and blood samples contained proportionally more of the shorter/medium chain length (C(6) to C(11)) PFCAs, whereas adipose and brain samples were dominated by longer chain (C(13) to C(15)) PFCAs. PFCAs with lower lipophilicities accumulated more in the liver, whereas the brain accumulated PFCAs with higher lipophilicities. The concentration ratios (±SE) between perfluorooctane sulfonate and its precursor perfluorooctane sulfonamide varied among tissues from 9 (±1):1 (muscle) to 36 (±7):1 (liver). PFCA and PFSA patterns in polar bears indicate that the pharmacokinetics of these compounds are to some extent tissue-specific, and are the result of several factors that may include differing protein interactions throughout the body.

  6. Liquid chromatography-tandem mass spectrometry analysis of perfluorooctane sulfonate and perfluorooctanoic Acid in fish fillet samples.

    Science.gov (United States)

    Paiano, Viviana; Fattore, Elena; Carrà, Andrea; Generoso, Caterina; Fanelli, Roberto; Bagnati, Renzo

    2012-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic (PFOA) acid are persistent contaminants which can be found in environmental and biological samples. A new and fast analytical method is described here for the analysis of these compounds in the edible part of fish samples. The method uses a simple liquid extraction by sonication, followed by a direct determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The linearity of the instrumental response was good, with average regression coefficients of 0.9971 and 0.9979 for PFOS and PFOA, respectively, and the coefficients of variation (CV) of the method ranged from 8% to 20%. Limits of detection (LOD) were 0.04 ng/g for both the analytes and recoveries were 90% for PFOS and 76% for PFOA. The method was applied to samples of homogenized fillets of wild and farmed fish from the Mediterranean Sea. Most of the samples showed little or no contamination by perfluorooctane sulfonate and perfluorooctanoic acid, and the highest concentrations detected among the fish species analyzed were, respectively, 5.96 ng/g and 1.89 ng/g. The developed analytical methodology can be used as a tool to monitor and to assess human exposure to perfluorinated compounds through sea food consumption.

  7. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Perfluorooctane Sulfonate and Perfluorooctanoic Acid in Fish Fillet Samples

    Directory of Open Access Journals (Sweden)

    Viviana Paiano

    2012-01-01

    Full Text Available Perfluorooctane sulfonate (PFOS and perfluorooctanoic (PFOA acid are persistent contaminants which can be found in environmental and biological samples. A new and fast analytical method is described here for the analysis of these compounds in the edible part of fish samples. The method uses a simple liquid extraction by sonication, followed by a direct determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The linearity of the instrumental response was good, with average regression coefficients of 0.9971 and 0.9979 for PFOS and PFOA, respectively, and the coefficients of variation (CV of the method ranged from 8% to 20%. Limits of detection (LOD were 0.04 ng/g for both the analytes and recoveries were 90% for PFOS and 76% for PFOA. The method was applied to samples of homogenized fillets of wild and farmed fish from the Mediterranean Sea. Most of the samples showed little or no contamination by perfluorooctane sulfonate and perfluorooctanoic acid, and the highest concentrations detected among the fish species analyzed were, respectively, 5.96 ng/g and 1.89 ng/g. The developed analytical methodology can be used as a tool to monitor and to assess human exposure to perfluorinated compounds through sea food consumption.

  8. Enhanced performance of organic light-emitting devices by using electropolymerized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film as the anode modification layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaona [Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yan Jun [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Meng Lingchuan [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Sun Chenghua; Hu Xiujie; Chen Ping [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhou Shuyun, E-mail: zhou_shuyun@mail.ipc.ac.cn [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Teng Feng [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2012-01-31

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films were prepared by electropolymerization on patterned indium tin oxide substrates in isopropanol solution. The thickness and doping level of the PEDOT:PSS films were controlled by adjusting the electropolymerization time and the concentration of poly(styrene sulfonate) acid, respectively. Organic light-emitting diodes were fabricated using the electropolymerized PEDOT:PSS film as the anode modification layer. The dependence of the performance on thickness of PEDOT:PSS films was investigated. It is shown that the performance of the device can be further enhanced when the thickness of PEDOT:PSS films reached an optimum condition. This method facilitates manufacturing procedures of conducting polymers films and may offer an economical route for producing organic electroluminescent devices.

  9. Rapid Reduction of Alkenes and Alkynes over Pd Nanoparticles Supported on Sulfonated Porous Carbon

    Directory of Open Access Journals (Sweden)

    Arash Shokrolahi

    2013-01-01

    Full Text Available A novel method has been introduced for rapid reduction of alkenes and alkynes, which may be attractive for chemical industries. This method has some advantages such as simplicity and low cost of reactants. Pd supported on sulfonated porous carbon (SPC was used as a new catalyst for reduction of alkenes and alkynes to the corresponding alkanes using sodium borohydride. The heterogeneous reaction was conducted in open air at room temperature to produce the desired saturated compounds in high yields (over 96% and in short reaction time (15 minutes.

  10. Syntheses, structures, thermal stabilities and luminescence of two new lead sulfonates with phosphonate, carboxylate and pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ruibiao, E-mail: furb@fjirsm.ac.cn; Hu, Shengmin; Wu, Xintao

    2014-05-01

    Hydrothermal reactions of Pb{sup 2+} ion with disodium 4,4'-bis(2-sulfonatostyryl)biphenyl (Na{sub 2}L1), 4-pyridyl-CH{sub 2}N(CH{sub 2}COOH)(CH{sub 2}PO{sub 3} H{sub 2}) (H{sub 3}L2) and 4,4'-bipyridine (4,4'-bipy) afforded two new lead sulfonates, namely, [Pb{sub 4}(L1){sub 2}(HL2){sub 2}(H{sub 2}O)

  11. Proton-Conducting Sulfonated Ionomers by Chemical Modification and Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller

    The cornerstone in this dissertation is made up by three individual assessments of the diversity in the macromolecular landscape that can be obtained by applying relatively few efficient chemical tools. The intention is to gain deeper knowledge on the chemical tuning of proton exchange membranes...... of hydrocarbon macromolecular architectures, PSU with postsulfonated polystyrene (PS) grafts are investigated. Here, IEC is controlled through the degree of substitution, the graft length and DS. The grafting is performed with atom transfer radical polymerization (ATRP). The third assessment is dedicated...... of control by ATRP and click chemistry enables a wide selection of polymer structures with the handles: degree of substitution (DS), polymerization and sulfonation, and blending....

  12. A mechanistic study explaining the synergistic viscosity increase obtained from polyethylene oxide (PEO) and {beta}-naphthalene sulfonate (BNS) in shotcrete

    Energy Technology Data Exchange (ETDEWEB)

    Pickelmann, J.; Plank, J., E-mail: sekretariat@bauchemie.ch.tum.de

    2012-11-15

    In shotcrete, a combination of polyethylene oxide (PEO) and {beta}-naphthalene sulfonate (BNS) is commonly applied to reduce rebound. Here, the mechanism for the synergistic viscosity increase resulting from this admixture combination was investigated via x-ray diffraction (XRD), infrared and nuclear magnetic resonance (NMR) spectroscopy. It was found that the electron-rich aromatic rings present in BNS donate electrons to the alkyl protons of PEO and thus increase the electron density there. This rare interaction is known as CH-{pi} interaction and leads to the formation of a supramolecular structure whereby PEO chains bind weakly to BNS molecules. Through this mechanism a polymer network exhibiting exceptionally high molecular weight and thus viscosity is formed. Among polycondensates, sulfanilic acid-phenol-formaldehyde (SPF) provides even higher synergy with PEO than BNS while melamine (PMS), acetone (AFS) or polycarboxylate (PCE) based superplasticizers do not work at all. Effectiveness of lignosulfonates is dependent on their degree of sulfonation.

  13. 6-Methoxy-2-phenyl-4,4a,6,7,8,8a-hexahydro-2H-pyrano[3,2-d][1,3]dioxine-7,8-diyl bis(4-methylbenzene-1-sulfonate

    Directory of Open Access Journals (Sweden)

    James L. Wardell

    2012-03-01

    Full Text Available In the title α-D-glucopyranoside derivative, C28H30O10S2, each heterocyclic ring adopts a chair conformation. In the trisubstituted ring, the methoxy and one sulfonate group occupy axial positions, whereas the second sulfonate group occupies an axial position. The phenyl group on the other ring is in an equatorial position. In the crystal, supramolecular chains propagating along [100] are formed through C—H...O and C—H...π interactions.

  14. DFT Study of Binding and Electron Transfer from a Metal-Free Dye with Carboxyl, Hydroxyl, and Sulfonic Anchors to a Titanium Dioxide Nanocluster

    Directory of Open Access Journals (Sweden)

    Corneliu I. Oprea

    2013-01-01

    Full Text Available We report results of density functional theory (DFT calculations of a metal-free dye, 5-(4-sulfophenylazosalicylic acid disodium salt, known as Mordant Yellow 10 (MY-10, used as sensitizer for TiO2 dye-sensitized solar cells (DSSCs. Given the need to better understand the behavior of the dyes adsorbed on the TiO2 nanoparticle, we studied various single and double deprotonated forms of the dye bound to a TiO2 cluster, taking advantage of the presence of the carboxyl, hydroxyl, and sulfonic groups as possible anchors. We discuss various binding configurations to the TiO2 substrate and the charge transfer from the pigment to the oxide by means of DFT calculations. In agreement with other reports, we find that the carboxyl group tends to bind in bidentate bridging configurations. The salicylate uses both the carboxyl and hydroxyl substituent groups for either a tridentate binding to adjacent Ti(IV ions or a bidentate Ti-O binding together with an O-H-O binding, due to the rotation of the carboxyl group out of the plane of the dye. The sulfonic group prefers a tridentate binding. We analyze the propensity for electron transfer of the various dyes and find that for MY-10, as a function of the anchor group, the DSSC performance decreases in the order hydroxyl + carboxyl > carboxyl > sulfonate.

  15. Las lenguas en las sociedades del conocimiento

    Directory of Open Access Journals (Sweden)

    Álvarez, J. Francisco

    2008-12-01

    Full Text Available Languages become a strategic resource for information and knowledge societies. By expressing and sharing knowledge by means of languages, every culture generates deposits of knowledge, which can be transferred and exchanged among different epistemic communities. The contemporary technologies of information and communication have changed the structure of knowledge flows. Globalization of knowledge poses a great challenge to every language, including the Spanish one. In order to survive in the digital world, they should develop technolanguages. The lemma “Thinking in Spanish” implies a new model of governance for the Ibero-American knowledge communities.En las sociedades de la información y el conocimiento las lenguas se convierten en un recurso estratégico. Al expresar y compartir conocimiento por medio de los idiomas, las culturas generan yacimientos de conocimiento, que pueden ser transferidos e intercambiados entre comunidades epistémicas diferentes. Las actuales tecnologías de la información y la comunicación han cambiado la estructura de los flujos de conocimiento. La globalización del conocimiento plantea un gran desafío a todas las lenguas, incluyendo la española. Para sobrevivir en el mundo digital, los lenguajes han de convertirse en tecnolenguajes. El lema “Pensar en español” aporta un nuevo modelo de gobernanza para las comunidades iberoamericanas del conocimiento.

  16. Poly (ether imide sulfone) membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli

    2017-11-20

    A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl-3-methylimidalzolium thiocyanate ([EMIM]SCN), 1-butyl-3-methylimidalzolium thiocyanate ([BMIM]SCN), and 1-ethyl-3-methylimidalzolium acetate ([EMIM]OAc). The following polymer solution parameters were evaluated to optimize the manufacture: Gibbs free energy of mixing (G), intrinsic viscosity ([]) and hydrodynamic diameter. Membranes with sponge-like structure and narrow pore size distribution were obtained from solutions in [EMIM]SCN. They were tested for separation of proteins and deoxyribonucleic acids (DNA). Due to the polymer stability, we foresee that applications in more demanding chemical separations would be possible. [EMIM]SCN was 96 % purified and recovered after the membrane fabrication, contributing to the sustainability of the whole manufacturing process.

  17. Interactions between halloysite nanotubes and poly(styrene sulfonate) in solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Heon; Ryu, Jung Ju; Shin, Joo Huei; Lee, Hoik; Sohn, Dae Won [Dept. of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul (Korea, Republic of); Kim, Ick Soo [Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano (Japan)

    2017-01-15

    The interaction between halloysite nanotubes (HNT) and poly(styrene sulfonate) (PSS) in aqueous solution was investigated by dynamic light scattering. Dynamic behavior of HNT/PSS was observed with different salt, HNT, and PSS concentrations. The HNT colloids were stabilized by PSS over a wide range of HNT concentrations, and HNT suspension in dilute solution formed stable HNT/PSS particles. On the other hand, HNT particles aggregated as sediments at higher concentrations due to strong attraction among HNT rods, and HNT aggregates were stabilized by additional PSS. The interactions between HNT and PSS are described by the van der Waals–London force (VDWL). The stabilization process of HNT/PSS particles in salt solution was proposed by comparing the hydrodynamic radii and apparent intensities of samples. The results demonstrate that electrostatic, steric, and depletion stabilization processes are responsible for the stable dispersion of HNT even at high concentration.

  18. Las TIC como fuente de ventaja competitiva en las PYMES

    Directory of Open Access Journals (Sweden)

    Álvaro Fernando Moncada Niño

    2013-06-01

    Full Text Available Desde su aparición, las Tecnologías de la Información y las Comunicaciones (TIC se han convertido en un recurso fundamental de las empresas para competir en la mayoría de las industrias, generalizando el planteamiento de que son fuente de ventaja competitiva. Pero realmente, ¿cuándo las TIC son fuente potencial de ventaja competitiva para las pymes? ¿Bajo qué condiciones se logra que contribuyan a generar valor y mejorar su posición competitiva? ¿Qué características deben cumplir para alcanzar y sustentar la Ventaja Competitiva? Este documento basado en la Teoría de los Recursos y Capacidades (TRC responde estas preguntas y presenta al análisis de recurso Valioso, Raro, Inimitable y Organización (VRIO como herramienta para la determinación del potencial y valor que las TIC pueden alcanzar en las pymes y cómo pueden contribuir a que la empresa alcance ventajas competitivas sostenibles, en complemento de sus recursos y capacidades organizacionales.

  19. Las TIC como fuente de ventaja competitiva en las PYMES

    Directory of Open Access Journals (Sweden)

    Álvaro Fernando Moncada Niño

    2013-07-01

    Full Text Available Desde su aparición, las Tecnologías de la Información y las Comunicaciones (TIC se han convertido en un recurso fundamental de las empresas para competir en la mayoría de las industrias, generalizando el planteamiento de que son fuente de ventaja competitiva. Pero realmente, ¿cuándo las TIC son fuente potencial de ventaja competitiva para las pymes? ¿Bajo qué condiciones se logra que contribuyan a generar valor y mejorar su posición competitiva? ¿Qué características deben cumplir para alcanzar y sustentar la Ventaja Competitiva? Este documento basado en la Teoría de los Recursos y Capacidades (TRC responde estas preguntas y presenta al análisis de recurso Valioso, Raro, Inimitable y Organización (VRIO como herramienta para la determinación del potencial y valor que las TIC pueden alcanzar en las pymes y cómo pueden contribuir a que la empresa alcance ventajas competitivas sostenibles, en complemento de sus recursos y capacidades organizacionales.

  20. Relaciones amorosas de pareja en las trayectorias vitales de las mujeres encarceladas

    OpenAIRE

    De Miguel Calvo, Estibaliz

    2012-01-01

    [ES]La tesis doctoral analiza las experiencias amorosas de pareja de mujeres encarceladas, con el doble objetivo de visibilizar a las mujeres presas en el ámbito de las ciencias sociales y de introducir las especificidades de las mujeres encarceladas en los debates sociológicos y feministas acerca del amor. Las escasas aproximaciones al amor entre las mujeres presas han tendido a explicar sus relaciones de pareja desde el concepto de “depende...

  1. Sulfonated Polyaniline Coated Mercury Film Electrodes for Voltammetric Analysis of Metals in Water

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2001-11-01

    Full Text Available The electrochemical polymerization of 2-aminobenzenesulfonic acid with and without aniline has been carried by cyclic potencial sweep in sulfuric acid solution at the glassy carbon electrode. The polymer and copolymer formed have been characterized voltammetrically. The sulfonated polyaniline coated mercury thin-film electrodes have been evaluated for use with anodic stripping voltammetry. The electrodes were tested and compared with a conventional thin-film mercury electrode. Calibration plots showed linearity up to 10-7 mol L-1. Detection limits for zinc, lead and cadmium test species are very similar at around 12 nmol L-1. Applications to analysis of waters samples are demonstrated.

  2. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    Science.gov (United States)

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrocatalytic oxidation of ethylene glycol at palladium-bimetallic nanocatalysts (PdSn and PdNi) supported on sulfonate-functionalised multi-walled carbon nanotubes

    CSIR Research Space (South Africa)

    Ramulifho, T

    2013-04-01

    Full Text Available Electrocatalytic oxidation of ethylene glycol (EG) in alkaline medium using nano-scaled palladium-based bimetallic catalysts (PdM, where M = Ni and Sn) supported on sulfonated multi-walled carbon nanotubes (SF-MWCNTs) is compared. The bimetallic...

  4. The inventory of sources, environmental releases and risk assessment for perfluorooctane sulfonate in China

    International Nuclear Information System (INIS)

    Zhang Lai; Liu Jianguo; Hu Jianxin; Liu Chao; Guo Weiguang; Wang Qiang; Wang Hong

    2012-01-01

    With about 100 t/y of the production volume, perfluorootane sulfonates (PFOS) are mainly used for metal plating, aqueous fire-fighting foams (AFFFs) and sulfluramidin China, and the use amount is about 30–40 t/y, 25–35 t/y and 4–8 t/y respectively. Based on the inventory of PFOS production and uses with geographic distribution educed from statistics, environmental risk assessment of PFOS was taken by using EUSES model, as well as its environmental releases were estimated both in local and regional levels in China. While the environmental release from manufacture is significant in Central China region, metal plating was identified as the major PFOS release source in regional level. The East China region shows the most strong emission strength of PFOS. Though the predicted environmental concentrations (PECs) were not exceed current relevant predicted no effect concentrations (PNECs) of the risk characterization for PFOS, higher PECs was estimated around major PFOS release sources showing undesirable environmental risk at local level. - Highlights: ► Inventory of production and uses of perfluorooctane sulfonate (PFOS) in China with geographical distribution. ► Characteristics of PFOS release sources and distribution consistent with social-economic situation in China. ► Effective model predicted results of PFOS environmental risk assessment in local and regional scales compared with relevant environmental monitoring data. - Inventory of PFOS production and use of with sectoral and regional distribution of China, environmental releases and risk status were indicated both in the local and regional level of the country.

  5. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  6. Sulfonated polystyrene magnetic nanobeads coupled with immunochromatographic strip for clenbuterol determination in pork muscle.

    Science.gov (United States)

    Wu, Kesheng; Guo, Liang; Xu, Wei; Xu, Hengyi; Aguilar, Zoraida P; Xu, Guomao; Lai, Weihua; Xiong, Yonghua; Wan, Yiqun

    2014-11-01

    A magnetic solid-phase extraction method (MSPE) was developed to pre-concentrate and cleanup clenbuterol (CLE) from pork muscle. Novel sulfonated polystyrene magnetic nanobeads (spMNBs) were synthesized via a one-pot emulsion copolymerization method by using divinylbenzene, styrene, and sodium styrene sulfonate in the presence of oleic acid-modified and 10-undecylenic acid-modified magnetic ferrofluid. The resulting spMNBs exhibited high adsorption efficiency for CLE and for 10 other common beta-adrenergic agonists, namely, brombuterol, ractopamine, tulobuterol, bambuterol, cimbuterol, mabuterol, clorprenaline, penbutolol, salbutamol, and cimaterol. The adsorption behavior of the spMNBs for CLE was described by the Langmuir equation with a maximum adsorption capacity of 0.41 mg/g. Under the optimized parameters, the extraction of CLE from 0.5 g of pork muscle required 25mg of the spMNBs at a shortened adsorption time (0.5 min). The proposed MSPE was coupled with colloidal gold nanoparticle-based immunochromatographic assay (MSPE-AuNPIA) for the quantitative detection of CLE residue in pork muscle. The limit of detection and limit of quantification for the pork muscle were 0.10 and 0.24 ng/g, respectively. The intra-day and inter-day assay recoveries at three CLE spiked concentrations ranged from 92.5% to 98.1%, with relative standard deviations ranging from 3.2% to 13.0%. The results of MSPE-AuNPIA were confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CLE values obtained with MSPE-AuNPIA agreed with those obtained with LC-MS/MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Melatonin reduces the expression of chemokines in rat with trinitrobenzene sulfonic acid-induced colitis

    International Nuclear Information System (INIS)

    Li, Jun H.; Zhou, W.; Liu, K.; Li, Hong X.; Wang, L.

    2008-01-01

    Objective was to investigate the effect of melatonin on the colon inflammatory injury of rats with colitis and determine whether this effect is associated with inhibition of chemoattractant molecules interleukins (IL-8) and monocyte chemoattractant protein (MCP)-1.The study was designed and implemented in JingMen No.1 People's Hospital, HuBei Province, from May 2006 to April 2007. It involved 72 animals divided into 6 groups of 12 each: normal group, model group, 5-aminosalisalicylic acid group, and melatonin group (dose of 2.5, 5.0 and 10.0mg/kg). Rat colitis model was established by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) enema. Interleukin-8 and MCP-1 proteins in colon tissue were examined by immunohistochemistry and western blot. The messenger-RNA expressions of chemokines were determined by reverse transcription polymerase chain reaction analysis. Trinitrobenzene sulfonic acid enema resulted in pronounced pathological changes of colonic mucosa in model rats, which were in accordance with the significantly elevated Myeloperoxidase activity. Expressions of chemokines were up-regulated in colitis. Melatonin treatment reduced colonic lesions and improved colitis symptom, and decreased the protein and mRNA expressions of IL-8 and MCP-1 significantly in colon tissues of rats with colitis. Chemokines IL-8 and MCP-1 are elevated in mucosal tissues in colitis and play an important role in the perpetuation of tissue destructive inflammatory process; melatonin reduces colonic inflammatory injury of rats colitis through down-regulating the expressions of chemokines. Melatonin can be considered as a novel therapeutic alternative for the treatment of inflammatory bowel disease. (author)

  8. Novel 2D or 3D alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand

    Science.gov (United States)

    Du, Zi-Yi; Wen, He-Rui; Xie, Yong-Rong

    2008-11-01

    Three novel alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand, namely, [Ca(O 3SC 2H 4PO 3H)(H 2O) 2] ( 1), [Sr(O 3SC 2H 4PO 3H)] ( 2) and [Ba 2(O 3SC 2H 4PO 3H) 2] ( 3), have been synthesized by hydrothermal reactions. They represent the first structurally characterized alkaline-earth metal complexes of phosphonic acid attached with a sulfonate group. The structure of compound 1 features a 2D layer based on 1D chains of [Ca 2(PO 3) 2] bridged by -CH 2-CH 2-SO 3- groups. Compounds 2 and 3 show pillar-layer architecture based on two different inorganic layers linked by -CH 2-CH 2- groups. The inorganic layer in compound 2 features a 1D chain of edge-sharing SrO 8 polyhedra whereas that in compound 3 features an edge-sharing Ba 2O 14 di-polyhedral unit which is further corner-shared with four neighboring ones. The [O 3S-C 2H 4-PO 3H] 2- ligand shows diverse coordination modes in the three alkaline-earth metal sulfonate-phosphonates.

  9. A new interpretation of SAXS peaks in sulfonated poly(ether ether ketone) (sPEEK) membranes for fuel cells.

    Science.gov (United States)

    Mendil-Jakani, H; Zamanillo Lopez, I; Legrand, P M; Mareau, V H; Gonon, L

    2014-06-21

    The structure of a commercial sulfonated poly(ether ether ketone) (sPEEK) membrane was analyzed by Small-Angle X-Ray Scattering (SAXS) for different water uptakes obtained after immersion in liquid water at various temperatures. For low membrane swelling, the SAXS profile displays only a wide-angle peak in the 0.2-0.3 Å(-1) region. As the membrane swells, two supplementary correlation peaks arise and shift towards small angles, which are the signature of a structural evolution of the membrane, whereas the wide angle peak remains stable. The SAXS spectra of sPEEK membranes can thus display three correlation peaks simultaneously. Therefore we propose a new interpretation of these SAXS spectra which conclude that the two small angle peaks are attributed to the so-called matrix and ionomer peaks and the wide-angle peak is ascribed to the mean separation distance between sulfonic acid groups grafted onto the polymer backbone. This peak attribution implies that the sPEEK nano-phase separation is triggered by an immersion in hot water (ionomer peak apparition). Our new peak attribution was confirmed by studying the impact of temperature, electron density contrast and ionic exchange capacity.

  10. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications.

    Science.gov (United States)

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike

    2015-12-04

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ 3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  11. Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Liu

    2010-10-01

    Full Text Available Sulfonated (SO3H-bearing activated carbon (AC-SO3H was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO3H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO3H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO3H (78% was lower than that of Amberlyst-15 (86%, which could be attributed to the fact that the SO3H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1. However, AC-SO3H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO3H is the leaching of SO3H group during the reactions.

  12. A Low-Cost and High-Performance Sulfonated Polyimide Proton-Conductive Membrane for Vanadium Redox Flow/Static Batteries.

    Science.gov (United States)

    Li, Jinchao; Yuan, Xiaodong; Liu, Suqin; He, Zhen; Zhou, Zhi; Li, Aikui

    2017-09-27

    A novel side-chain-type fluorinated sulfonated polyimide (s-FSPI) membrane is synthesized for vanadium redox batteries (VRBs) by high-temperature polycondensation and grafting reactions. The s-FSPI membrane has a vanadium ion permeability that is over an order of magnitude lower and has a proton selectivity that is 6.8 times higher compared to those of the Nafion 115 membrane. The s-FSPI membrane possesses superior chemical stability compared to most of the linear sulfonated aromatic polymer membranes reported for VRBs. Also, the vanadium redox flow/static batteries (VRFB/VRSB) assembled with the s-FSPI membranes exhibit stable battery performance over 100- and 300-time charge-discharge cycling tests, respectively, with significantly higher battery efficiencies and lower self-discharge rates than those with the Nafion 115 membranes. The excellent physicochemical properties and VRB performance of the s-FSPI membrane could be attributed to the specifically designed molecular structure with the hydrophobic trifluoromethyl groups and flexible sulfoalkyl pendants being introduced on the main chains of the membrane. Moreover, the cost of the s-FSPI membrane is only one-fourth that of the commercial Nafion 115 membrane. This work opens up new possibilities for fabricating high-performance proton-conductive membranes at low costs for VRBs.

  13. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    Science.gov (United States)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  14. Corrosion protection with eco-friendly inhibitors

    Science.gov (United States)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3-2 and NO-3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10-4 M 93% efficiency was exhibited at this concentration.

  15. Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications - Surface energy characteristics and proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kanakasabai, P.; Vijay, P.; Deshpande, Abhijit P.; Varughese, Susy [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2011-02-01

    Ionic polymers, their blends and composites are considered potential candidates for application as electrolytes in fuel cells. While developing new materials for membranes, it is important to understand the interactions of these electrolytic materials with electrodes/catalysts and with reactants/products. Some of these interactions can be understood by estimating the surface energy and wettability of the membrane materials. In this work, polyvinyl alcohol with varying degrees of sulfonation and its blend with sulfonated poly(ether ether ketone) are prepared and studied for their wettability characteristics using goniometry. The surface energy and its components are estimated using different approaches and compared. Properties such as the ion-exchange capacity, the proton conductivity and the water sorption/desorption behaviour are also investigated to understand the relationship with wettability and surface energy and its components. Among the different methods, the van Oss acid-base and the modified Berthelot approaches yield comparable estimates for the total surface energy. (author)

  16. Development of 1-Amino-4-(phenylamino)anthraquinone-2-sulfonate Sodium Derivatives as a New Class of Inhibitors of RANKL-Induced Osteoclastogenesis.

    Science.gov (United States)

    Lee, Chia-Chung; Chen, Chun-Liang; Liu, Fei-Lan; Chiou, Chung-Yu; Chen, Tsung-Chih; Wu, Cheng-Chi; Sun, Wei-Hsin; Chang, Deh-Ming; Huang, Hsu-Shan

    2016-05-01

    A series of 1-amino-4-(phenylamino)anthraquinone-2-sulfonate sodium derivatives was synthesized and evaluated for osteoclast inhibition using a TRAP-staining assay. Among them, two compounds, LCCY-13 and LCCY-15, dose-dependently suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Moreover, the cytotoxicity assay on RAW264.7 cells suggested that the inhibition of osteoclastic bone resorption by these compounds was not a result of their cytotoxicity. Further, the inhibitory activities of compounds LCCY-13 and LCCY-15 were further confirmed by including specific inhibition of NFATc1 expression levels in nuclei using an immunofluorescent analysis. In addition, LCCY-13 and LCCY-15 also significantly attenuated the bone resorption activity of osteoclasts according to a pit formation assay. Thus, a new class of 1-amino-4-(phenylamino)anthraquinone-2-sulfonate sodium compounds might be considered as an essential lead structure for the further development of anti-resorptive agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. El estado actual de las vacunas contra las drogas

    Directory of Open Access Journals (Sweden)

    Maura Epifanía Matus Ortega

    2017-12-01

    Full Text Available Introducción: por lo común, la adicción a las drogas se trata con psicoterapia y farmacología que evita la unión de las sustancias psicoactivas a receptores específicos en el cerebro. El resultado de estos tratamientos no ha sido del todo satisfactorio, por lo que el desarrollo de terapias más eficaces representa un reto constante para tratar las adicciones. Una alternativa a la farmacología antiadictiva es la vacunación activa dirigida contra las sustancias de abuso. Objetivo: esta revisión reúne la información disponible sobre los fundamentos y avances científicos en la generación de una terapia inmunológica, que coadyuve al tratamiento de la adicción a sustancias como la heroína-morfina, la cocaína, la nicotina y la anfetamina. Método: se consideraron los reportes científicos disponibles en PubMed –de 2005 a abril de 2017–, sobre los fundamentos, la metodología empleada, los estudios preclínicos y clínicos, y los resultados obtenidos en dichas investigaciones para generar vacunas contra las drogas. Resultados: las vacunas lograron mitigar los efectos producidos por las sustancias en los estudios preclínicos en modelos de estudio en animales; sin embargo, con pacientes humanos los resultados no han sido del todo satisfactorios. Discusión y conclusiones: a pesar de los esfuerzos realizados por diferentes grupos de investigación y compañías farmacéuticas para generar vacunas terapéuticas contra el uso de diferentes drogas, ninguna ha alcanzado la fase III de estudios clínicos. En la actualidad, se continúa con los esfuerzos para lograr que las vacunas contra las adicciones alcancen su máxima eficiencia y eficacia, y contribuyan al tratamiento de la adicción a las drogas.

  18. Individual extraction constants of some univalent cations in the two-phase water-phenyltrifluoromethyl sulfone system

    International Nuclear Information System (INIS)

    Makrlik, E.

    2011-01-01

    From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M + (aq) + Cs + (org) ↔ M + (org) + Cs + (aq) taking place in the two-phase water-phenyltrifluoromethyl sulfone (abbrev. FS 13) system (M + Li + , H 3 O + , Na + , NH 4 + , Ag + , Tl + , K + , Rb + ; aq = aqueous phase, org FS 13 phase) were evaluated. Furthermore, the individual extraction constants of the M + cations in the mentioned two-phase system were calculated; they were found to increase in the series of Li + 3 O + + 4 + + + + + + . (author)

  19. Las momias de las pirámides

    Directory of Open Access Journals (Sweden)

    José Miguel Parra

    2011-01-01

    Full Text Available El público general cree, como si fuera un dogma religioso, que las pirámides egipcias no fueron las tumbas de los faraones de los Reino Antiguo y Medio porque en ninguna de las cámaras funerarias se ha encontrado nunca una momia. Este estudio compila todos los datos relevantes al respecto y describe brevemente todos los restos humanos encontrados dentro de las pirámides, demostrando la falta de base de esa extendida creencia.As a religious dogma the general public believe that the Egyptian pyramids were not the tombs for the Old and Middle Kingdom pharaohs, because never was a mummy found inside the burial chamber of any of them. This study just compile all the relevant data on the subject and describe briefly all the human remains found in the pyramids, showing the nonsense of the general belief.

  20. Mutagenic and Cytotoxic Properties of 6-Thioguanine, S6-Methylthioguanine, and Guanine-S6-sulfonic Acid*S⃞

    OpenAIRE

    Yuan, Bifeng; Wang, Yinsheng

    2008-01-01

    Thiopurine drugs, including 6-thioguanine (SG), 6-mercaptopurine, and azathioprine, are widely employed anticancer agents and immunosuppressants. The formation of SG nucleotides from the thiopurine prodrugs and their subsequent incorporation into nucleic acids are important for the drugs to exert their cytotoxic effects. SG in DNA can be methylated by S-adenosyl-l-methionine to give S6-methylthioguanine (S6mG) and oxidized by UVA light to render guanine-S6-sulfonic acid ...