WorldWideScience

Sample records for alkylation dna damages

  1. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Directory of Open Access Journals (Sweden)

    Jennifer A Calvo

    2013-04-01

    Full Text Available Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  2. Induction of dnaN and dnaQ gene expression in Escherichia coli by alkylation damage to DNA.

    Science.gov (United States)

    Quiñones, A; Kaasch, J; Kaasch, M; Messer, W

    1989-02-01

    The dnaN and dnaQ genes encode the beta-subunit and the epsilon-subunit of the DNA polymerase III holoenzyme. By transcriptional fusions to the galK gene, translational fusions to lacZ and comparative S1 mapping analysis, we investigated the in-vivo regulation of dnaN and dnaQ. We found that DNA damage caused by the alkylating agent methyl methanesulphonate (MMS) leads to a significant induction in dnaN and dnaQ gene expression suggesting a requirement of increased amounts of at least some DNA polymerase III holoenzyme subunits for recovery from DNA damage caused by MMS. These results are first evidences that subunits of the DNA polymerase III holoenzyme are DNA damage inducible. This MMS induction of dnaN and dnaQ gene expression is unrelated to the adaptive response. It was not observed in lexA and recA mutants which abolish the induction of the SOS response.

  3. Alkylation damage in DNA and RNA--repair mechanisms and medical significance

    DEFF Research Database (Denmark)

    Drabløs, Finn; Feyzi, Emadoldin; Aas, Per Arne

    2004-01-01

    Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions...... are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase......, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents...

  4. Analysis of the tolerance to DNA alkylating damage in MEC1 and RAD53 checkpoint mutants of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Alfonso Gallego-Sánchez

    Full Text Available Checkpoint response, tolerance and repair are three major pathways that eukaryotic cells evolved independently to maintain genome stability and integrity. Here, we studied the sensitivity to DNA damage in checkpoint-deficient budding yeast cells and found that checkpoint kinases Mec1 and Rad53 may modulate the balance between error-free and error-prone branches of the tolerance pathway. We have consistently observed that mutation of the RAD53 counterbalances error-free and error-prone branches upon exposure of cells to DNA damage induced either by MMS alkylation or by UV-radiation. We have also found that the potential Mec1/Rad53 balance modulation is independent from Rad6/Rad18-mediated PCNA ubiquitylation, as mec1Δ or rad53Δ mutants show no defects in the modification of the sliding clamp, therefore, we infer that it is likely exerted by acting on TLS polymerases and/or template switching targets.

  5. Repair of DNA Alkylation Damage by the Escherichia coli Adaptive Response Protein AlkB as Studied by ESI-TOF Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Deyu Li

    2010-01-01

    Full Text Available DNA alkylation can cause mutations, epigenetic changes, and even cell death. All living organisms have evolved enzymatic and non-enzymatic strategies for repairing such alkylation damage. AlkB, one of the Escherichia coli adaptive response proteins, uses an α-ketoglutarate/Fe(II-dependent mechanism that, by chemical oxidation, removes a variety of alkyl lesions from DNA, thus affording protection of the genome against alkylation. In an effort to understand the range of acceptable substrates for AlkB, the enzyme was incubated with chemically synthesized oligonucleotides containing alkyl lesions, and the reaction products were analyzed by electrospray ionization time-of-flight (ESI-TOF mass spectrometry. Consistent with the literature, but studied comparatively here for the first time, it was found that 1-methyladenine, 1,N 6-ethenoadenine, 3-methylcytosine, and 3-ethylcytosine were completely transformed by AlkB, while 1-methylguanine and 3-methylthymine were partially repaired. The repair intermediates (epoxide and possibly glycol of 3,N 4-ethenocytosine are reported for the first time. It is also demonstrated that O 6-methylguanine and 5-methylcytosine are refractory to AlkB, lending support to the hypothesis that AlkB repairs only alkyl lesions attached to the nitrogen atoms of the nucleobase. ESI-TOF mass spectrometry is shown to be a sensitive and efficient tool for probing the comparative substrate specificities of DNA repair proteins in vitro.

  6. Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage

    Science.gov (United States)

    Srivenugopal, Kalkunte S.

    2014-01-01

    The alcohol aversion drug disulfiram (DSF) reacts and conjugates with the protein-bound nucleophilic cysteines and is known to elicit anticancer effects alone or improve the efficacy of many cancer drugs. We investigated the effects of DSF on human O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein and chemotherapy target that removes the mutagenic O6-akyl groups from guanines, and thus confers resistance to alkylating agents in brain tumors. We used DSF, copper-chelated DSF or CuCl2–DSF combination and found that all treatments inhibited the MGMT activity in two brain tumor cell lines in a rapid and dose-dependent manner. The drug treatments resulted in the loss of MGMT protein from tumor cells through the ubiquitin-proteasome pathway. Evidence showed that Cys145, a reactive cysteine, critical for DNA repair was the sole site of DSF modification in the MGMT protein. DSF was a weaker inhibitor of MGMT, compared with the established O6-benzylguanine; nevertheless, the 24–36h suppression of MGMT activity in cell cultures vastly increased the alkylation-induced DNA interstrand cross-linking, G2/M cell cycle blockade, cytotoxicity and the levels of apoptotic markers. Normal mice treated with DSF showed significantly attenuated levels of MGMT activity and protein in the liver and brain tissues. In nude mice bearing T98 glioblastoma xenografts, there was a preferential inhibition of tumor MGMT. Our studies demonstrate a strong and direct inhibition of MGMT by DSF and support the repurposing of this brain penetrating drug for glioma therapy. The findings also imply an increased risk for alkylation damage in alcoholic patients taking DSF. PMID:24193513

  7. DNA damage and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely [Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583 (United States); Panayiotidis, Mihalis I. [School of Community Health Sciences, University of Nevada, Reno, NV 89557 (United States); Franco, Rodrigo, E-mail: rfrancocruz2@unl.edu [Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583 (United States)

    2011-06-03

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  8. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  9. Mechanism of DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xin; Bi

    2015-01-01

    DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance(DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis(TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching(TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.

  10. Glycidol-carbohydrate hybrids: a new family of DNA alkylating agents.

    Science.gov (United States)

    Toshima, Kazunobu; Okuno, Yukiko; Matsumura, Shuichi

    2003-10-06

    Novel and chiral glycidol-carbohydrate hybrids possessing an epoxy group as a DNA alkylating moiety were designed and synthesized. These artificial hybrids selectively alkylated DNA at the N-7 sites of the guanines and cleaved DNA without any additives. The binding ability of the glycidol was significantly enhanced by the attachment of the carbohydrate.

  11. DNA damage in neurodegenerative diseases.

    Science.gov (United States)

    Coppedè, Fabio; Migliore, Lucia

    2015-06-01

    Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans.

  12. DNA damage and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Stelow, R B

    1980-01-01

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 10/sup 4/ fold.

  13. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  14. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    Science.gov (United States)

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair.

  15. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA.

    Science.gov (United States)

    Giesche, Robert; John, Harald; Kehe, Kai; Schmidt, Annette; Popp, Tanja; Balzuweit, Frank; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk

    2017-01-25

    Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus

  16. Time course evaluation of N-nitrosodialkylamines-induced DNA alkylation and oxidation in liver of mosquito fish

    Energy Technology Data Exchange (ETDEWEB)

    Chao, M.-R. [Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan (China); Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung 402, Taiwan (China); Chang, Y.-Z. [Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung 402, Taiwan (China); Wong, R.-H. [Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan (China); Hu, C.-W. [Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan (China)], E-mail: windyhu@csmu.edu.tw

    2009-01-15

    Here we simultaneously measured N7-alkylguanines and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in liver of small fish, respectively, to assess the time course of the formation and removal of alkylation and oxidative damage to DNA caused by N-nitrosodialkylamines. Mosquito fish (Gambusia affinis) were killed at various times during (4 days) and post-exposure (16 days) to N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) alone or their combination with concentrations of 10 and 50 mg/l. The modified guanine adducts were sensitively and selectively quantitated by isotope-dilution LC-MS/MS methods. During exposure, N7-methylguanine (N7-MeG) and N7-ethylguanine (N7-EtG) in liver DNA increased with the duration and dose of N-nitrosodialkylamine exposure, while 8-oxodG was dose-dependently induced within 1 day. It was found that NDMA formed substantially more N7-alkylated guanines and 8-oxodG than NDEA on the basis of adducts formed per micromolar concentration, suggesting that NDMA can be more easily bioactivated than NDEA to form reactive alkylating agents with the concomitant formation of oxygen radicals. After cessation of exposure, N7-alkylguanines remained elevated for 1 day and then gradually decreased over time but still higher than the background levels, even at day 16 (half-lives of 7-8 days). However, 8-oxodG was excised quickly from liver DNA and returned to the background level within 4 days post-exposure (half-lives less than 2 days). Taken together, this study firstly demonstrated that in addition to alkylation, N-nitrosodialkylamines can concurrently cause oxidative damage to DNA in vivo.

  17. The DNA damage response during mitosis

    NARCIS (Netherlands)

    Heijink, Anne Margriet; Krajewska, Malgorzata; van Vugt, Marcel A. T. M.

    2013-01-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance

  18. Chromatin structure and DNA damage repair

    Directory of Open Access Journals (Sweden)

    Dinant Christoffel

    2008-11-01

    Full Text Available Abstract The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The two main features of the DNA damage response mechanisms are cell-cycle checkpoint activation and, at the heart of the response, DNA repair. For both damage signalling and repair, chromatin remodelling is most likely a prerequisite. Here, we discuss current knowledge on chromatin remodelling with respect to the cellular response to DNA damage, with emphasis on the response to lesions resolved by nucleotide excision repair. We will discuss the role of histone modifications as well as their displacement or exchange in nucleotide excision repair and make a comparison with their requirement in transcription and double strand break repair.

  19. Using DNA damage to monitor water environment

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    DNA damage of aquatic organisms living in polluted environments can be used as a biomarker of the genotoxicity of toxic agents to organisms. This technique has been playing an important role in ecotoxicological study and environmental risk assessment. In this article, main types of DNA damage caused by pollutants in water environments were reviewed; methods of detecting DNA damage were also documented for water environmental monitoring.

  20. DNA damage in plant herbarium tissue.

    NARCIS (Netherlands)

    Staats, M.; Cuenca, A.; Richardson, J.E.; Ginkel, R.V.; Petersen, G.; Seberg, O.; Bakker, F.T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplif

  1. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  2. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  3. DNA Damage in Plant Herbarium Tissue

    Science.gov (United States)

    Staats, Martijn; Cuenca, Argelia; Richardson, James E.; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4–3.8% of fresh control DNA and 1.0–1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens. PMID:22163018

  4. DNA damage in plant herbarium tissue.

    Directory of Open Access Journals (Sweden)

    Martijn Staats

    Full Text Available Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.

  5. Experimental study of oxidative DNA damage

    DEFF Research Database (Denmark)

    Loft, S; Deng, Xiaohong; Tuo, J

    1998-01-01

    of dative DNA damage and tumour formation. In principle the level of oxidative DNA damage in an organ or cell may be studied by measurement of modified bases in extracted DNA by immunohistochemical visualisation, and from assays of strand breakage before and after treatment with repair enzymes. However......Animal experiments allow the study of oxidative DNA damage in target organs and the elucidation of dose-response relationships of carcinogenic and other harmful chemicals and conditions as well as the study of interactions of several factors. So far the effects of more than 50 different chemical...... to induce oxidative DNA damage in experimental animals. The hepatocarcinogen 2-nitropropane induces up to 10-fold increases in 8-oxodG levels in rat liver DNA. The level of 8-oxodG is also increased in kidneys and bone marrow but not in the testis. By means of 2-nitropropane we have shown correspondence...

  6. Ab initio research on DNA base alkylation by the β-position metabolite of methylethylnitrosamine

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lijiao; ZHONG Rugang; YUAN Xiaolong; CUI Yasong; DAI Qianhuan

    2004-01-01

    Ab initio calculation is carried out to study the different supposed mechanisms of DNA base alkylation by β-sulphate-nitrosamines at RHF/6-31G(d) and MP2/6-31G(d)levels. Full geometric structure optimization is done for all reactants, intermediates, products and transition states. The activation energy and IRC are obtained. The results show that the anchimeric assistant effect promotes the alkylation of DNA base by β-sulphate-nitrosamines. Solvent calculation is carried out with Onsager model of SCRF method at the same level. The results indicate that the activation energy is decreased obviously in water.

  7. Apoptosis and DNA damage in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    R John Aitken; Adam J Koppers

    2011-01-01

    DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis,resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apoptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy.

  8. SIRT participates at DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Yong; Joeng, Jae Min; Lee, Kee Ho [Korea Cancer Center Hospital, Seoul (Korea, Republic of); Park, Gil Hong [College of Medicine, Korea University, Seoul (Korea, Republic of)

    2009-05-15

    Sir2 maintains genomic stability in multiple ways in yeast. As a NAD{sup +}-dependent histone deacetylase, Sir2 has been reported to control chromatin silencing. In both budding yeast and Drosophila, overexpression of Sir2 extends life span. Previous reports have also demonstrated that Sir2 participate at DNA damage repair. A protein complex containing Sir2 has been reported to translocate to DNA double-strand breaks. Following DNA damage response, SIRT1 deacetylates p53 protein and attenuates its ability as a transcription factor. Consequently, SIRT1 over-expression increases cell survival under DNA damage inducing conditions. These previous observations mean a possibility that signals generated during the process of DNA repair are delivered through SIRT1 to acetylated p53. We present herein functional evidence for the involvement of SIRT1 in DNA repair response to radiation. In addition, this modulation of DNA repair activity may be connected to deacetylation of MRN proteins.

  9. The DNA damage response in mammalian oocytes

    Directory of Open Access Journals (Sweden)

    John eCarroll

    2013-06-01

    Full Text Available DNA damage is one of the most common insults that challenge all cells. To cope, an elaborate molecular and cellular response has evolved to sense, respond to and correct the damage. This allows the maintenance of DNA fidelity essential for normal cell viability and the prevention of genomic instability that can lead to tumour formation. In the context of oocytes, the impact of DNA damage is not one of tumour formation but of the maintenance of fertility. Mammalian oocytes are particularly vulnerable to DNA damage because physiologically they may lie dormant in the ovary for many years (>40 in humans until they receive the stimulus to grow and acquire the competence to become fertilized. The implication of this is that in some organisms, such as humans, oocytes face the danger of cumulative genetic damage for decades. Thus, the ability to detect and repair DNA damage is essential to maintain the supply of oocytes necessary for reproduction. Therefore, failure to confront DNA damage in oocytes could cause serious anomalies in the embryo that may be propagated in the form of mutations to the next generation allowing the appearance of hereditary disease. Despite the potential impact of DNA damage on reproductive capacity and genetic fidelity of embryos, the mechanisms available to the oocyte for monitoring and repairing such insults have remained largely unexplored until recently. Here, we review the different aspects of the response to DNA damage in mammalian oocytes. Specifically, we address the oocyte DNA damage response from embryonic life to adulthood and throughout oocyte development.

  10. The DNA damage response during mitosis.

    Science.gov (United States)

    Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M

    2013-10-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.

  11. The DNA damage response during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Heijink, Anne Margriet; Krajewska, Małgorzata; Vugt, Marcel A.T.M. van, E-mail: m.vugt@umcg.nl

    2013-10-15

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.

  12. DNA Damage Response and DNA Repair in Skeletal Myocytes From a Mouse Model of Spinal Muscular Atrophy.

    Science.gov (United States)

    Fayzullina, Saniya; Martin, Lee J

    2016-09-01

    We studied DNA damage response (DDR) and DNA repair capacities of skeletal muscle cells from a mouse model of infantile spinal muscular atrophy (SMA) caused by loss-of-function mutation of survival of motor neuron (Smn). Primary myocyte cultures derived from skeletal muscle satellite cells of neonatal control and mutant SMN mice had similar myotube length, myonuclei, satellite cell marker Pax7 and differentiated myotube marker myosin, and acetylcholine receptor clustering. DNA damage was induced in differentiated skeletal myotubes by γ-irradiation, etoposide, and methyl methanesulfonate (MMS). Unexposed control and SMA myotubes had stable genome integrity. After γ-irradiation and etoposide, myotubes repaired most DNA damage equally. Control and mutant myotubes exposed to MMS exhibited equivalent DNA damage without repair. Control and SMA myotube nuclei contained DDR proteins phospho-p53 and phospho-H2AX foci that, with DNA damage, dispersed and then re-formed similarly after recovery. We conclude that mouse primary satellite cell-derived myotubes effectively respond to and repair DNA strand-breaks, while DNA alkylation repair is underrepresented. Morphological differentiation, genome stability, genome sensor, and DNA strand-break repair potential are preserved in mouse SMA myocytes; thus, reduced SMN does not interfere with myocyte differentiation, genome integrity, and DNA repair, and faulty DNA repair is unlikely pathogenic in SMA.

  13. The RNA Splicing Response to DNA Damage.

    Science.gov (United States)

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  14. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  15. Profiling DNA damage response following mitotic perturbations

    DEFF Research Database (Denmark)

    S Pedersen, Ronni; Karemore, Gopal; Gudjonsson, Thorkell

    2016-01-01

    that a broad spectrum of mitotic errors correlates with increased DNA breakage in daughter cells. Unexpectedly, we find that only a subset of these correlations are functionally linked. We identify the genuine mitosis-born DNA damage events and sub-classify them according to penetrance of the observed...

  16. Detection of DNA damage in individual cells by flow cytometric analysis using anti-DNA monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Frankfurt, O.S. (Roswell Park Memorial Institute, Buffalo, NY (USA))

    1987-06-01

    A new method for the measurement of DNA damage in individual cells treated with alkylating agents is described. The method is based on the binding of anti-DNA monoclonal antibody to DNA in situ. Binding of antibody was evaluated by flow cytometry with indirect immunofluorescence. No binding of antibody to DNA in non-treated HeLa S3 cells was detected. Treatment of cells with HN2 or L-phenylalanine mustard induced binding of antibody to DNA in situ. Binding of antibody was observed after treating cells with doses of drugs which reduced the surviving fraction below 20%. Intensity of binding increased in proportion to the drug dose. In HN2-treated cells a cell subset with the lowest antibody binding was observed among cells in G1 phase. Binding of antibody to DNA in HN2-treated cells was eliminated by single-strand (ss) specific S1 nuclease. In competition assay, antibody was inhibited by thermally denatured DNA, but not by native double-stranded (ds) DNA, RNA, nucleosides and deoxyribohomopolymers. Immunoreactivity of cells with the monoclonal antibody F7-26 may be a useful probe for the assessment of cell damage induced by alkylating agents, especially in heterogeneous cell populations.

  17. Polyomavirus interaction with the DNA damage response

    Institute of Scientific and Technical Information of China (English)

    Joshua; L.Justice; Brandy; Verhalen; Mengxi; Jiang

    2015-01-01

    Viruses are obligate intracellular parasites that subvert cellular metabolism and pathways to mediate their own replication—normally at the expense of the host cell. Polyomaviruses are a group of small DNA viruses, which have long been studied as a model for eukaryotic DNA replication. Polyomaviruses manipulate host replication proteins, as well as proteins involved in DNA maintenance and repair, to serve as essential cofactors for productive infection. Moreover, evidence suggests that polyomavirus infection poses a unique genotoxic threat to the host cell. In response to any source of DNA damage, cells must initiate an effective DNA damage response(DDR) to maintain genomic integrity, wherein two protein kinases, ataxia telangiectasia mutated(ATM) and ATM- and Rad3-related(ATR), are major regulators of DNA damage recognition and repair. Recent investigation suggests that these essential DDR proteins are required for productive polyomavirus infection. This review will focus on polyomaviruses and their interaction with ATMand ATR-mediated DNA damage responses and the effect of this interaction on host genomic stability.

  18. DNA damage response in adult stem cells.

    Science.gov (United States)

    Insinga, Alessandra; Cicalese, Angelo; Pelicci, Pier Giuseppe

    2014-04-01

    This review discusses the processes of DNA-damage-response and DNA-damage repair in stem and progenitor cells of several tissues. The long life-span of stem cells suggests that they may respond differently to DNA damage than their downstream progeny and, indeed, studies have begun to elucidate the unique stem cell response mechanisms to DNA damage. Because the DNA damage responses in stem cells and progenitor cells are distinctly different, stem and progenitor cells should be considered as two different entities from this point of view. Hematopoietic and mammary stem cells display a unique DNA-damage response, which involves active inhibition of apoptosis, entry into the cell-cycle, symmetric division, partial DNA repair and maintenance of self-renewal. Each of these biological events depends on the up-regulation of the cell-cycle inhibitor p21. Moreover, inhibition of apoptosis and symmetric stem cell division are the consequence of the down-regulation of the tumor suppressor p53, as a direct result of p21 up-regulation. A deeper understanding of these processes is required before these findings can be translated into human anti-aging and anti-cancer therapies. One needs to clarify and dissect the pathways that control p21 regulation in normal and cancer stem cells and define (a) how p21 blocks p53 functions in stem cells and (b) how p21 promotes DNA repair in stem cells. Is this effect dependent on p21s ability to inhibit p53? Such molecular knowledge may pave the way to methods for maintaining short-term tissue reconstitution while retaining long-term cellular and genomic integrity.

  19. Damage and repair of ancient DNA

    DEFF Research Database (Denmark)

    Mitchell, David; Willerslev, Eske; Hansen, Anders

    2005-01-01

    , and extensive degradation. In the course of this review, we will discuss the current aDNA literature describing the importance of aDNA studies as they relate to important biological questions and the difficulties associated with extracting useful information from highly degraded and damaged substrates derived......Under certain conditions small amounts of DNA can survive for long periods of time and can be used as polymerase chain reaction (PCR) substrates for the study of phylogenetic relationships and population genetics of extinct plants and animals, including hominids. Because of extensive DNA...... degradation, these studies are limited to species that lived within the past 10(4)-10(5) years (Late Pleistocene), although DNA sequences from 10(6) years have been reported. Ancient DNA (aDNA) has been used to study phylogenetic relationships of protists, fungi, algae, plants, and higher eukaryotes...

  20. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress

    Science.gov (United States)

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-01-01

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy. PMID:26427872

  1. DNA repair by MGMT, but not AAG, causes a threshold in alkylation-induced colorectal carcinogenesis.

    Science.gov (United States)

    Fahrer, Jörg; Frisch, Janina; Nagel, Georg; Kraus, Alexander; Dörsam, Bastian; Thomas, Adam D; Reißig, Sonja; Waisman, Ari; Kaina, Bernd

    2015-10-01

    Epidemiological studies indicate that N-nitroso compounds (NOC) are causally linked to colorectal cancer (CRC). NOC induce DNA alkylations, including O (6)-methylguanine (O (6)-MeG) and N-methylated purines, which are repaired by O (6)-MeG-DNA methyltransferase (MGMT) and N-alkyladenine-DNA glycosylase (AAG)-initiated base excision repair, respectively. In view of recent evidence of nonlinear mutagenicity for NOC-like compounds, the question arises as to the existence of threshold doses in CRC formation. Here, we set out to determine the impact of DNA repair on the dose-response of alkylation-induced CRC. DNA repair proficient (WT) and deficient (Mgmt (-/-), Aag (-/-) and Mgmt (-/-)/Aag (-/-)) mice were treated with azoxymethane (AOM) and dextran sodium sulfate to trigger CRC. Tumors were quantified by non-invasive mini-endoscopy. A non-linear increase in CRC formation was observed in WT and Aag (-/-) mice. In contrast, a linear dose-dependent increase in tumor frequency was found in Mgmt (-/-) and Mgmt (-/-)/Aag (-/-) mice. The data were corroborated by hockey stick modeling, yielding similar carcinogenic thresholds for WT and Aag (-/-) and no threshold for MGMT lacking mice. O (6)-MeG levels and depletion of MGMT correlated well with the observed dose-response in CRC formation. AOM induced dose-dependently DNA double-strand breaks in colon crypts including Lgr5-positive colon stem cells, which coincided with ATR-Chk1-p53 signaling. Intriguingly, Mgmt (-/-) mice displayed significantly enhanced levels of γ-H2AX, suggesting the usefulness of γ-H2AX as an early genotoxicity marker in the colorectum. This study demonstrates for the first time a non-linear dose-response for alkylation-induced colorectal carcinogenesis and reveals DNA repair by MGMT, but not AAG, as a key node in determining a carcinogenic threshold.

  2. Vitamin C for DNA damage prevention

    Energy Technology Data Exchange (ETDEWEB)

    Sram, Radim J., E-mail: sram@biomed.cas.cz [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic); Binkova, Blanka; Rossner, Pavel [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic)

    2012-05-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2 Prime -deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 {mu}mol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with {gamma}-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 {mu}mol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 {mu}mol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  3. Homologous recombination in DNA repair and DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xuan Li; Wolf-Dietrich Heyer

    2008-01-01

    Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical sup-port for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modaUties of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.

  4. The effect of a DNA damaging agent on embryonic cell cycles of the cnidarian Hydractinia echinata.

    Directory of Open Access Journals (Sweden)

    Tin Tin Su

    Full Text Available The onset of gastrulation at the Mid-Blastula Transition can accompany profound changes in embryonic cell cycles including the introduction of gap phases and the transition from maternal to zygotic control. Studies in Xenopus and Drosophila embryos have also found that cell cycles respond to DNA damage differently before and after MBT (or its equivalent, MZT, in Drosophila. DNA checkpoints are absent in Xenopus cleavage cycles but are acquired during MBT. Drosophila cleavage nuclei enter an abortive mitosis in the presence of DNA damage whereas post-MZT cells delay the entry into mitosis. Despite attributes that render them workhorses of embryonic cell cycle studies, Xenopus and Drosophila are hardly representative of diverse animal forms that exist. To investigate developmental changes in DNA damage responses in a distant phylum, I studied the effect of an alkylating agent, Methyl Methanesulfonate (MMS, on embryos of Hydractinia echinata. Hydractinia embryos are found to differ from Xenopus embryos in the ability to respond to a DNA damaging agent in early cleavage but are similar to Xenopus and Drosophila embryos in acquiring stronger DNA damage responses and greater resistance to killing by MMS after the onset of gastrulation. This represents the first study of DNA damage responses in the phylum Cnidaria.

  5. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    Science.gov (United States)

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  6. DNA damage response inhibition at dysfunctional telomeres by modulation of telomeric DNA damage response RNAs.

    Science.gov (United States)

    Rossiello, Francesca; Aguado, Julio; Sepe, Sara; Iannelli, Fabio; Nguyen, Quan; Pitchiaya, Sethuramasundaram; Carninci, Piero; d'Adda di Fagagna, Fabrizio

    2017-02-27

    The DNA damage response (DDR) is a set of cellular events that follows the generation of DNA damage. Recently, site-specific small non-coding RNAs, also termed DNA damage response RNAs (DDRNAs), have been shown to play a role in DDR signalling and DNA repair. Dysfunctional telomeres activate DDR in ageing, cancer and an increasing number of identified pathological conditions. Here we show that, in mammals, telomere dysfunction induces the transcription of telomeric DDRNAs (tDDRNAs) and their longer precursors from both DNA strands. DDR activation and maintenance at telomeres depend on the biogenesis and functions of tDDRNAs. Their functional inhibition by sequence-specific antisense oligonucleotides allows the unprecedented telomere-specific DDR inactivation in cultured cells and in vivo in mouse tissues. In summary, these results demonstrate that tDDRNAs are induced at dysfunctional telomeres and are necessary for DDR activation and they validate the viability of locus-specific DDR inhibition by targeting DDRNAs.

  7. DNA damage checkpoint recovery and cancer development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiyong [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Zhang, Xiaoshan [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States); Teng, Lisong, E-mail: lsteng@zju.edu.cn [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Legerski, Randy J., E-mail: rlegersk@mdanderson.org [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States)

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  8. Screening for DNA Alkylation Mono and Cross-Linked Adducts with a Comprehensive LC-MS(3) Adductomic Approach.

    Science.gov (United States)

    Stornetta, Alessia; Villalta, Peter W; Hecht, Stephen S; Sturla, Shana J; Balbo, Silvia

    2015-12-01

    A high-resolution/accurate-mass DNA adductomic approach was developed to investigate anticipated and unknown DNA adducts induced by DNA alkylating agents in biological samples. Two new features were added to a previously developed approach to significantly broaden its scope, versatility, and selectivity. First, the neutral loss of a base (guanine, adenine, thymine, or cytosine) was added to the original methodology's neutral loss of the 2'-deoxyribose moiety to allow for the detection of all DNA base adducts. Second, targeted detection of anticipated DNA adducts based on the reactivity of the DNA alkylating agent was demonstrated by inclusion of an ion mass list for data dependent triggering of MS(2) fragmentation events and subsequent MS(3) fragmentation. Additionally, untargeted screening of the samples, based on triggering of an MS(2) fragmentation event for the most intense ions of the full scan, was included for detecting unknown DNA adducts. The approach was tested by screening for DNA mono and cross-linked adducts in purified DNA and in DNA extracted from cells treated with PR104A, an experimental DNA alkylating nitrogen mustard prodrug currently under investigation for the treatment of leukemia. The results revealed the ability of this new DNA adductomic approach to detect anticipated and unknown PR104A-induced mono and cross-linked DNA adducts in biological samples. This methodology is expected to be a powerful tool for screening for DNA adducts induced by endogenous or exogenous exposures.

  9. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents

    Institute of Scientific and Technical Information of China (English)

    Shanshan Song; Guichun Xing; Lin Yuan; Jian Wang; Shan Wang; Yuxin Yin; Chunyan Tian; Fuchu He; Lingqiang Zhang

    2012-01-01

    Alkylating agents induce genome-wide base damage,which is repaired mainly by N-methylpurine DNA glycosylase (MPG).An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks.However,the determinant of drug sensitivity or insensitivity still remains unclear.Here,we report that the p53 status coordinates with MPG to play a pivotal role in such process.MPG expression is positive in breast,lung and colon cancers (38.7%,43.4% and 25.3%,respectively) but negative in all adjacent normal tissues.MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells.The overexpression of MPG reduced,whereas depletion of MPG increased,the expression levels of pro-arrest gene downstream of p53 including p21,14-3-3σ and Gadd45 but not pro-apoptotic ones.The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53.Upon DNA alkylation stress,in p53 wild-type tumor cells,p53 dissociated from MPG and induced cell growth arrest.Then,AP sites were repaired efficiently,which led to insensitivity to alkylating agents.By contrast,in p53-mutated cells,the AP sites were repaired with low efficacy.To our knowledge,this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53,and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.

  10. Profiling oxidative DNA damage: effects of antioxidants.

    Science.gov (United States)

    Box, Harold C; Patrzyc, Helen B; Budzinski, Edwin E; Dawidzik, Jean B; Freund, Harold G; Zeitouni, Nathalie C; Mahoney, Martin C

    2012-11-01

    The goal of this research was to determine whether antioxidant usage could be correlated with changes in DNA damage levels. Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) was used to simultaneously measure five different oxidatively-induced base modifications in the DNA of WBC. Measurements of the five modifications were made before and after an 8-week trial during which participants took the SU.VI.MAX supplement. Levels of the five DNA modifications were compared among different groupings: users versus non-users of antioxidant supplements, before versus after the supplement intervention and men versus women. The statistical significance of differences between groups was most significant for pyrimidine base modifications and the observed trends reflect trends reported in epidemiological studies of antioxidant usage. A combination of modifications derived from pyrimidine bases is suggested as a superior indicator of oxidative stress.

  11. An immunochemical assay to detect DNA damage in bovine sperm

    NARCIS (Netherlands)

    Schans, G.P. van der; Haring, R.; Dijk- Knijnenburg, H.C.M. van; Bruijnzeel, P.L.B.; Daas, N.H.G. den

    2000-01-01

    An immunochemical assay has been developed to detect oxidative damage in bovine sperm DNA. Sperm DNA contains a large amount of oxidative damage as a result of exposure to exogenous agents, but damage also can caused by normal metabolic processes and the absence of DNA repair in the later stages of

  12. Chromatin remodeling in the UV-induced DNA damage response

    NARCIS (Netherlands)

    Ö.Z. Aydin (Özge)

    2014-01-01

    markdownabstract__Abstract__ DNA damage interferes with transcription and replication, causing cell death, chromosomal aberrations or mutations, eventually leading to aging and tumorigenesis (Hoeijmakers, 2009). The integrity of DNA is protected by a network of DNA repair and associated signalling

  13. Experimental verifications on chemical carcinogenesis, a bifunctional alkylation between DNA interstrands

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is evidenced by the filter elution method that two carcinogenic aromatic hydrocarbons, benzo[a]pyrene and dibenzo[a,h]anthracene, two carcinogenic metal salts, beryllium chloride and cadmium chloride, four carcinogenic aromatic amines, 2-aminofluorene, β-naphthylamine, 4-aminobiphenyl and benzidine, can all induce DNA interstrand and DNA-protein cross-link in L1210 culture. However, under the same condition, the corresponding non-carcinogenic compounds, including benzo[k]fluorancene, anthracene, magnesium chloride, zinc chloride, a -naphthylamine, 2-aminobiphenyl and m-toluidine, cannot produce any cross-link adducts. All these results are consistent with the di-region theory that carcinogens are bio-bifunctional alkylation agents. This method can also be used to discriminate carcinogens and non-carcinogens.

  14. ATM and ATR:Sensing DNA damage

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Zheng-Ping Xu; Yun Huang; Hope E. Hamrick; Penelope J. Duerksen-Hughes; Ying-Nian Yu

    2004-01-01

    Cellular response to genotoxic stress is a very complex process, and it usually starts with the "sensing" or "detection" of the DNA damage, followed by a series of events that include signal transduction and activation of transcription factors. The activated transcription factors induce expressions of many genes which are involved in cellular functions such as DNA repair, cell cycle arrest, and cell death. There have been extensive studies from multiple disciplines exploring the mechanisms of cellular genotoxic responses, which have resulted in the identification of many cellular components involved in this process, including the mitogen-activated protein kinases (MAPKs) cascade. Although the initial activation of protein kinase cascade is not fully understood,human protein kinases ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) are emerging as potential sensors of DNA damage. Current progresses in ATM/ATR research and related signaling pathways are discussed in this review, in an effort to facilitate a better understanding of genotoxic stress response.

  15. Acrylonitrile-induced oxidative DNA damage in rat astrocytes.

    Science.gov (United States)

    Pu, Xinzhu; Kamendulis, Lisa M; Klaunig, James E

    2006-10-01

    Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the

  16. Protection of DNA damage by radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Oh, Tae Jung

    1998-12-01

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents.

  17. Ion irradiation induced direct damage to DNA

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2008-01-01

    Ion beams have been widely applied in a few biological research fields such as radioactive breeding, health protection, and tumor therapy. Up to now many interesting and impressive achievements in biology and agriculture have been made. Over the past several decades, scientists in biology, physics, and chemistry have pursued investigations focused on understanding the mechanisms of these radiobiological effects of ion beams. From the chemical point of view, these effects are due to the ion irradiation induced biomolecular damage, direct or indirect. In this review, we will present a chemical overview of the direct effects of ion irradiation upon DNA and its components, based on a review of literature combined with recent experimental results. It is suggested that, under ion bombardment, a DNA molecule undergoes a variety of processes, including radical formation, atomic displacement, intramolecular bond-scissions, emission of fragments, fragment recombination and molecular crosslink, which may lead to genetic...

  18. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  19. Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovic, Ana [Institut fuer Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Woelfl, Stefan [Institut fuer Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany)]. E-mail: wolfl@uni-hd.de

    2006-02-22

    Response to DNA damage, lack of nutrients and other stress conditions is an essential property of living systems. The coordinate response includes DNA damage repair, activation of alternate biochemical pathways, adjustment of cellular proliferation and cell cycle progression as well as drastic measures like cellular suicide which prevents proliferation of severely damaged cells. Investigating the transcriptional response of Saccharomyces cerevisiae to low doses of the alkylating agent methylmethane sulfonate (MMS) we observed induction of genes involved in glucose metabolism. RT-PCR analysis showed that the expression of the key enzyme in gluconeogenesis fructose-1,6-bisphosphatase (FBP1) was clearly up-regulated by MMS in glucose-rich medium. Interestingly, deletion of FBP1 led to reduced sensitivity to MMS, but not to other DNA-damaging agents, such as 4-NQO or phleomycin. Reintroduction of FBP1 in the knockout restored the wild-type phenotype while overexpression increased MMS sensitivity of wild-type, shortened life span and increased induction of RNR2 after treatment with MMS. Deletion of FBP1 reduced production of reactive oxygen species (ROS) in response to MMS treatment and in untreated aged cells, and increased the amount of cells able to propagate and to form colonies, but had no influence on the genotoxic effect of MMS. Our results indicate that FBP1 influences the connection between DNA damage, aging and oxidative stress through either direct signalling or an intricate adaptation in energy metabolism.0.

  20. Role of swi7H4 mutant allele of DNA polymerase α in the DNA damage checkpoint response.

    Science.gov (United States)

    Khan, Saman; Ahmed, Shakil

    2015-01-01

    Besides being a mediator of initiation of DNA replication, DNA polymerase α plays a key role in chromosome maintenance. Swi7H4, a novel temperature sensitive mutant of DNA polymerase α was shown to be defective in transcriptional silencing at the mating type centromere and telomere loci. It is also required for the establishment of chromatin state that can recruit the components of the heterochromatin machinery at these regions. Recently the role of DNA polymerase α in the S-phase alkylation damage response in S. pombe has also been studied. Here we investigate whether defects generated by swi7H4, a mutant allele of DNA polymerase α can activate a checkpoint response. We show that swi7H4 exhibit conditional synthetic lethality with chk1 null mutant and the double mutant of swi7H4 with chk1 deletion aggravate the chromosome segregation defects. More importantly swi7H4 mutant cells delay the mitotic progression at non permissive temperature that is mediated by checkpoint protein kinase Chk1. In addition we show that, in the swi7H4 mutant background, cells accumulate DNA damage at non permissive temperature activating the checkpoint kinase protein Chk1. Further, we observed synthetic lethality between swi7H4 and a number of genes involved in DNA repair pathway at semi permissive temperature. We summarize that defects in swi7H4 mutant results in DNA damage that delay mitosis in a Chk1 dependent manner that also require the damage repair pathway for proper recovery.

  1. Role of swi7H4 mutant allele of DNA polymerase α in the DNA damage checkpoint response.

    Directory of Open Access Journals (Sweden)

    Saman Khan

    Full Text Available Besides being a mediator of initiation of DNA replication, DNA polymerase α plays a key role in chromosome maintenance. Swi7H4, a novel temperature sensitive mutant of DNA polymerase α was shown to be defective in transcriptional silencing at the mating type centromere and telomere loci. It is also required for the establishment of chromatin state that can recruit the components of the heterochromatin machinery at these regions. Recently the role of DNA polymerase α in the S-phase alkylation damage response in S. pombe has also been studied. Here we investigate whether defects generated by swi7H4, a mutant allele of DNA polymerase α can activate a checkpoint response. We show that swi7H4 exhibit conditional synthetic lethality with chk1 null mutant and the double mutant of swi7H4 with chk1 deletion aggravate the chromosome segregation defects. More importantly swi7H4 mutant cells delay the mitotic progression at non permissive temperature that is mediated by checkpoint protein kinase Chk1. In addition we show that, in the swi7H4 mutant background, cells accumulate DNA damage at non permissive temperature activating the checkpoint kinase protein Chk1. Further, we observed synthetic lethality between swi7H4 and a number of genes involved in DNA repair pathway at semi permissive temperature. We summarize that defects in swi7H4 mutant results in DNA damage that delay mitosis in a Chk1 dependent manner that also require the damage repair pathway for proper recovery.

  2. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease.

    Directory of Open Access Journals (Sweden)

    Wenjian Ma

    2011-04-01

    Full Text Available DNA double-strand breaks (DSBs are potent sources of genome instability. While there is considerable genetic and molecular information about the disposition of direct DSBs and breaks that arise during replication, relatively little is known about DSBs derived during processing of single-strand lesions, especially for the case of single-strand breaks (SSBs with 3'-blocked termini generated in vivo. Using our recently developed assay for detecting end-processing at random DSBs in budding yeast, we show that single-strand lesions produced by the alkylating agent methyl methanesulfonate (MMS can generate DSBs in G2-arrested cells, i.e., S-phase independent. These derived DSBs were observed in apn1/2 endonuclease mutants and resulted from aborted base excision repair leading to 3' blocked single-strand breaks following the creation of abasic (AP sites. DSB formation was reduced by additional mutations that affect processing of AP sites including ntg1, ntg2, and, unexpectedly, ogg1, or by a lack of AP sites due to deletion of the MAG1 glycosylase gene. Similar to direct DSBs, the derived DSBs were subject to MRX (Mre11, Rad50, Xrs2-determined resection and relied upon the recombinational repair genes RAD51, RAD52, as well as on the MCD1 cohesin gene, for repair. In addition, we identified a novel DNA intermediate, detected as slow-moving chromosomal DNA (SMD in pulsed field electrophoresis gels shortly after MMS exposure in apn1/2 cells. The SMD requires nicked AP sites, but is independent of resection/recombination processes, suggesting that it is a novel structure generated during processing of 3'-blocked SSBs. Collectively, this study provides new insights into the potential consequences of alkylation base damage in vivo, including creation of novel structures as well as generation and repair of DSBs in nonreplicating cells.

  3. Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity.

    Directory of Open Access Journals (Sweden)

    Shu-Huei Wang

    Full Text Available Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity.

  4. Contribution of ATM and ATR kinase pathways to p53-mediated response in etoposide and methyl methanesulfonate induced DNA damage.

    Science.gov (United States)

    Sun, Bin; Ross, Susan M; Rowley, Sean; Adeleye, Yeyejide; Clewell, Rebecca A

    2017-03-01

    p53 is a key integrator of cellular response to DNA damage, supporting post-translational repair and driving transcription-mediated responses including cell cycle arrest, apoptosis, and repair. DNA damage sensing kinases recognize different types of DNA damage and initiate specific responses through various post-translational modifications of p53. This study evaluated chemical specificity of the p53 pathway response by manipulating p53 or its upstream kinases and assessing the effect on DNA damage and cellular responses to prototype chemicals: etoposide (ETP, topoisomerase II inhibitor) and methyl methane sulfonate (MMS, alkylating agent). p53-deficient cells demonstrated reduced accumulation of the p53 target proteins MDM2, p21, and Wip1; reduced apoptotic response; and increased DNA damage (p-H2AX and micronuclei) with both chemicals. However, p53 was not essential for cell cycle arrest in HT1080 or HCT116 cells. The two chemicals induced different patterns of kinase activation, particularly in terms of Chk 1, Chk 2, p38, and ERK 1/2. However, inhibition of the ATM pathway showed a greater effect on p53 activtation, apoptosis, and accumulation of DNA damage than ATR-Chk 1 or the MAP kinases regardless of the chemical used. These results indicate that ATM is the predominant upstream kinase responsible for activation of the p53-mediated DNA damage response for both MMS and ETP, though the downstream kinase response is markedly different. Environ. Mol. Mutagen. 58:72-83, 2017. © 2017 Wiley Periodicals, Inc.

  5. Syntheses of DNA Duplexes That Contain a N4C-alkyl-N4C Interstrand Cross-Link

    Science.gov (United States)

    Miller, Paul S.

    2011-01-01

    A simple procedure is described for preparing short DNA duplexes that contain a single N4C-alkyl-N4C interstrand cross-link. The synthesis is carried out on an automated DNA synthesizer using standard phosphoramidite chemistry. The cross-link is introduced during the synthesis of the duplex. The method can be used to prepare mg quantities of cross-linked duplexes suitable for physical studies and for the preparation of larger DNA molecules that can be used as substrates to study DNA repair in whole cell extracts and in living cells in culture. PMID:21400705

  6. Single Molecule Scanning of DNA Radiation Oxidative Damage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  7. Overexpression of a Rrp1 transgene reduces the somatic mutation and recombination frequency induced by oxidative DNA damage in Drosophila melanogaster.

    Science.gov (United States)

    Szakmary, A; Huang, S M; Chang, D T; Beachy, P A; Sander, M

    1996-02-20

    Recombination repair protein 1 (Rrp1) includes a C-terminal region homologous to several DNA repair proteins, including Escherichia coli exonuclease III and human APE, that repair oxidative and alkylation damage to DNA. The nuclease activities of Rrp1 include apurinic/apyrimidinic endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-exonuclease. As shown previously, the C-terminal nuclease region of Rrp1 is sufficient to repair oxidative- and alkylation-induced DNA damage in repair-deficient E. coli mutants. DNA strand-transfer and single-stranded DNA renaturation activities are associated with the unique N-terminal region of Rrp1, which suggests possible additional functions that include recombinational repair or homologous recombination. By using the Drosophila w/w+ mosaic eye system, which detects loss of heterozygosity as changes in eye pigmentation, somatic mutation and recombination frequencies were determined in transgenic flies overexpressing wild-type Rrp1 protein from a heat-shock-inducible transgene. A large decrease in mosaic clone frequency is observed when Rrp1 overexpression precedes treatment with gamma-rays, bleomycin, or paraquat. In contrast, Rrp1 overexpression does not alter the spot frequency after treatment with the alkylating agents methyl methanesulfonate or methyl nitrosourea. A reduction in mosaic clone frequency depends on the expression of the Rrp1 transgene and on the nature of the induced DNA damage. These data suggest a lesion-specific involvement of Rrp1 in the repair of oxidative DNA damage.

  8. Natural transformation of bacteria by fragmented, damaged and ancient DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren

    Organisms release DNA both when they live and die. Eventually the DNA disintegrates entirely or it is re-metabolized. There is a constant deposition and decomposition that maintains an environmental pool with large quantities of extracellular DNA, some of which can be thousands of years old...... it by damaged short DNA with abasic sites, crosslinks, and miscoding lesions, which are the most common damages in environmental DNA. This is emphasized by successful natural transformation by 43,000-year-old DNA. We find that the process is a simple variant of natural transformation. On top, we illustrate...... acquire functional genetic signatures of the deeper past. Moreover, not only can old DNA revert microbes to past genotypes, but damaged DNA can also produce new variants of already functional sequences. Besides, DNA fragments carry potential to combine functional domains in new ways. The identified novel...

  9. mapDamage: testing for damage patterns in ancient DNA sequences

    DEFF Research Database (Denmark)

    Ginolhac, Aurelien; Rasmussen, Morten; Gilbert, M Thomas P;

    2011-01-01

    Ancient DNA extracts consist of a mixture of contaminant DNA molecules, most often originating from environmental microbes, and endogenous fragments exhibiting substantial levels of DNA damage. The latter introduce specific nucleotide misincorporations and DNA fragmentation signatures in sequenci...... of the SAMtools suite and R environment and has been validated on both GNU/Linux and MacOSX operating systems....

  10. Distribution patterns of postmortem damage in human mitochondrial DNA

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Willerslev, Eske; Hansen, Anders J;

    2002-01-01

    The distribution of postmortem damage in mitochondrial DNA retrieved from 37 ancient human DNA samples was analyzed by cloning and was compared with a selection of published animal data. A relative rate of damage (rho(v)) was calculated for nucleotide positions within the human hypervariable region...

  11. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension

    Science.gov (United States)

    Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.

    2017-01-01

    Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562

  12. A Microscopic Study of the DNA Damage Response

    NARCIS (Netherlands)

    C. Dinant (Christoffel)

    2008-01-01

    textabstractThe integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks (DSB), single strand breaks (SSB), oxidative lesions and pyrimidine dimers. The

  13. Delineating the DNA damage response using systems biology approaches

    NARCIS (Netherlands)

    Stechow, Louise von

    2013-01-01

    Cellular responses to DNA damage are highly variable and strongly depend on the cellular and organismic context. Studying the DNA damage response is crucial for a better understanding of cancer formation and ageing as well as genotoxic stress-induced cancer therapy. To do justice to the multifaceted

  14. Chromatin modifications and the DNA damage response to ionizing radiation

    Science.gov (United States)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response. PMID:23346550

  15. Guarding chromosomes from oxidative DNA damage to the very end

    Institute of Scientific and Technical Information of China (English)

    Rong Tan; Li Lan

    2016-01-01

    The ends of each chromosome are capped by the telomere assembly to protect chromosomal integrity from telomere attrition and DNA damage.In response to DNA damage,DNA repair factors are enriched at damage sites by a sophisticated signaling and recruitment cascade.However,DNA damage response at telomeres is different from non-telomeric region of genomic DNA due to specialized sequences and structures of the telomeres.In the course of normal DNA replication or DNA damage repair,both the telomere shelterin protein complex and the condensed telomeric chromatin structure in mammalian cells are modified to protect telomeres from exposing free DNA ends which are subject to both telemere shortening and chromosome end fusion.Initiation of either homologous recombination or non-homologous end joint repair at telomeres requires disassembling andaor post-translational modifications of the shelterin complex and telomeric chromatin.In addition,cancer cells utilize distinct mechanisms to maintain telomere length and cell survival upon damage.In this review,we summarize current studies that focus on telomere end protection and telomere DNA repair using different methodologies to model telomere DNA damage and disruption.These include genetic ablation of sheltering proteins,targeting endonuclease to telomeres,and delivering oxidative damage directly.These different approaches,when combined,offer better understanding of the mechanistic differences in DNA damage response between telomeric and genomic DNA,which will provide new hope to identify potential cancer therapeutic targets to curtail cancer cell proliferation via induction of telomere dysfunctions.

  16. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, S; Poulsen, H E

    1996-01-01

    of damage and the balance between the damage and repair rate, respectively. By means of biomarkers a number of important factors have been studied in humans. Ionizing radiation, a carcinogenic and pure source of ROS, induced both urinary and leukocyte biomarkers of oxidative DNA damage. Tobacco smoking......, another carcinogenic source of ROS, increased the oxidative DNA damage rate by 35-50% estimated from the urinary excretion of 8-oxodG, and the level of 8-oxodG in leukocytes by 20-50%. The main endogenous source of ROS, the oxygen consumption, showed a close correlation with the 8-oxodG excretion rate...... of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still lacking. This could possibly be supported by demonstration of the rate of oxidative DNA damage as an independent risk factor for cancer in a prospective study...

  17. DNA damage response and Autophagy: a meaningful partnership

    Directory of Open Access Journals (Sweden)

    ARISTIDES G ELIOPOULOS

    2016-11-01

    Full Text Available Autophagy and the DNA damage response (DDR are biological processes essential for cellular and organismal homeostasis. Herein we summarize and discuss emerging evidence linking DDR to autophagy. We highlight published data suggesting that autophagy is activated by DNA damage and is required for several functional outcomes of DDR signaling, including repair of DNA lesions, senescence, cell death, and cytokine secretion. Uncovering the mechanisms by which autophagy and DDR are intertwined provides novel insight into the pathobiology of conditions associated with accumulation of DNA damage, including cancer and aging, and novel concepts for the development of improved therapeutic strategies against these pathologies.

  18. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  19. Reshaping chromatin after DNA damage: the choreography of histone proteins.

    Science.gov (United States)

    Polo, Sophie E

    2015-02-13

    DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.

  20. Experimental Investigation of DNA Damage Induced by Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    DNA is considered the critical target for radiobiological effects. It is highly important to study DNAdamage induced by ionizing radiation. Especially DNA double strand breaks have been identified as themost initial damage. In this experiment, DNA double strand breaks induced by heavy ions wereinvestigated with atomic force microscopy (AFM).

  1. MicroRNAs: new players in the DNA damage response

    Institute of Scientific and Technical Information of China (English)

    Hailiang Hu; Richard A. Gatti

    2011-01-01

    The DNA damage response (DDR) is a signal transduction pathway that decides the cell's fate either to repair DNA damage or to undergo apoptosis if there is too much damage. Post-translational modifications modulate the assembly and activity of protein complexes during the DDR pathways. MicroRNAs (miRNAs) are emerging as a class of endogenous gene modulators that control protein levels, thereby adding a new layer of regulation to the DDR. In this review, we describe a new role for miRNAs in regulating the cellular response to DNA damage with a focus on DNA double-strand break damage. We also discuss the implications of miRNA's role in the DDR to stem cells, including embryonic stem cells and cancer stem cells, stressing the potential applications for miRNAs to be used as sensitizers for cancer radiotherapy and chemotherapy.

  2. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, Steffen; Poulsen, H E

    1996-01-01

    per 10(5) intact nucleosides. The damaged nucleosides accumulate with age in both nuclear and mitochondrial DNA. The products of repair of these lesions are excreted into the urine in amounts corresponding to a damage rate of up to 10(4) modifications in each cell every day. The most abundant...... with a mechanistically based increased risk of cancer, including Fanconi anemia, chronic hepatitis, cystic fibrosis, and various autoimmune diseases, the biomarker studies indicate an increased rate of oxidative DNA damage or in some instances deficient repair. Human studies support the experimentally based notion...... of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still lacking. This could possibly be supported by demonstration of the rate of oxidative DNA damage as an independent risk factor for cancer in a prospective study...

  3. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect...

  4. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces cell cycle synchronization in different human osteosarcoma cell lines. The UV pulse also has a destabilizing...

  5. Chromatin Modifications and the DNA Damage Response to Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Tej K Pandita

    2013-01-01

    Full Text Available In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double strand breaks (DSBs, that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: 1 non-homologous end-joining (NHEJ, which re-ligates the broken ends of the DNA and 2 homologous recombination (HR, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but posttranslational modification (PTMs of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modification by t

  6. Aging of hematopoietic stem cells: DNA damage and mutations?

    Science.gov (United States)

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs.

  7. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  8. Inducible repair of oxidative DNA damage in Escherichia coli.

    Science.gov (United States)

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  9. An active site aromatic triad in Escherichia coli DNA Pol IV coordinates cell survival and mutagenesis in different DNA damaging agents.

    Directory of Open Access Journals (Sweden)

    Ryan W Benson

    Full Text Available DinB (DNA Pol IV is a translesion (TLS DNA polymerase, which inserts a nucleotide opposite an otherwise replication-stalling N(2-dG lesion in vitro, and confers resistance to nitrofurazone (NFZ, a compound that forms these lesions in vivo. DinB is also known to be part of the cellular response to alkylation DNA damage. Yet it is not known if DinB active site residues, in addition to aminoacids involved in DNA synthesis, are critical in alkylation lesion bypass. It is also unclear which active site aminoacids, if any, might modulate DinB's bypass fidelity of distinct lesions. Here we report that along with the classical catalytic residues, an active site "aromatic triad", namely residues F12, F13, and Y79, is critical for cell survival in the presence of the alkylating agent methyl methanesulfonate (MMS. Strains expressing dinB alleles with single point mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in addition to its role in TLS, modulates DinB's accuracy in bypassing distinct lesions. The high bypass fidelity of prevalent alkylation lesions is evident even when the DinB active site performs error-prone NFZ-induced lesion bypass. The analyses carried out with the active site aromatic triad suggest that the DinB active site residues are poised to proficiently bypass distinctive DNA lesions, yet they are also malleable so that the accuracy of the bypass is lesion-dependent.

  10. Dimethoate-induced oxidative stress and DNA damage in Oncorhynchus mykiss.

    Science.gov (United States)

    Dogan, Demet; Can, Canan; Kocyigit, Abdurrahim; Dikilitas, Murat; Taskin, Abdullah; Bilinc, Hasan

    2011-06-01

    The present study was conducted in order to investigate pro-oxidant activity of dimethoate in liver and brain tissues following sublethal pesticide exposure for 5, 15 and 30 d by using SOD, GPx, CAT enzyme activities and lipid peroxidation as biomarkers as well as DNA damaging potential via detecting% Tail DNA, Tail moment and Olive tail moment as endpoints in erythrocytes of Oncorhynchus mykiss in an in vitro experiment. Antioxidant enzyme activities were found to elicit two staged response which was an initial induction followed by a sharp inhibition in liver tissue while a sustained increase in GPx activity and slight stimulation in SOD activity were detected in brain tissue. Lipid peroxidation showed an ascending pattern throughout the exposure period in both tissues and a decreasing trend was determined in tissue protein levels which was proved to be positively correlated with duration. Similar findings were obtained from outcomes preferred to quantify DNA damage and TM was decided to reflect the extent of damage more sensitively because of determined positive correlation with concentrations applied. Considering these results, it can be concluded that oxidative stress condition evoked by dimethoate could not be responded effectively and genotoxic nature of pesticide was proven by determined clastogenic effect possibly via being an alkylation agent or stimulating the production of reactive species.

  11. Global chromatin fibre compaction in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Charlotte [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Hayward, Richard L. [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Gilbert, Nick, E-mail: Nick.Gilbert@ed.ac.uk [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. Black-Right-Pointing-Pointer DNA repair foci are found in soluble chromatin. Black-Right-Pointing-Pointer Biophysical analysis reveals global chromatin fibre compaction after DNA damage. Black-Right-Pointing-Pointer DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation ({gamma}H2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and {gamma}H2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by

  12. Endogenous melatonin and oxidatively damaged guanine in DNA

    DEFF Research Database (Denmark)

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan

    2009-01-01

    attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. METHODS: Mother......-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA...... of oxidatively damaged guanine in DNA, thereby possibly increasing the risk of developing cancer. The possible different effects of melatonin in the rates of utilization of pathways for repair of oxidatively damaged guanine in DNA identified between older women and older men are intriguing....

  13. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza [Department of Pharmaceutical Biotechnology and Biotechnology Research Centre, Faculty of Pharmacy, TUMS, Tehran (Iran, Islamic Republic of); Ahmadi, Abbas [Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of); Baeeri, Maryam; Mohammadirad, Azadeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: mohammad.abdollahi@utoronto.ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of)

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  14. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    Chronic inflammatory diseases of the intestinal tract are associated with an increased risk of colorectal cancer. As an example ulcerative colitis (UC) is associated with a production of reactive oxygen species (ROS), including nitrogen monoxide (NO), which is produced in high amounts by inducibl...... nitrogen oxide synthase (iNOS). NO as well as other ROS are potential DNA damaging agents. The aim was to determine the effect of long-term cytokine exposure on NO formation and DNA damage in epithelial cells....

  15. Typical Cell Signaling Response to Ionizing Radiation:DNA Damage and Extranuclear Damage

    Institute of Scientific and Technical Information of China (English)

    Hui Yu

    2012-01-01

    To treat many types of cancer,ionizing radiation (IR) is primarily used as external-beam radiotherapy,brachytherapy,and targeted radionuclide therapy.Exposure of tumor cells to IR can induce DNA damage as well as generation of reactiveoxygen species (ROS) and reactive nitrogen species (RNS) which can cause non-DNA lesions or extracellular damage like lipid perioxidation.The initial radiation-induced cell responses to DNA damage and ROS like the proteolytic processing,as well as synthesis and releasing ligands (such as growth factors,cytokines,and hormone) can cause the delayed secondary responses in irradiated and unirradiated bystander cells through paracrine and autocrine pathways.

  16. Roles of RNA-Binding Proteins in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Mihoko Kai

    2016-02-01

    Full Text Available Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR, and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP with low complexity domains, called intrinsically disordered proteins (IDPs, and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs in a poly(ADP-ribose (PAR-dependent manner (unpublished data. DNA-dependent PARP1 (poly-(ADP ribose polymerase 1 makes key contributions in the DNA damage response (DDR network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as

  17. Radiation damage to DNA: the effect of LET

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.F.; Milligan, J.R. [California Univ., San Diego, La Jolla, CA (United States). School of Medicine

    1997-03-01

    Mechanisms whereby ionizing radiation induced damage are introduced into cellular DNA are discussed. The types of lesions induced are summarized and the rationale is presented which supports the statement that radiation induced singly damaged sites are biologically unimportant. The conclusion that multiply damaged sites are critical is discussed and the mechanisms whereby such lesions are formed are presented. Structures of multiply damaged sites are summarized and problems which they present to cellular repair systems are discussed. Lastly the effects of linear energy transfer on the complexity of multiply damaged sites are surveyed and the consequences of this increased complexity are considered in terms of cell survival and mutation. (author)

  18. Oxidative Damage to DNA and Its Relationship With Diabetic Complications

    Institute of Scientific and Technical Information of China (English)

    HONG-ZHI PAN; DONG CHANG; LEI-GUANG FENG; FENG-JUAN XU; HONG-YU KUANG; MING-JUN LU

    2007-01-01

    Objective To detect the oxidative DNA damage in diabetic patients and to investigate the relationship of oxidative DNA damage with diabetes and diabetic nephropathy. Methods Single cell gel electrophoresis (SCGE) was used to detect the DNA strand breaks in peripheral blood lymphocytes, and oxidative DNA damage product and serum 8-OHdG were determined by a competitive ELISA in 47 cases, including 25 patients without diabetic complications, 22 patients with diabetic nephropathy and 25 normal control subjects. Results Diabetic patients showed greater oxidative damage to DNA. The percentage of comet cells and the length of DNA migration (comet tail length) of peripheral blood lymphocytes were significantly increased in patients with diabetes, and significantly higher in patients with diabetic nephropathy than in diabetic patients without vascular complications (P<0.05). There was a significant increase in serum 8-OHdG in diabetic patients compared with normal subjects (P<0.05). Moreover, serum 8-OHdG was much higher in patients with diabetic nephropathy than in diabetic patients without vascular complications (P<0.05). Conclusion There is severe oxidative DNA damage in diabetic patients. Enhanced oxidative stress may be associated with diabetes, especially in patients with diabetic nephropathy.

  19. The DNA-damage response in human biology and disease

    DEFF Research Database (Denmark)

    Jackson, Stephen P; Bartek, Jiri

    2009-01-01

    The prime objective for every life form is to deliver its genetic material, intact and unchanged, to the next generation. This must be achieved despite constant assaults by endogenous and environmental agents on the DNA. To counter this threat, life has evolved several systems to detect DNA damag...

  20. Oxidatively damaged DNA in animals exposed to particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Jantzen, Kim

    2013-01-01

    Exposure to combustion-derived particles, quartz and asbestos is associated with increased levels of oxidized and mutagenic DNA lesions. The aim of this survey was to critically assess the measurements of oxidatively damaged DNA as marker of particle-induced genotoxicity in animal tissues...

  1. Bacterial natural transformation by highly fragmented and damaged DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic Antoine Alexandre

    2013-01-01

    of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations......DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often DNA is recognized as nutrient source...... for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake...

  2. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors.

    Science.gov (United States)

    Francia, Sofia; Cabrini, Matteo; Matti, Valentina; Oldani, Amanda; d'Adda di Fagagna, Fabrizio

    2016-04-01

    The DNA damage response (DDR) plays a central role in preserving genome integrity. Recently, we reported that the endoribonucleases DICER and DROSHA contribute to DDR activation by generating small non-coding RNAs, termed DNA damage response RNA (DDRNA), carrying the sequence of the damaged locus. It is presently unclear whether DDRNAs act by promoting the primary recognition of DNA lesions or the secondary recruitment of DDR factors into cytologically detectable foci and consequent signal amplification. Here, we demonstrate that DICER and DROSHA are dispensable for primary recruitment of the DDR sensor NBS1 to DNA damage sites. Instead, the accumulation of the DDR mediators MDC1 and 53BP1 (also known as TP53BP1), markers of secondary recruitment, is reduced in DICER- or DROSHA-inactivated cells. In addition, NBS1 (also known as NBN) primary recruitment is resistant to RNA degradation, consistent with the notion that RNA is dispensable for primary recognition of DNA lesions. We propose that DICER, DROSHA and DDRNAs act in the response to DNA damage after primary recognition of DNA lesions and, together with γH2AX, are essential for enabling the secondary recruitment of DDR factors and fuel the amplification of DDR signaling.

  3. Activation of DNA damage response signaling by condensed chromatin.

    Science.gov (United States)

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  4. DNA damage to spermatozoa has impacts on fertilization and pregnancy.

    Science.gov (United States)

    Lewis, S E M; Aitken, R J

    2005-10-01

    DNA damage in the male germ line has been associated with poor semen quality, low fertilization rates, impaired preimplantation development, increased abortion and an elevated incidence of disease in the offspring, including childhood cancer. The causes of this DNA damage are still uncertain but the major candidates are oxidative stress and aberrant apoptosis. The weight of evidence currently favours the former and, in keeping with this conclusion, positive results have been reported for antioxidant therapy both in vivo and in vitro. Resolving the causes of DNA damage in the male germ line will be essential if we are to prevent the generation of genetically damaged human embryos, particularly in the context of assisted conception therapy.

  5. DNA damage after intracerebroventricular injection of ouabain in rats.

    Science.gov (United States)

    Jornada, Luciano K; Valvassori, Samira S; Arent, Camila O; Leffa, Daniela; Damiani, Adriani A; Hainzenreder, Giana; Ferreira, Camila L; Moretti, Morgana; Andrade, Vanessa M; Quevedo, João

    2010-02-26

    There is an emerging body of data suggesting that bipolar disorder is associated with DNA damage. Intracerebroventricular (i.c.v.) administration of ouabain in rats results in manic-like alterations. We evaluated DNA damage of peripheral blood, cerebrospinal fluid and hippocampus of rats after i.c.v. ouabain injection. Ouabain-induced hyperlocomotion was examined in an open field. Additionally, we used single cell gel electrophoresis (comet assay) to measure early transient damage in cerebrospinal fluid (CSF), hippocampus and blood; and the micronucleus test to measure persistent damage in total blood samples of rats after ouabain administration. Our findings demonstrated that ouabain induced hyperlocomotion in rats, and this response remained up to 7 days following a single i.c.v. injection. In addition, we observed that the persistent increase in the rat spontaneous locomotion is associated with increased hippocampal and peripheral index of early DNA damage in rats. No significant alterations were observed in the micronucleus frequency in total blood samples of the rats after the ouabain i.c.v. injection. These results suggest that ouabain may induce peripheral and central early DNA damage, but this early damage may be repaired.

  6. DNA damage in internal organs after cutaneous exposure to sulphur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Batal, Mohamed [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex (France); Boudry, Isabelle; Mouret, Stéphane; Cléry-Barraud, Cécile; Wartelle, Julien [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex (France); Bérard, Izabel [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Douki, Thierry, E-mail: thierry.douki@cea.fr [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France)

    2014-07-01

    Sulphur mustard (SM) is a chemical warfare agent that attacks mainly skin, eye and lungs. Due to its lipophilic properties, SM is also able to diffuse through the skin and reach internal organs. DNA represents one of the most critical molecular targets of this powerful alkylating agent which modifies DNA structure by forming monoadducts and biadducts. These DNA lesions are involved in the acute toxicity of SM as well as its long-term carcinogenicity. In the present work we studied the formation and persistence of guanine and adenine monoadducts and guanine biadducts in the DNA of brain, lungs, kidneys, spleen, and liver of SKH-1 mice cutaneously exposed to 2, 6 and 60 mg/kg of SM. SM-DNA adducts were detected in all studied organs, except in liver at the two lowest doses. Brain and lungs were the organs with the highest level of SM-DNA adducts, followed by kidney, spleen and liver. Monitoring the level of adducts for three weeks after cutaneous exposure showed that the lifetime of adducts were not the same in all organs, lungs being the organ with the longest persistence. Diffusion from skin to internal organs was much more efficient at the highest compared to the lowest dose investigated as the result of the loss of the skin barrier function. These data provide novel information on the distribution of SM in tissues following cutaneous exposures and indicate that brain is an important target. - Highlights: • Sulphur mustard reaches internal organs after skin exposure • Adducts are detected in the DNA of internal organs • Brain is the organ with the highest level of DNA damage • The barrier function of skin is lost at high dose of sulphur mustard • DNA adducts persist in organs for 2 or 3 weeks.

  7. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, Steffen; Poulsen, H E

    1996-01-01

    of these lesions, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), is also the most mutagenic, resulting in GT transversions which are frequently found in tumor relevant genes. A series of other oxidative modifications of base and sugar residues occur frequently in DNA, but they are less well studied...... with a mechanistically based increased risk of cancer, including Fanconi anemia, chronic hepatitis, cystic fibrosis, and various autoimmune diseases, the biomarker studies indicate an increased rate of oxidative DNA damage or in some instances deficient repair. Human studies support the experimentally based notion...... of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still lacking. This could possibly be supported by demonstration of the rate of oxidative DNA damage as an independent risk factor for cancer in a prospective study...

  8. DNA Damage Caused By Pesticide-contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    K.KRISHNAMURTHI; S. SARAVANA DEVI; T. CHAKRABARTI

    2006-01-01

    Objective To determine the DNA damaging potential and the genotoxicity of individual compounds in pesticide contaminated soil. Methods In the present study, DNA damaging potential of pesticide-contaminated soil and the genotoxicity of individual compounds present in the soil were assessed using fluorimetric analysis of DNA unwinding assay. Results The contaminated soil sample showed 79% (P<0.001) of DNA strand break, whereas technical grade of major carbaryl and α-naphthol constituents of the contaminated soil showed 64% (P<0.01) and 60% (P<0.02) damage respectively. Conclusion Our results indicate that the toxicity caused by contaminated soil is mainly due to carbaryl and α -napthol, which are the major constituents of the soil sample analyzed by GC-MS.

  9. APOBEC3A damages the cellular genome during DNA replication.

    Science.gov (United States)

    Green, Abby M; Landry, Sébastien; Budagyan, Konstantin; Avgousti, Daphne C; Shalhout, Sophia; Bhagwat, Ashok S; Weitzman, Matthew D

    2016-01-01

    The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors.

  10. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development.

    Directory of Open Access Journals (Sweden)

    Joanna E Gawecka

    Full Text Available Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF. SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B followed by irreversible DNA degradation by a nuclease(s. Here, we created zygotes using spermatozoa induced to undergo SCF (SCF zygotes and tested how they responded to moderate and severe paternal DNA damage during the first cell cycle. We found that the TUNEL assay was not sensitive enough to identify the breaks caused by SCF in zygotes in either case. However, paternal pronuclei in both groups stained positively for γH2AX, a marker for DNA damage, at 5 hrs after fertilization, just before DNA synthesis, while the maternal pronuclei were negative. We also found that both pronuclei in SCF zygotes with moderate DNA damage replicated normally, but paternal pronuclei in the SCF zygotes with severe DNA damage delayed the initiation of DNA replication by up to 12 hrs even though the maternal pronuclei had no discernable delay. Chromosomal analysis of both groups confirmed that the paternal DNA was degraded after S-phase while the maternal pronuclei formed normal chromosomes. The DNA replication delay caused a marked retardation in progression to the 2-cell stage, and a large portion of the embryos arrested at the G2/M border, suggesting that this is an important checkpoint in zygotic development. Those embryos that progressed through the G2/M border died at later stages and none developed to the blastocyst stage. Our data demonstrate that the zygote responds to sperm DNA damage through a non-apoptotic mechanism that acts by slowing paternal DNA replication and ultimately leads to arrest in embryonic development.

  11. DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers

    Directory of Open Access Journals (Sweden)

    Nicole Schupp

    2016-01-01

    Full Text Available Patients with chronic kidney disease (CKD exhibit an increased cancer risk compared to a healthy control population. To be able to estimate the cancer risk of the patients and to assess the impact of interventional therapies thereon, it is of particular interest to measure the patients’ burden of genomic damage. Chromosomal abnormalities, reduced DNA repair, and DNA lesions were found indeed in cells of patients with CKD. Biomarkers for DNA damage measurable in easily accessible cells like peripheral blood lymphocytes are chromosomal aberrations, structural DNA lesions, and oxidatively modified DNA bases. In this review the most common methods quantifying the three parameters mentioned above, the cytokinesis-block micronucleus assay, the comet assay, and the quantification of 8-oxo-7,8-dihydro-2′-deoxyguanosine, are evaluated concerning the feasibility of the analysis and regarding the marker’s potential to predict clinical outcomes.

  12. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2-or 4-pyrenyl-functionalized O2 '-alkylated RNA monomers

    DEFF Research Database (Denmark)

    Karmakar, Saswata; Madsen, Andreas Stahl; Guenther, Dale C.

    2014-01-01

    '-alkylated uridine monomers X-Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA...

  13. Damaging the Integrated HIV Proviral DNA with TALENs.

    Directory of Open Access Journals (Sweden)

    Christy L Strong

    Full Text Available HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for virus eradication. Several new gene-editing technologies have emerged that could potentially be used to damage integrated proviral DNA. In this study, we use transcription activator-like effector nucleases (TALENs to target a highly conserved sequence in the transactivation response element (TAR of the HIV-1 proviral DNA. We demonstrated that TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter, under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by transfection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1 proviral DNA were transfected with TALENs, the TAR region accumulated indels. When one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of producing detectable Gag expression. TALEN variants engineered for degenerate recognition of select nucleotide positions also cleaved proviral DNA in vitro and the full-length integrated proviral DNA genome in living cells. These results suggest a possible design strategy for the therapeutic considerations of incomplete target sequence conservation and acquired resistance mutations. We have established a new strategy for damaging integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA eradication.

  14. Oxidative stress and DNA damages induced by cadmium accumulation

    Institute of Scientific and Technical Information of China (English)

    LIN Ai-jun; ZHANG Xu-hong; CHEN Mei-mei; CAO Qing

    2007-01-01

    Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.

  15. DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice

    DEFF Research Database (Denmark)

    Croteau, Deborah L; de Souza-Pinto, Nadja C; Harboe, Charlotte

    2010-01-01

    were fed for 14 weeks a control diet or a diet with 8% peach or nectarine extract. The activities of DNA repair enzymes, the level of DNA damage, and gene expression changes were measured. Our study showed that repair of various oxidative DNA lesions was more efficient in liver extracts derived from......Aging is associated with elevated oxidative stress and DNA damage. To achieve healthy aging, we must begin to understand how diet affects cellular processes. We postulated that fruit-enriched diets might initiate a program of enhanced DNA repair and thereby improve genome integrity. C57Bl/6 J mice......-fed mice. Taken together, these results suggest that an increased intake of fruits might modulate the efficiency of DNA repair, resulting in altered levels of DNA damage....

  16. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test...... exercise in altitude hypoxia. Exercise-induced generation of DNA strand breaks was not seen at sea level. In both environments, the level of FPG and endonuclease III-sensitive sites remained unchanged immediately after exercise. DNA strand breaks and oxidative DNA damage are probably produced by reactive...... to withstand oxidative stress produced by exhaustive exercise....

  17. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan [Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China); Kakadiya, Rajesh B.; Su, Tsann-Long [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC (China); Yih, Ling-Huei, E-mail: lhyih@gate.sinica.edu.tw [Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China)

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.

  18. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    NARCIS (Netherlands)

    S. Vives (Sergi); M.T. Gilbert (Thomas); C. Arenas (Conchita); E. Gigli (Elena); O. Lao Grueso (Oscar); C. Lalueza-Fox (Carles)

    2008-01-01

    textabstractBackground. We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA) hypervariable region 1 (HVS1). The analysis was rest

  19. SOS processing of unique oxidative DNA damages in Escherichia coli.

    Science.gov (United States)

    Laspia, M F; Wallace, S S

    1989-05-05

    phi X174 replicative form (RF) I transfecting DNA containing thymine glycols (5,6-dihydroxy-5,6-dihydrothymine), urea glycosides or apurinic (AP) sites was used to study SOS processing of unique DNA damages in Escherichia coli. All three lesions can be found in DNA damaged by chemical oxidants or radiation and are representative of several common structural modifications of DNA bases. When phi X DNA containing thymine glycols was transfected into host cells that were ultraviolet-irradiated to induce the SOS response, a substantial increase in survival was observed compared to transfection into uninduced hosts. Studies with mutants demonstrated that both the activated form of RecA and UmuDC proteins were required for this reactivation. In contrast, no increase in survival was observed when DNA containing urea glycosides or AP sites was transfected into ultraviolet-induced hosts. These data suggest that SOS-induced reactivation does not reflect a generalized repair system for all replication-blocking, lethal lesions but rather that the efficiency of reactivation is damage dependent. Further, we found that a significant fraction of potentially lethal thymine glycols could be ultraviolet-reactivated in an umuC lexA recA-independent manner, suggesting the existence of an as yet uncharacterized damage-inducible SOS-independent mode of thymine glycol repair.

  20. Parvovirus diversity and DNA damage responses.

    Science.gov (United States)

    Cotmore, Susan F; Tattersall, Peter

    2013-02-01

    Parvoviruses have a linear single-stranded DNA genome, around 5 kb in length, with short imperfect terminal palindromes that fold back on themselves to form duplex hairpin telomeres. These contain most of the cis-acting information required for viral "rolling hairpin" DNA replication, an evolutionary adaptation of rolling-circle synthesis in which the hairpins create duplex replication origins, prime complementary strand synthesis, and act as hinges to reverse the direction of the unidirectional cellular fork. Genomes are packaged vectorially into small, rugged protein capsids ~260 Å in diameter, which mediate their delivery directly into the cell nucleus, where they await their host cell's entry into S phase under its own cell cycle control. Here we focus on genus-specific variations in genome structure and replication, and review host cell responses that modulate the nuclear environment.

  1. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisag@pharm.unifi.it; Bellandi, Serena [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Pitozzi, Vanessa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Fabbri, Paolo [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Dolara, Piero [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)

    2004-11-22

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo.

  2. Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion.

    Science.gov (United States)

    Juvekar, Ashish; Hu, Hai; Yadegarynia, Sina; Lyssiotis, Costas A; Ullas, Soumya; Lien, Evan C; Bellinger, Gary; Son, Jaekyoung; Hok, Rosanna C; Seth, Pankaj; Daly, Michele B; Kim, Baek; Scully, Ralph; Asara, John M; Cantley, Lewis C; Wulf, Gerburg M

    2016-07-26

    We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1(f/f)p53(f/f)), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors.

  3. Increased DNA damage and oxidative stress among silver jewelry workers.

    Science.gov (United States)

    Aktepe, Necmettin; Kocyigit, Abdurrahim; Yukselten, Yunus; Taskin, Abdullah; Keskin, Cumali; Celik, Hakim

    2015-04-01

    Silver has long been valued as a precious metal, and it is used to make ornaments, jewelry, high-value tableware, utensils, and currency coins. Human exposures to silver and silver compounds can occur oral, dermal, or by inhalation. In this study, we investigated genotoxic and oxidative effects of silver exposure among silver jewelry workers. DNA damage in peripheral mononuclear leukocytes was measured by using the comet assay. Serum total antioxidative status (TAS), total oxidative status (TOS), total thiol contents, and ceruloplasmin levels were measured by using colorimetric methods among silver jewelry workers. Moreover, oxidative stress index (OSI) was calculated. Results were compared with non-exposed healthy subjects. The mean values of mononuclear leukocyte DNA damage were significantly higher than control subjects (p jewelry workers caused oxidative stress and accumulation of severe DNA damage.

  4. A dual role of Cdk2 in DNA damage response

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2009-05-01

    Full Text Available Abstract Once it was believed that Cdk2 was the master regulator of S phase entry. Gene knockout mouse studies of cell cycle regulators revealed that Cdk2 is dispensable for S phase initiation and progression whereby Cdk1 can compensate for the loss of Cdk2. Nevertheless, recent evidence indicates that Cdk2 is involved in cell cycle independent functions such as DNA damage repair. Whether these properties are unique to Cdk2 or also being compensated by other Cdks in the absence of Cdk2 is under extensive investigation. Here we review the emerging new role of Cdk2 in DNA damage repair and also discuss how the loss of Cdk2 impacts the G1/S phase DNA damage checkpoint.

  5. A dual role of Cdk2 in DNA damage response.

    Science.gov (United States)

    Satyanarayana, Ande; Kaldis, Philipp

    2009-05-18

    Once it was believed that Cdk2 was the master regulator of S phase entry. Gene knockout mouse studies of cell cycle regulators revealed that Cdk2 is dispensable for S phase initiation and progression whereby Cdk1 can compensate for the loss of Cdk2. Nevertheless, recent evidence indicates that Cdk2 is involved in cell cycle independent functions such as DNA damage repair. Whether these properties are unique to Cdk2 or also being compensated by other Cdks in the absence of Cdk2 is under extensive investigation. Here we review the emerging new role of Cdk2 in DNA damage repair and also discuss how the loss of Cdk2 impacts the G1/S phase DNA damage checkpoint.

  6. Can graphene quantum dots cause DNA damage in cells?

    Science.gov (United States)

    Wang, Dan; Zhu, Lin; Chen, Jian-Feng; Dai, Liming

    2015-05-01

    Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems.Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01734c

  7. Increased Mutagen Sensitivity and DNA Damage in Pulmonary Arterial Hypertension

    Science.gov (United States)

    Federici, Chiara; Drake, Kylie M.; Rigelsky, Christina M.; McNelly, Lauren N.; Meade, Sirena L.; Comhair, Suzy A. A.; Erzurum, Serpil C.

    2015-01-01

    Rationale: Pulmonary arterial hypertension (PAH) is a serious lung condition characterized by vascular remodeling in the precapillary pulmonary arterioles. We and others have demonstrated chromosomal abnormalities and increased DNA damage in PAH lung vascular cells, but their timing and role in disease pathogenesis is unknown. Objectives: We hypothesized that if DNA damage predates PAH, it might be an intrinsic cell property that is present outside the diseased lung. Methods: We measured DNA damage, mutagen sensitivity, and reactive oxygen species (ROS) in lung and blood cells from patients with Group 1 PAH, their relatives, and unrelated control subjects. Measurements and Main Results: Baseline DNA damage was significantly elevated in PAH, both in pulmonary artery endothelial cells (P < 0.05) and peripheral blood mononuclear cells (PBMC) (P < 0.001). Remarkably, PBMC from unaffected relatives showed similar increases, indicating this is not related to PAH treatments. ROS levels were also higher (P < 0.01). DNA damage correlated with ROS production and was suppressed by antioxidants (P < 0.001). PBMC from patients and relatives also showed markedly increased sensitivity to two chemotherapeutic drugs, bleomycin and etoposide (P < 0.001). Results were consistent across idiopathic, heritable, and associated PAH groups. Conclusions: Levels of baseline and mutagen-induced DNA damage are intrinsically higher in PAH cells. Similar results in PBMC from unaffected relatives suggest this may be a genetically determined trait that predates disease onset and may act as a risk factor contributing to lung vascular remodeling following endothelial cell injury. Further studies are required to fully characterize mutagen sensitivity, which could have important implications for clinical management. PMID:25918951

  8. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles.

    Science.gov (United States)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza; Ahmadi, Abbas; Baeeri, Maryam; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential.

  9. Aging and oxidatively damaged nuclear DNA in animal organs

    DEFF Research Database (Denmark)

    Møller, Peter; Løhr, Mille; Folkmann, Janne K

    2010-01-01

    Oxidative stress is considered to contribute to aging and is associated with the generation of oxidatively damaged DNA, including 8-oxo-7,8-dihydroguanine. We have identified 69 studies that have measured the level of oxidatively damaged DNA in organs of animals at various ages. In general, organs.......03-1.95). There was no difference between age span, number of tested organs, statistical power, sex, strain, or breeding between the studies showing positive and null effects. Citation and publication bias seems to be a problem in the overall dataset, whereas it is less pronounced in the restricted dataset. There is compelling...

  10. Mechanisms and Components of the DNA Damage Checkpoint

    Science.gov (United States)

    2002-09-01

    Saccharomyces cerevisiae DNA damage checkpoint. Molecular Cell 9: 1055-1065. (reprint included as Appendix 2) "* Schwartz, M.F., Duong, J.K., Sun, Z., Pradhan...phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Molecular Cell 9, 1055-1065. 13 Molecular Cell , Vol. 9,1055-1065...Cambridge, Massachusetts 02139. 1999), and mutation of conserved amino acids in the Molecular Cell 1056 A Rad9 B ,•o 0, 1 sitesN NC -T6 RVTQSA o- 0~ --T240

  11. Nuclear DNA damage signalling to mitochondria in ageing.

    Science.gov (United States)

    Fang, Evandro Fei; Scheibye-Knudsen, Morten; Chua, Katrin F; Mattson, Mark P; Croteau, Deborah L; Bohr, Vilhelm A

    2016-05-01

    Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.

  12. DNA damage response in nephrotoxic and ischemic kidney injury.

    Science.gov (United States)

    Yan, Mingjuan; Tang, Chengyuan; Ma, Zhengwei; Huang, Shuang; Dong, Zheng

    2016-10-27

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.

  13. Biomarkers of oxidative damage to DNA and repair

    DEFF Research Database (Denmark)

    Loft, Steffen; Høgh Danielsen, Pernille; Mikkelsen, Lone;

    2008-01-01

    , which is less likely to occur with methods such as the comet assay, which are based on nicking of the DNA strand at modified bases, but offer less specificity. The European Standards Committee on Oxidative DNA Damage has concluded that the true levels of the most widely studied lesion, 8-oxodG (8-oxo-7......,8-dihydro-2'-deoxyguanosine), in cellular DNA is between 0.5 and 5 lesions per 10(6) dG bases. Base excision repair of oxidative damage to DNA can be assessed by nicking assays based on oligonucleotides with lesions or the comet assay, by mRNA expression levels or, in the case of, e.g., OGG1 (8-oxoguanine...

  14. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    Energy Technology Data Exchange (ETDEWEB)

    Dusinska, Maria, E-mail: Maria.DUSINSKA@nilu.no [CEE-Health Effects Group, NILU - Norwegian Institute for Air Research, Kjeller (Norway); Staruchova, Marta; Horska, Alexandra [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia); Smolkova, Bozena [Laboratory of Cancer Genetics, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava (Slovakia); Collins, Andrew [Department of Nutrition, Faculty of Medicine, University of Oslo (Norway); Bonassi, Stefano [Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome (Italy); Volkovova, Katarina [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia)

    2012-08-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  15. Idelalisib and bendamustine combination is synergistic and increases DNA damage response in chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Modi, Prexy; Balakrishnan, Kumudha; Yang, Qingshan; Wierda, William G; Keating, Michael J; Gandhi, Varsha

    2017-02-07

    Idelalisib is a targeted agent that potently inhibits PI3Kδ which is exclusively expressed in hematological cells. Bendamustine is a well-tolerated cytotoxic alkylating agent which has been extensively used for treatment of chronic lymphocytic leukemia (CLL). Both these agents are FDA-approved for CLL. To increase the potency of idelalisib and bendamustine, we tested their combination in primary CLL lymphocytes. While each compound alone produced a moderate response, combination at several concentrations resulted in synergistic cytotoxicity. Idelalisib enhanced the bendamustine-mediated DNA damage/repair response, indicated by the phosphorylation of ATM, Chk2, and p53. Each drug alone activated γH2AX but combination treatment further increased the expression of this DNA damage marker. Compared with the control, idelalisib treatment decreased global RNA synthesis, resulting in a decline of early-response and short-lived MCL1 transcripts. In concert, there was a decline in total Mcl-1 protein in CLL lymphocytes. Isogenic mouse embryonic fibroblasts lacking MCL1 had higher sensitivity to bendamustine alone or in combination compared to MCL1 proficient cells. Collectively, these data indicate that bendamustine and idelalisib combination therapy should be investigated for treating patients with CLL.

  16. DNA damage mediated transcription arrest: Step back to go forward.

    Science.gov (United States)

    Mullenders, Leon

    2015-12-01

    The disturbance of DNA helix conformation by bulky DNA damage poses hindrance to transcription elongating due to stalling of RNA polymerase at transcription blocking lesions. Stalling of RNA polymerase provokes the formation of R-loops, i.e. the formation of a DNA-RNA hybrid and a displaced single stranded DNA strand as well as displacement of spliceosomes. R-loops are processed into DNA single and double strand breaks by NER factors depending on TC-NER factors leading to genome instability. Moreover, stalling of RNA polymerase induces a strong signal for cell cycle arrest and apoptosis. These toxic and mutagenic effects are counteracted by a rapid recruitment of DNA repair proteins to perform transcription coupled nucleotide excision repair (TC-NER) to remove the blocking DNA lesions and to restore transcription. Recent studies have highlighted the role of backtracking of RNA polymerase to facilitate TC-NER and identified novel factors that play key roles in TC-NER and in restoration of transcription. On the molecular level these factors facilitate stability of the repair complex by promotion and regulation of various post-translational modifications of NER factors and chromatin substrate. In addition, the continuous flow of new factors that emerge from screening assays hints to several regulatory levels to safeguard the integrity of transcription elongation after disturbance by DNA damage that have yet to be explored.

  17. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-10-01

    Full Text Available Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer.

  18. No ancient DNA damage in Actinobacteria from the Neanderthal bone.

    Directory of Open Access Journals (Sweden)

    Katarzyna Zaremba-Niedźwiedzka

    Full Text Available BACKGROUND: The Neanderthal genome was recently sequenced using DNA extracted from a 38,000-year-old fossil. At the start of the project, the fraction of mammalian and bacterial DNA in the sample was estimated to be <6% and 9%, respectively. Treatment with restriction enzymes prior to sequencing increased the relative proportion of mammalian DNA to 15%, but the large majority of sequences remain uncharacterized. PRINCIPAL FINDINGS: Our taxonomic profiling of 3.95 Gb of Neanderthal DNA isolated from the Vindija Neanderthal Vi33.16 fossil showed that 90% of about 50,000 rRNA gene sequence reads were of bacterial origin, of which Actinobacteria accounted for more than 75%. Actinobacteria also represented more than 80% of the PCR-amplified 16S rRNA gene sequences from a cave sediment sample taken from the same G layer as the Neanderthal bone. However, phylogenetic analyses did not identify any sediment clones that were closely related to the bone-derived sequences. We analysed the patterns of nucleotide differences in the individual sequence reads compared to the assembled consensus sequences of the rRNA gene sequences. The typical ancient nucleotide substitution pattern with a majority of C to T changes indicative of DNA damage was observed for the Neanderthal rRNA gene sequences, but not for the Streptomyces-like rRNA gene sequences. CONCLUSIONS/SIGNIFICANCE: Our analyses suggest that the Actinobacteria, and especially members of the Streptomycetales, contribute the majority of sequences in the DNA extracted from the Neanderthal fossil Vi33.16. The bacterial DNA showed no signs of damage, and we hypothesize that it was derived from bacteria that have been enriched inside the bone. The bioinformatic approach used here paves the way for future studies of microbial compositions and patterns of DNA damage in bacteria from archaeological bones. Such studies can help identify targeted measures to increase the relative amount of endogenous DNA in the

  19. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    Science.gov (United States)

    Fekete, A.; Kovács, G.; Hegedüs, M.; Módos, K.; Rontó, Gy.; Lammer, H.; Panitz, C.

    The experiment ``Phage and uracil response'' (PUR) will be accommodated in the EXPOSE facility of the ISS aiming to examine and quantify the effect of specific space conditions on bacteriophage T7 and isolated T7 DNA thin films. To achieve this new method was elaborated for the preparation of DNA and nucleoprotein thin films (1). During the EXPOSE Experiment Verification Tests (EVT) the samples were exposed to vacuum (10 -6 Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated, and we also studied the effect of temperature in vacuum as well as the influence of temperature fluctuations. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, DNA-DNA cross-links) accumulate throughout exposure. DNA damage was determined by quantitative PCR using 555 bp and 3826 bp fragments of T7 DNA (2) and by neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of the PCR products have been detected indicating the damage of isolated and intraphage DNA. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target. Fekete et al. J. Luminescence 102-103, 469-475, 2003 Hegedüs et al. Photochem. Photobiol. 78, 213-219, 2003

  20. Roles of histone ubiquitylation in DNA damage signaling

    Institute of Scientific and Technical Information of China (English)

    Sui-Sui DONG; Michael S. Y. HUEN

    2011-01-01

    Histone ubiquitylation has emerged as an important chromatin modification associated with DNA damage signaling and repair pathways.These histone marks,laid down by E3 ubiquitin ligases that include RNF8 and RNF168,decorate chromatin domains surrounding DNA double-strand breaks (DSBs).Recent work implicated ubiquitylated histones in orchestrating cell cycle checkpoints,DNA repair and gene transcription.Here we summarize recent advances that contribute to our current knowledge of the highly dynamic nature of DSB-associated histone ubiquitylation,and discuss major challenges ahead in understanding the versatility of ubiquitin conjugation in maintaining genome stability.

  1. DNA damage by carbonyl stress in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L

    2003-01-28

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the {alpha}-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N{sup {epsilon}}-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.

  2. Monoclonal antibody-based, selective isolation of DNA fragments containing an alkylated base to be quantified in defined gene sequences.

    Science.gov (United States)

    Hochleitner, K; Thomale, J; Nikitin AYu; Rajewsky, M F

    1991-08-25

    We have established a sensitive, monoclonal antibody (Mab)-based procedure permitting the selective enrichment of sequences containing the miscoding alkylation product O6-ethylguanine (O6-EtGua) from mammalian DNA. H5 rat hepatoma cells were reacted with the N-nitroso carcinogen N-ethyl-N-nitrosourea in vitro, to give overall levels of greater than or equal to 25 O6-EtGua residues per diploid genome (corresponding to O6-EtGua/guanine molar ratios of greater than or equal to 10(-8). For analysis, enzymatically restricted DNA from these cells is incubated with an antibody specific for O6-ethyl-2'-deoxyguanosine, the resulting Mab-DNA complexes are separated from (O6-EtGua)-free fragments by filtration through a nitrocellulose (NC) membrane, and the DNA is recovered from the filter-bound complexes quantitatively. The efficiency of Mab binding to DNA fragments containing O6-EtGua is constant over a range of O6-EtGua/guanine molar ratios between 10(-5) and 10(-8). (O6-EtGua)-containing restriction fragments encompassing known gene sequences (e.g., the immunoglobulin E heavy chain gene of H5 rat hepatoma cells used as a model in this study) are subsequently amplified by PCR and quantified by slot-blot hybridisation. The content and distribution of a specific carcinogen-DNA adduct in defined sequences of genomic DNA can thus be analyzed as well as the kinetics of intragenomic (toposelective) repair of any DNA lesion for which a suitable Mab is available.

  3. Viruses and the DNA Damage Response: Activation and Antagonism.

    Science.gov (United States)

    Luftig, Micah A

    2014-11-01

    Viruses must interact with their hosts in order to replicate; these interactions often provoke the evolutionarily conserved response to DNA damage, known as the DNA damage response (DDR). The DDR can be activated by incoming viral DNA, during the integration of retroviruses, or in response to the aberrant DNA structures generated upon replication of DNA viruses. Furthermore, DNA and RNA viral proteins can induce the DDR by promoting inappropriate S phase entry, by modifying cellular DDR factors directly, or by unintentionally targeting host DNA. The DDR may be antiviral, although viruses often require proximal DDR activation of repair and recombination factors to facilitate replication as well as downstream DDR signaling suppression to ensure cell survival. An unintended consequence of DDR attenuation during infection is the long-term survival and proliferation of precancerous cells. Therefore, the molecular basis for DDR activation and attenuation by viruses remains an important area of study that will likely provide key insights into how viruses have evolved with their hosts.

  4. Mechanism study of goldenseal-associated DNA damage.

    Science.gov (United States)

    Chen, Si; Wan, Liqing; Couch, Letha; Lin, Haixia; Li, Yan; Dobrovolsky, Vasily N; Mei, Nan; Guo, Lei

    2013-07-31

    Goldenseal has been used for the treatment of a wide variety of ailments including gastrointestinal disturbances, urinary tract disorders, and inflammation. The five major alkaloid constituents in goldenseal are berberine, palmatine, hydrastine, hydrastinine, and canadine. When goldenseal was evaluated by the National Toxicology Program (NTP) in the standard 2-year bioassay, goldenseal induced an increase in liver tumors in rats and mice; however, the mechanism of goldenseal-associated liver carcinogenicity remains unknown. In this study, the toxicity of the five goldenseal alkaloid constituents was characterized, and their toxic potencies were compared. As measured by the Comet assay and the expression of γ-H2A.X, berberine, followed by palmatine, appeared to be the most potent DNA damage inducer in human hepatoma HepG2 cells. Berberine and palmatine suppressed the activities of both topoisomerase (Topo) I and II. In berberine-treated cells, DNA damage was shown to be directly associated with the inhibitory effect of Topo II, but not Topo I by silencing gene of Topo I or Topo II. In addition, DNA damage was also observed when cells were treated with commercially available goldenseal extracts and the extent of DNA damage was positively correlated to the berberine content. Our findings suggest that the Topo II inhibitory effect may contribute to berberine- and goldenseal-induced genotoxicity and tumorigenicity.

  5. UV Radiation Damage and Bacterial DNA Repair Systems

    Science.gov (United States)

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  6. DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR

    Science.gov (United States)

    A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...

  7. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  8. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  9. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model

    Energy Technology Data Exchange (ETDEWEB)

    Heravi, Mitra [Department of Human Genetics, McGill University, Montreal (Canada); Department of Radiation Oncology, McGill University, Montreal (Canada); Segal Cancer Center, Jewish General Hospital, Montreal (Canada); Kumala, Slawomir [Department of Radiation Oncology, McGill University, Montreal (Canada); Segal Cancer Center, Jewish General Hospital, Montreal (Canada); Rachid, Zakaria; Jean-Claude, Bertrand J. [Cancer Drug Research Laboratory, McGill University Health Center, Montreal (Canada); Radzioch, Danuta [Department of Human Genetics, McGill University, Montreal (Canada); Muanza, Thierry M., E-mail: tmuanza@yahoo.com [Department of Radiation Oncology, McGill University, Montreal (Canada); Segal Cancer Center, Jewish General Hospital, Montreal (Canada)

    2015-06-01

    Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Western blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.

  10. Systemic oxidatively generated DNA/RNA damage in clinical depression

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Krogh, Jesper; Miskowiak, Kamilla;

    2013-01-01

    , such as dementia and type 2 diabetes. We hypothesized that increased severity of depression is associated with increased systemic oxidatively generated DNA and RNA damage, and that this increase is attenuated by an effective antidepressant treatment. METHODS: The urinary excretion of markers of systemic......BACKGROUND: Depression has been associated with increased oxidative stress and hypothesized to accelerate aging. Nucleic acid damage from oxidation is a critical part of the aging process, and a suggested early event in age-related somatic morbidities that are also prevalent in depression...... oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, were determined in healthy controls (N=28), moderately depressed, non-medicated patients (N=26) and severely depressed patients eligible for electroconvulsive therapy...

  11. Radiation damage to DNA: The importance of track structure

    CERN Document Server

    Hill, M A

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that...

  12. DNA damage by reactive species: Mechanisms, mutation and repair.

    Science.gov (United States)

    Jena, N R

    2012-07-01

    DNA is continuously attacked by reactive species that can affect its structure and function severely. Structural modifications to DNA mainly arise from modifications in its bases that primarily occur due to their exposure to different reactive species. Apart from this, DNA strand break, inter- and intra-strand crosslinks and DNA-protein crosslinks can also affect the structure of DNA significantly. These structural modifications are involved in mutation, cancer and many other diseases. As it has the least oxidation potential among all the DNA bases, guanine is frequently attacked by reactive species, producing a plethora of lethal lesions. Fortunately, living cells are evolved with intelligent enzymes that continuously protect DNA from such damages. This review provides an overview of different guanine lesions formed due to reactions of guanine with different reactive species. Involvement of these lesions in inter- and intra-strand crosslinks, DNA-protein crosslinks and mutagenesis are discussed. How certain enzymes recognize and repair different guanine lesions in DNA are also presented.

  13. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...... age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8......-oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased...

  14. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage

    DEFF Research Database (Denmark)

    Hendriks, Ivo A; Treffers, Louise W; Verlaan-de Vries, Matty

    2015-01-01

    with the DNA damaging agent methyl methanesulfonate (MMS). We have uncovered a dynamic set of 20 upregulated and 33 downregulated SUMO-2 conjugates, and 755 SUMO-2 sites, of which 362 were dynamic in response to MMS. In contrast to yeast, where a response is centered on homologous recombination, we identified......Small ubiquitin-like modifiers play critical roles in the DNA damage response (DDR). To increase our understanding of SUMOylation in the mammalian DDR, we employed a quantitative proteomics approach in order to identify dynamically regulated SUMO-2 conjugates and modification sites upon treatment...... dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO...

  15. Human longevity and variation in DNA damage response and repair

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike

    2014-01-01

    others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning......DNA-damage response and repair are crucial to maintain genetic stability, and are consequently considered central to aging and longevity. Here, we investigate whether this pathway overall associates to longevity, and whether specific sub-processes are more strongly associated with longevity than...... and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10-5), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using...

  16. DNA damage, repair and photoadaptation in a Xiphophorus fish hybrid.

    Science.gov (United States)

    Mitchell, David L; Paniker, Lakshmi; Douki, Thierry

    2009-01-01

    Exposure to sunlight is responsible for most cutaneous malignant melanomas in the human population. It is very likely that DNA damage is an initial event in melanomagenesis, however, the role played by this damage is an open question. To this end, we used a hemipigmented F(1) hybrid of the fish genus Xiphophorus and HPLC tandem mass spectrometry to examine the effects of melanin on the induction and repair of the predominant UV-induced photoproducts formed in skin cell DNA. We found that heavily pigmented skin cells had about half the damage of nonpigmented cells and the relative induction of the major photoproducts was independent of the degree of pigmentation. The efficiency of photoenzymatic repair was the same in nonpigmented and pigmented areas of the fish. We found no evidence of residual damage at 10 days after the last exposure. Most striking was that repeated exposure to multiple doses of UVB caused a very significant photoadaptive response. Rather than an accumulation of damage after five doses of UVB we saw a significant reduction in the amount of damage induced after the final dose compared with the initial dose. The relevance of these observations is discussed in the context of melanoma susceptibility and UVB thresholds.

  17. DNA Damage: A Main Determinant of Vascular Aging.

    Science.gov (United States)

    Bautista-Niño, Paula K; Portilla-Fernandez, Eliana; Vaughan, Douglas E; Danser, A H Jan; Roks, Anton J M

    2016-05-18

    Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (c

  18. DNA Damage: A Main Determinant of Vascular Aging

    Directory of Open Access Journals (Sweden)

    Paula K. Bautista-Niño

    2016-05-01

    Full Text Available Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial, of cellular changes (apoptosis, senescence, autophagy, mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1, cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP/senescence-messaging secretome (SMS, insulin and insulin-like growth factor 1 (IGF-1 signaling, the adenosine monophosphate-activated protein kinase (AMPK-mammalian target of rapamycin (mTOR-nuclear factor kappa B (NFκB axis, reactive oxygen species (ROS vs. endothelial nitric oxide synthase (eNOS-cyclic guanosine monophosphate

  19. Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair

    Directory of Open Access Journals (Sweden)

    Devita Surjana

    2010-01-01

    Full Text Available Nicotinamide is a water-soluble amide form of niacin (nicotinic acid or vitamin B3. Both niacin and nicotinamide are widely available in plant and animal foods, and niacin can also be endogenously synthesized in the liver from dietary tryptophan. Nicotinamide is also commercially available in vitamin supplements and in a range of cosmetic, hair, and skin preparations. Nicotinamide is the primary precursor of nicotinamide adenine dinucleotide (NAD+, an essential coenzyme in ATP production and the sole substrate of the nuclear enzyme poly-ADP-ribose polymerase-1 (PARP-1. Numerous in vitro and in vivo studies have clearly shown that PARP-1 and NAD+ status influence cellular responses to genotoxicity which can lead to mutagenesis and cancer formation. This paper will examine the role of nicotinamide in the protection from carcinogenesis, DNA repair, and maintenance of genomic stability.

  20. Mechanisms and clinical correlates of sperm DNA damage

    Institute of Scientific and Technical Information of China (English)

    Lara Tamburrino; Sara Marchiani; Margarita Montoya; Francesco Elia Marino; Ilaria Natali; Marta Cambi; Gianni Forti; Elisabetta Baldi; Monica Muratori

    2012-01-01

    Among the different DNA anomalies that can be present in the male gamete,DNA fragmentation is the most frequent,particularly in infertile subjects.There is now consistent evidence that a sperm containing fragmented DNA can be alive,motile,morphologically normal and able to fertilize an oocyte.There is also evidence that the oocyte is able to repair DNA damage; however,the extent of this repair depends on the type of DNA damage present in the sperm,as well as on the quality of the oocyte.Thus,it is important to understand the possible consequences of sperm DNA fragmentation (SDF) for embryo development,implantation,pregnancy outcome and the health of progeny conceived,both naturally and by assisted reproductive technology (ART).At present,data on the consequences of SDF for reproduction are scarce and,in many ways,inconsistent.The differences in study conclusions might result from the different methods used to detect SDF,the study design and the inclusion criteria.Consequently,it is difficult to decide whether SDF testing should be carried out in fertility assessment and ART.It is clear that there is an urgent need for the standardisation of the methods and for additional clinical studies on the impact of SDF on ART outcomes.

  1. Measurement of oxidatively generated base damage in cellular DNA.

    Science.gov (United States)

    Cadet, Jean; Douki, Thierry; Ravanat, Jean-Luc

    2011-06-03

    This survey focuses on the critical evaluation of the main methods that are currently available for monitoring single and complex oxidatively generated damage to cellular DNA. Among chromatographic methods, HPLC-ESI-MS/MS and to a lesser extent HPLC-ECD which is restricted to a few electroactive nucleobases and nucleosides are appropriate for measuring the formation of single and clustered DNA lesions. Such methods that require optimized protocols for DNA extraction and digestion are sensitive enough for measuring base lesions formed under conditions of severe oxidative stress including exposure to ionizing radiation, UVA light and high intensity UVC laser pulses. In contrast application of GC-MS and HPLC-MS methods that are subject to major drawbacks have been shown to lead to overestimated values of DNA damage. Enzymatic methods that are based on the use of DNA repair glycosylases in order to convert oxidized bases into strand breaks are suitable, even if they are far less specific than HPLC methods, to deal with low levels of single modifications. Several other methods including immunoassays and (32)P-postlabeling methods that are still used suffer from drawbacks and therefore are not recommended. Another difficult topic is the measurement of oxidatively generated clustered DNA lesions that is currently achieved using enzymatic approaches and that would necessitate further investigations.

  2. Measurement of oxidatively generated base damage in cellular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Cadet, Jean, E-mail: jean.cadet@cea.fr [Laboratoire ' Lesions des Acides Nucleiques' , SCIB-UMR-E no3 (CEA/UJF), FRE CNRS 3200, Departement de Recherche Fondamentale sur la Matiere Condensee, CEA/Grenoble, F-38054 Grenoble Cedex 9 (France); Douki, Thierry; Ravanat, Jean-Luc [Laboratoire ' Lesions des Acides Nucleiques' , SCIB-UMR-E no3 (CEA/UJF), FRE CNRS 3200, Departement de Recherche Fondamentale sur la Matiere Condensee, CEA/Grenoble, F-38054 Grenoble Cedex 9 (France)

    2011-06-03

    This survey focuses on the critical evaluation of the main methods that are currently available for monitoring single and complex oxidatively generated damage to cellular DNA. Among chromatographic methods, HPLC-ESI-MS/MS and to a lesser extent HPLC-ECD which is restricted to a few electroactive nucleobases and nucleosides are appropriate for measuring the formation of single and clustered DNA lesions. Such methods that require optimized protocols for DNA extraction and digestion are sensitive enough for measuring base lesions formed under conditions of severe oxidative stress including exposure to ionizing radiation, UVA light and high intensity UVC laser pulses. In contrast application of GC-MS and HPLC-MS methods that are subject to major drawbacks have been shown to lead to overestimated values of DNA damage. Enzymatic methods that are based on the use of DNA repair glycosylases in order to convert oxidized bases into strand breaks are suitable, even if they are far less specific than HPLC methods, to deal with low levels of single modifications. Several other methods including immunoassays and {sup 32}P-postlabeling methods that are still used suffer from drawbacks and therefore are not recommended. Another difficult topic is the measurement of oxidatively generated clustered DNA lesions that is currently achieved using enzymatic approaches and that would necessitate further investigations.

  3. Endogenous melatonin and oxidatively damaged guanine in DNA

    Directory of Open Access Journals (Sweden)

    Poulsen Henrik E

    2009-10-01

    Full Text Available Abstract Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s families (n = 55 were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight. Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR was associated with significantly higher levels of 8-oxodG (p Conclusion Low levels of endogenous melatonin production among older individuals may lead to

  4. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    OpenAIRE

    Vives, Sergi; Gilbert, Thomas; Arenas, Conchita; Gigli, Elena, 1978-; Lao Grueso, Oscar; Lalueza-Fox, Carles

    2008-01-01

    textabstractBackground. We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA) hypervariable region 1 (HVS1). The analysis was restricted to C → T and G → A miscoding lesions (the predominant manifestation of post mortem damage) that are seen at a frequency of more than one clone among sequences from a single PCR, but do not r...

  5. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage

    Directory of Open Access Journals (Sweden)

    Robert L. Eoff

    2010-01-01

    Full Text Available DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.

  6. Chromatin compaction protects genomic DNA from radiation damage.

    Directory of Open Access Journals (Sweden)

    Hideaki Takata

    Full Text Available Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs in compact chromatin after ionizing irradiation was 5-50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.

  7. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation......Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  8. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA).

    Science.gov (United States)

    Fayzullina, Saniya; Martin, Lee J

    2014-01-01

    Spinal Muscular Atrophy (SMA) is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0) exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT)-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.

  9. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA.

    Directory of Open Access Journals (Sweden)

    Saniya Fayzullina

    Full Text Available Spinal Muscular Atrophy (SMA is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0 exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.

  10. Reduction in oxidatively generated DNA damage following smoking cessation

    Directory of Open Access Journals (Sweden)

    Freund Harold G

    2011-05-01

    Full Text Available Abstract Background Cigarette smoking is a known cause of cancer, and cancer may be in part due to effects of oxidative stress. However, whether smoking cessation reverses oxidatively induced DNA damage unclear. The current study sought to examine the extent to which three DNA lesions showed significant reductions after participants quit smoking. Methods Participants (n = 19 in this study were recruited from an ongoing 16-week smoking cessation clinical trial and provided blood samples from which leukocyte DNA was extracted and assessed for 3 DNA lesions (thymine glycol modification [d(TgpA]; formamide breakdown of pyrimidine bases [d(TgpA]; 8-oxo-7,8-dihydroguanine [d(Gh] via liquid chromatography tandem mass spectrometry (LC-MS/MS. Change in lesions over time was assessed using generalized estimating equations, controlling for gender, age, and treatment condition. Results Overall time effects for the d(TgpA (χ2(3 = 8.068, p fpA (χ2(3 = 8.477, p h (χ2(3 = 37.599, p gpA and d(PfpA lesions show relatively greater rebound at Week 16 compared to the d(Gh lesion (88% of baseline for d(TgpA, 64% of baseline for d(PfpA, vs 46% of baseline for d(Gh. Conclusions Overall, results from this analysis suggest that cigarette smoking contributes to oxidatively induced DNA damage, and that smoking cessation appears to reduce levels of specific damage markers between 30-50 percent in the short term. Future research may shed light on the broader array of oxidative damage influenced by smoking and over longer durations of abstinence, to provide further insights into mechanisms underlying carcinogenesis.

  11. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    DEFF Research Database (Denmark)

    Vives, Sergi; Gilbert, M Thomas; Arenas, Conchita

    2008-01-01

    ABSTRACT: BACKGROUND: We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA) hypervariable region 1 (HVS1). The analysis...... was restricted to C-->T and G-->A miscoding lesions (the predominant manifestation of post mortem damage) that are seen at a frequency of more than one clone among sequences from a single PCR, but do not represent the true endogenous sequence. FINDINGS: The data indicates an extreme bias towards C-->T over G......-->A miscoding lesions (observed ratio of 67:2 compared to an expected ratio of 7:2), implying that the mtDNA Light strand molecule suffers proportionally more damage-derived miscoding lesions than the Heavy strand. CONCLUSION: The clustering of Cs in the Light strand as opposed to the singleton pattern of Cs...

  12. X-Ray induced DNA damage – why use plants?

    Directory of Open Access Journals (Sweden)

    John William Einset

    2015-06-01

    Full Text Available The comet assay was used to monitor DNA repair after X-ray exposures caused by 0.2-15 Gy. A clear distinction in the time course of DNA repair after 2 Gy was observed with an early ‘rapid phase’, lasting 20-40 minutes, being followed by a ‘slow phase’ which actually consists of a period of negligible repair and then rapid repair during 140-160 minutes. The fact that homozygous mutants for both ATM and BRCA1 fail to repair DNA completely during 3 hours after 2 Gy exposures indicates that repair processes occurring during the ‘slow phase’ involve ds breaks in DNA. Both BRCA1 and Rad51 expression are strongly upregulated by X-rays in Arabidopsis. Rye grass, Norway spruce and Sawara cypress also have ‘slow phase’ repair similar to Arabidopsis, suggesting that the requisite enzymes have to be induced in these plants as well. To look at the effect of genome size in relation to sensitivity to DNA damage, we exposed isolated nuclei from Norway spruce (19.2 Gbp genome, celery (14.1 Gbp, spinach (12.6 Gbp Sawara cypress (8.9 Gbp, lettuce (2.6 Gbp and Arabidopsis (0.135 Gbp to X-rays. After a 1 Gy exposure, a linear relationship was seen between % tails and genome size, confirming the idea that larger genomes are more sensitive to X-ray damage.

  13. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    Institute of Scientific and Technical Information of China (English)

    Ramaraj Thirugnanasampandan; Rajarajeswaran Jayakumar

    2011-01-01

    Objective: To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods: The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results: Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions: The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage.

  14. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette;

    2005-01-01

    the morning after exposure measurement. Cumulated outdoor and cumulated indoor exposures to UFPs each were independent significant predictors of the level of purine oxidation in DNA but not of strand breaks. Ambient air concentrations of particulate matter with an aerodynamic diameter of ...10), nitrous oxide, nitrogen dioxide, carbon monoxide, and/or number concentration of UFPs at urban background or busy street monitoring stations was not a significant predictor of DNA damage, although personal UFP exposure was correlated with urban background concentrations of CO and NO2...

  15. Decreased repair of gamma damaged DNA in progeria

    Energy Technology Data Exchange (ETDEWEB)

    Rainbow, A.J.; Howes, M.

    1977-01-01

    A sensitive host-cell reactivation technique was used to examine the DNA repair ability of fibroblasts from two patients with classical progeria. Fibroblasts were infected with either non-irradiated or gamma-irradiated adenovirus type 2 and at 48 hrs after infection cells were examined for the presence of viral structural antigens using immunofluorescent staining. The production of viral structural antigens was considerably reduced in the progeria lines as compared to normal fibroblasts when gamma-irradiated virus was used, indicating a defect in the repair of gamma ray damaged DNA in the progeria cells.

  16. Preservation of ancient DNA in thermally damaged archaeological bone

    Science.gov (United States)

    Ottoni, Claudio; Koon, Hannah E. C.; Collins, Matthew J.; Penkman, Kirsty E. H.; Rickards, Olga; Craig, Oliver E.

    2009-02-01

    Evolutionary biologists are increasingly relying on ancient DNA from archaeological animal bones to study processes such as domestication and population dispersals. As many animal bones found on archaeological sites are likely to have been cooked, the potential for DNA preservation must be carefully considered to maximise the chance of amplification success. Here, we assess the preservation of mitochondrial DNA in a medieval cattle bone assemblage from Coppergate, York, UK. These bones have variable degrees of thermal alterations to bone collagen fibrils, indicative of cooking. Our results show that DNA preservation is not reliant on the presence of intact collagen fibrils. In fact, a greater number of template molecules could be extracted from bones with damaged collagen. We conclude that moderate heating of bone may enhance the retention of DNA fragments. Our results also indicate that ancient DNA preservation is highly variable, even within a relatively recent assemblage from contexts conducive to organic preservation, and that diagenetic parameters based on protein diagenesis are not always useful for predicting ancient DNA survival.

  17. DNA damage by reactive species: Mechanisms, mutation and repair

    Indian Academy of Sciences (India)

    N R Jena

    2012-07-01

    DNA is continuously attacked by reactive species that can affect its structure and function severely. Structural modifications to DNA mainly arise from modifications in its bases that primarily occur due to their exposure to different reactive species. Apart from this, DNA strand break, inter- and intra-strand crosslinks and DNA–protein crosslinks can also affect the structure of DNA significantly. These structural modifications are involved in mutation, cancer and many other diseases. As it has the least oxidation potential among all the DNA bases, guanine is frequently attacked by reactive species, producing a plethora of lethal lesions. Fortunately, living cells are evolved with intelligent enzymes that continuously protect DNA from such damages. This review provides an overview of different guanine lesions formed due to reactions of guanine with different reactive species. Involvement of these lesions in inter- and intra-strand crosslinks, DNA–protein crosslinks and mutagenesis are discussed. How certain enzymes recognize and repair different guanine lesions in DNA are also presented.

  18. Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM.

    Science.gov (United States)

    Zhou, Yi; Lee, Ji-Hoon; Jiang, Wenxia; Crowe, Jennie L; Zha, Shan; Paull, Tanya T

    2017-01-05

    Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice.

  19. The alkaline single cell electrophoresis assay with eight mouse organs: results with 22 mono-functional alkylating agents (including 9 dialkyl N-nitrosoamines) and 10 DNA crosslinkers.

    Science.gov (United States)

    Tsuda, S; Matsusaka, N; Madarame, H; Miyamae, Y; Ishida, K; Satoh, M; Sekihashi, K; Sasaki, Y F

    2000-04-13

    The genotoxicity of 22 mono-functional alkylating agents (including 9 dialkyl N-nitrosoamines) and 10 DNA crosslinkers selected from IARC (International Agency for Research on Cancer) groups 1, 2A, and 2B was evaluated in eight mouse organs with the alkaline single cell gel electrophoresis (SCGE) (comet) assay. Groups of four mice were treated once intraperitoneally at the dose at which micronucleus tests had been conducted, and the stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow were sampled 3, 8, and/or 24 h later. All chemicals were positive in the SCGE assay in at least one organ. Of the 22 mono-functional alkylating agents, over 50% were positive in all organs except the brain and bone marrow. The two subsets of mono-functional alkylating agents differed in their bone marrow genotoxicity: only 1 of the 9 dialkyl N-nitrosoamines was positive in bone marrow as opposed to 8 of the 13 other alkylating agents, reflecting the fact that dialkyl N-nitrosoamines are poor micronucleus inducers in hematopoietic cells. The two groups of mono-functional alkylating agents also differ in hepatic carcinogenicity in spite of the fact that they are similar in hepatic genotoxicity. While dialkyl N-nitrosoamines produce tumors primarily in mouse liver, only one (styrene-7,8-oxide) out of 10 of the other type of mono-functional alkylating agents is a mouse hepatic carcinogen. Taking into consideration our previous results showing high concordance between hepatic genotoxicity and carcinogenicity for aromatic amines and azo compounds, a possible explanation for the discrepancy might be that chemicals that require metabolic activation show high concordance between genotoxicity and carcinogenicity in the liver. A high percent of the 10 DNA crosslinkers were positive in the SCGE assay in the gastrointestinal mucosa, but less than 50% were positive in the liver and lung. In this study, we allowed 10 min alkali-unwinding to obtain low and stable control values

  20. Pyrosequencing: applicability for studying DNA damage-induced mutagenesis.

    Science.gov (United States)

    Minko, Irina G; Earley, Lauriel F; Larlee, Kimberly E; Lin, Ying-Chih; Lloyd, R Stephen

    2014-10-01

    Site-specifically modified DNAs are routinely used in the study of DNA damage-induced mutagenesis. These analyses involve the creation of DNA vectors containing a lesion at a pre-determined position, DNA replication, and detection of mutations at the target site. The final step has previously required the isolation of individual DNA clones, hybridization with radioactively labeled probes, and verification of mutations by Sanger sequencing. In the search for an alternative procedure that would allow direct quantification of sequence variants in a mixed population of DNA molecules, we evaluated the applicability of pyrosequencing to site-specific mutagenesis assays. The progeny DNAs were analyzed that originated from replication of N(6) -(deoxy-D-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dG)-containing vectors in primate cells, with the lesion being positioned in the 5'-GCNGG-3' sequence context. Pyrosequencing detected ∼8% G to T transversions and ∼3.5% G to A transitions, a result that was in excellent agreement with frequencies previously measured by the standard procedure (Earley LF et al. [2013]: Chem Res Toxicol 26:1108-1114). However, ∼3.5% G to C transversions and ∼2.0% deletions could not be detected by pyrosequencing. Consistent with these observations, the sensitivity of pyrosequencing for measuring the single deoxynucleotide variants differed depending on the deoxynucleotide identity, and in the given sequence contexts, was determined to be ∼1-2% for A and T and ∼5% for C. Pyrosequencing of other DNA isolates that were obtained following replication of MeFapy-dG-containing vectors in primate cells or Escherichia coli, identified several additional limitations. Collectively, our data demonstrated that pyrosequencing can be used for studying DNA damage-induced mutagenesis as an effective complementary experimental approach to current protocols.

  1. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  2. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    2007-12-01

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  3. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    2008-02-21

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  4. ATM kinase: Much more than a DNA damage responsive protein.

    Science.gov (United States)

    Guleria, Ayushi; Chandna, Sudhir

    2016-03-01

    ATM, mutation of which causes Ataxia telangiectasia, has emerged as a cardinal multifunctional protein kinase during past two decades as evidenced by various studies from around the globe. Further to its well established and predominant role in DNA damage response, ATM has also been understood to help in maintaining overall functional integrity of cells; since its mutation, inactivation or deficiency results in a variety of pathological manifestations besides DNA damage. These include oxidative stress, metabolic syndrome, mitochondrial dysfunction as well as neurodegeneration. Recently, high throughput screening using proteomics, metabolomics and transcriptomic studies revealed several proteins which might be acting as substrates of ATM. Studies that can help in identifying effective regulatory controls within the ATM-mediated pathways/mechanisms can help in developing better therapeutics. In fact, more in-depth understanding of ATM-dependent cellular signals could also help in the treatment of variety of other disease conditions since these pathways seem to control many critical cellular functions. In this review, we have attempted to put together a detailed yet lucid picture of the present-day understanding of ATM's role in various pathophysiological conditions involving DNA damage and beyond.

  5. Oxidative DNA damage in mouse sperm chromosomes: Size matters.

    Science.gov (United States)

    Kocer, Ayhan; Henry-Berger, Joelle; Noblanc, Anais; Champroux, Alexandre; Pogorelcnik, Romain; Guiton, Rachel; Janny, Laurent; Pons-Rejraji, Hanae; Saez, Fabrice; Johnson, Graham D; Krawetz, Stephen A; Alvarez, Juan G; Aitken, R John; Drevet, Joël R

    2015-12-01

    Normal embryo and foetal development as well as the health of the progeny are mostly dependent on gamete nuclear integrity. In the present study, in order to characterize more precisely oxidative DNA damage in mouse sperm we used two mouse models that display high levels of sperm oxidative DNA damage, a common alteration encountered both in in vivo and in vitro reproduction. Immunoprecipitation of oxidized sperm DNA coupled to deep sequencing showed that mouse chromosomes may be largely affected by oxidative alterations. We show that the vulnerability of chromosomes to oxidative attack inversely correlated with their size and was not linked to their GC richness. It was neither correlated with the chromosome content in persisting nucleosomes nor associated with methylated sequences. A strong correlation was found between oxidized sequences and sequences rich in short interspersed repeat elements (SINEs). Chromosome position in the sperm nucleus as revealed by fluorescent in situ hybridization appears to be a confounder. These data map for the first time fragile mouse sperm chromosomal regions when facing oxidative damage that may challenge the repair mechanisms of the oocyte post-fertilization.

  6. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  7. Breaking the DNA damage response to improve cervical cancer treatment.

    Science.gov (United States)

    Wieringa, Hylke W; van der Zee, Ate G J; de Vries, Elisabeth G E; van Vugt, Marcel A T M

    2016-01-01

    Every year, cervical cancer affects ∼500,000 women worldwide, and ∼275,000 patients die of this disease. The addition of platin-based chemotherapy to primary radiotherapy has increased 5-year survival of advanced-stage cervical cancer patients, which is, however, still only 66%. One of the factors thought to contribute to treatment failure is the ability of tumor cells to repair chemoradiotherapy-induced DNA damage. Therefore, sensitization of tumor cells for chemoradiotherapy via inhibition of the DNA damage response (DDR) as a novel strategy to improve therapy effect, is currently studied pre-clinically as well as in the clinic. Almost invariably, cervical carcinogenesis involves infection with the human papillomavirus (HPV), which inactivates part of the DNA damage response. This HPV-mediated partial inactivation of the DDR presents therapeutic targeting of the residual DDR as an interesting approach to achieve chemoradio-sensitization for cervical cancer. How the DDR can be most efficiently targeted, however, remains unclear. The fact that cisplatin and radiotherapy activate multiple signaling axes within the DDR further complicates a rational choice of therapeutic targets within the DDR. In this review, we provide an overview of the current preclinical and clinical knowledge about targeting the DDR in cervical cancer.

  8. DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents.

    NARCIS (Netherlands)

    B.J. Glassner (Brian); G. Weeda (Geert); J.M. Allan (James); J.L.M. Broekhof (Jose'); N.H.E. Carls (Nick); I. Donker (Ingrid); B.P. Engelward (Bevin); R.J. Hampson (Richard); R. Hersmus (Remko); M.J. Hickman (Mark); R.B. Roth (Richard); H.B. Warren (Henry); M.M. Wu (Mavis); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1999-01-01

    textabstractWe have generated mice deficient in O6-methylguanine DNA methyltransferase activity encoded by the murine Mgmt gene using homologous recombination to delete the region encoding the Mgmt active site cysteine. Tissues from Mgmt null mice displayed very low O6-methylguanine DNA methyltransf

  9. Preparation of next-generation sequencing libraries from damaged DNA.

    Science.gov (United States)

    Briggs, Adrian W; Heyn, Patricia

    2012-01-01

    Next-generation sequencing (NGS) has revolutionized ancient DNA research, especially when combined with high-throughput target enrichment methods. However, attaining high sequencing depth and accuracy from samples often remains problematic due to the damaged state of ancient DNA, in particular the extremely low copy number of ancient DNA and the abundance of uracil residues derived from cytosine deamination that lead to miscoding errors. It is therefore critical to use a highly efficient procedure for conversion of a raw DNA extract into an adaptor-ligated sequencing library, and equally important to reduce errors from uracil residues. We present a protocol for NGS library preparation that allows highly efficient conversion of DNA fragments into an adaptor-ligated form. The protocol incorporates an option to remove the vast majority of uracil miscoding lesions as part of the library preparation process. The procedure requires only two spin column purification steps and no gel purification or bead handling. Starting from an aliquot of DNA extract, a finished, highly amplified library can be generated in 5 h, or under 3 h if uracil removal is not required.

  10. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes.

    Science.gov (United States)

    Karpov, Dmitry S; Spasskaya, Daria S; Tutyaeva, Vera V; Mironov, Alexander S; Karpov, Vadim L

    2013-09-17

    The 26S proteasome is an ATP-dependent multi-subunit protease complex and the major regulator of intracellular protein turnover and quality control. However, its role in the DNA damage response is controversial. We addressed this question in yeast by disrupting the transcriptional regulation of the PRE1 proteasomal gene. The mutant strain has decreased proteasome activity and is hyper-resistant to various DNA-damaging agents. We found that Rpn4-target genes MAG1, RAD23, and RAD52 are overexpressed in this strain due to Rpn4 stabilisation. These genes represent three different pathways of base excision, nucleotide excision and double strand break repair by homologous recombination (DSB-HR). Consistently, the proteasome mutant displays increased DSB-HR activity. Our data imply that the proteasome may have a negative role in DNA damage response.

  11. The RecA-Dependent SOS Response Is Active and Required for Processing of DNA Damage during Bacillus subtilis Sporulation.

    Science.gov (United States)

    Ramírez-Guadiana, Fernando H; Barajas-Ornelas, Rocío Del Carmen; Corona-Bautista, Saúl U; Setlow, Peter; Pedraza-Reyes, Mario

    2016-01-01

    The expression of and role played by RecA in protecting sporulating cells of Bacillus subtilis from DNA damage has been determined. Results showed that the DNA-alkylating agent Mitomycin-C (M-C) activated expression of a PrecA-gfpmut3a fusion in both sporulating cells' mother cell and forespore compartments. The expression levels of a recA-lacZ fusion were significantly lower in sporulating than in growing cells. However, M-C induced levels of ß-galactosidase from a recA-lacZ fusion ~6- and 3-fold in the mother cell and forespore compartments of B. subtilis sporangia, respectively. Disruption of recA slowed sporulation and sensitized sporulating cells to M-C and UV-C radiation, and the M-C and UV-C sensitivity of sporangia lacking the transcriptional repair-coupling factor Mfd was significantly increased by loss of RecA. We postulate that when DNA damage is encountered during sporulation, RecA activates the SOS response thus providing sporangia with the repair machinery to process DNA lesions that may compromise the spatio-temporal expression of genes that are essential for efficient spore formation.

  12. The RecA-Dependent SOS Response Is Active and Required for Processing of DNA Damage during Bacillus subtilis Sporulation.

    Directory of Open Access Journals (Sweden)

    Fernando H Ramírez-Guadiana

    Full Text Available The expression of and role played by RecA in protecting sporulating cells of Bacillus subtilis from DNA damage has been determined. Results showed that the DNA-alkylating agent Mitomycin-C (M-C activated expression of a PrecA-gfpmut3a fusion in both sporulating cells' mother cell and forespore compartments. The expression levels of a recA-lacZ fusion were significantly lower in sporulating than in growing cells. However, M-C induced levels of ß-galactosidase from a recA-lacZ fusion ~6- and 3-fold in the mother cell and forespore compartments of B. subtilis sporangia, respectively. Disruption of recA slowed sporulation and sensitized sporulating cells to M-C and UV-C radiation, and the M-C and UV-C sensitivity of sporangia lacking the transcriptional repair-coupling factor Mfd was significantly increased by loss of RecA. We postulate that when DNA damage is encountered during sporulation, RecA activates the SOS response thus providing sporangia with the repair machinery to process DNA lesions that may compromise the spatio-temporal expression of genes that are essential for efficient spore formation.

  13. Evidence for DNA Damage as a Biological Link Between Diabetes and Cancer

    Institute of Scientific and Technical Information of China (English)

    Shao Chin Lee; Juliana CN Chan

    2015-01-01

    Objective:This review examines the evidence that:Diabetes is a state of DNA damage;pathophysiological factors in diabetes can cause DNA damage;DNA damage can cause mutations;and DNA mutation is linked to carcinogenesis.Data Sources:We retrieved information from the PubMed database up to January,2014,using various search terms and their combinations including DNA damage,diabetes,cancer,high glucose,hyperglycemia,free fatty acids,palmitic acid,advanced glycation end products,mutation and carcinogenesis.Study Selection:We included data from peer-reviewed journals and a textbook printed in English on relationships between DNA damage and diabetes as well as pathophysiological factors in diabetes.Publications on relationships among DNA damage,mutagenesis,and carcinogenesis,were also reviewed.We organized this information into a conceptual framework to explain the possible causal relationship between DNA damage and carcinogenesis in diabetes.Results:There are a large amount of data supporting the view that DNA mutation is a typical feature in carcinogenesis.Patients with type 2 diabetes have increased production of reactive oxygen species,reduced levels of antioxidant capacity,and increased levels of DNA damage.The pathophysiological factors and metabolic milieu in diabetes can cause DNA damage such as DNA strand break and base modification (i.e.,oxidation).Emerging experimental data suggest that signal pathways (i.e.,Akt/tuberin) link diabetes to DNA damage.This collective evidence indicates that diabetes is a pathophysiological state of oxidative stress and DNA damage which can lead to various types of mutation to cause aberration in cells and thereby increased cancer risk.Conclusions:This review highlights the interrelationships amongst diabetes,DNA damage,DNA mutation and carcinogenesis,which suggests that DNA damage can be a biological link between diabetes and cancer.

  14. Mitochondrial DNA damage and animal longevity: insights from comparative studies.

    Science.gov (United States)

    Pamplona, Reinald

    2011-03-02

    Chemical reactions in living cells are under strict enzyme control and conform to a tightly regulated metabolic program. However, uncontrolled and potentially deleterious endogenous reactions occur, even under physiological conditions. Aging, in this chemical context, could be viewed as an entropic process, the result of chemical side reactions that chronically and cumulatively degrade the function of biological systems. Mitochondria are a main source of reactive oxygen species (ROS) and chemical sidereactions in healthy aerobic tissues and are the only known extranuclear cellular organelles in animal cells that contain their own DNA (mtDNA). ROS can modify mtDNA directly at the sugar-phosphate backbone or at the bases, producing many different oxidatively modified purines and pyrimidines, as well as single and double strand breaks and DNA mutations. In this scenario, natural selection tends to decrease the mitochondrial ROS generation, the oxidative damage to mtDNA, and the mitochondrial mutation rate in long-lived species, in agreement with the mitochondrial oxidative stress theory of aging.

  15. Radiation track, DNA damage and response—a review

    Science.gov (United States)

    Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S.

    2016-11-01

    The purpose of this paper has been to review the current status and progress of the field of radiation biophysics, and draw attention to the fact that physics, in general, and radiation physics in particular, with the aid of mathematical modeling, can help elucidate biological mechanisms and cancer therapies. We hypothesize that concepts of condensed-matter physics along with the new genomic knowledge and technologies and mechanistic mathematical modeling in conjunction with advances in experimental DNA (Deoxyrinonucleic acid molecule) repair and cell signaling have now provided us with unprecedented opportunities in radiation biophysics to address problems in targeted cancer therapy, and genetic risk estimation in humans. Obviously, one is not dealing with ‘low-hanging fruit’, but it will be a major scientific achievement if it becomes possible to state, in another decade or so, that we can link mechanistically the stages between the initial radiation-induced DNA damage; in particular, at doses of radiation less than 2 Gy and with structural changes in genomic DNA as a precursor to cell inactivation and/or mutations leading to genetic diseases. The paper presents recent development in the physics of radiation track structure contained in the computer code system KURBUC, in particular for low-energy electrons in the condensed phase of water for which we provide a comprehensive discussion of the dielectric response function approach. The state-of-the-art in the simulation of proton and carbon ion tracks in the Bragg peak region is also presented. The paper presents a critical discussion of the models used for elastic scattering, and the validity of the trajectory approach in low-electron transport. Brief discussions of mechanistic and quantitative aspects of microdosimetry, DNA damage and DNA repair are also included as developed by the authors’ work.

  16. Effects of DNA damage on oocyte meiotic maturation and early embryonic development

    Directory of Open Access Journals (Sweden)

    Shen YIN,Junyu MA,Wei SHEN

    2014-09-01

    Full Text Available DNA damage is one of the most common threats to meiotic cells. It has the potential to induce infertility and genetic abnormalities that may be passed to the embryo. Here, we reviewed exogenous factors which could induce DNA damage. Specially, we addressed the different effects of DNA damage on mouse oocytes and embryonic development. Complex DNA damage, double-strand breaks, represents a more difficult repair process and involves various repair pathways. Understanding the mechanisms involved in DNA damage responses may improve therapeutic strategies for ovarian cancer and fertility preservation.

  17. Studies on DNA Damage Response in Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Han, Wenyuan

    global reactions known as DNA damage response (DDR). In Bacteria and Eukaryotes, the global reactions include a series of transcription regulations and protein post-translation modifications, which can activate DNA repair machineries, suppress cell division and delay DNA replication, and induce...... scattered light, damaged cell membrane and electron-dense area. During NQO and MMS treatment, degradation of chromatin proteins was coincided with DNA-less cell formation, suggesting their roles in protecting genomic DNA from massive degradation. Further, HU inhibited NQO-induced DSB formation and DNA...... damage response, suggesting the crucial roles of DSB in triggering DNA damage response. Then, NQO-induced DNA-less formation was impaired in the culture with retarded cell cycle, suggesting that DNA replication played an important role in DNA damage response in Sulfolobus. We also investigated the roles...

  18. Improved DNA condensation, stability, and transfection with alkyl sulfonyl-functionalized PAMAM G2

    Energy Technology Data Exchange (ETDEWEB)

    Rata-Aguilar, Azahara, E-mail: azahara@ugr.es; Maldonado-Valderrama, Julia; Jódar-Reyes, Ana Belén; Ortega-Vinuesa, Juan Luis [University of Granada, Biocolloid and Fluid Physics Group, Department of Applied Physics (Spain); Santoyo-Gonzalez, Francisco [University of Granada, Organic Chemistry Department, Institute of Biotechnology (Spain); Martín-Rodríguez, Antonio [University of Granada, Biocolloid and Fluid Physics Group, Department of Applied Physics (Spain)

    2015-04-15

    In this work, we have used a second-generation PAMAM grafted with octadecyl sulfonyl chains to condense plasmid DNA. The influence of this modification at different levels was investigated by comparison with original PAMAM G2. The condensation process and temporal stability of the complexes was studied with DLS, finding that the aliphatic chains influence DNA compaction via hydrophobic forces and markedly improve the formation and temporal stability of a single populated system with a hydrodynamic diameter below 100 nm. Interaction with a cell membrane model was also evaluated with a pendant drop tensiometer, resulting in further incorporation of the C18-PAMAM dendriplexes onto the interface. The improvement observed in transfection with our C18 grafted PAMAM is ascribed to the size, stability, and interfacial behavior of the complexes, which in turn are consequence of the DNA condensation process and the interactions involved.

  19. Sperm DNA damage in men from infertile couples

    Institute of Scientific and Technical Information of China (English)

    Juris Erenpreiss; Saad Elzanaty; Aleksander Giwercman

    2008-01-01

    Aim: To investigate the prevalence of high levels of sperm DNA damage among men from infertile couples with both normal and abnormal standard semen parameters. Methods: A total of 350 men from infertile couples were assessed. Standard semen analysis and sperm chromatin structure assay (SCSA) were carried out. Results: Ninety-seven men (28% of the whole study group) had a DNA fragmentation index (DFI) > 20%, and 43 men (12%) had a DFI > 30%. In the group of men with abnormal semen parameters (n = 224), 35% had a DFI > 20%, and 16% had a DFI > 30%, whereas these numbers were 15% and 5%, respectively, in the group of men with normal semen parameters (n = 126). Men with low sperm motility and abnormal morphology had significantly higher odds ratios (Ors) for having a DFI > 20% (4.0 for motility and 1.9 for morphology) and DFI > 30% (6.2 for motility and 2.8 for morphology) compared with men with normal sperm motility and morphology. Conclusion: In almost one-third of unselected men from infertile couples, the DFI exceeded the level of 20% above which, according to previous studies, the in vivo fertility is reduced. A significant proportion of men with otherwise normal semen parameters also had high sperm DNA damage levels. Thus, the SCSA test could add to explaining causes of infertility in cases where semen analysis has not shown any deviation from the norm. We also recommend running the SCSA test to choose the appropriate assisted reproductive technique (ART).

  20. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent.

    Directory of Open Access Journals (Sweden)

    Chantal Ethier

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is widely involved in cell death responses. Depending on the degree of injury and on cell type, PARP activation may lead to autophagy, apoptosis or necrosis. In HEK293 cells exposed to the alkylating agent N-methyl-N'-nitro-N'-nitrosoguanine (MNNG, we show that PARP-1 activation triggers a necrotic cell death response. The massive poly(ADP-ribose (PAR synthesis following PARP-1 activation leads to the modulation of mTORC1 pathway. Shortly after MNNG exposure, NAD⁺ and ATP levels decrease, while AMP levels drastically increase. We characterized at the molecular level the consequences of these altered nucleotide levels. First, AMP-activated protein kinase (AMPK is activated and the mTORC1 pathway is inhibited by the phosphorylation of Raptor, in an attempt to preserve cellular energy. Phosphorylation of the mTORC1 target S6 is decreased as well as the phosphorylation of the mTORC2 component Rictor on Thr1135. Finally, Akt phosphorylation on Ser473 is lost and then, cell death by necrosis occurs. Inhibition of PARP-1 with the potent PARP inhibitor AG14361 prevents all of these events. Moreover, the antioxidant N-acetyl-L-cysteine (NAC can also abrogate all the signaling events caused by MNNG exposure suggesting that reactive oxygen species (ROS production is involved in PARP-1 activation and modulation of mTOR signaling. In this study, we show that PARP-1 activation and PAR synthesis affect the energetic status of cells, inhibit the mTORC1 signaling pathway and possibly modulate the mTORC2 complex affecting cell fate. These results provide new evidence that cell death by necrosis is orchestrated by the balance between several signaling pathways, and that PARP-1 and PAR take part in these events.

  1. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG. In this study we used mouse embryonic stem (MES and mouse embryonic fibroblast (MEF cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS. Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR defects.

  2. Attenuation of acridine mutagen ICR-191--DNA interactions and DNA damage by the mutagen interceptor chlorophyllin.

    Science.gov (United States)

    Pietrzak, Monika; Halicka, H Dorota; Wieczorek, Zbigniew; Wieczorek, Jolanta; Darzynkiewicz, Zbigniew

    2008-06-01

    We have investigated the ability of chlorophyllin (CHL) to interact with acridine mutagen ICR-191 (2-methoxy-6-chloro-9-(3-(2-chloroethyl)aminopropylamino)acridine) and also its ability to decrease binding of ICR-191 to DNA in a simple three-component competition system: CHL-ICR-DNA. Our data indicate a strong association of ICR-191 with CHL, stronger even than the association of ICR-191 with DNA. Calculations based on the measured affinity data show that a two- to three-fold excess of CHL reduces by about two-fold the concentration of the mutagen-DNA complex. We also exposed human leukemic HL-60 cells to ICR-191 in the absence and presence of CHL and measured the mutagen-induced DNA damage. The extent of DNA damage was assessed by analysis of histone H2AX phosphorylation. While ICR-191 induced significant increase in expression of phosphorylated H2AX (gammaH2AX), particularly in DNA replicating cells, this increase was totally abolished in the cells treated with ICR-191 in the presence of CHL.

  3. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism

    Science.gov (United States)

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-01-01

    Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. Methods: The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2- scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays. Results: Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form. PMID:27478791

  4. Lymphocyte DNA damage in Turkish asphalt workers detected by the comet assay.

    Science.gov (United States)

    Bacaksiz, Aysegul; Kayaalti, Zeliha; Soylemez, Esma; Tutkun, Engin; Soylemezoglu, Tulin

    2014-01-01

    Asphalt has a highly complex structure and it contains several organic compounds including polycyclic aromatic hydrocarbons and heterocyclic compounds. In this study, comet assay was used to detect the DNA damage in blood lymphocytes of 30 workers exposed to asphalt fumes and 30 nonexposed controls. This is the first report on Turkish asphalt workers' investigated DNA damage using the alkaline single cell gel electrophoresis (SCGE). The DNA damage was evaluated by the percentage of DNA in the comet tail (% tail DNA) for each cell. According to our results, workers exposed to asphalt fumes had higher DNA damage than the control group (p asphalt fumes caused a significant increase in DNA damage and the comet assay is a suitable method for determining DNA damage in asphalt workers.

  5. Chk2 Activation Dependence on Nbs1 after DNA Damage

    OpenAIRE

    Buscemi, Giacomo; Savio, Camilla; Zannini, Laura; Miccichè, Francesca; Masnada, Debora; Nakanishi, Makoto; Tauchi, Hiroshi; Komatsu, Kenshi; Mizutani, Shuki; Khanna, KumKum; Chen, Phil; Concannon, Patrick; Chessa, Luciana; Delia, Domenico

    2001-01-01

    The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G1 arrest. Here we show that the ATM-dependent activation of Chk2 by γ- radiation requires Nbs1, the gene product ...

  6. Senescence of primary amniotic cells via oxidative DNA damage.

    Directory of Open Access Journals (Sweden)

    Ramkumar Menon

    Full Text Available OBJECTIVE: Oxidative stress is a postulated etiology of spontaneous preterm birth (PTB and preterm prelabor rupture of the membranes (pPROM; however, the precise mechanistic role of reactive oxygen species (ROS in these complications is unclear. The objective of this study is to examine impact of a water soluble cigarette smoke extract (wsCSE, a predicted cause of pregnancy complications, on human amnion epithelial cells. METHODS: Amnion cells isolated from fetal membranes were exposed to wsCSE prepared in cell culture medium and changes in ROS levels, DNA base and strand damage was determined by using 2'7'-dichlorodihydro-fluorescein and comet assays as well as Fragment Length Analysis using Repair Enzymes (FLARE assays, respectively. Western blot analyses were used to determine the changes in mass and post-translational modification of apoptosis signal-regulating kinase (ASK1, phospho-p38 (P-p38 MAPK, and p19(arf. Expression of senescence-associated β-galectosidase (SAβ-gal was used to confirm cell ageing in situ. RESULTS: ROS levels in wsCSE-exposed amnion cells increased rapidly (within 2 min and significantly (p<0.01 at all-time points, and DNA strand and base damage was evidenced by comet and FLARE assays. Activation of ASK1, P-p38 MAPK and p19(Arf correlated with percentage of SAβ-gal expressing cells after wsCSE treatment. The antioxidant N-acetyl-L-cysteine (NAC prevented ROS-induced DNA damage and phosphorylation of p38 MAPK, whereas activation of ASK1 and increased expression of p19(Arf were not significantly affected by NAC. CONCLUSIONS: The findings support the hypothesis that compounds in wsCSE induces amnion cell senescence via a mechanism involving ROS and DNA damage. Both pathways may contribute to PTB and pPROM. Our results imply that antioxidant interventions that control ROS may interrupt pathways leading to pPROM and other causes of PTB.

  7. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Gigli Elena

    2008-07-01

    Full Text Available Abstract Background We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA hypervariable region 1 (HVS1. The analysis was restricted to C→T and G→A miscoding lesions (the predominant manifestation of post mortem damage that are seen at a frequency of more than one clone among sequences from a single PCR, but do not represent the true endogenous sequence. Findings The data indicates an extreme bias towards C→T over G→A miscoding lesions (observed ratio of 67:2 compared to an expected ratio of 7:2, implying that the mtDNA Light strand molecule suffers proportionally more damage-derived miscoding lesions than the Heavy strand. Conclusion The clustering of Cs in the Light strand as opposed to the singleton pattern of Cs in the Heavy strand could explain the observed bias, a phenomenon that could be further tested with non-PCR based approaches. The characterization of the HVS1 hotspots will be of use to future Neandertal mtDNA studies, with specific regards to assessing the authenticity of new positions previously unknown to be polymorphic.

  8. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie;

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  9. Genotoxicity of refinery waste assessed by some DNA damage tests.

    Science.gov (United States)

    Gupta, Amit Kumar; Ahmad, Irshad; Ahmad, Masood

    2015-04-01

    Refinery waste effluent is well known to contain polycyclic aromatic hydrocarbons, phenols and heavy metals as potentially genotoxic substances. The aim of the present study was to assess the genotoxic potential of Mathura refinery wastewater (MRWW) by various in vitro tests including the single cell gel electrophoresis, plasmid nicking assay and S1 nuclease assay. Treatment of human lymphocytes to different MRWW concentrations (0.15×, 0.3×, 0.5× and 0.78×) caused the formation of comets of which the mean tail lengths increased proportionately and differed significantly from those of unexposed controls. The toxic effect of MRWW on DNA was also studied by plasmid nicking assay and S1 nuclease assay. Strand breaks formation in the MRWW treated pBR322 plasmid confirmed its genotoxic effect. Moreover, a dose dependent increase in cleavage of calf thymus DNA in S1 nuclease assay was also suggestive of the DNA damaging potential of MRWW. A higher level of ROS generation in the test water sample was recorded which might be contributing to its genotoxicity. Interaction between the constituents of MRWW and calf thymus DNA was also ascertained by UV-visible spectroscopy.

  10. Voltammetric Detection of Damage to DNA by Arsenic Compounds at a DNA Biosensor

    Directory of Open Access Journals (Sweden)

    R. Wennrich

    2005-11-01

    Full Text Available DNA biosensor can serve as a powerfull tool for simple in vitro tests of chemicaltoxicity. In this paper, damage to DNA attached to the surface of screen-printed carbonelectrode by arsenic compounds in solution is described. Using the Co(III complex with1,10-phenanthroline, [Co(phen3]3+ , as an electrochemical DNA marker and the Ru(IIcomplex with bipyridyne, [Ru(bipy3]2+ , as a DNA oxidation catalyst, the portion of originaldsDNA which survives an incubation of the biosensor in the cleavage medium was evaluated.The model cleavage mixture was composed of an arsenic compound at 10-3 mol/Lconcentration corresponding to real contaminated water, 2x10-4 mol/L Fe(II or Cu(II ions asthe redox catalyst, and 1.5x10-2 mol/L hydrogen peroxide. DNA damage by arsenite,dimethylarsinic acid as the metabolic product of inorganic arsenic and widely used herbicide,as well as phenylarsonic acid and p-arsanilic acid as the representatives of feed additives wasfound in difference to arsenate.

  11. Designing a Single-Molecule Biophysics Tool for Characterising DNA Damage for Techniques that Kill Infectious Pathogens Through DNA Damage Effects.

    Science.gov (United States)

    Miller, Helen; Wollman, Adam J M; Leake, Mark C

    2016-01-01

    Antibiotics such as the quinolones and fluoroquinolones kill bacterial pathogens ultimately through DNA damage. They target the essential type IIA topoisomerases in bacteria by stabilising the normally transient double-strand break state which is created to modify the supercoiling state of the DNA. Here we discuss the development of these antibiotics and their method of action. Existing methods for DNA damage visualisation, such as the comet assay and immunofluorescence imaging can often only be analysed qualitatively and this analysis is subjective. We describe a putative single-molecule fluorescence technique for quantifying DNA damage via the total fluorescence intensity of a DNA origami tile fully saturated with an intercalating dye, along with the optical requirements for how to implement these into a light microscopy imaging system capable of single-molecule millisecond timescale imaging. This system promises significant improvements in reproducibility of the quantification of DNA damage over traditional techniques.

  12. Muscle damage after delivery of naked plasmid DNA into skeletal muscles is batch dependent.

    Science.gov (United States)

    Wooddell, Christine I; Subbotin, Vladimir M; Sebestyén, Magdolna G; Griffin, Jacob B; Zhang, Guofeng; Schleef, Martin; Braun, Serge; Huss, Thierry; Wolff, Jon A

    2011-02-01

    Various plasmids were delivered into rodent limb muscles by hydrodynamic limb vein (HLV) injection of naked plasmid DNA (pDNA). Some of the pDNA preparations caused significant muscle necrosis and associated muscle regeneration 3 to 4 days after the injection whereas others caused no muscle damage. Occurrence of muscle damage was independent of plasmid sequence, size, and encoded genes. It was batch dependent and correlated with the quantity of bacterial genomic DNA (gDNA) that copurified with the pDNA. To determine whether such an effect was due to bacterial DNA or simply to fragmented DNA, mice were treated by HLV injection with sheared bacterial or murine gDNA. As little as 20 μg of the large fragments of bacterial gDNA caused muscle damage that morphologically resembled damage caused by the toxic pDNA preparations, whereas murine gDNA caused no damage even at a 10-fold higher dose. Toxicity from the bacterial gDNA was not due to endotoxin and was eliminated by DNase digestion. We conclude that pDNA itself does not cause muscle damage and that purification methods for the preparation of therapeutic pDNA should be optimized for removal of bacterial gDNA.

  13. DNA Damage by Radiation in Tradescantia Leaf Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Hyun, Kyung Man; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-04-15

    The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Tradescantia tests are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay. The development of comet assay has enabled investigators to detect DNA damage at the levels of cells. To adapt this assay to plant cells, nuclei were directly obtained from Tradescantia leaf samples. A significant dose-dependent increase in the average tail moment values over the negative control was observed. Recently the adaptation of this technique to plant cells opens new possibilities for studies in variety area. The future applications of the comet assay could impact some other important areas, certainly, one of the limiting factors to its utility is the imagination of the investigator.

  14. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  15. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    Science.gov (United States)

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  16. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    Science.gov (United States)

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods.

  17. Potentially lethal damage repair by total and quiescent tumor cells following various DNA-damaging treatments

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro; Ono, Koji; Suzuki, Minoru; Kinashi, Yuko; Takagaki, Masao [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Hori, Hitoshi; Kasai, Soko; Nagasawa, Hideko; Uto, Yoshihiro

    1999-08-01

    After continuous labeling of proliferating (P) cells with 5-bromo-2'-deoxyuridine (BrdU) for 5 days, SCC VII tumor-bearing mice received various kinds of DNA-damaging treatments: gamma-ray irradiation, tirapazamine (TPZ, hypoxia-specific cytotoxin) administration, or cisplatin injection. From 0.5 to 72 hr after treatment, tumors were excised, minced, and trypsinized. Single tumor cell suspensions were incubated for 48 hr with a cytokinesis-blocker, cytochalasin-B. Then, the micronucleus (MN) frequency for BrdU-unlabeled cells, quiescent (Q) cells at treatment, was determined using immunofluorescence staining for BrdU. The MN frequency for total (P+Q) cells was obtained from tumors that were not pretreated with BrdU labeling. The sensitivity to each DNA-damaging treatment was evaluated in terms of the frequency of induced micronuclei in binuclear tumor cells (MN frequency). Treatment with gamma-rays or cisplatin resulted in a larger MN frequency in total cells than in Q cells. In contrast, TPZ treatment produced a smaller MN frequency in total cells than in Q cells. Regardless of the treatment used, Q cells showed greater repair capacities than total cells. However, TPZ caused much smaller repair capacity in both total and Q cells, compared with gamma-rays or cisplatin. Gamma-rays and cisplatin produced similar repair patterns. Differences in sensitivity between total and Q cells and repair patterns of the two cell populations were thought to depend on differences between the two cell populations in the toxicity of the DNA-damaging treatment and distribution pattern of the anticancer agent. (author)

  18. A Single-Molecule Study on the Structural Damage of Ultraviolet Radiated DNA

    Directory of Open Access Journals (Sweden)

    Pu Chun Ke

    2008-04-01

    Full Text Available The structural damage of double-stranded DNA under UV radiation was examined using single-molecule fluorescence microscopy. Compared to undamaged DNA, the diffusion coefficient of λ-DNA was significantly increased with 12 min or 20 min of radiation but remained unchanged for 40 min of exposure possibly due to strand crosslinking. The structural damage of DNA was further examined using transmission electron microscopy which revealed kinks and sharp bends along the DNA backbone.

  19. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Xurui Zhang

    Full Text Available Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research.

  20. Interplay between DNA tumor viruses and the host DNA damage response.

    Science.gov (United States)

    McFadden, Karyn; Luftig, Micah A

    2013-01-01

    Viruses encounter many challenges within host cells in order to replicate their nucleic acid. In the case of DNA viruses, one challenge that must be overcome is recognition of viral DNA structures by the host DNA damage response (DDR) machinery. This is accomplished in elegant and unique ways by different viruses as each has specific needs and sensitivities dependent on its life cycle. In this review, we focus on three DNA tumor viruses and their interactions with the DDR. The viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) account for nearly all of the virus-associated human cancers worldwide. These viruses have also been excellent models for the study of oncogenic virus-mediated cell transformation. In this review, we will discuss how each of these viruses engage and subvert aspects of the host DDR. The first level of DDR engagement is a result of the genetic linkage between the oncogenic potential of these viruses and their ability to replicate. Namely, the promotion of cells from quiescence into the cell cycle to facilitate virus replication can be sensed through aberrant cellular DNA replication structures which activate the DDR and hinder cell transformation. DNA tumor viruses subvert this growth-suppressive DDR through changes in viral oncoprotein expression which ultimately facilitate virus replication. An additional level of DDR engagement is through direct detection of replicating viral DNA. These interactions parallel those observed in other DNA virus systems in that the need to subvert these intrinsic sensors of aberrant DNA structure in order to replicate must be in place. DNA tumor viruses are no exception. This review will cover the molecular features of DNA tumor virus interactions with the host DDR and the consequences for virus replication.

  1. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    Science.gov (United States)

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1.

  2. ELF alternating magnetic field decreases reproduction by DNA damage induction.

    Science.gov (United States)

    Panagopoulos, Dimitris J; Karabarbounis, Andreas; Lioliousis, Constantinos

    2013-11-01

    In the present experiments, the effect of 50-Hz alternating magnetic field on Drosophila melanogaster reproduction was studied. Newly eclosed insects were separated into identical groups of ten males and ten females and exposed to three different intensities of the ELF magnetic field (1, 11, and 21 G) continuously during the first 5 days of their adult lives. The reproductive capacity was assessed by the number of F1 pupae according to a well-defined protocol of ours. The magnetic field was found to decrease reproduction by up to 4.3%. The effect increased with increasing field intensities. The decline in reproductive capacity was found to be due to severe DNA damage (DNA fragmentation) and consequent cell death induction in the reproductive cells as determined by the TUNEL assay applied during early and mid-oogenesis (from germarium to stage 10) where physiological apoptosis does not occur. The increase in DNA damage was more significant than the corresponding decrease in reproductive capacity (up to ~7.5%). The TUNEL-positive signal denoting DNA fragmentation was observed exclusively at the two most sensitive developmental stages of oogenesis: the early and mid-oogenesis checkpoints (i.e. region 2a/2b of the germarium and stages 7-8 just before the onset of vitellogenesis)-in contrast to exposure to microwave radiation of earlier work of ours in which the DNA fragmentation was induced at all developmental stages of early and mid-oogenesis. Moreover, the TUNEL-positive signal was observed in all three types of egg chamber cells, mainly in the nurse and follicle cells and also in the oocyte, in agreement with the microwave exposure of our earlier works. According to previous reports, cell death induction in the oocyte was observed only in the case of microwave exposure and not after exposure to other stress factors as toxic chemicals or food deprivation. Now it is also observed for the first time after ELF magnetic field exposure. Finally, in contrast to microwave

  3. Dynamics of the human nuclear proteome in response to DNA damage

    NARCIS (Netherlands)

    Dirksen, Eef Hubert Cecil

    2006-01-01

    The genome is constantly challenged by factors that can induce DNA damage and thereby threaten the viability of the cell. If DNA damage remains unrepaired it can lead to the development of cancer. Although much is known about the role of proteins and protein complexes in the cellular response to DNA

  4. Role of Rad54, Rad54b and Snm1 in DNA damage repair

    NARCIS (Netherlands)

    J. Wesoly (Joanna)

    2003-01-01

    textabstractThe aim of this thesis is to investigate the function of a number of genes involved in mammalian DNA damage repair, in particular in repair of DNA double-strand breaks (DSBs). Among a large number of different damages that can be introduced to DNA, DSBs are especially toxic. If left unre

  5. Genotoxicity of formaldehyde: Molecular basis of DNA damage and mutation

    Directory of Open Access Journals (Sweden)

    Masanobu eKawanishi

    2014-09-01

    Full Text Available Formaldehyde is commonly used in the chemical industry and is present in the environment, such as vehicle emissions, some building materials, food and tobacco smoke. It also occurs as a natural product in most organisms, the sources of which include a number of metabolic processes. It causes various acute and chronic adverse effects in humans if they inhale its fumes. Among the chronic effects on human health, we summarize data on genotoxicity and carcinogenicity in this review, and we particularly focus on the molecular mechanisms involved in the formaldehyde mutagenesis. Formaldehyde mainly induces N-hydroxymethyl mono-adducts on guanine, adenine and cytosine, and N-methylene crosslinks between adjacent purines in DNA. These crosslinks are types of DNA damage potentially fatal for cell survival if they are not removed by the nucleotide excision repair pathway. In the previous studies, we showed evidence that formaldehyde causes intra-strand crosslinks between purines in DNA using a unique method (Matsuda et al. Nucleic Acids Res. 26, 1769-1774,1998. Using shuttle vector plasmids, we also showed that formaldehyde as well as acetaldehyde induces tandem base substitutions, mainly at 5’-GG and 5’-GA sequences, which would arise from the intra-strand crosslinks. These mutation features are different from those of other aldehydes such as crotonaldehyde, acrolein, glyoxal and methylglyoxal. These findings provide molecular clues to improve our understanding of the genotoxicity and carcinogenicity of formaldehyde.

  6. Host DNA damage response facilitates African swine fever virus infection.

    Science.gov (United States)

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2013-07-26

    Studies with different viral infection models on virus interactions with the host cell nucleus have opened new perspectives on our understanding of the molecular basis of these interactions in African swine fever virus (ASFV) infection. The present study aims to characterize the host DNA damage response (DDR) occurring upon in vitro infection with the ASFV-Ba71V isolate. We evaluated protein levels during ASFV time-course infection, of several signalling cascade factors belonging to DDR pathways involved in double strand break repair - Ataxia Telangiectasia Mutated (ATM), ATM-Rad 3 related (ATR) and DNA dependent protein kinase catalytic subunit (DNA-PKcs). DDR inhibitory trials using caffeine and wortmannin and ATR inducible-expression cell lines were used to confirm specific pathway activation during viral infection. Our results show that ASFV specifically elicits ATR-mediated pathway activation from the early phase of infection with increased levels of H2AX, RPA32, p53, ATR and Chk1 phosphorylated forms. Viral p72 synthesis was abrogated by ATR kinase inhibitors and also in ATR-kd cells. Furthermore, a reduction of viral progeny was identified in these cells when compared to the outcome of infection in ATR-wt. Overall, our results strongly suggest that the ATR pathway plays an essential role for successful ASFV infection of host cells.

  7. Association of DNA damage and dyslipidemia with polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Manikkumar R

    2013-02-01

    Full Text Available Polycystic ovary syndrome (PCOS is associated with hyperinsuli-nemia and insulin resistance which may lead to cardiovascular diseases. Evidence for cardiovascular events in women who were affected by PCOS during fertile age is limited. The pathogenesis is unknown; however, it is a complex multigenetic disorder. The present study was undertaken to evaluate the various cardiovas-cular risk factors and their DNA repair efficiency in women with PCOS by investigating the biochemical, endocrinological and mo-lecular cytogenetic alterations. These investigations were carried out in 116 women in the age group of 15-35 years clinically diag-nosed with PCOS. Data were compared with that of 50 age-matched healthy normal women. Fasting blood sugar (FBS, Lipid profile, Follicle-Stimulating Hormone (FSH and Luteinizing Hor-mone (LH, Prolactin and Estradiol were estimated after getting the informed consent. Mutagen induced chromosome sensitivity analysis was carried out in the lymphocytes of the subjects to as-sess the DNA repair proficiency. Fasting Blood Sugar, total cho-lesterol and LDL cholesterol were found to be elevated whereas HDL cholesterol was found to be lowered in the test subjects. FSH, LH and prolactin were also found to be significantly elevated in the test subjects. Change in the estradiol concentration in the test subjects was not significant. The mutagen sensitivity analysis revealed a significant elevation in break per cell (b/c values indi-cating a deficiency in the DNA repair mechanism / DNA damage in PCOS patients. Modification of life style by changing the dietary habit and sedentary life style will help to reduce the oxidative stress and may increase the ovarian function and a sensible life-style management is recommended for reducing the risk for CVD.

  8. Visualizing the search for radiation-damaged DNA bases in real time

    Science.gov (United States)

    Lee, Andrea J.; Wallace, Susan S.

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  9. Design, synthesis, and characterization of nucleosomes containing site-specific DNA damage.

    Science.gov (United States)

    Taylor, John-Stephen

    2015-12-01

    How DNA damaged is formed, recognized, and repaired in chromatin is an area of intense study. To better understand the structure activity relationships of damaged chromatin, mono and dinucleosomes containing site-specific damage have been prepared and studied. This review will focus on the design, synthesis, and characterization of model systems of damaged chromatin for structural, physical, and enzymatic studies.

  10. Transcriptomal profiling of the cellular response to DNA damage mediated by Slug (Snai2)

    OpenAIRE

    Pérez-Caro, M.; Bermejo-Rodríguez, C.; González-Herrero, I; Sánchez-Beato, M; Piris, M. A.; Sánchez-García, I

    2008-01-01

    Snai2-deficient cells are radiosensitive to DNA damage. The function of Snai2 in response to DNA damage seems to be critical for its function in normal development and cancer. Here, we applied a functional genomics approach that combined gene-expression profiling and computational molecular network analysis to obtain global dissection of the Snai2-dependent transcriptional response to DNA damage in primary mouse embryonic fibroblasts (MEFs), which undergo p53-dependent growth arrest in respon...

  11. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells.

    Science.gov (United States)

    Ganesan, Shanthi; Keating, Aileen F

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (Padduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response.

  12. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  13. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  14. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    Science.gov (United States)

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  15. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Institute of Scientific and Technical Information of China (English)

    Tangliang Li; Zhong-Wei Zhou; Zhenyu Ju; Zhao-Qi Wang

    2016-01-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employ-ing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically reg-ulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  16. The DNA damage response in viral-induced cellular transformation.

    Science.gov (United States)

    Nikitin, P A; Luftig, M A

    2012-01-31

    The DNA damage response (DDR) has emerged as a critical tumour suppressor pathway responding to cellular DNA replicative stress downstream of aberrant oncogene over-expression. Recent studies have now implicated the DDR as a sensor of oncogenic virus infection. In this review, we discuss the mechanisms by which tumour viruses activate and also suppress the host DDR. The mechanism of tumour virus induction of the DDR is intrinsically linked to the need for these viruses to promote an S-phase environment to replicate their nucleic acid during infection. However, inappropriate expression of viral oncoproteins can also activate the DDR through various mechanisms including replicative stress, direct interaction with DDR components and induction of reactive oxygen species. Given the growth-suppressive consequences of activating the DDR, tumour viruses have also evolved mechanisms to attenuate these pathways. Aberrant expression of viral oncoproteins may therefore promote tumourigenesis through increased somatic mutation and aneuploidy due to DDR inactivation. This review will focus on the interplay between oncogenic viruses and the DDR with respect to cellular checkpoint control and transformation.

  17. Retinoblastoma loss modulates DNA damage response favoring tumor progression.

    Directory of Open Access Journals (Sweden)

    Marcos Seoane

    Full Text Available Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS, crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.

  18. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  19. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Directory of Open Access Journals (Sweden)

    Tangliang Li

    2016-06-01

    Full Text Available Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal and progenitor progenies (differentiation, which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  20. DNA damage by smoke: Protection by turmeric and other inhibitors of ROS

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, L.; Shalini, V.K. (Department of Nutrition and Food Safety, Central Food Technological Research Institute, Mysore (India))

    1991-01-01

    Twigs-dry leaves smoke condensate (TDS), as a source of clastogenic ROS and carcinogenic PAH, was investigated for its in vitro DNA-damaging effect in calf thymus DNA and human peripheral lymphocytes. An aqueous turmeric component--Aq.T--with an established antioxidant activity, was tested as a DNA protectant. TDS induced 13-fold damage to calf thymus DNA as judged by the emergence of a DNA damage specific, fluorescent product (em: 405 nm). Aq.T at 800 ng/microL extended 69% protection to calf thymus DNA and was comparable to the other protectants such as curcumin, BHA, vitamin E, SOD, and CAT. In human peripheral lymphocytes, TDS induced extensive DNA damage in comparison with the tumor promoter TPA, as judged by FADU. Aq.T at 300 ng/microL extended 90% protection to human lymphocyte DNA against TDS-induced damage, and was more effective than the other protectants--DABCO, D-mannitol, sodium benzoate, vitamin E (ROS quenchers), SOD, CAT (antioxidant enzymes), tannic acid, flufenamic acid, BHA, BHT, n-PG, curcumin and quercetin (antioxidants). Aq.T offered 65% protection to human lymphocyte DNA against TPA-induced damage and was comparable to SOD. The above results indicate that TDS induces substantial DNA damage in calf thymus DNA and human lymphocytes and Aq.T is an efficient protectant.

  1. GENETIC AND MOLECULAR ANALYSIS OF DNA DAMAGE REPAIR AND TOLERANCE PATHWAYS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, B.M.

    2001-07-26

    Radiation can damage cellular components, including DNA. Organisms have developed a panoply of means of dealing with DNA damage. Some repair paths have rather narrow substrate specificity (e.g. photolyases), which act on specific pyrimidine photoproducts in a specific type (e.g., DNA) and conformation (double-stranded B conformation) of nucleic acid. Others, for example, nucleotide excision repair, deal with larger classes of damages, in this case bulky adducts in DNA. A detailed discussion of DNA repair mechanisms is beyond the scope of this article, but one can be found in the excellent book of Friedberg et al. [1] for further detail. However, some DNA damages and paths for repair of those damages important for photobiology will be outlined below as a basis for the specific examples of genetic and molecular analysis that will be presented below.

  2. DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Qiujing Yu

    2015-05-01

    Full Text Available Expression of type I interferons (IFNs can be induced by DNA-damaging agents, but the mechanisms and significance of this regulation are not completely understood. We found that the transcription factor IRF3, activated in an ATM-IKKα/β-dependent manner, stimulates cell-autonomous IFN-β expression in response to double-stranded DNA breaks. Cells and tissues with accumulating DNA damage produce endogenous IFN-β and stimulate IFN signaling in vitro and in vivo. In turn, IFN acts to amplify DNA-damage responses, activate the p53 pathway, promote senescence, and inhibit stem cell function in response to telomere shortening. Inactivation of the IFN pathway abrogates the development of diverse progeric phenotypes and extends the lifespan of Terc knockout mice. These data identify DNA-damage-response-induced IFN signaling as a critical mechanism that links accumulating DNA damage with senescence and premature aging.

  3. Estrogen signalling and the DNA damage response in hormone dependent breast cancers

    Directory of Open Access Journals (Sweden)

    C Elizabeth Caldon

    2014-05-01

    Full Text Available Estrogen is necessary for the normal growth and development of breast tissue, but high levels of estrogen are a major risk factor for breast cancer. One mechanism by which estrogen could contribute to breast cancer is via the induction of DNA damage. This perspective discusses the mechanisms by which estrogen alters the DNA damage response (DDR and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1, BRCA1 and p53 and the feedback on estrogen receptor signalling from these proteins. We put forward the hypothesis that estrogen receptor signalling converges to suppress effective DNA repair and apoptosis in favour of proliferation. This is important in hormone-dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or altered in estrogen responsive breast cancer which will further change the processing of DNA damage. Finally the action of estrogen signalling on DNA damage is also relevant to the therapeutic setting as the suppression of a DNA damage response by estrogen has the potential to alter the response of cancers to anti-hormone treatment or chemotherapy that induces DNA damage.

  4. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  5. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    Science.gov (United States)

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.

  6. Sperm DNA damage has a negative association with live-birth rates after IVF.

    Science.gov (United States)

    Simon, L; Proutski, I; Stevenson, M; Jennings, D; McManus, J; Lutton, D; Lewis, S E M

    2013-01-01

    Sperm DNA damage has a negative impact on pregnancy rates following assisted reproduction treatment (ART). The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage. Following IVF, couples with rate of 33%; in contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13%. Following ICSI, no significant differences in sperm DNA damage were found between any groups of patients. Sperm DNA damage was also associated with low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men with idiopathic infertility have high sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Sperm DNA damage has a negative impact on assisted reproduction treatment outcome, in particular, on pregnancy rates. The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage and treatment outcome. Following IVF, couples with rate of 33%. In contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13% following IVF. Following ICSI, there were no significant differences in levels of sperm DNA damage between any groups of

  7. Multiscale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    CERN Document Server

    Surdutovich, E; Solov'yov, A V

    2010-01-01

    We present the latest advances of the multiscale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the most recent advances in the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multiscale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This method can be used for the calculation of irreparable DNA damage. We include thermal spikes, predicted to occur in tissue for a short time after ion's passage in the vicinity of the ions' tracks in our previous work, into modeling of the thermal environment for molecular dynamics analysis of ubiquitin and discuss the first results of these simulations.

  8. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response

    DEFF Research Database (Denmark)

    Beli, Petra; Lukashchuk, Natalia; Wagner, Sebastian A

    2012-01-01

    The regulatory networks of the DNA damage response (DDR) encompass many proteins and posttranslational modifications. Here, we use mass spectrometry-based proteomics to analyze the systems-wide response to DNA damage by parallel quantification of the DDR-regulated phosphoproteome, acetylome, and ...

  9. Uhrf2 is important for DNA damage response in vascular smooth muscle cells.

    Science.gov (United States)

    Luo, Tao; Cui, Shijun; Bian, Chunjing; Yu, Xiaochun

    2013-11-08

    Emerging evidence shows that Uhrf1 plays an important role in DNA damage response for maintaining genomic stability. Interestingly, Uhrf1 has a paralog Uhrf2 in mammals. Uhrf1 and Uhrf2 share similar domain architectures. However, the role of Uhrf2 in DNA damage response has not been studied yet. During the analysis of the expression level of Uhrf2 in different tissues, we found that Uhrf2 is highly expressed in aorta and aortic vascular smooth muscle cells. Thus, we studied the role of Uhrf2 in DNA damage response in aortic vascular smooth muscle cells. Using laser microirradiation, we found that like Uhrf1, Uhrf2 was recruited to the sites of DNA damage. We dissected the functional domains of Uhrf2 and found that the TTD, PHD and SRA domains are important for the relocation of Uhrf2 to the sites of DNA damage. Moreover, depletion of Uhrf2 suppressed DNA damage-induced H2AX phosphorylation and DNA damage repair. Taken together, our results demonstrate the function of Uhrf2 in DNA damage response.

  10. p53 activates G₁ checkpoint following DNA damage by doxorubicin during transient mitotic arrest.

    Science.gov (United States)

    Hyun, Sun-Yi; Jang, Young-Joo

    2015-03-10

    Recovery from DNA damage is critical for cell survival. The serious damage is not able to be repaired during checkpoint and finally induces cell death to prevent abnormal cell growth. In this study, we demonstrated that 8N-DNA contents are accumulated via re-replication during prolonged recovery period containing serious DNA damage in mitotic cells. During the incubation for recovery, a mitotic delay and initiation of an abnormal interphase without cytokinesis were detected. Whereas a failure of cytokinesis occurred in cells with no relation with p53/p21, re-replication is an anomalous phenomenon in the mitotic DNA damage response in p53/p21 negative cells. Cells with wild-type p53 are accumulated just prior to the initiation of DNA replication through a G₁ checkpoint after mitotic DNA damage, even though p53 does not interrupt pre-RC assembly. Finally, these cells undergo cell death by apoptosis. These data suggest that p53 activates G₁ checkpoint in response to mitotic DNA damage. Without p53, cells with mitotic DNA damage undergo re-replication leading to accumulation of damage.

  11. DNA repair pathways in radiation induced cellular damage: a molecular approach

    NARCIS (Netherlands)

    L.R. van Veelen (Lieneke)

    2005-01-01

    markdownabstract__Abstract__ DNA damage, especially double-strand breaks, can be induced by endogenous or exogenous darnaging agents, such as ionizing radiation. Repair of DNA damage is very important in maintaining genomic stability. Incorrect repair may lead to chromosomal aberrations, translocat

  12. DNA damage induction and tumour cell radiosensitivity : PFGE and halo measurements

    NARCIS (Netherlands)

    Woudstra, EC; Driessen, C; Konings, AWT; Kampinga, HH

    1998-01-01

    Purpose: To test whether induction of DNA damage is correlated with tumour-cell radiosensitivity. Materials and methods: Initial DNA damage caused by X-irradiation was measured in ten human tumour cell lines, which largely differed in radiosensitivity, using either the pulsed-field gel electrophores

  13. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage

    NARCIS (Netherlands)

    M. Tresini (Maria); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2016-01-01

    textabstractIn response to DNA damage cells activate intricate protein networks to ensure genomic fidelity and tissue homeostasis. DNA damage response signaling pathways coordinate these networks and determine cellular fates, in part, by modulating RNA metabolism. Here we discuss a replication-indep

  14. Neurotoxin-induced DNA damage is persistentin SH-SY5Y cells and LC neurons

    Science.gov (United States)

    Wang, Yan; Musich, Phillip R.; Cui, Kui; Zou, Yue; Zhu, Meng-Yang

    2015-01-01

    Degeneration of the noradrenergic neurons has been reported in the brain of patients suffering from neurodegenerative diseases. However, their pathologic characteristics during the neurodegenerative course and underlying mechanisms remain to be elucidated. In the present study, we used the neurotoxincamptothecin (CPT)to induce the DNA damage response in neuroblastoma SH-SY5Y cells, normal fibroblast cells, and primarily cultured LC and raphe neurons to examine cellular responses and repair capabilities after neurotoxin exposure. To our knowledge, the present study is the first to show that noradrenergic SH-SY5Y cells are more sensitive to CPT-induced DNA damage and deficientin DNA repair, as compared to fibroblast cells. Furthermore, similar to SH-SY5Y cells, primarily cultured LC neurons are more sensitive to CPT-induced DNA damage and show a deficiency in repairing this damage. Moreover, while N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) exposure also results in DNA damage in cultured LC neurons, neither CPT nor DSP4 induce DNA damage in neuronal cultures from the raphe nuclei. Taken together, noradrenergic SH-SY5Y cells and LC neurons are sensitive to CPT-induced DNA damage and exhibit a repair deficiency, providing a mechanistic explanation for the pathologic characteristics of LC degeneration when facing endogenous and environmental DNA-damaging insultsin vivo. PMID:25724887

  15. Chk2 Activation Dependence on Nbs1 after DNA Damage

    Science.gov (United States)

    Buscemi, Giacomo; Savio, Camilla; Zannini, Laura; Miccichè, Francesca; Masnada, Debora; Nakanishi, Makoto; Tauchi, Hiroshi; Komatsu, Kenshi; Mizutani, Shuki; Khanna, KumKum; Chen, Phil; Concannon, Patrick; Chessa, Luciana; Delia, Domenico

    2001-01-01

    The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G1 arrest. Here we show that the ATM-dependent activation of Chk2 by γ- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells. Interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1. Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2. PMID:11438675

  16. Colorimetric detection of DNA damage by using hemin-graphene nanocomposites

    Science.gov (United States)

    Wei, W.; Zhang, D. M.; Yin, L. H.; Pu, Y. P.; Liu, S. Q.

    2013-04-01

    A colorimetric method for detection of DNA damage was developed by using hemin-graphene nanosheets (H-GNs). H-GNs were skillfully synthesized by adsorping of hemin on graphene through π-π interactions. The as-prepared H-GNs possessed both the ability of graphene to differentiate the damage DNA from intact DNA and the catalytic action of hemin. The damaged DNA made H-GNs coagulated to different degrees from the intact DNA because there were different amount of negative charge exposed on their surface, which made a great impact on the solubility of H-GNs. As a result, the corresponding centrifugal supernatant of H-GNs solution showed different color in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, which could be discriminated by naked eyes or by ultraviolet (UV)-visible spectrometer. Based on this, the damaged effects of styrene oxide (SO), NaAsO2 and UV radiation on DNA were studied. Results showed that SO exerted most serious damage effect on DNA although all of them damaged DNA seriously. The new method for detection of DNA damage showed good prospect in the evaluation of genotoxicity of new compounds, the maximum limit of pesticide residue, food additives, and so on, which is important in the fields of food science, pharmaceutical science and pesticide science.

  17. Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage

    Directory of Open Access Journals (Sweden)

    Olsen Birgitte B

    2012-03-01

    Full Text Available Abstract Background The DNA-dependent protein kinase (DNA-PK is a nuclear complex composed of a large catalytic subunit (DNA-PKcs and a heterodimeric DNA-targeting subunit Ku. DNA-PK is a major component of the non-homologous end-joining (NHEJ repair mechanism, which is activated in the presence of DNA double-strand breaks induced by ionizing radiation, reactive oxygen species and radiomimetic drugs. We have recently reported that down-regulation of protein kinase CK2 by siRNA interference results in enhanced cell death specifically in DNA-PKcs-proficient human glioblastoma cells, and this event is accompanied by decreased autophosphorylation of DNA-PKcs at S2056 and delayed repair of DNA double-strand breaks. Results In the present study, we show that CK2 co-localizes with phosphorylated histone H2AX to sites of DNA damage and while CK2 gene knockdown is associated with delayed DNA damage repair, its overexpression accelerates this process. We report for the first time evidence that lack of CK2 destabilizes the interaction of DNA-PKcs with DNA and with Ku80 at sites of genetic lesions. Furthermore, we show that CK2 regulates the phosphorylation levels of DNA-PKcs only in response to direct induction of DNA double-strand breaks. Conclusions Taken together, these results strongly indicate that CK2 plays a prominent role in NHEJ by facilitating and/or stabilizing the binding of DNA-PKcs and, possibly other repair proteins, to the DNA ends contributing to efficient DNA damage repair in mammalian cells.

  18. Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response.

    Science.gov (United States)

    Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E; Harper, J Wade; Elledge, Stephen J

    2014-12-30

    The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage.

  19. Influence of the presence of B chromosomes on DNA damage in Crepis capillaris.

    Directory of Open Access Journals (Sweden)

    Jolanta Kwasniewska

    Full Text Available The sensitivity of different plant species to mutagenic agents is related to the DNA content and organization of the chromatin, which have been described in ABCW and bodyguard hypotheses, respectively. Plant species that have B chromosomes are good models for the study of these hypotheses. This study presents an analysis of the correlation between the occurrence of B chromosomes and the DNA damage that is induced by the chemical mutagen, maleic hydrazide (MH, in Crepis capillaris plants using comet assay. The presence of B chromosomes has a detectable impact on the level of DNA damage. The level of DNA damage after MH treatment was correlated with the number of B chromosomes and it was observed that it increased significantly in plants with 3B chromosomes. We did not find evidence of the protective role from chemical mutagens of the constitutive heterochromatin for euchromatin in relation to DNA damage. The DNA damage involving the 25S rDNA sequences was analyzed using the comet-FISH technique. Fragmentation within or near the 25S rDNA involved the loci on the A and B chromosomes. The presence of B chromosomes in C. capillaris cells had an influence on the level of DNA damage that involves the 25S rDNA region.

  20. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency...... was observed for the level of hOGG1-sensitive sites, whereas there was no association with the level of strand breaks. The effect of age on oxidatively damaged DNA in women disappeared in multivariate models, which showed robust positive associations between DNA damage and plasma levels of triglycerides...

  1. DNA Binding and Photocleavage Properties, Cellular Uptake and Localization, and in-Vitro Cytotoxicity of Dinuclear Ruthenium(II) Complexes with Varying Lengths in Bridging Alkyl Linkers.

    Science.gov (United States)

    Liu, Ping; Wu, Bao-Yan; Liu, Jin; Dai, Yong-Cheng; Wang, You-Jun; Wang, Ke-Zhi

    2016-02-15

    Two new dinuclear Ru(II) polypyridyl complexes containing three and ten methylene chains in their bridging linkers are synthesized and characterized. Their calf thymus DNA-binding and plasmid DNA photocleavage behaviors are comparatively studied with a previously reported, six-methylene-containing analog by absorption and luminescence spectroscopy, steady-state emission quenching by [Fe(CN)6](4-), DNA competitive binding with ethidium bromide, DNA viscosity measurements, DNA thermal denaturation, and agarose gel electrophoresis analyses. Theoretical calculations applying the density functional theory (DFT) method for the three complexes are also performed to understand experimentally observed DNA binding properties. The results show that the two complexes partially intercalate between the base pairs of DNA. Cellular uptake and colocalization studies have demonstrated that the complexes could enter HeLa cells efficiently and localize within lysosomes. The in-vitro antitumor activity against HeLa and MCF-7 tumor cells of the complexes are studied by MTT cytotoxic analysis. A new method, high-content analysis (HCA), is also used to assess cytotoxicity, apoptosis and cell cycle arrest of the three complexes. The results show that the lengths of the alkyl linkers could effectively tune their biological properties and that HCA is suitable for rapidly identifying cytotoxicity and can be substituted for MTT assays to evaluate the cell cytotoxicity of chemotherapeutic agents.

  2. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Nikita A Kuznetsov

    Full Text Available Human 8-oxoguanine DNA glycosylase (hOGG1 is a key enzyme responsible for initiating the base excision repair of 7,8-dihydro-8-oxoguanosine (oxoG. In this study a thermodynamic analysis of the interaction of hOGG1 with specific and non-specific DNA-substrates is performed based on stopped-flow kinetic data. The standard Gibbs energies, enthalpies and entropies of specific stages of the repair process were determined via kinetic measurements over a temperature range using the van't Hoff approach. The three steps which are accompanied with changes in the DNA conformations were detected via 2-aminopurine fluorescence in the process of binding and recognition of damaged oxoG base by hOGG1. The thermodynamic analysis has demonstrated that the initial step of the DNA substrates binding is mainly governed by energy due to favorable interactions in the process of formation of the recognition contacts, which results in negative enthalpy change, as well as due to partial desolvation of the surface between the DNA and enzyme, which results in positive entropy change. Discrimination of non-specific G base versus specific oxoG base is occurring in the second step of the oxoG-substrate binding. This step requires energy consumption which is compensated by the positive entropy contribution. The third binding step is the final adjustment of the enzyme/substrate complex to achieve the catalytically competent state which is characterized by large endothermicity compensated by a significant increase of entropy originated from the dehydration of the DNA grooves.

  3. BRCA1 in the DNA damage response and at telomeres

    Directory of Open Access Journals (Sweden)

    Eliot Michael Rosen

    2013-06-01

    Full Text Available Abstract. Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1 account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s is (are most important for tumor suppression, nor is it clear why BRCA1 mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR, which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.

  4. Danos ao DNA promovidos por ácido 5-aminolevulínico: possível associação com o desenvolvimento de carcinoma hepatocelular em portadores de porfiria aguda intermitente DNA damage induced by 5-aminolevulinic acid: a possible association with the development of hepatocellular carcinoma in acute intermittent porphyria patients

    Directory of Open Access Journals (Sweden)

    Janice Onuki

    2002-07-01

    Full Text Available 5-Aminolevulinic acid (ALA is a heme precursor accumulated in acute intermittent porphyria (AIP, which might be associated with hepatocellular carcinoma (HCC in symptomatic patients. Under metal catalyzed oxidation, ALA and its cyclic dimerization product, 3,6-dihydropyrazine-2,5-dipropanoic acid, produce reactive oxygen species that damage plasmid and calf thymus DNA bases, increase the steady state level of 8-oxo-7,8-dihydro-2´-deoxyguanosine in liver DNA and promote mitochondrial DNA damage. The final product of ALA, 4,5-dioxovaleric acid (DOVA, is able to alkylate guanine moieties, producing adducts. ALA and DOVA are mutagenic in bacteria. This review shows an up-to-date literature data that reinforce the hypothesis that the DNA damage induced by ALA may be associated with the development of HCC in AIP patients.

  5. An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay

    DEFF Research Database (Denmark)

    Johansson, Clara; Møller, Peter; Forchhammer, Lykke;

    2010-01-01

    The increasing use of single cell gel electrophoresis (the comet assay) highlights its popularity as a method for detecting DNA damage, including the use of enzymes for assessment of oxidatively damaged DNA. However, comparison of DNA damage levels between laboratories can be difficult due...... assay end points to number of lesions/10(6) bp by calibration with ionizing radiation. The aim of this study was to investigate the inter-laboratory variation in assessment of oxidatively damaged DNA by the comet assay in terms of oxidized purines converted to strand breaks with formamidopyrimidine DNA...... to differences in assay protocols (e.g. lysis conditions, enzyme treatment, the duration of the alkaline treatment and electrophoresis) and in the end points used for reporting results (e.g. %DNA in tail, arbitrary units, tail moment and tail length). One way to facilitate comparisons is to convert primary comet...

  6. Seasonal variations of DNA damage in human lymphocytes: Correlation with different environmental variables

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisa.giovannelli@unifi.it; Pitozzi, Vanessa [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Florence (Italy); Boddi, Vieri [Department of Public Health, University of Florence, Florence (Italy); Dolara, Piero [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy)

    2006-01-29

    Several types of DNA damage, including DNA breaks and DNA base oxidation, display a seasonal trend. In the present work, a sample of 79 healthy subjects living in the city of Florence, Italy, was used to analyse this effect. Three possible causative agents were taken into consideration: solar radiation, air temperature and air ozone level. DNA damage was measured in isolated human lymphocytes at different times during the year and the observed damage was correlated with the levels of these three agents in the days preceding blood sampling. Three time windows were chosen: 3, 7 and 30 days before blood sampling. DNA strand breaks and the oxidized purinic bases cleaved by the formamidopyrimidine glycosylase (FPG sites) were measured by means of the comet assay. The results of multivariate regression analysis showed a positive correlation between lymphocyte DNA damage and air temperature, and a less strong correlation with global solar radiation and air ozone levels.

  7. Cytotoxicity and DNA damage associated with pyrazoloacridine in MCF-7 breast cancer cells.

    Science.gov (United States)

    Grem, J L; Politi, P M; Berg, S L; Benchekroun, N M; Patel, M; Balis, F M; Sinha, B K; Dahut, W; Allegra, C J

    1996-06-28

    We examined the effects of pyrazoloacridine (PZA), an investigational anticancer agent in clinical trials, on cytotoxicity, DNA synthesis, and DNA damage in MCF-7 human breast carcinoma cells. With PZA concentrations ranging from 0.5 to 50 microM for durations of 3-72 hr, cytotoxicity increased in proportion to the total PZA exposure (concentration x time). Inhibition of DNA and RNA syntheses increased with increasing PZA concentration x time (microM.hr). A 24-hr exposure to 1 and 10 microM PZA reduced DNA synthesis to 62 and 5% of control, respectively, decreased the proportion of cells in S phase with accumulation of cells in G2 + M phase, and inhibited cell growth at 72 hr by 68 and 100%. Newly synthesized DNA was more susceptible to damage during PZA exposure, with subsequent induction of parental DNA damage. Significant damage to newly synthesized DNA as monitored by alkaline elution was evident after a 3-hr exposure to > or = 5 microM PZA. Longer PZA exposures (> or = 10 microM for 16 hr) were required to elicit damage to parental DNA. Induction of single-strand breaks in parental DNA correlated closely with induction of double-strand breaks and detachment of cells from the monolayer. PZA-mediated DNA fragmentation was not accompanied by the generation of oligonucleosomal laddering in MCF-7 cells, but induction of very high molecular weight DNA fragmentation (0.5 to 1 Mb) was detected by pulsed-field gel electrophoresis. In vitro binding of PZA to linear duplex DNA (1 kb DNA ladder) and closed, circular plasmid DNA was demonstrated by a shift in migration during agarose electrophoresis. PZA interfered with topoisomerase I- and II-mediated relaxation of plasmid DNA in a cell-free system, but the cytotoxic effects of PZA did not appear to involve a direct interaction with topoisomerase I or II (stabilization of the topoisomerase I- or II-DNA cleavable complex). PZA-mediated cytotoxicity correlated strongly with inhibition of DNA and RNA syntheses, and damage to

  8. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise;

    2015-01-01

    damaged DNA in peripheral blood mononuclear cells (PBMCs). We isolated PBMCs from subjects aged 18-83 years, as part of a health survey of the Danish population that focussed on lifestyle factors. The level of DNA repair activity was measured as incisions on potassium bromate-damaged DNA by the comet...... assay. There was an inverse association between age and DNA repair activity with a 0.65% decline in activity per year from age 18 to 83 (95% confidence interval: 0.16-1.14% per year). Univariate regression analysis also indicated inverse associations between DNA repair activity and waist-hip ratio (P...

  9. Effects of exposure to a DNA damaging agent on the hypoxia inducible factors in organogenesis stage mouse limbs.

    Directory of Open Access Journals (Sweden)

    Chunwei Huang

    Full Text Available Hypoxia plays a critical role in coordinating cell survival, differentiation and death in normal embryogenesis; during limb pattern formation, hypoxia affects two key processes, chondrogenesis and cell death. Hypoxia promotes chondrocyte differentiation and cartilage matrix synthesis and suppresses terminal differentiation. Depending on the context, hypoxia may induce cell cycle arrest, pro- or anti-apoptotic genes, or autophagy. The response to hypoxia is controlled by hypoxia inducible transcription factors, specifically Hif1a, Hif2a and Hif3a. Under normoxia, the hypoxia-inducible factors respond to a variety of stimuli that include several well established teratogens, such as retinoic acid, heavy metals and hyperglycemia. We hypothesize that teratogenic exposures disrupt limb development by altering the hypoxia signalling pathway. To test this hypothesis, we assessed the effects of a DNA damaging alkylating agent, 4-hydroperoxycyclophosphamide, on the hypoxia inducible factor (HIF transcription factors and on hypoxia in the murine limb bud culture system. 4-Hydroperoxycyclophosphamide exposure increased HIF1 DNA binding activity and HIF1A and HIF2A, but not HIF3A, protein concentrations. HIF1A and HIF2A immunoreactivities were detected in the apical ectodermal ridge and interdigital regions, where cell death sculpts the limb; 4-hydroperoxycyclophosphamide treatment enhanced their immunoreactivities, specifically in these regions. In contrast, hypoxia was localized to areas of chondrogenesis, the cartilaginous anlagen of the developing long bone and phalanges, and was not enhanced by drug exposure. Thus, the exposure of limb buds in vitro to a DNA damaging teratogen triggered a hypoxia signalling response that was associated with cell death. During limb development the HIFs have oxygen-independent functions.

  10. DNA damage in human cells. Progress report, August 1983-August 1984

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, L.A.

    1986-08-01

    Studies reported center on the relationship between DNA damage and mutagenesis. The mutagenic potential of apurinic sites was documented in a variety of systems. Studies on the enhancement of depurination by metal ions was continued. Recombiant DNA techniques were used for measuring nucleotide substitution in human mitochondrial DNA.

  11. ATP-dependent chromatin remodeling in the DNA-damage response

    NARCIS (Netherlands)

    H. Lans (Hannes); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2012-01-01

    textabstractThe integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired prope

  12. DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing.

    Science.gov (United States)

    Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming

    2016-07-22

    The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress.

  13. Preserving Yeast Genetic Heritage through DNA Damage Checkpoint Regulation and Telomere Maintenance

    Directory of Open Access Journals (Sweden)

    Huilin Zhou

    2012-10-01

    Full Text Available In order to preserve genome integrity, extrinsic or intrinsic DNA damages must be repaired before they accumulate in cells and trigger other mutations and genome rearrangements. Eukaryotic cells are able to respond to different genotoxic stresses as well as to single DNA double strand breaks (DSBs, suggesting highly sensitive and robust mechanisms to detect lesions that trigger a signal transduction cascade which, in turn, controls the DNA damage response (DDR. Furthermore, cells must be able to distinguish natural chromosomal ends from DNA DSBs in order to prevent inappropriate checkpoint activation, DDR and chromosomal rearrangements. Since the original discovery of RAD9, the first DNA damage checkpoint gene identified in Saccharomyces cerevisiae, many genes that have a role in this pathway have been identified, including MRC1, MEC3, RAD24, RAD53, DUN1, MEC1 and TEL1. Extensive studies have established most of the genetic basis of the DNA damage checkpoint and uncovered its different functions in cell cycle regulation, DNA replication and repair, and telomere maintenance. However, major questions concerning the regulation and functions of the DNA damage checkpoint remain to be answered. First, how is the checkpoint activity coupled to DNA replication and repair? Second, how do cells distinguish natural chromosome ends from deleterious DNA DSBs? In this review we will examine primarily studies performed using Saccharomyces cerevisiae as a model system.

  14. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  15. HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress.

    Science.gov (United States)

    Khanra, Kalyani; Chakraborty, Anindita; Bhattacharyya, Nandan

    2015-01-01

    The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta (polβ Δ208-304) specific for ovarian cancer. Pol β Δ208-304 has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. Polβ Δ208-304 cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards H2O2 and UV when compared with HeLa cells alone. It has been shown that cell death in Pol β Δ208-304 transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.

  16. Association Between Polymorphisms of DNA Repair Gene XRCC1 and DNA Damage in Asbestos-Exposed Workers

    Institute of Scientific and Technical Information of China (English)

    XIAO-HONG ZHAO; GUANG JIA; YONG-QUAN LIU; SHAO-WEI LIU; LEI YAN; YU JIN; NIAN LIU

    2006-01-01

    Objective To compare the asbestos-induced DNA damage and repair capacities of DNA damage between 104 asbestos exposed workers and 101 control workers in Qingdao City of China and to investigate the possible association between polymorphisms in codon 399 of XRCC1 and susceptibility to asbestosis. Methods DNA damage levels in peripheral bloodlymphocytes were determined by comet assay, and XRCC 1 genetic polymorphisms of DNA samples from 51 asbestosis cases and 53 non-asbestosis workers with a similar asbestos exposure history were analyzed by PCR/RFLP. Results The basal comet scores (3.95±2.95) were significantly higher in asbestos-exposed workers than in control workers (0.10±0.28). After 1 h H2O2 stimulation, DNA damage of lymphocytes exhibited different increases. After a 4 h repair period, the comet scores were 50.98±19.53 in asbestos-exposed workers and 18.32±12.04 in controls. The residual DNA damage (RD) was significantly greater (P<0.01) in asbestos-exposed workers (35.62%) than in controls (27.75%). XRCC1 genetic polymorphism in 104 asbestos-exposed workers was not associated with increased risk of asbestosis. But compared with polymorphisms in the DNA repair gene XRCC1 (polymorphisms in codon 399) and the DNA damage induced by asbestos, the comet scores in asbestosis cases with Gln/Gln, Gln/Arg, and Arg/Arg were 40.26±18.94, 38.03±28.22, and 32.01±11.65, respectively, which were higher than those in non-asbestosis workers with the same genotypes (25.58±11.08, 37.08±14.74, and 29.38±10.15). There were significant differences in the comet scores between asbestosis cases and non-asbestosis workers with Gln/Gln by Student's t-test (P<0.05 or 0.01). The comet scores were higher in asbestosis workers with Gln/Gln than in those with Arg/Arg and in non-asbestosis workers exposed to asbestos, but without statistically significant difference. Conclusions Exposure to asbestos may be related to DNA damage or the capacity of cells to repair H2O2-induced

  17. Photoelectrochemical Sensors for the Rapid Detection of DNA Damage Induced by Some Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Jamaluddin Ahmed

    2010-06-01

    Full Text Available Photoelectrochemcal sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy2 (dppz2+ [bpy=2, 2′ -bipyridine, dppz=dipyrido( 3, 2-a: 2′ 3′-c phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy2 (dppz2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time – dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polysterene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals.

  18. Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay

    Science.gov (United States)

    Wada, S.; Natsuhori, M.; Ito, N.; Funayama, T.; Kobayashi, Y.

    2003-05-01

    Investigating the biological effects of high-LET heavy ion irradiation at low fluence is important to evaluate the risk of charged particles. Especially it is important to detect radiation damage induced by the precise number of heavy ions in the individual cells. Thus we studied the relationship between the number of ions traversing the cell and DNA damage produced by the ion irradiation. We applied comet assay to measure the DNA damage in the individual cells. Cells attached on the ion track detector CR-39 were irradiated with ion beams at TIARA, JAERI-Takasaki. After irradiation, the cells were stained with ethidium bromide and the opposite side of the CR-39 was etched. We observed that the heavy ions with higher LET values induced the heavier DNA damage. The result indicated that the amount of DNA damage induced by one particle increased with the LET values of the heavy ions.

  19. Ciliogenesis and the DNA damage response: a stressful relationship.

    Science.gov (United States)

    Johnson, Colin A; Collis, Spencer J

    2016-01-01

    Both inherited and sporadic mutations can give rise to a plethora of human diseases. Through myriad diverse cellular processes, sporadic mutations can arise through a failure to accurately replicate the genetic code or by inaccurate separation of duplicated chromosomes into daughter cells. The human genome has therefore evolved to encode a large number of proteins that work together with regulators of the cell cycle to ensure that it remains error-free. This is collectively known as the DNA damage response (DDR), and genome stability mechanisms involve a complex network of signalling and processing factors that ensure redundancy and adaptability of these systems. The importance of genome stability mechanisms is best illustrated by the dramatic increased risk of cancer in individuals with underlying disruption to genome maintenance mechanisms. Cilia are microtubule-based sensory organelles present on most vertebrate cells, where they facilitate transduction of external signals into the cell. When not embedded within the specialised ciliary membrane, components of the primary cilium's basal body help form the microtubule organising centre that controls cellular trafficking and the mitotic segregation of chromosomes. Ciliopathies are a collection of diseases associated with functional disruption to cilia function through a variety of different mechanisms. Ciliopathy phenotypes can vary widely, and although some cellular overgrowth phenotypes are prevalent in a subset of ciliopathies, an increased risk of cancer is not noted as a clinical feature. However, recent studies have identified surprising genetic and functional links between cilia-associated proteins and genome maintenance factors. The purpose of this mini-review is to therefore highlight some of these discoveries and discuss their implications with regards to functional crosstalk between the DDR and ciliogenesis pathways, and how this may impact on the development of human disease.

  20. EFFECT OF GLYCYRRHETINIC ACID ON DNA DAMAGE AND UNSCHEDULED DNA SYNTHESIS INDUCED BY BENZO (α) PYRENE

    Institute of Scientific and Technical Information of China (English)

    陈晓光; 韩锐

    1995-01-01

    Glycyrrhetinic acid (GA) is an active component of Glycyrrhiza uraleusis fisch. In this study, GA was found to inhibit ear edema and ornithine decarboxykase (ODC)activity induced by croton oil in mice. GA could also protect rapid DNA damage and decrease the unscheduled DNA synthesis induced by benzo(α)pyrene, The results demonstrate that GA has a potential cancer chemopreventive activity.

  1. Increased DNA damage in blood cells of rat treated with lead as assessed by comet assay

    Directory of Open Access Journals (Sweden)

    Mohammad Arif

    2008-06-01

    Full Text Available A growing body of evidence suggests that oxidative stress is the key player in the pathogenesis of lead-induced toxicity. The present study investigated lead induced oxidative DNA damage, if any in rat blood cells by alkaline comet assay. Lead was administered intraperitoneally to rats at doses of 25, 50 and 100 mg/kg body weight for 5 days consecutively. Blood collected on day six from sacrificed lead-treated rats was used to assess the extent of DNA damage by comet assay which entailed measurement of comet length, olive tail moment, tail DNA (% and tail length. The results showed that treatment with lead significantly increased DNA damage in a dose-dependent manner. Therefore, our data suggests that lead treatment is associated with oxidative stress-induced DNA damage in rat blood cells which could be used as an early bio-marker of lead-toxicity.

  2. The DNA damage response pathways: at the crossroad of protein modifications

    Institute of Scientific and Technical Information of China (English)

    Michael SY Huen; Junjie Chen

    2008-01-01

    Post-translational modifications play a crucial role in coordinating cellular response to DNA damage. Recent evidence suggests an interplay between multiple protein modifications, including phosphorylation, ubiquitylation, acetylation and sumoylation, that combine to propagate the DNA damage signal to elicit cell cycle arrest, DNA repair, apoptosis and senescence. Utility of specific post-translational modifiers allows temporal and spatial control over protein relo-calization and interactions, and may represent a means for trans-regulatory activation of protein activities. The abil-ity to recognize these specific modifiers also underscores the capacity for signal amplification, a crucial step for the maintenance of genomic stability and tumor prevention. Here we have summarized recent findings that highlight the complexity of post-translational modifications in coordinating the DNA damage response, with emphasis on the DNA damage signaling cascade.

  3. Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli.

    Science.gov (United States)

    Schalow, Brandy J; Courcelle, Charmain T; Courcelle, Justin

    2012-05-01

    Transcription-coupled repair (TCR) is a cellular process by which some forms of DNA damage are repaired more rapidly from transcribed strands of active genes than from nontranscribed strands or the overall genome. In humans, the TCR coupling factor, CSB, plays a critical role in restoring transcription following both UV-induced and oxidative DNA damage. It also contributes indirectly to the global repair of some forms of oxidative DNA damage. The Escherichia coli homolog, Mfd, is similarly required for TCR of UV-induced lesions. However, its contribution to the restoration of transcription and to global repair of oxidative damage has not been examined. Here, we report the first direct study of transcriptional recovery following UV-induced and oxidative DNA damage in E. coli. We observed that mutations in mfd or uvrA reduced the rate that transcription recovered following UV-induced damage. In contrast, no difference was detected in the rate of transcription recovery in mfd, uvrA, fpg, nth, or polB dinB umuDC mutants relative to wild-type cells following oxidative damage. mfd mutants were also fully resistant to hydrogen peroxide (H(2)O(2)) and removed oxidative lesions from the genome at rates comparable to wild-type cells. The results demonstrate that Mfd promotes the rapid recovery of gene expression following UV-induced damage in E. coli. In addition, these findings imply that Mfd may be functionally distinct from its human CSB homolog in that it does not detectably contribute to the recovery of gene expression or global repair following oxidative damage.

  4. The ability of sperm selection techniques to remove single-or double-strand DNA damage

    Institute of Scientific and Technical Information of China (English)

    Maria Enciso; Miriam Iglesias; Isabel Galin; Jonas Sarasa; Antonio Gosalvez; Jaime Gosalvez

    2011-01-01

    @@ A wide variety of techniques for the preparation of sperm are currently available,of which the most commonly employed are densitygradient centrifugation (DGC) and swim-up (SUP).To date,these methods appear to be effective in selecting functional sperm for assisted reproduction techniques (ART),but they may have negative effects on sperm DNA.In this study,the ability of these semen processing techniques to eliminate spermatozoa containing single- and double-strand DNA damage was assessed by the two-tailed comet assay and the sperm chromatin dispersion test in 1[57]semen samples from patients seeking assisted reproduction treatment.Our results indicated that SUP and DGC are equally efficient in eliminating spermatozoa containing double-strand DNA damage and sperm with highly damaged (degraded) DNA,as characterized by the presence of both single- and double-strand DNA breaks.However,DGC is more efficient than SUP in selecting spermatozoa that are free from single-strand DNA damage.Future studies should characterise the importance of the various types of DNA damage and examine the sperm processing protocols used in each laboratory to determine their ability to eliminate DNA damage and hence,prevent the potential transmission of genetic mutations via ART.

  5. Response to DNA damage: why do we need to focus on protein phosphatases?

    Directory of Open Access Journals (Sweden)

    Midori eShimada

    2013-01-01

    Full Text Available Eukaryotic cells are continuously threatened by unavoidable errors during normal DNA replication or various sources of genotoxic stresses that cause DNA damage or stalled replication. To maintain genomic integrity, cells have developed a coordinated signaling network, known as the DNA damage response (DDR. Following DNA damage, sensor molecules detect the presence of DNA damage and transmit signals to downstream transducer molecules. This in turn conveys the signals to numerous effectors, which initiate a large number of specific biological responses, including transient cell cycle arrest mediated by checkpoints, DNA repair, and apoptosis. It is recently becoming clear that dephosphorylation events are involved in keeping DDR factors inactive during normal cell growth. Moreover, dephosphorylation is required to shut off checkpoint arrest following DNA damage and has been implicated in the activation of the DDR. Spatial and temporal regulation of phosphorylation events is essential for the DDR, and fine-tuning of phosphorylation is partly mediated by protein phosphatases. While the role of kinases in the DDR has been well documented, the complex roles of protein dephosphorylation have only recently begun to be investigated. Therefore, it is important to focus on the role of phosphatases and to determine how their activity is regulated upon DNA damage. In this work, we summarize current knowledge on the involvement of serine/threonine phosphatases, especially the protein phosphatase 1, protein phosphatase 2A, and protein phosphatase Mg2+/Mn2+-dependent families, in the DDR.

  6. International congress on DNA damage and repair: Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  7. Inhibition of the mitochondrial respiratory chain function abrogates quartz induced DNA damage in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Hui [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Haberzettl, Petra [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Albrecht, Catrin [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Hoehr, Doris [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Knaapen, Ad M. [Department of Health Risk Analysis and Toxicology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), University of Maastricht (Netherlands); Borm, Paul J.A. [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Hogeschool Zuyd Heerlen (Netherlands); Schins, Roel P.F. [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany)]. E-mail: roel.schins@uni-duesseldorf.de

    2007-04-01

    Respirable quartz dust has been classified as a human carcinogen by the International Agency for Research on Cancer. The aim of our study was to investigate the mechanisms of DNA damage by DQ12 quartz in RLE-6TN rat lung epithelial type II cells (RLE). Transmission electron microscopy and flow-cytometry analysis showed a rapid particle uptake (30 min to 4 h) of quartz by the RLE cells, but particles were not found within the cell nuclei. This suggests that DNA strand breakage and induction of 8-hydroxydeoxyguanosine - as also observed in these cells during these treatment intervals - did not result from direct physical interactions between particles and DNA, or from short-lived particle surface-derived reactive oxygen species. DNA damage by quartz was significantly reduced in the presence of the mitochondrial inhibitors rotenone and antimycin-A. In the absence of quartz, these inhibitors did not affect DNA damage, but they reduced cellular oxygen consumption. No signs of apoptosis were observed by quartz. Flow-cytometry analysis indicated that the reduced DNA damage by rotenone was not due to a possible mitochondria-mediated reduction of particle uptake by the RLE cells. Further proof of concept for the role of mitochondria was shown by the failure of quartz to elicit DNA damage in mitochondria-depleted 143B (rho-0) osteosarcoma cells, at concentrations where it elicited DNA damage in the parental 143B cell line. In conclusion, our data show that respirable quartz particles can elicit oxidative DNA damage in vitro without entering the nuclei of type II cells, which are considered to be important target cells in quartz carcinogenesis. Furthermore, our observations indicate that such indirect DNA damage involves the mitochondrial electron transport chain function, by an as-yet-to-be elucidated mechanism.

  8. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  9. DNA damage-induced cell death: lessons from the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Helena Lobo Borges; Rafael Linden; Jean YJ Wang

    2008-01-01

    DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.

  10. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response

    DEFF Research Database (Denmark)

    Poulsen, Sara L; Hansen, Rebecca K; Wagner, Sebastian A

    2013-01-01

    )-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response....... nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV...

  11. Phosphorylation of PTEN at STT motif is associated with DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sandip; Mukherjee, Ananda; Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in

    2014-12-15

    Highlights: • Phosphorylation PTEN at the C-terminal STT motif is necessary for DNA repair. • DNA damage induces phosphorylation of STT motif of PTEN. • Phospho-PTEN translocates to nucleus after DNA damage. • Phospho-PTEN forms nuclear foci after DNA damage which co localized with γH2AX. - Abstract: Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair.

  12. Compare two methods of measuring DNA damage induced by photogenotoxicity of fluoroquinolones

    Institute of Scientific and Technical Information of China (English)

    Ting ZHANG; Jun-ling LI; Jian XIN; Xiao-chao MA; Zeng-hong TU

    2004-01-01

    AIM: To compare two methods of measuring DNA damage induced by photogenotoxicity of fluoroquinolones (FQ). METHODS: Lomefloxacin (LFLX), sparfloxacin (SPFX), ciprofloxacin (CPFX), and levofloxacin (LELX)were tested by comet assay and photodynamic DNA strand breaking activity under the different conditions of UVA irradiation. RESULTS: In comet assay, photogenotoxicity was evident at SPFX 1 mg/L, LFLX 5 mg/L, and CPFX 5 mg/L, and LELX 10 mg/L. In photodynamic DNA srand-breaking activity, SPFX and LFLX induced the conversion of the supercoiled form into the nicked relaxed form at 10-50 μmol/L, while CPFX at 25 μmol/L and LELX at 50 μmol/L. CONCLUSION: There were good correlations between the two methods to detect DNA damage induced by phototoxicity of fluoroquinolones. Photodynamic DNA strand breaking activity was a good method to detect DNA damage induced by photogenotoxicity of fluoroquinolones as well as comet assay.

  13. Top3 processes recombination intermediates and modulates checkpoint activity after DNA damage

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Hickson, Ian D

    2006-01-01

    Mutation of TOP3 in Saccharomyces cerevisiae causes poor growth, hyperrecombination, and a failure to fully activate DNA damage checkpoints in S phase. Here, we report that overexpression of a dominant-negative allele of TOP3, TOP3(Y356F), which lacks the catalytic (decatenation) activity of Top3......, causes impaired S-phase progression and the persistence of abnormal DNA structures (X-shaped DNA molecules) after exposure to methylmethanesulfonate. The impaired S-phase progression is due to a persistent checkpoint-mediated cell cycle delay and can be overridden by addition of caffeine. Hence......, the catalytic activity of Top3 is not required for DNA damage checkpoint activation, but it is required for normal S-phase progression after DNA damage. We also present evidence that the checkpoint-mediated cell cycle delay and persistence of X-shaped DNA molecules resulting from overexpression of TOP3(Y356F...

  14. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    Science.gov (United States)

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis.

  15. Investigation of DNA Damage Induced by 7Li and 12C Ions

    Institute of Scientific and Technical Information of China (English)

    SUILi; ZHAOKui; NIMei-nan; GUOJi-yu; LUOHong-bing; MEIJun-ping; KONGFu-quan; LUXiu-qin; ZHOUPing

    2003-01-01

    Deoxyribonucleic acid(DNA) is an important biomacromolecule. It is a carrier of genetic information and a critical target for radiobiological effects. Numerous lesions have been identified in irradiated DNA.DNA double strand breaks (DSBs) are considered as the most important initial damage of all biological effects induced by ionizing radiation. The goal of this experiment is to investigate DNA DSBs induced by heavy ions with atomic force microscopy (AFM).

  16. Comet-FISH with rDNA probes for the analysis of mutagen-induced DNA damage in plant cells.

    Science.gov (United States)

    Kwasniewska, Jolanta; Grabowska, Marta; Kwasniewski, Miroslaw; Kolano, Bozena

    2012-06-01

    We used comet-fluorescence in situ hybridization (FISH) in the model plant species Crepis capillaris following exposure of seedlings to maleic hydrazide (MH). FISH with 5S and 25S rDNA probes was applied to comets obtained under alkaline conditions to establish whether these DNA regions were preferentially involved in comet tail formation. MH treatment induced significant fragmentation of nuclear DNA and of rDNA loci. A 24-h post-treatment recovery period allowed a partial reversibility of MH-induced damage on nuclear and rDNA regions. Analyses of FISH signals demonstrated that rDNA sequences were always involved in tail formation and that 5S rDNA was more frequently present in the tail than 25S rDNA, regardless of treatment. The involvement of 25S rDNA in nucleolus formation and differences in chromatin structure between the two loci may explain the different susceptibility of the 25S and 5S rDNA regions to migrate into the tail. This work is the first report on the application of FISH to comet preparations from plants to analyze the distribution and repair of DNA damage within specific genomic regions after mutagenic treatment. Moreover, our work suggests that comet-FISH in plants may be a useful tool for environmental monitoring assessment.

  17. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  18. Alcohol metabolism in human cells causes DNA damage and activates the Fanconi anemia – breast cancer susceptibility (FA-BRCA) DNA damage response network

    Science.gov (United States)

    Abraham, Jessy; Balbo, Silvia; Crabb, David; Brooks, P.J.

    2011-01-01

    Background We recently reported that exposure of human cells in vitro to acetaldehyde resulted in activation of the Fanconi anemia-breast cancer associated (FA-BRCA) DNA damage response network. Methods To determine whether intracellular generation of acetaldehyde from ethanol metabolism can cause DNA damage and activate the FA-BRCA network, we engineered HeLa cells to metabolize alcohol by expression of human alcohol dehydrogenase 1B. Results Incubation of HeLa-ADH1B cells with ethanol (20 mM) resulted in acetaldehyde accumulation in the media which was prevented by co-incubation with 4-methyl pyrazole (4-MP), a specific inhibitor of ADH. Ethanol treatment of HeLa-ADH1B cells produced a 4-fold increase in the acetaldehyde-DNA adduct, N2-ethylidene-dGuo, and also resulted in activation of the Fanconi anemia -breast cancer susceptibility (FA-BRCA) DNA damage response network, as indicated by a monoubiquitination of FANCD2, and phosphorylation of BRCA1. Ser 1524 was identified as one site of BRCA1 phosphorylation. The increased levels of DNA adducts, FANCD2 monoubiquitination, and BRCA1 phosphorylation were all blocked by 4-MP, indicating that acetaldehyde, rather than ethanol itself, was responsible for all three responses. Importantly, the ethanol concentration we used is within the range that can be attained in the human body during social drinking. Conclusions Our results indicate that intracellular metabolism of ethanol to acetaldehyde results in DNA damage which activates the FA-BRCA DNA damage response network. PMID:21919919

  19. Experimental and theoretical investigation effect of flavonols antioxidants on DNA damage.

    Science.gov (United States)

    Ensafi, Ali A; Heydari-Soureshjani, E; Jafari-Asl, M; Rezaei, B; Ghasemi, Jahan B; Aghaee, Elham

    2015-08-01

    A new electrochemical biosensor was developed to demonstrate the effect of Acridine Orange (AO) on DNA damage. Then, the biosensor was used to check the inhibitors effect of three flavonols antioxidants (myricetin, fisetin and kaempferol) on DNA damage. Acridine Orange (AO) was used as a damaging agent because it shows a high affinity to nucleic acid and stretch of the double helical structure of DNA. Decreasing on the oxidation signals of adenine and guanine (in the DNA) in the presence of AO were used as probes to study the antioxidants power, using DNA-modified screen printed graphene electrode (DNA/SPGE). The results of our study showed that the DNA-biosensor could be suitable biosensor to investigate the inhibitors ability of the flavonols antioxidants on the DNA damage. The linear dependency was detected in the two regions in the ranges of 1.0-15.0 and 15.0-500.0 pmol L(-1). The detection limit was found 0.5 pmol L(-1) and 0.6 pmol L(-1) for guanine and adenine, respectively. To confirm the electrochemical results, Uv-Vis and fluorescence spectroscopic methods were used too. Finally molecular dynamic (MD) simulation was performed on the structure of DNA in a water box to study any interaction between the antioxidant, AO and DNA.

  20. LEM-3 - A LEM domain containing nuclease involved in the DNA damage response in C. elegans.

    Directory of Open Access Journals (Sweden)

    Christina M Dittrich

    Full Text Available The small nematode Caenorhabditis elegans displays a spectrum of DNA damage responses similar to humans. In order to identify new DNA damage response genes, we isolated in a forward genetic screen 14 new mutations conferring hypersensitivity to ionizing radiation. We present here our characterization of lem-3, one of the genes identified in this screen. LEM-3 contains a LEM domain and a GIY nuclease domain. We confirm that LEM-3 has DNase activity in vitro. lem-3(lf mutants are hypersensitive to various types of DNA damage, including ionizing radiation, UV-C light and crosslinking agents. Embryos from irradiated lem-3 hermaphrodites displayed severe defects during cell division, including chromosome mis-segregation and anaphase bridges. The mitotic defects observed in irradiated lem-3 mutant embryos are similar to those found in baf-1 (barrier-to-autointegration factor mutants. The baf-1 gene codes for an essential and highly conserved protein known to interact with the other two C. elegans LEM domain proteins, LEM-2 and EMR-1. We show that baf-1, lem-2, and emr-1 mutants are also hypersensitive to DNA damage and that loss of lem-3 sensitizes baf-1 mutants even in the absence of DNA damage. Our data suggest that BAF-1, together with the LEM domain proteins, plays an important role following DNA damage - possibly by promoting the reorganization of damaged chromatin.

  1. Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair.

    Science.gov (United States)

    Czornak, Kamila; Chughtai, Sanaullah; Chrzanowska, Krystyna H

    2008-01-01

    Genomes are subject to a number of exogenous or endogenous DNA-damaging agents that cause DNA double-strand breaks (DSBs). These critical DNA lesions can result in cell death or a wide variety of genetic alterations, including deletions, translocations, loss of heterozygosity, chromosome loss, or chromosome fusions, which enhance genome instability and can trigger carcinogenesis. The cells have developed an efficient mechanism to cope with DNA damages by evolving the DNA repair machinery. There are 2 major DSB repair mechanisms: nonhomologous end joining (NHEJ) and homologous recombination (HR). One element of the repair machinery is the MRN complex, consisting of MRE11, RAD50 and NBN (previously described as NBS1), which is involved in DNA replication, DNA repair, and signaling to the cell cycle checkpoints. A number of kinases, like ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad-3-related), and DNA PKcs (DNA protein kinase catalytic subunit), phosphorylate various protein targets in order to repair the damage. If the damage cannot be repaired, they direct the cell to apoptosis. The MRN complex as well as repair kinases are also involved in telomere maintenance and genome stability. The dysfunction of particular elements involved in the repair mechanisms leads to genome instability disorders, like ataxia telangiectasia (A-T), A-T-like disorder (ATLD) and Nijmegen breakage syndrome (NBS). The mutated genes responsible for these disorders code for proteins that play key roles in the process of DNA repair. Here we present a detailed review of current knowledge on the MRN complex, kinases engaged in DNA repair, and genome instability disorders.

  2. The CXXC finger 5 protein is required for DNA damage-induced p53 activation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The tumor suppressor p53 is a critical component of the DNA damage response pathway that induces a set of genes responsible for cell cycle arrest,senescence,apoptosis,and DNA repair.The ataxia te-langiectasia mutated protein kinase(ATM) responds to DNA-damage stimuli and signals p53 stabiliza-tion and activation,thereby facilitating transactivation of p53 inducible genes and maintainence of genome integrity.In this study,we identified a CXXC zinc finger domain containing protein termed CF5 as a critical component in the DNA damage signaling pathway.CF5 induces p53 transcriptional activity and apoptosis in cells expressing wild type p53 but not in p53-deficient cells.Knockdown of CF5 in-hibits DNA damage-induced p53 activation as well as cell cycle arrest.Furthermore,CF5 physically interacts with ATM and is required for DNA damage-induced ATM phosphorylation but not its recruitment to chromatin.These findings suggest that CF5 plays a crucial role in ATM-p53 signaling in response to DNA damage.

  3. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise;

    2015-01-01

    Aging is associated with oxidative stress-generated damage to DNA and this could be related to metabolic disturbances. This study investigated the association between levels of oxidatively damaged DNA in peripheral blood mononuclear cells (PBMCs) and metabolic risk factors in 1,019 subjects, aged...... metabolic syndrome criteria. In summary, positive associations between age and levels of oxidatively damaged DNA appeared mediated by age-related increases in metabolic risk factors....... 18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency...... was observed for the level of hOGG1-sensitive sites, whereas there was no association with the level of strand breaks. The effect of age on oxidatively damaged DNA in women disappeared in multivariate models, which showed robust positive associations between DNA damage and plasma levels of triglycerides...

  4. Trypanosomal histone γH2A and the DNA damage response.

    Science.gov (United States)

    Glover, Lucy; Horn, David

    2012-05-01

    DNA damage and repair in trypanosomatids impacts virulence, drug resistance and antigenic variation but, currently, little is known about DNA damage responses or cell cycle checkpoints in these divergent protozoa. One of the earliest markers of DNA damage in eukaryotes is γH2A(X), a serine phosphorylated histone H2A (variant). Here, we report the identification and initial characterization of γH2A in Trypanosoma brucei. We identified Thr(130) within the replication-dependent histone H2A as a candidate phosphorylation site and found that the abundance of this trypanosomal γH2A increased in vivo in response to DNA damage. Nuclear γH2A foci mark the sites of putative natural replication fork stalling, sites of meganuclease-induced DNA double strand breaks and sites of methyl methanesulphonate-induced DNA damage. Naturally occurring and meganuclease-induced γH2A and RAD51 double-positive repair foci are typically found in S-phase or G(2) nuclei. The results link trypanosomal γH2A, with an unusual histone modification motif, to DNA damage sensing and mitotic checkpoint signaling.

  5. Measurement of DNA damage in individual cells using the Single Cell Gel Electrophoresis (Comet) assay.

    Science.gov (United States)

    Hartley, Janet M; Spanswick, Victoria J; Hartley, John A

    2011-01-01

    The Single Cell Gel Electrophoresis (Comet) assay is a simple, versatile and sensitive method for measuring DNA damage in individual cells, allowing the determination of heterogeneity of response within a cell population. The basic alkaline technique described is for the determination of DNA strand break damage and its repair at a single cell level. Specific modifications to the method use a lower pH ('neutral' assay), or allow the measurement of DNA interstrand cross-links. It can be further adapted to, for example, study specific DNA repair mechanisms, be combined with fluorescent in situ hybridisation, or incorporate lesion specific enzymes.

  6. Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles

    DEFF Research Database (Denmark)

    Møller, Peter; Folkmann, J K; Danielsen, P H

    2012-01-01

    There is growing concern that gastrointestinal exposure to particles is associated with increased risk of toxicity to internal organs and carcinogenicity. The mechanism of action is related to particle-induced oxidative stress and oxidation of DNA. Observations from animal models indicate...... level of lipid peroxidation derived exocyclic DNA adducts in the liver, suggesting multiple pathways of oxidative stress for particle-generated damage to DNA. At equal dose, diesel exhaust particles (SRM2975) generated larger levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in rat liver than carbon black...... to particulate matter is associated with oxidative damage to DNA and this might be associated with increased risk of cancer....

  7. The effects of male age on sperm DNA damage in healthy non-smokers

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, T; Eskenazi, B; Baumgartner, A; Marchetti, F; Young, S; Weldon, R; Anderson, D; Wyrobek, A

    2006-03-08

    The trend for men to have children at older ages raises concerns that advancing age may increase the production of genetically defective sperm, increasing the risks of transmitting germ-line mutations. We investigated the associations between male age and sperm DNA damage and the influence of several lifestyle factors in a healthy non-clinical group of 80 non-smokers (age: 22-80) with no known fertility problems using the sperm Comet analyses. The average percent of DNA that migrated out of the sperm nucleus under alkaline electrophoresis increased with age (0.18% per year, p=0.006); but there was no age association for damage measured under neutral conditions (p=0.7). Men who consumed >3 cups coffee per day had {approx}20% higher % tail DNA under neutral but not alkaline conditions compared to men who consumed no caffeine (p=0.005). Our findings indicate that (a) older men have increased sperm DNA damage associated with alkali-labile sites or single-strand DNA breaks, and (b) independent of age, men with substantial daily caffeine consumption have increased sperm DNA damage associated with double-strand DNA breaks. DNA damage in sperm can be converted to chromosomal aberrations and gene mutations after fertilization increasing the risks for developmental defects and genetic diseases among offspring.

  8. A Computational Study of Hadron Radiation Damage to DNA Nucleobases

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai

    Radiation damage of biomolecules is a signicant contributor to both the onset and also possible curing of cancer. Such damage is largely the result of free radicals that can be created by the interaction of high-energetic photons or ions with water within cells. Understanding the details of this ...

  9. NSC666715 and Its Analogs Inhibit Strand-Displacement Activity of DNA Polymerase β and Potentiate Temozolomide-Induced DNA Damage, Senescence and Apoptosis in Colorectal Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Aruna S Jaiswal

    Full Text Available Recently approved chemotherapeutic agents to treat colorectal cancer (CRC have made some impact; however, there is an urgent need for newer targeted agents and strategies to circumvent CRC growth and metastasis. CRC frequently exhibits natural resistance to chemotherapy and those who do respond initially later acquire drug resistance. A mechanism to potentially sensitize CRC cells is by blocking the DNA polymerase β (Pol-β activity. Temozolomide (TMZ, an alkylating agent, and other DNA-interacting agents exert DNA damage primarily repaired by a Pol-β-directed base excision repair (BER pathway. In previous studies, we used structure-based molecular docking of Pol-β and identified a potent small molecule inhibitor (NSC666715. In the present study, we have determined the mechanism by which NSC666715 and its analogs block Fen1-induced strand-displacement activity of Pol-β-directed LP-BER, cause apurinic/apyrimidinic (AP site accumulation and induce S-phase cell cycle arrest. Induction of S-phase cell cycle arrest leads to senescence and apoptosis of CRC cells through the p53/p21 pathway. Our initial findings also show a 10-fold reduction of the IC50 of TMZ when combined with NSC666715. These results provide a guide for the development of a target-defined strategy for CRC chemotherapy that will be based on the mechanisms of action of NSC666715 and TMZ. This combination strategy can be used as a framework to further reduce the TMZ dosages and resistance in CRC patients.

  10. Human T-cell leukemia virus I tax protein sensitizes p53-mutant cells to DNA damage.

    Science.gov (United States)

    Mihaylova, Valia T; Green, Allison M; Khurgel, Moshe; Semmes, Oliver J; Kupfer, Gary M

    2008-06-15

    Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53-containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective.

  11. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    Science.gov (United States)

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  12. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    Science.gov (United States)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

  13. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    Science.gov (United States)

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITINABSTRACT Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  14. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology.

    Science.gov (United States)

    Cheung-Ong, Kahlin; Giaever, Guri; Nislow, Corey

    2013-05-23

    DNA-damaging agents have a long history of use in cancer chemotherapy. The full extent of their cellular mechanisms, which is essential to balance efficacy and toxicity, is often unclear. In addition, the use of many anticancer drugs is limited by dose-limiting toxicities as well as the development of drug resistance. Novel anticancer compounds are continually being developed in the hopes of addressing these limitations; however, it is essential to be able to evaluate these compounds for their mechanisms of action. This review covers the current DNA-damaging agents used in the clinic, discusses their limitations, and describes the use of chemical genomics to uncover new information about the DNA damage response network and to evaluate novel DNA-damaging compounds.

  15. Unrepaired DNA damage facilitates elimination of uniparental chromosomes in interspecific hybrid cells.

    Science.gov (United States)

    Wang, Zheng; Yin, Hao; Lv, Lei; Feng, Yingying; Chen, Shaopeng; Liang, Junting; Huang, Yun; Jiang, Xiaohua; Jiang, Hanwei; Bukhari, Ihtisham; Wu, Lijun; Cooke, Howard J; Shi, Qinghua

    2014-01-01

    Elimination of uniparental chromosomes occurs frequently in interspecific hybrid cells. For example, human chromosomes are always eliminated during clone formation when human cells are fused with mouse cells. However, the underlying mechanisms are still elusive. Here, we show that the elimination of human chromosomes in human-mouse hybrid cells is accompanied by continued cell division at the presence of DNA damage on human chromosomes. Deficiency in DNA damage repair on human chromosomes occurs after cell fusion. Furthermore, increasing the level of DNA damage on human chromosomes by irradiation accelerates human chromosome loss in hybrid cells. Our results indicate that the elimination of human chromosomes in human-mouse hybrid cells results from unrepaired DNA damage on human chromosomes. We therefore provide a novel mechanism underlying chromosome instability which may facilitate the understanding of carcinogenesis.

  16. Assessment of gamma ray-induced DNA damage in Lasioderma serricorne using the comet assay

    Science.gov (United States)

    Kameya, Hiromi; Miyanoshita, Akihiro; Imamura, Taro; Todoriki, Setsuko

    2012-03-01

    We attempted a DNA comet assay under alkaline conditions to verify the irradiation treatment of pests. Lasioderma serricorne (Fabricius) were chosen as test insects and irradiated with gamma rays from a 60Co source at 1 kGy. We conducted the comet assay immediately after irradiation and over time for 7 day. Severe DNA fragmentation in L. serricorne cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. The parameters of the comet image analysis were calculated, and the degree of DNA damage and repair were evaluated. Values for the Ratio (a percentage determined by fluorescence in the damaged area to overall luminance, including intact DNA and the damaged area of a comet image) of individual cells showed that no cells in the irradiated group were included in the Ratiocomet assay under alkaline conditions, combined with comet image analysis, can be used to identify irradiation history.

  17. Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase

    Directory of Open Access Journals (Sweden)

    Eric Aeby

    2016-12-01

    Full Text Available Oxidative damage of telomeres can promote cancer, cardiac failure, and muscular dystrophy. Specific mechanisms protecting telomeres from oxidative damage have not been described. We analyzed telomeric chromatin composition during the cell cycle and show that the antioxidant enzyme peroxiredoxin 1 (PRDX1 is enriched at telomeres during S phase. Deletion of the PRDX1 gene leads to damage of telomeric DNA upon oxidative stress, revealing a protective function of PRDX1 against oxidative damage at telomeres. We also show that the oxidized nucleotide 8-oxo-2′deoxyguanosine-5′-triphosphate (8oxodGTP causes premature chain termination when incorporated by telomerase and that some DNA substrates terminating in 8oxoG prevent extension by telomerase. Thus, PRDX1 safeguards telomeres from oxygen radicals to counteract telomere damage and preserve telomeric DNA for elongation by telomerase.

  18. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons.

    Science.gov (United States)

    Xu, Shangcheng; Zhou, Zhou; Zhang, Lei; Yu, Zhengping; Zhang, Wei; Wang, Yuan; Wang, Xubu; Li, Maoquan; Chen, Yang; Chen, Chunhai; He, Mindi; Zhang, Guangbin; Zhong, Min

    2010-01-22

    Increasing evidence indicates that oxidative stress may be involved in the adverse effects of radiofrequency (RF) radiation on the brain. Because mitochondrial DNA (mtDNA) defects are closely associated with various nervous system diseases and mtDNA is particularly susceptible to oxidative stress, the purpose of this study was to determine whether radiofrequency radiation can cause oxidative damage to mtDNA. In this study, we exposed primary cultured cortical neurons to pulsed RF electromagnetic fields at a frequency of 1800 MHz modulated by 217 Hz at an average special absorption rate (SAR) of 2 W/kg. At 24 h after exposure, we found that RF radiation induced a significant increase in the levels of 8-hydroxyguanine (8-OHdG), a common biomarker of DNA oxidative damage, in the mitochondria of neurons. Concomitant with this finding, the copy number of mtDNA and the levels of mitochondrial RNA (mtRNA) transcripts showed an obvious reduction after RF exposure. Each of these mtDNA disturbances could be reversed by pretreatment with melatonin, which is known to be an efficient antioxidant in the brain. Together, these results suggested that 1800 MHz RF radiation could cause oxidative damage to mtDNA in primary cultured neurons. Oxidative damage to mtDNA may account for the neurotoxicity of RF radiation in the brain.

  19. Effects of different levels of vitamin C on UV radiation-induced DNA damage

    Institute of Scientific and Technical Information of China (English)

    Dianfeng Zhou; Hang Heng; Kang Ji; Weizhong Ke

    2005-01-01

    The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.

  20. 14-3-3 Proteins, FHA Domains and BRCT Domains in the DNA Damage Response

    OpenAIRE

    Mohammad, Duaa H.; Yaffe, Michael B.

    2009-01-01

    The DNA damage response depends on the concerted activity of protein serine/threonine kinases and modular phosphoserine/threonine binding domains to relay the damage signal and recruit repair proteins. The PIKK family of protein kinases, which includes ATM/ATR/DNA-PK, preferentially phosphorylate Ser-Gln sites, while their basophilic downstream effecter kinases, Chk1/Chk2/MK2 preferentially phosphorylate hydrophobic-X-Arg-X-X-Ser/Thr-hydrophobic sites. A subset of tandem BRCT domains act as p...

  1. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage

    OpenAIRE

    Chen, Lihong; Gilkes, Daniele M.; Pan, Yu; Lane, William S; Chen, Jiandong

    2005-01-01

    The p53 tumor suppressor is activated after DNA damage to maintain genomic stability and prevent transformation. Rapid activation of p53 by ionizing radiation is dependent on signaling by the ATM kinase. MDM2 and MDMX are important p53 regulators and logical targets for stress signals. We found that DNA damage induces ATM-dependent phosphorylation and degradation of MDMX. Phosphorylated MDMX is selectively bound and degraded by MDM2 preceding p53 accumulation and activation. Reduction of MDMX...

  2. Induction of Cullin 7 by DNA damage attenuates p53 function

    OpenAIRE

    2007-01-01

    The p53 tumor suppressor gene encodes a transcription factor, which is translationally and posttranslationally activated after DNA damage. In a proteomic screen for p53 interactors, we found that the cullin protein Cul7 efficiently associates with p53. After DNA damage, the level of Cul7 protein increased in a caffeine-sensitive, but p53-independent, manner. Down-regulation of Cul7 by conditional microRNA expression augmented p53-mediated inhibition of cell cycle progression. Ectopic expressi...

  3. Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA.

    OpenAIRE

    Loft, Steffen; Danielsen, Pernille; Løhr, Mille; Jantzen, Kim; Hemmingsen, Jette G.; Roursgaard, Martin; Karotki, Dorina Gabriela; Møller, Peter

    2012-01-01

    Oxidatively damaged DNA may be important in carcinogenesis. 8-Oxo-7,8-dihydroguanine (8-oxoGua) is an abundant and mutagenic lesion excised by oxoguanine DNA glycosylase 1 (OGG1) and measurable in urine or plasma by chromatographic methods with electrochemical or mass spectrometric detectors, reflecting the rate of damage in steady state. A common genetic OGG1 variant may affect the activity and was associated with increased levels of oxidized purines in leukocytes without apparent effect on ...

  4. Intersex in Littorina littorea and DNA damage in Mytilus edulis as indicators of harbour polllution

    DEFF Research Database (Denmark)

    Rank, Jette

    2009-01-01

    Intersex in snails (Littorina littorea) and DNA damage in blue mussels (Mytilus edulis) were analysed to assess how these bio-indicators reflected the level of chemical contamination at two sites in a highly contaminated harbour in Denmark. The comet assay using mussel gill cells was an indicator...... effects were found to reflect the levels of the chemicals, and it was concluded that intersex in L. littorea and DNA damage in M. edulis can be used as bio-indicators of harbour pollution...

  5. Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways

    OpenAIRE

    Ichijima, Yosuke; Sin, Ho-Su; Satoshi H Namekawa

    2012-01-01

    Sex chromosome inactivation in male germ cells is a paradigm of epigenetic programming during sexual reproduction. Recent progress has revealed the underlying mechanisms of sex chromosome inactivation in male meiosis. The trigger of chromosome-wide silencing is activation of the DNA damage response (DDR) pathway, which is centered on the mediator of DNA damage checkpoint 1 (MDC1), a binding partner of phosphorylated histone H2AX (γH2AX). This DDR pathway shares features with the somatic DDR p...

  6. DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos

    OpenAIRE

    2016-01-01

    DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of γ...

  7. Effects of seven chemicals on DNA damage in the rat urinary bladder: a comet assay study.

    Science.gov (United States)

    Wada, Kunio; Yoshida, Toshinori; Takahashi, Naofumi; Matsumoto, Kyomu

    2014-07-15

    The in vivo comet assay has been used for the evaluation of DNA damage and repair in various tissues of rodents. However, it can give false-positive results due to non-specific DNA damage associated with cell death. In this study, we examined whether the in vivo comet assay can distinguish between genotoxic and non-genotoxic DNA damage in urinary bladder cells, by using the following seven chemicals related to urinary bladder carcinogenesis in rodents: N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), glycidol, 2,2-bis(bromomethyl)-1,3-propanediol (BMP), 2-nitroanisole (2-NA), benzyl isothiocyanate (BITC), uracil, and melamine. BBN, glycidol, BMP, and 2-NA are known to be Ames test-positive and they are expected to produce DNA damage in the absence of cytotoxicity. BITC, uracil, and melamine are Ames test-negative with metabolic activation but have the potential to induce non-specific DNA damage due to cytotoxicity. The test chemicals were administered orally to male Sprague-Dawley rats (five per group) for each of two consecutive days. Urinary bladders were sampled 3h after the second administration and urothelial cells were analyzed by the comet assay and subjected to histopathological examination to evaluate cytotoxicity. In the urinary bladders of rats treated with BBN, glycidol, and BMP, DNA damage was detected. In contrast, 2-NA induced neither DNA damage nor cytotoxicity. The non-genotoxic chemicals (BITC, uracil, and melamine) did not induce DNA damage in the urinary bladders under conditions where some histopathological changes were observed. The results indicate that the comet assay could distinguish between genotoxic and non-genotoxic chemicals and that no false-positive responses were obtained.

  8. Evaluation of sperm DNA damage in bulls by TUNEL assay as a parameter of semen quality

    OpenAIRE

    TAKEDA, Kumiko; UCHIYAMA, Kyoko; KINUKAWA, Masashi; Tagami, Takahiro; Kaneda, Masahiro; Watanabe, Shinya

    2015-01-01

    Sperm DNA damage affects the conception rate resulting from human assisted reproduction technology. The objective of this study was to adapt the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay to provide a quality parameter for bull semen based on the detection of sperm DNA damage. Fresh semen was collected from two Japanese Black bulls (A, B) several times over the course of a year, and the percentage of TUNEL-positive spermatozoa (sperm TUNEL index) was d...

  9. Base excision repair of oxidative DNA damage and association with cancer and aging

    DEFF Research Database (Denmark)

    Maynard, Scott; Schurman, Shepherd H; Harboe, Charlotte

    2009-01-01

    Aging has been associated with damage accumulation in the genome and with increased cancer incidence. Reactive oxygen species (ROS) are produced from endogenous sources, most notably the oxidative metabolism in the mitochondria, and from exogenous sources, such as ionizing radiation. ROS attack DNA...... readily, generating a variety of DNA lesions, such as oxidized bases and strand breaks. If not properly removed, DNA damage can be potentially devastating to normal cell physiology, leading to mutagenesis and/or cell death, especially in the case of cytotoxic lesions that block the progression of DNA...... recently, BER was shown to also exist in the mitochondria. Here, we review the association of BER of oxidative DNA damage with aging, cancer and other diseases....

  10. Toxic DNA Damage by Hydrogen Peroxide through the Fenton Reaction in vivo and in vitro

    Science.gov (United States)

    Imlay, James A.; Chin, Sherman M.; Linn, Stuart

    1988-04-01

    Exposure of Escherichia coli to low concentrations of hydrogen peroxide results in DNA damage that causes mutagenesis and kills the bacteria, whereas higher concentrations of peroxide reduce the amount of such damage. Earlier studies indicated that the direct DNA oxidant is a derivative of hydrogen peroxide whose formation is dependent on cell metabolism. The generation of this oxidant depends on the availability of both reducing equivalents and an iron species, which together mediate a Fenton reaction in which ferrous iron reduces hydrogen peroxide to a reactive radical. An in vitro Fenton system was established that generates DNA strand breaks and inactivates bacteriophage and that also reproduces the suppression of DNA damage by high concentrations of peroxide. The direct DNA oxidant both in vivo and in this in vitro system exhibits reactivity unlike that of a free hydroxyl radical and may instead be a ferryl radical.

  11. Sperm DNA damage and its clinical relevance in assessing reproductive outcome

    Institute of Scientific and Technical Information of China (English)

    R.K.Sharma; T.Said; A.Agarwal

    2004-01-01

    The routine examination of semen, which assesses sperm concentration, percentage motility and morphology,does not identify subtle defects in sperm chromatin architecture. The focus on the genomic integrity of the male gamete has intensified recently due to the growing concern that genetic diseases may be transmitted via assisted reproductive techniques (ART). Accordingly, the intent of this review is to describe the details of the informationpertaining to mitochondfial/nuclear sperm DNA damage with an emphasis on its clinical significance and its relationship with male infertility. Assessment of sperm DNA damage appears to be a potential tool for evaluating semen samples prior to their use in ART. Testing DNA integrity may help select spermatozoa with intact DNA or with the least amount of DNA damage for use in assisted conception. In turn, this may alleviate the financial, social and emotional problems associated with failed ART attempts.

  12. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest;

    2015-01-01

    Increased levels of oxidatively damaged DNA have been documented in studies of metal, metal oxide, carbon-based and ceramic engineered nanomaterials (ENMs). In particular, 8-oxo-7,8-dihydroguanine-2'-deoxyguanosine (8-oxodG) is widely assessed as a DNA nucleobase oxidation product, measured...... of oxidatively damaged DNA in lung tissue. Oral exposure to nanosized carbon black, TiO2 , carbon nanotubes and ZnO is associated with elevated levels of oxidatively damaged DNA in tissues. These observations are supported by cell culture studies showing concentration-dependent associations between ENM exposure...... between airway exposure to ENMs and oxidized DNA in lung tissue than studies showing acceptable baseline levels (odds ratio = 12.1, 95% confidence interval: 1.2-124). Nevertheless, reliable studies indicate that intratracheal instillation of nanosized carbon black is associated with increased levels...

  13. Histone H3 lysine 56 acetylation and the response to DNA replication fork damage

    DEFF Research Database (Denmark)

    Wurtele, Hugo; Kaiser, Gitte Schalck; Bacal, Julien;

    2012-01-01

    but are only mildly affected by hydroxyurea. We demonstrate that, after exposure to MMS, H3K56ac-deficient cells cannot complete DNA replication and eventually segregate chromosomes with intranuclear foci containing the recombination protein Rad52. In addition, we provide evidence that these phenotypes......In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs in newly synthesized histones that are deposited throughout the genome during DNA replication. Defects in H3K56ac sensitize cells to genotoxic agents, suggesting that this modification plays an important role in the DNA...... damage response. However, the links between histone acetylation, the nascent chromatin structure, and the DNA damage response are poorly understood. Here we report that cells devoid of H3K56ac are sensitive to DNA damage sustained during transient exposure to methyl methanesulfonate (MMS) or camptothecin...

  14. Mechanisms for radiation damage in DNA. Final report, June 1, 1986--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sevilla, M.D.

    1996-08-01

    Over the last 10 years significant advances have been made impacting the understanding of radiation damage to DNA. The principal objective of this work was the elucidation of the fundamental mechanisms of radiation damage to DNA through the direct and indirect effects. Recently the work concentrated on the direct effect of radiation damage on DNA. The objective was to elucidate the ultimate radiation chemical damage to DNA arising from the direct effect. In this effort the focus was on the application of three techniques. ESR spectroscopic measurement of initial radicals formed in DNA and its hydration layer at low temperatures. Ab initio molecular orbital calculations were employed to give highly accurate theoretical predictions of early events such as electron and hole localization sites which serve to test and to clarify the experimental observations. HPLC and GC-mass spectroscopic assays of DNA base products formation provide the ultimate chemical outcome of the initial radiation events. The bridge between the early ion radical species and the non-radical products is made in ESR studies which follow the chemistry of the early species as they react with water and or other DNA bases. The use of these techniques has resulted in a new and fundamental understanding of the radiation damage to DNA on a molecular scale. From this work, a working model for DNA damage from the initial ionization event to the eventual formation of molecular base damage products and strand breaks has been formulated. Results over the past several years which have led to the formulation of this model are described.

  15. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells.

    Science.gov (United States)

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-06-24

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague-Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo.

  16. ATM-dependent phosphorylation of MEF2D promotes neuronal survival after DNA damage.

    Science.gov (United States)

    Chan, Shing Fai; Sances, Sam; Brill, Laurence M; Okamoto, Shu-Ichi; Zaidi, Rameez; McKercher, Scott R; Akhtar, Mohd W; Nakanishi, Nobuki; Lipton, Stuart A

    2014-03-26

    Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM-MEF2D pathway may contribute to neurodegeneration in AT.

  17. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage.

    Science.gov (United States)

    Bot, Christopher; Pfeiffer, Annika; Giordano, Fosco; Manjeera, Dharani E; Dantuma, Nico P; Ström, Lena

    2017-03-15

    NIPBL is required to load the cohesin complex on to DNA. While the canonical role of cohesin is to couple replicated sister chromatids together until the onset of mitosis, it also promotes tolerance to DNA damage. Here, we show that NIPBL is recruited to DNA damage throughout the cell cycle via independent mechanisms, influenced by type of damage. First, the heterochromatin protein HP1γ (also known as CBX3) recruits NIPBL to DNA double-strand breaks (DSBs) through the corresponding HP1-binding motif within the N-terminus. By contrast, the C-terminal HEAT repeat domain is unable to recruit NIPBL to DSBs but independently targets NIPBL to laser microirradiation-induced DNA damage. Each mechanism is dependent on the RNF8 and RNF168 ubiquitylation pathway, while the recruitment of the HEAT repeat domain requires further ATM or ATR activity. Thus, NIPBL has evolved a sophisticated response to damaged DNA that is influenced by the form of damage, suggesting a highly dynamic role for NIPBL in maintaining genomic stability.

  18. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Joshua W Modell

    2014-10-01

    Full Text Available Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.

  19. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    Science.gov (United States)

    Modell, Joshua W; Kambara, Tracy K; Perchuk, Barrett S; Laub, Michael T

    2014-10-01

    Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.

  20. Studying S-phase DNA Damage Checkpoints using the Fission Yeast Schizosaccharomyces pombe

    Science.gov (United States)

    Willis, Nicholas; Rhind, Nicholas

    2016-01-01

    Slowing of replication in response to DNA damage is a universal response to DNA damage during S-phase. Originally discovered to be defective in checkpoint mutant cells in metazoans, this S-phase DNA damage checkpoint response has been extensively studied in yeast. Unlike other checkpoints that completely arrest cell cycle, the S-phase DNA damage checkpoint slows but does not completely halt replication in response to DNA damage. An analysis of mutants defective in the slowing response requires a sensitive assay to measure this quantitative effect. The use of centrifugal elutriation to synchronize cells and improved techniques in preparing cells for flow cytometry allow for more sensitive and accurate measurement of cells’ ability to slow replication in the presence of DNA damage. This chapter describes the use of transient cdc10-M17 temperature sensitive allele arrest and release combined with centrifugal elutriation to synchronize cells in G1. The S-phase progression of these cells is then assayed by flow cytometry of isolated nuclei, which allows sensitive determination of replication kinetics. PMID:21870281

  1. Evaluation of the DNA damaging effects of amitraz on human lymphocytes in the Comet assay

    Indian Academy of Sciences (India)

    Milena Radakovic; Jevrosima Stevanovic; Ninoslav Djelic; Nada Lakic; Jelena Knezevic-Vukcevic; Branka Vukovic-Gacic; Zoran Stanimirovic

    2013-03-01

    Amitraz is formamidine pesticide widely used as insecticide and acaricide. In veterinary medicine, amitraz has important uses against ticks, mites and lice on animals. Also, amitraz is used in apiculture to control Varroa destructor. It this study, the alkaline Comet assay was used to evaluate DNA damaging effects of amitraz in human lymphocytes. Isolated human lymphocytes were incubated with varying concentrations of amitraz (0.035, 0.35, 3.5, 35 and 350 g/mL). The Comet assay demonstrated that all concentrations of amitraz caused statistically significant increase in the level of DNA damage, thus indicating that amitraz possesses genotoxic potential. The concentration of amitraz that produced the highest DNA damage (3.5 g/mL) was chosen for further analysis with the antioxidant catalase. The obtained results showed that co-treatment with antioxidant catalase (100 IU/mL or 500 IU/mL) significantly reduced the level of DNA damage, indicating the possible involvement of reactive oxygen species in DNA damaging effects of amitraz. Flow cytometric analysis revealed increase of the apoptotic index following treatment with amitraz. However, co-treatment with catalase reduced the apoptotic index, while treatment with catalase alone reduced the percentage of apoptotoc cells even in comparison with the negative control. Therefore, catalase had protective effects against ROS-mediated DNA damage and apoptosis.

  2. Alkylating enzymes.

    Science.gov (United States)

    Wessjohann, Ludger A; Keim, Jeanette; Weigel, Benjamin; Dippe, Martin

    2013-04-01

    Chemospecific and regiospecific modifications of natural products by methyl, prenyl, or C-glycosyl moieties are a challenging and cumbersome task in organic synthesis. Because of the availability of an increasing number of stable and selective transferases and cofactor regeneration processes, enzyme-assisted strategies turn out to be promising alternatives to classical synthesis. Two categories of alkylating enzymes become increasingly relevant for applications: firstly prenyltransferases and terpene synthases (including terpene cyclases), which are used in the production of terpenoids such as artemisinin, or meroterpenoids like alkylated phenolics and indoles, and secondly methyltransferases, which modify flavonoids and alkaloids to yield products with a specific methylation pattern such as 7-O-methylaromadendrin and scopolamine.

  3. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells.

    Science.gov (United States)

    Walter, Dagmar; Lier, Amelie; Geiselhart, Anja; Thalheimer, Frederic B; Huntscha, Sina; Sobotta, Mirko C; Moehrle, Bettina; Brocks, David; Bayindir, Irem; Kaschutnig, Paul; Muedder, Katja; Klein, Corinna; Jauch, Anna; Schroeder, Timm; Geiger, Hartmut; Dick, Tobias P; Holland-Letz, Tim; Schmezer, Peter; Lane, Steven W; Rieger, Michael A; Essers, Marieke A G; Williams, David A; Trumpp, Andreas; Milsom, Michael D

    2015-04-23

    Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia. However, the physiological source of DNA damage in HSCs from both normal and diseased individuals remains unclear. Here we show in mice that DNA damage is a direct consequence of inducing HSCs to exit their homeostatic quiescent state in response to conditions that model physiological stress, such as infection or chronic blood loss. Repeated activation of HSCs out of their dormant state provoked the attrition of normal HSCs and, in the case of mice with a non-functional Fanconi anaemia DNA repair pathway, led to a complete collapse of the haematopoietic system, which phenocopied the highly penetrant bone marrow failure seen in Fanconi anaemia patients. Our findings establish a novel link between physiological stress and DNA damage in normal HSCs and provide a mechanistic explanation for the universal accumulation of DNA damage in HSCs during ageing and the accelerated failure of the haematopoietic system in Fanconi anaemia patients.

  4. Occupational exposure to polycyclic aromatic hydrocarbons and DNA damage by industry: a nationwide study in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski, Boleslaw; Pesch, Beate; Rabstein, Sylvia; Raulf-Heimsoth, Monika; Rihs, Hans-Peter; Erkes, Anja; Engelhardt, Beate; Kaefferlein, Heiko Udo; Angerer, Juergen; Bruening, Thomas [BGFA - Research Institute of Occupational Medicine, German Social Accident Insurance, Ruhr-University Bochum, Bochum (Germany); Wilhelm, Michael [Ruhr-University Bochum, Institute of Hygiene, Social and Environmental Medicine, Bochum (Germany); Rossbach, Bernd [Johannes Gutenberg-University Mainz, Institute of Occupational, Social and Environmental Medicine, Mainz (Germany); Preuss, Ralf [Friedrich-Alexander-University Erlangen/Nuernberg, Institute and Outpatient Clinic of Occupational, Social- and Environmental Medicine, Erlangen (Germany); Hahn, Jens-Uwe [BGIA - Institute for Occupational Health and Safety, German Social Accident Insurance, Sankt Augustin (Germany); Seidel, Albrecht [Biochemical Institute for Environmental Carcinogens, Grosshansdorf (Germany); Adams, Ansgar [BAD Health Prevention and Technical Safety GmbH, Koblenz (Germany); Scherenberg, Michael [Occupational Medical Center Oberhausen, German Social Accident Insurance of the Construction Industry, Oberhausen (Germany); Straif, Kurt [International Agency for Research on Cancer (IARC), World Health Organisation, Lyon Cedex 08 (France)

    2009-10-15

    Exposure to polycyclic aromatic hydrocarbons (PAH) and DNA damage were analyzed in coke oven (n = 37), refractory (n = 96), graphite electrode (n = 26), and converter workers (n = 12), whereas construction workers (n = 48) served as referents. PAH exposure was assessed by personal air sampling during shift and biological monitoring in urine post shift (1-hydroxypyrene, 1-OHP and 1-, 2 + 9-, 3-, 4-hydroxyphenanthrenes, {sigma}OHPHE). DNA damage was measured by 8-oxo-7,8-dihydro-2{sup '}-deoxyguanosine (8-oxodGuo) and DNA strand breaks in blood post shift. Median 1-OHP and {sigma}OHPHE were highest in converter workers (13.5 and 37.2 {mu}g/g crea). The industrial setting contributed to the metabolite concentrations rather than the air-borne concentration alone. Other routes of uptake, probably dermal, influenced associations between air-borne concentrations and levels of PAH metabolites in urine making biomonitoring results preferred parameters to assess exposure to PAH. DNA damage in terms of 8-oxo-dGuo and DNA strand breaks was higher in exposed workers compared to referents ranking highest for graphite-electrode production. The type of industry contributed to genotoxic DNA damage and DNA damage was not unequivocally associated to PAH on the individual level most likely due to potential contributions of co-exposures. (orig.)

  5. The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Toledo Lazaro, Luis Ignacio; Gudjonsson, Thorkell

    2013-01-01

    the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly...

  6. Antioxidant vitamins and cancer risk: is oxidative damage to DNA a relevant biomarker?

    DEFF Research Database (Denmark)

    Loft, Steffen; Møller, Peter; Cooke, Marcus S;

    2008-01-01

    Oxidative damage to DNA is regarded as an important step in carcinogenesis. These lesions may arise as a consequence of exposure to xenobiotics, but are also generated as a consequence of endogenous generation of oxidizing compounds. Measurements of oxidative damage to guanines, such as 8-oxo-7, ...

  7. CUPRAC colorimetric and electroanalytical methods determining antioxidant activity based on prevention of oxidative DNA damage.

    Science.gov (United States)

    Uzunboy, Seda; Çekiç, Sema Demirci; Eksin, Ece; Erdem, Arzum; Apak, Reşat

    2017-02-01

    An unbalanced excess of oxygen/nitrogen species (ROS/RNS) can give oxidative hazard to DNA and other biomacromolecules under oxidative stress conditions. While the 'comet' assay for measuring DNA damage is neither specific nor practical, monitoring oxidative changes on individual DNA bases and other oxidation products needs highly specialized equipment and operators. Thus, we developed a modified CUPRAC (cupric ion reducing antioxidant capacity) colorimetric method to determine the average total damage on DNA produced by Fenton oxidation, taking advantage of the fact that the degradation products of DNA but not the original macromolecule is CUPRAC-responsive. The DNA-protective effects of water-soluble antioxidants were used to devise a novel antioxidant activity assay, considered to be physiologically more realistic than those using artificial probes. Our method, based on the measurement of DNA oxidative products with CUPRAC colorimetry proved to be 2 orders-of-magnitude more sensitive than the widely used TBARS (thiobarbituric acid-reactive substances) colorimetric assay used as reference. Additionally, the DNA damage was electrochemically investigated using pencil graphite electrodes (PGEs) as DNA sensor platform in combination with differential pulse voltammetry (DPV). The interaction of the radical species with DNA in the absence/presence of antioxidants was detected according to the changes in guanine oxidation signal.

  8. The regulation of DNA damage tolerance by Ubiquitin and Ubiquitin-like modifiers

    Directory of Open Access Journals (Sweden)

    Lina Cipolla

    2016-06-01

    Full Text Available DNA replication is an extremely complex process that needs to be executed in a highly accurate manner in order to propagate the genome. This task requires the coordination of a number of enzymatic activities and it is incredibly fragile and prone to arrest after DNA damage. DNA damage tolerance provides a last line of defense that allows completion of DNA replication in presence of an unrepaired template. One of such mechanisms is called Post Replication Repair (PRR and it is used by the cells to bypass highly distorted templates caused by damaged bases. PRR is extremely important for the cellular life and performs the bypass of the damage both in an error free and in an error prone manner. In light of these two possible outcomes, PRR needs to be tightly regulated and controlled in order to prevent accumulation of mutations leading ultimately to genome instability. Post-translational modifications provide the framework for this regulation and Ubiquitylation and SUMOylation of PRR proteins play a pivotal role in choosing which pathway to activate, controlling the different outcomes of damage bypass. PCNA (Proliferating Cell Nuclear Antigen, the DNA clamp for replicative polymerases, plays a central role in the regulation of damage tolerance and its modification by Ubiquitin and SUMO controls both the error free and error prone branches of PRR. Furthermore, a significant number of polymerases involved in the bypass of DNA damage possess domains that can bind post-translational modifications and they are themselves target for ubiquitylation. In this review, we will focus on how Ubiquitin and Ubiquitin-like modifications can regulate the DNA damage tolerance systems and how they are capable of controlling the recruitment of different proteins to the replication fork.

  9. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle

    NARCIS (Netherlands)

    Shaltiel, Indra A.; Krenning, Lenno; Bruinsma, Wytse; Medema, René H.

    2015-01-01

    Cell cycle checkpoints activated by DNA double-strand breaks (DSBs) are essential for the maintenance of the genomic integrity of proliferating cells. Following DNA damage, cells must detect the break and either transiently block cell cycle progression, to allow time for repair, or exit the cell cyc

  10. Non coding RNA: sequence-specific guide for chromatin modification and DNA damage signaling

    Directory of Open Access Journals (Sweden)

    Sofia eFrancia

    2015-11-01

    Full Text Available Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports suggest that ncRNAs are involved in DDR signaling and homology-mediated DNA repair. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.

  11. Cellular target of UVB-induced DNA damage resulting in local suppression of contact hypersensitivity

    NARCIS (Netherlands)

    Vink, A.A.; Shreedhar, V.; Roza, L.; Krutmann, J.; Kripke, M.L.

    1998-01-01

    Experimental data are reviewed that lend support to the hypothesis that formation of DNA damage is the initiation event of local suppression of contact hypersensitivity (CHS) after exposure to ultraviolet (UV) radiaton and that the antigen-presenting cell (APC) is an important traget for this DNA da

  12. Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage.

    NARCIS (Netherlands)

    J. Essers (Jeroen); A.B. Houtsmuller (Adriaan); L.R. van Veelen (Lieneke); C. Paulusma (Coen); A.L. Nigg (Alex); A. Pastink (Albert); W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland)

    2002-01-01

    textabstractRecombination between homologous DNA molecules is essential for the proper maintenance and duplication of the genome, and for the repair of exogenously induced DNA damage such as double-strand breaks. Homologous recombination requires the RAD52 group proteins, including Rad51, Rad52 and

  13. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis.

    NARCIS (Netherlands)

    J. Wesoly (Joanna); S. Agarwal (Sheba); S. Sigurdsson (Stefan); W. Bussen (Wendy); S. Komen (Stephen); J. Qin (Jian); H. van Steeg (Harry); J. van Benthem (Jan); E. Wassenaar (Evelyne); W.M. Baarends (Willy); M. Ghazvini (Mehrnaz); A. Tafel (Agnieszka); H. Heath (Helen); N.J. Galjart (Niels); J. Essers (Jeroen); J.A. Grootegoed (Anton); N. Arnheim (Norman); O.Y. Bezzubova (Olga); J-M. Buerstedde; P. Sung (Patrick); R. Kanaar (Roland)

    2006-01-01

    textabstractHomologous recombination is a versatile DNA damage repair pathway requiring Rad51 and Rad54. Here we show that a mammalian Rad54 paralog, Rad54B, displays physical and functional interactions with Rad51 and DNA that are similar to those of Rad54. While ablation of Rad54 in mouse embryoni

  14. Endonuclease modified comet assay for oxidative DNA damage induced by detection of genetic toxiants

    Institute of Scientific and Technical Information of China (English)

    赵健

    2014-01-01

    Objective The aim of this study was to investigate the use of the lesion-specific endonucleases-modifiedcomet assay for analysis of DNA,oxidation in cell lines.Methods DNA breaks and oxidative damage were evaluated by normal alkaline and formamidopyrimidine-DNAglycosylase(FPG)modified comet assays.Cytotoxicity was assessed by MTT method.The human bronchial epi-

  15. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise;

    2015-01-01

    18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency...

  16. A human cellular sequence implicated in trk oncogene activation is DNA damage inducible

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishai, R.; Scharf, R.; Sharon, R.; Kapten, I. (Technion-Israel Institute of Technology, Haifa (Israel))

    1990-08-01

    Xeroderma pigmentosum cells, which are deficient in the repair of UV light-induced DNA damage, have been used to clone DNA-damage-inducible transcripts in human cells. The cDNA clone designated pC-5 hybridizes on RNA gel blots to a 1-kilobase transcript, which is moderately abundant in nontreated cells and whose synthesis is enhanced in human cells following UV irradiation or treatment with several other DNA-damaging agents. UV-enhanced transcription of C-5 RNA is transient and occurs at lower fluences and to a greater extent in DNA-repair-deficient than in DNA-repair-proficient cells. Southern blot analysis indicates that the C-5 gene belongs to a multigene family. A cDNA clone containing the complete coding sequence of C-5 was isolated. Sequence analysis revealed that it is homologous to a human cellular sequence encoding the amino-terminal activating sequence of the trk-2h chimeric oncogene. The presence of DNA-damage-responsive sequences at the 5' end of a chimeric oncogene could result in enhanced expression of the oncogene in response to carcinogens.

  17. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    Energy Technology Data Exchange (ETDEWEB)

    Swindall, Amanda F.; Stanley, Jennifer A. [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Yang, Eddy S., E-mail: eyang@uab.edu [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States)

    2013-07-26

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation.

  18. Characterization of hepatic DNA damage induced in rats by the pyrrolizidine alkaloid monocrotaline

    Energy Technology Data Exchange (ETDEWEB)

    Petry, T.W.; Bowden, G.T.; Huxtable, R.J.; Sipes, I.G.

    1984-04-01

    Hepatic DNA damage induced by the pyrrolizidine alkaloid monocrotaline was evaluated following i.p. administration to adult male Sprague-Dawley rats. Animals were treated with various doses ranging upward from 5 mg/kg, and hepatic nuclei were isolated 4 hr later. Hepatic nuclei were used as the DNA source in all experiments. DNA damage was characterized by the alkaline elution technique. A mixture of DNA-DNA interstrand cross-links and DNA-protein cross-links was induced. Following an injection of monocrotaline, 30 mg/kg i.p., DNA-DNA interstrand cross-linking reached a maximum within 12 hr or less and thereafter decreased over a protracted period of time. By 96 hr postadministration, the calculated cross-linking factor was no longer statistically different from zero. No evidence for the induction of DNA single-strand breaks was observed, although the presence of small numbers of DNA single-strand breaks could have been masked by the overwhelming predominance of DNA cross-links. These DNA cross-links may be related to the hepatocarcinogenic, hepatotoxic, and/or antimitotic effects of monocrotaline.

  19. Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion–graphene biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yongnian, E-mail: ynni@ncu.edu.cn [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Wang, Pingping; Song, Haiyan [Department of Chemistry, Nanchang University, Nanchang 330031 (China); Lin, Xiaoyun [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Kokot, Serge, E-mail: s.kokot@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001 (Australia)

    2014-04-01

    Graphical abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed to quantitatively study the DNA damage induced by the metabolite of benzo(a)pyrene in the presence of H{sub 2}O{sub 2}. - Highlights: • Construction of a novel DNA/hemin/nafion-graphene/GCE biosensor. • DNA damage induced by the benzo(a)pyrene metabolite was detected. • DPV analysis of benzo(a)pyrene provided a quantitative estimate of DNA damage. • Hemin/H{sub 2}O{sub 2} system could mimic the cytochrome P450 to metabolize benzo(a)pyrene. - Abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H{sub 2}O{sub 2}) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H{sub 2}O{sub 2}. Such experiments indicated that in the presence of H{sub 2}O{sub 2}, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage.

  20. Oxidative damage to cellular and isolated DNA by metabolites of a fungicide ortho-phenylphenol.

    Science.gov (United States)

    Murata, M; Moriya, K; Inoue, S; Kawanishi, S

    1999-05-01

    ortho-Phenylphenol (OPP) and its sodium salt, which are used as fungicides and antibacterial agents, have been found to cause carcinomas in the urinary tract of rats. To clarify the carcinogenic mechanism of OPP, we compared the DNA damage inducing ability of an OPP metabolite, phenyl-1,4-benzoquinone (PBQ) with that of another metabolite, phenylhydroquinone (PHQ). Pulsed field gel electrophoresis showed that PBQ and PHQ induced DNA strand breakage in cultured human cells, but PBQ did it more efficiently than PHQ. Significant increases in 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were observed in cells treated with PBQ and PHQ, and the increase of 8-oxodG induced by PBQ was significantly higher than that induced by PHQ. Using 32P-5'-end-labeled DNA fragments obtained from human p53 tumor suppressor gene and c-Ha-ras-1 protooncogene, we showed that PBQ plus NADH, and also PHQ, induced DNA damage frequently at thymine residues, in the presence of Cu(II). The intensity of DNA damage by PBQ was stronger than that by PHQ, showing higher importance of PBQ than other OPP metabolites. Catalase and bathocuproine inhibited Cu(II)-mediated DNA damage by PBQ plus NADH and PHQ, suggesting that H2O2 reacts with Cu(I) to produce active species causing DNA damage. Electron spin resonance and UV-visible spectroscopic studies have demonstrated generation of semiquinone radical and superoxide from the reaction of PBQ with NADH or the Cu(II)-mediated autoxidation of PHQ. The present results suggest that these OPP metabolites cause oxidative DNA damage through H2O2 generation in cells, and the damage may lead to mutation and carcinogenesis. It is concluded that PBQ may play a more important role in the expression of OPP carcinogenicity than other OPP metabolites.

  1. 99mTc-Labeled HYNIC-DAPI Causes Plasmid DNA Damage with High Efficiency

    OpenAIRE

    Joerg Kotzerke; Robert Punzet; Roswitha Runge; Sandra Ferl; Liane Oehme; Gerd Wunderlich; Robert Freudenberg

    2014-01-01

    (99m)Tc is the standard radionuclide used for nuclear medicine imaging. In addition to gamma irradiation, (99m)Tc emits low-energy Auger and conversion electrons that deposit their energy within nanometers of the decay site. To study the potential for DNA damage, direct DNA binding is required. Plasmid DNA enables the investigation of the unprotected interactions between molecules and DNA that result in single-strand breaks (SSBs) or double-strand breaks (DSBs); the resulting DNA fragments ca...

  2. Arsenic Biotransformation as a Cancer Promoting Factor by Inducing DNA Damage and Disruption of Repair Mechanisms

    Directory of Open Access Journals (Sweden)

    Victor D. Martinez

    2011-01-01

    Full Text Available Chronic exposure to arsenic in drinking water poses a major global health concern. Populations exposed to high concentrations of arsenic-contaminated drinking water suffer serious health consequences, including alarming cancer incidence and death rates. Arsenic is biotransformed through sequential addition of methyl groups, acquired from s-adenosylmethionine (SAM. Metabolism of arsenic generates a variety of genotoxic and cytotoxic species, damaging DNA directly and indirectly, through the generation of reactive oxidative species and induction of DNA adducts, strand breaks and cross links, and inhibition of the DNA repair process itself. Since SAM is the methyl group donor used by DNA methyltransferases to maintain normal epigenetic patterns in all human cells, arsenic is also postulated to affect maintenance of normal DNA methylation patterns, chromatin structure, and genomic stability. The biological processes underlying the cancer promoting factors of arsenic metabolism, related to DNA damage and repair, will be discussed here.

  3. XPS STUDY ON DNA DAMAGE BY LOW-ENERGY ELECTRON IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Chungnam National University, Physics Department, Daejeon (Korea, Republic of)

    2011-12-15

    After the first report that electrons with sub-ionization energy of DNA could cause single strand breaks or double strand breaks to DNA, there have been various studies to investigate the mechanisms of DNA damage by low-energy electrons. In this paper, we examined the possibility of using X-ray photoelectron spectroscopy (XPS) to analyze the dissociation patterns of the molecular bonds by electron irradiation on DNA thin films and tried to establish the method as a general tool for studying the radiation damage of biomolecules by low energy electrons. For the experiment, pBR322 plasmid DNA solution was formed into the films on tantalum plates by lyophilization and was irradiated by 5-eV electrons. Un-irradiated and irradiated DNA films were compared and analyzed using the XPS technique.

  4. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes.

    Science.gov (United States)

    Thompson, Benjamin C; Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2014-07-01

    Cutaneous melanoma is a significant cause of morbidity and mortality. Nicotinamide is a safe, widely available vitamin that reduces the immune suppressive effects of UV, enhances DNA repair in keratinocytes and has shown promise in the chemoprevention of non-melanoma skin cancer. Here, we report the effect of nicotinamide on DNA damage and repair in primary human melanocytes. Nicotinamide significantly enhanced the repair of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine) and cyclobutane pyrimidine dimers induced by UV exposure. It also enhanced the repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine induced by the culture conditions in unirradiated melanocytes. A significant increase in the percentage of melanocytes undergoing unscheduled but not scheduled DNA synthesis was observed, confirming that nicotinamide enhances DNA repair in human melanocytes. In summary, nicotinamide, by enhancing DNA repair in melanocytes, is a potential agent for the chemoprevention of cutaneous melanoma.

  5. DNA damage among thyroid cancer and multiple cancer cases, controls, and long-lived individuals

    Energy Technology Data Exchange (ETDEWEB)

    Sigurdson, A J; Hauptmann, M; Alexander, B J; Doody, M M; Thomas, C B; Struewing, J P; Jones, I M

    2004-08-24

    Variation in the detection, signaling, and repair of DNA damage contributes to human cancer risk. To assess capacity to modulate endogenous DNA damage among radiologic technologists who had been diagnosed with breast cancer and another malignancy (breast-other; n=42), early-onset breast cancer (early-onset, age {<=} 35; n=38), thyroid cancer (n=68), long-lived cancer-free individuals (hyper-normals; n=20) and cancer-free controls (n=49) we quantified DNA damage (single strand breaks and abasic sites) in untreated lymphoblastoid cell lines using the alkaline comet assay. Komet{trademark} software provided comet tail length, % DNA in tail (tail DNA), comet distributed moment (CDM), and Olive tail moment (OTM) summarized as the geometric mean of 100 cells. Category cut-points (median and 75th percentile) were determined from the distribution among controls. Tail length (for {>=} 75% vs. below the median, age adjusted) was most consistently associated with the highest odds ratios in the breast-other, early-onset, and thyroid cancer groups (with risk increased 10-, 5- or 19-fold, respectively, with wide confidence intervals) and decreased risk among the hyper-normal group. For the other three Comet measures, risk of breast-other was elevated approximately three-fold. Risk of early-onset breast cancer was mixed and risk of thyroid cancer ranged from null to a two-fold increase. The hyper-normal group showed decreased odds ratios for tail DNA and OTM, but not CDM. DNA damage, as estimated by all Comet measures, was relatively unaffected by survival time, reproductive factors, and prior radiation treatment. We detected a continuum of endogenous DNA damage that was highest among cancer cases, less in controls, and suggestively lowest in hyper-normal individuals. Measuring this DNA damage phenotype may contribute to the identification of susceptible sub-groups. Our observations require replication in a prospective study with a large number of pre-diagnostic samples.

  6. Sperm DNA damage-the effect of stress and everyday life factors.

    Science.gov (United States)

    Radwan, M; Jurewicz, J; Merecz-Kot, D; Sobala, W; Radwan, P; Bochenek, M; Hanke, W

    2016-07-01

    The clinical significance of sperm DNA damage lies in its association with natural conception rates and also might have a serious consequence on developmental outcome of the newborn. The aim of the present study is to determine whether stress and everyday life factors are associated with sperm DNA damage in adult men. The study population consisted of 286 men who attended the infertility clinic for diagnostic purposes and who had normal semen concentration of 20-300 m ml(-1) or with slight oligozoospermia (semen concentration of 15-20 m ml(-1)) (WHO, 1999). Participants were interviewed and provided a semen sample. The sperm chromatin structure assay was assessed using flow cytometry. In the present study, we found evidence for a relationship between sperm DNA damage parameters and everyday life factors. High and medium level of occupational stress and age increase DNA fragmentation index (P=0.03, P=0.004 and P=0.03, respectively). Other lifestyle factors that were positively associated with percentage of immature sperms (high DNA stainability index) included: obesity and cell phone use for more than 10 years (P=0.02 and P=0.04, respectively). Our findings indicate that stress and lifestyle factor may affect sperm DNA damage. Data from the present study showed a significant effect of age, obesity, mobile phone radiation and occupational stress on sperm DNA damage. As DNA fragmentation represents an extremely important parameter indicative of infertility and potential outcome of assisted reproduction treatment, and most of the lifestyle factors are easily modifiable, the information about factors that may affect DNA damage are important.

  7. Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats.

    Science.gov (United States)

    Walter, Patrick B; Knutson, Mitchell D; Paler-Martinez, Andres; Lee, Sonia; Xu, Yu; Viteri, Fernando E; Ames, Bruce N

    2002-02-19

    Approximately two billion people, mainly women and children, are iron deficient. Two studies examined the effects of iron deficiency and supplementation on rats. In study 1, mitochondrial functional parameters and mitochondrial DNA (mtDNA) damage were assayed in iron-deficient (mitochondrial respiratory control ratios and increased levels of oxidants in polymorphonuclear-leukocytes, as assayed by dichlorofluorescein (P mitochondrial malfunction. Although excess iron has been known to cause oxidative damage, the observation of oxidant-induced damage to mitochondria from iron deficiency has been unrecognized previously. Untreated iron deficiency, as well as excessive-iron supplementation, are deleterious and emphasize the importance of maintaining optimal iron intake.

  8. In vitro effect of genistein on DNA damage in leukocytes from mucopolysaccharidosis IVA patients.

    Science.gov (United States)

    Negretto, G W; Deon, M; Burin, M; Biancini, G B; Ribas, G; Garcia, S C; Goethel, G; Fracasso, R; Giugliani, L; Giugliani, R; Vargas, C R

    2014-02-01

    Mucopolysaccharidosis IVA is a lysosomal storage disorder leading to an increase in glycosaminoglycans storage. Genistein is an isoflavone capable to inhibit glycosaminoglycans production. The objective of this study was to analyze the in vitro effect of different concentrations of genistein on DNA injury in mucopolysaccharidosis IVA patients. The lower concentration tested (10 μM) showed a significant increase on DNA injury in vitro, although higher concentrations (30 μM and 50 μM) showed higher DNA damage.

  9. Regenerative capacity of old muscle stem cells declines without significant accumulation of DNA damage.

    Directory of Open Access Journals (Sweden)

    Wendy Cousin

    Full Text Available The performance of adult stem cells is crucial for tissue homeostasis but their regenerative capacity declines with age, leading to failure of multiple organs. In skeletal muscle this failure is manifested by the loss of functional tissue, the accumulation of fibrosis, and reduced satellite cell-mediated myogenesis in response to injury. While recent studies have shown that changes in the composition of the satellite cell niche are at least in part responsible for the impaired function observed with aging, little is known about the effects of aging on the intrinsic properties of satellite cells. For instance, their ability to repair DNA damage and the effects of a potential accumulation of DNA double strand breaks (DSBs on their regenerative performance remain unclear. This work demonstrates that old muscle stem cells display no significant accumulation of DNA DSBs when compared to those of young, as assayed after cell isolation and in tissue sections, either in uninjured muscle or at multiple time points after injury. Additionally, there is no significant difference in the expression of DNA DSB repair proteins or globally assayed DNA damage response genes, suggesting that not only DNA DSBs, but also other types of DNA damage, do not significantly mark aged muscle stem cells. Satellite cells from DNA DSB-repair-deficient SCID mice do have an unsurprisingly higher level of innate DNA DSBs and a weakened recovery from gamma-radiation-induced DNA damage. Interestingly, they are as myogenic in vitro and in vivo as satellite cells from young wild type mice, suggesting that the inefficiency in DNA DSB repair does not directly correlate with the ability to regenerate muscle after injury. Overall, our findings suggest that a DNA DSB-repair deficiency is unlikely to be a key factor in the decline in muscle regeneration observed upon aging.

  10. Telomeric DNA quantity, DNA damage, and heat shock protein gene expression as physiological stress markers in chickens.

    Science.gov (United States)

    Sohn, S H; Subramani, V K; Moon, Y S; Jang, I S

    2012-04-01

    In this longitudinal study with Single Comb White Leghorn chickens, we investigated the effects of stress conditions in birds that were subjected to a high stocking density with feed restrictions on the quantity of telomeric DNA, the rate of DNA damage, and the expression levels of heat shock proteins (HSP) and hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) genes. The telomere length and telomere-shortening rates were analyzed by quantitative fluorescence in situ hybridization on the nuclei of lymphocytes. The DNA damage rate of lymphocytes was quantified by the comet assay. The expression levels of HSP70, HSP90, and HMGCR genes were measured by quantitative real-time PCR in lymphocytes. The telomere-shortening rate of the lymphocytes was significantly higher in the stress group than in the control. The DNA damage also increased in birds raised under stress conditions, as compared with the control group. The stress conditions had a significant effect on the expressions of HMGCR and HSP90α in lymphocytes but had no significance on HSP70 and HSP90β in blood. We conclude that the telomere length, especially the telomere-shortening rates, the quantification of total DNA damage, and the expression levels of the HMGCR and HSP90α genes can be used as sensitive physiological stress markers in chickens.

  11. To spread or not to spread - chromatin modifications in response to DNA damage

    DEFF Research Database (Denmark)

    Altmeyer, M.; Lukas, J.

    2013-01-01

    Chromatin modifications in response to DNA damage are vital for genome integrity. Multiple proteins and pathways required to generate specialized chromatin domains around DNA lesions have been identified and the increasing amount of information calls for unifying concepts that would allow us...... to grasp the ever-increasing complexity. This review aims at contributing to this trend by focusing on feed-forward and feedback mechanisms, which in mammalian cells determine the extent of chromatin modifications after DNA damage. We highlight the emerging notion that the nodal points of these highly...

  12. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    Science.gov (United States)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  13. DNA damage and cytotoxicity in pathology laboratory technicians exposed to organic solvents

    Directory of Open Access Journals (Sweden)

    TATIANE DE AQUINO

    2016-03-01

    Full Text Available The aim of this study was to evaluate potential DNA damage and cytotoxicity in pathology laboratory technicians exposed to organic solvents, mainly xylene. Peripheral blood and buccal cells samples were collected from 18 technicians occupationally exposed to organic solvents and 11 non-exposed individuals. The technicians were sampled at two moments: Monday and Friday. DNA damage and cytotoxicity were evaluated using the Comet Assay and the Buccal Micronucleus Cytome assay. Fifteen subjects (83.5% of the exposed group to solvents complained about some symptom probably related to contact with vapours of organic solvents. DNA damage in the exposed group to solvents was nearly 2-fold higher on Friday than on Monday, and in both moments the individuals of this group showed higher levels of DNA damage in relation to controls. No statistical difference was detected in buccal cell micronucleus frequency between the laboratory technicians and the control group. However, in the analysis performed on Friday, technicians presented higher frequency (about 3-fold of karyolytic and apoptotic-like cells (karyorrhectic and pyknotic in relation to control group. Considering the damage frequency and the working time, a positive correlation was found in the exposed group to solvents (r=0.468; p=0.05. The results suggest that pathology laboratory workers inappropriately exposed to organic solvents have increased levels of DNA damage.

  14. Mus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila

    Directory of Open Access Journals (Sweden)

    Nancy Díaz-Valdés

    2010-01-01

    Full Text Available The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308- conditions, the ethylating agent diethyl sulfate (DES was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system.

  15. ERCC2/XPD Lys751Gln alter DNA repair efficiency of platinum-induced DNA damage through P53 pathway.

    Science.gov (United States)

    Zhang, Guopei; Guan, Yangyang; Zhao, Yuejiao; van der Straaten, Tahar; Xiao, Sha; Xue, Ping; Zhu, Guolian; Liu, Qiufang; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo

    2017-02-01

    Platinum-based treatment causes Pt-DNA adducts which lead to cell death. The platinum-induced DNA damage is recognized and repaired by the nucleotide excision repair (NER) system of which ERCC2/XPD is a critical enzyme. Single nucleotide polymorphisms in ERCC2/XPD have been found to be associated with platinum resistance. The aim of the present study was to investigate whether ERCC2/XPD Lys751Gln (rs13181) polymorphism is causally related to DNA repair capacity of platinum-induced DNA damage. First, cDNA clones expressing different genotypes of the polymorphism was transfected to an ERCC2/XPD defective CHO cell line (UV5). Second, all cells were treated with cisplatin. Cellular survival rate were investigated by MTT growth inhibition assay, DNA damage levels were investigated by comet assay and RAD51 staining. The distribution of cell cycle and the change of apoptosis rates were detected by a flow cytometric method (FCM). Finally, P53mRNA and phospho-P53 protein levels were further investigated in order to explore a possible explanation. As expected, there was a significantly increased in viability of UV5(ERCC2 (AA)) as compared to UV5(ERCC2 (CC)) after cisplatin treatment. The DNA damage level of UV5(ERCC2 (AA)) was significant decreased compared to UV5(ERCC2 (CC)) at 24 h of treatment. Mutation of ERCC2rs13181 AA to CC causes a prolonged S phase in cell cycle. UV5(ERCC2 (AA)) alleviated the apoptosis compared to UV5(ERCC2 (CC)), meanwhile P53mRNA levels in UV(ERCC2 (AA)) was also lower when compared UV5(ERCC2 (CC)). It co-incides with a prolonged high expression of phospho-P53, which is relevant for cell cycle regulation, apoptosis, and the DNA damage response (DDR). We concluded that ERCC2/XPD rs13181 polymorphism is possibly related to the DNA repair capacity of platinum-induced DNA damage. This functional study provides some clues to clarify the relationship between cisplatin resistance and ERCC2/XPDrs13181 polymorphism.

  16. Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control.

    Science.gov (United States)

    Fenech, Michael F

    2014-01-01

    DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array systems with high-content analysis diagnostics of DNA damage, cell death and cell growth, it is possible to define, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control. This knowledge can also be used to improve culture systems for cells used in therapeutics such as stem cells to ensure that they are not genetically aberrant when returned to the body. Furthermore, this information could be used to design dietary patterns that deliver the micronutrient combinations and concentrations required for preventing DNA damage by micronutrient deficiency or excess. Using this approach, new knowledge could be obtained to identify the dietary restrictions and/or supplementations required to control specific cancers, which is particularly important given that reliable validated advice is not yet available for those diagnosed with cancer.

  17. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Monika Podhorecka

    2010-01-01

    Full Text Available Double-strand breaks (DSBs are the most deleterious DNA lesions, which, if left unrepaired, may have severe consequences for cell survival, as they lead to chromosome aberrations, genomic instability, or cell death. Various physical, chemical, and biological factors are involved in DSB induction. Cells respond to DNA damage by activating the so-called DNA damage response (DDR, a complex molecular mechanism developed to detect and repair DNA damage. The formation of DSBs triggers activation of many factors, including phosphorylation of the histone variant H2AX, producing γH2AX. Phosphorylation of H2AX plays a key role in DDR and is required for the assembly of DNA repair proteins at the sites containing damaged chromatin as well as for activation of checkpoints proteins which arrest the cell cycle progression. In general, analysis of γH2AX expression can be used to detect the genotoxic effect of different toxic substances. When applied to clinical samples from cancer patients, evaluation of γH2AX levels may allow not only to monitor the efficiency of anticancer treatment but also to predict of tumor cell sensitivity to DNA damaging anticancer agents and toxicity of anticancer treatment toward normal cells.

  18. Oxidative DNA damage background estimated by a system model of base excision repair.

    Science.gov (United States)

    Sokhansanj, Bahrad A; Wilson, David M

    2004-08-01

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level, based on measuring 8-oxoguanine lesions as a biomarker, have led to estimates that vary over three to four orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our findings show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  19. Oxidative DNA damage background estimated by a system model of base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, B A; Wilson, III, D M

    2004-05-13

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  20. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates.

    Science.gov (United States)

    Lonkar, Pallavi; Dedon, Peter C

    2011-05-01

    Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and nitrogen species by macrophages and neutrophils that infiltrate sites of inflammation. Although pathologically high levels of these reactive species cause damage to biological molecules, including DNA, nitric oxide at lower levels plays important physiological roles in cell signaling and apoptosis. This raises the question of inflammation-induced imbalances in physiological and pathological pathways mediated by chemical mediators of inflammation. At pathological levels, the damage sustained by nucleic acids represents the full spectrum of chemistries and likely plays an important role in carcinogenesis. This suggests that DNA damage products could serve as biomarkers of inflammation and oxidative stress in clinically accessible compartments such as blood and urine. However, recent studies of the biotransformation of DNA damage products before excretion point to a weakness in our understanding of the biological fates of the DNA lesions and thus to a limitation in the use of DNA lesions as biomarkers. This review will address these and other issues surrounding inflammation-mediated DNA damage on the road to cancer.

  1. Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes

    NARCIS (Netherlands)

    Wilms, L.C.; Hollman, P.C.H.; Boots, A.W.; Kleinjans, J.C.S.

    2005-01-01

    Flavonoids are claimed to protect against cardiovascular disease, certain forms of cancer and ageing, possibly by preventing initial DNA damage. Therefore, we investigated the protective effects of the flavonoid quercetin against the formation of oxidative DNA damage and bulky DNA adducts in human l

  2. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete;

    2013-01-01

    DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed...... replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling....... knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...

  3. Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reilly, Michelle S; Grogan, Dennis W

    2002-02-19

    To investigate the generality of efficient double-strand break repair and damage-induced mutagenesis in hyperthermophilic archaea, we systematically measured the effects of five DNA-damaging agents on Sulfolobus acidocaldarius and compared the results to those obtained for Escherichia coli under corresponding conditions. The observed lethality of gamma-radiation was very similar for S. acidocaldarius and E. coli, arguing against unusually efficient double-strand break repair in S. acidocaldarius. In addition, DNA-strand-breaking agents (gamma-radiation or bleomycin), as well as DNA-cross-linking agents (mechlorethamine, butadiene diepoxide or cisplatin) stimulated forward mutation, reverse mutation, and formation of recombinants via conjugation in Sulfolobus cells. Although two of the five DNA-damaging agents failed to revert the E. coli auxotrophs under these conditions, all five reverted S. acidocaldarius auxotrophs.

  4. DNA-damage response control of E2F7 and E2F8

    OpenAIRE

    Panagiotis Zalmas, L.; Zhao, Xiujie; Graham, Anne L; FISHER Rebecca; Reilly, Carmel; Coutts, Amanda S; La Thangue, Nicholas B

    2008-01-01

    Here, we report that the two recently identified E2F subunits, E2F7 and E2F8, are induced in cells treated with DNA-damaging agents where they have an important role in dictating the outcome of the DNA-damage response. The DNA-damage-dependent induction coincides with the binding of E2F7 and E2F8 to the promoters of certain E2F-responsive genes, most notably that of the E2F1 gene, in which E2F7 and E2F8 coexist in a DNA-binding complex. As a consequence, E2F7 and E2F8 repress E2F target genes...

  5. The Role of Mms22p in DNA Damage Response in Candida albicans.

    Science.gov (United States)

    Yan, Lan; Xiong, Juan; Lu, Hui; Lv, Quan-zhen; Ma, Qian-yao; Côte, Pierre; Whiteway, Malcolm; Jiang, Yuan-ying

    2015-12-01

    To ensure correct DNA replication, eukaryotes have signaling pathways that respond to replication-associated DNA damage and trigger repair. In both Saccharomyces cerevisiae and Schizosaccharomyces pombe, a complex of proteins, including the cullin protein Rtt101p and two adapter proteins Mms22p and Mms1p, is important for proper response to replication stress. We have investigated this system in Candida albicans. In this pathogen, Mms22p is important for recovery from DNA replication damage induced by agents including methylmethane sulfonate, camptothecin, and ionizing radiation. Although no clear ortholog of Mms1p has been identified in C. albicans, loss of either Mms22p or Rtt101p generates similar damage sensitivity, consistent with a common function. In S. cerevisiae, the Mrc1p-Csm3p-Tof1p complex stabilizes stalled replication forks and activates a replication checkpoint and interacts with Mms22p. A similar complex in S. pombe, consisting of the Tof1p and Csm3p orthologs Swi1p and Swi3p, along with the fission yeast Mrc1p, genetically also interacts with Mms22p. Intriguingly in C. albicans only Mrc1p and Csm3p appear involved in damage repair, and Mms22p is required for responding to DNA damage agents in MRC1 or CSM3 conditional mutants. In C. albicans, although the loss of RAD57 greatly impairs response in the pathogen to many DNA-damaging agents, lethality due to camptothecin damage requires concomitant loss of Rad57p and Mms22p, suggesting that Mms22p is only essential for homologous recombination induced by camptothecin. These results establish that although C. albicans uses conserved cellular modules to respond to DNA damage and replication blocks, the specific details of these modules differ significantly from the S. cerevisiae model.

  6. DNA damage in Populus tremuloides clones exposed to elevated O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Helen H., E-mail: helen.tai@agr.gc.c [Agriculture and Agri-Food Canada, Potato Research Centre, P.O. Box 20280, Fredericton, New Brunswick, E3B 4Z7 (Canada); Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre, 1350 Regent Street S., Fredericton, New Brunswick, E3B 5P7 (Canada); Percy, Kevin E. [Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre, 1350 Regent Street S., Fredericton, New Brunswick, E3B 5P7 (Canada); Karnosky, David F. [School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-04-15

    The effects of elevated concentrations of atmospheric tropospheric ozone (O{sub 3}) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO{sub 2}) were examined. Growing season mean hourly O{sub 3} concentrations were 36.3 and 47.3 ppb for ambient and elevated O{sub 3} plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O{sub 3} concentrations were 79 and 89 ppb, respectively. Elevated CO{sub 2} averaged 524 ppm (+150 ppm) over the growing season. Exposure to O{sub 3} and CO{sub 2} in combination with O{sub 3} increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O{sub 3} compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O{sub 3} and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O{sub 3} tolerance or sensitivity. - Ozone tolerant clones and sensitive Populus tremuloides clones show differences in DNA damage and repair.

  7. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling

    Directory of Open Access Journals (Sweden)

    Elisa eFerrando-May

    2013-07-01

    Full Text Available Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly nonlinear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to nonlinear photoperturbation experiments.

  8. Harnessing the p53-PUMA Axis to Overcome DNA Damage Resistance in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhou

    2014-12-01

    Full Text Available Resistance to DNA damage–induced apoptosis is a hallmark of cancer and a major cause of treatment failure and lethal disease outcome. A tumor entity that is largely resistant to DNA-damaging therapies including chemo- or radiotherapy is renal cell carcinoma (RCC. This study was designed to explore the underlying molecular mechanisms of DNA damage resistance in RCC to develop strategies to resensitize tumor cells to DNA damage–induced apoptosis. Here, we show that apoptosis-resistant RCC cells have a disconnect between activation of p53 and upregulation of the downstream proapoptotic protein p53 upregulated modulator of apoptosis (PUMA. We demonstrate that this disconnect is not caused by gene-specific repression through CCCTC-binding factor (CTCF but instead by aberrant chromatin compaction. Treatment with an HDAC inhibitor was found to effectively reactivate PUMA expression on the mRNA and protein level and to revert resistance to DNA damage–induced cell death. Ectopic expression of PUMA was found to resensitize a panel of RCC cell lines to four different DNA-damaging agents tested. Remarkably, all RCC cell lines analyzed were wild-type for p53, and a knockdown was likewise able to sensitize RCC cells to acute genotoxic stress. Taken together, our results indicate that DNA damage resistance in RCC is reversible, involves the p53-PUMA axis, and is potentially targetable to improve the oncological outcomes of RCC patients.

  9. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling.

    Science.gov (United States)

    Francia, Sofia

    2015-01-01

    Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi) machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports show their involvement in DDR. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.

  10. Mitochondrial DNA damage induces apoptosis in senescent cells

    NARCIS (Netherlands)

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-01-01

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associate

  11. Choreography of recombination proteins during the DNA damage response.

    Science.gov (United States)

    Lisby, Michael; Rothstein, Rodney

    2009-09-02

    Genome integrity is frequently challenged by DNA lesions from both endogenous and exogenous sources. A single DNA double-strand break (DSB) is lethal if unrepaired and may lead to loss of heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly. Such genetic alterations are the main causes of cancer and other genetic diseases. Consequently, DNA double-strand break repair (DSBR) is an important process in all living organisms. DSBR is also the driving mechanism in most strategies of gene targeting, which has applications in both genetic and clinical research. Here we review the cell biological response to DSBs in mitotically growing cells with an emphasis on homologous recombination pathways in yeast Saccharomyces cerevisiae and in mammalian cells.

  12. Choreography of recombination proteins during the DNA damage response

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2009-01-01

    Genome integrity is frequently challenged by DNA lesions from both endogenous and exogenous sources. A single DNA double-strand break (DSB) is lethal if unrepaired and may lead to loss of heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly....... Such genetic alterations are the main causes of cancer and other genetic diseases. Consequently, DNA double-strand break repair (DSBR) is an important process in all living organisms. DSBR is also the driving mechanism in most strategies of gene targeting, which has applications in both genetic and clinical...... research. Here we review the cell biological response to DSBs in mitotically growing cells with an emphasis on homologous recombination pathways in yeast Saccharomyces cerevisiae and in mammalian cells....

  13. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: Evidence for oxidatively DNA damage generation

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A. Viviana, E-mail: alicia.pinto@incqs.fiocruz.br [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Deodato, Elder L. [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Cardoso, Janine S. [Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Oliveira, Eliza F.; Machado, Sergio L.; Toma, Helena K. [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Leitao, Alvaro C. [Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Padula, Marcelo de [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil)

    2010-06-01

    Although titanium dioxide (TiO{sub 2}) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO{sub 2} is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO{sub 2}-UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO{sub 2} associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO{sub 2} plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO{sub 2} protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO{sub 2} plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO{sub 2} plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine.

  14. Hypochlorite-induced damage to DNA, RNA, and polynucleotides

    DEFF Research Database (Denmark)

    Hawkins, Clare L; Davies, Michael Jonathan

    2002-01-01

    on the nature of the nucleobase on which they are formed, with chloramines formed from ring heterocyclic amine groups being less stable than those formed on exocyclic amines (RNH2 groups). Evidence is presented for chlorine transfer from the former, kinetically favored, sites to the more thermodynamically...... favored exocyclic amines. EPR experiments have also provided evidence for the rapid addition of pyrimidine-derived nitrogen-centered radicals to other nucleobases to give dimers and the oxidation of DNA by radicals derived from preformed nucleoside chloramines. Direct reaction of HOCl with plasmid DNA...

  15. Benzoyl peroxide-induced damage to DNA and its components

    DEFF Research Database (Denmark)

    Hazlewood, C; Davies, Michael Jonathan

    1996-01-01

    , sugars, nucleosides, nucleotides, RNA, and DNA have been examined and the intermediate species have been identified in many cases. Comparison of these data with those obtained with Ph. alone has allowed the reactions of PhCO2. and Ph. to be distinguished. Evidence has been obtained which is consistent...... with both the addition of these radicals to the C5-C6 double bond of the pyrimidines to give adduct species, and hydrogen abstraction from the sugar rings. The former process is the major reaction for nucleosides and nucleotides. Studies with RNA and DNA also provide strong evidence for the formation...

  16. Anti-oxidative effects of Phellinus linteus and red ginseng extracts on oxidative stress-induced DNA damage.

    Science.gov (United States)

    Park, Byung-Jae; Lim, Yeong-Seok; Lee, Hee-Jung; Eum, Won Sik; Park, Jinseu; Han, Kyu Hyung; Choi, Soo Young; Lee, Kil Soo

    2009-08-31

    Anti-oxidative effect of Phellinus linteus (P. linteus) and red ginseng extracts on DNA damage induced by reactive oxygen species (ROS) were investigated in this study. P. linteus (PLE) and red ginseng extracts (RGE) inhibited the breaking of E. coli ColE1 plasmid DNA strands as well as nuclear DNA of rat hepatocytes damaged by oxidative stress. In addition, a reaction mixture of PLE and RGE showed synergistic inhibitory effect against DNA damage. These results suggest that PLE and RGE have a cellular defensive effect against DNA damage induced by ROS.

  17. The influence of sleep deprivation and obesity on DNA damage in female Zucker rats

    Directory of Open Access Journals (Sweden)

    Neuli M. Tenorio

    2013-01-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. METHOD: Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group. The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. RESULTS: Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. CONCLUSION: Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.

  18. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Niu, H., E-mail: hniu@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Chang, H.C. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Cho, I.C. [Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, C.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, C.S. [Cancer Center of Taipei Veterans General Hospital, Taipei, Taiwan (China); Chou, W.T. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-08-15

    Highlights: • Charged particles can induce more complex DNA damages, and these complex damages have higher ability to cause the cell death or cell carcinogenesis. • In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in particle irradiated HeLa cells. • The HeLa cells were irradiated by 400 keV alpha-particles in four different dosages. • The result shows that a good linear relationship can be observed between foci number and radiation dose. • The data shows that the dissolution rate of γ-H2AX foci agree with the two components DNA repairing model, and it was decreasing as the radiation dose increased. • These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair. - Abstract: In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA

  19. DNA damage in peripheral blood lymphocytes in patients during combined chemotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Suarez, Patricia [Oncological Research Unit, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtemoc 330, Col. Doctores, 06725 Mexico, D.F. (Mexico); Ostrosky-Wegman, Patricia [Biomedical Research Institute, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico); Gallegos-Hernandez, Francisco [Department of Clinical Oncology, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City (Mexico); Penarroja-Flores, Rubicelia; Toledo-Garcia, Jorge [Oncological Research Unit, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtemoc 330, Col. Doctores, 06725 Mexico, D.F. (Mexico); Bravo, Jose Luis [Atmospheric Sciences Institute, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico); Rojas del Castillo, Emilio [Biomedical Research Institute, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico); Benitez-Bribiesca, Luis [Oncological Research Unit, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtemoc 330, Col. Doctores, 06725 Mexico, D.F. (Mexico)], E-mail: luisbenbri@mexis.com

    2008-04-02

    Combined chemotherapy is used for the treatment of a number of malignancies such as breast cancer. The target of these antineoplastic agents is nuclear DNA, although it is not restricted to malignant cells. The aim of the present study was to assess DNA damage in peripheral blood lymphocytes (PBLs) of breast cancer patients subjected to combined adjuvant chemotherapy (5-fluorouracil, epirubicin and cyclophosphamide, FEC), using a modified comet assay to detect DNA single-strand breaks (SSB) and double-strand breaks (DSB). Forty-one female patients with advanced breast cancer before and after chemotherapy and 60 healthy females participated in the study. Alkaline and neutral comet assays were performed in PBLs according to a standard protocol, and DNA tail moment was measured by a computer-based image analysis system. Breast cancer patients before treatment had higher increased background levels of SSB and DSB as compared to healthy women. During treatment, a significant increase in DNA damage was observed after the 2nd cycle, which persisted until the end of treatment. Eighty days after the end of treatment the percentage of PBLs with SSB and DSB remained elevated, but the magnitude of DNA damage (tail moment) returned to baseline levels. There was no correlation between PBL DNA damage and response to chemotherapy. DNA-SSB and DSB in PBLs are present in cancer patients before treatment and increase significantly after combined chemotherapy. No correlation with response to adjuvant chemotherapy was found. Biomonitoring DNA damage in PBLs of cancer patients could help prevent secondary effects and the potential risks of developing secondary cancers.

  20. Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions

    DEFF Research Database (Denmark)

    Liu, Dong; Croteau, Deborah L; Souza-Pinto, Nadja

    2011-01-01

    increased levels of a nuclear isoform OGG1, suggesting an adaptive response to oxidative nuclear DNA damage. Thus, OGG1 has a pivotal role in repairing oxidative damage to nuclear DNA under ischemic conditions, thereby reducing brain damage and improving functional outcome.Journal of Cerebral Blood Flow...

  1. Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress-Induced DNA Damage

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Forchhammer, Lykke; Møller, Peter

    2007-01-01

    BACKGROUND: Particulate matter, especially ultrafine particles (UFPs), may cause health effects through generation of oxidative stress, with resulting damage to DNA and other macromolecules. OBJECTIVE: We investigated oxidative damage to DNA and related repair capacity in peripheral blood...... mononuclear cells (PBMCs) during controlled exposure to urban air particles with assignment of number concentration (NC) to four size modes with average diameters of 12, 23, 57, and 212 nm. DESIGN. Twenty-nine healthy adults participated in a randomized, two-factor cross-over study with or without biking...... exercise for 180 min and with exposure to particles (NC 6169-15362/cm3) or filtered air (NC 91-542/cm3) for 24 hr. METHODS: The levels of DNA strand breaks (SBs), oxidized purines as formamidopyrimidine DNA glycolase (FPG) sites, and activity of 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1) in PBMCs were...

  2. Variation of DNA damage levels in peripheral blood mononuclear cells isolated in different laboratories

    DEFF Research Database (Denmark)

    Godschalk, Roger W L; Ersson, Clara; Stępnik, Maciej;

    2014-01-01

    This study investigated the levels of DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG) sensitive sites, as assessed by the comet assay, in peripheral blood mononuclear cells (PBMC) from healthy women from five different countries in Europe. The laboratory in each country (referred...... to as 'centre') collected and cryopreserved PBMC samples from three donors, using a standardised cell isolation protocol. The samples were analysed in 13 different laboratories for DNA damage, which is measured by the comet assay. The study aim was to assess variation in DNA damage in PBMC samples that were......%) by standardisation of the primary comet assay endpoint with calibration curve samples. The level of DNA strand breaks in the samples from two of the centres (0.56-0.61 lesions/10(6) bp) was significantly higher compared with the other three centres (0.41-0.45 lesions/10(6) bp). In contrast, there was no difference...

  3. Micronutrients intake associated with DNA damage assessed by in a human biomonitoring study

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2015-05-01

    Retinol was positively correlated with oxidative DNA damage in controls. The study by van Helden et al. (2009 demonstrated that vitamin A enhances OH radical formation in the Fenton reaction, showing that vitamin A can act as pro-oxidant or antioxidant, depending on the type of radicals involved, and may lead to DNA oxidative damage (Alakhras et al., 2011. Azqueta & Collins (2012 clearly distinguished between effects of vitamin A, pro-vitamin A carotenoids, and non-vitamin A carotenoids; being the latter group almost invariably reported to protect against DNA damage, whether endogenous or induced by exogenous agents, the pro-vitamin A carotenoids show a wider spectrum of effects, sometimes protecting and sometimes enhancing DNA damage. Vitamin E was found to be positively correlated with % DNA in tail. Watters et al. (2007 also found a positive association of vitamin E and oxidative DNA damage in a healthy, non-smoking population of young adults. A possible explanation for this result stems from some evidence that in the presence of copper or in smokers with a fat rich diet, vitamin E can act as a strong pro-oxidant, nevertheless it remains an unexpected result. Results found a positive correlation between iron and % DNA in tail, meaning that higher intake of iron associates with higher DNA damage. Oxidative lesions, and more specifically 8-OHdG, is one of the most prevalent lesions induced by iron containing substances (Prá et al., 2012, however the FPG biomarker was not statistically associated with iron. There is sound evidence that iron deficiency increases genome instability, among other mechanisms, by impairing enzymes involved in antioxidant and nuclei acid metabolism (Prá et al., 2012. Results presented herein found that the amount of calories ingested was negatively correlated with both biomarkers assessed by comet assay. This was somewhat unexpected, as calories restriction reduces metabolic rate and oxidative stress, meaning that lower calories

  4. The role of poly(ADP-ribose) in the DNA damage signaling network.

    Science.gov (United States)

    Malanga, Maria; Althaus, Felix R

    2005-06-01

    DNA damage signaling is crucial for the maintenance of genome integrity. In higher eukaryotes a NAD+-dependent signal transduction mechanism has evolved to protect cells against the genome destabilizing effects of DNA strand breaks. The mechanism involves 2 nuclear enzymes that sense DNA strand breaks, poly(ADP-ribose) polymerase-1 and -2 (PARP-1 and PARP-2). When activated by DNA breaks, these PARPs use NAD+ to catalyze their automodification with negatively charged, long and branched ADP-ribose polymers. Through recruitment of specific proteins at the site of damage and regulation of their activities, these polymers may either directly participate in the repair process or coordinate repair through chromatin unfolding, cell cycle progression, and cell survival-cell death pathways. A number of proteins, including histones, DNA topoisomerases, DNA methyltransferase-1 as well as DNA damage repair and checkpoint proteins (p23, p21, DNA-PK, NF-kB, XRCC1, and others) can be targeted in this manner; the interaction involves a specific poly(ADP-ribose)-binding sequence motif of 20-26 amino acids in the target domains.

  5. CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation

    DEFF Research Database (Denmark)

    Kousholt, Arne Nedergaard; Fugger, Kasper; Hoffmann, Saskia

    2012-01-01

    To prevent accumulation of mutations, cells respond to DNA lesions by blocking cell cycle progression and initiating DNA repair. Homology-directed repair of DNA breaks requires CtIP-dependent resection of the DNA ends, which is thought to play a key role in activation of ATR (ataxia telangiectasia...

  6. The protective effect of clay minerals against damage to adsorbed DNA induced by cadmium and mercury.

    Science.gov (United States)

    Hou, Yakun; Wu, Pingxiao; Zhu, Nengwu

    2014-01-01

    The adsorption of Salmon Sperm DNA on three kinds of raw clay (rectorite, montmorillonite and sericite) was investigated as a function of pH, ionic strength and the concentrations of DNA and phosphate ions in solution. The DNA adsorption was reduced in the following order: rectorite>montmorillonite>sericite. Based on these findings, there is a strong evidence that the mechanisms for DNA adsorption on clay involve electrostatic forces, cation bridging and ligand exchange. Cyclic voltammetry (CV) and UV-vis absorption and fluorescence spectroscopy were used to compare the properties of unbound DNA and the absorbed DNA on rectorite, both in the absence and presence of Cd(2+) and Hg(2+) inaqueous solutions. The interaction of heavy metals with the unbound DNA was evidenced by the disappearance of reduction peaks in CV, a small bathochromic shift in UV-vis spectroscopy and an incomplete quenching in the emission spectra. Such changes were not observed in the DNA-rectorite hybrids, which is evidence that adsorption on the clay can reduce the extent of the DNA damage caused by heavy metals. Therefore, in these experience the rectorite played an important role in protecting DNA against Cd(2+) and Hg(2+) induced damage.

  7. Preventing damage limitation: targeting DNA-PKcs and DNA double strand break repair pathways for ovarian cancer therapy

    Directory of Open Access Journals (Sweden)

    Daniela A Dungl

    2015-10-01

    Full Text Available Platinum-based chemotherapy is the cornerstone of ovarian cancer treatment, and its efficacy is dependent on the generation of DNA damage, with subsequent induction of apoptosis. Inappropriate or aberrant activation of the DNA damage response network is are associated with resistance to platinum, and defects in DNA repair pathways play critical roles in determining patient response to chemotherapy. In ovarian cancer, tumour cell defects in homologous recombination - a repair pathway activated in response to DNA double strand breaks (DSB - are most commonly associated with platinum sensitive disease. However, despite initial sensitivity, the emergence of resistance is frequent. Here, we review strategies for directly interfering with DNA repair pathways, with particular focus on direct inhibition of non-homologous end joining (NHEJ, another DSB repair pathway. DNA-PKcs is a core component of NHEJ and it has shown considerable promise as a chemosensitization target in numerous cancer types, including ovarian cancer where it functions to promote platinum-induced survival signalling, via AKT activation. The development of pharmacological inhibitors of DNA-PKcs is on-going, and clinic-ready agents offer real hope to patients with chemoresistant disease.

  8. Analysis of spatial correlations between patterns of DNA damage response and DNA replication in nuclei of cells subjected to replication stress or oxidative damage.

    Science.gov (United States)

    Bernas, Tytus; Berniak, Krzysztof; Rybak, Paulina; Zarębski, Mirosław; Zhao, Hong; Darzynkiewicz, Zbigniew; Dobrucki, Jerzy W

    2013-10-01

    Sites of DNA replication (EdU incorporation) and DNA damage signaling (γH2AX) induced by camptothecin (Cpt) or hydrogen peroxide (H2O2) form characteristic patterns of foci in cell nuclei. The overlap between these patterns is a function of the number of DNA double strand breaks (DSBs) formed in replication sites. The goal of this study was to optimize a method of quantitative assessment of a degree of correlation between these two patterns. Such a correlation can be used to estimate a probability of inducing damage in sections of replicating DNA. The damage and replication foci are imaged in 3D with confocal microscopy and their respective positions within nuclei are determined with adaptive image segmentation. Using correlation functions spatial proximity of the resultant point patterns is quantified over the range of distances in cells in early-, mid- and late S-phase. As the numbers (and nuclear densities) of γH2AX and replication foci differ significantly in the subsequent substages of S phase, the detected association values were corrected for the expected random overlap between both classes of foci. Thus, the probability of their nonrandom association was estimated. Moreover, self association (clustering) of DNA replication sites in different stages of S-phase of the cell cycle was detected and accounted for. While the analysis revealed a strong correlation between the γH2AX foci and the sites of DNA replication in cells treated with Cpt, only a low correlation was apparent in cells exposed to H2O2. © 2013 International Society for Advancement of Cytometry.

  9. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signalling and their interplay

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2015-06-01

    Full Text Available Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1 redox signalling and (2 macromolecule damage. Mechanistic knowledge of how exercise-induced redox signalling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signalling and DNA damage, using hydroxyl radical (·OH and hydrogen peroxide (H2O2 as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signalling and damage. Indeed, H2O2 can participate in two electron signalling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signalling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signalling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  10. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage.

    Science.gov (United States)

    Chen, Lihong; Gilkes, Daniele M; Pan, Yu; Lane, William S; Chen, Jiandong

    2005-10-05

    The p53 tumor suppressor is activated after DNA damage to maintain genomic stability and prevent transformation. Rapid activation of p53 by ionizing radiation is dependent on signaling by the ATM kinase. MDM2 and MDMX are important p53 regulators and logical targets for stress signals. We found that DNA damage induces ATM-dependent phosphorylation and degradation of MDMX. Phosphorylated MDMX is selectively bound and degraded by MDM2 preceding p53 accumulation and activation. Reduction of MDMX level by RNAi enhances p53 response to DNA damage. Loss of ATM prevents MDMX degradation and p53 stabilization after DNA damage. Phosphorylation of MDMX on S342, S367, and S403 were detected by mass spectrometric analysis, with the first two sites confirmed by phosphopeptide-specific antibodies. Mutation of MDMX on S342, S367, and S403 each confers partial resistance to MDM2-mediated ubiquitination and degradation. Phosphorylation of S342 and S367 in vivo require the Chk2 kinase. Chk2 also stimulates MDMX ubiquitination and degradation by MDM2. Therefore, the E3 ligase activity of MDM2 is redirected to MDMX after DNA damage and contributes to p53 activation.

  11. Dovitinib induces mitotic defects and activates the G2 DNA damage checkpoint.

    Science.gov (United States)

    Man, Wing Yu; Mak, Joyce P Y; Poon, Randy Y C

    2014-01-01

    Dovitinib (TKI258; formerly CHIR-258) is an orally bioavailable inhibitor of multiple receptor tyrosine kinases. Interestingly, Dovitinib triggered a G2 /M arrest in cancer cell lines from diverse origins including HeLa, nasopharyngeal carcinoma, and hepatocellular carcinoma. Single-cell analysis revealed that Dovitinib promoted a delay in mitotic exit in a subset of cells, causing the cells to undergo mitotic slippage. Higher concentrations of Dovitinib induced a G2 arrest similar to the G2 DNA damage checkpoint. In support of this, DNA damage was triggered by Dovitinib as revealed by γ-H2AX and comet assays. The mitotic kinase CDK1 was found to be inactivated by phosphorylation in the presence of Dovitinib. Furthermore, the G2 arrest could be overcome by abrogation of the G2 DNA damage checkpoint using small molecule inhibitors of CHK1 and WEE1. Finally, Dovitinib-mediated G2 cell cycle arrest and subsequent cell death could be promoted after DNA damage repair was disrupted by inhibitors of poly(ADP-ribose) polymerases. These results are consistent with the recent finding that Dovitinib can also target topoisomerases. Collectively, these results suggest additional directions for use of Dovitinib, in particular with agents that target the DNA damage checkpoint.

  12. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    Science.gov (United States)

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  13. A comparison of ejaculated and testicular spermatozoa aneuploidy rates in patients with high sperm DNA damage.

    Science.gov (United States)

    Moskovtsev, Sergey I; Alladin, Naazish; Lo, Kirk C; Jarvi, Keith; Mullen, J Brendan M; Librach, Clifford L

    2012-06-01

    Testicular spermatozoa are utilized to achieve pregnancy in couples with severe male factor infertility. Several studies suggest that aneuploidy rates in spermatozoa are elevated at the testicular level in infertile patients compared to ejaculates of normal controls. However, essential data regarding aneuploidy rates between ejaculated and testicular spermatozoa in the same individuals is lacking. The purpose of our study was to compare aneuploidy rates at the testicular and post-testicular level from the same patients with persistently high sperm DNA damage. Ejaculates and testicular biopsies were obtained from eight patients with persistently high DNA damage (>30%). Both ejaculated and testicular samples were analyzed for sperm DNA damage and sperm aneuploidy for chromosomes 13, 18, 21, X, and Y. In addition, semen samples from ten normozoospermic men presenting for fertility evaluation served as a control group. A strong correlation between the alteration of spermatogenesis and chromatin deterioration was observed in our study. In the same individuals, testicular samples showed a significantly lower DNA damage compared to ejaculated spermatozoa (14.9% ± 5.0 vs. 40.6% ± 14.8, P<0.05), but significantly higher aneuploidy rates for the five analyzed chromosomes (12.41% ± 3.7 vs. 5.77% ± 1.2, P<0.05). While testicular spermatozoa appear favourable for ICSI in terms of lower DNA damage, this potential advantage could be offset by the higher aneuploidy rates in testicular spermatozoa.

  14. DDR-mediated crosstalk between DNA-damaged cells and their microenvironment.

    Science.gov (United States)

    Malaquin, Nicolas; Carrier-Leclerc, Audrey; Dessureault, Mireille; Rodier, Francis

    2015-01-01

    The DNA damage response (DDR) is an evolutionarily conserved signaling cascade that senses and responds to double-strand DNA breaks by organizing downstream cellular events, ranging from appropriate DNA repair to cell cycle checkpoints. In higher organisms, the DDR prevents neoplastic transformation by directly protecting the information contained in the genome and by regulating cell fate decisions, like apoptosis and senescence, to ensure the removal of severely damaged cells. In addition to these well-studied cell-autonomous effects, emerging evidence now shows that the DDR signaling cascade can also function in a paracrine manner, thus influencing the biology of the surrounding cellular microenvironment. In this context, the DDR plays an emerging role in shaping the damaged tumor microenvironment through the regulation of tissue repair and local immune responses, thereby providing a promising avenue for novel therapeutic interventions. Additionally, while DDR-mediated extracellular signals can convey information to surrounding, undamaged cells, they can also feedback onto DNA-damaged cells to reinforce selected signaling pathways. Overall, these extracellular DDR signals can be subdivided into two time-specific waves: a rapid bystander effect occurring within a few hours of DNA damage; and a late, delayed, senescence-associated secretory phenotype generally requiring multiple days to establish. Here, we highlight and discuss examples of rapid and late DDR-mediated extracellular alarm signals.

  15. Posttranscriptional regulation of gene expression—adding another layer of complexity to the DNA damage response

    Science.gov (United States)

    Boucas, Jorge; Riabinska, Arina; Jokic, Mladen; Herter-Sprie, Grit S.; Chen, Shuhua; Höpker, Katja; Reinhardt, H. Christian

    2012-01-01

    In response to DNA damage, cells activate a complex, kinase-based signaling network to arrest the cell cycle and allow time for DNA repair, or, if the extend of damage is beyond repair capacity, induce apoptosis. This signaling network, which is collectively referred to as the DNA damage response (DDR), is primarily thought to consist of two components—a rapid phosphorylation-driven signaling cascade that results in immediate inhibition of Cdk/cyclin complexes and a delayed transcriptional response that promotes a prolonged cell cycle arrest through the induction of Cdk inhibitors, such as p21. In recent years a third layer of complexity has emerged that involves potent posttranscriptional regulatory mechanisms that control the cellular response to DNA damage. Although much has been written on the relevance of the DDR in cancer and on the post-transcriptional role of microRNAs (miRs) in cancer, the post-transcriptional regulation of the DDR by non-coding RNAs and RNA-binding proteins (RBPs) still remains elusive in large parts. Here, we review the recent developments in this exciting new area of research in the cellular response to genotoxic stress. We put specific emphasis on the role of RBPs and the control of their function through DNA damage-activated protein kinases. PMID:22936947

  16. Posttranscriptional regulation of gene expression – adding another layer of complexity to the DNA damage response

    Directory of Open Access Journals (Sweden)

    Jorge eBoucas

    2012-08-01

    Full Text Available In response to DNA damage, cells activate a complex, kinase-based signaling network to arrest the cell cycle and allow time for DNA repair, or, if the extend of damage is beyond repair capacity, induce apoptosis. This signaling network, which is collectively referred to as the DNA damage response (DDR, is primarily thought to consist of two components – a rapid phosphorylation-driven signaling cascade that results in immediate inhibition of Cdk/cyclin complexes and a delayed transcriptional response that promotes a prolonged cell cycle arrest through the induction of Cdk inhibitors, such as p21. In recent years a third layer of complexity has emerged that involves potent posttranscriptional regulatory mechanisms that control the cellular response to DNA damage. Although much has been written on the relevance of the DDR in cancer and on the post-transcriptional role of microRNAs (miRs in cancer, the post-transcriptional regulation of the DDR by non-coding RNAs and RNA-binding proteins (RBPs still remains elusive in large parts. Here, we review the recent developments in this exciting new area of research in the cellular response to genotoxic stress. We put specific emphasis on the role of RNA-binding proteins and the control of their function through DNA damage-activated protein kinases.

  17. A matter of life or death: modeling DNA damage and repair in bacteria.

    Science.gov (United States)

    Karschau, Jens; de Almeida, Camila; Richard, Morgiane C; Miller, Samantha; Booth, Ian R; Grebogi, Celso; de Moura, Alessandro P S

    2011-02-16

    DNA damage is a hazard all cells must face, and evolution has created a number of mechanisms to repair damaged bases in the chromosome. Paradoxically, many of these repair mechanisms can create double-strand breaks in the DNA molecule which are fatal to the cell. This indicates that the connection between DNA repair and death is far from straightforward, and suggests that the repair mechanisms can be a double-edged sword. In this report, we formulate a mathematical model of the dynamics of DNA damage and repair, and we obtain analytical expressions for the death rate. We predict a counterintuitive relationship between survival and repair. We can discriminate between two phases: below a critical threshold in the number of repair enzymes, the half-life decreases with the number of repair enzymes, but becomes independent of the number of repair enzymes above the threshold. We are able to predict quantitatively the dependence of the death rate on the damage rate and other relevant parameters. We verify our analytical results by simulating the stochastic dynamics of DNA damage and repair. Finally, we also perform an experiment with Escherichia coli cells to test one of the predictions of our model.

  18. Smoking-promoted oxidative DNA damage response is highly correlated to lung carcinogenesis.

    Science.gov (United States)

    Cao, Chao; Lai, Tianwen; Li, Miao; Zhou, Hongbin; Lv, Dan; Deng, Zaichun; Ying, Songmin; Chen, Zhihua; Li, Wen; Shen, Huahao

    2016-04-05

    Oxidative stress induced by tobacco smoking is one of the main causes of DNA damage and is known to be involved in various cancers. Smoking is the leading cause of lung cancer, while the role of cigarette smoke-induced oxidative DNA damage response during lung carcinogenesis is largely unknown. In this study, we investigated oxidative DNA damage response levels in smoking and nonsmoking patients with lung cancer, and evaluated the potential diagnostic value of 8-OHdG for lung cancer. We observed a higher level of 8-OHdG expression and secretion in airways of lung cancer patients than that of noncancer controls. 8-OHdG expression was associated with the TNM stages. Additionally, cigarette smoke-induced oxidative DNA damage response was observed in bronchial epithelial cells in vitro and in vivo. A statistical significance correlation was found between the levels of 8-OHdG and smoking index. With a cut-off value of 2.86 ng/ml, 8-OHdG showed a sensitivity and specificity of 70.0% and 73.7%, respectively, to identify a patient with lung cancer. These findings not only underscore the importance of smoking in oxidative DNA damage response of lung cancer patients, but also suggest 8-OHdG as a potential diagnostic biomarker for lung cancer.

  19. 45. Damage effects of sulfur dioxide inhalation on DNA of brain cells from mice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The damage effects of sulfur dioxide (SO2) inhalation on DNA of brain cells from mice were studied with the single cell microgel electrophoresis tecknique (Comet test). The results show that SO2 inhalation caused the damage effects to DNA of the mouse brain cells in a dose-dependent manner. The results indicate that even under SO2 inhalation at low concentrations as 7 mg SO2/m3, The brain cells with DNA damaged also reached to 98.8%, it implies the brain cells of mammalian animals are very sensitive to SO2 inhalation. The results also indicate that DNA damage of the brain cells from male mice is more serious than that from female mice, that remains to be further studied. These results led us to conclusion SO2 pollution even at low concentrations also has a potential risk to damage genetic material DNA of brain cells from mammalian animals. It might be explained by our conclusion that the recently published epidemiological studies of workers exposed to SO2 or it's derivatives (bi)sulfite) found increased mortality for brain cancer.

  20. Effects of Fluoride on Lipid Peroxidation, DNA Damage and Apoptosis in Human Embryo Hepatocytes

    Institute of Scientific and Technical Information of China (English)

    AI-GUO WANG; TAO XIA; QI-LONG CHU; MING ZHANG; FANG LIU; XUE-MIN CHEN; KE-DI YANG

    2004-01-01

    Objective To investigate the effects of fluoride on lipid peroxidation, DNA damage and apoptosis in human embryo hepatocyte L-02 cells. Methods Lipid peroxide (LPO) level, reduced glutathione (GSH) content, DNA damage, apoptosis, and cell cycle analysis were measured after in vitro cultured L-02 cells were exposed to sodium fluoride at different doses (40 μg/mL, 80 μg/mL, and 160 μg/mL) for 24 hours. Results Fluoride caused an increase of LPO levels and a decrease of GSH content in L-02 cells. There appeared to be an obvious dose-effect relationship between the fluoride concentration and the observed changes. Fluoride also caused DNA damage and apoptosis and increased the cell number in S phase of cell cycle in the cells tested. There was a statistically significant difference in DNA damage and apoptosis when comparing the high dose of fluoride treated cells with the low dose of fluoride treated cells. Conclusion Fluoride can cause lipid peroxidation, DNA damage, and apoptosis in the L-02 cell experimental model and there is a significant positive correlation between fluoride concentration and these pathological changes.

  1. Sevoflurane Induces DNA Damage Whereas Isoflurane Leads to Higher Antioxidative Status in Anesthetized Rats

    Directory of Open Access Journals (Sweden)

    Thalita L. A. Rocha

    2015-01-01

    Full Text Available Taking into account that there are controversial antioxidative effects of inhalational anesthetics isoflurane and sevoflurane and absence of comparison of genotoxicity of both anesthetics in animal model, the aim of this study was to compare DNA damage and antioxidant status in Wistar rats exposed to a single time to isoflurane or sevoflurane. The alkaline single-cell gel electrophoresis assay (comet assay was performed in order to evaluate DNA damage in whole blood cells of control animals (unexposed; n = 6 and those exposed to 2% isoflurane (n = 6 or 4% sevoflurane (n = 6 for 120 min. Plasma antioxidant status was determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. There was no statistically significant difference between isoflurane and sevoflurane groups regarding hemodynamic and temperature variables (P > 0.05. Sevoflurane significantly increased DNA damage compared to unexposed animals (P = 0.02. In addition, Wistar rats anesthetized with isoflurane showed higher antioxidative status (MTT than control group (P = 0.019. There were no significant differences in DNA damage or antioxidant status between isoflurane and sevoflurane groups (P > 0.05. In conclusion, our findings suggest that, in contrast to sevoflurane exposure, isoflurane increases systemic antioxidative status, protecting cells from DNA damage in rats.

  2. A closed parameterization of DNA-damage by charged particles as a function of energy

    CERN Document Server

    D, Frank Van den Heuvel Ph

    2013-01-01

    Purpose: To present a closed formalism calculating charged particle radiation damage induced in DNA, based on a simplified molecular model. The formalism is valid for all types of charged particles and due to its closed nature is suited to provide fast conversion of dose to DNA-damage. Methods: The induction of complex DNA--damaged is modelled using the standard scattering theory with a simplified effective potential. This leads to a proposal to use the Breit-Wigner expression to model the probability of the complex damage inelastic scatter as a function of kinetic energy of the scattered particle. A microscopic phenomenological Monte Carlo code is used to predict the damage to a DNA molecule embedded in a cell. The model is fit to the result of the simulation for four particles: electrons, protons, alpha--particles, and Carbon ions. The model is then used to predict the damage in a cell as a function of kinetic energy. Finally, a framework is proposed and implemented to provide data that can be assessed expe...

  3. Simulated microgravity influenced the expression of DNA damage repair genes

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Jiawei, Liu; Wang, Ting

    2016-07-01

    Ionizing radiation and microgravity were considered to be the most important stress factors of space environmental the respective study of the biological effects of the radiation and microgravity carried out earlier, but the interaction of the effects of radiation with microgravity started later, and due to difference of the materials and methods the result of this experiment were not consistent. To further investigate the influence of microgravity on the expression of the radiation damage repair genes, the seed of Arabidopsis (Col) and its gravity-insensitive mutant (PIN2) were exposed to 0.1Gy of the dose of energetic carbon-ion beam radiation (LET = 30KeV / μm), and the germinated seed were than fixed in the 3D random positioning apparatus immediately for a 10-day simulated microgravity. By measuring the deflection angle of root tip and the changes of the expression of Ku70 and RAD51 protein, we investigated the impact of microgravity effect on radiation damage repair systems. The results shown that radiation, microgravity and microgravity with radiation could increase the angle of the root of the Col significantly, but no obvious effect on PIN2 type. The radiation could increase the expression of Ku70 significantly in both Col and PIN2, microgravity does not affect the expression, but the microgravity with radiation could decrease the expression of Ku70. This result shown that the microgravity could influence the radiation damage repair systems in molecular level. Moreover, our findings were important to understand the molecular mechanism of the impact of microgravity effect on radiation damage repair systems in vivo.

  4. Human POLD1 modulates cell cycle progression and DNA damage repair

    OpenAIRE

    Song, Jing; Hong, Ping; Liu, Chengeng; Zhang, Yueqi; Wang, Jinling; Wang, Peichang

    2015-01-01

    Background The activity of eukaryotic DNA polymerase delta (Pol δ) plays an essential role in genome stability through its effects on DNA replication and repair. The p125 catalytic subunit of Pol δ is encoded by POLD1 gene in human cells. To clarify biological functions of POLD1, we investigated the effects of POLD1 overexpression or downregulation on cell proliferation, cell cycle progression, DNA synthesis and oxidative DNA damage induced by H2O2. Methods HEK293 cells were transfected with ...

  5. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Bjørn, Louise; Mendoza-Chamizo, Belén;

    2014-01-01

    In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance...... in hyperinitiating cells therefore results from replication forks encountering single-stranded DNA lesions generated while removing oxidized bases, primarily 8-oxoG, from the DNA. We conclude that there is a delicate balance between chromosome replication and ROS inflicted DNA damage so the number of replication...... forks can only increase when ROS formation is reduced or when the pertinent repair is compromised....

  6. Increased DNA damage and oxidative stress in chickens with natural Marek's disease.

    Science.gov (United States)

    Keles, Hikmet; Fidan, A Fatih; Cigerci, I Hakki; Kucukkurt, Ismail; Karadas, Erkan; Dundar, Yilmaz

    2010-01-15

    Oxidative stress contributes to the accumulation of genomic abnormalities, prevents cellular apoptosis, and also mediates immunosuppression resulting in tumor formation. Marek's Disease provides excellent opportunities for the study of herpesvirus-induced tumors both in experimental- and natural conditions. The aim of this study was to examine the effects of Marek's Disease (MD) on basal levels of DNA strand breaks and on the oxidative-antioxidative status of chickens with MD. White-Lohmann hens-fifteen infected with Marek's Disease Virus (MDV) and fifteen healthy-of same age and sex were included in this study. MD infection was diagnosed via clinical signs, gross- and micro-pathological findings and also by detection of viral antigens in feather follicle epithelium by the indirect immunoperoxidase method. Compared with healthy controls, DNA damage was greater and levels of malondialdehyde (MDA) and plasma protein carbonyl (PCO), and plasma concentration of nitric oxide metabolites (NOx) higher in the MD group. Furthermore, total antioxidant activities (AOAs) were found lowered and glutathione (GSH) levels reduced in the MD group compared to the control group. Significantly positive correlation was found between DNA damage, MDA, PCO, and NOx in the MD group. DNA strand breaks were found negatively associated with AOA and GSH concentrations in the MD group. Our results demonstrated that oxidative stress markers and DNA damage substantially increased in chickens with MD, which indicated that increased DNA damage levels might be related to the increased oxidative stress and reduced antioxidant activity.

  7. Neutrophil-derived ROS contribute to oxidative DNA damage induction by quartz particles.

    Science.gov (United States)

    van Berlo, Damien; Wessels, Anton; Boots, Agnes W; Wilhelmi, Verena; Scherbart, Agnes M; Gerloff, Kirsten; van Schooten, Frederik J; Albrecht, Catrin; Schins, Roel P F

    2010-12-01

    The carcinogenicity of respirable quartz is considered to be driven by reactive oxygen species (ROS) generation in association with chronic inflammation. The contribution of phagocyte-derived ROS to inflammation, oxidative stress, and DNA damage responses was investigated in the lungs of C57BL/6J wild-type and p47(phox-/-) mice, 24h after pharyngeal aspiration of DQ12 quartz (100 mg/kg bw). Bone-marrow-derived neutrophils from wild-type and p47(phox-/-) mice were used for parallel in vitro investigations in coculture with A549 human alveolar epithelial cells. Quartz induced a marked neutrophil influx in both wild-type and p47(phox-/-) mouse lungs. Significant increases in mRNA expression of the oxidative stress markers HO-1 and γ-GCS were observed only in quartz-treated wild-type animals. Oxidative DNA damage in lung tissue was not affected by quartz exposure and did not differ between p47(phox-/-) and WT mice. Differences in mRNA expression of the DNA repair genes OGG1, APE-1, DNA Polβ, and XRCC1 were also absent. Quartz treatment of cocultures containing wild-type neutrophils, but not p47(phox-/-) neutrophils, caused increased oxidative DNA damage in epithelial cells. Our study demonstrates that neutrophil-derived ROS significantly contribute to pulmonary oxidative stress responses after acute quartz exposure, yet their role in the associated induction of oxidative DNA damage could be shown only in vitro.

  8. Oxidative damages to DNA by indoor PM10s: Their relationships with trace element compositions

    Institute of Scientific and Technical Information of China (English)

    SHAO Longyi; ZHAO Houyin; T. P. JONES; LU Senlin; L. MEROLLA

    2005-01-01

    Plasmid DNA assay and ICP-MS analysis were conducted in order to investigate the bioreactivity of inhalable particles (PM10) and the relationship between bioreactivity and trace element compositions of PM10 in Beijing air. A total of four PM10 samples were carefully selected to represent the indoor and corresponding outdoor environments: one from urban smoker's home, two from nonsmoker's homes, and the other from the outdoor. In general, the oxidative damage by indoor PM10 was slightly higher than that of outdoor. Among the four sets of samples, the PM10 from the smoker's home hada lowest TD50 (toxic dose of PM10 causing 50% DNA to damage to plasmid DNA. The ICP-MS analysis combined with the DNA assay showed that the water-soluble zinc levels had better relationship with TD50 values than other elements, implying that water-soluble zinc might play an important role in the damage of DNA. It is concluded that the PM10 in smoker' s home had the highest level of water-soluble zinc as well as the lowest TD50 ( highest bioreactivity).Iron is considered to be one of the most bioreactive elements, but it will cause little damage to plasmid DNA, probably because iron is mainly in water-insoluble state in Beijing PM10.

  9. The role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma.

    Science.gov (United States)

    Maes, Ken; De Smedt, Eva; Lemaire, Miguel; De Raeve, Hendrik; Menu, Eline; Van Valckenborgh, Els; McClue, Steve; Vanderkerken, Karin; De Bruyne, Elke

    2014-05-30

    DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) are under investigation for the treatment of cancer, including the plasma cell malignancy multiple myeloma (MM). Evidence exists that DNA damage and repair contribute to the cytotoxicity mediated by the DNMTi decitabine. Here, we investigated the DNA damage response (DDR) induced by decitabine in MM using 4 human MM cell lines and the murine 5T33MM model. In addition, we explored how the HDACi JNJ-26481585 affects this DDR. Decitabine induced DNA damage (gamma-H2AX foci formation), followed by a G0/G1- or G2/M-phase arrest and caspase-mediated apoptosis. JNJ-26481585 enhanced the anti-MM effect of decitabine both in vitro and in vivo. As JNJ-26481585 did not enhance decitabine-mediated gamma-H2AX foci formation, we investigated the DNA repair response towards decitabine and/or JNJ-26481585. Decitabine augmented RAD51 foci formation (marker for homologous recombination (HR)) and/or 53BP1 foci formation (marker for non-homologous end joining (NHEJ)). Interestingly, JNJ-26481585 negatively affected basal or decitabine-induced RAD51 foci formation. Finally, B02 (RAD51 inhibitor) enhanced decitabine-mediated apoptosis. Together, we report that decitabine-induced DNA damage stimulates HR and/or NHEJ. JNJ-26481585 negatively affects RAD51 foci formation, thereby providing an additional explanation for the combinatory effect between decitabine and JNJ-26481585.

  10. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity.

    Directory of Open Access Journals (Sweden)

    Katherine S Lawrence

    2015-04-01

    Full Text Available Errors in replication or segregation lead to DNA damage, mutations, and aneuploidies. Consequently, cells monitor these events and delay progression through the cell cycle so repair precedes division. The DNA damage response (DDR, which monitors DNA integrity, and the spindle assembly checkpoint (SAC, which responds to defects in spindle attachment/tension during metaphase of mitosis and meiosis, are critical for preventing genome instability. Here we show that the DDR and SAC function together throughout the cell cycle to ensure genome integrity in C. elegans germ cells. Metaphase defects result in enrichment of SAC and DDR components to chromatin, and both SAC and DDR are required for metaphase delays. During persistent metaphase arrest following establishment of bi-oriented chromosomes, stability of the metaphase plate is compromised in the absence of DDR kinases ATR or CHK1 or SAC components, MAD1/MAD2, suggesting SAC functions in metaphase beyond its interactions with APC activator CDC20. In response to DNA damage, MAD2 and the histone variant CENPA become enriched at the nuclear periphery in a DDR-dependent manner. Further, depletion of either MAD1 or CENPA results in loss of peripherally associated damaged DNA. In contrast to a SAC-insensitive CDC20 mutant, germ cells deficient for SAC or CENPA cannot efficiently repair DNA damage, suggesting that SAC mediates DNA repair through CENPA interactions with the nuclear periphery. We also show that replication perturbations result in relocalization of MAD1/MAD2 in human cells, suggesting that the role of SAC in DNA repair is conserved.

  11. UVA activation of N-dialkylnitrosamines releasing nitric oxide, producing strand breaks as well as oxidative damages in DNA, and inducing mutations in the Ames test

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto-Kobayashi, Sakae, E-mail: arimoto@cc.okayama-u.ac.jp [Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima, Okayama 700-8530 (Japan); Sano, Kayoko; Machida, Masaki; Kaji, Keiko; Yakushi, Keiko [Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima, Okayama 700-8530 (Japan)

    2010-09-10

    alkylative DNA damages and mutation.

  12. Purine analog-like properties of bendamustine underlie rapid activation of DNA damage response and synergistic effects with pyrimidine analogues in lymphoid malignancies.

    Directory of Open Access Journals (Sweden)

    Nobuya Hiraoka

    Full Text Available Bendamustine has shown considerable clinical activity against indolent lymphoid malignancies as a single agent or in combination with rituximab, but combination with additional anti-cancer drugs may be required for refractory and/or relapsed cases as well as other intractable tumors. In this study, we attempted to determine suitable anti-cancer drugs to be combined with bendamustine for the treatment of mantle cell lymphoma, diffuse large B-cell lymphoma, aggressive lymphomas and multiple myeloma, all of which are relatively resistant to this drug, and investigated the mechanisms underlying synergism. Isobologram analysis revealed that bendamustine had synergistic effects with alkylating agents (4-hydroperoxy-cyclophosphamide, chlorambucil and melphalan and pyrimidine analogues (cytosine arabinoside, gemcitabine and decitabine in HBL-2, B104, Namalwa and U266 cell lines, which represent the above entities respectively. In cell cycle analysis, bendamustine induced late S-phase arrest, which was enhanced by 4-hydroperoxy-cyclophosphamide, and potentiated early S-phase arrest by cytosine arabinoside (Ara-C, followed by a robust increase in the size of sub-G1 fractions. Bendamustine was able to elicit DNA damage response and subsequent apoptosis faster and with shorter exposure than other alkylating agents due to rapid intracellular incorporation via equilibrative nucleoside transporters (ENTs. Furthermore, bendamustine increased the expression of ENT1 at both mRNA and protein levels and enhanced the uptake of Ara-C and subsequent increase in Ara-C triphosphate (Ara-CTP in HBL-2 cells to an extent comparable with the purine analog fludarabine. These purine analog-like properties of bendamustine may underlie favorable combinations with other alkylators and pyrimidine analogues. Our findings may provide a theoretical basis for the development of more effective bendamustine-based combination therapies.

  13. Biological evaluation of omega-(dialkylamino)alkyl derivatives of 6H-indolo[2,3-b]quinoline--novel cytotoxic DNA topoisomerase II inhibitors.

    Science.gov (United States)

    Godlewska, Joanna; Luniewski, Wojciech; Zagrodzki, Bogdan; Kaczmarek, Lukasz; Bielawska-Pohl, Aleksandra; Dus, Danuta; Wietrzyk, Joanna; Opolski, Adam; Siwko, Magdalena; Jaromin, Anna; Jakubiak, Anna; Kozubek, Arkadiusz; Peczyñska-Czoch, Wanda

    2005-01-01

    A series of novel 6H-indolo[2,3-b]quinoline derivatives, substituted at C-2, C-9 or N-6 position with dialkyl(alkylamino)alkyl chains differing in the number of methylene groups, was prepared. These compounds were evaluated in vitro for their antimicrobial and cytotoxic activity against several cell lines of different origin and tested for their ability to influence the cell cycle and inhibit topoisomerase II activity. Liphophilic and calf thymus DNA-binding properties of these compounds were also investigated. All the compounds tested inhibited the growth of Gram-positive bacteria and fungi at MIC values ranging between 0.25 and 1 mM. They also showed cytotoxic activity against KB (human cervix carcinoma) cells (ID50 varied from 2.1 to 9.0 microM) and were able to overcome multidrug resistance in colorectal adenocarcinoma LoVo/DX, uterine sarcoma MES-SA/DX5 and promyelocytic leukemia HL-60/MX2 cells (the values of the resistance index RI fell between 0.54 and 2.4). The compounds induced G2M-phase cell cycle arrest in Jurkat T-cell leukemia cells, revealed DNA-binding properties and inhibited topoisomerase II activity.

  14. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells

    Directory of Open Access Journals (Sweden)

    Peixin Huang

    2015-06-01

    Full Text Available Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague–Dawley (SD rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1 and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR, ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo.

  15. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available PURPOSE: In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. METHODS AND MATERIALS: In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. RESULTS: Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. CONCLUSIONS: Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  16. Damage to cellular and isolated DNA induced by a metabolite of aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan)], E-mail: s-oikawa@doc.medic.mie-u.ac.jp; Kobayashi, Hatasu; Tada-Oikawa, Saeko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); JSPS Research Fellow (Japan); Isono, Yoshiaki [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Kawanishi, Shosuke [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2009-02-10

    Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H{sub 2}O{sub 2})-resistant clone HP100 cells, suggesting the involvement of H{sub 2}O{sub 2}. In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using {sup 32}P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H{sub 2}O{sub 2} with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis.

  17. ERK kinases modulate the activation of PI3 kinase related kinases (PIKKs) in DNA damage response.

    Science.gov (United States)

    Lin, Xiaozeng; Yan, Judy; Tang, Damu

    2013-12-01

    DNA damage response (DDR) is the critical surveillance mechanism in maintaining genome integrity. The mechanism activates checkpoints to prevent cell cycle progression in the presence of DNA lesions, and mediates lesion repair. DDR is coordinated by three apical PI3 kinase related kinases (PIKKs), including ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-PKcs (the catalytic subunit of the DNA dependent protein kinase). These kinases are activated in response to specific DNA damage or lesions, resulting in checkpoint activation and DNA lesion repair. While it is clear that the pathways of ATM, ATR, and DNA-PK are the core components of DDR, there is accumulating evidence revealing the involvement of other cellular pathways in regulating DDR; this is in line with the concept that in addition to being a nuclear event DDR is also a cellular process. One of these pathways is the extracellular signal-regulated kinase (ERK) MAPK (mitogen-activated protein kinase) pathway. ERK is a converging point of multiple signal transduction pathways involved in cell proliferation, differentiation, and apoptosis. Adding to this list of pathways is the recent development of ERK in DDR. The ERK kinases (ERK1 and ERK2) contribute to the proper execution of DDR in terms of checkpoint activation and the repair of DNA lesions. This review summarizes the contributions of ERK to DDR with emphasis on the relationship of ERK kinases with the activation of ATM, ATR, and DNA-PKcs.

  18. Susceptibility to bystander DNA damage is influenced by replication and transcriptional activity.

    Science.gov (United States)

    Dickey, Jennifer S; Baird, Brandon J; Redon, Christophe E; Avdoshina, Valeriya; Palchik, Guillermo; Wu, Junfang; Kondratyev, Alexei; Bonner, William M; Martin, Olga A

    2012-11-01

    Direct cellular DNA damage may lead to genome destabilization in unexposed, bystander, cells sharing the same milieu with directly damaged cells by means of the bystander effect. One proposed mechanism involves double strand break (DSB) formation in S phase cells at sites of single strand lesions in the DNA of replication complexes, which has a more open structure compared with neighboring DNA. The DNA in transcription complexes also has a more open structure, and hence may be susceptible to bystander DSB formation from single strand lesions. To examine whether transcription predisposes non-replicating cells to bystander effect-induced DNA DSBs, we examined two types of primary cells that exhibit high levels of transcription in the absence of replication, rat neurons and human lymphocytes. We found that non-replicating bystander cells with high transcription rates exhibited substantial levels of DNA DSBs, as monitored by γ-H2AX foci formation. Additionally, as reported in proliferating cells, TGF-β and NO were found to mimic bystander effects in cell populations lacking DNA synthesis. These results indicate that cell vulnerability to bystander DSB damage may result from transcription as well as replication. The findings offer insights into which tissues may be vulnerable to bystander genomic destabilization in vivo.

  19. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution

    DEFF Research Database (Denmark)

    Møller, Peter; Loft, Steffen

    2010-01-01

    BACKGROUND: Air pollution is thought to exert health effects through oxidative stress, which causes damage to DNA and lipids. OBJECTIVE: We determined whether levels of oxidatively damaged DNA and lipid peroxidation products in cells or bodily fluids from humans are useful biomarkers...... of biologically effective dose in studies of the health effects of exposure to particulate matter (PM) from combustion processes. DATA SOURCES: We identified publications that reported estimated associations between environmental exposure to PM and oxidative damage to DNA and lipids in PubMed and EMBASE. We also...... identified publications from reference lists and articles cited in the Web of Science. DATA EXTRACTION: For each study, we obtained information on the estimated effect size to calculate the standardized mean difference (unitless) and determined the potential for errors in exposure assessment and analysis...

  20. Chronic inflammation-related DNA damage response: a driving force of gastric cardia carcinogenesis.

    Science.gov (United States)

    Lin, Runhua; Xiao, Dejun; Guo, Yi; Tian, Dongping; Yun, Hailong; Chen, Donglin; Su, Min

    2015-02-20

    Gastric cardia cancer (GCC) is a highly aggressive disease associated with chronic inflammation. To investigate the relationship between DNA damage response (DDR) and chronic inflammation, we collected 100 non-tumor gastric cardia specimens of Chaoshan littoral, a high-risk region for esophageal and gastric cardia cancer. A significantly higher proportion of severe chronic inflammation was found in dysplastic epithelia (80.9%) in comparison with that in non-dysplastic tissues (40.7%) (Pchronic inflammation degrees from normal to severe inflammation (Pchronic inflammation-related DNA damage response may be a driving force of gastric cardia carcinogenesis. Based on these findings, DNA damage response in non-malignant tissues may become a promising biomedical marker for predicting malignant transformation in the gastric cardia.

  1. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    Science.gov (United States)

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (pacetylsalicylic acid induces oxidative stress and DNA damage in D. magna.

  2. An anti-DNA antibody prefers damaged dsDNA over native.

    Science.gov (United States)

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2017-01-01

    DNA-protein interactions, including DNA-antibody complexes, have both fundamental and practical significance. In particular, antibodies against double-stranded DNA play an important role in the pathogenesis of autoimmune diseases. Elucidation of structural mechanisms of an antigen recognition and interaction of anti-DNA antibodies provides a basis for understanding the role of DNA-containing immune complexes in human pathologies and for new treatments. Here we used Molecular Dynamic simulations of bimolecular complexes of a segment of dsDNA with a monoclonal anti-DNA antibody's Fab-fragment to obtain detailed structural and physical characteristics of the dynamic intermolecular interactions. Using a computationally modified crystal structure of a Fab-DNA complex (PDB: 3VW3), we studied in silico equilibrium Molecular Dynamics of the Fab-fragment associated with two homologous dsDNA fragments, containing or not containing dimerized thymine, a product of DNA photodamage. The Fab-fragment interactions with the thymine dimer-containing DNA was thermodynamically more stable than with the native DNA. The amino acid residues constituting a paratope and the complementary nucleotide epitopes for both Fab-DNA constructs were identified. Stacking and electrostatic interactions were shown to play the main role in the antibody-dsDNA contacts, while hydrogen bonds were less significant. The aggregate of data show that the chemically modified dsDNA (containing a covalent thymine dimer) has a higher affinity toward the antibody and forms a stronger immune complex. These findings provide a mechanistic insight into formation and properties of the pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus, associated with skin photosensibilization and DNA photodamage.

  3. Systems Biology of Saccharomyces cerevisiae Physiology and its DNA Damage Response

    DEFF Research Database (Denmark)

    Fazio, Alessandro

    damage response (Chapter 5). When DNA damage is repaired, cells restart the cell cycle and resume growth. This process is called damage recovery. In S. cerevisiae, the molecular mechanism of recovery relies on dephosphorylation of Rad53 by protein phosphatases (PPs), that, in case of recovery from MMS......The yeast Saccharomyces cerevisiae is a model organism in biology, being widely used in fundamental research, the first eukaryotic organism to be fully sequenced and the platform for the development of many genomics techniques. Therefore, it is not surprising that S. cerevisiae has also been widely...... used in the field of systems biology during the last decade. This thesis investigates S. cerevisiae growth physiology and DNA damage response by using a systems biology approach. Elucidation of the relationship between growth rate and gene expression is important to understand the mechanisms regulating...

  4. Evaluating experimental molecular physics studies of radiation damage in DNA*

    Science.gov (United States)

    Śmiałek, Małgorzata A.

    2016-11-01

    The field of Atomic and Molecular Physics (AMP) is a mature field exploring the spectroscopy, excitation, ionisation of atoms and molecules in all three phases. Understanding of the spectroscopy and collisional dynamics of AMP has been fundamental to the development and application of quantum mechanics and is applied across a broad range of disparate disciplines including atmospheric sciences, astrochemistry, combustion and environmental science, and in central to core technologies such as semiconductor fabrications, nanotechnology and plasma processing. In recent years the molecular physics also started significantly contributing to the area of the radiation damage at molecular level and thus cancer therapy improvement through both experimental and theoretical advances, developing new damage measurement and analysis techniques. It is therefore worth to summarise and highlight the most prominent findings from the AMP community that contribute towards better understanding of the fundamental processes in biologically-relevant systems as well as to comment on the experimental challenges that were met for more complex investigation targets. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  5. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.

    Science.gov (United States)

    Nadkarni, Aditi; Burns, John A; Gandolfi, Alberto; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E; Scicchitano, David A

    2016-01-01

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER.

  6. L-tyrosine induces DNA damage in brain and blood of rats.

    Science.gov (United States)

    De Prá, Samira D T; Ferreira, Gabriela K; Carvalho-Silva, Milena; Vieira, Júlia S; Scaini, Giselli; Leffa, Daniela D; Fagundes, Gabriela E; Bristot, Bruno N; Borges, Gabriela D; Ferreira, Gustavo C; Schuck, Patrícia F; Andrade, Vanessa M; Streck, Emilio L

    2014-01-01

    Mutations in the tyrosine aminotransferase gene have been identified to cause tyrosinemia type II which is inherited in an autosomal recessive manner. Studies have demonstrated that an excessive production of ROS can lead to reactions with macromolecules, such as DNA, lipids, and proteins. Considering that the L-tyrosine may promote oxidative stress, the main objective of this study was to investigate the in vivo effects of L-tyrosine on DNA damage determined by the alkaline comet assay, in brain and blood of rats. In our acute protocol, Wistar rats (30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. For chronic administration, the animals received two subcutaneous injections of L-tyrosine (500 mg/kg, 12-h intervals) or saline administered for 24 days starting at postnatal day (PD) 7 (last injection at PD 31), 12 h after the last injection, the animals were killed by decapitation. We observed that acute administration of L-tyrosine increased DNA damage frequency and damage index in cerebral cortex and blood when compared to control group. Moreover, we observed that chronic administration of L-tyrosine increased DNA damage frequency and damage index in hippocampus, striatum, cerebral cortex and blood when compared to control group. In conclusion, the present work demonstrated that DNA damage can be encountered in brain from animal models of hypertyrosinemia, DNA alterations may represent a further means to explain neurological dysfunction in this inherited metabolic disorder and to reinforce the role of oxidative stress in the pathophysiology of tyrosinemia type II.

  7. Induction of DNA damage by the leaves and rhizomes of Curcuma amada Roxb in breast cancer cell lines

    OpenAIRE

    Sivaprabha, J.; B Dharani; PR Padma; Sumathi, S.

    2015-01-01

    Objective: To evaluate DNA damage inducing effect of the methanolic extract of both the leaves and the rhizomes of Curcuma amada (C. amada) against breast cancer cell lines MCF-7 and MDA MB 231 and analyze the active components present in the methanolic extract of the leaves and the rhizomes. Methods: The DNA damage induced in yeast was assessed using diphenylamine method. The DNA damage induced by the extracts in cell lines was assessed using single cell gel electrophoresis (Comet assay)....

  8. Function of ZFAND3 in the DNA Damage Response

    Science.gov (United States)

    2013-06-01

    by flow-cytometry. Figure 2. ZFAND3 silencing does not hypersensitize cells to HU. Sensitivity to HU was determined after depletion of ZFAND3 (using...proteins cause hypersensitivity to replication DDR Kinase-Dependent Regulation of DNA Repair Advanced Online Article. Cite this article as Cold Spring...heat inactivated fetal bovine serum (FBS), 50 U/ml penicillin , 50 mg/ml streptomycin, and 2 mM L-glutamine. Hut78 (Sézary Syndrome) cells (ATCC) were

  9. QPCR: a tool for analysis of mitochondrial and nuclear DNA damage in ecotoxicology.

    Science.gov (United States)

    Meyer, Joel N

    2010-04-01

    The quantitative PCR (QPCR) assay for DNA damage and repair has been used extensively in laboratory species. More recently, it has been adapted to ecological settings. The purpose of this article is to provide a detailed methodological guide that will facilitate its adaptation to additional species, highlight its potential for ecotoxicological and biomonitoring work, and critically review the strengths and limitations of this assay. Major strengths of the assay include very low (nanogram to picogram) amounts of input DNA; direct comparison of damage and repair in the nuclear and mitochondrial genomes, and different parts of the nuclear genome; detection of a wide range of types of DNA damage; very good reproducibility and quantification; applicability to properly preserved frozen samples; simultaneous monitoring of relative mitochondrial genome copy number; and easy adaptation to most species. Potential limitations include the limit of detection (approximately 1 lesion per 10(5) bases); the inability to distinguish different types of DNA damage; and the need to base quantification of damage on a control or reference sample. I suggest that the QPCR assay is particularly powerful for some ecotoxicological studies.

  10. Analyses of the secondary particle radiation and the DNA damage it causes to human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lebel E.; Rusek A.; Sivertz, M.; Yip, K.; Thompson, K.; Tafrov, S.

    2011-11-22

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  11. Analyses of the Secondary Particle Radiation and the DNA Damage it Causes to Human Keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lebel E. A.; Tafrov S.; Rusek, A.; Sivertz, M. B.; Yip, K.; Thompson, K. H.

    2011-11-01

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  12. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate.

    Science.gov (United States)

    Joyner-Matos, Joanna; Predmore, Benjamin L; Stein, Jenny R; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates.

  13. Quantitative evaluation of p53 as a new indicator of DNA damage in human spermatozoa

    Directory of Open Access Journals (Sweden)

    Salvatore Raimondo

    2014-01-01

    The aim of this study was to assess if a p53 ELISA assay could be a new indicator of DNA damage in human spermatozoa. Materials and Methods: 103 human semen samples were evaluated using both Acridine Orange test and p53 ELISA and results were compared. Results: A clear correlation between the values measured by two methods was obtained. Conclusions: If this hypothesis will be confirmed by further studies, the p53 ELISA assay could become a new and more precise indicator of DNA damage in human spermatozoa.

  14. Reactive Molecular Dynamics study on the first steps of DNA-damage by free hydroxyl radicals

    CERN Document Server

    Abolfath, Ramin M; Brabec, Thomas

    2011-01-01

    We employ a large scale molecular simulation based on bond-order ReaxFF to simulate the chemical reaction and study the damage to a large fragment of DNA-molecule in the solution by ionizing radiation. We illustrate that the randomly distributed clusters of diatomic OH-radicals that are primary products of megavoltage ionizing radiation in water-based systems are the main source of hydrogen-abstraction as well as formation of carbonyl- and hydroxyl-groups in the sugar-moiety that create holes in the sugar-rings. These holes grow up slowly between DNA-bases and DNA-backbone and the damage collectively propagate to DNA single and double strand break.

  15. Proteomics insights into DNA damage response and translating this knowledge to clinical strategies

    DEFF Research Database (Denmark)

    von Stechow, Louise; Olsen, Jesper V

    2016-01-01

    Genomic instability is a critical driver in the process of cancer formation. At the same time, inducing DNA damage by irradiation or genotoxic compounds constitutes a key therapeutic strategy to kill fast-dividing cancer cells. Sensing of DNA lesions initiates a complex set of signalling pathways...... Spectrometry (MS)-based proteomics emerged as method of choice for global studies of proteins and their posttranslational modifications (PTMs). MS-based studies of the DDR have aided in delineating DNA damage-induced signalling responses. Those studies identified changes in abundance, interactions...... and modification of proteins in the context of genotoxic stress. Here we review ground-breaking MS-based proteomics studies, which analysed changes in protein abundance, protein-protein and protein-DNA interactions, phosphorylation, acetylation, ubiquitylation, SUMOylation and Poly(ADP-ribose)ylation (PARylation...

  16. Compound Poisson Processes and Clustered Damage of Radiation Induced DNA Double Strand Breaks

    Science.gov (United States)

    Gudowska-Nowak, E.; Ritter, S.; Taucher-Scholz, G.; Kraft, G.

    2000-05-01

    Recent experimental data have demonstrated that DNA damage induced by densely ionizing radiation in mammalian cells is distributed along the DNA molecule in the form of clusters. The principal constituent of DNA damage are double-strand breaks (DSB) which are formed when the breaks occur in both DNA strands and are directly opposite or separated by only a few base pairs. DSBs are believed to be most important lesions produced in chromosomes by radiation; interaction between DSBs can lead to cell killing, mutation or carcinogenesis. The paper discusses a model of clustered DSB formation viewed in terms of compound Poisson process along with the predictive essay of the formalism in application to experimental data.

  17. DNA damage response and repair data with pharmacological modulators of Tousled

    Directory of Open Access Journals (Sweden)

    Prakash Srinivasan Timiri Shanmugam

    2016-06-01

    Full Text Available Human Tousled kinase 1 (TLK1 plays an important role in chromatin remodeling, replication, and DNA damage response and repair. TLK1 activity is immediately, but transiently, downregulated after genotoxic insult, and its recovery is important for exit from checkpoint arrest and cell survival after radiation. The data in this article compliments research presented in the paper titled, “Tousled kinase activator, gallic acid, promotes DNA repair and suppresses radiation cytotoxicity in salivary gland cells” [1]. The identification of small molecule activators and inhibitors of TLK1 provided an opportunity to pharmacologically alter the protein׳s activity to elucidate its role in DNA damage response pathways. TLK1 effectors, gallic acid (GA and thioridazine (THD activate and inhibit the kinase, respectively, and the data report on the impact of these compounds and the significance of TLK1 to DNA break repair and the survival of human salivary acinar cells.

  18. Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology

    Directory of Open Access Journals (Sweden)

    Francesca Grasso

    2015-08-01

    Full Text Available Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.

  19. An immunochemical approach to the study of DNA damage and repair

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, S.S. (Vermont Univ., Burlington, VT (United States). Dept. of Microbiology and Molecular Genetics); Erlanger, B.F. (Columbia Univ., New York, NY (United States). Dept. of Microbiology)

    1992-05-01

    The overall objective of this project has been to develop immunochemical methods to quantitate unique DNA base damages in order to facilitate studies on radiation-induced damage production and repair. Specifically, we have been using antibodies raised to damaged bases to quantitate unique lesions in model systems in order to evaluate their potential biological consequences. Our approach has been to synthesize modified nucleotides or nucleosides, conjugate them to protein carriers, and use the conjugates as immunogens in rabbits or to prepare monoclonal antibodies. We have been studying damages that are stable radiolysis products found in X-irradiated DNA and thus of potential biological consequence. Our aim is to build an in vitro and in vivo data base on the interactions between model DNA lesions and such cellular enzymes as DNA polymerases and repair endonucleases. Initial studies have focused on pyrimidine ring saturation products (thymine glycol.and dihydrothymine), products resulting from ring fragmentation or base loss (urea, {Beta}-ureidoisobutyric acid, abasic sites), 7-hydro-8-oxopurines, and more recently, cytosine radiolysis products. These modified bases serve as useful models for examining the potential lethal and/or mutagenic (carcinogenic) effects of the products of DNA radiolysis.

  20. DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos

    Science.gov (United States)

    Montero, Juan A.; Sanchez-Fernandez, Cristina; Lorda-Diez, Carlos I.; Garcia-Porrero, Juan A.; Hurle, Juan M.

    2016-01-01

    DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of γH2AX with other downstream DNA repair factors, including MDC1, Rad50 and 53BP1 suggests a defensive response of cells against DNA damage. The relative distribution of cells γH2AX-only positive, TUNEL-only positive, and cells double positive for both markers is consistent with a sequence of degenerative events starting by damage of the DNA. In support of this interpretation, the relative number of γH2AX-only cells increases after caspase inhibition while the relative number of TUNEL-only cells increases after inhibition of ATM. Furthermore, cultured interdigits survived and maintained intense chondrogenic potential, even at advanced stages of degeneration, discarding a previous commitment to die. Our findings support a new biological paradigm considering embryonic cell death secondary to genotoxic stimuli, challenging the idea that considers physiological cell death a cell suicide regulated by an internal death clock that pre-programmes degeneration. PMID:27752097

  1. Controlling the response to DNA damage by the APC/C-Cdh1.

    Science.gov (United States)

    de Boer, H Rudolf; Guerrero Llobet, S; van Vugt, Marcel A T M

    2016-03-01

    Proper cell cycle progression is safeguarded by the oscillating activities of cyclin/cyclin-dependent kinase complexes. An important player in the regulation of mitotic cyclins is the anaphase-promoting complex/cyclosome (APC/C), a multi-subunit E3 ubiquitin ligase. Prior to entry into mitosis, the APC/C remains inactive, which allows the accumulation of mitotic regulators. APC/C activation requires binding to either the Cdc20 or Cdh1 adaptor protein, which sequentially bind the APC/C and facilitate targeting of multiple mitotic regulators for proteasomal destruction, including Securin and Cyclin B, to ensure proper chromosome segregation and mitotic exit. Emerging data have indicated that the APC/C, particularly in association with Cdh1, also functions prior to mitotic entry. Specifically, the APC/C-Cdh1 is activated in response to DNA damage in G2 phase cells. These observations are in line with in vitro and in vivo genetic studies, in which cells lacking Cdh1 expression display various defects, including impaired DNA repair and aberrant cell cycle checkpoints. In this review, we summarize the current literature on APC/C regulation in response to DNA damage, the functions of APC/C-Cdh1 activation upon DNA damage, and speculate how APC/C-Cdh1 can control cell fate in the context of persistent DNA damage.

  2. Hispidin produced from Phellinus linteus protects against peroxynitrite-mediated DNA damage and hydroxyl radical generation.

    Science.gov (United States)

    Chen, Wei; Feng, Lina; Huang, Zhaoyi; Su, Hongming

    2012-09-30

    Oxidative stress plays an important role in the progression of many chronic diseases including cardiovascular diseases, diabetes, cancer and neurodegenerative disorders. One such mediator of oxidative stress is peroxynitrite, which is highly toxic to cultured neurons and astrocytes, and has been reported to be involved in the pathogenesis of various types of neuronal diseases. Therefore, searching for natural compounds with peroxynitrite-scavenging activity might be an effective therapy for peroxynitrite-mediated cytotoxicity. Hispidin, a phenolic compound from Phellinus linteus (a medicinal mushroom), has been shown to possess strong antioxidant, anticancer, and antidiabetic properties. However, the astrocyte protective efficacy of hispidin has been not examined. This study was undertaken to investigate whether the astrocyte protective effect of hispidin is associated with inhibition of peroxynitrite-induced DNA damage, a critical event leading to peroxynitrite-mediated cytotoxicity. Our results showed that peroxynitrite can cause DNA damage in φX-174 plasmid DNA and rat primary astrocytes. The presence of hispidin (10-20 μg/ml) was found to significantly inhibit peroxynitrite-induced DNA damage and cytotoxicity. EPR spectroscopy demonstrated that the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from peroxynitrite, and that hispidin potently diminished the adduct signal in a concentration-dependent manner. Taken together, these results demonstrate for the first time that hispidin can protect against peroxynitrite-mediated cytotoxicity, DNA damage and hydroxyl radical formation.

  3. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer

    Science.gov (United States)

    Esteban-Jurado, Clara; Franch-Expósito, Sebastià; Muñoz, Jenifer; Ocaña, Teresa; Carballal, Sabela; López-Cerón, Maria; Cuatrecasas, Miriam; Vila-Casadesús, Maria; Lozano, Juan José; Serra, Enric; Beltran, Sergi; Brea-Fernández, Alejandro; Ruiz-Ponte, Clara; Castells, Antoni; Bujanda, Luis; Garre, Pilar; Caldés, Trinidad; Cubiella, Joaquín; Balaguer, Francesc; Castellví-Bel, Sergi

    2016-01-01

    Colorectal cancer (CRC) is one of the most common neoplasms in the world. Fanconi anemia (FA) is a very rare genetic disease causing bone marrow failure, congenital growth abnormalities and cancer predisposition. The comprehensive FA DNA damage repair pathway requires the collaboration of 53 proteins and it is necessary to restore genome integrity by efficiently repairing damaged DNA. A link between FA genes in breast and ovarian cancer germline predisposition has been previously suggested. We selected 74 CRC patients from 40 unrelated Spanish families with strong CRC aggregation compatible with an autosomal dominant pattern of inheritance and without mutations in known hereditary CRC genes and performed germline DNA whole-exome sequencing with the aim of finding new candidate germline predisposition variants. After sequencing and data analysis, variant prioritization selected only those very rare alterations, producing a putative loss of function and located in genes with a role compatible with cancer. We detected an enrichment for variants in FA DNA damage repair pathway genes in our familial CRC cohort as 6 families carried heterozygous, rare, potentially pathogenic variants located in BRCA2/FANCD1, BRIP1/FANCJ, FANCC, FANCE and REV3L/POLZ. In conclusion, the FA DNA damage repair pathway may play an important role in the inherited predisposition to CRC. PMID:27165003

  4. Products of DNA, protein and lipid oxidative damage in relation to vitamin C plasma concentration.

    Science.gov (United States)

    Krajcovicová-Kudlácková, M; Dusinská, M; Valachovicová, M; Blazícek, P; Pauková, V

    2006-01-01

    Oxidative stress plays an important role in the pathogenesis of numerous chronic age-related free radical-induced diseases. Improved antioxidant status minimizes oxidative damage to DNA, proteins, lipids and other biomolecules. Diet-derived antioxidants such as vitamin C, vitamin E, carotenoids and related plant pigments are important in antioxidative defense and maintaining health. The results of long-term epidemiological and clinical studies suggest that protective vitamin C plasma concentration for minimum risk of free radical disease is higher than 50 micromol/l. Products of oxidative damage to DNA (DNA strand breaks with oxidized purines and pyrimidines), proteins (carbonyls) and lipids (conjugated dienes of fatty acids, malondialdehyde) were estimated in a group of apparently healthy adult non-smoking population in dependence on different vitamin C plasma concentrations. Under conditions of protective plasma vitamin C concentrations (>50 micromol/l) significantly lower values of DNA, protein and lipid oxidative damage were found in comparison with the vitamin C-deficient group (fruit and vegetable consumption (leading to higher vitamin C intake and higher vitamin C plasma concentrations) on oxidation of DNA, proteins and lipids is also expressed by an inverse significant correlation between plasma vitamin C and products of oxidative damage. The results suggest an important role of higher and frequent consumption of protective food (fruit, vegetables, vegetable oils, nuts, seeds and cereal grains) in prevention of free radical disease.

  5. Rho GTPases: Novel Players in the Regulation of the DNA Damage Response?

    Directory of Open Access Journals (Sweden)

    Gerhard Fritz

    2015-09-01

    Full Text Available The Ras-related C3 botulinum toxin substrate 1 (Rac1 belongs to the family of Ras-homologous small GTPases. It is well characterized as a membrane-bound signal transducing molecule that is involved in the regulation of cell motility and adhesion as well as cell cycle progression, mitosis, cell death and gene expression. Rac1 also adjusts cellular responses to genotoxic stress by regulating the activity of stress kinases, including c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK and p38 kinases as well as related transcription factors. Apart from being found on the inner side of the outer cell membrane and in the cytosol, Rac1 has also been detected inside the nucleus. Different lines of evidence indicate that genotoxin-induced DNA damage is able to activate nuclear Rac1. The exact mechanisms involved and the biological consequences, however, are unclear. The data available so far indicate that Rac1 might integrate DNA damage independent and DNA damage dependent cellular stress responses following genotoxin treatment, thereby coordinating mechanisms of the DNA damage response (DDR that are related to DNA repair, survival and cell death.

  6. Oxidative DNA damage induced by benz[a]anthracene dihydrodiols in the presence of dihydrodiol dehydrogenase.

    Science.gov (United States)

    Seike, Kazuharu; Murata, Mariko; Hirakawa, Kazutaka; Deyashiki, Yoshihiro; Kawanishi, Shosuke

    2004-11-01

    Tobacco smoke and polluted air are risk factors for lung cancer and contain many kinds of polycyclic aromatic hydrocarbons (PAHs) including benzo[a]pyrene (B[a]P) and benz[a]anthracene (BA). BA, as well as B[a]P, is assessed as probably carcinogenic to humans (IARC group 2A). BA is metabolized to several dihydrodiols. Dihydrodiol dehydrogenase (DD), a member of the aldo-keto reductase superfamily, catalyzes NAD(P)+-linked oxidation of dihydrodiols of aromatic hydrocarbons to corresponding catechols. To clarify the role of DD on PAH carcinogenesis, we examined oxidative DNA damage induced by trans-dihydrodiols of BA and B[a]P treated with DD using 32P-5'-end-labeled DNA fragments obtained from the human p53 tumor suppressor gene. In addition, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA by using HPLC with an electrochemical detector. DD-catalyzed BA-1,2-dihydrodiol caused Cu(II)-mediated DNA damage including 8-oxodG formation in the presence of NAD+. BA-1,2-dihydrodiol induced a Fpg sensitive and piperidine labile G lesion at the 5'-ACG-3' sequence complementary to codon 273 of the human p53 tumor suppressor gene, which is known as a hotspot. DNA damage was inhibited by catalase and bathocuproine, suggesting the involvement of H2O2 and Cu(I). The observation of NADH production by UV-visible spectroscopy suggested that DD catalyzed BA-1,2-dihydrodiol most efficiently to the corresponding catechol among the PAH-dihydrodiols tested. A time-of-flight mass spectroscopic study showed that the catechol form of BA-1,2-dihydrodiol formed after DD treatment. In conclusion, BA-1,2-dihydrodiol can induce DNA damage more efficiently than B[a]P-7,8-dihydrodiol and other BA-dihydrodiols in the presence of DD. The reaction mechanism on oxidative DNA damage may be explained by theoretical calculations with an enthalpy change of dihydrodiols and oxidation potential of their catechol forms. DD